
Bluetooth Hotspots for Smart Spaces Interaction
Mestrado de Engenharia Informática

Universidade do Minho

Advisor: Prof. Helena Cristina Rodrigues

Miguel Craveiro Martins de Almeida

October, 2011

Acknowledgements

I express my deep gratitude to Professor Helena Cristina Rodrigues for her guidance,

valuable scientific support, helpful advises and for her constant patience.

I also would like to thank other members of the Ubicomp team, at Universidade

do Minho, namely Prof. Rui José, Arlindo Santos and Bruno Silva for their support,

which was very important in all the steps of this dissertation.

I am thankful to Pedro Farinha for his precious help in part of this work, particularly

in what concerns the development of the Wiimote Extension’s prototype.

I wish to thank Mariana Pulido and my friends Afonso Arriaga, Mário Pinhal, and

my brother Nuno for all their support, enthusiasm and friendship and for helping me

revising this document.

Thanks are still due to Departamento de Sistemas de Informação of Universidade do

Minho for all facilities.

Finally I would like to thank my parents and brothers for all their familiar permanent

support. Without it this dissertation would not be possible.

ii

Abstract

In scientific literature and industry, mainly in the area of Pervasive Computing and

Smart Spaces, a variety of applications and systems may be found which are based on

both explicit and implicit user interactions with physical resources in the environment,

such as Wi-Fi spots, GPS receivers, Bluetooth components, RFID readers, mobile

phones or cameras. Bluetooth is a short-range wireless technology which is present

in a wide number of handheld devices and requires zero configuration. By this mean,

it becomes a powerful tool to be used for interaction with physical environments and

consequently has been adopted by different applications and systems as a privileged

interaction technology. Currently, those are implementing their own Bluetooth com-

ponents that perform application-specific tasks, like getting information about user

devices, sending or receiving files.

In this dissertation, we argue that Bluetooth components may be managed as in-

teraction resources in the physical space, which can be shared and reused by different

third-party applications and systems. This situation would free application developers

from Bluetooth management-related issues and would allow them to focus in applica-

tion objectives. Additionally, our approach may also contribute for the sustainability of

the Pervasive Computing industry from an environmental perspective, as it will enable

sharing and reusing of physical resources and potentially reducing the number of local

computing devices.

In this work we studied relevant projects and applications for Pervasive Computing

and Smart Spaces that use Bluetooth an interaction mean. Common characteristics of

these projects are identified - an important step to systematize those user interactions.

This work is a basis for the design of a system component Bluetooth resource. Proto-

types were developed and deployed in multiple real scenarios to validate, not only the

feasibility of using such a component on Smart Spaces, but also the integration model

with applications. Such validation is presented on this document and works as a proof

of concept for this component.

iii

Resumo

Tanto na literatura cient́ıfica como na indústria, especificamente na área da Com-

putação Disseminada e Espaços Inteligentes (Pervasive Computing and Smart Spaces),

são encontradas muitas aplicações e sistemas baseados em interacções (impĺıcitas e

expĺıcitas) com recursos f́ısicos no ambiente, tais como pontos Wi-Fi, receptores GPS,

componentes Bluetooth, leitores RFID, telefones móveis ou câmaras. Bluetooth é uma

tecnologia sem fios de curto alcance, que não requer configurações e que está pre-

sente num elevado número de dispositivos móveis. Tornou-se, assim, numa poderosa

ferramenta para interacção com ambientes f́ısicos, sendo consecutivamente adoptada

por diferentes aplicações e sistemas como uma tecnologia priveligiada de interação.

Actualmente estas aplicações e sistemas implementam os seus próprios componentes

Bluetooth, capazes de executar tarefas especificamente relacionadas com as aplicações

em causa, tais como a obtenção de informação sobre os dispositivos dos utilizadores ou

trocas de ficheiros com estes.

Nesta dissertação argumenta-se que os componentes Bluetooth podem ser tratados

como recursos de interação do espaço f́ısico, com a possibilidade de serem partilhados e

reutilizados por diferentes aplicações e sistemas. Desta forma liberta-se os seus progra-

madores de questões relacionados com a implementação e gestão espećıficas da tecnolo-

gia Bluetooth, incentivando-os a focarem-se nos objectivos da aplicação. Além disso, a

nossa abordagem poderá também contribuir para a sustentação da indústria da Com-

putação Disseminada sob uma perspectiva ambiental, dado que irá permitir a partilha

e reutilização de recursos f́ısicos, reduzindo o número de dispositivos computacionais.

Neste trabalho estudam-se projectos e aplicações relevantes para a indústria da

Computação Disseminada e Espaços Inteligentes que recorrem à tecnologia Bluetooth

como uma forma de interacção com os seus utilizadores. São identificadas as carac-

teŕısticas comuns destes projectos, tratando-se de um passo importante para a siste-

matização destas interacções. Este trabalho constitui a base do desenho de um novo

recurso Bluetooth. Foram desenvolvidos e instalados protótipos em vários cenários

reais, a fim de se validar não apenas a viabilidade de tal componente em Espaços In-

teligentes mas, também, o modelo de integração com as aplicações. Tal validação é

apresentada neste documento, funcionando como uma prova de concceito desta com-

ponente.

iv

Contents

1 Introduction 1

1.1 Objectives . 2

1.2 System overview . 3

1.3 Methodology . 5

1.4 Structure of the dissertation . 6

2 Related work 8

2.1 Device scan interaction . 9

2.2 Device name-based interaction . 10

2.3 File exchange-based interaction . 15

2.3.1 Content-delivery applications 15

2.3.2 Both-way file exchange . 21

2.4 Connection-based interaction . 21

2.5 Wiimote-based interaction . 23

2.6 Discussion . 25

3 Analysis for Hotspot design 27

3.1 User-interaction patterns . 27

3.1.1 Getting the address and name of a device 28

3.1.2 Sending a file to a device . 29

3.1.3 Receiving a file from a device 30

3.1.4 Establishing a generic connection 31

3.2 Key design issues . 33

3.2.1 Integration . 33

3.2.2 State management . 35

3.2.3 Extensibility . 35

3.3 Bluetooth-related scalability issues . 37

3.3.1 Scanning frequency . 37

v

3.3.2 Multiple Bluetooth interfaces 40

4 Design for Hotspot implementation 41

4.1 System components . 41

4.2 Components integration . 43

4.2.1 The Hotspot behaviour . 43

4.2.2 Hotspot sharing . 44

4.2.3 Multiple Hotspots . 45

4.2.4 Feedback protocol . 45

4.3 Hotspot internal architecture . 47

4.3.1 Scheduler . 48

4.3.2 Hotspot Managers . 50

4.3.3 Bluetooth Modules . 52

4.4 Rules’s structure . 58

4.4.1 Enabling device scans . 58

4.4.2 Sending Sightings to an application 60

4.4.3 Sending files to Bluetooth devices 60

4.4.4 Receiving files from Bluetooth devices 61

4.4.5 Starting an extension . 63

4.4.6 Feedback logs . 64

4.5 Sighting’s structure . 65

5 Evaluation 68

5.1 Evaluation environment . 68

5.2 Evaluation objectives . 69

5.3 Real scenarios deployments . 71

5.3.1 First phase . 71

5.3.2 Second phase . 73

5.3.3 Third phase . 76

6 Conclusions 80

Bibliography 87

Acronyms List a

vi

Chapter 1

Introduction

Pervasive Computing is as a new paradigm for computing systems, where computation

is spread through everyday objects able to communicate with each others and the users

[39]. One of the main characteristics and challenges of Pervasive Computing systems

is the physical-virtual integration: the increasingly pervasive presence of all sorts of

sensors, such as Wi-Fi spots, GPS receivers, Bluetooth components, Radio-Frequency

IDentification (RFID) readers, mobile phones or cameras, in our physical world. The

capability to network those sensors and infer information from their data is greatly

expanding the ability of the virtual world to perceive the physical world and react

accordingly.

The existence of all sorts of those sensors in our physical world, have promoted

the emergence of different trends in Pervasive Computing. Context-aware computing

was the main trend deriving from this characteristic in the sense that context-aware

computing is a field on which software applications behaviour is defined by contextual

information. Such context-aware software adapts according to the location of user,

the collection of nearby people, hosts, and accessible devices, as well as to changes to

such things over time [4, 21, 31]. Smart Spaces, as public spaces augmented with local

computation [28, 23], have been a test bed for experimenting smart-meeting rooms [24],

smart-houses [22], smart-classrooms [3, 6] or smart-museums [10] applications. Work

on Reality Mining [16], Urban Computing [33, 35] or Mobile Social Software [15] has

broadly explored available sensors in the physical space and related sensing capabilities

for applying and refining methods of observing, recording, modelling and analysing the

city, physically, digitally and socially [33]. In marketing, mobile advertising has broadly

explored pervasive computing environments for delivering permission-based location-

aware mobile advertisements, and other content, to mobile users [2, 36, 38].

1

Focus on the Bluetooth technology

Bluetooth is a short-range wireless technology which is presented in a wide number

of handheld devices and requiring near zero configuration. By this mean, it became a

powerful tool to be used for the interaction with physical environments and has conse-

quently been adopted for different applications and systems, as a privileged technology

of interaction [11]. In fact, many of the different cited works in the area of Pervasive

Computing have broadly explored and evaluated the use of Bluetooth technology as a

mean for implicit or explicit interaction with users. Particularly José et al [27, 26] and

Davies et al [14] have explored an approach to support user interaction with public dis-

plays based on the Bluetooth Device Names. A different kind of Bluetooth interaction,

based on OBject EXchange (OBEX) file exchanging, is used [38, 9, 37] to disseminate

contents to mobile users. A mean for intuitive interaction using the Nintendo’s Wii

remote controller equipped with a Bluetooth interface is presented by various authors

[18, 42, 40, 41]. Other types of interactions are oriented to a connection that is es-

tablished between the user device and some remote application or service, using the

Bluetooth infrastructure (a Bluetooth interface or Access-Point available on a space)

as an intermediary or broker between these two end-points.

We argue that Bluetooth components may be managed as interaction resources in

the physical space, which can be shared and reused by different third-party applica-

tions and systems. This situation would set application developers free from Bluetooth

management-related issues and allow them to focus on application objectives. Ad-

ditionally, our approach may also contribute for the sustainability of the pervasive

computing industry from an environmental perspective, as it will enable sharing and

reusing physical resources and potentially decreasing the number of local computing

devices.

1.1 Objectives

The main scope of this dissertation is the proposal of a new system component centered

on Bluetooth-based user interactions, to be used on systems and applications centered

on situated applications. The focus of the work is on these interactions. Our goal is to

design more than just an interface with the user: we want this component to be self-

contained and able to be easily installed, configured and used - the concept of a small

box that, after being installed, becomes a resource available for different applications.

With this component, it should be easy to create diverse interactive spaces, which uses

2

Bluetooth as a mean of interaction. For instance, as a support for visits to museums,

thematic parks or entertainment in urban computing.

In the area of Pervasive Computing, many works are being developed using this

mean of interaction, which has lead us to establish three main objectives for our work:

To study the user interactions of relevant Bluetooth-based systems. This

study aims to analyze patterns in user interactions. Deeply understanding how

related works are implementing their own Bluetooth interfaces is crucial to sys-

tematize our work. This is the first step towards the implementation of the

next two objectives. Furthermore, this study is relevant by itself, as it offers a

state-of-the-art survey for works centered on user-interaction over Bluetooth.

To design the architecture of a Bluetooth Hotspot. We aim to specify an

architecture for a new system component that works as a bridge between Smart

Spaces applications and user’s Bluetooth devices. Our intention is to gather on

a single component the possibility of performing all the interactions that the

actual Bluetooth interfaces are currently implementing, in a dedicated way: 1)

application’s developers become free from Bluetooth-related issues and 2) phys-

ical spaces may become free from numerous Bluetooth devices when multiple

applications share the same physical place. Generally, we call this component a

Bluetooth Hotspot. The final objective is to develop a fully-capable prototype

that runs on Linux-enabled Ethernet routers.

To propose an integration model for Bluetooth user interaction systems.

The integration of our Hotspot with situated applications is based on a model

designed to support the Bluetooth-related interaction requirements of those ap-

plications. This model is designed in order to serve multiple applications that

may coexist on the same physical space, in the most optimized way possible.

1.2 System overview

The environment that evolves our Bluetooth Hotspots is composed by four essential

entities, illustrated in Figure 1.1. They are 1) the set of user’s Bluetooth devices,

2) applications that expect some kind of user-centered interaction using the Bluetooth

technology, 3) Bluetooth Hotspots and 4) a Main Controller that manages the Hotspots.

User’s Bluetooth devices. Any kind of device equipped with Bluetooth can be in-

cluded on this set, although cellphones or Personal Digital Assistants (PDAs) are

3

hotspotusers' devices

applications

main controller

interactions

feedback
rules

context and
resources

Figure 1.1. An abstraction of the main components of the system designed.

the most usual ones. These devices act as a user’s terminal, which exchanges

information with the rest of the infrastructure.

Applications. Applications are pieces of software that perform user-centered tasks

based on some kind of interaction with users over Bluetooth technology. Despite

usually running on a computer, the physical location where these applications run

is irrelevant for the whole system, if they can be reachable on an Internet Protocol

(IP) network. A typical application is the one running on a public display that

shows useful information (such as news, videos or photos) and expects the input

from users, with suggestions of content. In this case, the public screen acts as

an output device for the application while the user Bluetooth device acts as an

input device.

Bluetooth Hotspots. Hotspots are small boxes which act as a bridge between user

devices and the applications. In order to interact with users, these Hotspots

perform Bluetooth tasks such as detecting the user’s devices presence, retrieving

their device’s name, receiving or sending files, among other similar tasks. These

boxes are equipped with embedded devices (Ethernet routers running OpenWrt

Linux1) which run the software that was developed based on the architecture

proposed in Chapter 4.

Main Controller. The Hotspots work in a stand alone mode thanks to a list of rules

which defines their behaviour. For each Hotspot, this list can be previously

installed (turning it on a standalone Hotspot) or managed in real-time by a

1OpenWrt (www.openwrt.org) is a Linux distribution optimized to run on embedded devices like
Ethernet routers. This distribution have the ability to run efficiently even with low resources like slow
CPU (e.g: 100MHz), short memory (e.g: 16MB of Random Access Memory (RAM)) and tiny storage
capacity (e.g: 1MB).

4

www.openwrt.org

central Main Controller. Thus, this component is responsible for managing the

Hotspots, by telling them how to behave.

If multiple Hotspots are deployed (for example, to cover a wide space) they

need to cooperate with each other, otherwise their behaviours can be randomly

erroneous (e.g, when a file is sent by a Hotspot to a specific user device, it should

not be sent again by a second Hotspot that may also reach the device). In this

kind of scenarios the cooperation work between the Hotspots is responsibility of

this Main Controller2.

The operation of this component is beyond the scope of this work. Its architecture

is not covered by this document. Nevertheless, the way it is integrated with the

Bluetooth Hotspots and Applications is addressed.

The list of rules describes the Hotspots’ behaviour, allowing them to be deployed

and to run autonomously. The list of rules is composed by a set of identifiers. Each

identifier can be followed by some parameters, as shown in the following example3:

- scan(scaninterval=30, getnames=true, getservices=true)

- postsighting(url=http://app1.com/postsightings.php)

- acceptfiles(devclass=CellPhone, url=http://app2.com/postfiles.php)

- deliverfile(url=http://app2.com/welcome.txt, devaddress=00:A5:BF:*)

In this example, the list of rules tells the Bluetooth Hotspot to: 1) scan for the

presence of devices every 30 seconds, retrieving their human readable names and the

list of which services are available; 2) for each scan, send the information above to an

application available at a specific Uniform Resource Locator (URL); 3) accept files from

devices (only cellphones) and send them to a remote server, available at the specified

address and 4) also send a welcome file to all the devices detected, which addresses

start with 00:A4:BF.

1.3 Methodology

Along this document, our research is reported in three main steps, always aiming to

achieve the stated objectives (detailed in Section 1.1):

Related work. The first step of this work was a survey on relevant projects that use

the Bluetooth technology as a mean of interaction with users. Our objective

2The architecture of the Main Controller is not described on this dissertation as it is not the focus
of our work. Only the protocol of communication between it and the Hotspot is designed and detailed.

3The example is presented in YAML format, exactly as it is used by Hotspots and applications.

5

is twofold. First we intend to survey related projects in order to describe the

different requirements and architectural approaches for supporting Bluetooth in-

teractions. Then we intend to identify common characteristics across different

scenarios and systematize the main types of Bluetooth interactions. This is the

basis for defining the main interactions between the whole group of system com-

ponents, such as the Bluetooth Hotspot, the client applications, the web resources

and the controller.

Proof-of-concept prototypes. In a second phase, we have deployed basic prototypes

of the Bluetooth Hotspot in order to evaluate technical decisions that have been

made, such as the choice of the target hardware and the development language.

The prototypes were deployed together with on-running projects that already use

Bluetooth interactions. This evaluation is done in the context of the on-running

projects at Departamento de Sistemas de Informação4, such as Instant Places

[27].

Fully capable prototype for strong validation. In a third phase, a more com-

plete and robust prototype was developed and deployed (see Chapter 5) to vali-

date not only the whole designed architecture but also the proposed integration

model with client applications. Several Bluetooth Hotspots were deployed and

configured in multiple scenarios, re-used for different types of interactions and

shared by different client applications. Performance data were collected to report

the case-studies.

1.4 Structure of the dissertation

This document is structured in five chapters: Chapter 1 justifies this work, resumes

it and briefly explains how it is organized in different phases. Chapter 2 includes a

survey about related work on relevant studies, applications and projects. We intend

to identify needs and requirements, focusing in the context of Bluetooth interactions.

Chapter 3 presents a more detailed analysis of the patterns of interactions identified

in the previous chapter and describes the architecture developed for the proposed

system component. The design of the system component we propose and how it can

be implemented constitutes Chapter 4. The validation of this architecture is achieved

with prototypes and their development. This validation is described in Chapter 5.

4Mobile and Ubiquitous Systems Group, Universidade do Minho - http://ubicomp.algoritmi.
uminho.pt/

6

http://ubicomp.algoritmi.uminho.pt/
http://ubicomp.algoritmi.uminho.pt/

Chapter 6 presents the most relevant conclusions and proposes future work, derived

from the work developed here.

7

Chapter 2

Related work

In this chapter we survey relevant work in the area of Pervasive Computing that

strongly builds on user interaction based on Bluetooth technologies. The objective

is to understand what kind of interactions with users are being used by Smart Spaces

applications, identifying patterns on those interactions. This survey supports decisions

about the design of the Bluetooth Hotspot we are proposing. The identification and

study of these patterns will also justify the design of a modular architecture for this

component.

Based on the research, we grouped those kinds of user interactions in five main

sets: 1) simply scan for the present devices 2) get the name of user’s devices 3) send or

receive a file to/from user’s devices 4) gesture recognition using the Nintendo’s Wiimote

accelerometer and 5) connection-based interactions.

Due to its relevance and based on the analysis of Chapter 3, most of these inter-

actions will be natively integrated on the architecture of the Bluetooth Hotspot that

is proposed in this document. Many other interactions could be included (like print or

audio over Bluetooth) but they were excluded as they does not show, currently, to be

relevant for the context of Smart Spaces and Pervasive Computing.

A section for each kind of interaction we have studied is presented below. Each

section briefly introduces how that kind of interaction is often used and then present

some of the most relevant works, studies, systems and applications for our research. For

each of them we will detail as much as possible, not only the interactions over Bluetooth

between the user and the infrastructure, but also the main system components and the

most relevant issues about their system architectures.

8

2.1 Device scan interaction

The Bluetooth Inquiry Protocol enables a device to discover other devices in the prox-

imity, usually to later establish some type of connection for data transfer. This proce-

dure - called the Inquiry Procedure [1] - consists in broadcasting Inquiry Packets and

then waiting for a response from the other devices in the neighbourhood. All devices

that are listening to those packets will reply with an Inquiry Reply packet that includes

their own hardware address - identical to an Ethernet Media Access Control (MAC)

address. This allows the inquirer to uniquely identify the inquired device and later

reach it to establish a connection.

In order to be able to receive Inquiry Packets, devices should enable the Inquiry

Scan State mode. In this situation, the device is in the discoverable state. Failing to

enable the Inquiry Scan State mode, Bluetooth devices are hidden from other devices,

even if the Bluetooth radio is enabled.

inq. packet

inq. packet

inq. packet

D Inquiry Scan State enabled
(device discoverable)

C Inquiry Scan State disabled
(device hidden)

reply

inq. packet reply

B Inquiry Scan State enabled
(device discoverable)

inq. packet

inq. packet

A

Figure 2.1. Essential steps of an Inquiry Process where three devices are present, two of them are
discovered and one is hidden.

Figure 2.1 illustrates a situation where a device (A) searches for the present de-

vices. Despite existing three devices in the neighbourhood, only two (B and D) will be

discovered, due to their responses with Reply Packets.

Cityware applications

Many works like [33, 35, 32] use the Bluetooth Inquiry Protocol for proximity detection

of users without any other objective than the detection itself. The objective of such

work is to collect the maximum amount of data concerning the presence of users in

urban spaces, like shoppings, schools or car parks, or to elaborate the notion of social

context based on the analysis of interpersonal proximity data collected in a particular

9

situation. Bluetooth scanners [33] are installed in different places of a city, periodically

scanning for the presence of devices and storing information about them. Despite this

paper is not specifying technical details about how this scanner is implemented and

how the data is stored, it does specifies which data is collected for each device: 1) the

hardware address, which is unique and identical to an Ethernet MAC address), 2) the

human-readable name, which is a name usually set by the user for easy identification

of the device, 3) the Bluetooth device class1 and 4) the list of services available on the

device (e.g. OBEX push, modem, fax).

Car traffic monitoring

Device discovery is also used with other purposes like vehicle traffic monitoring for

statistical purposes. One in twenty vehicles have at least one Bluetooth-enabled device

inside it [43]: a cell phone, a GPS receiver, an headset or even the car itself. As seen

in Figure 2.2, with multiple Bluetooth scanners distributed along a high-way or road,

it becomes possible to calculate the average speed of a car on that road section, if the

car is observed by two scanners. The Center for Advanced Transportation Technology

of University of Maryland2 has developed a box which can be deployed on the street,

which periodically searches for devices around it and stores the collected data internally,

for posterior download and analysis. The work presented in [5] describes an identical

system that uses a Wi-Fi network to access the Bluetooth nodes (device scanners), and

remotely retrieve the Bluetooth collected data.

2.2 Device name-based interaction

Each Bluetooth device can handle a short human-readable name for easier identifica-

tion. Bluetooth Human Interface Devices (HIDs) like audio headsets, Bluetooth GPS

receivers, mouses or keyboards are generally assembled with a static name. However,

computers and handheld devices like PDAs, cellphones and smartphones allow the user

to configure its Bluetooth name. A typical situation where this name is useful is when

a user wants to transfer a file to another device or connect to an audio headset: 1)

first, the user device scans for the presence of other devices (situation identical to the

interaction of the previous section, 2.1); 2) then, for each device found, the name is

1The Bluetooth device class is a number that corresponds to the type of device, e.g: a cellphone,
a laptop, a desktop computer.

2Center for Advanced Transportation Technology of University of Maryland - http://www.catt.
umd.edu/.

10

http://www.catt.umd.edu/
http://www.catt.umd.edu/

2 miles

Bluetooth
detector

Bluetooth
detector

time = 8:06:58 AM

time = 8:04:26 AM

travel time = 2:32 minutes
speed = 47.4 MPH

Figure 2.2. Multiple Bluetooth scanners along a road to determine the average speed of cars with a
Bluetooth device inside it. Image adapted from [43].

obtained and shown on the screen for the user to select which one to connect.

Some works [14, 27, 7] in the area of Pervasive Computing use this kind of inter-

action not only for proximity sensing but also to obtain information about users. The

idea is to use the device name to suggest information on the context of some activity.

The user just needs to set the name of its device to some text that is recognized by

the system. With this method the user can deliver a simple text to the system without

installing any kind of application, turning on a easy to use and cross-platform method.

Name abbreviation

A problem inherent to this method is the limited space available of the device name.

Despite of the Bluetooth specification limit of 248 bytes with UTF-8 encoding for the

device name [1], most of the device brands strict to their own limit - sometimes below

32 characters. This turns abbreviation almost an obligation [14]. This problem was a

motivation for the creation of Bluetooth Extended Naming (BEN) [26] which describes

a method, and its implementation, to turn Bluetooth device names into a command

line interface for interactions with near systems. They propose a syntax3 [13] that

3Bluetooth Extended Naming - http://ubicomp.algoritmi.uminho.pt/ben/.

11

http://ubicomp.algoritmi.uminho.pt/ben/

allows users to describe user-related information, using a low number of characters.

For example, to share their interests on specific news topics (e.g: tag.radiohead), to

vote on polls (e.g: vote.braga) or to share their ID of services like Last.fm4, Youtube5

or Flickr6 (e.g: id.flk.mary).

InstantPlaces

In a public space - like a bar, a school or a hotel hall - public displays can be installed

containing news, weather, advertising, quizzes/polls, photos or other kind of useful

information for that places. Instant Places is a project that explores how Bluetooth can

be used for interaction with public situated displays [27]. Users can suggest what kind

of information they are interested to see on the screen, vote on a poll or provide personal

information to show on the screen like their own name. This is done by setting the

human-readable name of their Bluetooth-enabled devices using the abbreviation syntax

of the BEN [26] technique. Each display is installed with a Bluetooth scanner, which

is constantly getting information about the present user devices. This cyclic procedure

consists of two phases: 1) a phase of scanning (using the Bluetooth Inquiry Procedure,

already described in Section 2.1) which results on a list of hardware addresses and 2)

a phase of name discovery for each seen device on the first phase, resulting on a list of

strings. After each cycle of scanning the list of addresses and names is delivered to the

service that fills the screen with corresponding information.

In what concerns the Bluetooth-related components, the Instant Places architec-

ture - represented in Figure 2.3 - is based on three main components: 1) the public

displays software, which renders content to users, 2) the Bluetooth scanners and 3) a

central server that manages displays, scanners and the context of the information that

is displayed. Despite these scanners currently being deployed as a piece of software

running inside the same computer that controls the displays, the system was designed

to later support the Bluetooth scanner as an autonomous component, running, for ex-

ample, on a small computer or a embedded device. In this case, the Bluetooth server

component could be reused by different applications running on the same physical

space

All these components communicate over an IP network, following a RESTful

paradigm [17]: 1) scanners periodically send the result of each scan to the server and 2)

displays periodically query the server for content to be displayed. All this information

4Last.fm - http://www.last.fm/
5Youtube - http://www.youtube.com/
6Flickr - http://www.flickr.com/

12

http://www.last.fm/
http://www.youtube.com/
http://www.flickr.com/

InstantPlaces
infrastructure & API

...

Third-party services and applications

InstantPlaces
applications

Users' devices

users' devices

mobile apps

desktop &
mobile browser

Bluetooth
scanner

Bluetooth
OBEX

Wi-Fi

SMS &
MMS

Sensors UIs

In-place

displays

laptop
clients

mobile
clients

touch
surfaces

......

displays

laptop
clients

mobile
clients

touch
surfaces

displays

laptop
clients

mobile
clients

touch
surfaces

Figure 2.3. An abstraction of InstantPlaces architecture. Image adapted from technical documentation
of Instant Places.

is exchanged on Extensible Markup Language (XML) and sent to the server over an

Hypertext Transfer Protocol (HTTP) POST packet.

Bluemusic

In the Bluemusic system [30], the Bluetooth device name is used to personalize a public

environment where users may suggest artists or musics to be played just by changing

the Bluetooth name of their devices to specific tags. If there are more than one user

in the Bluetooth proximity area, the system identifies the preferences shared by most

of the users. This paper briefly introduces other possible scenarios that can be based

on the same kind of interaction, like adjusting the temperature of the office by user

suggestion (or by suggestion of a group of users) or suggesting news for a public screen.

In all the above scenarios, users are able to interact with system without the need to

install an application on their devices.

The Bluemusic software runs on a computer equipped with a Bluetooth interface

(an internal interface or a Universal Serial Bus (USB) dongle) and running the pro-

totype software. Bluemusic periodically scans and retrieves the name of Bluetooth

devices in the proximity, parses them for the name Bm+ followed by the name of the

13

chosen music and considers to play it.

e-Campus

In [14], Nigel Davies et al. have proposed Bluetooth based interaction communication

with public displays. These displays present information from services search results

from Google7, videos from Youtube8 or photos from Flickr9. Using a technique similar

to the one presented in [26], users submit commands to the display over their device

names. To interact with the display, users define their device’s name to tags with

the search term they are interested, like google <search term> or youtube <search

term> or flickr <search term> and wait for the results to be shown on the public

display.

Another application available on this system is an Audio Jukebox, identical to the

previous work (Bluemusic): users may suggest the music they want to be played on

that place, just by defining their device’s name to juke <song id>. This action adds

the song associated with that id to the queue of musics that will be played.

application
process

Bluetooth
scanner

Display machine

Scheduler

DB

Server

PHP
application

received
queries

status

content

control over
lifecycle and

viability

Bluetooth
sightings

statusreceived
queries

Figure 2.4. System architecture of e-Campus. Image adapted from [14].

Many prototypes of these screens are deployed in the Lancaster University10 (in

the United Kingdom) on a network of screens which they call the e-Campus. The

architecture that supports this system - represented in Figure 2.4 - is identical to Instant

Places, with a central server that manages multiple screens and each screen is equipped

7Google search engine - http://www.google.com/
8YouTube video service - http://www.youtube.com/
9Flickr photo stream - http://www.flickr.com/

10Lancaster University, in UK - http://www.lancs.ac.uk/

14

http://www.google.com/
http://www.youtube.com/
http://www.flickr.com/
http://www.lancs.ac.uk/

with a Bluetooth scanner. For each display, the scanner - a piece of software running on

the same machine of the display - constantly searches for the present Bluetooth devices

and collects its current name. This information is sent to the central server using a low-

level Application Programming Interface (API). The server decides what information

is to be shown based on the data collected by the scanner and creates a “playlist” of

data to be shown on that screen. Following a publish/subscriber messaging pattern,

the screen periodically consults this queue and shows the available information to users.

This way, scanners act as input devices for users and screens as output devices for the

system.

2.3 File exchange-based interaction

Bluetooth is often used to exchange files between devices like computers, PDAs, cell-

phones and smartphones. These transferences are usually performed over the Bluetooth

OBject EXchange protocol (OBEX).

When a user wants to send a file to another device, for example from a phone to a

computer: 1) the phone scans for other Bluetooth devices using the inquiry mechanism

[1] - mechanism already described in Section 2.1 and 2) it obtains the name of each

device, exactly as described in the previous interaction (refer to Section 2.2). Then, 3)

the user selects the device to which to send the file. The phone queries the computer

about the services it has available, in order to know the availability of the OBEX file

transfer service. If the service is available, 4) the phone tries to send the file to the

computer using the channel associated to the OBEX service.

Some works in the area of Pervasive Computing are based on the idea of content

delivery in other situations than the standard user-to-user one. The delivery of files to

user devices in the proximity can be used for delivering informations in public spaces,

like cities or museums, for tourists, or even for commercial purposing or advertisement

[29]. With a Bluetooth-based infrastructure that is constantly aware of all the Blue-

tooth devices, it becomes possible to deliver files to all of them (or just to specific ones)

[37, 38].

2.3.1 Content-delivery applications

In this section we describe some works in the area of Pervasive Computing, based on

proximity-sensing for content delivery, that we consider relevant for this research.

15

BlueMall

BlueMall is a Bluetooth-based advertisement system for marketing purposes on large

commercial areas, delivering information based on the clients’ current location [38].

This paper describes a system architecture based on three software entities: 1) client

mobile devices, 2) BlueMall Access-Points (APs) and 3) a central server. This server is

responsible for the management of Bluetooth APs, maintaining the state and context

of every action of the whole system. APs have the ability for: 1) constantly searching

for Bluetooth devices and 2) delivering files to those devices.

client

client
client

client
client

central
server

MySQL
database

Ethernet based network

Bluetooth
access-point

Bluetooth
access-point

Figure 2.5. An abstraction of Bluemall architecture for content-delivery. Image adapted from [38].

As represented in Figure 2.5, BlueMall APs are configured by the server using a

XML file containing variables like the AP location, time elapsed to consider a client’s

visit to be a new visit, server’s address and the amount of time to ignore a device until

it is considered as a new visit. After configured, the AP starts scanning and delivers

to the server the list of device sightings on each scan. Every time a device is seen

(identified by its hardware address) the server’s database is updated, also registering

if the OBEX Object Push service is available. Knowing such information speeds up

further scans since there is no need to ask the device for the service availability again.

To avoid flooding users with files (which can be very negative if it leads the user to

turn off his device) BlueMall takes care of “what” information is sent to “whom” and

16

“when”. The system also supports a white list of devices not interested in receiving files,

intended to be filled with the MAC addresses of the employees’ devices. Experimental

results show that this system provides a viable solution for permission-based mobile

advertising [38].

Bluegiga access devices

In [38] the author refers the utilization of a commercial component - the Bluegiga’s APs

- as an alternative for the BlueMall APs. Bluegiga Technologies Inc.11 is an enterprise

that develops Bluetooth-based products. The most relevant ones are the “Bluetooth

Access Point” and the “Bluetooth Access Server”. Both products are embedded devices

that perform Bluetooth tasks oriented to the industry, like: eHealth, Point of Sale

(POS), proximity marketing and Internet sharing. These APs are designed to be

installed on public spaces and to act as an infrastructural anchors to be connected to

devices like medical metering devices on a clinic or an hospital, or to handheld POS

devices on restaurants or cafes. They can also be used for content delivery applications

for marketing purposes, delivering files to devices present near the APs.

The significant difference between the Bluegiga Access Point and the Bluegiga

Access Server is the number of connections they can handle. While the first one is

equipped with just one Bluetooth interface - it can keep 6 simultaneous connections

with 6 different devices - the second one is equipped with three interfaces, allowing 18

simultaneous connections. Both Bluegiga devices are equipped with an RJ-45 Ethernet

port to connect to a TCP/IP network, but the second one is also equipped a Wi-

Fi card and an USB port, allowing it to be equipped with a General Packet Radio

Service (GPRS) or a 3G USB card.

Bluegiga’s APs software is implemented with the Linux operating system, and of-

fers its own Software Development Kit (SDK). This gives the possibility for developing

specific applications for specific scenarios. However, basic commons applications are

natively supported, like:

OBEX sender. With this application the AP can deliver files to groups of devices.

Constantly scanning for the present devices, the AP will deliver a file (locally or

remotely stored, somewhere on the network) to all devices that match with the

groups’ filter (depicted in Figure 2.6). These groups are defined with filters for:

device class, name, hardware address and even the distance from the AP to the

device. All events are logged for further analysis.

11Bluegiga Technologies Inc. - http://www.bluegiga.com/

17

http://www.bluegiga.com/

OBEX receiver. The AP may also receive files over Bluetooth, locally storing them

or uploading them to a remote server.

SPP-over-IP. Connections for specific tasks may be performed over this protocol.

It allows to establish an end-to-end connection between the user’s devices and

a remote server, accessed over TCP/IP. With this protocol, the AP acts like a

bridge between these two ends.

PAN. The AP can be configured to share an Internet connection to Bluetooth de-

vices, over the Bluetooth Network Encapsulation Protocol (BNEP), extending a

TCP/IP network. With this protocol, the AP accepts connections from a group

of devices or establishes it when a specific device is seen near it.

Bluegiga’s APs can be remotely configured over the network using a Secure Shell

(SSH) console or using a Graphical User Interface (GUI) served over HTTP. However,

it is designed to be configured interactively by the administrator (via console or via

GUI). A RESTful integration would be extremely important to improve its reusability.

smart phone

PDA

Bluegiga
Solution
Manager

TCP/IP Network
(Ethernet, Wi-Fi,

GPRS or 3G)

Bluegiga
Access
Server

OBEX sender application:
- scans for nearby Bluetooth devices
- checks if found devices are in
target group
- recognizes and tries to push
selected content to target devices
- logs the "served" devices

laptop

cell phone

Figure 2.6. A network of devices connected to Bluegiga’s Access Server by its built-in “Obexsender”
application. Image adapted from Bluegiga’s User Manual.

18

Location-based advertisement

In the work proposed in [37], identical to Bluemall, Omer Rashid et al. propose a

system for content distribution based on the location of users, using Bluetooth. Figure

2.7 depicts an abstraction of this system. With “Bluetooth push servers” (Bluetooth

spots capable of delivering files to users) installed on a space and aware of the presence

of devices it becomes possible to deliver one or more files to potentially interested

users. In this paper, they propose a system based on multiple Bluetooth spots and a

central server that manages the decisions of delivery and the state of the whole system.

The spots are constantly scanning for the present devices and sending this list to the

central server. For each scan, the server checks if the file(s) was already sent to each

device. If it was not delivered yet, the server contacts the Bluetooth spot again and

gives order to deliver it. However, if it was already delivered, the server will wait for a

pre-specified amount of time until trying to deliver the file again to that device. This

allows to deploy multiple spots without the problem of having a user roaming from a

spot to another and receiving the same file multiple times.

backend
information

system

client

client
client

Bluetooth
message push

server

site 1

client

client
client

Bluetooth
message push

server

site 2

store device list
for site 1

store device list
for site 2

roaming
devices

Figure 2.7. Roaming devices switching between different Bluetooth sites. Image adapted from [37].

19

OpenProximity

OpenProximity12 is an open-source application oriented for Bluetooth content-delivery,

identically to Bluemall and Omer Rashid’s project. However, OpenProximity uses a

single standalone computer to deliver files instead of dedicated Bluetooth APs. The

computer owns the Bluetooth interface but also acts as the state manager, keeping in-

formation about which files were sent to which devices. It can be configured graphically

via an HTTP interface or configured via Remote Procedure Call (RPC) requests.

OpenProximity works with at least two Bluetooth interfaces: one interface is used

to constantly scan for Bluetooth devices and the other(s) interface(s) are responsible

for delivering files. The software supports up to 15 Bluetooth interfaces simultaneously

installed, sending 7 files at the same time with each interface. This means that, the-

oretically, it can handle up to 105 connections with 105 different devices at the same

time.

With multiple configurations, multiple files can be delivered by OpenProximity for

different contexts. The configuration of a file to be delivered is called a “campaign”.

If a campaign is created without any filter, the file is delivered to all present devices

through the available OBEX service. However, filters can be defined to create time

restrictions (when to start and when to end the campaign) or filters for devices. Devices

can be filtered by name, class (type of device) or hardware address.

There are identical commercial products on the market, like BlueMarket13, Blue-

Sender14 and Fexmax15.

Bluestation

In his master thesis, Tiago Camacho proposes a system with Bluetooth stations capable

of scanning for the presence of devices and delivering files to them [9]. A Bluetooth

station is a computer running the “Bluestation” software, pre-configured with a list of

rules containing the description of the station behaviour. These rules allow to filter

the list of seen devices by hardware address and to define time restrictions before

delivering the files. This makes possible to configure the stations to deliver different

files to different devices in different moments. Each Bluetooth station have at least two

Bluetooth interfaces installed: 1) one that is constantly scanning for the present devices

and 2) the other(s) are reserved for sending files to user devices using the OBEX service.

12OpenProximity - http://www.openproximity.org/
13Bluemarket - http://www.bluemagnet.com/
14BlueSender - http://www.bluesender.com/
15Fexmax - http://www.fexmax.com/

20

http://www.openproximity.org/
http://www.bluemagnet.com/
http://www.bluesender.com/
http://www.fexmax.com/

This work also details many different tests done with the stations deployed in many

different situations (in the university bar, in bus stations or shops). Despite the focus

of our work not being the acceptance of this interaction by different publics, the work

of Tiago Camacho becomes valuable as it determines the viability of content delivery

using Bluetooth. It also raises important issues for the design of our component, which

will be explained in Chapter 4.

2.3.2 Both-way file exchange

Keith Cheverst et al. propose a system [12] that uses Bluetooth as a mean of interaction

with a photo display (Hermes Photo Display). Users can 1) submit photos to the display

using their handheld devices (typically mobile phones) or 2) download photos that are

being displayed, submitted by other users (touching them on the screen) - both using

the OBEX service.

The system is composed by four main components: 1) a Linux server that imple-

ments the Bluetooth functionality of delivering files and receiving files to/from devices

2) a shared file space for storing the photos to display 3) a presentation server that

generates the form how pictures and which pictures will be displayed and 4) a presen-

tation client - the photo display. This display connects to the presentation server via

a wireless network and presents the photos. The screen of the photo display is touch

sensitive to allow simple interactions with users.

2.4 Connection-based interaction

The Bluetooth technology is used by many Human Interface Devices like mouses, key-

boards or audio headsets to connect to user’s computers or handheld devices. Other

devices like printers, game console controllers or remote controllers also use Bluetooth

to communicate. This type of communication is usually performed over the RFCOMM,

Serial Cable Emulation Protocol (RFCOMM) protocol (a transport layer protocol)

which emulates an RS-232 serial port. Being a reliable protocol, it easily supports

the development of Bluetooth applications as it allows the creation of data sockets

identical to IP sockets, over this protocol. However, not all the applications want a

reliable connection, like audio or real-time applications. So, may also connect over a

lower layer protocol called Logical Link Control and Adaptation Protocol (L2CAP)

(which is the link layer protocol that supports RFCOMM). Many other protocols can

be implemented for many application-specific tasks, depending on the context of the

21

application in question.

The most common scenario of a Bluetooth connection is a connection between

devices of two different users. Other typical scenario is a connection between two

devices of the same user. However, some works are based on applications that use

a connection between the user device and an infrastructure. During the time that

the user device is present in a place, it becomes possible to communicate with the

infrastructure until the user leaves the space. We will now focus on two works that we

consider to be relevant because they represent a set of identical applications oriented

to this type of interaction.

LectComm

LectComm is an open-source software used to support lecturers during classes [6]. Both

the lecturer and students install the software on their devices. Students run a client

version of the software (or access a web site with an on-line version) where they may

answer questions and quizzes made by the lecturer, who uses a server version of the

software.

The communication between the client and the server is made over TCP/IP. As

most students do not have access to the Internet on the classroom, LectComm provides

a Bluetooth connection, with an extended version of the client software application.

With this application, students are able to interact with the lecturer’s server software

using a socket over a Bluetooth connection.

The paper also describes the possibility to use a “generic Bluetooth AP”. The

paper does not detail what is in fact a generic Bluetooth AP, but it describes it as a

component which maintains a connection with the clients, that may be deployed on a

class room without the need of a complex infrastructure or a dedicated computer. The

only requirement is a Ethernet connection or wireless link to connect the Bluetooth

AP to the Internet.

BluetunA

The Human Connectedness Research Group16 at MIT has developed “tunA” - an

application that runs on PDAs and allows users to share music with other nearby

users that run the same application on their PDAs. The application uses a Wi-Fi ad-

hoc network to reach the nearby tunA’s users. Each one can see the other’s profiles,

16Human Connectedness Research Group - http://web.media.mit.edu/~stefan/hc/

22

http://web.media.mit.edu/~stefan/hc/

consults their playlists and listen what they are listening over a peer-to-peer audio

streaming.

Stephan Baumann et al. developed BluetunA [8], an application identical to tunA

that uses Bluetooth to reach the other users, instead Wi-Fi ad-hoc networks. Despite

the application being designed to run on handheld devices and to connect to other

devices, the paper briefly introduces the concept of a BluetunA Hotspot (under devel-

opment). The idea with this Hotspots is to provide more reliability to the system and

to allow the implementation of situated applications. There are no details about how

this Hotspot is implemented, but for our research we just need to focus on the idea

that a Bluetooth connection is established between the Hotspot and every user device

that runs the BluetunA software.

Internet connection sharing

Being a short-range protocol, Bluetooth is widely used with personal devices like

mouses, keyboards, audio headsets, PDAs, cellphones and computers. It is possible

to interconnect most of these devices on an Ethernet-like network with IP addressing.

This is possible due to BNEP - a protocol that allows the creation of Personal Area

Network (PAN) between Bluetooth devices [25]. It also becomes possible to establish

a network not only between user devices, but also between user devices and an infras-

tructure of Bluetooth Hotspots. This protocol is useful to share an Internet connection

to Bluetooth-enabled handheld devices that are not equipped with Wi-Fi.

The Bluegiga’s Access Points and Access Servers, already described in Section

2.3.1 also offer this service to the nearby devices.

2.5 Wiimote-based interaction

In 2006, Nintendo Co., Ltd17 released the Wii, a new home video game console, differen-

tiated from similar consoles by its innovative wireless remote controller - the Wiimote.

Beyond the classic game controller’s arrow and auxiliary buttons, this controller is

equipped with Bluetooth technology to communicate with other devices, four light-

emitting Diodes (LEDs), a vibrator, a small speaker and two sensors that improve

the user interaction: 1) An Infrared (IR) sensor enables the controller to perceive its

location relative to two IR emitting diodes installed above or bellow the television and

2) an accelerometer that measure peaks of movement on three axes (x,y,z).

17Nintendo Co., Ltd - http://www.nintendo.com/

23

http://www.nintendo.com/

The Wiimote is represented in Figure 2.8 - providing the basis for computer gesture

input and recognition [18]. The recognition of well defined gestures like squares, circles,

rolls or other types of similar movements makes the Wiimote a powerful tool for many

applications that support human interaction based on gestures [40].

Figure 2.8. The three axes and three rotation movements that can be detected by the Wiimote. Image
source: Osculator http://www.osculator.net/.

When a Wiimote is turned on, it enters on the Inquiry Scan State, which means

that the device can be detected by other devices (situation already described in Section

2.1). At this moment, the controller also announces the service Nintendo RVL-CNT-01

and starts listening for new connections. At the same time, the Wii console, which is

periodically searching for Wiimotes (devices with the name Nintendo RVL-CNT-01),

will find it and establish a serial-emulated link with it using the RFCOMM protocol.

From this moment on, every event that occurs on the controller - a variation on any

accelerometer axis, a variation on the IR sensor position or a button that is pressed

- is sent over this link to the console. On the other hand, the controller also accepts

three kinds of input from the Wii console [41]: 1) enable/disable each of four LEDs,

2) enable/disable the internal vibrator that is used to give feedback to the person who

is holding the controller and 3) send a short sound to be played on a small speaker

installed inside the controller.

As Wiimote communication is based on Bluetooth technology, as opposition to

the use of a proprietary protocol, it can be used with any Blutooth-enabled software

component. The work in [41] introduces a new way of interaction in Smart Spaces using

24

http://www.osculator.net/

Wiimote as a controller for public displays. Holding a Wiimote, users can navigate

through pages of information shown on the screen using the arrow buttons. The paper

focus on the following scenario: an interactive museum with multiple displays installed

around, showing useful information about the artworks and offering users the possibility

to bring their Wiimotes from home and interact with those displays.

The prototype of the application that runs on the displays - implemented in Java

- constantly scans for Wiimotes and establishes a connection with each device it dis-

covers. This application only interprets inputs from the controller’s buttons. However,

gesture recognition (accelerometer) and motion tracking (IR sensors) can be added in

the future, using gesture recognition libraries like Wiigee18.

2.6 Discussion

All the works covered by this survey use the Bluetooth technology as the main interac-

tion mean between users and applications available on a particular space. To support

this interaction, system architectures are heavily based on a Bluetooth component that

is installed at the same physical space as users. This interface runs on a dedicated hard-

ware device (usually called a Bluetooth node or Hotspot [38, 8, 27, 33, 37, 9]) for some

systems and as a software that runs on the same machine that controls the place’s

applications for others [14, 30, 27, 6, 41]. Generically we will call them just Bluetooth

nodes.

Each system we have surveyed implements its own Bluetooth nodes, just for their

purposes and not designed for an optimized reusability environment. Moreover, these

nodes (either software-based or hardware-based) become tightly-coupled with the re-

maining infrastructure and can hardly be reused by other applications that share the

same physical place. Even wider featured solutions like the commercial Bluegiga (see

Section 2.3.1) raise the problem of being hardware-dependent, based on proprietary

hardware and software and not oriented for a coherent and autonomous integration as

they need to be manually configured by the administrator, via a console or a GUI.

There is no study of integration models between Bluetooth components and the

remaining architectural components. The focus of our study goes to the specification

of a loosely-coupled architecture, oriented to user interactions and capable of turning

these Bluetooth nodes on a new reusable system component that can be shared by

multiple different applications. To support such architecture, this new Bluetooth nodes

18Wiigee (http://wiigee.org/) is a Java-based gesture recognition library for the Nintendo’s Wii
remote controller.

25

http://wiigee.org/

are 1) designed with support for the most scenarios as possible, 2) allowing their

configuration at deployment time and 3) defining application-independent protocols

for communication with the other infrastructure components. In order to achieve a

fundamented design of such architecture, a systematized analysis of the survey of this

chapter will be presented on the following one.

26

Chapter 3

Analysis for Hotspot design

This chapter reports the analysis made over the survey of the previous chapter, in

the context of Bluetooth-based interactions. We have identified the relevance of a

Bluetooth Hotspot system component. In this analysis, we are aiming at justifying

and supporting on decisions for the design of the Bluetooth Hotspot component.

Firstly, in section 3.1, we systematize the types of interaction that may happen

between this system component and the users, grounded by the related work surveyed

on the previous chapter. Now, with a new perspective, we assume that the Applica-

tions’ original Bluetooth components are now replaced by the Bluetooth Hotspot. This

chapter is organized in four sub-sections that correspond to four groups of Bluetooth

interactions that share identical characteristics. We will focus, not only on interactions

with users but also on interactions with applications that will be using this new system

component.

Secondly, in section 3.2, we identify relevant key design issues for the architecture

of the Bluetooth Hotspot, gathered from the analysis of Section 3.1 and from the survey

presented in Chapter 2.

Thirdly, in section 3.3, we report the most relevant Bluetooth-related issues col-

lected from the survey in what concerns the system scalability, contributing for a more

sustained implementation.

3.1 User-interaction patterns

With this analysis, our objective is to identify types of Bluetooth interactions between

users and the system components. In short, the common components widely present

in all systems or projects we have studied are:

27

• User’s devices that are able to or waiting to interact with an application or with

a system near them, in the same physical space;

• A Bluetooth interface (one or more) that is able to perform Bluetooth tasks,

acting as a bridge between users and applications;

• Applications willing to interact with users, over Bluetooth.

Usually, those Bluetooth interfaces appear integrated with the applications in

cause, anchored to specific tasks. When multiple applications share the same space

with users, those interfaces could be replaced by a common one. The interface would

be shared between applications and would be reused by future applications that use the

space. If we make an analogy with the term “Wi-Fi Hotspot” used for Wi-Fi APs that

are publicly available, and because this component becomes available to the present

devices on a space, we will call it, from this moment on, a “Bluetooth Hotspot”.

The Bluetooth Hotspot as a new Bluetooth component

In this chapter we will instantiate previous user-interaction patterns in our high-level

architecture. The main components of our architecture are: 1) the users’ devices 2)

the Bluetooth Hotspot and 3) the applications that use the Hotspot as a Bluetooth

resource. During this analysis, original characteristics of the Bluetooth components

will be preserved. New characteristics are only introduced from a management point

of view: those we understand to be essential for Hotspot sharing and reusability. This

step turns on to be the most important step in the design of the Hotspot architecture,

later presented in Chapter 4.

We have grouped Bluetooth interactions in four different types: 1) obtaining the

address and name of present devices, 2) sending a file to a device, 3) receiving a file

from a device, 4) to establish a connection with a device

Assuming that the original Bluetooth components are now replaced by the Blue-

tooth Hotspot, each of these types of interaction will be detailed in the next four

sections. The last two types (4 and 5) are grouped in the same sub-section.

3.1.1 Getting the address and name of a device

Probably the most important type of interaction - as it is the most common, used

in all scenarios - is the detection of a Bluetooth device. All the applications that

require to know the present devices have to periodically scan the environment. This

28

process may include a phase for obtaining the devices’ name or simply their hardware

address. In some cases, obtaining the available services (e.g: OBEX Object Push,

Dial-Up Networking, Hands-Free Audio Gateway) of each device is also required, as

for example in the case of file transfers (see next sub-sections).

We have identified the common phases during this type of interaction: 1) In the

configuration phase, the Bluetooth Hotspot is configured for periodically scanning for

present devices; 2) In the second phase, the Bluetooth Hotspot is responsible for getting

the address and Bluetooth names of present devices; and finally 3) In the third phase,

the Bluetooth Hotspot is responsible for sending device information to the applications.

This scenario is illustrated in the sequence diagram of Figure 3.1.

Device Hotspot Application

device is seen

sightings list
get name

behaviour
description

Figure 3.1. Sequence diagram illustrating interactions of a Bluetooth Hotspot that searches for the
present devices, gets its names and send this information to a remote application.

3.1.2 Sending a file to a device

In content delivery scenarios, files are sent to user devices as soon as they are detected.

BlueMall [38] or OpenProximity are examples of applications that fit in this type of

scenarios.

For these scenarios, we envisioned the following interactions, as illustrated in Fig-

ure 3.2: 1) Applications should configure the Bluetooth Hotspot with the location

where to get the files - an HTTP or File Transfer Protocol (FTP) location - and the

list of devices to which send the files, commonly called a “white list”. 2) Every time a

device from this list is present 3) the file must be downloaded from its URL. Simulta-

neously, the device is inquired about the availability of the OBEX service. If available,

4) the file is sent to the device using the OBEX protocol.

To be able to keep track of the Hotspot behaviour, the application requires feedback

about success or failure of these tasks. So, logs should be reported to the application

29

report
(error | ok)

behaviour
description

Device Hotspot Application

device is seen

send file

get file

get services

Figure 3.2. Sequence diagram illustrating interactions for a Bluetooth Hotspot that sends a file from
an application to a Bluetooth device.

(e.g: inform the application about a downloaded file, a file successfully sent to a device

or an error downloading or sending a file to a device).

3.1.3 Receiving a file from a device

Despite being a less usual scenarios, some applications may also receive files from

mobile devices. In this scenario, users send a document to applications which then

process it, same as showing an image on a public display.

behaviour
description

Device Hotspot Application

send file

send file

report
(error | ok)

advertise OBEX

Figure 3.3. Sequence diagram illustrating interactions for a Bluetooth Hotspot that receives a file
from a device and uploads it to an application.

As illustrated in Figure 3.3, this type of interaction can be divided in the following

30

phases: 1) Applications should configure the Hotspot with the list of devices allowed to

send files (white list) and with URL where to store the received files. 2) The Hotspot

advertises the OBEX service and starts listening for new connections. 3) Every time

a user intends to send a document to an application, the mobile device scans for the

appropriate OBEX service (previously advertised) and initiates the documents OBEX

transference. 3) When the Hotspot receives a document and forwards it to a specific

predefined URL.

Again, the feedback about the success or failure of these tasks should be reported

to the application (e.g: received file, sent file, error receiving or error sending a file).

3.1.4 Establishing a generic connection

We have described in Section 2.4 and 2.5 other Bluetooth-based interaction patterns

which mainly rely on the establishment of a generic connection between the mobile

device and the application. On top of such connection, application-specific interaction

patterns are implemented by both ends of the connection.

The establishment of a connection may be either initiated by the mobile device or

the Hotspot, on behalf of the application.

behaviour
description

Device Hotspot Application

device is seen

get services

connection() connection()

this device
announces the

"Nintendo RVL-CNT-01"
service

this device
announces the

"Nintendo RVL-CNT-01"
service

Figure 3.4. Sequence diagram illustrating interactions for a Bluetooth Hotspot that establishes a
connection with a device.

Figure 3.4 depicts the establishment of a socket connection over an RFCOMM

connection between the Hotspot, on behalf of an application based on Wiimote inter-

actions. This scenario was described in Section 2.5 and will be used as a prototype in

the validation phase.

The establishment of the connection will follow the following steps: 1) Applications

31

configure the Hotspot to scan for present devices and to establish a RFCOMM con-

nection. 2) For every scanned device, the Hotspot inquires the device for the available

services: 3) If the Wiimote service (Nintendo RVL-CNT-01) is available, the Hotspot

establishes a RFCOMM connection with the device and 4) a socket connection with

the application. 5) Once the connections are established, the Hotspot acts as a bridge

between the mobile device and the application.

The application should be informed about the success of fail of any task performed,

during the entire process.

Connection establishment from device side

As depicted in Figure 3.5 (a), in some scenarios, the connection establishment may be

started from the device side instead from the Hotspot side. In this case, the device is

not discovered by the Hotspot, but the Hotspot should previously advertise the service

and listen for incoming connections. This scenarios follow the following steps: 1) the

Hotspot is configured to advertise a specific service and to accept connections from

devices for that service. 2) Every time a user intends to establish a connection with

the Hotspot, the mobile device scans for the appropriate service (previously adver-

tised) and initiates the connection 3) When a new connection arrives to the Hotspot

on the service in question, the Hotspot accepts it and also establishes a concurrent

socket connection with the remote application that interprets the information. 4) Af-

ter established the both connections, the Hotspot redirects the data received from the

Bluetooth connection to the application connection and vice versa.

Interaction’s context independent of applications

Some situations does not require the application to manage the context of the inter-

action. In this kind of scenarios, the connection is only established between users and

the Hotspot and not with the application. A typical situation is for sharing an Internet

connection with a device over BNEP to establish a PAN connection, like Bluegiga does

(refer to Section 2.3.1). Figure 3.5 (b) illustrates this type of scenarios, where: 1) The

Hotspot should be configured to accept BNEP connections. 2) When a device tries to

establish a connection with the Hotspot 3) a new PAN connection must be established

between the Hotspot and the device.

The application should only be informed about the result of this action, if suc-

ceeded or failed, but does not receive any content from the device.

32

start connection

behaviour
description

Device Hotspot Application

connection()
start connection

behaviour
description

Device Hotspot Application

report
(error | ok)

a)

b)

Figure 3.5. Sequence diagram illustrating the existing interactions for a Bluetooth Hotspot that
accepts incoming connections over RFCOMM: a) managed by an application or b) managed by the
Hotspot.

3.2 Key design issues

In this section, we will enumerate and describe the main key design issues for the design

and development of the Bluetooth Hotspot system component. Our work is based on

the analysis of the main interaction patterns described in the previous sections.

3.2.1 Integration

The Bluetooth Hotspot component should be designed as a new space resource, which

may be integrated in client applications offering different services for that space. Its

function is to manage Bluetooth interactions between mobile devices and client appli-

cations. The processes of integration must, as much as possible, existent interaction

requirements in order to minimize any changes to existing interaction models. We will

now enumerate the most relevant issues for the process of integration.

33

Hotspot’s behaviour description

In order to achieve the correct interactions at the right moment, accordingly to the

applications requirements, applications need to somehow configure their Bluetooth

interfaces. In [14, 33, 30, 43] Bluetooth components are pre-configured to send the

list of present devices to a remote server on each scan. In [9], a list of rules is used to

describe 1) when and 2) what to deliver 3) to which devices. An extended version of this

type of rules must describe the behaviour of the Hotspot to achieve those interactions

identified as being the most relevant (refer to Section 3.1).

If we replace current Bluetooth interfaces with our Bluetooth Hotspot, those rules

will need to be described and uploaded to the Hotspot by applications or by some other

component acting as a controller. This controller must configure the Hotspot with such

rules, but also retrieve reports generated by the Hotspot to be up to date with every

task performed by it. These reports include the time when a task was performed, an

identification of the task and extra related information. Because multiple applications

may be sharing the same Hotspot, from now on we will assume the controller as an

autonomous component focused on controlling the Hotspot.

As this component controls the Hotspot we identify it as “The Main Controller”,

or simply “The Controller”.

Device Sightings

Different systems surveyed are based in different kinds of Bluetooth interaction with

users. However, almost all of them refer to the existence of a “device scanner” - a com-

ponent that periodically searches for the present Bluetooth devices and then collects

more or less information about them (depending on the objective of the applications).

This information can be as simple as the device hardware address or more complex as

the human-readable name, the class (type of device) or the available Bluetooth services

on each device. For each scan, the list of present devices is referred in some articles as

a “Sighting” [27, 14]. A Sighting can be locally stored [43] or sent to a remote site over

the network [27]. In this case, this action is usually performed through the serialization

of an XML file that contains all the information collected about the discovered devices.

Download and upload of files from/to devices

Scenarios of content delivery or content pull deal with files which are sent or received

to/from user’s devices. These files can be locally stored [9] inside the Hotspot or

remotely available over the network [38]. This means that a file can be identified by an

34

URL, both if it is locally or remotely stored. In this case, before being sent to a user’s

device, it will be downloaded over the network and temporarily stored on the Hotspot

to be sent. Also the reverse happens, when the Hotspot receives a file from a user’s

device: the Hotspot receives the file and stores it. If the URL is a remote location, the

file is sent over the network to the appropriate application and then it is removed from

the Hotspot.

3.2.2 State management

In most of situations, a Hotspot is enough to cover a space of interaction. However, to

cover larger physical spaces, multiple Hotspots may be deployed. In this scenarios it

may be required the Main Controller to manage the context between all the Hotspots.

A task executed by a Hotspot may require any type of synchronization actions with

other Hotspot in the same space. Typically, this situation is observed in scenarios where

a Hotspot delivers a file to a device and all the others must assume that the file should

not be delivered again to the same device. For example, when a user enters a museum

equipped with two Bluetooth Hotspots and an informative file is delivered: the Hotspot

A detects the device and successfully sends it a file. Then, the user moves across the

museum and a Hotspot B also detects his presence, but the file is not delivered because

it already has been sent (by the Hotspot A). As depicted in Figure 3.6, after the file

being delivered by the Hotspot A, the Main Controller is informed and configures the

Hotspot B to ignore the device. The next time any of the Hotspots detect the device,

it is ignored and the file is not delivered.

3.2.3 Extensibility

In connection-oriented scenarios, the context and information shared with users de-

pends on the application, differing from application to application (as analyzed in

Section 3.1.4). This means that it is important to design a system capable of serving

the most situations as possible. Because it is not possible to foresee all the possible

scenarios, it makes sense to have an extensible architecture, allowing further imple-

mentation of other application-specific interactions. With such mechanism, it becomes

possible to the application developers to implement extensions that achieve their tasks,

to be installed on the Bluetooth Hotspots. One extension of this type will then respon-

sible for maintaining a connection with a device and another with the corresponding

application, turning the Hotspot in a bridge between both of them.

35

"deliver files to all dev."

Hotspot A Hotspot B Controller

get_file()

Device X

device X is seen

send file

device X is seen
ignore device X

device X is seen

nothing happens

ignore X
report
ok (X)

nothing happens

"deliver files to all dev."

Figure 3.6. Sequence diagram illustrating a situation where two Hotspots cover a space. A file sent
from a Hotspot to a user’s device, but is not sent again by any of the two Hotspots.

When to start an extension

From the analysis of surveyed scenarios we identify that a Bluetooth interaction may

be initiated in one of two situations: a) when a device is detected by the Hotspot or b)

when a user tries to establish a connection with the Hotspot. The same pattern may

be applied to the extension mechanism. If the Hotspot is installed with an extension,

the extension may start in one of those two situations:

The Hotspot detects a device. When a device is detected by the Hotspot’s scan-

ner, the extension starts (if not yet started) and is informed about the detected

Bluetooth devices, along with all the information collected about them (hard-

ware address, device name and available services). With such information, the

extension becomes able to behave accordingly to the desired objectives (e.g. to

establish a connection with all the present devices).

A device establishes a connection with the Hotspot. In order to accept incom-

ing connections from Bluetooth devices the Hotspot must be previously config-

ured to be listening to these connections. So, if these connections are handled by

an extension, the extension must be previously started, in order to be listening.

Moreover, the Bluetooth services must also be announced in order to allow the

user’s devices to reach the Hotspot.

36

The extension behaviour

As described above, the behaviour of an extension will depend on the application that

is using it. To be able of serving multiple applications, extensions have to be config-

ured by them, in order to achieve the desired behaviour. However, the structure of

such configuration completely depends on the extension and application. Extension

configuration should then be of responsibility of applications. Applications are respon-

sible for managing and store a configuration file, which is fetched by the Hotspot at

the the moment the extension is initiated.

3.3 Bluetooth-related scalability issues

During our review of existent systems, we have identified a set of Bluetooth-related

technical issues, which largely influence the technical behaviour of Bluetooth compo-

nents and thus, also the technical behaviour of the Bluetooth Hotspot and Hotspot-

based prototypes. In this section we enumerate those issues we understand to be more

relevant. All the items questioned here will later be taken into account when designing

the architecture of the Bluetooth Hotspot, reported in Chapter 4.

3.3.1 Scanning frequency

The three processes related with the scanning of Bluetooth devices (scanning for devices

+ retrieve their names + retrieve their services) may introduce unexpected performance

issues if not performed with appropriate durations and times to timeout [34, 20]. On

the one hand, if scans are performed too often in a short period of time, the majority

of those scans may not find a new device. On the other hand, if we decrease the scan

frequency, we may be creating an usability problem, as it may lead the user to give up

and probably to quit and probably leave the space.

Limit the duration of full scan

Another situation that can produce unwanted behaviours is the presence of a large

number of devices: if the Hotspot detects a large number of devices, and further

executes the inquiry process for every device, the total duration of the scan process

may increase too much and fail to meet the performance requirements of the system.

This can lift the same usability problem referred above, leading the user to quit. This

means that it is important to define a maximum time for each scan, independently of

37

the number of devices. At least, the list of all devices should be created and submitted

to the application, even without some device names. This will give the opportunity

to the application to use, at least, the number of devices present and their hardware

addresses. Further information may be then submitted in subsequent scans.

The previous scenario is exemplified in Figure 3.7, with two hypothetical scanners:

• In the first situation (a), the scanner is not configured with any limit of time

for scanning. Thus, the duration of a full-cycle scan1 becomes unpredictable,

because it is not possible to know how much time it will be needed to obtain

the name of each device. In the example of Figure 3.7 (a), the scanner detects

7 devices but it only obtains the name of 5 of them. The process of getting the

name of the other two devices (marked with an asterisk, in Figure) times out. A

device Sighting (refer to Section 3.2.1) with the list of all detected devices may

only be generated after 20 seconds (time=20).

• In the second situation (b), independently of the time needed to process the

whole scanning process, this is aborted when the “maximum scanning time” is

reached, even if the process is not complete. In Figure 3.7 (b), if we consider

again the situation where 7 devices are detected, a device Sighting that contains

the list of all devices and the names of three of them is generated after 10 seconds

(time=10). The name retrieval of the fourth device (marked with an asterisk) is

canceled and a new scan is immediately started.

Example: As an example we will assume a router that is constantly scanning for

Bluetooth devices and then retrieving the Bluetooth name and available services of

each one, with a full-cycle scan period of 20 seconds (in this case, for a full-cycle scan

we understand the whole process of inquiry + name retrieval + services retrieval). This

means that a new scan should be performed at least every 20 seconds. However, as

the inquiry process takes around 10 seconds [20], the scanner will have only 10 seconds

more to retrieve the names and get the available service of all devices. If it takes more

than 10 seconds to perform these steps, the period of a scan will not be met.

Hypothetically, if retrieving the name of each device takes 3 seconds, as well as

obtaining their available services, when a scan is executed and 6 devices are present,

1For “full-cycle scan” we understand the full process of getting the list of discovered devices + get
the names of all devices

38

a) Scan without "maximum scan time"

scan()hci0

b) Scan with "maximum scan time" defined to 10
time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 *

scan()hci0

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 * 6 *5 7 scan()

scan() 4 5 scan() 6 ...

scan 1
scan 2

scan 3
..........

scan 1
scan 2

..........

Figure 3.7. Comparison between a scanner with a maximum time for scan defined (b) and a scanner
without it defined (a).

the whole process would take around

10 + 3 ∗ 6 + 3 ∗ 6 = 46 seconds

which is greater than the expected 20 seconds. To avoid this, a maximum scan time

should be defined to 20 seconds: a new scan will be performed each 20 seconds, in-

dependently of the number of devices detected and the success of name retrieval and

services retrieval. If there is remaining data to obtain from devices, after the end of a

scanning period, that data will be retrieved in the following scan.

Conclusion

There is not a perfect solution that fits all kinds of scenarios. On the one hand, the scan

period can be hardly affected if a large number of devices is present, but their names

and services can be retrieved on time. On the other hand, to ensure that the scan period

is respected (configuring a maximum time for scan) the performance of retrieving the

devices’ names and devices’ services will be hardly affected. The decision of choosing

one situation or the other will depend on the scenario. However, if multiple Bluetooth

interfaces are installed on the same Hotspot, these tasks can be performed in parallel:

if two interfaces are available, one can be used for scanning while the other can be used

for retrieving device names, speeding up the entire process. This situation is analyzed

below.

39

3.3.2 Multiple Bluetooth interfaces

Some real scenarios may involve a large number of simultaneous tasks on the same

Hotspot. However, there are some technical limitations that can deteriorate the opera-

tion of the Hotspot. The performance of a Bluetooth connection will depend on issues

like wireless interference, available bandwidth or limitations of the protocol. While

implementing the Bluetooth Hotspot we do not have any control on the first one, as

it depends on many factors like the distance between the Hotspot and user’s devices

or the presence of other radio devices interfering with the Bluetooth communication.

Also the second one - that evolves management of bandwidth - is not a concern because

the Linux Bluetooth stack manages the available bandwidth between all the Bluetooth

connections established. However, there is a limitation that we must care about: the

Bluetooth specification limits the number of connections with other devices to 8 con-

nections [1]. This means that if we want to keep more than 8 connections at the same

time, the Hotspot will need to handle more than one Bluetooth interface. Using more

than one interface is also extremely important in scenarios of real-time interaction,

where device scans must me performed simultaneously with other Bluetooth tasks, like

we have described in the section above.

Having multiple Bluetooth interfaces in the same Hotspot raises a management

problem: The load over all available interfaces must be equally distributed between all

of them. When a Bluetooth task is going to be performed, the Hotspot checks which

of the interfaces have the minimum number of connections established and assigns it

to that task. Because of the Bluetooth stack limitation of 8 connections, the Hotspot

must be able of tracking how many of them are being used on each interface.

The number of interfaces needed when a Hotspot is deployed will always depend on

the situation where the Hotspot operate. The number of devices is increased according

to the needs, offering scalability, until the limit of 15 devices (refer to OpenProximity

in Section 2.3.1).

40

Chapter 4

Design for Hotspot implementation

In this chapter we present the Bluetooth Hotspot architecture. This chapter also

explains how Hotspots integrate with other external system components. Both the

architecture and the integration model build on the analysis of Chapter 3.

The chapter is formed by five sections. Section 4.1 introduces the three main

entities of the ecosystem that interact with a Bluetooth Hotspot, explaining the role

of each of them on the system. Section 4.2 describes the integration of the different

components with the Hotspot and describes their main interactions. Section 4.3 details

the main aspects of the Hotspot internal architecture. Section 4.4 describes the syntax

and semantics of the Hotspot behaviour rules. Finally, section 4.5 details the structure

of a Sighting (a report generated by the Hotspot on each device scan).

4.1 System components

The Bluetooth Hotspot ecosystem is composed by three main type of entities: 1)

client Bluetooth devices 2) one or more Bluetooth Hotspot(s) and 3) a set of client

applications/systems.

Figure 4.1 depicts the essential components of a Bluetooth Hotspot ecosystem. A

Hotspot acts as a broker between Bluetooth devices and the remote applications/sys-

tems. The applications are willing to receive and provide data from/to remote user

devices through Bluetooth interactions, e.g. to obtain Bluetooth device names through

a Bluetooth scan or distributing a file through a Bluetooth OBEX Push interaction.

The integration with client applications is done over an IP network. The interactions

with Bluetooth devices are done over Bluetooth connections. In this section we detail

which is the role of each component:

41

hotspotusers' devices

application 1

application 2

application n

Figure 4.1. An abstraction of the essential components of the system that evolve the Bluetooth
Hotspots.

Applications. Applications correspond to the services that can be offered to users

when entering a physical space equipped with a Bluetooth Hotspot (see Chapter

2 with multiple real scenarios). These applications assume the presence of a Blue-

tooth interface able to interact with Bluetooth-enabled devices. In many cases,

this interface is attached to the server that supports the application(s). However,

in many scenarios, as we have discussed in Chapter 2, it may be advantageous to

have the Bluetooth interface physically detached from the application server.

Bluetooth devices. Bluetooth devices are the mean for users to interact with avail-

able services in a space. Those include cell phones, PDAs, laptops or any other

kind of portable device. The type of support for user interaction is dependent on

the available services and on the type of interactions provided by the Hotspot.

In order to be detected by the system, user devices should be set with the “dis-

coverable mode” on (refer to Section 2.1 to understand what is this mode).

Bluetooth Hotspots. Bluetooth Hotspots have the ability to establish multiple Blue-

tooth connections with multiple devices simultaneously. They are designed to

perform common Bluetooth interaction tasks as efficiently as possible. Using a

Bluetooth Hotspot, applications become free from understanding how to establish

Bluetooth connections with Bluetooth devices. Applications are responsible for

configuring the Hotspot behaviour, using rules defined by the Hotspot Behaviour

Rules set (in Section 4.2 we detail this mechanism). After having configured a

Hotspot, applications will wait for, or initiate the interactions correspondent to

the defined behaviour, e.g. sending a file to a device, or receiving a periodic list

containing the Bluetooth device names from devices in the Hotspot’s range.

42

4.2 Components integration

Bluetooth Hotspots are autonomous components in the way that they can indefinitely

perform most of the interactions with users’ devices, without depending on other ex-

ternal components. These interactions with devices are however defined in the context

of an application. So, interaction data is transmitted from the Bluetooth Hotspot to

applications and from applications to the Bluetooth Hotspot, for every defined inter-

action. When receiving the interaction data, applications will process that data in the

context of the application logic. Application logic is also responsible for generating

data that is communicated to the Hotspot in order to be delivered to users’ devices.

We rely on the Representational State Transfer (REST) paradigm [17] to achieve

communication between Hotspots and applications. Compared to Simple Object Ac-

cess Protocol (SOAP), REST utilizes HTTP as an application protocol rather than as

a transport protocol. For this reason, it introduces less overhead. All the communica-

tions are realized by POST requests. The messages formats are described in Sections

4.4 and 4.5.

The procedure for integrating the system components is formed by 1) the mech-

anism by which applications define the Hotspots behaviour, 2) the process for man-

agement the sharing of Hotspots between applications, 3) the protocol for managing

multiple Hotspots by the same application and 4) the logs report protocol. The whole

procedure is described in the following sections.

4.2.1 The Hotspot behaviour

The core process in the process of integrating applications with a Hotspot is the def-

inition of the Hotspot behaviour. The Hotspot behaviour is defined by a set of rules

known as the “Hotspot Configuration Rules”, or simply the “Rules List”. Each rule

defines a task to be scheduled and executed by the Hotspot. The type of rule is iden-

tified by a unique string (e.g: deliverfile, acceptfile or scan), followed by a list

of arguments that customize each task. Typically, these arguments specify character-

istics of Bluetooth interactions, like the location of a file to be delivered or filters for

the names of devices to interact. In Section 4.4 we detail the whole set of rules that

can be installed on a Hotspot.

We rely on YAML Ain’t Markup Language (YAML) to describe the Hotspot rules.

Compared with other mark-up languages, YAML is very simple to be interpreted and

manually written by humans. Furthermore, the performance is not affected [19] when

compared with XML, and may even be substantially better for a small number of

43

elements. This is particularly advantageous considering that the Hotspot software is

intended to run on embedded devices with slow processors.

The YAML file, describing the Hotspot rules, is then submitted into the Hotspot.

This can be made directly by the application or by a configuration server, considering

that applications can access the Hotspot through the Internet protocols. In this case,

the application uploads the file with the new rules over an HTTP POST. In the case

where the Hotspot does not have direct IP addressing, the Hotspot can periodically

download the Hotspot Configuration Rules from an URL on the network1.

In both cases, every time a new list of rules is submitted into the Hotspot, it will

assume the new behaviour.

4.2.2 Hotspot sharing

A Hotspot may serve multiple applications simultaneously. We depict this situation in

Figure 4.2. In this situation, we have defined a main point of control, which will be

responsible to maintain and submit the Configuration Rules to the Hotspot. In this

case the main point of control will be able to resolve any conflicts and provide the

adequate degree of concurrency.

hotspotusers' devices

application 1

application 2

application 3

main controller

Figure 4.2. Representation of the Hotspot’s system architecture where a main application (or a Main
Controller) manages the Hotspot.

As seen in the figure, the main point of control, or master, may be 1) one of

the sharing applications or 2) a dedicated service that we denominate as “The Main

1Typically, this happens when the Hotspot is behind a firewall or installed on network with Network
Address Translation (NAT).

44

Controller”. Despite our work is not focusing on the design and implementation of this

component, we refer their characteristics and assume it is present in the architecture.

4.2.3 Multiple Hotspots

In many scenarios, a one-to-one association between an application and a Hotspot will

be sufficient. This is true when the application’s space may be covered by only one

Hotspot. For example, an application running on a public display which interacts with

nearby users. However, there will be other scenarios where an application (or the Main

Controller, if it exists) will have to manage multiple Hotspots, as analyzed in Section

3.2.2. This situation is depicted in Figure 4.3.

hotspot 1

device 2

device 1

application

hotspot 2

main controller

Figure 4.3. Representation of multiple Hotspots reused by the same application. The coordination of
context between those two Hotspot is performed by the Main Controller.

4.2.4 Feedback protocol

The feedback protocol was designed to address fault tolerance and improve reliability

into the integration process. Using the feedback protocol, applications may request to

receive feedback logs about the execution of the desired tasks. The protocol is formed

by two parts: 1) The first part consists on the specification of an URL associated with

each Hotspot Configuration rule that identifies the application resource to be updated

with the respective feedback log. 2) The second part consist on the specification of

the feedback message. The feedback message is delivered over an HTTP POST on the

specified URL.

Feedback logs may be delivered using two different methods: 1) rule by rule, using

a different location for each defined rule or 2) in a unique URL that holds all the tasks

performed by the Hotspot.

45

The first method is useful to deliver logs to different applications that share the

same Hotspot. The second method is useful to deliver feedback logs to the Main

Controller, if it is present. In terms of configuration, the difference between one method

and the other is in the Hotspot Configuration Rules: the first method uses an argument

rule by rule, while the second method uses a specific rule for this end. Refer to Section

4.4.6 for a more extensive explanation).

Feedback message

The feedback message is an YAML file. Its format is composed by three values: status,

message and rule:

• The first value (status) contains a number that identifies the status error. If

equals zero (0) it means that the task was successfully performed. If it differs

from zero, it means that an error has occurred2;

• The second value (message) contains a short message describing the result of the

error (if the previous value is greater than 0);

• The third value (rule) contains the content of the rule that was triggered.

Typical errors that can occur are: files not delivered for any reason, incoming files

not accepted for being too big or for having an unauthorized extension, URLs not

found or empty generated Sightings.

Example: In the example below, the Hotspot was configured with a rule to deliver a

file to all devices with their name matching the tag *iwantfiles*. The Hotspot tries

to deliver the file, but the user leaves the space and the connection times out. Then,

a feedback log is generated, with the following content:

status: 2

message: connection timed out for device 00:a3:12:3a:f4

rule:

- deliverfile

url: http://www.bavaria.com/images/boat.jpg

devname: *iwantfiles*

2The status error numbers are not reported on this document because it is not relevant and
because it depends on the implementation made. Also, messages generated are also not detailed.
These messages are merely informative.

46

The feedback log indicates that the rule was performed with an error (identified

by the number 2). The error message describes that the connection timed out for the

device with the address 00:a3:12:3a:f4.

4.3 Hotspot internal architecture

In this section we describe the Hotspot internal architecture, its main components and

the interactions between each component.

scanner
logs

obex receiver

obex sender
bluetooth "modules" "managers"

Wiimote

PAN

...

"extensions"

rules

extensions

user's
devices

user's
devices

main controller

resources applications

interfaces
local Bluetooth
interfaces

scheduler

Hotspot components

events
channel

Figure 4.4. An abstraction of the internal components of a Bluetooth Hotpot.

The internal architecture of a Hotspot is organized in four groups of components,

illustrated in Figure 4.4: 1) the Scheduler, 2) the Hotspot Managers, 3) the Bluetooth

Modules and 4) the Hotspot Extensions. We briefly describe each group below and

detail its role in the following sections.

Scheduler. The Scheduler is the component responsible for executing Hotspots tasks.

A task can be a Bluetooth interaction or a management task, internal to the

Hotspot (typically, an internal task is to enable/disable a specific Bluetooth

Module or to registry an entry in the log). To achieve a correct execution of

these tasks, the Scheduler holds an event mechanism: an events channel. Both

Bluetooth Modules and Bluetooth Managers can register events on this channel.

When an event is registered, the Scheduler decides what to perform accordingly

to the Configuration Rules that are currently loaded. Then, the task is executed.

47

Hotspot Managers. These components perform specific internal tasks like 1) the

management of the Hotspot Configuration Rules, 2) the management of feed-

back log reports, 3) the management of Internet resources, such as files and 4)

the management of available bandwidth at each installed Bluetooth interface.

Hotspot Managers functionality is used by the Scheduler component.

Bluetooth Modules. These components perform Bluetooth-specific interactions: 1)

device scannings to obtain the list of present devices, device names and their

available services, 2) sending files to devices, and 3) receiving files from devices.

Each Module is responsible for one type of interaction, but a special fourth Mod-

ule is dedicated to the management of Bluetooth Extensions.

Extensions. Extensions are software components that execute application-specific

tasks, such as Wiimote controllers interactions or other Bluetooth profiles’s in-

teractions. An extension is intended to be developed along with an external

application that uses a Hotspot. This specific interaction modules are integrated

with external applications using the same model defined for Bluetooth Modules

described above.

Extensions are installed on the Hotspot before its operation and thus they can

be referenced at the Hotspot Configuration Rules. An extension can work in

two modes: 1) always running - started along with the startup of the Hotspot.

This allows the extension to be listening to new connections that are started

from devices to the Hotspot or 2) be instantiated (started) just when a device

or a group of devices is seen, taking advantage of the scan mechanism that the

Scanner Bluetooth Module offers.

The next five subsections describe with more detail all these components, as well as

the data structures that support them (Sightings structure and Hotspot Configuration

Rules structure). The first subsection explains how the Scheduler manages the Hotspot

tasks and the behaviour of the Hotspot. The second subsection explains Managers’

functionality. The third subsection describes the Bluetooth Modules, focusing the

most important issues of their design.

4.3.1 Scheduler

The Scheduler Module triggers the execution of Hotspot tasks, typically Bluetooth

interactions. As it deals with asynchronous events, the Scheduler holds an Events

48

Channel where Modules and Managers can register their events. An event may have

one or more associated actions to be triggered. The decision of what actions to be

performed will depend on the currently loaded Hotspot Configuration Rules. Table 4.1

establishes the association that exists between registered Events and the corresponding

actions to be executed. In this table, the wildcard (*) matches with any event.

Table 4.1. The list of actions that may be triggered by each event.

Events Rules / Triggered actions

newscan deliverfile postsighting runextension
obexin acceptfile
newrules scan advertise
* postlogs

Actions act as small pieces of software included on the Scheduler. They use the

available Bluetooth Module (to perform Bluetooth interactions) and Hotspot Manager

(to perform internal management).

Using Rules as filters for Actions execution

Rules act as filters for the execution of actions. When an event is registered in the

Events Channel, the Scheduler consults the Rules Manager for the list of currently

loaded rules. If the list is empty nothing is done. If there are loaded rules, the Scheduler

checks the Table 4.1 for actions associated with the event. Each action is executed the

same number as the number of times a rule with the same name appears on the loaded’

Rules List. This means that, if a rule X appears three times on the list and an event

triggers an action X (the same name as the rule), the action X is executed three times,

in parallel.

For example, when the newscan event is registered in the channel3, the possible

actions to be executed are deliverfile, postsighting and runextension, accord-

ing to the table. Assuming that the Hotspot is configured with two deliverfile

rules (with different arguments for different applications or contexts), then the action

deliverfile will be performed two times in parallel.

3The event newscan is registered by the Scanner Module after performing a new device scan.

49

Action execution context

The actions execution contexts are defined by 1) the trigger event data arguments

and 2) the associated rule data arguments. Consequently, correspondent tasks may be

executed concurrently, in different contexts:

Event’s arguments. An event may be defined by a set of arguments, which retain

the data that is generated by the occurrence of the event (for example, the event

newscan registered by the Scanner Module appends the Sighting generated, con-

taining the list of seen devices). These arguments are passed to the corresponding

action to be executed.

Rules’s arguments. A rule may be constrained by a set of arguments (refer to Section

4.4 for the list of arguments accepted by each rule). Every time an action is

executed (along with the occurrence of an event), the rule’s arguments are also

passed to the action. For example, the deliverfile rule has two arguments,

which correspond to the name of the file to be delivered and the list of devices,

which are passed to the corresponding action.

The action execution context is expressed with the following expression:

event(a), rule(b)→ action(a, b)

If a certain event is instantiated as X, a rule as Y and an action as Z (where Y

and Z have the same name), this expression can be interpreted as:

when event X (with arguments A) occurs,

if the rule Y (with arguments B) is contained in the list of loaded rules,

the action Z is executed, receiving the arguments A and B.

4.3.2 Hotspot Managers

The Hotspot Managers (or just Managers) are responsible for the basic functional tasks

of the Hotspot. This includes managing the Rules List, obtaining and caching Internet

resources (like files), sending resources or managing the concurrency of the Hotspot’s

Bluetooth interfaces (USB dongles).

Rules Manager. This is the component that manages the Hotspot Configuration

Rules (refer to Section 4.2.1 for details about this rules). This manager interprets

50

a file of rules that is loaded using one of the methods below referred. When loaded,

the current rules can be requested by the Scheduler every time it needs them.

There are three possible ways to load a new file with a list of rules on the Hotspot:

• statically, defined on a local and static file;

• through the remote Main Controller at any time4, in the case for scenarios

where the list needs to be constantly updated;

• by periodically downloading it from a remote URL, in the case for scenarios

where the Hotspot does not have a public IP address.

If the Hotspot software is running on the OpenWrt operating system, inside

Ethernet routers, the configuration of which method is to be used is done using

the OpenWrt’s configuration mechanism - called Unified Configuration Interface

(UCI)5. This configuration includes the URL of the rules’ file. The URL can

be a local path (for the first method) or a remote HTTP location (for the third

method6). If the Hotspot software is running on another operating system, the

same configuration is done on a static text file.

Every time a new rules’ file is loaded, the Rules Manager registers an event

newrules on the Scheduler. The new file of rules is appended to the event as

an argument. When this event is registered, the Scheduler starts or stop the

Modules in question, accordingly to the rules.

Logs Manager. The logs manager is the component responsible to build the Hotspot’s

feedback logs (this mechanism of feedback for application is described in Section

4.2.4). Every time an event is registered on the Scheduler a log entry is created

in the Logs Manager. When an action is performed by the Scheduler, a log entry

is also created.

Resources Manager. This component manages Internet resources, like files. All the

other Managers, Modules and the Scheduler’s actions use this manager to access

external resources from the web. With this manager, files can be downloaded

4The Main Controller uploads the rules’ files to the Hotspot’s HTTP server. This server is provided
by the Resources Manager, which is listening for the input of new files.

5OpenWrt Linux distribution uses a mechanism called UCI that allows the configuration of single
values associated to identification variables. This variables are centralized on the system and can later
be consulted by any application running on the system.

6In this case, the period of time (in seconds) between each download is included on the second line
of the same file.

51

and uploaded from/to applications. File exchanges are performed over HTTP

requests and each resource is identified by an URL. A cache of the downloaded

files is maintained, speeding up dependent processes, avoiding unnecessary delays

and excessive network usage.

This manager also holds an HTTP server. This server is used by the Rules

Manager to listen for the input of new rules.

Interfaces Manager. This component manages the Bluetooth interfaces installed in

the Hotspot, usually USB dongles. This implementation follows the requirements

reported in the analysis of Section 3.3.2. A Hotspot may have installed one or

more Bluetooth interfaces. This way, a Hotspot may execute concurrent Blue-

tooth interactions.

Bluetooth Modules request a Bluetooth interface from the Interface Manager

before executing the Bluetooth interaction. At the moment of system startup,

the number of Bluetooth interfaces installed is obtained. The bandwidth of each

interface is abstractly assigned to 8 usage slots7. Each module or extension that

wants to use an interface for a Bluetooth interaction will just have to request an

interface, also informing about how many slots it needs. If there are enough free

slots, the module (or extension) is locked until the Interfaces Manager releases

them. After all the interactions performed, the Bluetooth Module is responsible

for freeing the slots. If all the usage slots are in use, the request will be added to

a round robin queue until a sufficient number os slots are freed.

4.3.3 Bluetooth Modules

The Hotspot includes a set of modules - called the Bluetooth Modules - that execute

the most relevant8 Bluetooth interactions. A coherent integration means that these

Modules, 1) respect the available bandwidth for each Bluetooth interface, using the

Interfaces Manager that decides what Bluetooth interface is to be assigned, 2) register

the appropriated event on the Scheduler for each Bluetooth task to be performed and

3) free the Bluetooth usage slots after all the Bluetooth interactions are performed.

The Hotspot includes three modules that natively offer three types of Bluetooth

interactions: 1) the OBEX Sender Module, 2) the OBEX Receiver Module and 3) the

7The reason to use 8 slots comes from a Bluetooth specification that limits a Bluetooth interface
to use ate last 8 connections (or 8 devices) at the same time [1].

8The decision of what interactions to include was based on the related work survey of Chapter 2
and is justified in the analysis survey of Chapter 3.

52

Scanner Module. There is a fourth module with an extension mechanism that allows

to extend the Hotspot’s functionalities.

OBEX Sender Module. This module is dedicated to the delivery of files over Blue-

tooth to other devices. As depicted in Figure 4.5, when it is used by the Scheduler,

a Bluetooth interface is requested to the Interfaces Manager using one usage slot

to send the file. The file to be sent is downloaded from its URL, using the Re-

sources Manager. After downloaded, the file is then sent to the Bluetooth device.

If it is successfully sent, an event obexout is registered on the Scheduler and the

usage slot is freed by the OBEX Sender Module.

Scheduler

get file

Resources
Manager

OBEX Sender
Module

register event
(obexout)

Interfaces
Manager

request 1 slot

free 1 slot

send file

Figure 4.5. Sequence diagram illustrating a OBEX Receiver Module that sends a file to a Bluetooth
device.

OBEX Receiver Module. This component receives files from Bluetooth devices.

The module has two states: “stopped” and “listening”. As depicted in Fig-

ure 4.6, when the Module is in the listening mode (because a rule caused the

Scheduler to enabled it), the OBEX Receiver module requests a Bluetooth inter-

face to the Interface Manager. Then it advertises the OBEX Object Push service

(Bluetooth service ID 0x1105) on the assigned Bluetooth interface. This enables

the Hotspot to receive files from Bluetooth devices. When a new file is received,

it is stored on a temporary directory and the event obexin is registered on the

Scheduler, along with an argument with the path where the received file was

stored and another argument containing the sender’s device address. Thus, any

Scheduler’s action will be able to access the received file to perform any task,

like, for example, sending it to an application.

Scanner Module. When enabled by the Scheduler (i.e. if the Hotspot is configured

with a rule for scanning), it constantly scans for the present Bluetooth devices,

53

Scheduler OBEX Receiver
Module

Interfaces
Manager

request 0 slotsenable
reception

...... ...
new file
received request 1 slot

free 1 slotregister event
(obexin)

Figure 4.6. Sequence diagram illustrating a OBEX Receiver Module that is enabled and a file that is
received by the Module (sent from a Bluetooth device).

as depicted in Figure 4.7. Each iteration results on a list of devices’ hardware

addresses. This list, associated to the date and time when the scan was performed

is called a Sighting. Sightings are useful for any action, module or extension that

want to deal with the list of present devices on a certain moment. Sightings can

also be passed to the external applications. Every time a Sighting is generated

(this data structure is detailed in Section 4.5) it can be locally stored on a file

to be later retrieved. It may also be uploaded to the URL of an application via

HTTP, if the Hotspot is configured with the rule with this objective (refer to the

rule postsightings in Section 4.4).

Scheduler Scanner
Module

Interfaces
Manager

enable
scans

...... ...

scan

request 8 slots

free 8 slotsregister event
(newscan)

lo
op

...... ...

lo
op

Figure 4.7. Sequence diagram illustrating a Scanner Module that is enabled and then perform multiple
scan devices, in loop.

Optionally, the Scanner Module can be configured by the Scheduler to retrieve

more information about each device. We identify this group of information as

54

the Extra Device Information, and it includes at least the following data: 1) the

device class, representing the type of device 2) the human readable name and 3)

the Bluetooth services available in the device. If configured to, after each scan,

the Scanner will retrieve such information from each device, storing it on a local

cache. The next time a new Sighting is generated this information about each

device will be also attached to the Sighting.

The device scan process

During a scan, the Bluetooth interface that executes a scan is monopolized, en-

tering on a state of high bandwidth consumption. This means that, during the

scan no other Bluetooth tasks should be performed, or its performance will be

drastically affected. For this reason, before a scan, the Scanner module requests 8

usage slots to the Interfaces Manager, freeing them at the end of the scan. Then,

an event newscan is registered on the Scheduler, followed by an argument that

contains the Sightings.

scan() 1 2 3 4 5 6 scan()hci0 2 6

time

...

scan() scan() scan() scan() scan()hci0

hci1 1 2 3 4 5 6 2 6 3 ...

time

a) Normal mode scan

b) Fast mode scan with two interfaces

Figure 4.8. An example that compares the performance of a scanner with the fast scan mode disabled
and another with the fast mode enabled.

Normal vs. fast mode scan

Some scenarios (detailed in the related work of Chapter 2 and in the analysis

survey of Chapter 3) require a very fast scan for real time situations where a

fast feedback is needed by the users. The Scanner Module supports a mode of

scan that speeds up the process by scanning with one Bluetooth interface and

55

obtaining the Bluetooth device’s names and services with another interface. This

mode is called the “fast mode”. It monopolizes one of the interfaces just for

scanning, leaving the other(s) for all the other tasks. This way, the performance

of the scan will never be affected. Figure 4.8 shows a comparison between these

two modes, where the Extra Device Information is requested after or during

the scans, respectively. In the example of the figure, the speed of this request

is different for each device (identified by numbers) and one of the requests (6,

marked as red) times out.

Extensions module. An extension is a software component that performs application-

specific Bluetooth interactions. The Extensions Module integrates the available

extensions with the remaining components of the system. To integrate with the

Hotspot, extensions must be pre-installed on the “extensions” directory of the

Hotspot and implement three methods: start(), newScan() and stop(). The

Extensions Module is responsible for maintaining the instance of each running

extension. All those three methods are called by the Extensions Module on the

respective instance:

• The first method - start() - is called when the extension is started. An

extension can be started in two situations: 1) when the Hotspot system

starts up or 2) when a new Bluetooth device is detected by the Scanner

Module. This method receives an argument with the Bluetooth interface

assigned to the extension and an argument with the URL of the extension’s

configuration file. The content of this file must be handled by the extension.

Section 3.2.3 details how extensions are handled by the Extensions Module.

• The second method - newScan() - is called every time a new scan is per-

formed by the Scanner Module. This method receives an argument with the

Sighting associated with the scan.

• The third method - stop() - is called when the extension is stopped by the

Extensions Module. This situation occurs when a new list of rules is loaded

on the Hotspot and the extension is not referred in the list.

Only an instance per extension is launched (a thread per instance). While run-

ning, an extension monopolizes a Bluetooth interface just for itself, avoiding

collisions with other Bluetooth tasks inside the Hotspot. At the end, the ex-

tension will be responsible to stop itself when appropriate, using the method

56

stop() - and is strongly encouraged to do it as fast as possible in order to free

the Bluetooth interface.

Scheduler

new scan
(sight1)

Scanner
Module

Extensions
Manager extension_1

start('hci0', url)

newScan(sight1)

newScan(sight2)

newScan(sight3)

start('hci0', url)

newScan(sight4)

Interfaces
Manager

request 8 slots

free 8 slots

request 8 slots

'hci0'

register event
(newscan, sight1)

register event
(newscan, sight2)

register event
(newscan, sight3)

register event
(newscan, sight4)

stop()

'hci0'

new scan
(sight2)

new scan
(sight3)

new scan
(sight4)

free 8 slots

stop()

stopped

stopped

Figure 4.9. Sequence diagram illustrating an extension that is triggered by Scanner Module’s scans.

Instantiation of extensions

When a new scan event is registered by the Scanner Module on the Scheduler,

the Extensions Manager will be always notified. When this occurs, the available

extensions are also notified: For each available extension, if it is already running,

the extension is notified through the newScan() method. If is not running yet, the

extension will first be started with the method start(), receiving two arguments:

1) the ID of the Bluetooth interface assigned to the extension and 2) an URL

containing a file with eventual configurations of the extensions. The Extensions

Manager will download this file and provide it to the extension. The semantic of

this configurations will depend on the extension context, so only the extension

will be responsible for interpreting this file.

Figure 4.9 shows an example where an extension extension 1 is started when a

57

new scan occurs. The extension is running until it decides to stop (depending on

its context). In this example, as it stops after the third scan, when a fourth scan

occurs, the extension will be started again before receiving the Sighting resulted

from the scan.

4.4 Rules’s structure

The Hotspot Configuration Rules, introduced in Section 4.2.1, describe how a Hotspot

should behave. The Hotspot’s Rules List is a flat list which may contain any number

of any type of rules. In this section we explain with detail all types of rules, along

with an explanation about the arguments they support. Each rule is followed by an

example of configuration.

4.4.1 Enabling device scans

This rule (identified by scan) enables the device Scanner Module. Almost all the

other rules need the presence of this rule. If defined without any argument, only the

hardware addresses of the present devices are periodically discovered. This rule accepts

the following arguments. Time values are defined in seconds and boolean values are

set to false by default. For the numeric arguments, the default values derive from the

analysis of scenarios of the related work survey of Chapter 2:

• scaninterval - defines the time to wait between each scan9 (default=30).

• fastmode - is a boolean value that enables or disables the fast mode scan.

• getnames - is a boolean value defining if the Scanner will get the name of each

device after each scan.

• getservices - is boolean value defining if the Scanner will get the available

services of each device on each scan.

• namechache - defines the amount of time that a name is kept in cache when

obtained in a scan (default=60).

• servicescache - defines the amount of time in seconds that the list of services

is kept in cache when obtained in a scan (default=3600).

• scantimeout - defines the duration in seconds of each scan until it times out

(default=8).

9The scan time can vary depending on the number of present devices, specially if the fast mode
isn’t enabled and the names and services inquiries are enabled.

58

• nametimeout - defines the duration in seconds of the process of retrieving the

name of a device until the process times out (default=8).

• servicetimeout - defines the duration in seconds of the processing of retrieving

the available services of a device until the process times out (default=8).

• scanmaxtime - is the maximum time in seconds of each scan + get names +

get services. This value forces the Scanner to stop after this time, even if one

of the tasks is not completed. (default=30).

Fast mode device scans

The argument fastmode assigns the Scanner to one Bluetooth interface leaving the

inquiries of names and services to a second interface, if available. Unless the argument

fastmode is set to “true”, the Scanner searches for the present devices, then inquiries

each of them for its name. A device name is considered old after 60 seconds and

the available services after 3600, but this values can be override by the arguments

namecache and servicescache.

Maximum time of a full scan

Probably the most important argument for applications running on real-time scenarios

is scanmaxtime, which specifies the maximum time between each scan, including the

time for getting the names and the available services of each device. Note that this time

will only affect the name and service getting phase and not the device scan phase itself.

Section 3.3.1 explains why this argument is so important for the Hotspot performance.

Example: In the following example, assuming that two Bluetooth interfaces are in-

stalled on the Hotspot, the Scanner will search for present devices exactly each 30

seconds (on the first interface) and get the names and services of each device (on the

second interface). If a specific device is constantly seen, it will be inquired for its name

every two scans (30+30 seconds):

- scan:

scaninterval: 30

fastmode: true

getnames: true

getservices: true

namechache: 60

servicescache: 3600

59

scantimeout: 8

nametimeout: 8

servicetimeout: 8

scanmaxtime: 30

4.4.2 Sending Sightings to an application

This rule (identified by postsightings) tells the Hotspot to send the results of each

device scan to a remote HTTP server (to be consumed by an application). When a rule

of this type is present, the list of devices and the information collected by the Scanner

- the Sighting - is sent on a HTTP POST request to an URL. If a scan results on an

empty list of devices, the Sighting will not be sent to this URL, unless the argument

sendifempty is set to “true”. Thus, the rule accepts the following arguments:

• url - defines the location where to upload the Sightings (mandatory).

• sendifempty - is a boolean value defining if the Sighting is to be posted even if

empty.

Example: With the rule of the following example, the Scanner module will send all

the Sighting files to the HTTP server located at http://app1.com/postsightings.php,

even if the Sighting includes an empty list of devices:

- postsightings:

url: http://app1.com/postsightings.php

sendifempty: true

4.4.3 Sending files to Bluetooth devices

This rule (identified by deliverfile) tells the Hotspot to deliver a file to the present

Bluetooth devices that have the service OBEX Object Push available (Bluetooth service

ID 0x1105). When this rule is present, the Scanner will automatically inquiry the

devices about their available services to understand if that service is available or not.

When the Scanner detects the presence of devices, the file located at the URL provided

is downloaded to the Hotspot and sent to all the devices seen by the Scanner. Each

device that accepts the file will not receive the file anymore until the next day, except

if the argument rememberfor is defined with the number of seconds that should pass

until the that device should be forgot. However, if the file could not be delivered for

60

any reason (if a device does not accept the file or the connection fails) the Hotspot will

try again for 3 times, or the number of times defined at the argument retrytimes.

The arguments accepted by the rule are:

• url - the location of the file to be delivered (mandatory).

• devaddress - a string to filter the recipient devices by their device address.

• devname - a string to filter the recipient devices by the human readable name.

• devclass - a string or hexadecimal value to filter the recipient devices by their

device class (e.g: “Computer” or 0x100).

• rememberfor - the amount of time in second until next delivery, after success

(default=86400).

• retrytimes - the number of retries until timeout, for each device (default=3).

Device filtering

If the file is not intended to be delivered to all the devices, it is possible to define filters

by device address, by device name or by device class (type of device). These filters

can include exact strings to match the devices or can be defined with a wildcard (*).

Thus, the file will only be delivered if the expression(s) defined on the rule match the

device(s) addresses, names or services.

Example: In the following example, the file “boat.jpg” will be delivered to all the

Nokia cell phones (device address starting with 00:17:E4) that have the tag iwantfiles

on their name. If the file could not be delivered, the Hotspot will try again for more 2

times. Then, if the delivery to a device is succeeded, the file will not be sent to that

device again, during the next hour:

- deliverfile

url: http://www.bavaria.com/images/boat.jpg

devaddress: 00:17:E4:**:**:**

devname: *iwantfiles*

devclass: CellPhone

rememberfor: 3600

retrytimes: 3

4.4.4 Receiving files from Bluetooth devices

This rule (identified by acceptfile) tells the Hotspot to accept files from user devices.

If one or more rules of this type are defined, the service OBEX Object Push (Bluetooth

61

service ID 0x1105) will be automatically advertised on the Hotspot and its visibility

will turn on, with the name “Bluetooth Hotspot” (this name can be overridden with

the argument advertisename). From this moment on, the Hotspot accepts all the files

received and sends them over an HTTP POST request to the defined URL. Device

filtering for device address, device name or device class is identical to the previous rule,

using the same three arguemnts. This rule adds an extra filter for the file name of the

received file. Using a wildcard (*) it becomes possible to filter files by extension (e.g:

filename=*.jpg), rejecting all the other possible extensions.

Thus, the arguments accepted by the rule are:

• url - the URL where to upload the file received from the user devices (manda-

tory).

• advertisename - the Bluetooth name of the Hotspot, to be advertised to user.

• filename - a string to filter the name of the file received from the device.

• devaddress - a string to filter the recipient devices by their device address.

• devname - a string to filter the recipient devices by the human readable name.

• devclass - a string or hexadecimal value to filter the recipient devices by their

device class (e.g: “Computer” or 0x100).

Filling the URL with relevant data

When a file is received by the Hotspot and is sent to the defined URL, the application

that consumes the file will probably want to know 1) the name of the file and 2)

whose device has sent it. In order to pass this information to the application, the tags

$filename and $devaddress are available to be included in the appropriate place of

the provided URL. For example, if the provided URL in the rule is

http://app1.com/post.php?addr=$devaddress&file=$filename

and a device with the address 00:11:22:33:44:55 sends the file star.jpg to the

Hotspot, then the URL to where the file will be sent will be translated to

http://app1.com/post.php?addr=00:11:22:33:44:55&file=star.jpg

Advertisement in multiple interfaces

If multiple rules of this type are present, a file received by the Hotspot will be sent to all

the URLs defined in all those rules. However, if different rules define different advertise

names, two different interfaces (if available) will be used to receive files, advertising

62

the OBEX Object Push service on both interfaces. Suppose the next Rules List, as an

example:

- acceptfile:

url: http://app1.com/files.php

advertisename: BlueBox

- acceptfile:

url: http://app2.com/postfiles.asp

advertisename: BlueBox

- acceptfile:

url: http://app2.com/postfiles.asp

advertisename: GreenBox

If the Hotspot is configured with the three rules of the above example, it will ad-

vertise the OBEX Object Push service in two Bluetooth interfaces with different names:

1) the name “BlueBox” is used in one Bluetooth interface and 2) the name “Green-

Box” on the second interface. Thus, all the files sent from devices to the Hotspot

using the first interface will be sent to both the URLs http://app1.com/files.php

and http://app2.com/postfiles.asp. The files sent to the Hotspot using the second

interface will only be sent to the second URL.

4.4.5 Starting an extension

This rule (identified by runextension) tells the Hotspot to start an extension, iden-

tified by a string with its name. If the argument startup is defined to “true”, the

extension will start when the Hotspot starts up (or anytime a new list of rules is in-

stalled). Otherwise, if this argument is not defined, the extension will only start when

at least one device matches at least one of the filters (device address, device name or

device class).

When the extension is requested to start, if is not running yet, the instance will be

created. Then, when a Bluetooth interface is assigned, the extension will start running

as a thread. The next time the rule is used (triggered by a device that was seen) the

same instance will just be informed about the new device scan - using an appropriate

method (refer to Section 4.3.3). If more than one application wants to use the same

extension for different contexts, multiple instances will need to be created: one instance

per application. To achieve this, each application specifies its own unique ID for their

instance, using the instanceid argument. This ID can be a string or a number.

63

Along with the name of the rule, it is also required an URL where the configuration

for the extension may be found. This file contains all the configurations the application

want to pass to the extension.

This way, the arguments accepted by this rule are:

• extname - the name of the extension to be run (mandatory).

• configurl - the URL where the configuration of the extension is located (manda-

tory).

• startup - is a boolean value defining if the extension will start when the Hotspot

starts up (or a new list of rules is loaded).

• instanceid - the identification of the application that uses this extension.

• devaddress - a string to filter the recipient devices by their device address.

• devname - a string to filter the recipient devices by the human readable name.

• devclass - a string or hexadecimal value to filter the recipient devices by their

device class (e.g: “Computer” or 0x100).

Example: With the rule of the example below, the Hotspot will start the extension

“wiimote” when at least one device with the name starting with “Nintendo” is found:

- runextension:

extname: wiimote

configurl: http://app1.com/wiimoteconfigs.txt

devname: Nintendo*

4.4.6 Feedback logs

The Hotspot holds a mechanism of feedback to the applications. As described in

Section 4.2.4, feedback logs can 1) be delivered in a specific location for each defined

rule or 2) be delivered in a unique location for the entire Hotspot. The first method is

performed passing an extra argument (logurl) to the rule in question. All the rules

accept this argument. It includes the URL where to deliver the feedback logs of that

specific rule. The second method delivers all the feedback logs of the Hotspot in a

unique URL, without the need to specify it on every single rule. With this objective,

the Hotspot accepts a rule - identified by postlogs - that receives one argument:

• url - contains the location where to send the feedback logs (mandatory).

64

Example: In the example below, the Hotspot is configured with two rules. These

rules tell the Hotspot to perform two types of tasks: to accept files from devices and

to send the generated Sightings to an application:

- postlogs:

url: http://192.168.1.50/logs/create

- acceptfile:

url: http://app1.com/files.php

logurl: http://app1.com/postlogs.php

- postsightings:

url: http://app2.com/postsightings.php

logurl: http://app2.com/postsightings.php

When one of these tasks is performed a feedback log is generated. After the execu-

tion of the first rule, their logs are sent to the address http://app1.com/postlogs.php.

On the other hand, the second rule sends the logs to a different address:

http://app2.com/postsightings.php. Independently of the rule that is performed,

all the referred feedback logs are also sent to the URL of the Main Controller, located

in http://192.168.1.50/logs/create.

4.5 Sighting’s structure

The result of each scan performed by the Scanner Module is a list of devices - called a

Sighting. It is usually intended to be uploaded to a remote application (refer to Section

4.2). Along with the list of devices, a Sighting also contains the identification of the

Hotspot and the date and time when the scan was performed.

• scannerName - contains the name of the Hotspot that performed the scan

• scanBeginTime - defines the date and time the scan started at

• scanEndTime - defines the date and time the scan finished at

• seqNumber - defines the sequence number of the current sighting, incremented on

each scan

• seenDevices - contains the list of seen devices. Each item of this list contains a

device which must mandatorily include its 1) single hardware address. Besides, if

it is known, it also contains: 2) the device’s name, 3) its class hexadecimal value

and 4) the list of its available services and associated channels. If the second

and fourth values are present, also an extra field for each of them will also be

65

included, containing the last date and time each one was retrieved. When any of

these fields is unknown, they are automatically not included.

Example: As an example, we will assume a Hotspot called “UbicompBluebox” that

is periodically scanning for devices. The 17th scan started at 1h 32m 4s of April the

1st 2010, and took 48 seconds to retrieve all the data. Three devices were found,

but only the name of the devices 22:22:22:22:22:22 and 33:33:33:33:33:33 were

successfully retrieved. Moreover, only the services10 of the last one could be collected.

For this situation, the resulting Sighting would be the next one:

scannerName: UbicompBluebox

scanBeginTime: 2010-04-01 01:32:04

scanEndTime: 2010-04-01 01:32:52

seqNumber: 17

seenDevices:

- device:

address: 11:11:11:11:11:11

- device:

address: 22:22:22:22:22:22

name: Mary Sea

class: 0x102

lastNameGet: 2010-04-01 01:31:15

- device:

address: 33:33:33:33:33:33

name: Nokia Michael

class: 0x102

services:

2: Dial-Up Networking

9: OBEX Object Push

10: SyncMLClient

11: OBEX File Transfer

12: Nokia OBEX PC Suite Services

13: SyncML DM Client

14: Nokia SyncML Server

15: Imaging

23: AVRCP Target

28: Hands-Free Audio Gateway

10The channels and names of the services of the hypothetical device 33:33:33:33:33:33 were
retrieved from a real device, a Nokia E65.

66

29: Headset Audio Gateway

lastNameGet: 2010-04-01 01:31:53

lastServicesGet: 2010-04-01 01:18:34

67

Chapter 5

Evaluation

In the previous chapter we have proposed an architecture for a Bluetooth Hotspot

that supports Bluetooth-based user-centered interactions. It is extremely important

to evaluate how this architecture behaves on real scenarios during the design process

because it allows to redesign some components based on the analysis of functional

patterns.

The process of evaluation and validation is reported in this chapter, organized in

two sections: first section (5.2) enumerates the goals for evaluation; second section (5.3)

describes how prototypes were deployed, along with the results of each deployment.

5.1 Evaluation environment

To evaluate both the Hotspot’s architecture and the integration model, we have devel-

oped a few prototypes with the objective of being deployed in real scenarios. These

prototypes were designed to run on Linux-enabled Ethernet routers, like the one shown

in Figure 5.1. In these routers we installed OpenWrt1 Linux operating system - a Linux

distribution optimized to run on embedded devices with low resources of memory, CPU

and disk space. This operating system allows to run all the essential features of our

prototypes, like e.g. running multiple multi-threaded processes, accessing a TCP/IP

network and access the Bluetooth stack (BlueZ2).

We have chosen to work with this kind of devices due to many factors, referred

below. Values shown are estimated values, obtained from the units we have used

as prototypes and also obtained from a sample of the OpenWrt’s table of supported

1OpenWrt Linux distribution - http://www.openwrt.org/
2BlueZ is a set of libs and system tools that implements the Bluetooth stack for Linux - http:

//www.bluez.org/

68

http://www.openwrt.org/
http://www.bluez.org/
http://www.bluez.org/

hardware3):

• Size (around 20x10cm) eases the installation of a Hotspot in hidden places for

environments like bars, halls or streets.

• With a low power consumption (around 5 to 10W), it becomes possible to deploy

a Hotspot (or a group of them) without high energy consumption issues.

• CPU clock (around 250MHz) and the available memory (around 16MB) proved

to be more than enough to run the entire OpenWrt system and our prototype

Hotspot’s software without loss of performance, comparatively to the performance

of the development prototype environment on a computer.

• Equipped with two USB ports it is possible to plug Bluetooth USB interfaces (an

USB hub can be attached to install a large number of Bluetooth interfaces).

• The estimate price of these kind of routers floats between 70e and 100e, de-

pending on factors like available memory or Central Processing Unit (CPU) clock

speed.

The Hotspot prototype software developed to run in these routers was developed

in Python4 with PyBlueZ5.

5.2 Evaluation objectives

We have created and deployed multiple instances of the Hotspot prototype. Prototypes

run on multiple Linux Ethernet routers, and were used by two projects currently under

development at our department. This study mainly aimed at evaluating and validating

three essential key issues of the system:

Integration model. We want to evaluate the integration model between Bluetooth

Hotspots and applications. In particular, we want to evaluate the Hotspot Con-

figuration Rules and the configuration process, the device Sightings structures,

and the interaction model between the Hotspot and applications.

3OpenWrt’s table of hardware - http://wiki.openwrt.org/toh/start
4Python is an high-level scripting programming language - http://www.python.org/
5PyBlueZ is a wrapper that gives access to the BlueZ Bluetooth stack for Linux - http://code.

google.com/p/pybluez/

69

http://wiki.openwrt.org/toh/start
http://www.python.org/
http://code.google.com/p/pybluez/
http://code.google.com/p/pybluez/

Figure 5.1. An Ethernet router (equipped with an USB Bluetooth dongle) running a prototype of the
Bluetooth Hotspot software on OpenWrt Linux.

Stability and performance. One of our goals is to design a system capable of run-

ning on an embedded device (a Linux-enabled Ethernet router). The developed

prototypes also have the objective of evaluating the viability of using OpenWrt

Linux running Python and PyBlueZ libraries to support all the Bluetooth oper-

ations (reported in Section 4.3.3).

Viability of a reusable and shared component. We want to understand which

operations a Bluetooth interface can perform simultaneously without loss of per-

formance. Different operations take different times to perform. For example: 1)

scan, 2) scan + get device name, 3) scan + get device services, 4) scan + get

device names + get device services + delivering/receiving files or 5) other com-

binations of Bluetooth operations and interactions. With these deployments, we

wanted to measure performance times in real scenarios. In some contexts, some

operations may take too much time if they run sequentially that it strongly dis-

courages the usage of a single interface. In that situations, the usage of multiple

interfaces should be required.

70

5.3 Real scenarios deployments

The validation of the prototypes was done in two different phases:

• in a first phase, we have tested the Hotspot’s Modules independently, without

being integrated with the whole Hotspot system and

• in a second, we have tested the Hotspot’s Modules, all together on the same

Hotspot, integrated with all the other components.

In both phases the validation was performed using prototypes of the designed system

on two projects running at our department6 - InstantPlaces [27] and AnyWherePlaces7

- both oriented to the area of Pervasive Computing and Smart Spaces. Both phases

were performed with our prototypes running on ASUS WL500gP v28 routers equipped

with the Linux distribution OpenWrt 8.09.2 and a minimal version of Python 2.5. The

choice of older versions of the operating system and Python interpreter were due to

stability issues: During the development phase of the prototype, recent versions of

OpenWrt (10.03) and Python (2.6) were also tested, but the system became really

unstable, with unwanted “segmentation faults” and spontaneous system reboots.

5.3.1 First phase

In the first validation phase, only the Scanner Module was deployed. This module was

collecting device Sightings and sending them to the HTTP servers of InstantPlaces and

AnyWherePlaces, simultaneously. The prototypes developed to evaluate the Hotspot

on this phase are characterized for having: 1) no support for multithreading; 2) hard-

coded Hotspot Configuration Rules and 3) only one Bluetooth interface used for all

the Bluetooth tasks: to perform device scans, to get the names and to get the services

of the devices. The objectives of this phase were:

• the validation of the proposed Sighting’s structure,

• the evaluation of the scan duration times and

• the evaluation of the robustness of OpenWrt running Python to perform the

desired Bluetooth tasks.

6Departamento de Sistemas de Informação - http://www.dsi.uminho.pt/
7AnyWherePlaces - A project in the scope of the a research program on Systems Software for

Ambience Intelligence - http://ubicomp.algoritmi.uminho.pt/system-software/.
8ASUS - http://www.asus.com/

71

http://www.dsi.uminho.pt/
http://ubicomp.algoritmi.uminho.pt/system-software/
http://www.asus.com/

Despite the system had been designed to use YAML for data representation (refer

to Section 4.5), in this prototype we used a XML representation of Sightings with a

structure suggested by the project InstantPlaces, in order to ease the development and

avoid the implementation of proxies to convert the data.

Silent scan and proximity sensing

The InstantPlaces project has deployed two Hotspots at both entrances of our de-

partment and one at a high school (Escola Secundária das Taipas). All of them were

constantly and repeatedly collecting the addresses and names of Bluetooth devices.

During three months, InstantPlaces applications were just silently collecting the

Sightings from our Hotspots (by “silent” we mean collecting data without being noticed

by who is passing by) and not showing any information to the users. On a fourth month,

a public display was installed at the school, displaying the name of Bluetooth devices,

linking this information with a Facebook9 application that shows the photo of device’s

users. Additionally, another Hotspot was deployed at Vila Verde’s Library (in Braga,

Portugal), silently collecting device Sightings to InstantPlaces.

Results: This phase allowed us to conclude that for silent scanning scenarios the

Scanner period for each full-cycle scan10 may be increased without too much impact:

if any device was not seen it would be like it was not present. However, if the user was

expecting some feedback based on his presence, the period of each scan could not be

set in a magnitude of minutes, but it should be set in a magnitude of seconds (around

30 seconds). A greater value would result in a poor usability for the user.

We could also conclude that the inquiry phase of the name of each device may take

too much time when a large number of devices is present. This situation was predicted

during the design phase section - issue referred in Section 3.3.1, where a user waits for

a feedback twice the expected time. This issue proves that the support for multiple

Bluetooth interfaces is a strong requirement in order to achieve concurrent tasks (e.g

scanning with a device and getting device names with another). This leaded us to the

implementation of the “fast mode scanning”, described in Section 4.3.3.

The collected information about present devices (hardware address, name, class

and services) was useful, not only for our research, but also for the InstantPlaces inves-

tigation because is allows to validate 1) the Sighting’s structure and 2) the differences

9Facebook - http://www.facebook.com/
10An entire full-cycle scan includes: 1) searching for the present devices, 2) retrieving its names and

3) retrieving the available services on each one.

72

http://www.facebook.com/

between silent scanning and situations where users known that their devices were being

searched (or where they could suggest content to show on the public displays, using a

predefined tag on their device’s names).

For the studied cases of deployments, the time between the moment a device enters

in the range of a Hotspot and the moment a Sighting (containing all the information

collected from a full-cycle scan) is generated to be send to remote applications, was

between 30 and 90 seconds, with most of the cases taking less than 60 seconds.

5.3.2 Second phase

The second phase of validation was essentially intended to validate all the system

components, multithreaded and coordinated between them. As PyBlueZ libraries does

not support multiple Bluetooth interfaces, we have developed a patched version of this

library to support this feature, in order to use the Interfaces Module as it was designed

(refer to Section 4.3.2).

Many Hotspot’s prototypes were deployed in different contexts to evaluate its

performance and integration in scenarios of 1) proximity sensing and 2) content delivery,

as detailed below.

Device Name interaction for proximity sensing

This stage of evaluation was an extension of the first one, to systematize its results.

We installed the same two Hotspots at 1) our department entrance and another four in

four different high schools: 2) Escola Secundária de Camilo Castelo Branco, Vila Real

3) Escola Secundária de Mirandela 4) Escola Secundária de Valpaços and 5) Escola

Profissional de Felgueiras.

During three weeks, each of these Hotspots was collecting device Sightings to the

AnyWherePlaces application (running at our department). With this data, the applica-

tion was presenting the name of present Bluetooth devices in a public display installed

near to each Hotspot. Running this new version of the prototype all the Hotspots were

installed with Internet connectivity to be able to reach the AnyWherePlaces applica-

tion. The main objective of this deployment was the validation of:

• the performance of “normal mode scanning” - where device scanning and name

retrieval are performed consecutively (refer to Section 4.3.3),

• a mechanism to define a time out for device scans in situations for a large number

of devices and

73

• system stability.

Each of the six deployed Hotspots was installed with just one Bluetooth interface,

running in “normal mode scanning”, with scan periods of 30 seconds. Two Hotspots

were configured with the maximum time for each full-cycle scan time (which includes

scan + names of devices + services available) defined to 30 seconds11 and the three

others were configured without this limit.

Results: In the first phase of validation, when the number of device was above 5, the

time of a full-cycle scan exceeded more than a minute in most of the cases. This could

be avoided with the definition of a maximum time for a full-cycle scan. However, this

could lead to a situation where some device names and services were not obtained.

For scenarios of silent scanning this problem is not so relevant if the time for

keeping names and services in cache is high (i.e. if a name or service could not be

retrieved in a scan it should be retrieved in next scans, and then kept in cache).

However, highly interactive scenarios where the devices names need to be constantly

refreshed, this cache time cannot be so high.

During all this deployment phase, when we forced a value for a maximum scan

time, the mean number of scans needed to successfully get the name of a device was

two (2). Without this maximum time defined the mean time was one (1) scan. This

situation turned mandatory the implementation of the “fast mode” scan (described in

Section 4.3.3 and whose evaluation deployments are described in next section).

Some stability issues were detected on BlueZ libraries while running on OpenWrt,

which do not occur on the development environment: when a large number of devices

are present, the BlueZ Bluetooth stack randomly lose connection with the Bluetooth

interface, forcing to perform a soft reset to the system. We are expecting to use future

validation phases to better study and to solve this issues, as well as waiting for future

updates to the implementation of these drivers and libraries for OpenWrt.

Content delivery

During two weeks, two Hotspots were deployed at our department in two different

entrances. For a week, the AnywherePlaces project installed public displays for the

School of Engineering’s week from our university. The objective was 1) to display the

names of present Bluetooth devices and 2) to deliver a file to each of them. With

11For these two Hotspots the configuration rules installed where exactly as the example shown in the
example of the rule that “enable device scans” (scan) in Section 4.4, except the argument getnames

which was set to false.

74

around a thousand students visiting our department, this became a good opportunity

to validate almost all the designed components of the Hotspot. We Installed two

routers running this new version of the prototype, one week for testing and one week

for validation on the real scenario, aiming at:

• to validate the management of multiple Bluetooth interfaces by the Interfaces

manager,

• to compare the results of the Scanner in “fast mode” scan with the “normal

mode” scan (used on previous phases),

• to validate the OBEX file delivery,

• to validate the Configuration Rules structure with multiple types of rules defined

and

• to validate the patched PyBluez libraries and also the LightBlue12 libraries that

ease the development of OBEX file transfers over Bluetooth.

Both the Hotspots were configured to 1) scan for the present devices and to 2) send the

generated Sightings to the AnywherePlaces application, in order to show the names of

present Bluetooth devices in the public displays and to 3) send a welcome text file to

each device (this file was available at a URL on the AnyWherePlaces server).

The most important difference between these two Hotspots was the mode of scan:

while the first Hotspot had just one Bluetooth interface installed, the second one had

two. With the Scanner module working in “fast mode”, one interface was dedicated

just for device scans, leaving the second one for getting names, getting services and

sending files.

Results: Only 10% of the attempts to deliver a file to the devices were successful.

All the other 90% fail due to rejection of the file by the user or due to time out. This

means that a problem of usability may exist, which is not the focus of our work but

may be an important result for the applications. We aimed to analyze how much time

a user had to wait for a file after entering on a space: from the point of view of the

Hotspot, this corresponds to the amount of time between the first time a device is

seen and the moment when a notice of a new file appears on the user’s device screen.

12LightBlue is a Python library that eases the access to Bluetooth operations of BlueZ Bluetooth
stack, in particular those related with OBEX file transfers and advertisement of Bluetooth services -
http://lightblue.sourceforge.net/.

75

http://lightblue.sourceforge.net/

The average time of delivery was about 50 seconds, even with some moments when

15 devices were present, which is completely acceptable for all the studied scenarios of

content delivery (refer to Section 2).

Also, some users reported that their phones asked for a code to pair the phone.

After analyzing those devices, we concluded that this process of pre-pairing is manda-

tory for some models, meaning that automated file delivery as desired was not possible

for those kind of devices. This lifted another usability problem, which may be studied

in a future phase.

There was a big difference of performance between a Hotspot installed with one

or two Bluetooth interfaces:

Single Bluetooth interface. Even defined with a period of 30 seconds between each

scan, the router with only one interface installed - and thus using “normal mode”

scans - performed many full-cycle scans (scan + get names + get services) that

took more than 60 seconds. Furthermore, when a max full-cycle scan time of 30

seconds was forced, half of the names could not be retrieved, which was unac-

ceptable for the current scenarios.

Multiple Bluetooth interfaces. The other router, with two Bluetooth interfaces

installed, configured with the “fast mode” scan enabled - which means that one

of the interfaces becomes dedicated to devices scans - could obtain the names and

services of almost every device, even when delivering files in parallel. Moreover,

also the scan duration time was respected most of the times, with an effective

scan mean duration of 15 seconds when a small number of devices is present and

a mean duration of 30 seconds when a large number of devices is present.

This means that scenarios where a large number of devices are present (both content

delivery and scan scenarios) the use of two Bluetooth interfaces becomes mandatory,

if the performance of the Hotspot’s interactions is crucial.

5.3.3 Third phase

At the moment of writing of this dissertation some key validation issues were still being

evaluated. This means that we could not acquire well-grounded results yet but we still

have chosen to describe the objectives of this phase, even without results and even

under development. Thus, with this validation phase, we want:

• to get better results of comparison between using the Hotspot with the Scanner

in “fast mode” scan and “normal mode” scan,

76

• to evaluate how the Hotspot behaves when using OBEX file reception along with

other Bluetooth tasks, on real scenarios and

• to deploy an extension in real scenarios, installed on the Hotspot as a third-party

developed extension.

During this evaluation phase, the Hotspot prototype includes a fully functional

OBEX Receiver module and a Hotspot’s extension developed with the objective of

evaluating not only the extension mechanism but also the extension itself. The exten-

sion that was developed intends to be adapted to Wiimote-based interaction scenarios,

as surveyed in Section 2.5. It eases connections with Nintendo’s Wii console remotes13

and its functionality is described in the next section.

Figure 5.2. A screenshot of our prototype of an application that integrates with the Hotspot and
identifies the data inputs of Wiimotes connected to the Bluetooth Hotspot.

13Nintendo Company, Limited. - http://www.nintendo.com/

77

http://www.nintendo.com/

Wiimote Extension

This extension turns the Hotspot on a bridge between the Bluetooth Nintendo’s Wi-

imotes and a remote application that recognizes its gestures [40]. For each discovered

Wiimote, the extension establishes two connections, in both directions: 1) a Bluetooth

serial connection with the Wiimote and 2) a socket connection with the application

that analyzes gestures and pressed buttons. After having established these two connec-

tions, the extension redirects to the application all the data received from the Wiimote

stream. This stream includes the (x,y,z) values of the Wiimote accelerometer, the

(x,y,z) coordinates of the location of the Wiimote and the list of buttons that are

being pressed.

In our prototype, the application is a Java program that receives the data from

that connection and illustrates the Wiimote status at the screen, just for validation. A

screenshot of this application is seen in Figure 5.2. Our aim is to interpret the gestures

and provide the results to an API that can be used by other applications, with the

objective of deploying a real scenario to validate this model. A possible scenario is an

interactive presentation at a museum or an artistic installation were users can interact

with the environment using a Wiimote.

As explained in Section 4.3.3, as an extension starts, it receives an URL where

to get the file with its configurations (refer to Section 4.4 for the rule that starts an

extension). For this prototype of the Wiimote Extension, this file is an XML file with

five elements:

• rumbleTime - defines the amount of seconds to enable the vibrator of the Wiimote

when a successful connection is established,

• sendTo - defines the host name of the server (application) where to send the

output from the Wiimotes,

• tcpPort - defines the Transmission Control Protocol (TCP) port of the above

server.

In order to clarify this issue, please consider the following example:

<?xml version="1.0" encoding="UTF-8" ?>

<rules>

<rumbletime>1</rumbletime>

<sendTo>192.168.1.5</sendTo>

<tcpPort>1234</port>

</rules>

78

This configuration file will make the Wiimote Extension to establish a TCP socket

connection with a remote application that is running at the port 1234 of the server

with the IP 192.168.1.5. When a connection between the Hotspot and a Wiimote is

successfully established the Hotspot establishes the TCP connection with the applica-

tion server, and the Wiimote vibrates for 1 second. Through this connection, all the

output from the Wiimote is redirected to the application for gesture interpretation.

79

Chapter 6

Conclusions

The main objective of this dissertation was the proposal of a new system component,

centered on Bluetooth-based user interactions. The work was essentially focused on

these interactions. We have surveyed related work with the objective of proposing

an architecture of this system component - the Bluetooth Hotspot. We proposed and

made its functionality available. Such component may now be used in actual systems

and applications as a Bluetooth interface that interacts with users’ mobile devices.

To evaluate the proposed architecture and integration model, prototypes were

developed and deployed in real scenarios, gathering multiple and important results.

These results had extreme value during the design of our component, but are also

important as a case study for the involved projects.

Results

The designed integration model - that includes configuration rules, configuration pro-

cesses, feedback logs and file resources on a RESTful philosophy - proved to work

flawlessly with existing systems and applications. During the evaluation phase, these

systems easily adapted to our Bluetooth Hotspot without any integration issue. More-

over, the objective of freeing the owner of the applications from Bluetooth-related

issues could also be fulfilled, e.g: 1) application owners could retrieve the scan results

in useful time, just by defining a limit for a full-cycle scan; 2) the delivery or reception

of a file to/from users’ devices could be easily performed without understanding how

OBEX transfers works. In the future, with support from the extension mechanism,

many other scenarios and situations can also be evaluated.

It was possible to conclude that, in most of the cases, the utilization of more than

one Bluetooth interface installed on the Hotspot is mandatory. The performance of

80

Bluetooth tasks becomes really affected while a device scan is performed, which leads

us to dedicate an interface just for this task, leaving the other(s) performing other

device’s interactions.

Design and implementation obstacles

Some implementation problems became an obstacle to the study and development of

the Bluetooth Hotspot. OpenWrt Linux distribution proved to be extremely stable

but the implementation of the Bluetooth stack (provided by BlueZ libraries) did not.

Randomly, but sporadically, the Bluetooth stack loses the connection with the Blue-

tooth interfaces without any chance of recovery, forcing the system to be rebooted in

order to access the device again. Despite the quickly reboot of OpenWrt on those kind

of devices (around 30 seconds), this became a problem on real-time scenarios where

users’ could not wait so much time for an interaction. Nevertheless, these losses of con-

nection also happened when using just the BlueZ tools without our software. On each

evaluation phase, tests were performed on a development environment before running

the prototypes inside the deployed Ethernet Linux routers. This allowed us to identify

that these unexplained issues came from the OpenWrt environment and not from our

implementation. We are currently in contact with the open source community of BlueZ

and Python on OpenWrt, trying to fix this problem and to obtain a stable solution.

Future work

During this research, some usability issues were detected, that are out of the scope

of our work, but were predicted by other related works: the increasing number of

devices that are originally configurations as hidden devices or with short periods in the

discovery state. Another typical problem was the obligation of some devices to pair

with a code before receiving or sending a file from/to the Bluetooth Hotspot.

The duration of this work has not allowed to design and implement other important

features related with scalability and security. Our integration model does foresee any

security issue, but in a future phase we intend to design mechanisms of authentication,

authorization and accounting. During our deployments we used TCP/IP firewalls and

Virtual Private Networks (VPNs) to implement at least some of the security issue.

In what concerns the system scalability, we foresee two design improvements: 1) the

Hotspot Configuration Rules should be installed directly from the applications and 2)

the Hotspots should interconnect and synchronize the rules between them, in multiple

Hotspot scenarios. This would free the utilization of the Main Controller, simplifying

81

the architecture.

The relationship between a Hotspot and specific applications can be simple and

easy to be implemented if both of them are deployed together, for the same end. How-

ever, if a Hotspot is already deployed, new applications do not recognize the presence

and the availability of Hotspot(s) automatically. A mechanism to handle the regis-

tration of Hotspots is important in the future. This way, further applications may

consult this service to discover the available Hotspots on the specific space they want

to operate. This is the typical service that can be integrated in the Main Controller.

The source code of the Hotspot prototype developed, during this dissertation was

published as an open-source project at Source Forge repository: https://sourceforge.

net/p/bluebox-hotspot/. Providing the source code, it may empower not only this

project, but many other projects in the area of Pervasive Computing. Along with the

source code, we provide a package to be included on OpenWrt’s software repository1,

to ease installations on new systems, using its package management system (opkg).

Conclusion

Overall, we showed that there is a space for a Bluetooth system component that can

be easily shared and reused. We have described the main key design issues for such

component and its system integration. We have deployed our component within dif-

ferent systems. It proved to have an acceptable performance in most of the predicted

scenarios. Additional work has to be done to improve the integration process, such

as the study of Hotspot registration and discovery process, but in our opinion, this

is a preliminary result and contribution for the sustainability of Pervasive Computing

industry.

1OpenWrt’s software repository - http://wiki.openwrt.org/doc/packages

82

https://sourceforge.net/p/bluebox-hotspot/
https://sourceforge.net/p/bluebox-hotspot/
http://wiki.openwrt.org/doc/packages

Bibliography

[1] Bluetooth core specification v2.0. technical report. Tech. rep., Bluetooth Special

Interest Group, November 2004.

[2] Aalto, L., Göthlin, N., Korhonen, J., and Ojala, T. Bluetooth and

WAP push based location-aware mobile advertising system. In Proceedings of the

2nd international conference on Mobile systems, applications, and services (New

York, NY, USA, 2004), MobiSys ’04, ACM, pp. 49–58.

[3] Abowd, G. D. Classroom 2000: An experiment with the instrumentation of a

living educational environment. IBM Systems Journal 38, 4 (2000), 508–530.

[4] Abowd, G. D., Ebling, M., Gellersen, H.-W., Hunt, G., and Lei, H.

Guest editors’ introduction: Context-aware computing. IEEE Pervasive Comput-

ing 1, 3 (2002), 22–23.

[5] Ahmed, H., EL-Darieby, M., Abdulhai, B., and Morgan, Y. Bluetooth

and wi-fi-based mesh network platform for traffic monitoring. In Transportation

Research Board 87th Annual Meeting (2008).

[6] Bär, H., Häussge, G., and Rössling, G. An integrated system for interaction

support in lectures. SIGCSE Bull. 39 (June 2007), 281–285.

[7] Bardram, J. E., Hansen, T. R., and Soegaard, M. Awaremedia: a shared

interactive display supporting social, temporal, and spatial awareness in surgery.

In Proceedings of the 2006 20th anniversary conference on Computer supported

cooperative work (New York, NY, USA, 2006), CSCW ’06, ACM, pp. 109–118.

[8] Baumann, S., Jung, B., Bassoli, A., and Wisniowski, M. BluetunA:

let your neighbour know what music you like. In CHI ’07 extended abstracts on

Human factors in computing systems (New York, NY, USA, 2007), CHI EA ’07,

ACM, pp. 1941–1946.

83

[9] Camacho, T. A. D. Proximity sensing and context-aware content dissemination.

Master’s thesis, Department of Mathematics and Engineering of the University of

Madeira, 2009.

[10] Cano, J.-C., Manzoni, P., and Toh, C.-K. Ubiqmuseum: A bluetooth and

java based context-aware system for ubiquitous computing. Wireless Personal

Communications 38 (2006), 187–202.

[11] Chatschik, B. An overview of the bluetooth wireless technology. Communica-

tions Magazine, IEEE 39, 12 (December 2001), 86–94.

[12] Cheverst, K., Dix, A., Fitton, D., Kray, C., Rouncefield, M., Sas,

C., Saslis-Lagoudakis, G., and Sheridan, J. G. Exploring bluetooth based

mobile phone interaction with the hermes photo display. In MobileHCI ’05: Pro-

ceedings of the 7th international conference on Human computer interaction with

mobile devices & services (New York, NY, USA, 2005), ACM, pp. 47–54.

[13] da Cruz Bernardo, J. F. Bluetooth naming for situated interaction in ubiq-

uitous environments. Master’s thesis, Departamento de Sistemas de Informação,

Universidade do Minho, 2009.

[14] Davies, N., Friday, A., Newman, P., Rutlidge, S., and Storz, O. Us-

ing bluetooth device names to support interaction in smart environments. In

MobiSys’09 (2009), pp. 151–164.

[15] Eagle, N., and Pentland, A. Social serendipity: Mobilizing social software.

IEEE Pervasive Computing 4 (April 2005), 28–34.

[16] Eagle, N., and (Sandy) Pentland, A. Reality mining: sensing complex

social systems. Personal Ubiquitous Comput. 10 (March 2006), 255–268.

[17] Fielding, R. T., and Taylor, R. N. Principled design of the modern web

architecture. ACM Trans. Internet Technol. 2 (May 2002), 115–150.

[18] Fitz-Walter, Z., Jones, S., and Tjondronegoro, D. Detecting gesture

force peaks for intuitive interaction. In IE ’08: Proceedings of the 5th Australasian

Conference on Interactive Entertainment (New York, NY, USA, 2008), ACM,

pp. 1–8.

84

[19] Fonseca, R., and Simões, A. Alternativas ao XML: YAML e JSON. In XATA

2007 — 5a Conferência Nacional em XML, Aplicações e Tecnologias Aplicadas

(February 2007), J. C. Ramalho, J. C. Lopes, and L. Carŕıço, Eds., pp. 33–46.

[20] Fresnedo, O., Iglesia, D. I., and Escudero, C. J. Bluetooth inquiry

procedure: optimization and influence of the number of devices. In CSN ’07:

Proceedings of the Sixth IASTED International Conference on Communication

Systems and Networks (Anaheim, CA, USA, 2007), ACTA Press, pp. 205–209.

[21] Harter, A., Hopper, A., Steggles, P., Ward, A., and Webster, P.

The anatomy of a context-aware application. Wireless Networks 8 (March 2002),

187–197.

[22] Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., and

Jansen, E. The gator tech smart house: A programmable pervasive space. Com-

puter 38 (March 2005), 50–60.

[23] Jayaraman, P. P., Zaslavsky, A., and Delsing, J. On-the-fly situation

composition within smart spaces. In Proceedings of the 9th International Con-

ference on Smart Spaces and Next Generation Wired/Wireless Networking and

Second Conference on Smart Spaces (Berlin, Heidelberg, 2009), NEW2AN ’09

and ruSMART ’09, Springer-Verlag, pp. 52–65.

[24] Johanson, B., Fox, A., and Winograd, T. The interactive workspaces

project: Experiences with ubiquitous computing rooms. IEEE Pervasive Comput-

ing 1 (April 2002), 67–74.

[25] Johansson, P., Kazantzidis, M., Kapoor, R., and Gerla, M. Bluetooth:

an Enabler for Personal Area Networking. In IEEE Network Magazine, Wireless

Personal Area Network (2001), vol. 15, pp. 28–37.

[26] José, R., and Bernardo, F. Extended bluetooth naming for empowered pres-

ence and situated interaction with public displays. In 3rd Symposium of Ubiquitous

Computing and Ambient Intelligence 2008, vol. 51 of Advances in Soft Computing.

Springer Berlin / Heidelberg, 2009, pp. 57–65.

[27] José, R., Otero, N., Izadi, S., and Harper, R. Instant Places: Using

Bluetooth for Situated Interaction in Public Displays. IEEE Pervasive Computing

7, 4 (2008), 52–57.

85

[28] Kindberg, T., and Fox, A. System software for ubiquitous computing. IEEE

Pervasive Computing 1 (January 2002), 70–81.

[29] LeBrun, J., and Chuah, C.-N. Bluetooth content distribution stations on

public transit. In MobiShare ’06: Proceedings of the 1st international workshop

on Decentralized resource sharing in mobile computing and networking (New York,

NY, USA, 2006), ACM, pp. 63–65.

[30] Mahato, H., Kern, D., Holleis, P., and Schmidt, A. Implicit person-

alization of public environments using bluetooth. In CHI ’08 extended abstracts

on Human factors in computing systems (New York, NY, USA, 2008), CHI ’08,

ACM, pp. 3093–3098.

[31] McCarthy, J. F., Congleton, B., and Harper, F. M. The context, content

& community collage: sharing personal digital media in the physical workplace.

In Proceedings of the 2008 ACM conference on Computer supported cooperative

work (New York, NY, USA, 2008), CSCW ’08, ACM, pp. 97–106.

[32] Nicolai, T., Yoneki, E., Behrens, N., and Kenn, H. Exploring social con-

text with the wireless rope. In On the Move to Meaningful Internet Systems 2006:

OTM 2006 Workshops, R. Meersman, Z. Tari, and P. Herrero, Eds., vol. 4277 of

Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2006, pp. 874–

883.

[33] ONeill, E., Kostakos, V., Kindberg, T., Schiek, A., Penn, A., Fraser,

D., and Jones, T. Instrumenting the city: Developing methods for observing

and understanding the digital cityscape. In UbiComp 2006: Ubiquitous Com-

puting, P. Dourish and A. Friday, Eds., vol. 4206 of Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 2006, pp. 315–332.

[34] Peterson, B. S., Baldwin, R. O., and Kharoufeh, J. P. Bluetooth inquiry

time characterization and selection. IEEE Transactions on Mobile Computing 5,

9 (2006), 1173–1187.

[35] Pietiläinen, A.-K., Oliver, E., LeBrun, J., Varghese, G., and Diot,

C. Cityware: Urban computing to bridge online and real-world social networks.

In Applications, Technologies, Architectures, and Protocols for Computer Commu-

nication (2009).

86

[36] Podnar, I., Hauswirt, M., and Jazayeri, M. Mobile push: Delivering

content to mobile users. In in Proceedings of the International Workshop on Dis-

tributed Event-Based Systems (ICDCS/DEBS’02 (2002), IEEE Computer Society,

pp. 563–570.

[37] Rashid, O., Coulton, P., and Edwards, R. Providing location based infor-

mation/advertising for existing mobile phone users. Personal Ubiquitous Comput-

ing 12, 1 (2008), 3–10.

[38] Sanchez, J.-M., Cano, J.-C., Calafate, C. T., and Manzoni, P.

Bluemall: a bluetooth-based advertisement system for commercial areas. In

PM2HW2N ’08: Proceedings of the 3nd ACM workshop on Performance moni-

toring and measurement of heterogeneous wireless and wired networks (New York,

NY, USA, 2008), ACM, pp. 17–22.

[39] Satyanarayanan, M. Pervasive computing: vision and challenges. IEEE Per-

sonal Communications 8, 4 (August 2001), 10–17.

[40] Schlömer, T., Poppinga, B., Henze, N., and Boll, S. Gesture recognition

with a wii controller. In TEI ’08: Proceedings of the 2nd international conference

on Tangible and embedded interaction (New York, NY, USA, 2008), ACM, pp. 11–

14.

[41] Seixas, H., Salgado, N., and José, R. Wiinteraction: A study on smart

spaces interaction using the wiimote. In INFORUM (2009), pp. 395–406.

[42] Sheridan, J. G., Price, S., and Pontual-Falcao, T. Wii remotes as tangi-

ble exertion interfaces for exploring action-representation relationships. Workshop

on Whole Body Interaction, CHI (April 2009).

[43] Young, S. Bluetooth traffic monitoring technology. Center for Advanced Trans-

portation Technology, University of Maryland http: // www. catt. umd. edu/

documents/ UMD-BT-Brochure_ REV3. pdf (September 2008).

87

http://www.catt.umd.edu/documents/UMD-BT-Brochure_REV3.pdf
http://www.catt.umd.edu/documents/UMD-BT-Brochure_REV3.pdf

Acronyms list

UML Unified Modeling Language

HTTP Hypertext Transfer Protocol

FTP File Transfer Protocol

URL Uniform Resource Locator

USB Universal Serial Bus

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

REST Representational State Transfer

SOAP Simple Object Access Protocol

IR Infrared

STL Standard Template Library

CF Compact Flash

WAP Wireless Application Protocol

API Application Programming Interface

SMS Short Message Service

RFID Radio-Frequency IDentification

MAC Media Access Control

PDA Personal Digital Assistant

a

IP Internet Protocol

LED light-emitting Diode

ID Identification Number

NAT Network Address Translation

RAM Random Access Memory

TCP Transmission Control Protocol

RPC Remote Procedure Call

POS Point of Sale

GPRS General Packet Radio Service

SDK Software Development Kit

SSH Secure Shell

GUI Graphical User Interface

CPU Central Processing Unit

VPN Virtual Private Network

AP Access-Point

BEN Bluetooth Extended Naming

UCI Unified Configuration Interface

OBEX OBject EXchange

PAN Personal Area Network

BNEP Bluetooth Network Encapsulation Protocol

HID Human Interface Device

RFCOMM RFCOMM, Serial Cable Emulation Protocol

L2CAP Logical Link Control and Adaptation Protocol

b

SDP Service Discovery Protocol

HCI Host Controller Interface

SPP Serial Port Profile

SPP-over-IP Serial Port Profile over IP

c

	Introduction
	Objectives
	System overview
	Methodology
	Structure of the dissertation

	Related work
	Device scan interaction
	Device name-based interaction
	File exchange-based interaction
	Content-delivery applications
	Both-way file exchange

	Connection-based interaction
	Wiimote-based interaction
	Discussion

	Analysis for Hotspot design
	User-interaction patterns
	Getting the address and name of a device
	Sending a file to a device
	Receiving a file from a device
	Establishing a generic connection

	Key design issues
	Integration
	State management
	Extensibility

	Bluetooth-related scalability issues
	Scanning frequency
	Multiple Bluetooth interfaces

	Design for Hotspot implementation
	System components
	Components integration
	The Hotspot behaviour
	Hotspot sharing
	Multiple Hotspots
	Feedback protocol

	Hotspot internal architecture
	Scheduler
	Hotspot Managers
	Bluetooth Modules

	Rules's structure
	Enabling device scans
	Sending Sightings to an application
	Sending files to Bluetooth devices
	Receiving files from Bluetooth devices
	Starting an extension
	Feedback logs

	Sighting's structure

	Evaluation
	Evaluation environment
	Evaluation objectives
	Real scenarios deployments
	First phase
	Second phase
	Third phase

	Conclusions
	Bibliography
	Acronyms List

