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TheN -membranes problem for quasilinear degenerate systems
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JOSÉ-FRANCISCORODRIGUES‡

CMUC/University of Coimbra & University of Lisbon/CMAF,
Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal

AND

L ISA SANTOS§

CMAF/University of Lisbon & Department of Mathematics, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal

[Received 20 December 2004 and in revised form 2 June 2005]

We study the regularity of the solution of the variational inequality for the problem ofN -membranes
in equilibrium with a degenerate operator ofp-Laplacian type, 1< p < ∞, for which we obtain
the corresponding Lewy–Stampacchia inequalities. By considering the problem as a system coupled
through the characteristic functions of the sets where at least two membranes are in contact, we
analyze the stability of the coincidence sets.

1. Introduction

In an open bounded subsetΩ of Rd , d > 1, we consider the quasi-linear operator

Av = −∇ · a(x,∇v) in D ′(Ω),

wherea : Ω × Rd → Rd is a Carath́eodory function, and theN -membranes problemthat consists
in finding (u1, . . . , uN ) ∈ KN satisfying

N∑
i=1

∫
Ω

a(x,∇ui) · ∇(vi − ui) >
N∑
i=1

∫
Ω

fi(vi − ui), ∀(v1, . . . , vN ) ∈ KN . (1)

HereKN is the convex subset of the Sobolev space [W1,p(Ω)]N , 1< p < ∞, defined by

KN = {(v1, . . . , vN ) ∈ [W1,p(Ω)]N : v1 > · · · > vN a.e. inΩ,

vi − ϕi ∈ W
1,p
0 (Ω), i = 1, . . . , N}, (2)
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whereϕ1, . . . , ϕN ∈ W1,p(Ω) are given and such thatKN 6= ∅. For instance, if∂Ω ∈ C0,1 is a
Lipschitz boundary, it suffices to assume, in the trace sense, that

ϕ1 > · · · > ϕN on ∂Ω.

In (1) we shall assume that

f1, . . . , fN ∈ Lq(Ω) ⊂ W−1,p′

(Ω) (3)

whereW−1,p′

(Ω) denotes the dual space ofW1,p
0 (Ω), so thatp′

= p/(p − 1) is the conjugate
exponent ofp and, by Sobolev imbeddings,q = 1 if p > d, q > 1 if p = d, and q =

dp/(dp + p − d) if 1 < p < d.
Under the following assumptions for a.e.x ∈ Ω andξ, η ∈ Rd :

a(x, ξ) · ξ > α|ξ |p, 1< p < ∞, (4)

|a(x, ξ)| 6 β|ξ |p−1, (5)

[a(x, ξ)− a(x, η)] · (ξ − η) > 0 if ξ 6= η, (6)

for given constantsα, β > 0, the general theory of variational inequalities for strictly monotone
operators (see [17], [13]) immediately yields the existence and uniqueness of solution to theN -
membranes problem (1).

If we choose the minimization functional

E(u1, . . . , uN ) =

N∑
i=1

∫
Ω

[
1

p
|∇ui |

p
− fiui

]
in the convex set of admissible displacements given by (2) as a model for theN -membranes in
equilibrium, each one under the action of the forcesfi and attached to rigid supports at heightϕi ,
we obtain the variational inequality (1) associated with thep-Laplacian

Av = −∆pv = −∇ · (|∇v|p−2
∇v), 1< p < ∞.

The N -membranes problem was considered in [6] for linear elliptic operators, where for
differentiable coefficients the regularity of the solution in Sobolev spacesW2,p(Ω) was shown
for p > 2 (hence also inC1,λ(Ω) for 0 < λ = 1 − d/p < 1) extending earlier results of [26] for
the two-membranes problem. Noting the analogy (and relation) with the one-obstacle problem, it
was observed in those problems that theC2-regularity of the solution cannot be expected in general,
even for very smooth data.

Considering the analogy of the two- and three-membranes problem with the one- and two-
obstacles problems respectively, in [1] we have shown the Lewy–Stampacchia type inequalities

i∧
j=1

fj 6 Aui 6
N∨
j=i

fj a.e. inΩ, i = 1, . . . , N, (7)

for general second order linear elliptic operators with measurable coefficients, and in the cases
N = 2 andN = 3 we have established sufficient conditions on the external forces for the stability
of the coincidence sets

{x ∈ Ω : uj (x) = uj+1(x)}, j = 1, . . . , N − 1, (8)

where two consecutive membranes touch each other.
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In (7) we use the notation

k∨
i=1

ξi = ξ1 ∨ · · · ∨ ξk = sup{ξ1, . . . , ξk} and
k∧
i=1

ξi = ξ1 ∧ · · · ∧ ξk = inf{ξ1, . . . , ξk}

and we also writeξ+
= ξ ∨ 0 andξ−

= −(ξ ∧ 0).
In order to prove (7) we shall approximate, in Section 2, the solution(u1, . . . , uN ) of (1) by

solutions(uε1, . . . , u
ε
N ) of a suitable system of Dirichlet problems for the operatorA associated

to a particular new monotone perturbation that extends the bounded penalization, asε → 0, of
obstacle problems (see [13] or [22] and their references). Under the further assumptions of strong
monotonicity of the vector fielda(x, ξ) with respect toξ , i.e., for someα > 0,

[a(x, ξ)− a(x, η)] · (ξ − η) >


α|ξ − η|p if p > 2,

α (|ξ | + |η|)p−2
|ξ − η|2 if 1 < p < 2,

(9)

we are able to establish that the error of the approximating solutions in theW1,p(Ω)-norm is of
orderε1/p if p > 2, and of orderε1/2 if 1 < p 6 2, with a constant that depends only onα > 0 and
on theLq -norms off1, . . . , fN . This type of estimate that appears in [23] for the obstacle problem
in casep > 2 seems new for 1< p < 2.

The inequalities (7) are a consequence of the fact that eachAui is anLq function and we can
regardu1 anduN as solutions of one-obstacle problems and all the otherui , 1< i < N , as solutions
of two-obstacles problems, to which we can apply the well-known Lewy–Stampacchia inequalities
(see, for instance [22], [25], [23] or [20] and their references). Another important consequence of
these properties is the reduction of the regularity of the solution of theN -membranes problem to
the regularity of each equation

Aui = hi a.e. inΩ, i = 1, . . . , N. (10)

Therefore, in Section 3, we conclude from the well-known properties of weak solutions of
quasilinear elliptic equations (see [14] and [18]) that the solutionsui are in fact Ḧolder continuous,
providedq > d/p in (3), or have Ḧolder continuous gradient (see [8]) ifq > dp/(p − 1) and the
operatorA has the stronger structural properties, for a.e.x ∈ Ω,

d∑
i,j=1

∂ai

∂ηj
(x, η)ξiξj > α0|η|

p−2
|ξ |2, (11)∣∣∣∣ ∂ai∂ηj

(x, η)

∣∣∣∣ 6 α1|η|
p−2 and

∣∣∣∣ ∂ai∂xj
(x, η)

∣∣∣∣ 6 α1|η|
p−1 (12)

for some positive constantsα0, α1 and allη ∈ Rd \ {0}, ξ ∈ Rd and alli, j = 1, . . . , d. We even
conclude that for eachi = 1, . . . , N,

ui ∈ C0,λ(Ω) or ui ∈ C1,λ(Ω),

provided the Dirichlet dataϕi and∂Ω have the required regularity (see Section 3).
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Finally, in Section 4 we study the stability of the coincidence sets (8) in terms of the convergence
of their characteristic functions. For this purpose, we define, for a.e.x ∈ Ω and for 16 j < k 6 N ,
the followingN(N − 1)/2 coincidence sets:

Ij,k = {x ∈ Ω : uj (x) = · · · = uk(x)} (13)

and notice that the sets defined in (8) are simplyIj,j+1. Moreover,Ij,k = Ij,j+1 ∩ · · · ∩ Ik−1,k. Set

χj,k(x) = χIj,k (x) =

{
1 if uj (x) = · · · = uk(x),

0 otherwise.
(14)

In [1] we have shown that the solution(u1, u2, u3) of (1) for N = 3 with a linear operator in
fact satisfies, a.e. inΩ,

Au1 = f1 +
1
2(f2 − f1)χ1,2 +

1
6(2f3 − f2 − f1)χ1,3,

Au2 = f2 −
1
2(f2 − f1)χ1,2 +

1
2(f3 − f2)χ2,3 +

1
6(2f2 − f1 − f3)χ1,3,

Au3 = f3 −
1
2(f3 − f2)χ2,3 +

1
6(2f1 − f2 − f3)χ1,3,

(15)

which extends the remark of [27] for the caseN = 2 that corresponds to the first two equations of
(15) withχ2,3 ≡ 0 (and consequently alsoχ1,3 ≡ 0). As

f1 6= f2 a.e. inΩ

is a sufficient condition for the convergence of the unique coincidence setI1,2 in caseN = 2,
additionally

f2 6= f3, f1 6=
f2 + f3

2
, f3 6=

f1 + f2

2
a.e. inΩ

in caseN = 3 are sufficient conditions for the convergence of the three coincidence setsI1,2, I2,3
andI1,3, with respect to the perturbation of the forcesf1, f2, f3 (see [1] for a direct proof).

In Section 4 we extend the system (15) to arbitraryN by showing that, for given forces
(f1, . . . , fN ) the solution(u1, . . . , uN ) of (1) solves a system of the form

Aui = fi +

∑
16j<k6N, j6i6k

b
j,k
i [f ]χj,k a.e. inΩ, i = 1, . . . , N, (16)

where eachbj,ki [f ] represents a certain linear combination of the forces.
We denote the average offj , . . . , fk by

〈f 〉j,k =
fj + · · · + fk

k − j + 1
, 1 6 j 6 k 6 N, (17)

and we shall establish that

〈f 〉i,j 6= 〈f 〉j+1,k a.e. inΩ, for all i, j, k ∈ {1, . . . , N} with i 6 j < k, (18)

is a sufficient condition for the stability of the coincidence setsIj,k in theN -membranes problem.
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2. Approximation by bounded penalization

In this section we approximate the variational inequality using bounded penalization. Defining

ξ0 = max

{
f1 + · · · + fi

i
: i = 1, . . . , N

}
,

ξi = iξ0 − (f1 + · · · + fi) for i = 1, . . . , N ,
(19)

we observe that {
ξi > 0 if i > 1,

(ξi−1 − ξi−2)− (ξi − ξi−1) = fi − fi−1 if i > 2.
(20)

For ε > 0, letθε be defined as follows:

θε : R → R, s 7→

0 if s > 0,
s/ε if −ε < s < 0,
−1 if s 6 −ε.

(21)

The approximate problem is given by the system{
Auεi + ξiθε(u

ε
i − uεi+1)− ξi−1θε(u

ε
i−1 − uεi ) = fi in Ω,

uεi|∂Ω = ϕi, i = 1, . . . , N,
(22)

with the conventionuε0 = +∞, uεN+1 = −∞.

PROPOSITION2.1 If the operatorA satisfies the assumptions (4)–(6), then problem (22) has a
unique solution(uε1, . . . , u

ε
N ) ∈ [W1,p(Ω)]N . This solution satisfies

uεi 6 uεi−1 + ε for i = 2, . . . , N. (23)

Proof. Existence and uniqueness of solution of problem (22) is an immediate consequence of the
theory of strictly monotone and coercive operators (see [17]). In fact, if we sum theN equations of
the system, each one multiplied by a test functionwi , then problem (22) implies that

N∑
i=1

∫
Ω

〈Auεi , wi〉 + 〈Buε, w〉 =

N∑
i=1

∫
Ω

fiwi, ∀w = (w1, . . . , wN ) ∈ [W1,p(Ω)]N ,

where

〈Bv,w〉 =

N∑
i=1

∫
Ω

(ξiθε(vi − vi+1)− ξi−1θε(vi−1 − vi))wi

with the same conventionv0 = +∞, vN+1 = −∞, satisfies

〈Bv − Bw, v − w〉

=

N−1∑
i=1

∫
Ω

ξi(θε(vi − vi+1)− θε(wi − wi+1))((vi − vi+1)− (wi − wi+1)) > 0, (24)

sinceξi > 0 for i = 1, . . . , N andθε is nondecreasing.
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To prove (23), multiplying thei-th equation of (22) by(uεi − uεi−1 − ε)+ and integrating onΩ,
noticing that(uεi − uεi−1 − ε)+

|∂Ω = 0 we obtain∫
Ω

Auεi (u
ε
i − uεi−1 − ε)+ =

∫
Ω

[fi − ξiθε(u
ε
i − uεi+1)+ ξi−1θε(u

ε
i−1 − uεi )](u

ε
i − uεi−1 − ε)+

=

∫
Ω

[fi − ξiθε(u
ε
i − uεi+1)− ξi−1](uεi − uεi−1 − ε)+

sinceθε(uεi−1−u
ε
i )(u

ε
i−u

ε
i−1−ε)

+
= −(uεi−u

ε
i−1−ε)

+. In particular, becauseθε(uεi−u
ε
i+1) > −1,

we have ∫
Ω

Auεi (u
ε
i − uεi−1 − ε)+ 6

∫
Ω

[fi + ξi − ξi−1](uεi − uεi−1 − ε)+. (25)

With similar arguments, if we multiply, fori > 2, the(i−1)-th equation of (22) by(uεi −u
ε
i−1−ε)+

and integrate onΩ we obtain∫
Ω

Auεi−1(u
ε
i − uεi−1 − ε)+ >

∫
Ω

[fi−1 + ξi−1 − ξi−2](uεi − uεi−1 − ε)+. (26)

From inequalities (25) and (26) we have, using (20),∫
Ω

(a(x,∇uεi )− a(x,∇uεi−1)) · ∇(uεi − uεi−1 − ε)+ =

∫
Ω

(
Auεi − Auεi−1

)
(uεi − uεi−1 − ε)+

6
∫
Ω

[fi − fi−1 + (ξi − ξi−1)− (ξi−1 − ξi−2)](u
ε
i − uεi−1 − ε)+ = 0.

From the strict monotonicity (6) ofa, it follows thatuεi 6 uεi−1 + ε a.e. inΩ. 2

PROPOSITION2.2 If (uε1, . . . , u
ε
N ) and (u1, . . . , uN ) are the solutions of problems (22) and (1)

respectively then

(uε1, . . . , u
ε
N ) ⇀ (u1, . . . , uN ) in [W1,p(Ω)]N -weak asε → 0.

Proof. Multiplying the i-th equation of (22) byvi − uεi , where(v1, . . . , vN ) ∈ KN anduε =

(uε1, . . . , u
ε
N ), integrating overΩ and summing, we obtain

N∑
i=1

∫
Ω

a(x,∇uεi ) · ∇(vi − uεi )+ 〈Buε, v − uε〉 =

N∑
i=1

∫
Ω

fi(vi − uεi ).

Noticing that〈Bv, v − uε〉 = 0 and due to the monotonicity of the operatorB proved in (24),

N∑
i=1

∫
Ω

a(x,∇uεi ) · ∇(vi − uεi ) >
N∑
i=1

∫
Ω

fi(vi − uεi ) (27)

and using (6) we conclude that

N∑
i=1

∫
Ω

a(x,∇vi) · ∇(vi − uεi ) >
N∑
i=1

∫
Ω

fi(vi − uεi ). (28)
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From (4) and (5) we easily deduce the uniform boundedness of{(uε1, . . . , u
ε
N )}ε in [W1,p(Ω)]N .

So, there exists(u∗

1, . . . , u
∗

N ) ∈ [W1,p(Ω)]N such that

(uε1, . . . , u
ε
N ) ⇀ (u∗

1, . . . , u
∗

N ) in [W1,p(Ω)]N -weak asε → 0,

and lettingε → 0 in (28) we obtain

N∑
i=1

∫
Ω

a(x,∇vi) · ∇(vi − u∗

i ) >
N∑
i=1

∫
Ω

fi(vi − u∗

i ), ∀(v1, . . . , vN ) ∈ K.

Furthermore, by (23),u∗

1 > · · · > u∗
n. Since we also haveu∗

i |∂Ω
= ϕi for i = 1, . . . , N , it

follows that(u∗

1, . . . , u
∗

N ) ∈ KN . The hemicontinuity of the operatorA allows us to conclude that
(u∗

1, . . . , u
∗

N ) actually solves the variational inequality (1) and the uniqueness of solution of the
variational inequality implies thatu∗

i = ui , i = 1, . . . , N . 2

We now present two lemmas that will be used to prove the next theorem. The first lemma states that,
under certain circumstances, weak convergence implies strong convergence. The second lemma is
a reverse Ḧolder inequality.

LEMMA 2.3 ([5, p. 190]) Under the assumptions (4)–(6), whenε → 0, if

uε − u ⇀ 0 inW1,p
0 (Ω) (29)

and ∫
Ω

[a(x,∇uε)− a(x,∇u)] · ∇(uε − u) → 0 (30)

then

uε − u → 0 inW1,p
0 (Ω)-strong. 2

LEMMA 2.4 ([24, p. 8]) Let 0< r < 1 andr ′ = r/(r − 1). If F ∈ Lr(Ω), FG ∈ L1(Ω) and∫
Ω

|G(x)|r
′

dx < ∞ in a bounded domainΩ of Rd , then

( ∫
Ω

|F(x)|r dx

)1/r

6

( ∫
Ω

|F(x)G(x)| dx

)( ∫
Ω

|G(x)|r
′

dx

)−1/r ′

. (31)

THEOREM 2.5 Let(uε1, . . . , u
ε
N ) and(u1, . . . , uN ) denote, respectively, the solutions of problems

(22) and (1). Under the assumptions (4)–(6):

(i) (uε1, . . . , u
ε
N ) → (u1, . . . , uN ) in [W1,p(Ω)]N asε → 0.

(ii) If, in addition, a is strongly monotone, i.e., satisfies (9), then there exists a positive constantC,
independent ofε, such that, for alli = 1, . . . , N ,

‖∇(uεi − ui)‖Lp(Ω) 6

{
Cε1/p if p > 2,
Cε1/2 if 1 < p 6 2.
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Proof. (i) Choose, fori = 1, . . . , N , vi =
∨N
k=i u

ε
k in (1). Indeed, sincevi−1 > vi a.e. inΩ and

vi − ϕi ∈ W
1,p
0 (Ω), we have(v1, . . . , vN ) ∈ KN and

N∑
i=1

∫
Ω

a(x,∇ui) · ∇

( N∨
k=i

uεk − ui

)
>

N∑
i=1

∫
Ω

fi

( N∨
k=i

uεk − ui

)
.

So,

N∑
i=1

∫
Ω

a(x,∇ui) · ∇(uεi − ui) >
N∑
i=1

∫
Ω

fi(u
ε
i − ui)

+

N∑
i=1

∫
Ω

a(x,∇ui) · ∇

(
uεi −

N∨
k=i

uεk

)
+

N∑
i=1

∫
Ω

fi

( N∨
k=i

uεk − uεi

)
.

On the other hand, by (27),

N∑
i=1

∫
Ω

a(x,∇uεi ) · ∇(uεi − ui) 6
N∑
i=1

∫
Ω

fi(u
ε
i − ui),

and we conclude that

N∑
i=1

∫
Ω

[a(x,∇uεi )− a(x,∇ui)] · ∇(uεi − ui)

6
N∑
i=1

∫
Ω

a(x,∇ui) · ∇

( N∨
k=i

uεk − uεi

)
−

N∑
i=1

∫
Ω

fi

( N∨
k=i

uεk − uεi

)
=

N∑
i=1

∫
Ω

(Aui − fi)
( N∨
k=i

uεk − uεi

)
. (32)

Here we have used the fact thatAui ∈ Lq(Ω) for i = 1, . . . , N , since we know that

fi − ξi−1 6 Auεi = −ξiθε(u
ε
i − uεi+1)+ ξi−1θε(u

ε
i−1 − uεi )+ fi 6 fi + ξi,

by (22) and−1 6 θε 6 0.
Noticing that, from (23),

0 6
N∨
k=i

uεk − uεi 6 uεi + (N − i + 1)ε − uεi 6 (N − i + 1)ε (33)

it is immediate to conclude that

0 6
N∑
i=1

∫
Ω

[a(x,∇uεi )− a(x,∇ui)] · ∇(uεi − ui) 6 Cε, (34)

and, since (29) and (30) hold, Lemma 2.3 shows that for eachi = 1, . . . , N ,

uεi → ui in W1,p(Ω) asε → 0.
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(ii) From (34) and using the strong monotonicity ofa, for p > 2 we have

α

N∑
i=1

∫
Ω

|∇(uεi − ui)|
p 6

N∑
i=1

∫
Ω

[a(x,∇uεi )− a(x,∇ui)] · ∇(uεi − ui) 6 Cε.

Let now 1< p < 2. Using also the strong monotonicity ofa and (34), we obtain

α

N∑
i=1

∫
Ω

(|∇uεi | + |∇ui |)
p−2

|∇(uεi − ui)|
2

6
N∑
i=1

∫
Ω

[a(x,∇uεi )− a(x,∇ui)] · ∇(uεi − ui) 6 Cε. (35)

Let Ω̂i = {x ∈ Ω : |∇uεi | + |∇ui | 6= 0}. We may use the reverse inequality (31) withr = p/2,
noticing that 0< r < 1 andr ′ = p/(p − 2), settingF = |∇(uεi − ui)|

2 andG = (|∇uεi | +

|∇ui |)
p−2. Then we obtain, fori = 1, . . . , N ,( ∫
Ω̂i

|∇(uεi − ui)|
p

)2/p

dx

6

( ∫
Ω̂i

|∇(uεi − ui)|
2(|∇uεi | + |∇ui |)

p−2 dx

)( ∫
Ω̂i

(|∇uεi | + |∇ui |)
p dx

)(2−p)/p

.

Since by (35), ∫
Ω̂i

|∇(uεi − ui)|
2(|∇uεi | + |∇ui |)

p−2 dx 6
1

α
Cε,

and

∃Mp > 0 :

( ∫
Ω̂i

(|∇uεi | + |∇ui |)
p dx

)(2−p)/p

6 Mp,

the conclusion follows immediately by summing theN inequalities above. 2

3. Lewy–Stampacchia inequalities and regularity

As a consequence of the approximation by bounded penalization we already know thatAui ∈

Lq(Ω), i = 1, . . . , N , and so we can use the analogy with the obstacle problem to show further
regularity of the solutionui .

In [15] Lewy and Stampacchia have shown that the solution of the obstacle problem for the
Laplacian satisfies a dual inequality, which in fact holds in more general cases, as observed in
[10] or [4] for nonlinear operators. Summarizing the known results for the one- and two-obstacles
problem that we shall apply to theN -membranes problem, the following theorem may be proved as
in [22] or [20].

THEOREM 3.1 Given ϕ,ψ1, ψ2 ∈ W1,p(Ω) (1 < p < ∞), with f , (Aψ2 − f )+ and
(Aψ1 − f )− in Lq(Ω) ⊂ W−1,p′

(Ω) (q = 1 if p > d, q > 1 if p = d, andq = dp/(dp + p − d)

if 1 < p < d) such that

Kψ1
ψ2

= {v ∈ W1,p(Ω) : ψ1 > v > ψ2 a.e. inΩ, v − ϕ ∈ W
1,p
0 (Ω)} 6= ∅, (36)
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the unique solutionu ∈ Kψ1
ψ2

to the variational inequality∫
Ω

a(x,∇u) · ∇(v − u) >
∫
Ω

f (v − u), ∀v ∈ Kψ1
ψ2
, (37)

under the assumptions (4)–(6) satisfies the Lewy–Stampacchia inequality

f ∧ Aψ1 6 Au 6 f ∨ Aψ2 a.e. inΩ. (38)

REMARK 3.2 Settingξ1 = (Aψ1 − f )− and ξ2 = (Aψ2 − f )+ and using the penalization
functionθε of the previous section we may approach, asε → 0, the solution of (37) by the solutions
uε of the equation

Auε + ξ2θε(u
ε
− ψ2)− ξ1θε(ψ1 − uε) = f in Ω (39)

with the Dirichlet boundary conditionuε = ϕ on ∂Ω. Noting that

f ∧ Aψ1 = f − (Aψ1 − f )− and f ∨ Aψ2 = f + (Aψ2 − f )+

we easily deduce (38) from the analogous inequalities that are satisfied for eachuε.

REMARK 3.3 Theorem 3.1, although stated for the two-obstacles problem, also contains the case
of only one obstacle. Indeed, by takingψ1 ≡ +∞, (37) is a lower obstacle problem and (38) reads

f 6 Au 6 f ∨ Aψ2 for u > ψ2, a.e. inΩ, (40)

and by takingψ2 ≡ −∞, (37) is an upper obstacle problem for which (38) reads

f ∧ Aψ1 6 Au 6 f for u 6 ψ1, a.e. inΩ. (41)

REMARK 3.4 In [20], for more general operators and under a strong monotonicity assumption of
the type (9), which however is not necessary in our Theorem 3.1, it was shown that the inequalities of
(38) still hold independently of one another in the duality sense, providedAψ1 −f and/orAψ2 −f

are inV ∗

p′ = [W−1,p′

(Ω)]+ − [W−1,p′

(Ω)]+, i.e., in the ordered dual space ofW1,p
0 (Ω).

THEOREM 3.5 The solution(u1, . . . , uN ) of theN -membranes problem, under the assumptions
(4)–(6), satisfies the following Lewy–Stampacchia type inequalities:

f1 6 Au1 6 f1 ∨ · · · ∨ fN
f1 ∧ f2 6 Au2 6 f2 ∨ · · · ∨ fN

...

f1 ∧ · · · ∧ fN−1 6 AuN−1 6 fN−1 ∨ fN
f1 ∧ · · · ∧ fN 6 AuN 6 fN


a.e. inΩ. (42)

Proof. Observe that choosing(v, u2, . . . , uN ) ∈ KN , with v ∈ Ku2, we see thatu1 ∈ Ku2 (as in
(36) withψ1 = +∞) solves the variational inequality (37) withf = f1, and so by (40) we have

f1 6 Au1 6 f1 ∨ Au2 a.e. inΩ.
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Analogously, we see thatuj ∈ Kuj−1
uj+1 solves the two-obstacles problem (37) withf = fj ,

j = 2, . . . , N − 1, and satisfies, by (38),

fj ∧ Auj−1 6 Auj 6 fj ∨ Auj+1 a.e. inΩ.

SinceuN ∈ KuN−1, by (41), also satisfies

fN ∧ AuN−1 6 AuN 6 fN a.e. inΩ,

(42) is easily obtained by simple iteration. 2

For p > d, the Sobolev inclusionW1,p(Ω) ⊂ C0,λ(Ω) for 0 < λ = 1 − d/p < 1 immediately
implies the Ḧolder continuity of the solutionsui of the N -membranes problem; however, this
property still holds for 1< p 6 d by using the fact that eachAui is in the sameLq(Ω) as the
forcesfi , i = 1, . . . , N . So under the classical assumptions of [14] (see also [18]) we may state for
completeness the following regularity result.

COROLLARY 3.6 Under the assumptions (3)–(6) for 1< p 6 d with q > d/p in (3), the solution
(u1, . . . , uN ) of (1) is such that

ui ∈ C0,λ(Ω) for some 0< λ < 1, i = 1, . . . , N,

and is also inC0,λ(Ω) if, in addition, eachϕi ∈ C0,λ(∂Ω) and ∂Ω is smooth, for instance, of
classC0,1. 2

REMARK 3.7 The above classical result for equations was also shown to hold for the one-obstacle
problem, for instance, in [7] and [19], and for the two-obstacles problems in [12], under more
general assumptions on the data. It would be interesting to obtain the Hölder continuity of the
solution of (1) directly under the classical and more general assumptions that eachfi is inW−1,s(Ω)

for s > d/(p − 1).

A more interesting regularity is the Ḧolder continuity of the gradient of the solution, by analogy
with the results for solutions of degenerate elliptic equations. For instance, as a consequence of the
inequalities (42) and the results of [8] on theC1,λ local regularity of weak solutions, as well as on
the regularity up to the boundary in [16], we may also state the following results.

COROLLARY 3.8 Under the stronger differentiability properties (11), (12), if (3) holds withq >

dp/(p − 1), then the solution(u1, . . . , uN ) of (1) is such that

ui ∈ C1,λ(Ω) for some 0< λ < 1, i = 1, . . . , N ,

and is also inC1,λ(Ω) if, in addition, eachϕi ∈ C1,γ (∂Ω) for someγ (λ 6 γ < 1), andfi ∈

L∞(Ω) for all i = 1, . . . , N . 2

REMARK 3.9 Additional regularity can be obtained forp-Laplacian type operators. For instance,
as a consequence of recent results of [9], forp > 2, in a convex polyhedral domain with
ϕi = 0 andfi ∈ W (p−2)/p,p(Ω), we could obtain solutions in the fractional order Sobolev spaces
W1+2/p−ε,p(Ω) for all ε > 0.

Another example for thep-Laplacian is provided by the results of [2], for 2-dimensional
domains (d = 2), with ∂Ω of classC2, in the case 1< p < 2: the solutions are inH 2(Ω) =
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W2,2(Ω) if fi ∈ Lq(Ω), q > 2, andϕi ∈ H 2(Ω). These regularity results may be important
in finite element approximations of theN -membranes problem for degenerate systems (see, for
instance, [3]). To our knowledge that extension has not yet been considered in the literature for the
N -membranes problem.

For differentiable strongly coercive vector fields satisfying the assumptions (11), (12), with
p = 2, there is no degeneration of the operatorA and stronger regularity inW2,s(Ω) may be
obtained also from the fact that (42) holds for the solution of theN -membranes problem. For
instance, as in Theorem 3.3 of [13, p. 114] (see also [22, Remark 4.5, p. 244]), we can prove the
following result.

COROLLARY 3.10 Let (11), (12) hold forp = 2, suppose∂Ω ∈ C1,1 andfi ∈ L∞(Ω), ϕi ∈

W2,∞(Ω) for all i = 1, . . . , N . Then the solution(u1, . . . , uN ) of (1) is such that

ui ∈ W2,s(Ω) ∩ C1,γ (Ω), i = 1, . . . , N, for all 1 6 s < ∞ and 06 γ < 1. (43)

REMARK 3.11 ForN linear operators of the form

aki (x, ξ) =

d∑
j=1

akij (x)ξj , k = 1, . . . , N,

the regularity (43) was shown in [6] for everys > 2 and, for the same operators with lower order
terms in [1] fors > 1 if d = 2, and fors > 2d/(d + 2) if d > 3. For the case of two membranes
with linear operators, earlier results in [26] were shown by using similar regularity results for the
one-obstacle problem. In spite of this analogy, the optimalW2,∞ regularity of solutions to obstacle
problems is an open problem for theN -membranes system.

REMARK 3.12 In the case of two membranes with constant mean curvature, i.e., whenA is the
minimal surface operator andf1 andf2 are constants in a smooth domain with mean curvatureH∂Ω
of ∂Ω greater than or equal to|f1| ∨ |f2|/(d − 1), in [27] the existence of a unique solution with
the regularity (43) was shown. TheN -membranes problem for the minimal surface operator is, in
general, an open problem.

4. Convergence of coincidence sets

In this section we prove that, if(un1, . . . , u
n
N ) is the solution of theN -membranes problem, under

the assumptions (4)–(6) with given data(f n1 , . . . , f
n
N ), n ∈ N, and if (f n1 , . . . , f

n
N ) converges in

[Lq(Ω)]N to (f1, . . . , fN ), we have the stability result inLs(Ω), 1 6 s < ∞, for the corresponding
coincidence sets:

χ{unk=···=unl }
→
n
χ{uk=···=ul} for 1 6 k < l 6 N.

We begin by presenting a lemma that will be needed.

LEMMA 4.1 ([23]) Given functionsu, v ∈ W1,p(Ω), 1< p < ∞, such thatAu,Av ∈ L1(Ω), we
have

Au = Av a.e. in {x ∈ Ω : u(x) = v(x)}. 2

In what follows we continue using the conventionu0 = +∞ anduN+1 = −∞. Given 16 j 6
k 6 N , we define the following sets:

Θj,k = {x ∈ Ω : uj−1(x) > uj (x) = · · · = uk(x) > uk+1(x)}. (44)
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The first part of the following proposition identifies the value ofAui a.e. on each coincidence
setIj,k defined in (13). The second part states a necessary condition on the forces in order that there
exists contact among consecutive membranes.

PROPOSITION4.2 If j, k ∈ N are such that 16 j 6 k 6 N , we have

(i) Aui =

{
〈f 〉j,k a.e. inΘj,k if i ∈ {j, . . . , k},

fi a.e. inΘj,k if i 6∈ {j, . . . , k},

(ii) if j < k then for alli ∈ {j, . . . , k}, 〈f 〉i+1,k > 〈f 〉j,i a.e. inΘj,k.

Proof. (i) Supposei ∈ {j, . . . , k} (the other case has a similar and simpler proof). For a.e.x ∈ Θj,k
we haveuj−1(x) − uj (x) = α > 0 anduk(x) − uk+1(x) = β > 0, for someα = α(x) and
β = β(x). Sincex belongs to the open set{y ∈ Ω : uj−1(y) − uj (y) − α/2 > 0} ∩ {y ∈ Ω :
uk(y) − uk+1(y) − β/2 > 0}, there existsδ > 0 such that, for allϕ ∈ D(B(x, δ)), there exists
ε0 > 0 such that, if 0< ε < ε0, thenuj−1 > uj ± εϕ anduk > uk+1 ± εϕ.

Choose for test functions

vr =

{
ur if r 6∈ {j, . . . , k},

ur ± εϕ if r ∈ {j, . . . , k}.

Then

±ε

k∑
r=j

∫
Ω

a(x,∇ur) · ∇ϕ > ±ε

k∑
r=j

∫
Ω

frϕ, ∀ϕ ∈ D(B(x, δ)),

and
k∑
r=j

∫
Ω

a(x,∇ur) · ∇ϕ =

k∑
r=j

∫
Ω

frϕ, ∀ϕ ∈ D(B(x, δ)).

So we conclude that
k∑
r=j

Aur =

k∑
r=j

fr a.e. inB(x, δ).

We know thatAui ∈ L1(Ω), for all i = 1, . . . , N . So, using Lemma 4.1, we have

Auj = · · · = Aui = · · · = Auk in Θj,k

and we conclude that

(k − j + 1)Aui = fj + · · · + fk a.e. inΘj,k.

(ii) The proof of this item is analogous to the previous one. We choose for test functions

vr =

{
ur if r 6∈ {j, . . . , i},

ur + εϕ if r ∈ {j, . . . , i},

with ϕ ∈ D(B(x, δ)), ϕ > 0, ε > 0 such that(v1, . . . , vN ) ∈ KN . We then conclude that

i∑
r=j

∫
Ω

a(x,∇ur) · ∇ϕ >
i∑

j=r

∫
Ω

frϕ, ∀ϕ ∈ D(B(x, δ)), ϕ > 0,
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and so, we haveAui > 〈f 〉j,i a.e. inΘj,k. Then using the first part of the proposition we conclude
that

〈f 〉j,k > 〈f 〉j,i a.e. inΘj,k,

or equivalently, that

〈f 〉i+1,k > 〈f 〉j,i a.e. inΘj,k. 2

Our goal is to determine a system ofN equations, coupled by the characteristic functions of the
N(N − 1)/2 coincidence sets, which is equivalent to problem (1).

This was done in [26] for the caseN = 2 and in [1] for the caseN = 3. The system forN = 2
is simply 

Au1 = f1 +
f2 − f1

2
χ{u1=u2},

Au2 = f2 −
f2 − f1

2
χ{u1=u2},

and forN = 3 it is the system (15). From these two examples we see that the determination of the
coefficients of this system is not a very simple problem of combinatorics. We present the result for
the case of generalN in Theorem 4.5.

DEFINITION 4.3 Givenf1, . . . , fN ∈ Lq(Ω) we define, forj, k, i ∈ {1, . . . , N}, with j < k and
j 6 i 6 k,

b
j,k
i [f ] =


〈f 〉j,k − 〈f 〉j,k−1 if i = j,

〈f 〉j,k − 〈f 〉j+1,k if i = k,

2

(k − j)(k − j + 1)

(
〈f 〉j+1,k−1 −

1

2
(fj + fk)

)
if j < i < k.

Observe that, ifj < i < k, thenbj,ki [f ] does not depend oni. It is also not difficult to see that∑k
i=j b

j,k
i [f ] = 0. We first record some auxiliary results concerning the coefficientsb

j,k
i [f ] that

will be needed. From now on we drop the dependence ofb
j,k
i [f ] on f in notation.

LEMMA 4.4

(i) If j 6 l < r then

r∑
k=l+1

b
j,k
j =

r − l

r − j + 1
(〈f 〉l+1,r − 〈f 〉j,l).

In particular
∑r
k=l+1 b

j,k
j is positive if and only if the average offl+1, . . . , fr is greater than or

equal to the average offj , . . . , fl .
(ii) If m < i then

∀r ∈ {i, . . . , N}

r∑
k=i

b
m,k
i = bm,rr .
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Proof. (i) We have

r∑
k=l+1

b
j,k
j =

r∑
k=l+1

(〈f 〉j,k − 〈f 〉j,k−1) = 〈f 〉j,r − 〈f 〉j,l

=
fj + · · · + fr

r − j + 1
−
fj + · · · + fl

l − j + 1

=
fj + · · · + fl

r − j + 1
+
fl+1 + · · · + fr

r − j + 1
−
fj + · · · + fl

l − j + 1

=
fl+1 + · · · + fr

r − j + 1
−
(r − l)(fj + · · · + fl)

(r − j + 1)(l − j + 1)

=
r − l

r − j + 1

(
fl+1 + · · · + fr

r − l
−
fj + · · · + fl

l − j + 1

)
=

r − l

r − j + 1
(〈f 〉l+1,r − 〈f 〉j,l).

(ii) We prove the equality by induction onr. If r = i, the equality is trivial. Forr > i we have

r+1∑
k=i

b
m,k
i =

r∑
k=i

b
m,k
i + b

m,r+1
i

= bm,rr + b
m,r+1
i by induction hypothesis

= 〈f 〉m,r − 〈f 〉m+1,r +
2

(r −m+ 1)(r −m+ 2)

(
〈f 〉m+1,r −

1

2
(fm + fr+1)

)
=
fm + · · · + fr

r −m+ 1
−
fm+1 + · · · + fr

r −m

+
2(fm+1 + · · · + fr)

(r −m)(r −m+ 1)(r −m+ 2)
−

fm + fr+1

(r −m+ 1)(r −m+ 2)
.

Then

r+1∑
k=i

b
m,k
i =

(
1

r −m+ 1
−

1

(r −m+ 1)(r −m+ 2)

)
fm −

1

(r −m+ 1)(r −m+ 2)
fr+1

+

(
1

r −m+ 1
−

1

r −m
+

2

(r −m)(r −m+ 1)(r −m+ 2)

)
(fm+1 + · · · + fr)

=
fm

r −m+ 2
−

fr+1

(r −m+ 1)(r −m+ 2)
−

fm+1 + · · · + fr

(r −m+ 1)(r −m+ 2)

=
fm + · · · + fr+1

r −m+ 2
−
fm+1 + · · · + fr+1

r −m+ 1
= b

m,r+1
r+1 . 2

We are now able to deduce the system of equations involving the characteristic functions of the
coincidence sets which is equivalent to problem (1).

THEOREM 4.5
Aui = fi +

∑
16j<k6N, j6i6k

b
j,k
i χj,k a.e. inΩ. (45)
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Proof. We prove that the equality is valid a.e. inΘm,r for m, r such that 16 m 6 r 6 N . This is
enough because

⋃
16m6r6N Θm,r = Ω.

If i 6∈ {m, . . . , r}, then (45) results immediately from Proposition 4.2(i).
Suppose thati ∈ {m, . . . , r}. In view of Lemma 4.2, the equality (45) forx ∈ Θm,r becomes

fi +

∑
m6j<k6r, j6i6k

b
j,k
i = 〈f 〉m,r .

We now prove this equality by induction oni −m. If i −m = 0, then

fi +

∑
m6j<k6r, j6i6k

b
j,k
i = fm +

∑
m<k6r

bm,km

= fm +

∑
m<k6r

(〈f 〉m,k − 〈f 〉m,k−1) = 〈f 〉m,r .

For the induction step, ifi −m > 0, then

fi +

∑
m6j<k6r, j6i6k

b
j,k
i = fi +

∑
m+16j<k6r, j6i6r

b
j,k
i +

∑
i6k6r

b
m,k
i

= 〈f 〉m+1,r +

r∑
k=i

b
m,k
i by induction hypothesis

= 〈f 〉m+1,r + b
m,r
r by Lemma 4.4(ii)

= 〈f 〉m,r . 2

We now state the main result of this section.

THEOREM 4.6 Givenn ∈ N, let (un1, . . . , u
n
N ) denote the solution of problem (1) with given data

(f n1 , . . . , f
n
N ) ∈ [Lq(Ω)]N , with q as in (3). Suppose that

f ni →
n
fi in Lq(Ω), i = 1, . . . , N. (46)

Then
uni →

n
ui in W1,p(Ω), i = 1, . . . , N. (47)

If, in addition, the limit forces satisfy

〈f 〉i,j 6= 〈f 〉j+1,k for all i, j, k ∈ {1, . . . , N} with i 6 j < k, (48)

then, for any 16 s < ∞,

∀j, k ∈ {1, . . . , N}, j < k, χ{unj =···=unk }
→
n
χ{uj=···=uk} in Ls(Ω). (49)

Before proving the theorem we need another auxiliary lemma:

LEMMA 4.7 Letn ∈ N anda1, . . . , an ∈ R be such that
∑n
r=j ar > 0 for all j = 1, . . . , n. Then

the inequality
a1Y1 + · · · + anYn 6 0

with the restrictions 06 Y1 6 · · · 6 Yn has only the trivial solutionY1 = · · · = Yn = 0.
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Proof. If n = 1 the conclusion is immediate. Supposing the result proved forn, let us prove it for
n+ 1:

0 > a1Y1 + · · · + anYn + an+1Yn+1 > a1Y1 + · · · + anYn + an+1Yn

sinceYn+1 > Yn > 0 andan+1 > 0. Then

0 > a1Y1 + · · · + (an + an+1)Yn

and, because the result is true forn, we haveY1 = · · · = Yn = 0 and, therefore, sincean+1 > 0,
alsoYn+1 = 0. 2

Proof of Theorem 4.6. The convergence (47) of the solutions is an immediate consequence of a
theorem due to Mosco.

For simplicity, we writeχ{uj=···=uk} = χj,k and we denoteχ{unj =···=unk }
by χnj,k.

Let j, k ∈ {1, . . . , N} with j < k. Since 06 χj,k 6 1, there existsχ∗

j,k ∈ Lq(Ω) such that
(χnj,k)n∈N converges toχ∗

j,k in Lq(Ω)-weak. Of course we have{
0 6 χ∗

j,k 6 1, because 06 χnj,k 6 1,

χ∗
m,r 6 χ∗

j,k (if m 6 j < k 6 r), becauseχnm,r 6 χnj,k.
(50)

Moreover, lettingn → ∞ in the equalityχnj,k(u
n
j − unk)

+
≡ 0, we conclude

χ∗

j,k(uj − uk)
+

= 0 a.e. inΩ. (51)

Consider now the system (45), with the coefficientsb replaced bybn, for dataf n1 , . . . , f
n
N , with

n ∈ N,
Auni = f ni +

∑
j<k6N, j6i6k

(bn)
j,k
i χnj,k a.e. inΩ, i = 1, . . . , N.

Passing to the weak limit inLq(Ω) asn → ∞, we have

Aui = fi +

∑
j<k6N, j6i6k

b
j,k
i χ∗

j,k a.e. inΩ, i = 1, . . . , N.

Subtracting the equality (45) for the limit solution from this one, we obtain∑
j<k6N, j6i6k

b
j,k
i (χj,k − χ∗

j,k) = 0 a.e. inΩ, i = 1, . . . , N. (52)

For k > j , let Yj,k denoteχj,k − χ∗

j,k. To complete the proof we only need to show that, forj < k,
Yj,k ≡ 0, i.e.,(χnj,k)n∈N converges toχj,k in Lq(Ω)-weak.

From equation (51) we know that

∀j < k Yj,k ≡ 0 in {uj 6= uk} = {uj > uk}. (53)

Fix j0 andk0 such thatj0 < k0. Using (53), we only need to see thatYj0,k0 ≡ 0 in Ij0,k0 =

{uj0 = · · · = uk0}. It is then enough to prove this in two cases:

(i) in Θj0,r for r > j0;
(ii) in Θm,r for m < j0 andr > k0.
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In the first case, using (53), we haveYj,k ≡ 0 in Θj0,r if j < j0 or k > r. So, lettingi = j0 in
equation (52), we have, inΘj0,r ,

0 =

∑
j<k6N, j6j06k

b
j,k
j0
Yj,k =

∑
j06j<k6N, j6j06k6r

b
j,k
j0
Yj,k =

r∑
k=j0+1

b
j0,k
j0

Yj0,k.

We can now apply Lemma 4.7 to conclude thatYj0,k = 0 inΘj0,r for k ∈ {j0 + 1, . . . , r}, since

• for x ∈ Θj0,r , Yj0,r(x) = 1 − χ∗

j0,k
(x) and, using (50),Yj0,j0+1(x) 6 · · · 6 Yj0,r(x);

• for l > j0, by Lemma 4.4(i),

r∑
k=l+1

b
j0,k
j0

=
r − l

r − j0 + 1
(〈f 〉l+1,r − 〈f 〉j0,l),

which is positive, by Proposition 4.2(ii), asx ∈ Θj0,r , and (48).

In the second case, inΘm,r (m < j0 andr > k0),

0 6 Yj0,k0 = χj0,k0 − χ∗

j0,k0

= 1 − χ∗

j0,k0
sincem < j0 < k0 6 r

6 1 − χ∗

m,k0
by (50)

= χm,k0 − χ∗

m,k0

= Ym,k0

= 0 as in the previous case.

Notice that, sinceχj0,k0 is a characteristic function,(χnj0,k0
)n∈N converges in fact toχj0,k0 in

Ls(Ω)-strong, for all 16 s < ∞. 2

REMARK 4.8 Arguing as in Theorem2.5, under the strong monotonicity assumption (9), it is easy
to show the following continuous dependence on the data:

N∑
i=1

‖uni − ui‖W1,p
0 (Ω)

6 Cq

N∑
i=1

‖f ni − fi‖Lq (Ω),

for q defined as in (3). However, a correspondingL1 estimate for the characteristic functions of
the coincidence sets, similar to the one in the obstacle problem ([22], [23]), seems more difficult to
obtain.
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18. MAL Ý , J. & ZIEMER, W. P. Fine Regularity of Solutions of Elliptic Partial Differential Equations. Amer.

Math. Soc., Providence, RI (1997). Zbl 0882.35001 MR 1461542
19. MICHAEL , J. H. & ZIEMER, W. P. Interior regularity for solutions to obstacle problems.Nonlinear Anal.

10 (1986), 1427–1448. Zbl 0603.49006 MR 0869551
20. MOKRANE, A. & M URAT, F. The Lewy–Stampacchia inequality for a bilateral problem. Preprint of the

Laboratoire Jacques-Louis Lions 2003, no. 10.
21. NAGASE, H. Remarks on nonlinear evolutionary variational inequalities with an abstract Volterra

operator.Funkcial. Ekvac.38 (1995), 197–215. Zbl 0843.49005 MR 1356324
22. RODRIGUES, J.-F. Obstacle Problems in Mathematical Physics. North-Holland, Amsterdam (1987).

Zbl 0606.73017 MR 0880369
23. RODRIGUES, J.-F. Stability remarks to the obstacle problem for thep-Laplacian type equations.Calc.

Var. Partial Differential Equations23 (2005), 51–65. Zbl pre0216607
24. SOBOLEV, S. L. Applications of Functional Analysis in Mathematical Physics. Amer. Math. Soc.,

Providence, RI (1963). Zbl 0123.09003 MR 0165337
25. TROIANIELLO , G. M. Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York

(1987). Zbl 0655.35002 MR 1094820
26. VERGARA-CAFFARELLI , G. Regolarit̀a di un problema di disequazioni variazionali relativo a due

membrane.Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.(8) 50 (1971), 659–662. MR 0304835
27. VERGARA-CAFFARELLI , G. Variational inequalities for two surfaces of constant mean curvature.Arch.

Rat. Mech. Anal.56 (1974/75), 334–347. Zbl 0299.49019 MR 0355721

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0958.47038&format=complete
http://www.ams.org/mathscinet-getitem?mr=1713958
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0687.35042&format=complete
http://www.ams.org/mathscinet-getitem?mr=0980979
http://www.ams.org/mathscinet-getitem?mr=0806627
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0241.35032&format=complete
http://www.ams.org/mathscinet-getitem?mr=0374671
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0539.35027&format=complete
http://www.ams.org/mathscinet-getitem?mr=0709038
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0503.49008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0664105
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0733.35025&format=complete
http://www.ams.org/mathscinet-getitem?mr=1115077
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0457.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0567696
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0164.13002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0244627
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0206.40702&format=complete
http://www.ams.org/mathscinet-getitem?mr=0271383
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0675.35042&format=complete
http://www.ams.org/mathscinet-getitem?mr=0969499
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0189.40603&format=complete
http://www.ams.org/mathscinet-getitem?mr=0259693
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0882.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1461542
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0603.49006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0869551
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0843.49005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1356324
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0606.73017&format=complete
http://www.ams.org/mathscinet-getitem?mr=0880369
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0216607&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0123.09003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0165337
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0655.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1094820
http://www.ams.org/mathscinet-getitem?mr=0304835
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0299.49019&format=complete
http://www.ams.org/mathscinet-getitem?mr=0355721

	Introduction
	Approximation by bounded penalization
	Lewy--Stampacchia inequalities and regularity
	Convergence of coincidence sets

