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Abstract- cess [2].

Evolutionary Algorithms (EAs) have been used to Several optimization methods have been applied in this
achieve optimal feedforward control in a number of fed- task. It has been shown that, for simple bioreactor systems,
batch fermentation processes. Typically, the optimiza- the problem can be solved analytically [21]. Numerical
tion purpose is to set the optimal feeding trajectory, be- methods make a distinct approach to dynamic optimization.
ing the feeding profile over time given by a piecewise lin- The gradient algorithms are used to adjust the control trajec-
ear function, in order to reduce the number of parame- tories in order to iteratively improve the objective function
ters to the optimization algorithm. [3].

In this work, a novel representation scheme for the In contrast, dynamic programming methods discretize
encoding of the feeding trajectory over time is proposed. both time and control variables to a predefined number of
Each gene in the variable sized chromosome has two values. A systematic backward search method in combi-
components: a time label and the real value of the vari- nation with the simulation of the system model equations
able. is used to find the optimal path through the defined grid.

The new approach is compared with a traditional However, in order to achieve a global minimum the compu-
real-valued EA, with chromosomes of constant size and tational burden is very high [20].
fixed discretization steps. Three distinct case studies are  An alternative approach comes from the useEwblu-
presented, taken from previous work from the authors tionary Algorithms (EAs)which have been used in the past
and literature, all considering the optimization of fed- to optimize nonlinear problems with a large number of vari-
batch fermentation processes. The experimental results ables.
show that the proposed approach is capable of results  This technique has been applied with success to the opti-
better or at the same level of quality of the best tradi- mization of feeding or temperature trajectories [10][1]. and,
tional EAs and is able to automatically evolve the best when compared with traditional methodsAsusually per-
discretization steps for each case, thus simplifying the form better [18][5].

EA’s setup. An important issue regarding the optimization of feed-

Keywords: Fed-batch fermentation optimization, Op-ing trajectories is how to deal with the discretization of the
timization of feeding trajectories, Real-valued representaariables. Typically, the number of time points considered

tions, Variable size chromosomes. in the numerical simulation of the models involved is too
high to allow the optimization of the feeding values at ev-
1 Introduction ery point. Thus, there is the need to consider only its value

in some given points and to interpolate the value of the re-
A number of valuable products such as recombinant praraining, i.e. to consider piecewise linear approximations to
teins, antibiotics and amino-acids are produced using fete control profile.
mentation techniques and thus there is an enormous eco-If the number of points (or intervals) considered by an
nomic incentive to optimize such processes. optimization algorithm, namely aBA is too high, the opti-
However, these are typically very complex, involvingmization process will grow in complexity, slowing its con-
different transport phenomena, microbial components angrgence and resulting in quite irregular final trajectories,
biochemical reactions. Furthermore, the nonlinear behawhich make difficult its practical implementation.
ior and time-varying properties make bioreactors difficultto On the other hand, if few points are considered the op-
control with traditional techniques. timization process is simpler, the solution is smoother, but
Under this context, there is the need to consider quanii-can be sub-optimal, since large spaces of the fitness land-
tative mathematical models, capable of describing the prscape are ignored. One other disadvantage of the traditional
cess dynamics and the interrelation among relevant vaapproaches is the fact that the spacing between the points
ables. Additionally, robust global optimization techniquegthe size of the sub-intervals) is usually fixed.
must deal with the model's complexity, the environment In this work, the aim is to develop a new representation
constraints and the inherent noise of the experimental prgiat can be used within &Ain order to allow the optimiza-



tion of a time trajectory. Th&A evolves a piecewise linear whereS, O, X, C, A represent glucose, dissolved oxygen,
function, simultaneously setting the values of the functiobiomass, dissolved carbon dioxide and acetate components,
in a few points and its time labels. The number of pointsespectively. In the sequel, the same symbols are used to
considered is variable, which allows the profile to changeepresent the state variables concentrations (in g/kgjo
rapidly at certain areas, whereas in others it is more copg are time variant specific growth rates that nonlinearly
stant. depend on the state variables, dndare constant yield co-

In previous work from the authors, a real-valued repefficients.
resentation baseBA was successfully applied to the op- The associated dynamical model can be described by the
timization of feeding trajectories in fed-batch recombinantollowing equations:

Escherichia colfermentation process [17].

In this work, the same process and two other case studies ; x
drawn from literature were tackled. The original real-valued g
EAwas compared with the new representation b&sksin ds
these tasks. g

The paper is organized as follows: firstly, the fed-batch
fermentation case studies are presented; next, traditional — = (kspo — kaps)X — DA (6)

(11 + p2 + p3) X — DX (4)

Fin,SSin
w

(—kipr — kopo) X + —-DS (5

EAsare described and the corresponding results are shown; j(t)

the description of the nov@Aand its results follow; finally, i (—kspr — kepa — krus)X + OTR — D)

a discussion of the results, conclusions and further work are aC

presented. i (kspr + koo + kiops) X — CTR — DC(8)
. . dw

2 Case studies: fed-batch fermentation pro- - Fins )

Cesses beingD the dilution rate F;,, s the substrate feeding rate (in

In fed-batch fermentations there is an addition of certain nk@/h), W' the fermentation weight (in kgj)T i the oxygen
trients along the process, in order to prevent the accumul@nsfer rate and'T' i the carbon dioxide transfer rate.
tion of toxic products, allowing the achievement of higher The kinetic behavior, expressed in the raieso .3, was
product concentrations. given by a specific algorithm based on the state variables,
During this process the system states change consig#at is out of the scope of the present work but can be found
ably, from a low initial to a very high biomass and produci™ [13]- o .
concentrations. This dynamic behavior motivates the devel- The purpose of the optimization is to determine the feed-
opment of optimization methods to find the optimal inpuind rate profile £, s(t)) that maximizes the productivity
feeding trajectories in order to improve the process. Thef the process, defined as the units of product (recombinant
typical input in this process is the substrate inflow rate asRfotein) formed per unit of time. In this case, it is usually
function of time. related with the final biomass obtained, when the duration
For the proper optimization of the process, a white bo®f the process is pre-defined. Thusperformance index
mathematical model is typically developed, based on difP!) is defined by the following expression:

ferential equauon; that represent the mass balances of the o X(T))W(Ty) — X(0)W(0) 10
relevant state variables. = T (10)
2.1 Case study | The relevant state variables are initialized with the fol-

_ _lowing values:X (0) = 5, S(0) = 0, A(0) = 0, W(0) = 3.
In previous work by the authors, a fed-batch recombinar e (g jimitations in the feeding pump capacity, the value
Escherichia colifermentation process was optimized by Fin.s(t) must be in the rang@.0;0.4]. Furthermore,
EAs[14][17]. This was considered as the first case study,q following constraint is defined over the value 16f:
in this work and will be briefly described next. W (t) < 5. The final time () is set to25 hours.
During the aerobic growth of the bacterium, with glucose -
as the only added substrate, the microorganism can foIIoE\./2 Case study Il
three main different metabolic pathways:

e Oxidative growth on glucose: The system is a fed-batch bioreactor for the production
of ethanol bySaccharomyces cerevisiafrstly studied by
k1S 4 ksO 25 X + ksC (1) Chen and Huang [4]. The aim is to find the substrate feed
rate profile that maximizes the yield of ethanol.
e Fermentative growth on glucose: The model equations are the following:
koS + kO 2 X + koC + k3 A 2)
dIl X1
e Oxidative growth on acetic acid: @ T, (11)
dxg 150 — X9



dxs x3 (13) The aim of the optimization is to find the feeding profile

= g2%1 —Uu— imi i
dt T4 (uw) that maximizes the followin@l:
@ _ 14
- T U (14) PI = ay(Ty)zs(Ty) (24)

wherex; is the cell massg, the substrate concentration, The final time is set td’y = 15 (hours) and the initial

x3 the ethanol concentratiom, the volume of the reactor, values for relevant state variables are the followingd) =

u the feeding rate. 0, 22(0) = 0, 23(0) = 1, 24(0) = 5 andx5(0) = 1. The
On the other hand, the kinetic parametgrsandg, are feed rate is constrained to the range) < [0.0; 3.0].

given by the following algebraic equations:

3 Evolutionary Algorithms for Feeding Trajec-

0.408 9 tory Optimization
SO QN 5 Qe (19)
116 3.1 Description of the algorithm
T2
92 = 77 230,44 + o (18)  The first approach was to develop a traditioBal for opti-

mizing the feeding trajectory of the bioreactors, maximizing
The aim of the optimization is to find the feeding profilethe performance index defined for each task.

(u) that maximizes the followingerformance index Real-valued representations were used in order to encode
the feeding amounts, since these have proven to be more
PI = x3(Ty)za(Ty) 17) appropriate than the classical binary ones, in tasks where

i . ... the purpose is to optimize real valued parameters [7][9].
The final time is set td’y = 54 (hours), and the initial 11,5 each gene will encode the amount of substrate to
values for the state variables are the following{0) = 1, ¢ jntroduced into the bioreactor, in a given time unit, and
3(0) = 150, 23(0) = 0 andz4(0) = 10. Additionally, 6 genome will be given by the temporal sequence of such
there are physical constraints over the variables, namely, eg. |n this case, the size of the genome would be deter-
0 < 4(t) < 200 for all time points and the feeding rate nineq hased on the final time of the proce®s)(and the

0 <u(t) <12. discretization stepd) considered in the numerical simula-
tion of the model, given by the expressio%.
2.3 Case study Il However, as the resulting genome would be very large

This system is a model for the production of secreted foftypically with 5000 genes, for case study 1), feeding values

eign protein using baker’s yeast as the host organism invéere defined only at certain equally spaced points, and the
fed-batch bioreactor, developed by Park and Ramirez [12Zgmaining values are linearly interpolated. The size of the

The substrate feed flow rate is the only control variable an@enome ¢) becomes:

the system is governed by the following differential equa- T

tions: G = d—; +1 (25)

wherep stands for the number of points within each in-

dzy = w — % (18) terpolation interval. The value @fused in the experiments
dt 0'1_2;; A 5 wasd = 0.005, for case studies | and Il anél= 0.01 for

dzy  _ TaTge™ uzp (19) case study Il. In the following section a number of experi-
dt 0.1+ x4 x5 ments is reported for distinct values far

dxs (A g)l_ (20) The evaluation process, for each individual in the pop-
dt x5 ? ulation, is achieved by running a numerical simulation of
dxy 730, u(xq — 20) 21) the defined mo_del, given as input the feeding values in_the
dt : 75 genome. The fitness value is then calculated from the final
dzs values of the state variables according to Brielefined for
- = u (22)  each case.

_ Regarding the reproduction step, both mutation and
wherexz,, z2, 3 andx, are the concentrations of secretectrossover operators were taken into account.
protein (units/L), total protein (units/l), cells (g/l) and sub-  Two mutation operators were used, namely:
strate (g/l) respectively;s is the fermenter’s volume (I) and e Random Mutation which replaces one gene by a

u the feed rate (I/h). S new randomly generated value, within the range
The specific growt (A1) follows substrate inhibition [min;, maz;] [9]; and

kinetics and is given by: e Gaussian Mutationwhich adds to a given gene a

value taken from a Gaussian distribution, with a zero
mean and a standard dev!atlon given By
(i.e., small perturbations will be preferred over larger
ones).

21.871‘4
A = 23
(x4 +0.4) (x4 +62.5) (23)




where[min;; maz;] is the range of values allowed for gene3.2 Experiments

7. . . . .
In both cases, an innovation is introduced: the mutatioThe EA proposed in the previous section was applied to

. : {Fle three case studies presented in section 2. Each alter-
operators are applied to a variable number of genes (a value

that is randomly set betwednand10 in each application). native was tested by 30 independent runs, and each run was

The application of this strategy in the training Aftificial stopped after 2000 (case studies | and 1ii) or 1000 genera-

) tions (in case study I1).
Neural Networkg16] has improved the results and a better The results are presented in Tables 1, 2 and 3. The first

rformance in th ntext of this work was verifi mpir- ) .
532"3 ance in the context of this work was verified emp column of the tables represents the interpolation valer-

On the other hand, the following crossover operatorglamEd b_efo_re (th_e corresponding value in terms of rgal time
were chosen: - hours - is given in brackets). The second column gives the
number of genes in theA’'schromosome®). The last two
e Two-Point crossovera standardsenetic Algorithm columns show the results, in terms of tRés defined be-
operator [9], applied in the traditional way; fore for each case study. These are presented in terms of the

Arithmeti h h in the offsori ilb mean of the 30 runs, the 95% confidence intervals and, in
* Anthme ical where each gene in the ofiSpring wi et,he last column, the best result obtained over the runs.
a linear combination of the values in the ancestors

chromosomes [9];

T ) ) Table 1: Results obtained by the traditional real coHéd
e Suminspired inDifferential Evolution[5], where the

. - -case study I.
offspring genes denote the sum or the subtraction of p (dp) G Meantconfint. Pl Best PI
the genes in the parents. 50(0.25h) 101 8.48k 0.06 8.62
A set of experiments was conducted in order to find the 100(0.5h) 51 8.75- 0.04 8.87
best set of genetic operators for this problem [17]. The best 200(1h) 26 8.95+ 0.03 9.13
result was obtained using an alternative that contemplates500(2.5h) 11 9.18£ 0.05 9.34
the use of all genetic operators described above. In this case1000(5h) 6 9.08+ 0.08 9.18

the crossover operators are responsible for breeding 50% of
the offspring and the mutation operators the remaining 50%.
All operators were constrained to respect the limits of th
gene’s values, i.e., when an operator creates a gene val
outside of the allowed range, the value in the offspring is
equal to the one in the parents. Different ranges can be de-

le 2: Results obtained by the traditional real coH&d
case study Il

G Mean=conf.int. Pl Best PI

fined to different genes at distinct locations. S0 (O'Shh) 109 20163 83 20355
In terms of theEAs setup, the population size was set 1091 h) 55 20295k 69 20403
2002 h) 28 20332+ 25 20376

to 200. The selection procedure is done by converting the

fitness value into a linear ranking in the population, and then

applying a roulette wheel scheme. In each generation, 50%

of the individuals are kept from the previous generation, and

50% are bred by the application of the genetic operators. 141 3: Results obtained by the traditional real coBdd
The overall structure of thEAis presented in Figure 1. _ case study III.

The implementation of the proposEédwas based on a gen- D G Meantconfint. PI_ Best Pi

eral purpose package, developed by the authors idahe 20(0.1h) 151 32.506 0.006 32,611

5405.4h) 11 2001& 17 20061

programming language. All experiments reported were run 50(0.25h) 61 32 585 0.007 32 594
under theLinux operating system on RC with a Pentium 100005h) 31 32 557 0.001 32 559
IV 2.4 GHzprocessor. 2001 h) 16  32.354t 0.001 32.356
BEGIN 5002.5h) 7 31.797 0.000 31.798
Initialize time ¢ = 0).
Generate and evaluate the initial populatiég)( An analysis of the results shows two clear conclusions:
WHILE NOT (termination criteria) DO ¢ In all cases, there is a considerable difference in the
Select fromP; individuals for reproduction. results obtained with distinct values fpr showing
Apply the genetic operators to breed the offspring. that the correct choice of the interpolation parameters
Evaluate the offspring. is crucial step to the performance of tB& in the
Insert the offspring into the next populatiof;( ). optimization of feeding profiles.
Select the survivors fronk; to be keptinP; ;. e There s no clear way to choose the best valyearid
Increase current time ¢ + 1). G, since the results are quite different for each of the
END three case studies. In fact, in one case (1) the best re-

sult is obtained for a small number of genes and large

Figure 1: Structure of thEA interpolation intervals, while in another (lIl) the op-



posite is true (being the third a middle term between To achieve this feature, the individuals in the popula-
the two). tion are randomly generated and have chromosomes with
These conclusions drawn from the previous results shodistinct sizes. So, when creating an individual, its size
that it would be very interesting to be able to automaticalljs determined from an uniform distribution in the inter-
adapt the values gf andG to a given task, thus replacing val [minS, mazS] (in the experimentsnazS = 12 and
a trial-and-error approach. This is the aim of the new repreninsS = 2).

sentation described in the following section. Furthermore, two mutation operators were created in or-
der to allow dynamic changes in the size of the individuals:
4 A new representation for automatic interpo- e Grow: consists in the introduction of a new gene into
lation the genome, in a random position. The time label is
randomly selected between the time labels of the ad-
4.1 Description of the algorithm jacent genes. The value of the new gene is randomly

o selected in the allowed domain.
A novel representation is proposed to encode the values of

a variable over time. Each gene in the chromosome is made * Shrink arandomly selected gene is removed from the

of two distinct components: a time label (integer) and the genome. . ,
value of the variable for that point in time (a real value). BOth operators are only applied when the maximum and

In the chromosomes, the genes are ordered by their tiffdNimum size constraints are obeyed. With the introduc-
labels. The first gene always has time label 0 and the 1N of the new genetic operators, the probabilities used in
gene always has a time label equal to the maximum time.the expenmen_tg are the following: the crossover op_erators

From the points represented in the genome it is possiblEve & probability value of 40%, the random dBaussian
to calculate the remaining values of the variable using linedputation have probabilities of 20% each and the new muta-
interpolation. Ift, represents the time label of a gepand  tion operators have a probability of 10% each.
vy the value of the same gene, the value of the variable for

any given time point (V (t)) is given by: 4.2 Experiments
The EA proposed in the previous section was applied to
V() = vp + (0ks1 — vp) L=ty (26) the three case studies presented in section 2. Each alter-
F LTk ter1 — tk native was tested by 30 independent runs, and each run was

stopped after 2000 (case studies | and Ill) or 1000 genera-

given thatty <t < te41. tions (in case study I1)
Let's assume that an individual is given by the followin ' . ,
g y g The results are presented in Table 4. The first column

valuglz_isme labels O 234 1235 2345 3000 of the table represents the case study. The second column
values 23 12 01 18 29 gives the mean of the number of genes in the chromosome
In this case, the value of the variable for time paift0 from the best solution in each run. As before, the last two
would be: columns show the results, in terms of tRés presented in

terms of the mean of the runs, the 95% confidence intervals

1000 — 234 and the best result obtained.

1235 — 234
This new representation imposed the development fa,‘[ibolﬁ 4. Results obtained by thé\swith a new represen-

new genetic operators, that were mostly inspired in the on %

V(1000) = 1.2 + (0.1 — 1.2) =0.358 (27)

) . . . CS MeanG Meantconf.int. Pl Best PI
presented in the previous section. The mutation Operators
. O o T lon oper | 11.7 9.20% 0.03 9.31
}Nerg e%t Ul-'lC allngel ,.Slnce t ey only apply to the va ues, I 26.3 20378+ 18 20412
eaving the time labels Iintact. m 873 32.650% 0.001 32.652

Regarding the crossover operators, thenand arith-
meticalwere changed in the following way: the time labels N .
from each parent are sent to each of the offspring, while the From the results it is clear that in terms of tReof the
values are calculated according to the rules of the crossovéplutions found, the newA was capable of finding solu-
considering the interpolated value of the variable when it {80ns at the level of the be&A presented before, or slightly
not in the genome. better. _

Thetwo-pointcrossover was changed in a different way;  Therefore, theeAwas clearly capable of automatically
cutting points were achieved by randomly generating twhnding t.he best setup fqr the (_jlscretlza.tlon, discovering the
time values and finding the corresponding cut points in botR€St points to perform linear interpolation. Thecolumn
parents. The recombination follows the original operator”,‘lso shows that the three case stl_Jdles were mdee_d quite dif-
being exchanged both time labels and values. fere_nt once the number of genes in the best solutions shows

One of the major improvements that this new represer Wide variation.
tation brings is the variable size of the chromosomes, thus
enabling the greater or smaller detail of the representation,
in global terms or even locally in some region of the domain.



5 Discussion 20500

In a number of studies, the smoothness of the trajecto =z - '
has been considered an important feature of a good so
tion in the optimization of bioprocesses, and new filterin i
or smoothing reproduction operators were proposed [18].
The proposedEA rewards smooth trajectories in the
sense that its populations start with individuals that in ave s
age have a small number of points (around 10). The numb {f
only increases if the fitness function rewards a less smog 1= &
trajectory. As an example, in Figure 2 the feeding profile l
obtained (in the best run) for case study | by the et it |

E& wihp = 200
shows a quite smooth trajectory. | . . £4 utn automitic nrpeicn
(<] 0 400 [ex] =0 000
o4 prsrm——
aas Figure 3: Convergence of the traditiorieAsand the auto-
matic interpolation (case study ).
o= operators. The plaiRCGAobtains a result of 32.41, while
FRE /” the alternatives with filtering operators obtain results in the
/ range between 32.64 and 32.67.
o In case study I, the results are better than the ones ob-
o tained by using a gradient based algorithm, implemented by
- the MATLAB optimization toolbox functiorfmincon(ver-
e - ' sion 2.1). The detailed results can be found in [15].
(<]
P e T T " 6 Conclusions and further work

Figure 2: Feeding trajectory obtained by tBAsbest run In this work a noveEA was proposed in order to optimize
(case study I). the feeding trajectory in fed-batch bioreactors. A new rep-
resentation was suggested to encode the values of a variable
Furthermore, this new representation easily allows thever time. This representation contemplates the use of vari-
control of the smoothness of the trajectory by limiting theable size chromosomes, where each gene consists of a pair
size of the individuals or favoring operators such as th&ime label (integer) - value (real number). A number of re-
shrink mutation production operators were adapted or built to work with this
One important question to discuss is the capability afepresentation.
each of the algorithms to provide a good solution within It was shown that this nevEA effectively optimizes
limited CPU time constraints. The proposed approach do#lse feeding trajectory, automatically handling interpolation/
not impose an increase in the computational burden, wheliscretization issues and producing good results in terms of
compared to the tradition&A. the performance index and smooth profiles. Three distinct
Furthermore, the proposdA reaches good solutions case studies were taken as benchmarks, with quite distinct
faster than the traditiondtAs In Figure 3 it is shown a features, namely when looking at the optimal feeding pro-
graph of the convergence of the two best traditioBAls files.
and of the automatic interpolatid®A for case study Il. Itis In previous work, real value@&As were developed to
clear that the proposelA achieves better solutions in lesssimultaneously optimize the feeding trajectory, the initial
generations. A similar behavior can be observed in the otheenditions and the duration of a fermentation process (case
two case studies. study 1). In the future, the new representation proposed here
Another issue that is important to discuss is the globatill be extended to handle the optimization of the initial val-
quality of the results obtained by the differdbAs In fact, ues of the state variables and also to allow the optimization
the values of théls obtained for case studies Il and IlI areof the final time of the process.
quite competitive with the ones previously published for the The quantitative model that serves as a base for the sim-
same problems. In case study Il, the work reported in [8)lations done in this work is based on differential equa-
obtains an average value of 20357.2, which is better thdions. Other types of models have been proposed in lit-
the results obtained in [4], usirgpquential quadratic pro- erature, namelyruzzy Rule®r Artificial Neural Networks
gramming [20][11]. The testing of the proposdeiAsin these settings
In case study lll, the work reported in [19] uses sevis desirable.
eral alternatives based orReal Coded Genetic Algorithm  Another area of future research is the consideration of
(RCGA)combined with a number of specialized filteringon-line adaptation, being the model of the process updated



during the fermentation process, a task that can be also pef9] Z. Michalewicz. Genetic Algorithms + Data Struc-
formed byEAs In this case, the good computational perfor-
mance of the proposdeiAsare a benefit, if there is the need

to re-optimize the feeding given a new model and values f
the state variables measured on-line.

Furthermore, a number of parameters in the prop&ged

can be adjusted, namely the selection procedure (e.g. by

consideringstochastic universal samplipng Since theEA
also makes use of several genetic operators, it would be i 1]
teresting to study the adaptation of its probabilities along
the evolution of the algorithm, following a strategy that was
firstly proposed by Davis [6].
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