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Background.Regulatingmechanisms of branchingmorphogenesis of fetal lung rat explants have been an essential tool formolecular
research.This work presents a newmethodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of
lung explants during cellular development frommicroscopic images.Methods.Theouter contour was defined using an adaptive and
multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner
lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description
length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends
from a skeletonized image of the lung inner epithelia. Results.The time for lung branching morphometric analysis was reduced in
98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard
deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The
proposedmethod introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images
with different lighting characteristics and allowing a reliable comparison between different researchers.

1. Introduction

Branchingmorphogenesis results on the creation of branched
structures in the body and is a key and fundamental feature
of several organs development and growth, such as lungs,
pancreas, salivary glands, mammary glands, kidney, and
prostate [1–3]. The lung branching morphogenesis (LBM) of
fetal rat explants, grown in vitro, has been an essential tool in
research of molecular and cellular development mechanisms.
This methodology has been widely studied, at different
gestational ages in vivo and in vitro, in many research centers
due to its stability and versatility [4–7].

Usually, LBM analysis involves a morphometric analysis
of lung explants differentiation and growth, during a 5-
day period, using stereo microscope images acquired at 24-
hour intervals. For each day, a comprehensive study of the
branching pattern of embryonic lungs by quantifying the

branches perimeter, area, outer contour, and number of
peripheral airway buds is performed.

Although, over the past decade, there have been signifi-
cant advances in understanding of the genetic control of lung
development, to the best of our knowledge, all LBM studies
are still performed by manual image quantification using
generic 2D curves software. LBM analysis remains a time-
consuming procedure, dependent on researcher expertise
and error-prone. Often, it prevents the biological result
comparison among different researchers, to deduce biological
validations and theorems, due to ambiguous and inaccurate
measurements [8]. Therefore, besides the different image
processing approaches proposed in the biological research
domain [9–18], none of these works are applied to LBM
analysis preventing us from discussing the state-of-the-art
technology to deal with the same problem.
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Figure 1: Images of lung explant grown in vitro with different stereo microscope lighting sources.

Considering the literature pitfalls, we propose a new
methodology capable of automatically performing the LBM
morphometric analysis in order to reduce or even eliminate
the researcher dependence, providing fast, robust, user-
independent, and accurate results.

2. Methods

All methods were developed using C++, ITK (Segmentation
& Registration Toolkit), and VTK (Visualization Toolkit).
RGB images were acquired at the Life and Health Sciences
Research Institute (ICVS) of School of Health Sciences,
University of Minho, Portugal, using a stereo microscope
(Olympus SZX16). Each CT slice has 768 × 576 pixels, with
a pixel resolution of 40 𝜇m. All images were acquired at the
×20 magnification.

Depending on the biological laboratory trials, LBM
images can be acquired with different color conditions
(examples in Figures 1(a) and 1(b)).The computer application
presented in this work was tested and validated for both
kinds of images. The segmentation process assumes that the
region of interest to be segmented is the union of one or
more small primitive regions previously calculated from the
input image. To this extent, different seeds were automatically
calculated and placed within the lung epithelia allowing a
multithreading cluster growth.

2.1. Preprocessing Filtering. The RGB input images were first
converted to grayscale values by averaging and normalizing
the 3-color components.Then, the grayscale image was input
to an anisotropic diffusion algorithm [19] which reduces the
noise spots corrupting the image.

This algorithm depends on three parameters (empirically
defined): the number of iterations, edge parameter (𝜎), and
an edge-stopping diffusivity function 𝑔(𝑥, 𝜎), according to
Tukey’s function: 𝑔(𝑥, 𝜎) = (1/2)[1 − (𝑋/𝜎)

2
]
2 if |𝑥| ≤ 𝜎 or

𝑔(𝑥, 𝜎) = 0, 𝑓|𝑥| > 𝜎. The anisotropic diffusion algorithm
worked as a low-pass filter for noise reduction but preserving

sharper boundaries and image contours, producing unifor-
mity in the output image intensity (Figures 2(a) and 2(b)).

This outcome was used to automatically segment (1) the
outer contour of the lung explant object and also (2) the inner
epithelia by merging different clusters according to an image
partitioning.

2.2. Lung Explant Outer Contour. An adaptive andmultiscale
thresholding technique was used to accomplish the segmen-
tation of the whole lung explant object from the background.

Initially, a global threshold that maximizes the image
entropy between a segmented object (the lung explant) and its
background was automatically calculated. For that, consider
an image 𝐼with𝑁pixels, 𝐼(𝑖) as the image intensity at position
𝑖 (𝑖 = 1, 2, . . . , 𝑁), and IMin and IMax equal to 0 and 255.
Moreover, consider𝑇

𝐼
(𝑖) as the result of a threshold algorithm

with a threshold level at 𝐼(𝑖), 𝐸
𝑂
(𝑖) as the entropy of the

objects of 𝑇
𝐼
(𝑖), 𝐸
𝐵
(𝑖) as the entropy of the background of

𝑇
𝐼
(𝑖), and𝐸

𝑇
as the total entropy (𝐸

𝐵
(𝑖)+𝐸
𝑂
(𝑖)). Ranging from

IMin to IMax, the value of 𝑇 was determined by the intensity
𝐼(𝑖) that maximized 𝐸

𝑇
.

Although this global threshold produces suitable con-
tours in all lung objects with image properties as Figure 1(a),
it fails for Figure 1(b) due to the irregularities, small contrast
variability, and outer contour ambiguities.

Consequently, for this kind of images, the initial outer
contour was redefined with the following steps:

(a) calculation of an initial binary object and its centroid
(𝐶 in Figure 3(b)) is done;

(b) determination of different lines with origin at 𝐶

(slopes incremented from 0∘ to 360∘ with 45∘ of step)
is done;

(c) let 𝑁 be the total number of lines (𝑁 = 8); calculate
the distances (𝐷

𝑖
, 𝑖 = 1, 2, . . . , 𝑁) between the origin

point and the one that intersects the initial contour
(𝐶
𝑖
, 𝑖 = 1, 2, . . . , 𝑁);
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Figure 2: Anisotropic diffusion outcome for both images shown in Figures 1(a) and 1(b), respectively. The images were diffused according
to Tukey’s function using 80 iterations and an edge parameter of 𝜎 = 4.5 (determined experimentally in order to enhance the inner lung
epithelia).
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Figure 3: (a) Outer contour for Figure 1(a); (b) outer contour for Figure 1(b) and representation of the new strategy to redefine this initial
contour; and (c) redefined counter for Figure 1(b).

(d) determine the distance average 𝐷 = ∑
𝑖=𝑁

𝑖=1
𝐷
𝑖
/𝑁; it

defines circle with radius 𝐷/2 and center at 𝐶;
(e) each point 𝐶

𝑖
corresponds to the center of a new

circle with radius 𝐷/4 that was used to automatically
determine a local threshold level using the same
entropy maximization criterion;

(f) the threshold value, for all pixels that were not
inside of any circle with center at 𝐶

𝑖
, was smoothly

interpolated using a B-Spline approximation method
described in [20];

(g) the resulting binary image allowed the determination
of an iso-contour for the whole lung object; this con-
tour was later smoothed with a Gaussian distribution
producing a shrinking effect (Figure 3(c)).

2.3. Epithelial Segmentation

2.3.1. Image Partitioning. The image gradient magnitude of
the filtered image was input to an algorithm that divides
the input image into small regions. Figure 4(a) shows how

the different regions were labelled by a starting point (red,
Figure 4(a)) and follow the flow line, whose direction was the
gradient of minimum local intensity. The minimum gradient
(green, Figure 4(a)) path of each pixel 𝑝 of the input image
was tracked by recursively selecting a pixel 𝑞 in the 8-
connected neighborhood (yellow, Figure 4(a)). If more than
one pixel 𝑞 exist, the last pixel found was taken, considering
𝑝 as a reference pixel. Every pixel 𝑞 along the path is marked
as a local minimum of the gradient magnitude and assigned
a distinct label.

In the end, the whole image was divided into primitive
regions. Each region shares the same statistical properties
and the boundaries coincide with the ridges of the gradient
magnitude surface (Figures 4(a) and 4(b)).

2.3.2. Clustering Regions

Creating Seeds. The image partitioning contains a set of
nonoverlapping regions. Although the probability of having
region boundaries corresponding to boundaries of important
objects increases with oversegmentation, it can also create
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Figure 4: (a) Labeling process using the image gradient magnitude: (left) image gradient magnitude; (center) zooming image area; (right)
the numbers are the pixel intensities, red is the stating pixel, green is minimum pixel intensity in the 8-connected neighborhood (in yellow),
and the arrow is the searching direction. (b) and (c) are image partitioning in rat lung explants for Figures 1(a) and 1(b).

many insignificant boundaries. This stage describes how one
dealt with this problem and the inner lung epithelium was
automatically determined. Briefly, the procedure consists of
the identification and clustering of similar primitive regions.

Each cluster starts growing from different seeds, initial-
ized within the lung epithelia, along different lines 𝐿

𝑖
(with

𝑖 = 1, 2, . . . , 8 (total number of lines), Figure 5(a)).
First, a neighborhood 𝑁

𝑖
(with 𝑖 = 1, 2, . . . , 8, white

circle in Figure 5) defines a kernel with center at centroid
𝐶, circle shape, and radius of 8 pixels. An iterative process
transverses each line 𝐿

𝑖
with 𝑁

𝑖
(white arrow in Figure 5),

while it calculates the average distribution of the kernel
neighborhood originating different candidate seeds.The final
seed for clustering grown will be the one where the average
distribution within the kernel was minimum (black circles in
Figure 5 defining a seed 𝑆

𝑖
).

The regions belonging to each seed 𝑆
𝑖
were used to

calculate initial statistical properties of the epithelia (centroid,
average distribution, minimum andmaximum values, region
edges, region neighbors, and entropy) that were used for
clustering growth.

Clustering Growth. The merging procedure was based on the
similarity between regions formulated mathematically as a
local optimization problem using the minimum description
length principle [21]. If any primitive region is neighbor of a

cluster, initialized at a seed 𝑆
𝑖
, a decision rule will state if it

should be included or not.
Let 𝑓(𝑥, 𝑦) be a two-dimensional function that denotes

the 2D input image with 𝑘 constant regions and 𝐼
𝑖
(𝑖 =

1, 2, . . . , 𝑘) the original image intensity in the 𝑖th region. Let
𝑄(𝑥, 𝑦)be a region of𝑓(𝑥, 𝑦)with circular shape that includes
a maximum number of regions (𝑛 = 100, experimentally
calculated), located within the outer contour and center at
the new query region 𝑅

𝑛
(tested whether its inclusion in the

cluster 𝐶
𝑖
is adequate) (Figure 6(a)). Using a region 𝑄(𝑥, 𝑦)

with a limited number of primitive regions reduces the
probability to merge statistically outlier regions, providing a
truer picture of the inner epithelia.

According to the minimum description length, the image
data was coded in order to determine the total number of
bits necessary to encode the region 𝑄(𝑥, 𝑦) given by 𝐵

𝑅
=

∑
𝑖
𝐵
𝐼
(𝑅
𝑖
) + 𝐵
𝐵
(𝑅), where

(1) 𝐵
𝐼
(𝑅
𝑖
) is the total number of bits needed to describe

the image intensity for each region given: 𝐵
𝐼
(𝑅
𝑖
) =

𝑛𝑅
𝑖
𝐻(𝑅
𝑖
) (with 𝑛𝑅

𝑖
being the number of pixels and

image intensity entropy within 𝑅
𝑖
);

(2) 𝐵
𝐵
(𝑅) is the number of bits needed to code the region

boundary information given by 𝐵
𝐵
(𝑅) = 𝑁

𝑟
(𝑅) ⋅

𝑏
1

+ 𝑁
𝑏
(𝑅) ⋅ 𝑏

2
(with 𝑁

𝑟
(𝑅) being the number of

regions in 𝑅, 𝑁
𝑏
(𝑅) the total boundary length of the
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Figure 5: Overview of the clustering procedure. The white circle represents a kernel at center 𝐶; the black circles represent the initial seeds
for clustering growth.
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Figure 6: Overview of the clustering growth procedure: (a) shows how a local region 𝑄(𝑥, 𝑦) is calculated in a cluster 𝐶
𝑖
with seed 𝑆

𝑖
with

center at 𝑅
𝑛
(query region tested whether its inclusion is suitable using the minimum description length principle); (b) and (c) show a

multicluster growth simultaneously.

partitioning, 𝑏
1
the number of bits required to code

the starting point, and 𝑏
2
the number of bits required

to code each element of the boundary chain code).

As a local optimization problem, the inclusion of new
region 𝑅

𝑛
in the cluster 𝐶

𝑖
aims at providing the largest

positive description length gain𝐺 in𝑄(𝑥, 𝑦) at each step with
local optimization.

If a new region is merged in the cluster, the cluster
will have more pixels. Hence, more bits are needed to
encode the cluster image intensities. However, the common
boundary segment between 𝑅

𝑛
and 𝐶

𝑖
disappears and the

total description length might decrease, since the number of
bits needed to encode the new region boundary information
decreases.

With 𝑛𝑏(𝑅
𝑛
, 𝐶
𝑖
) being the number of common boundary

elements of𝑅
𝑛
and𝐶

𝑖
and𝐶new the new cluster resulting from

the merging procedure, the value of description length gain
𝐺 associated with this merging is given by

𝐺 = 𝑛𝑅
𝑛
𝐻(𝑅
𝑛
) + 𝑛𝐶

𝑖
𝐻(𝐶
𝑖
) − 𝑛𝐶new 𝐻(𝐶new)

+ 𝑏
1
+ 𝑛𝑏 (𝑅

𝑛
, 𝐶
𝑖
) ⋅ 𝑏
2
.

(1)

If 𝐺 > 0, the image intensities between 𝑅
𝑛
and 𝐶

𝑖
are quite

similar, whereby these regions belong to the same object.
Thus the entropy increase is compensated by the elimination
of the common boundary, and then these two regions should
be merged in order to minimize 𝐵

𝐵
(𝑅).

2.4. Buds Counting. The number of peripheral buds was
counted based on the lung inner epithelial skeletonizing [22].
The skeletonizing is performed by removing the boundary
and corner points of the epithelial object, until only the
skeleton remains as white pixels.

The number of peripheral buds was determined as the
number of parents (circles in blue, Figure 7(c)) of the skeleton
branched ends (circles in red, Figure 7(c)). Only the branched
ends located near the outer contour (distancing less than 25%
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Figure 7: (a) Input image; (b) outer contour and segmented inner lung epithelia in white; and (c) skeleton of the inner epithelia; branched
ends (circles in red); branched ends parents (circles in blue).

of the axis that transverses the lung object vertically) were
considered.

3. Results

The performance of this new computer algorithm was tested
and validated in a total of 210 images: 90 (18 images for each
day of culture) with image conditions as Figure 1(a) and 120
(24 images for each day of culture) with image conditions as
Figure 1(b). All images were previously segmented by three
experienced researchers: each user manually segmented the
inner epithelia and outer contour and counted the number of
peripheral buds.

The performance of the manual quantification was
accessed by comparing the results among different
researchers. The inner epithelia and outer counter were
evaluated using the dice similarity coefficient (DSC) that
quantifies the spatial overlap between different segmentations
as follows:

DSC (𝐴, 𝐵) =
2 |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
=

2TP
2TP + FP + FN

, (2)

where TP is the number of true positives, FP the false
positives, and FN the false negatives. The DSC score ranges
from 0%, indicating no spatial overlap between sets of binary
segmentation results, to 100%, indicating complete overlap.
Table 1 shows the mean DSC score and error difference for
the LBM morphometric analysis among three researchers.
Table 2 shows the mean differences when the automatic
method was compared to each manual result. The peripheral
buds error is the difference average error between users in
Table 1 and difference average error between manual and
automatic methods in Table 2.

Best results were obtained in the first two days for
both types of images with less standard deviations. High
similarities between the manual and automatic procedure
were not easily obtained for the last two days of culture, due
to the increased number of peripheral airway buds and lung
architecture complexity.

Statistical analysis using ANOVA test (under SPSS Win-
dows version 17.0 software where 𝑃 values lower than 0.05

were accepted as significant) shows nonsignificant differences
between the automatic and manual results (inner epithelia
and outer counter) in all culture days. On the other hand,
the error of peripheral buds was nonsignificant only on the
first three days of culture. Nonsignificant differences were
found between researchers.The time for LBMmorphometric
analysis was reduced to 1-2 seconds/image in contrast to the
manual one (2-3minutes/image).

Results from different images regarding images with
different lighting conditions are shown in Figure 8.

A user interface was also developed that allows the user
to spatially understand the microscope image and rapidly
produce an automatic segmentation. If necessary, manual
editing may be used to correct automatic segmentation
results. Although this manual editing (used to eliminate
false merges) improves DSC scores (>98%) and decreases
the standard deviations, it also adds user dependence and
slows the morphometric analysis (depending on the editing
degree).

This strategy has been used at the ICVS research lab to
study and analyze the effect of different concentrations of a
specific inhibitor in lung branching morphogenesis.

4. Discussion

A computer application was developed, providing an auto-
matic procedure to enable a fast LBM analysis. The mor-
phometric analysis efficiency and robustness were increased
while time consumption, user dependence, and subjectivity
were decreased or even eliminated. The observer variability
was eliminated since all regions were computed and merged
automatically.

The segmentation rate depends on the number of regions
needed to bemerged to select the entire lung epithelial region.
However, the processing time was always about 98% less than
the manual one.

The merging procedure was essential to achieve a good
segmentation, since a significant amount of regions were
initially created by the partitioning algorithm.The automatic
seed selection was suitable to segment the inner epithe-
lia using the minimum description length criterion that
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Figure 8: LBM morphometric analysis for different type of images: outer counter in yellow, inner epithelia in red, and branched skeleton in
white.

Table 1: DSC scores of LBM analysis comparing different researchers results when the study was made in different culture days and image of
types.

Days of culture
1 2 3 4 5

Inner epithelial DSC % A images 91.77 ± 5.13 88.99 ± 2.03 87.93 ± 5.44 87.97 ± 6.76 87.60 ± 7.94
B images 86.91 ± 5.83 86.45 ± 4.23 87.26 ± 4.72 85.53 ± 8.23 85.78 ± 9.69

Outer counter DSC % A images 97.87 ± 4.65 97.32 ± 5.84 97.73 ± 4.89 96.19 ± 7.00 97.15 ± 5.46
B images 94.24 ± 2.90 94.97 ± 5.89 93.97 ± 7.42 91.92 ± 9.25 90.82 ± 10.15

Peripheral buds error A images 0.5 ± 0.2 1.2 ± 0.7 2.5 ± 0.8 2.5 ± 1.2 3.5 ± 3.2
B images 0.4 ± 0.6 1.8 ± 1.3 2.3 ± 1.2 2.4 ± 2.1 4.2 ± 5.6

selectively cluster regions based on their image intensity
distribution similarity.

It was seldom observed that clusters merged dissimilar
regions due to ambiguity and lack of definition of the inner
lung explants contours. The worst results were obtained in
the last two days of culture (Table 2), whose images present
low details and perceptibility, and the branched ramifications
increase drastically. However, the usage of a local image
region, centered at the query region, tested whether its
inclusion is suitable using the minimum description length
principle. This allowed a reliable cluster to grow along
epithelial object that changes gradually over space.

The local threshold was efficient to automatically delin-
eate the outer contour with high DSC scores in images with
lighting characteristics presented in Figure 1(b).

The main difficulties found in the segmentation proce-
dure were the contrast ambiguity and variances of inner
epithelia, complexity of the branched shape, and size, and
the presence of neighborhood regions with the same density.

Moreover, response to drugs and biological markers and dif-
ferent culture medium can induce image intensity variations
and shadows near the outer contour.

These difficulties were more evident at the last two days
of culture where DSCs are lower, even when comparing
the results from different researchers. However, the inner
epithelial segmentation was always segmented with scores
around 90%, even at the last two culture days, indicating
successful segmentation.

However one has to recognize some limitations within
this work. The proposed algorithm overpredicts the number
of peripheral buds with statistical significance with manual
counting. However, peripheral buds counting is a controver-
sial issue, without any statedmethod. As presented in Table 1,
the coefficient of variation (defined as the ratio between the
standard deviation and mean) among researchers is around
1, showing that there is no coherency between them. With
this methodology, one aimed to broaden and generalize
this procedure among different researchers. However, further
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Table 2: DSC scores of LBM analysis comparing the manual and automatic methods when the study was made in different culture days and
image of types.

Days of culture
1 2 3 4 5

Inner epithelial DSC % A images 92.85 ± 3.87 91.54 ± 6.12 90.87 ± 6.88 88.80 ± 9.96 86.72 ± 8.75
B images 89.99 ± 5.32 87.74 ± 9.79 87.06 ± 8.29 82.26 ± 14.64 79.15 ± 13.33

Outer counter DSC % A images 98.09 ± 2.48 99.05 ± 3.49 97.56 ± 5.31 96.28 ± 3.75 97.12 ± 2.03
B images 95.48 ± 6.61 94.54 ± 8.37 95.89 ± 12.30 94.64 ± 13.46 94.71 ± 13.42

Peripheral buds error A images 1.0 ± 1.8 2.6 ± 2.3 4.7 ± 5.8 4.4 ± 6.0 10.3 ± 7.7
B images 1.3 ± 2.4 2.2 ± 3.1 6.5 ± 5.3 7.8 ± 6.2 12.5 ± 7.4

biological studies are required to evaluate its suitability and
reliability for lung branching analyses.

5. Conclusions

Thiswork presents an automatic segmentation procedure and
implementation, providing a technique for LBM morpho-
metric analysis. The proposed method introduces a series of
advantages related to its intuitive use and accuracy, making
the technique suitable to images with different lighting char-
acteristics. The total number of human decisions, time con-
sumption, and user dependence were significantly decreased.

Due to its automatization nature, this application allows
a reliable comparison of different researchers’ results and the
possibility for more than one researcher to perform the same
LBM study.

Results show that further work is needed regarding the
merging procedure and the development of image enhance-
ment techniques to improve inner lung epithelial contrast,
mainly in the last days of culture. Moreover, a new strategy
must be developed for counting the number of peripheral
airway buds. Finally, this method has the potential to be
used in different research environments to improve research
outcomes.
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