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Abstract

We revisit the quaternion Newton method for computing
roots of a class of quaternion valued functions and propose
modified algorithms for finding multiple roots of simple poly-
nomials. We illustrate the performance of these new methods
by presenting several numerical experiments.

1 Introduction

In this work we concentrate on the problem of finding roots of special quaternion polynomials of the form

pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ai ∈ H, i = 0, . . . , n, an 6= 0. (1)

Since the work of Niven [18], several authors gave contributions to the problem of finding roots of quater-
nion valued polynomials (see e.g. [3,4,11,14,16,21,23]), by following different approaches and with different
motivations.

Recently a quaternion version of the well known Newton method for finding roots of a class of quaternion
functions was proposed in [5]. This work was motivated by [13], where the authors formally adapted, for the
first time, Newton method for finding roots of quaternions, i.e. for solving quaternion equations of the form
xn + a0 = 0.

Due to the non-commutativity of quaternion multiplication, the use of root-finding methods involving
quaternion iterative functions requires close attention. In particular in the framework of Newton-like methods,
left and right quaternion versions have to be considered.

The results of [5] are based on the equivalence between the classical multivariate Newton method and a
quaternion version derived by the use of the so-called radial derivative.

In this work we give new insights on the quaternion Newton method, by making the link, under certain
conditions, to the complex approach. Quaternion versions of well known variants of the classical Newton
method for multiple roots are also derived.
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http://dx.doi.org/10.1007/978-3-319-09144-0_11
http://www.springerlink.com


2 Modified Quaternion Newton Methods

2 Quaternion Analysis Toolbox

Let {1, i, j,k} be an orthonormal basis of the Euclidean vector space R4 with a product given according to
the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k.

This non-commutative product generates the well known algebra of real quaternions H. The real vector
space R4 will be embedded in H by identifying the element x = (x0, x1, x2, x3) ∈ R4 with the element
x = x0 + x1i + x2j + x3k ∈ H. Thus, throughout this paper, we will not distinguish an element in R4 and
the corresponding quaternion in H, unless we need to stress the context.

The conjugate of x is defined as
x̄ = x0 − x1i− x2j− x3k

and instead of the real and the imaginary parts we will distinguish between the scalar part of x

Scx := x0 = 1
2 (x+ x̄)

and the vector part of x
Vecx = x := x1i + x2j + x3k = 1

2 (x− x̄).

When Scx = 0, x is called a pure quaternion. The norm |x| of x is defined by

|x|2 = xx̄ = x̄x = x2
0 + x2

1 + x2
2 + x2

3

and it immediately follows that each non-zero x ∈ H has an inverse given by

x−1 =
x̄

|x|2
.

Quaternions x such that |x| = 1 are called unit quaternions. Observe that any arbitrary non-real quaternion x
can be written as

x = x0 + x = x0 + ω(x)|x| , (2)

where ω(x) is the unit quaternion

ω(x) =
x

|x|
,

very much like a complex number is written in the form a+ib. Moreover, since ω(x)2 = −1, one can argue that
ω(x) behaves like the imaginary unit. In what follows we use the convention ω(x) := 0, for real quaternions
x. Now, if x and y are quaternions such that ω(x) = ω(y) =: ω, i.e. if x = a+ ωb and y = c+ ωd, then all
the algebraic operations can be computed as if x and y were complex numbers, in particular,

xy = yx = ac− bd+ ω(ad+ bc).

xy−1 = y−1x =
ac+ bd

c2 + d2
+ ω

bc− ad
c2 + d2

. (3)

For all the above reasons, we call (2) the complex-like representation of a quaternion x.
In what follows, we consider domains Ω ⊂ R4 ∼= H and complex-like functions f : Ω → H of the form

f(x) = f(x0 + w(x)r) = u(x0, r) + ω(x)v(x0, r) , (4)

where x0 = Scx, r := |x| and u and v are real valued functions. Continuity and differentiability are defined
coordinate wise.

In order to prepare next results, we define on the set C 1(Ω,H) the so-called radial operators

∂rad := 1
2 (∂0 − ω∂r), ∂̄rad := 1

2 (∂0 + ω∂r), (5)

where ∂0 := ∂
∂x0

and ∂r := ∂
∂r .
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Definition 1. Let f be a function of the form (4), x ∈ Ω and h = h0 + ω(x)hr, h0, hr ∈ R. Such function
f is called radially holomorphic or radially regular in x if

lim
h→0

(f(x+ h)− f(x))h−1

exists. In the case of existence, this limit is called the radial derivative of f at x and is denoted by f ′(x).

The following results are well known and play a fundamental role in the present work (see [12,24]).

Proposition 1. f is radially holomorphic if and only if ∂̄radf = 0.

Remark 1. Let g be a complex holomorphic function in the complex variable z = x + iy and recall that
the complex partial derivatives (also called Wirtinger derivatives)

∂g

∂z̄
=

1

2

(∂g
∂x

+ i
∂g

∂y

)
,

∂g

∂z
=

1

2

(∂g
∂x
− i∂g

∂y

)
allow to express the Cauchy-Riemann equations in the form ∂g

∂z̄ = 0. In other words, ∂̄radf = 0 is, in
fact, a Cauchy-Riemann type differential equations, which can be written as

∂0u = ∂rv, ∂0v = −∂ru.

Proposition 2. If f is radially holomorphic then f ′ = ∂radf .

Remark 2. Since a radially holomorphic function belongs to the kernel of ∂̄rad, it follows that, in fact,
f ′ = ∂0f = −∂rf i.e.

f ′(x) = f ′(x0 + w(x)r) = ∂0u(x0, r) + ω(x)∂0v(x0, r),

which is similar to the complex case. Moreover it follows immediately that u and v are harmonic functions
and therefore f ′ is also radially holomorphic.

Proposition 3. If f and g are radially holomorphic functions of the form (4) then

1. αf + βg, with α, β ∈ R, is radially holomorphic and

(αf + βg)′(x) = αf ′(x) + βg′(x);

2. fg is radially holomorphic and

(fg)′(x) = f ′(x)g(x) + f(x)g′(x);

3. 1
f is radially holomorphic and

( 1
f )′(x) = −f ′(x)f(x)−2 = −f(x)−2f ′(x), (f(x) 6= 0).

Example 1. The function

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ai ∈ R, i = 0, . . . , n

is radially holomorphic and f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1.

Remark 3. The construction of radially regular functions goes back to the work [7] of R. Fueter, one of the
founders of quaternion analysis. This class of functions is also related to the standard intrinsic functions
studied by Rinehart [22] and later on by Cullen [2]. Recently, following the approach of this last work,
a new theory of regular functions of one quaternion variable, the so-called slice regular functions, has
been introduced by Gentili and Struppa [9,10] and is now very well developed (see [1] and the references
therein).



4 Modified Quaternion Newton Methods

3 Remarks on the Zeros of Quaternion Polynomials

It is a well known fact that the algebraic as well as the geometric properties of complex holomorphic functions
are not the same for their generalizations in quaternion analysis. In particular, because of the non-commutativity
of quaternion multiplication, one can consider different classes of polynomials in one quaternion variable,
depending on whether a variable commutes with polynomial coefficients or not. General polynomials are
defined as finite sums of non-commutative monomials of the form a0xa1xa2 . . . xaj .

In this work we consider only polynomials whose coefficients are located only on the left-hand side of the
powers, i.e. they have the special form (1). These polynomials are usually called in the literature, simple or
one-sided polynomials. If the coefficients ai in (1) are real, then we say that pn is a real polynomial. As usual,
when an = 1 the polynomial is called monic.

In this section we review some basic properties of simple quaternion polynomials needed in the sequel.

Definition 2. Two quaternions x and y are called equivalent, written x ∼ y, if x = h−1yh, for some h ∈ H.
The equivalence class of x, denoted by [x], is the set

[x] = {y ∈ H : y ∼ x}.

It is easy to see that, in fact,

[x] =
{
y ∈ H : Scx = Sc y and |x| = |y|

}
. (6)

Definition 3. Let Zpn
denote the zero-set of a simple polynomial pn. A non-real root z∗ of pn is called a

spherical root (or one says that z∗ generates a spherical root) if [z∗] ⊂ Zpn
. In this case [z∗] is called a sphere

of zeros for pn. A root z∗ of pn is called isolated if either z∗ is real or it does not generate a spherical root.

We note that any non-real quaternion z∗ = z∗0 + z∗ is a root of the real quadratic polynomial

q2(x) = x2 − 2z∗0x+ |z∗|2

and, taking into account (6), it is clear that z∗ is, in fact, a spherical root of q2. The following property can
be used in order to identify a spherical root.

Proposition 4 ([21, Corollary 2.1]). A non-real quaternion z∗ generates a spherical root of a simple poly-
nomial pn if and only if z∗ ∈ Zpn

.

The following result characterizes the zero-set Zpn of a simple polynomial pn, by saying that its zeros fall
in two classes.

Proposition 5 ([21, Theorem 6]). The zero-set of a simple polynomial pn consists of r isolated roots and
s spheres of zeros with r + 2s ≤ n.

Example 2. The zero-sets of the following simple polynomials

p4(x) = (x− i + j)(x2 + 1)(x− 1), q2(x) = x2 − (i + j)x+ k and s2(x) = x2 − 2i,

are, respectively

Zp4 = {1, i− j} ∪ [i], Zq2 = {j} and Zs2 = {−1− i, 1 + i}.

Example 2 illustrates some typical features of the zeros of simple polynomials that we need to be aware
of. In particular, denoting by z1 = −1 − i and z2 = 1 + i the roots of s2, observe that (x − z1)(x − z2) =
x2 − xi + ix− 2i 6= s2(x) and (x− z2)(x− z1) = x2 + xi− ix− 2i 6= s2(x).

Nevertheless, when pn is a real polynomial, the zeros of pn can be obtained by considering pn as a
polynomial over C.
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Proposition 6. If pn is a real monic polynomial and the zero-set of pn in C is

ZC
pn

= {z1, . . . , zr, ζ1, . . . , ζs, ζ1, . . . , ζs},

where z1, . . . , zr are real numbers and ζ1, . . . , ζs are non-real complex numbers, then the zero-set of pn in H
is

ZH
pn

= {z1, . . . , zr} ∪ [ζ1] ∪ · · · ∪ [ζs].

Moreover, there exist positive integers m1, . . . ,mr, n1, . . . , ns, such that

pn(x) = (x− z1)m1 . . . (x− zr)mr (x2 − 2x Sc ζ1 + |ζ1|2)
n1
. . . (x2 − 2x Sc ζs + |ζs|2)

ns
,

with
∑r

i=1mi + 2
∑s

i=1 ni = n.

The problem of giving an appropriate notion of multiplicity of a root of a quaternion polynomial is not a
trivial task. However, for real polynomials and taking into account last proposition, it seems natural to call
the numbers mi the multiplicities of the real roots xi and say that [ζj ] are spheres of zeros of order nj . We
point out that, similar to the complex case, the derivatives of pn satisfy

p(k)
n (zi) = 0, k = 0, . . . ,mi − 1 and p(mi)

n (zi) 6= 0,

p(k)
n (x) = 0, k = 0, . . . , nj − 1 and p(nj)

n (x) 6= 0, ∀x ∈ [ζj ].

Finally we would like to call reader’s attention to the work [15] of Janovská and Opfer where they give a
result connecting the zeros of a simple polynomial pn with those of a certain real polynomial of degree 2n.
This strategy was already used in the pioneer work of Niven [18] and in, among others, [21].

4 Quaternion Newton Method

Newton methods in quaternion context were formally adapted for the first time by Janovská and Opfer in [13],
where the authors solved equations of the form xn−a = 0, a ∈ H. Later on, Kalantari in [17], using algebraic-
combinatorial arguments, proposed a Newton method for finding roots of special quaternion polynomials.

Here we follow the ideas in [5], where the equivalence between the classical multivariate Newton method
(4D-NM) and the quaternion Newton methods (H-NMl and H-NMr) for radially holomorphic functions was
established and reads as follows.

Proposition 7 ([5, Theorem 4]). Let f(x) =
∑s

i=0 αifi(x) be a function defined on the set C 1(Ω,H) such
that fi, i = 0, . . . , s, are radially holomorphic functions in Ω and αi are quaternions not simultaneously zero.
If z∗ is a root of f such that Jf(z∗) is nonsingular and Jf is Lipschitz continuous on a neighborhood of z∗,
then, for all c ∈ H sufficiently close to z∗, such that ω(c) commutes with all ω(αi), the Newton processes

H-NMr : zk+1 = zk − f(zk)
( s∑

i=0

αif
′
i(zk)

)−1

, z0 = c; (7)

H-NMl : zk+1 = zk −
( s∑

i=0

αif
′
i(zk)

)−1

f(zk), z0 = c; (8)

4D-NM : zk+1 = zk − (Jf(zk))−1f(zk), z0 = c (9)

produce the same sequence, which converges quadratically to z∗.

Here, for the sake of clarity, we have used the bold symbol f to denote the vector valued function defined
in R4 corresponding to the quaternion valued function f as well as for the other elements in Proposition 7.

In this paper we provide new insights on the H-NM (7)-(8) and propose modified versions prepared to deal
with the case of multiple roots.

We recall here the well known fact that the 4D-NM for solving the equation f(x) = 0 has only linear
convergence in the neighborhood of a root z∗ such that det(Jf(z∗)) = 0 (see e.g. [19], [25]). When z∗ is
a multiple isolated root of the polynomial pn or generates a sphere of zeros of order greater than one, in the
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sense of the definition introduced in last section, then det(Jpn(z∗)) = 0 and a modification of the 4D-NM
and consequently of the H-NMl and/or H-NMr is required in order to gain the second order convergence.

When the multiplicity m of a root is known, a classical way to re-establish the order of convergence of the
real/complex Newton method (NM) for solving f(x) = 0 is to consider the iterative process

zk+1 = zk −m
f(zk)

f ′(zk)
(10)

or, alternatively, to apply NM to the function

g(x) =
f(x)

f ′(x)
, (11)

since this function has the same roots as f and all of them are simple.
We point out that the use of (10) in its quaternion version is straightforward. To adapt (11) to the

quaternion context we note the following:

1. If f is a quaternion radially holomorphic function, then

u(x) := f(x)(f ′(x))−1 = (f ′(x))−1f(x)

is also radially holomorphic (see (3) and Proposition 3) and, therefore, Proposition 7 applies.
2. The same reasoning can be used when the function f is of the general form considered in the assumptions

of Proposition 7. In fact, if f is of the form f(x) =
∑s

i=0 αifi(x), where fi are radially holomorphic
functions and the coefficients αi commute pairwise, then one can prove (using arguments similar to those
in [5]) that

u(x) :=

s∑
i=0

αifi(x)
( s∑

i=0

αif
′
i(x)

)−1

=
( s∑

i=0

αif
′
i(x)

)−1 s∑
i=0

αifi(x). (12)

Moreover, u can be written as u(x) =
∑s

i=0 βiui(x), for some radially holomorphic functions ui and some
coefficients βi ∈ H commuting pairwise. Therefore Proposition 7 is valid for the function u.

3. It is clear that u has the same roots as f and they are all simple. Therefore, by Proposition 7 the sequence

zk+1 = zk − u(zk)
( s∑

i=0

βiu
′
i(zk)

)−1

(13)

converges quadratically to z∗, when c = z0 is sufficiently close to z∗.

We underline that the use of (10) requires the explicit knowledge of the multiplicity m of the root, whereas
the use of (11) just requires the knowledge of the existence of a non-simple root. When this is not the case, i.e.
if we are not aware of the existence of multiple roots, one can consider adaptive Newton methods (ANM) for
estimating, in each iteration k, the value of m to be used in (10). For such purpose we compute approximations
to m based on the following known results:

m ≈ mk :=
zk − zk−1

g(zk)− g(zk−1)
, m ≈ m̃k :=

log |f(zk)|
log |g(zk)|

, (14)

where g is the function defined in (11). In this work we consider natural adaptations of (14) to derive three
ANM. The algorithm for determining both z∗ and m can be written as follows.

Modified Quaternion Newton Methods:

1. Choose a value of z0, m, kmax and a tolerance ε
2. For k = 1, 2, . . .

i. Compute zk by means of the appropriated quaternion version

of (10)
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ii. Compute m by choosing one of the estimates

m1 = max

{
1,

|zk − zk−1|
|u(zk)− u(zk−1)|

}
% H−ANM1

m2 = max

{
1,

log |f(zk)|
log |u(zk)|

}
% H−ANM2

m3 =round(m2) % H−ANM3

where u is defined in (12)

3. Repeat Step 2 until k is such that |zk − zk−1| < ε or k = kmax

Next section contains several numerical results illustrating the performance of these methods. In particular,
we present estimates for the computational order of convergence ρ of each method based on the use of

ρ ≈ ρk+1 :=
log
(
|z∗ − zk+1|/|z∗ − zk|

)
log
(
|z∗ − zk|/|z∗ − zk−1|

) ,
where zk−1, zk, zk+1 are three consecutive iterations close to z∗ (see e.g. [20]).

It is known from the literature that the order of convergence of the classical ANM1 is 1+
√

5
2 ≈ 1.62,

whereas the convergence of ANM2 is essentially linear. For details and comments on the order of convergence
of these modified methods we refer to [25] and [8]. The numerical experiments reported in next section confirm
a similar computational order of convergence of the adaptative quaternion versions H-ANM.

5 Numerical Examples

The numerical experiments reported is this section were obtained by the use of a package [6] designed by the
authors of this paper with the purpose of endowing the Mathematica Quaternions package with the ability
of operating symbolic expressions involving quaternion-valued functions. All simulations have been performed
in Mathematica 9.0 (64-bit) on a computer with Intel Xeon E5607 4C 2.26GHz/1066Mhz/8MB processors
and 64GB of RAM.

In order to illustrate and compare the behavior of the modified quaternion Newton methods proposed in
Sect. 4, we consider, as in [5], a function N(c) which gives the number of iterations required for each process
to converge, within a certain precision, to one of the solutions of the problem under consideration, using c as
initial guess. The stopping criteria used is based on the incremental sizes and number of iterations, i.e. the
iterative process stops whenever it produces an approximation zk such that |zk − zk−1| < ε or k = kmax.

We have considered different initial guesses c, by choosing points in special regions Ω := Ω(x, y) ⊂ R4

and show density plots of N as a function of x and y. In all figures, the white regions correspond to a choice
of c ∈ Ω for which the method under consideration did not reach the level of precision ε with kmax iterations.

Example 3. We consider as a first example the real polynomial

p7(x) = (x3 − 1)(x2 + 2)2

which has the real isolated root z1 = 1 and two spherical roots generated by ζ1 = − 1
2 +

√
3

2 i and ζ2 =
√

2i.
According to the definition introduced in Sect. 3, z1 is a root of multiplicity m1 = 1, [ζ1] is a sphere of
zeros of order n1 = 1 and [ζ2] is a sphere of zeros of order n2 = 2. Furthermore, m1 + 2(n1 + n2) = 7, as
expected (cf. Proposition 6).

Since p7 is radially holomorphic (see Example 1) the 4D-Newton method is equivalent to its quater-
nion versions (see Proposition 7) and all the considerations concerning the modified Newton methods
introduced in the previous section are valid. This is precisely what is illustrated in Fig. 1 which contains
density plots of the functions N(c) associated to the methods (from left to right, from top to bottom),
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H-NM – classical quaternion Newton method (see (7)),

H-NMm=2 – modified quaternion Newton method, with m = 2 in (10),

H-MNM – modified quaternion Newton method (see (11)),

H-ANM1 – adaptative quaternion Newton method,

H-ANM2 – adaptative quaternion Newton method,

H-ANM3 – adaptative quaternion Newton method,

when c is chosen in the region Ω1 = {(x, y, 0, 0) ∈ R4 : −2 ≤ x ≤ 2, −2 ≤ y ≤ 2}.

(a) H-NM (b) H-NMm=2 (c) H-MNM

0

5

10

15

20

-6-4-20246

(d) H-ANM1 (e) H-ANM2 (f) H-ANM3

0

5

10

15

20

-6-4-20246

Fig. 1. N(c) for Example 3 with c ∈ Ω1, ε = 10−6 and kmax= 20.

We point out that, if c ∈ Ω1, the sequences produced by each of the aforementioned methods lie also
on Ω1 and therefore it makes sense to consider the basins of attraction of the roots

r1 = 1, r2 = − 1
2 +

√
3

2 i, r3 = − 1
2 −

√
3

2 i, r4 =
√

2i, r5 = −
√

2i,

with r2, r3 ∈ [ζ1] ∩Ω1 and r4, r5 ∈ [ζ2] ∩Ω1, with respect to the iterative functions associated with each
method. The color code used is the following: choosing any initial guess c in the region corresponding to
color i, causes the process to converge to the root ri, i = 1, . . . , 5 (see Fig. 2). In addition to illustrate
the methods performance, this example aims to call the attention to the relation between the complex
Newton methods and the quaternion ones. In fact, we can reproduce all the figures presented in Figs. 1-2
by considering p7 as a polynomial in C, where the order of convergence of the Newton method and its
variants is well studied. More precisely, if xk = ak + ibk denotes the sequence produced by the a complex
Newton method, converging to the complex root x∗ = a + ib of p7, it is easy to see that the sequence
produced by the corresponding quaternion Newton method with initial guess c = a0 + ωb0, where ω is
any unit pure quaternion, converges to the quaternion root ζ ∈ [x∗] such that ζ = a+ωb. As a matter of
fact, one can prove that the converse can also be established, as far as we adjust the definition of ω(c).
The proof of this result is beyond the scope of the paper.

When c ∈ Ω2 = {(0, x, y, 0) ∈ R4 : −2 ≤ x ≤ 2, −2 ≤ y ≤ 2}, the situation is rather different since
here the sequences produced by the Newton methods lie on Ω∗2 = {(a, b, c, 0) ∈ R4} and not on Ω2. In this
case when we observe convergence to values generating spherical roots, the behavior of the H-NM and
variants is clear: if c is the initial guess, then the Newton sequence converges to the root r ∈ [ζ1]∩Ω∗2 (or
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(a) H-NM (b) H-NMm=2 (c) H-MNM

r1

r2

r3

r4

r5

(d) H-ANM1 (e) H-ANM2 (f) H-ANM3

r1

r2

r3

r4

r5

Fig. 2. Basins of attraction of the roots ri, i = 1, . . . , 5, for Example 3, with c ∈ Ω1.

r ∈ [ζ2]∩Ω∗2) such that ω(r) = ±ω(c). The vector part of several sequences obtained by the use of the H-
NM for different choices of the initial guess (marked with the symbol ◦) are illustrated in Fig. 3. Figure 4
contains the basins of attraction of each spherical root. We remark that in this domain we can not observe
convergence to the real root r1 = 1. To check the effectiveness of the modified Newton methods proposed
in last section, we compare them with the H-NMr (7) (which is equivalent, as already mentioned, to the
H-NMl). Table 1 contains estimates, for different choices of the initial guess, to the multiplicity m of
the root and to the order of convergence ρ corresponding to the last three iterations computed with the
stopping criterion ε = 10−12. Numerical computations needed to produce all the tables presented in this
paper have been carried out in Mathematica environment with the precision increased to 512 significant
digits.

Example 4. Considerer now the polynomial

p4(x) = (x− i− j)(x3 + 2x).

Since i + j ∈ [
√

2i], the zero-set of p4 is Zp4
= {0} ∪ [

√
2i] = {0} ∪ [i + j]. Although we have only defined

the multiplicity of a root for real polynomials, it seems natural, in the context of Newton method, to
consider the root i + j as a “double” root even if it generates a sphere of simple zeros. We point out
that the polynomial q2(x) = x2 + 2 is such that q2(i + j) = q2(−i − j) = 0, but (x − i − j)(x + i + j) =
x2 − (i + j)x − x(i + j) + 2 6= q2(x). In fact, one-sided polynomials can not have non spherical roots of

2

3

2

Fig. 3. Convergence to spherical roots in Ω2 - Example 3.
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(a) H-NM (b) H-NMm=2 (c) H-MNM

r1

r2

r3

(d) H-ANM1 (e) H-ANM2 (f) H-ANM3

r1

r2

r3

Fig. 4. Basins of attraction of the roots ri, i = 1, 2, 3 for Example 3 with c ∈ Ω2

Table 1. H-NM versus its variants for Example 3. COR - convergence to other root; ND - not defined (10|ρn−ρn−1| >
min{ρn, ρn−1} as in [20]).

c root
H-NM

H-NM
m = 2 H-MNM H-ANM1 H-ANM2 H-ANM3

k ρk k ρk k ρk k mk ρk k mk ρk k mk ρk

1.1 + 1.3i
√

2i

41 1.00 10 2.00 9 2.00 14 2.00 1.56 22 1.81 1.04 16 2 ND
42 1.00 11 2.00 10 2.00 15 2.00 1.58 23 1.83 1.04 17 2 2.00
43 1.00 12 2.00 11 2.00 16 2.00 1.63 24 1.84 1.04 18 2 2.00

−0.7− 0.6i − 1
2 +

√
3

2 i

6 2.00 14
COR

7 2.00 7 1.00 2.71 6 1.00 2.00 6 1 2.00
7 2.00 15 8 2.00 8 1.00 1.20 7 1.00 2.00 7 1 2.00
8 2.00 16 9 2.00 9 1.00 2.66 8 1.00 2.00 8 1 2.00

0.2i−0.7j+k
2i−7j+10k

3
√

17
2

36 1.00 5 2.00 5 2.00 7 2.00 1.62 17 1.81 1.04 11 2 ND
37 1.00 6 2.00 6 2.00 8 2.00 1.62 18 1.82 1.04 12 2 2.00
38 1.00 7 2.00 7 2.00 9 2.00 1.62 19 1.84 1.04 13 2 2.00

1.2 + 0.3i 1

6 2.00 40
COR

9 2.00 8 1.00 1.03 6 1.00 2.00 6 1 2.00
7 2.00 41 10 2.00 9 1.00 2.09 7 1.00 2.00 7 1 2.00
8 2.00 42 11 2.00 10 1.00 2.41 8 1.00 2.00 8 1 2.00
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(a) H-NM (b) H-NMm=2 (c) H-MNM

r1

r2

r3

(d) H-ANM1 (e) H-ANM2 (f) H-ANM3

r1

r2

r3

Fig. 5. Basins of attraction of the roots ri for Example 4 with c ∈ Ω3.

multiplicity m > 1, in the usual sense, rather than the real ones. Figure 5 illustrates the features of the
roots of the above polynomial. The real root is denoted by r1 and, to distinguish the multiplicity of the
root i + j as a “double” root from the multiplicity of [i + j], we have assigned the label r3 to the root
i + j and r2 to the other roots in [i + j]. In this way, the basin of attraction of the spherical root [i + j]
corresponds to the basin of attraction of r2 and r3.

The numerical results (see Table 2) confirm the idea that on the hyperplane Ω3 = {(x, y, y, 0) ∈ R4},
where Proposition 7 is valid, the root i + j behaves as double. On the other hand, on Ω4 = {(x, y, 0, 0) ∈
R4}, the conditions of Proposition 7 are not fulfilled, since quaternions of the form c = x + yi ∈ Ω4 do
not commute with i + j. As a consequence, we have to consider right and left versions of each method.

Table 2. H-NM versus its variants for Example 4 and c ∈ Ω3. NC - no convergence.

c root
H-NM

H-NM
m = 2 H-MNM H-ANM1 H-ANM2 H-ANM3

k ρk k ρk k ρk k mk ρk k mk ρk k mk ρk

1 + i + j i + j

40 1.00 6 2.00 6 2.00 8 2.00 1.61 17 1.88 1.04 11 2 2.00
41 1.00 7 2.00 7 2.00 9 2.00 1.62 18 1.90 1.04 12 2 2.00
42 1.00 8 2.00 8 2.00 10 2.00 1.62 19 1.91 1.04 13 2 2.00

0.2−0.1i−0.1j 0

4 1.99
NC

4 2.03 5 1.00 2.17 4 1.00 1.99 4 1 1.99
5 2.00 5 2.00 6 1.00 2.00 5 1.00 2.00 5 1 2.00
6 2.00 6 2.00 7 1.00 2.00 6 1.00 2.00 6 1 2.00

0.5− i− j −i− j

7 2.00
NC

7 2.00 7 1.00 1.00 7 1.00 2.00 7 1 2.00
8 2.00 8 2.00 8 1.00 2.00 8 1.00 2.00 8 1 2.00
9 2.00 9 2.00 9 1.00 2.50 9 1.00 2.00 9 1 2.00

0.1+0.5i+0.5j i + j

40 1.00 7 2.00 7 2.00 11 2.00 1.56 17 1.89 1.04 11 2 2.00
41 1.00 8 2.00 8 2.00 12 2.00 1.52 18 1.90 1.04 12 2 2.00
42 1.00 9 2.00 9 2.00 13 2.00 1.65 19 1.91 1.03 13 2 2.00

The performances of both versions are illustrated in Figs. 6 and 7. We can see on Table 3 that the right
quaternion Newton methods seem to converge slower than their left versions. In addition it was not
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(a) H-NM (b) H-NMm=2 (c) H-MNM

r1

r2

r3

(d) H-ANM1 (e) H-ANM2 (f) H-ANM3

r1

r2

r3

Fig. 6. Basins of attraction of the roots ri for Example 4 with c ∈ Ω4 - left versions.

possible to observe convergence to the real root using any right Newton methods or variants, whilst the
left versions seem not to converge to i + j. For both right and left versions, the three H-ANM produced

(a) H-NM (b) H-NMm=2 (c) H-MNM

r1

r2

r3

(d) H-ANM1 (e) H-ANM2 (f) H-ANM3

r1

r2

r3

Fig. 7. Basins of attraction of the roots ri for Example 4 with c ∈ Ω4 - right versions.

1 as the estimate of m. We do not compare the values of the (right and left) computational order of
convergence since most of the times the right and left version of a method do not converge to the same
root.
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Table 3. Left and right versions of H-NM versus its variants for Example 4 and c ∈ Ω4. NC - no convergence; ∗ -
convergence to a different root in [i+ j].

c
i+ j+ 2k −j+ 2k 1 + 2i
Left Right Left Right Left Right

x∗ [i+ j] i+ j [i+ j] i+ j [i+ j] i+ j

H-NM 9 46 8 53 10 46

H-NMm=2 NC 25 NC 29 NC 29

H-MNM 10* 49 8* 88 14* 50

H-ANM1 12* 26 11* 26 12* 26

H-ANM2 9 27 8 32 10 28

H-ANM3 9 31 8 36 10 31

Further investigation on the behavior of the H-NM and variants, whenever the assumptions of Propo-
sition 7 are not met, is needed in order to justify the experimental results.
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