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The role of Cks proteins in apoptosis 

 

Abstract 

 

 Cyclin-dependent kinase subunits (Cks) proteins are evolutionary conserved small 

proteins that interact with Cyclin-dependent kinase (Cdk) and are frequently overexpressed in 

several types of cancer, which is correlated with poor prognosis and aggressive behavior. Lower 

eukaryotes as budding yeast express one Cks protein (Cks1), whereas mammalian cells express 

two (Cks1 and Cks2).  

 Cks proteins were most frequently associated with a direct role in cell cycle regulation, 

but are also involved in efficient transcription of multiple genes. However, despite their similarity, 

Cks proteins can have specific functions. For instance, mammalian Cks1, but not Cks2, is 

involved in ubiquitination of p27, a cyclin-dependent kinase inhibitor. There is some indication 

that modulation of Cks protein levels can impact apoptosis in some mammalian cell lines, but 

there is a lack of focused research on this subject and the mechanism involved remains 

uncharacterized. A role of Cks proteins in apoptosis has therefore yet to be explored as a target 

in cancer therapy.  

The yeast model has already demonstrated its potential for application in the apoptosis 

field, as evidenced by the increasing number of studies using yeast as a model for neurotoxicity 

and cancer. Most functions attributed to Cks proteins are conserved in yeast, and indeed 

mammalian Cks proteins can functionally substitute for yeast Cks1p. Our aim was therefore to 

determine whether modulation of Cks1p levels alters apoptotic signaling in the yeast 

Saccharomyces cerevisiae, which would be indicative of a conserved function in apoptosis. We 

found that deletion of yeast CKS1 led to significantly increased sensitivity to short-term exposure 

to the chemotherapeutic agent cisplatin, but not to the other DNA damaging agents - methyl 

methanesulfonate and 5-fluorouracil, nor to the general apoptosis inducers - acetic acid and 

hydrogen peroxide. This is a strong indication of a specific regulated role for Cks1p in DNA 

damage-induced cell death, independent from its role in cell cycle. Further studies to unravel its 

function, as well as the pathways involved, could therefore provide novel targets to exploit in the 

treatment of cancers where Cks proteins are up-regulated.  
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O papel das proteínas Cks na apoptose 

 

Resumo 

 

 Subunidades Kinase dependente de ciclina (Cks) são pequenas proteínas conservadas 

evolucionariamente, que interagem com kinases dependentes de ciclina (Cdks) e encontram-se 

sobreexpressas em diversos tipos de cancro, relacionado com mau prognóstico e 

comportamento agressivo. Eucariotas inferiores como a levedura expressam uma proteína Cks 

(Cks1), enquanto as células de mamífero expressam duas proteínas (Cks1 e Cks2). 

 Proteínas Cks estão mais associadas a um papel direto na regulação do ciclo celular, 

mas também estão envolvidas na transcrição eficiente de vários genes. Contudo, apesar das 

suas semelhanças, as proteínas Cks podem ter funções específicas. Por exemplo, a Cks1 de 

mamífero está envolvida na ubiquitinação do p27, um inibidor da kinase dependente de ciclina. 

Há algumas indicações que a modulação dos níveis de proteínas Cks podem ter impacto na 

apoptose em algumas linhas celulares de mamífero, mas há pouca investigação neste assunto e 

o mecanismo continua por caracterizar. Um papel das proteínas Cks na apoptose tem ainda que 

ser explorado para ser usado como alvo na terapia de cancro.  

 O modelo da levedura tem mostrado potencial para aplicação na área da apoptose, 

como é evidenciado pelo aumento do número de estudos a usarem a levedura como modelo 

para neurotoxicidade e cancro. Muitas funções atribuídas a proteínas Cks são conservadas em 

levedura, e de facto proteínas Cks de mamífero podem substituir funcionalmente a proteína 

Cks1p de levedura. O nosso objetivo foi determinar se a modulação dos níveis de Cks1p altera a 

sinalização apoptótica na levedura Saccharomyces cerevisiae, o que seria indicativo da 

conservação da função na apoptose. Determinamos que a deleção de CKS1 em levedura leva ao 

aumento significativo da sensibilidade a uma exposição curta à cisplatina, mas não a outros 

agentes danificadores de ADN, metanosulfato metil e 5-fluorouracil, nem a indutores gerais de 

apoptose, ácido acético e peróxido de hidrogénio. Isto é uma forte indicação para um papel de 

regulação específico de Cks1p em morte celular induzida por danos de ADN, independente do 

seu papel no ciclo celular. Estudos futuros para desvendar esta função, assim como as vias 

envolvidas, podem fornecer novos alvos para explorar no tratamento de cancros onde as 

proteínas Cks estão sobreexpressas.   
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5-FU – 5-Fluoururacil 
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ANT – Adenine Nucleotide Translocator 
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Bid – BH3-interacting domain death agonist 
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monophosphate 
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Protein A2 
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MPF – Cdk1/Cyclin B complex 

NER – Nucleotide Excision Repair 

PCD – Programmed Cell Death 
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PTP – Permeability Transition Pore 

RNA – Ribonucleic acid 

ROS – Reactive Oxygen Species 

siRNA – small interfering RNA 
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derived Activator of Caspases/Direct IAP-

binding protein with low pI 

tBid – Truncated Bid 

TNF – Tumor Necrosis Factor 

TS – Thymidylate Synthase 

UV – Ultra-violet 

VDAC – Voltage-dependent Anion Channel 

Δψm – Mitochondrial transmembrane 
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Cks proteins: Relevance in cancer 

Cyclin-dependent kinase subunit (Cks) proteins are evolutionary conserved small (9-18 

kDa) proteins [1-3]; lower eukaryotes express only one Cks1 protein, whereas mammals, and 

possibly other vertebrates, express two orthologs, Cks1 and Cks2 [2-6]. Cks proteins have been 

the subject of increased attention in recent years, since they are frequently overexpressed in 

several cancers, which is correlated with poor prognosis. Cks1 overexpression has been strongly 

associated with various clinical and pathological features that are commonly used to determine 

aggressive tumor behavior [7-9]. High expression of Cks1 may be involved in the pathogenesis of 

non-small cell lung carcinoma [10], oral squamous cell carcinoma [11], colorectal carcinoma [8, 

12], gastric carcinoma [13], lung carcinoma [11] and breast cancer [14]. Overexpression of Cks1 

correlates with the increased radiotherapy resistance of esophageal squamous cell carcinoma 

[15] and tumor stage and positive lymph node metastasis in breast cancer [14]. It has also been 

found that Cks2 is expressed at significantly higher levels in tumors with metastasis [16] and can 

be responsible for aggressive behavior of tumours [17]. Cks2 levels were also increased in 

cervical cancer [18], metastatic androgen-independent prostate cancer [19] and 

cholangiocarcinoma [17]. In addition, CKS2 has been proposed as a biomarker for the diagnosis 

and staging of bladder cancer [20] and melanocytic tumour progression [21]. Expression of Cks1 

and Cks2 was elevated in prostate tumors and forced expression of both Cks1 and Cks2 in 

benign prostate tumor epithelial cells accelerated cell growth [22]. Therefore, Cks proteins may 

be considered as potential novel prognostic marker and target for the future development of 

specific therapeutic interventions. Targeting these proteins may be a promising therapeutic 

option for the treatment of cancers where they are up-regulated.  

 

 

Cks proteins: Structure and functions 

Cks proteins were originally identified through their ability to genetically suppress 

defective alleles of the cyclin-dependent kinase (Cdk) of fission and budding yeast [1-3], which 

pointed to a prominent role in the cell cycle.  

The cell-cycle machinery is distinguished by a series of coordinated events essential to 

ensure faithful DNA replication and segregation of replicated chromosomes into two separate 

cells.  It consists of specific phases: the G1 phase, during which the cell prepares for DNA 

synthesis; the S phase, during which active replication of the chromosomes occurs; G2 gap 
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period, prior to chromosome segregation and cytokinesis in M phase (mitosis) (Figure 1) [23-24]. 

Cells in G1 can, before committing to DNA replication, enter a quiescent state, called G0 [25].  

 

 

 

 

 

 

 

 

 

 

 

 

Progression through each cell-cycle phase and transition from one phase to the next are 

monitored by specific checkpoints, which maintain the correct order of events [25-26]. If these 

sensors detect aberrant or incomplete cell-cycle events, checkpoint pathways relay a signal that 

can lead to cell cycle arrest until the problem is resolved [27-28]. These checkpoints are 

governed by a tight relationship of specific Cdks [29], serine/threonine kinases that must bind to 

cyclin proteins to become active [30] and regulate the cell cycle division [1]. Cdks are required 

for the G1 to S phase cell cycle transition, initiation of DNA replication, the G2 to M phase cell 

cycle transition, and initiation of multiple mitotic events [31]. Cks proteins bind a subset of Cdks 

with high affinity at a position remote from the ATP and cyclin binding sites, functioning as 

activating partners. However, unlike cyclins, they are not required for the general activation of the 

Cdk activity [4], but seem to modulate substrate choice or the extent of phosphorylation [1]. 

Figure 1. Cell Cycle regulation in mammals. Cyclins D are synthesized in response to mitogenic 

signals and they direct bind CDK4 (and/or CDK6) to phosphorylate pocket proteins. CDK2–cyclin E 

functions at the G1/S transition to trigger chromosomal DNA replication and to initiate centrosome 

duplication. The longer-lived CDK2–cyclin A complex collaborates with CDK2–cyclin E to regulate DNA 

replication both positively and negatively thus that DNA is only replicated once. The final wave of 

CDK1–cyclin B activity reorganizes the cell for mitosis (Moore (2013) [26]). 
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Cks proteins are structurally and functionally conserved in eukaryotes, and share over 

80% sequence identity [4, 22, 32-35]. The Cks structure consists of a four-stranded β-sheet 

capped at one end by two or three short α-helices and a highly conserved sequence, the so-

called “hinge loop” that links the exchanged β-strand with the rest of the protein [5]. The Cdk-

binding and phosphate-binding surfaces are also conserved in Cks proteins. In contrast, the 

major structural differences are located on the two α helices and also at the carboxyl terminus, 

which generate a largely contiguous surface. It is likely that these regions perform Cks-specific 

functions [1, 3]. 

It has been shown that the yeast Cks1p and Cdk1 are involved in chromatin remodeling 

and play a role in gene expression [36], and that one function of Cdk1/Cks1p and the 19S 

subunit of the proteasome is to evict nucleosomes from chromatin in the context of gene 

induction [37]. A role for Cks1p in cyclin B degradation has been suggested in S. cerevisiae. Both 

genetic and biochemical data indicate that Cks1p is required for efficient proteasomal targeting of 

ubiquitinated cyclin B [33]. 

Despite being 87% similar, Cks proteins in mammalian can have specific functions [1, 3]. 

For example, Cks1 plays an important role in facilitating the ubiquitin-mediated proteolysis of 

p27, a cyclin-dependent kinase inhibitor, through interaction with Skp2 (Figure 2) [38]. Cks1 is 

part of the substrate-binding surface, and is necessary for efficient ubiquitination of T187-

phosphorylated p27kip1 [11, 39]. Tissues from mice lacking Cks1 accumulate p27Kip1 and exhibit 

proliferative defects. Accordingly, Cks1-/- mice exhibit a small body size, resembling the size 

phenotype of Skp2-/- mice. Overexpression of Cks1, in general, is correlated with decreased p27 

levels [40], which are associated with high aggressiveness, poor prognosis and aggressive 

behavior in a large variety of malignant tumors [13, 39]. However, Cks1 supports 

hepatocarcinogenesis independently of Skp2, indicating it can play a separate role in 

carcinogenesis [41]. In contrast, Cks2 seems to counter Cks1 and stabilize p27; absence of 

Cks2 results in increased cyclin A/Cdk2 activity, shortening of the cell cycle, and DNA damage 

[34]. Cks2 is also essential for the first metaphase/anaphase transition of meiosis [22, 35].  
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Cks proteins: Potential link to apoptosis 

There is some indication that modulation of Cks proteins levels can impact apoptosis in 

select mammalian cell lines. Knockdown of Cks1 expression inhibited the growth of oral 

squamous cell cancer cells both in cultured cells and in vivo [11] and increased the activity of 

caspase 3, promoting apoptosis of breast cancer cells [42]. Inhibition of Cks1 by siRNA also 

induced accumulation of cells at the G2/M phase and apoptosis in Cks1-overexpressing lung 

cancer cells, but not in normal lung fibroblasts [6]. Down-regulation of Cks2 expression inhibited 

cell proliferation, colony formation and tumorigenesis by suppressing cell cycle progression and 

enhancing the susceptibility of cholangiocarcinoma cells to Bax-mediated mitochondrial caspase-

dependent apoptosis [17]. In prostate tumor cells, knockdown of Cks2 expression induced 

apoptosis in vitro and compromised tumorigenic activity of the cells in vivo [22]. Additionally, 

knockdown of both Cks1 and Cks2 in malignant prostate tumor cells inhibited cell growth, 

anchorage-independent growth, and migration activity [22]. However, due to the lack of focused 

research on this subject, it is still not clear what role Cks proteins play in apoptosis, and 

especially if overexpression of Cks1 or Cks2 does indeed protect cells from undergoing apoptosis, 

Figure 2. Skp2-dependent degradation of p27. After phosporylation of p27
Kip1

 at T187 by cyclin 

E/A-Cdk2, p27
Kip1

 is recognized by Skp2 and Cks1, which stimulates its targeting for ubiquitylation by 

the SCF
Skp2

 complex. The ubiquitylated p27
Kip1

 is then rapidly destroyed by the proteasome, allowing the 

activity of cyclin E/A-Cdk2 and progression to the S phase (Hershko (2008) [38]). 
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particularly in response to antitumor drugs. A role of Cks proteins in apoptosis has thus yet to be 

explored as a target in cancer therapy. 

 

 

The importance of apoptosis in cancer therapy 

Apoptosis is an important process in normal organ development and cellular regulation, 

playing a role in a variety of physiological and pathological conditions [43]. Apoptosis is also an 

important variable in cancer development, prevention and therapy [44]. It is well-established that 

a large number of anticancer agents induce apoptosis, and that disruption of apoptosis programs 

can reduce treatment sensitivity [45]. Indeed, abundant therapeutic opportunities have been 

uncovered by investigations of the fundamental mechanisms of apoptosis regulation and 

identification of the various cell survival genes that become de-regulated in tumors [46]. Since 

apoptotic programs can be manipulated to produce massive changes in cell death, apoptosis 

regulators are potential drug targets. Two observations suggest that such strategies are feasible. 

Firstly, most anti-apoptotic mutations act relatively upstream in the program, implying that tumor 

cells retain the machinery and latent potential for apoptosis. Secondly, tumor-specific alterations 

in apoptotic programs provide opportunities to target cell death in a selective manner. Several 

new strategies have been developed: for instance, apoptosis can be impaired by dominant 

oncogenes, and agents that inhibit their anti-apoptotic function can lead to a remarkable increase 

in cell death. In addition, hyperactivation of cell survival signaling may accompany tumor 

development, and these pathways are particularly exciting targets for small molecule inhibition. 

When apoptosis is lost by a recessive mutation, restoring the dysfunctional gene or activity can 

promote massive cell death. Indeed, strategies using this approach are currently in clinical trials. 

By enhancing the effects of pro-apoptotic mutations, it is also possible to directly harness the pro-

apoptotic forces produced by certain oncogenic mutations to selectively destroy tumor cells [45].  

In past years, there has been an extraordinary increase in the understanding of 

apoptosis, and its contribution to cancer development and cancer therapy. It seems likely that 

rational strategies to manipulate cell suicide programs will produce new therapies that are less 

toxic and mutagenic than current treatments [45]. 
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Apoptosis regulation 

The term apoptosis stems from the Greek language, to describe a process reminiscent of 

the “dropping off” or “falling off” of petals from flowers, or leaves from trees [47]. Apoptosis is a 

type of programmed cell death (PCD), categorized as a type of cell death that is not accidental 

(necrosis), but a genetically controlled sequence of steps that lead to morphological and 

biochemical changes [48], involving the cytoplasm, nucleus and plasma membrane [49]. There 

are particular morphological changes in the apoptotic process: rounding of the cell, retraction of 

pseudopodes, reduction in cellular volume, condensation of chromatin, fragmentation of the 

nucleus, plasma membrane blebbing and maintenance of an intact plasma membrane until the 

late stages of death [44, 50-54]. In contrast, during accidental necrosis, cells first swell, and then 

the plasma membrane collapses and cells are rapidly lysed, resulting in damage to neighboring 

cells and a strong inflammatory response in the corresponding tissue [55]. 

The apoptotic process is mediated by two classical pathways: the extrinsic and intrinsic 

pathways, which are activated by the binding of ligands to death receptors, or by stress triggered 

by intrinsic factors, such as oncogenes, exposure to irradiation and other environmental stresses, 

respectively. 

 

I. Extrinsic apoptosis  

The term extrinsic apoptosis has been used to designate apoptotic cell death induced by 

extracellular stress signals that are received and propagated by specific transmembrane 

receptors. Extrinsic apoptosis can be initiated by the binding of lethal ligands, such as FAS/CD95 

ligand (FASL/CD95L), tumor necrosis factor α (TNFα) and TNF ligand superfamily, to various 

death receptors. Alternatively, an extrinsic pro-apoptotic signal can be dispatched by the netrin 

receptors, which only exercise lethal functions when the concentration of their specific ligands is 

lower than a critical threshold level [56-57]. 

There are several transmembrane proteins that, at least under special circumstances, 

can transduce lethal signals in response to ligand binding. Most of these proteins have a double 

function, depending on the cellular context and triggering stimulus, and they can convey either 

pro-survival or pro-death signals [56]. A signaling pathway leading to extrinsic apoptosis is 

illustrated by FAS ligation (Figure 3). In the absence of FAS ligand (FASL), FAS subunits 

spontaneously assemble at the plasma membrane to produce trimers. Ligand binding stabilizes 

these trimers while at the same time inducing a conformational change that allows the assembly 
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of a dynamic multiprotein complex at the cytosolic tail of the receptor. The resulting 

supramolecular complex, which has been called death-inducing signaling complex (DISC), 

constitutes a platform that regulates the activation of caspase -8 (or -10) [49, 56, 58]. In some 

cell types, such as lymphocytes, so-called type I cells, active caspase -8 directly catalyzes the 

proteolytic maturation of caspase -3, triggering the executioner phase of caspase-dependent 

apoptosis in a mitochondrion-independent mode. In other cells, type II cells, including 

hepatocytes and pancreatic b cells, caspase -8 mediates the proteolytic cleavage of BH3-

interacting domain death agonist (Bid), leading to the generation of a mitochondrion-

permeabilizing fragment, known as truncated Bid (tBid). Therefore, while type I cells undergo 

extrinsic apoptosis irrespective of any contribution by mitochondria, type II cells give way to the 

activation of death receptors while showing signs of mitochondrial outer membrane 

permeabilization (MOMP), including the dissipation of mitochondrial transmembrane potential 

(Δψm) and the release of toxic proteins that are normally retained within the mitochondrial 

intermembrane space [56]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Extrinsic apoptosis. FASL: FAS ligand; FADD: FAS-associated protein with a death 

domain; cIAPs: cellular Inhibitor of Apoptosis Proteins; DISC: Death Inducing Signaling Complex; 

MOMP: Mitochondrial Outer Membrane Permeabilization; DAPKI: Death-associated Protein Kinase 1; 

PP2A: Protein Phosphatase 2A (Galluzzi et al (2012) [56]). 
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Extrinsic apoptosis features one of three major lethal signaling cascades: (i) death 

receptor signaling and activation of the caspase-8 (or -10)  caspase-3 cascade; (ii) death 

receptor signaling and activation of the caspase-8  tBid  Mitochondrial outer membrane 

permeabilization  caspase-9  caspase-3 pathway; or (iii) ligand deprivation-induced 

dependence receptor signaling followed by (direct or mitochondrial outer membrane 

permeabilization-dependent) activation of the caspase-9  caspase-3 cascade. Extrinsic 

apoptosis is thus a caspase-dependent cell death process, and hence can be suppressed, at 

least theoretically, by pancaspase chemical inhibitors. [56].  

 

II. Intrinsic apoptosis 

Apoptosis can also be triggered by an excess of intracellular stress, including DNA 

damage, oxidative stress, cytosolic Ca2+ accumulation, excitotoxicity, related to glutamate receptor 

overstimulation in the nervous system, accumulation of unfolded proteins in the endoplasmic 

reticulum and many others [56, 59]. Although the processes that trigger intrinsic apoptosis are 

highly heterogeneous as far as the initiating stimuli are concerned, they are all associated with a 

mitochondrion-centered control mechanism.  

Intrinsic apoptosis is mediated by MOMP and thus is associated with generalized and 

irreversible Δψm dissipation, release of mitochondrial intermembrane space proteins into the 

cytosol (and their possible relocalization to other subcellular compartments), and respiratory 

chain inhibition [56]. The connection between the extrinsic and intrinsic pathways and 

amplification of death signal is mediated by Bid, a pro-apoptotic Bcl-2 family member (Figure 4). 

Bid is cleaved by caspase-8 and when the truncated form is translocated into the mitochondria it 

acts to induce MOMP and release of pro-apoptotic proteins [60]. MOMP can occur due to the 

pore-forming activity of pro-apoptotic members of the Bcl-2 protein family such as Bak and Bax 

[61]. Bcl-2 and Bcl-xL can directly induce changes in conformation of the proteins Bax and Bak, 

preventing their activation and oligomerization, and blocking the release of pro-apoptotic 

mitochondrial factors that lead to apoptosis [62]. Another model suggests a permeability 

transition pore (PTP) that is formed, which allows the passage of solutes and water into the 

mitochondria matrix, causing mitochondrial depolarization, uncoupling of oxidative 

phosphorylation and osmotic swelling. The precise localization and composition of the PTP has 

not been fully determined, but it appears to be localized at the site of contact between the inner 

and outer mitochondrial membranes and to contain as main components as the voltage-
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dependent anion channel (VDAC), the adenine nucleotide translocator (ANT), and cyclophilin D 

(CypD) [63]. After MOMP, cytosolic cytochrome c participates with apoptotic proteasome 

activating factor 1 (APAF1), cytoplasmic adaptor protein, and dATP in the formation of the 

apoptosome, which triggers the caspase-9  caspase-3 proteolytic cascade (Figure 4) [64].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Independently of the precise biochemical and physical mechanisms through which it 

develops, irreversible mitochondrial outer membrane permeabilization affecting most 

mitochondria within a single cell has multiple lethal consequences: the dissipation of the Δψm, 

with cessation of mitochondrial ATP synthesis and Δψm-dependent transport activities; the release 

of pro-apoptotic proteins that circulate freely in the mitochondrial intermembrane space into the 

cytosol, like cytochrome c, apoptosis inducing factor (AIF), endonuclease G, direct IAP-binding 

protein with low pI (DIABLO, also known as second mitochondria-derived activator of caspases, 

SMAC) and high temperature requirement protein A2 (HTRA2); and the inhibition of the 

Figure 4. Intrinsic apoptosis. MOMP: Mitochondrial Outer Membrane Permeabilization; Δψm: 

mitochondrial transmembrane potential; ROS: Reactive Oxygen Species; IMS: Mitochondrial 

Intermembrane Space; CYTC: cytochrome c; DIABLO: Direct IAP-binding protein with low pI; HTRA2: 

High Temperature Requirement Protein A2; IAP: Inhibitor of Apoptosis Protein; AIF: Apoptosis Inducing 

Factor; ENDOG: endonuclease G; IM: Mitochondrial Inner Membrane; OM: Mitochondrial Outer 

Membrane; PTPC: Permeability Transition Pore Complex (Galluzi et al (2012) [56]). 
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respiratory chain (favored by the loss of cytochrome c), eliciting or aggravating reactive oxygen 

species (ROS) overproduction and hence activating a feed-forward circuit for the amplification of 

the apoptotic signal [56, 65-66].  

 

 

Saccharomyces cerevisiae as model system to study apoptosis regulation 

Like mammalian cells, yeast cells can trigger apoptosis showing characteristic markers, 

such as DNA fragmentation and chromatin condensation, externalization of phosphatidylserine to 

the outer leaflet of the plasma membrane and cytochrome c release from mitochondria [67]. 

Accumulating evidence points toward the phylogenetic conservation of the core machinery and 

the core regulators of cell death between yeast and mammals. This entails the possibility of using 

yeast as a research tool that can provide new hints to elucidation of cell death pathways [68].   

An apoptotic phenotype in yeast was first described in a cdc28 temperature-sensitive 

mutant (Figure 5) [67]. When incubated above the restrictive temperature, cdc48 mutant cells 

showed an apoptotic phenotype characterized by phosphatidylserine exposure, DNA damage, 

chromatin condensation and fragmentation, release of cytochrome c and ROS production [69-

70]. Since then, CDC48, an essential gene that encodes an AAA-ATPase localized in the 

endoplasmic reticulum and necessary for vesicle trafficking/translocation of ubiquitinated 

proteins from the endoplasmic reticulum to the proteasome for degradation [67], has been 

confirmed as a regulator of mammalian apoptosis, with anti-apoptotic functions, particularly 

apparent in neuronal pathology [71]. Various other yeast orthologues of vital apoptotic regulators 

have been identified, such as the caspase orthologue YCA1 (Figure 5) [72]. Yca1p belongs to the 

family of metacaspases that are found in fungi, plants and protists [68], but not in organisms 

containing “classical” caspases, and might represent an alternative form of caspase that has 

developed from the same ancient ancestor as human caspases [67]. Several studies also 

identified yeast orthologs of several other members of the mammalian apoptotic machinery, 

including AIF [73], inhibitor of apoptosis protein (IAP) [74], the apoptotic serine protease 

HTRA2/Omi [75] and endonuclease G [76].  
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Regulators such as Apaf-1 and most members of the Bcl-2 family proteins seem to be 

absent in yeast. Until now, only a putative yeast BH3-only protein was identified. Ybh3p 

translocates to the mitochondria and is capable of mediating the mitochondrial pathway of 

apoptosis [77]. However, heterologous expression of Bax in yeast leads to apoptotic cell death 

that can be prevented by heterologous expression of anti-apoptotic Bcl-2 and Bcl-xL, suggesting 

the function of Bcl-2 family proteins is potentially conserved in yeast [78]. 

 

 

  

Figure 5. The apoptotic yeast cell. Red question marks indicate pathways that are known in 

mammals but not in yeast thus far (Madeo et al (2004) [67]). 
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The major objective of this work is to determine whether Cks proteins have a specific role 

in apoptosis that could contribute to tumorigenesis and/or resistance of Cks-overexpressing 

tumors to treatment or prevention of cancer. The yeast apoptotic model has already 

demonstrated its potential for application in the human system, as evidenced by the increasing 

number of studies using yeast as a model for neurotoxicity and cancer. Since most functions 

attributed to Cks proteins are also conserved in yeast, and mammalian Cks proteins can 

functionally substitute for yeast Cks1p, we aimed to use S. cerevisiae as a model system to 

determine: 

 

I: Whether deletion of CKS1 alters apoptotic signaling in yeast; 

 

II: Whether overexpression of Cks proteins alters apoptotic signaling in yeast. 
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Reagents 

Yeast nitrogen base, bactopeptone and tryptone were purchased from Difco Laboratories 

and yeast extract from Cultimed. The carbon source used was glucose (Fisher). All aminoacids 

were purchased from Formedium. 5-Fluorouracil (5-FU) (Sigma) was dissolved in dimethyl 

sulfoxide (DMSO) and keep at 4ºC. Cisplatin (Sigma) was stored in aliquots of up to 2mg in the 

dark and dissolved in the medium immediately prior to use. Hydroxyurea (Formedium) was 

dissolved in the medium immediately before use.  

 

 

Strains and plasmids 

All Saccharomyces cerevisiae strains used in this study and respective phenotypes are 

listed in table 1. Plasmids YEp13 and YEp13-CKS1 [79], and pYX232-mtGFP [80], expressing a 

GFP tagged with a mitochondrial targeting sequence, have been previously described. 

All plasmids were amplified by transforming 100 ng of DNA into Escherichia coli DH5α 

chemically competent cells by transformation using standard procedures (reviewed in [81]) and 

selected on Luria Bertani (LB) medium [LB: 1 % (w/v) tryptone, 0,5 % (w/v) yeast extract, 1 % 

(w/v) NaCl and 2 % (w/v) agar] supplemented with 100 µg/mL ampicillin. One colony was 

inoculated in LB-Amp media, cultures were grown overnight, and DNA was extracted using the 

GenElute Plasmid Miniprep kit according to manufacturer’s instructions (Sigma). 

BF264-15D (15D) and cks1Δ cells were transformed with plasmid YEp13, YEp13-CKS1 

or pYX232-mtGFP using the lithium acetate method [82]. Transformants were selected on 

Synthetic Complete (SC) medium [SC: 0.17 % (w/v) Yeast nitrogen base without aminoacids and 

ammonium sulfate, 0.5 % (w/v) ammonium sulfate, 0.14 % (w/v), dropout mixture lacking 

histidine, leucine, tryptophan and uracil, 0.008 % (w/v) histidine, 0.04 % (w/v) leucine, 0.008 % 

(w/v) Tryptophan and 0.008 % (w/v) uracil] lacking the appropriate aminoacids plus 2 % (w/v) of 

carbon source and 1,5 % agar. 
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Table 1. S. cerevisiae strains used in this work 

 

 

Fluorescence Microscopy 

Cells were harvested by centrifugation and resuspended in 1x PBS (80 mM Na2HPO4, 20 

mM NAH2PO4 and 100 mM NaCl). Cells were visualized in a Leica Microsystems DM5000B 

epifluorescence microscope using appropriate filter settings with a 100x oil immersion objective. 

Images were acquired with a Leica DCF350FX digital camera and processed with LAS AF Leica 

Microsystems software. 

 

 

Growth conditions and treatments 

S. cerevisiae strains 15D and cks1Δ were grown overnight in rich medium [YPD: 2 % 

(w/v) bactopeptone, 1 % (w/v) yeast extract, 2 % (w/v) glucose] at 30ºC, 200 rpm. Cells were 

collected by centrifugation at OD
600

 0,5-0,8 and resuspended in fresh YPD medium (pH 3.0 set 

with HCl in the case of acetic acid treatments) with or without 120 mM acetic acid (AA), 0,025 % 

methyl methanesulphonate (MMS), 0,2 mg/mL cis-diamminedichloroplatinum (II) (cDDP) or 2 % 

hydrogen peroxide (H2O2) (in this case cells were diluted to an OD
600

 ~ 0,2) for up to 180 min, at 

30ºC, 200 rpm. Growth conditions and treatments of transformed strains were performed in the 

same manner, but using SC medium lacking the appropriate aminoacid instead of YPD. 

 

Strain Phenotype Reference 

BF264-15D Mat a, leu2, trp1, ade1, his3 [83] 

cks1Δ BF264-15D cks1Δ :: KanMX4 [84] 

15D YEp13 BF264-15D harboring YEp13 This study 

15D YEp13-CKS1 BF264-15D harboring YEp13-CKS1 This study 

cks1Δ YEp13 cks1Δ harboring YEp13 This study 

cks1Δ YEp13-CKS1 cks1Δ harboring YEp13-CKS1 This study 

15D pYX232-mtGFP BF264-15D harboring pYX232-mtGFP This study 

cks1Δ pYX232-mtGFP cks1Δ harboring pYX232-mtGFP This study 
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Viability assays 

I. Colony-forming units (c.f.u.) 

 At specific time points, cells were collected by centrifugation, ressuspended in water, 

diluted and plated on YPDA plates [YPDA: 2 % (w/v) bactopeptone, 1 % (w/v) yeast extract, 2 % 

(w/v) glucose and 1,5 % (w/v) agar]. After 2 days of incubation at 30ºC, colony-forming units 

(c.f.u.) were counted. OD
600

 was measured for each sample and c.f.u. at each time point was 

normalized to the OD
600

. Percentages of viability were calculated in relation to time 0 

(corresponding to 100 % of viability). Statistical analysis and cell viability quantification were 

performed with GraphPad Prism 6 software. 

 

II. Spot assays  

For semi-quantitative viability assays, 4 µL of cell suspensions and of ten-fold serial 

dilutions (10-1 to 10-4) were spotted onto YPDA plates. After 2 days of incubation at 30ºC, plates 

were photographed using a ChemiDoc XRS (BioRad) and Quantity One® software (BioRad). 

 

III. Chronic exposure to DNA damaging agents 

 Strains were grown overnight in liquid medium, cells were collected by centrifugation at 

OD
600

 0,5-0,8 and resuspended in water to an OD of 0,5. 4 µL of cells suspensions and of ten-fold 

serial dilutions (10-1 to 10-4) were spotted onto YPDA or SCGLU (in case of exposure to 5-FU or 

cDDP) plates, containing different concentrations of HU (0, 200, 400 and 600 mM), MMS (0, 

0075 and 0,015 %), 5-FU (0, 200 and 500 µg/mL) or cDDP (0, 50 and 100 µg/mL). After 2 

days of incubation at 30ºC, plates were photographed using a ChemiDoc XRS (BioRad) and 

Quantity One® software (BioRad). 

 

 

Cell cycle analysis 

 For cell cycle analysis, cells were collected, fixed in 70 % (v/v) ethanol and stored at 4ºC. 

Then, cells were washed and resuspended in 50 mM sodium citrate (pH 7.5). RNAse A (Sigma-

Aldrich) and proteinase K (NZTech) were added to a final concentration of 0,25 mg/mL and 1 

mg/mL, respectively, and samples incubated overnight at 37ºC. Afterwards, cells were 

centrifuged and resuspended in 50 mM sodium citrate buffer  (pH 7.5) containing 1 µM of sytox 

green (Molecular probes) and kept overnight in the dark at 4ºC. Samples were sonicated briefly 
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(3 impulses 30 %, 1-2 sec each) prior to analysis in an Epics® XL™ flow cytometer (Beckman 

Coulter), with excitation and emission wavelengths of 497nm and 520nm, respectively (FL-1 

channel). Analysis of the results was performed using FlowJo 7.6 software (Tree Star, Inc.). 

 

 

Detection of apoptotic markers 

I. Plasma membrane integrity 

50 µL of cells were collected at specific time points, centrifuged and resuspended in 500 

µL 1x PBS. Propidium iodide (PI) (Sigma) was added to a final concentration of 2 µg/mL, and 

samples incubated for 10 minutes in the dark. Fluorescence was detected in an Epics® XL™ flow 

cytometer (Beckman Coulter). Cells with red fluorescence (FL-3 channel (488/620nm)) were 

considered to contain plasma membrane disruption. 

 

II. Production of ROS 

50 µL of cells were collected at specific time points, diluted into 450 µL 1x PBS and 

incubated with 5 µg/mL dihydroethidium (DHE) (Molecular Probes), for detection of superoxide 

anion, for 30 min in the dark. Fluorescence was measured in an Epics® XL™ flow cytometer 

(Beckman Coulter). Cells with red fluorescence (FL-3 channel (488/620nm)) were considered to 

contain superoxide anion. 
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Deletion of yeast CKS1 does not alter mitochondrial morphology 

It has previously been reported that depletion of Cks1/2 in murine embryonic fibroblasts 

led to a significant increased in the number of fragmented mitochondria, which could affect a 

mitochondrial-mediated apoptotic pathway [85]. To evaluate whether the absence of yeast CKS1 

altered mitochondria morphology, wild-type strain 15D and strain cks1Δ were transformed with a 

plasmid expressing a mitochondrial green fluorescent protein and visualized by fluorescence 

microscopy. As shown in Figure 6, even though cks1Δ cells had an “aberrant” cellular 

morphology, the tubular mitochondrial network was visible in both strains and no difference in 

mitochondrial morphology was found. 

 

  

Figure 6. Morphology of S. cerevisiae 15D and cks1Δ cells. Strains 15D and cks1Δ were 

transformed with pYX232-mtGFP and visualized by fluorescence microscopy (A) DIC, (B) GFP 

fluorescence. 
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Deletion of yeast CKS1 does not alter sensitivity to the yeast apoptosis inducers 

acetic acid or hydrogen peroxide 

In order to determine whether CKS1 could play a general role in the apoptotic process, 

we first tested if absence of Cks1p affected viability of S. cerevisiae cells exposed to the most 

commonly used yeast apoptosis inducers, acetic acid and hydrogen peroxide. 

Acetic acid is a weak acid that can be formed as an end sub-product of alcoholic 

fermentation by S. cerevisiae [86].  After acetic acid enters the cell, it dissociates (when the 

intracellular pH is higher than the extracellular pH), compromising cell viability [87], leading to 

the intracellular acidification [88] and induction of apoptosis [89]. Exposure of S. cerevisiae to 

low doses to acetic acid at pH 3.0 results in cell death with features of mammalian apoptosis. 

Cells exhibit chromatin condensation, exposure of phosphatidylserine and DNA strand breaks 

[89]. Like in mammalian cells, yeast apoptosis induced by acetic acid was linked to 

mitochondria. It was shown that acetic acid can lead to the release of cytochrome c, ROS 

accumulation, transient hyperpolarization of mitochondria followed by depolarization, decrease of 

mitochondrial respiration associated with decrease in cytochrome oxidase activity [90] and 

mitochondrial ultrastructural changes, namely decrease of cristae number, formation of myelinic 

bodies and swelling [91]. 

Hydrogen peroxide is a reactive oxygen species described as an apoptotic stimulus at low 

doses [92], and is known to induce apoptosis both in S. cerevisiae and in mammalian cells [93]. 

High concentrations of hydrogen peroxide result in cell death associated with disintegration of 

intracellular structures but without the phenotypic markers of apoptosis [92]. Apoptotic cell death 

induced by hydrogen peroxide in mammalian cells, promotes decrease in the intracellular 

superoxide anion (O2

-) concentration, reduction and acidification of the intracellular melieu, 

activation of caspases [94], namely caspase-9 and -3, release of cytochrome c [95], among 

others. In yeast, apoptosis induced by hydrogen peroxide is accompanied by accumulation of 

ROS [92],  phosphatidylserine exposure [96], cytochrome c release [96], DNA fragmentation 

[92], and plasma membrane vesicles reminiscent of blebbing observed in mammalian cells [96]. 

Strain 15D and cks1Δ were exposed to apoptosis-inducing concentrations of acetic acid 

and hydrogen peroxide for up 180 min, at 30ºC, and viability assessed by semi-quantitative spot 

assay and c.f.u. counts. 
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Figure 7. Sensitivity of wild-type strain 15D and deleted strain cks1Δ to AA. Exponential 

cultures of 15D and cks1Δ strains grown in YPD medium at 30ºC, were transferred to fresh YPD 

medium (pH 3) with (+AA) or without (-AA) 120 mM AA. Cells were grown for 180 minutes at 30°C. 

Samples were taken after 0, 60, 120 and 180 min. (A) Serial dilutions (1:10) were spotted onto YPD 

plates and incubated for 2 days at 30ºC. (B) For c.f.u. measurements, dilutions were plated on YPD 

plates, incubated for 2 days at 30°C and colonies counted. Values represent means and standard 

deviations of 3 independent experiments. (C) OD
600 

of the cultures. 
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There were no differences in sensitivity of the wild-type strain 15D and the strain cks1Δ 

to acetic acid (Figure 7B) or hydrogen peroxide (Figure 8B), indicating that Cks1p is not involved 

in a general stress response. 

 

 

Deletion of yeast CKS1 results in differential sensitivity to DNA damaging agents 

Our global aim is to determine whether Cks proteins have a role in apoptosis contributing 

to tumorigenesis and/or resistance of Cks-overexpressing tumors to treatment regimens. We 

therefore sought to determine whether Cks1p plays a role in the DNA damage response, as DNA 

damaging agents are among the most commonly used anti-cancer agents.  

Figure 8. Sensitivity of wild-type strain 15D and deleted strain cks1Δ to H2O2. Exponential 

cultures of 15D and cks1Δ strains grown in YPD medium at 30ºC, were transferred to fresh YPD 

medium with (+H2O2) or without (-H2O2) 2 % H2O2. Cells were grown for 180 minutes at 30°C. Samples 

were taken after 0, 60, 120 and 180 min. (A) Serial dilutions (1:10) were spotted onto YPD plates and 

incubated for 2 days at 30ºC. (B) For c.f.u. measurements, dilutions were plated on YPD plates, 

incubated for 2 days at 30°C and colonies counted. Values represent means and standard deviations of 

3 independent experiments. (C) OD
600

 of the cultures. 
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It had previously been reported that deletion of yeast CKS1 renders cells more sensitive 

to growth in the presence of hydroxyurea, but not to UV irradiation [84]. We next tested whether 

cks1Δ mutants were sensitive to other DNA damaging agents. 

The DNA alkylating agent methyl methanesulfonate causes base mispairing and 

replication blocks [97-98] and induces both inter-chromosomal and intra-chromosomal 

recombination [97]. Exposure to MMS causes a checkpoint-independent reduction in the rate of 

replication fork progression, likely due to a physical impediment of fork progression caused by 

alkylated DNA or some intermediate in lesion processing [98]. Strains 15D and cks1Δ were 

exposed to MMS for up to 180 min, at 30ºC and viability assessed by semi-quantitative spot 

assay and c.f.u. counts.  

 

 

 

 

 

cks1Δ cells were only mildly more sensitive to transient MMS exposure than the wild-type 

strain, though there were no significant differences (Figure 9B). However, growth of the cks1Δ 

Figure 9. Sensitivity of wild-type strain 15D and deleted strain cks1Δ to MMS. Exponential 

cultures of 15D and cks1Δ strains grown in YPD medium at 30ºC, were transferred to fresh YPD 

medium with (+MMS) or without (-MMS) 0,025 % MMS. Cells were grown for 180 minutes at 30°C. 

Samples were taken after 0, 60, 120 and 180 min. (A) Serial dilutions (1:10) were spotted onto YPD 

plates and incubated for 2 days at 30ºC. (B) For c.f.u. measurements, dilutions were plated on YPD 

plates, incubated for 2 days at 30°C and colonies counted. Values represent means and standard 

deviations of 3 independent experiments. (C) OD
600

 of the cultures. (D) Serial dilutions (1:10) were 

spotted onto YPD plates containing 0, 0,0075 and 0,015 % MMS and incubated for 2 days at 30°C. 
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strain on plates containing MMS was severely impaired (Figure 9D), indicating Cks1p is important 

for the ability of cells to survive chronic exposure to MMS, but not to overcome its short-term 

effects. 

5-Fluorouracil is a pyrimidine analog antimetabolite commonly used in cancer treatment 

[99-102]. The cytotoxic mechanism of 5-FU occurs through inhibition of thymidylate synthase 

(TS), an enzyme involved in nucleotide synthesis [99], as well as through incorporation of 

fluoronucleotides into DNA and RNA, and disruption of RNA processing [101-102]. Since yeast 

lacks thymidine kinase, and therefore is unable to convert 5-FU into FdUMP, and inhibit TS, only 

the latter processes occur [103]. In order to determine whether yeast Cks1p affects sensitivity to 

5-FU, strains 15D and cks1Δ were exposed to 5-FU for up to 24 hours, at 30ºC, and viability 

assessed by semi-quantitative spot assay. 

 

 

 

 

 

 

 

Figure 10. Sensitivity of wild-type strain 15D and deleted strain cks1Δ to 5-FU. Exponential 

cultures of 15D and cks1Δ strains grown in SC medium at 30ºC, were transferred to fresh SC medium 

with (+5FU) or without (-5FU) 10 mM 5-FU. Cells were grown for 24 hours at 30°C. Samples were 

taken after 0, 7 and 24 hours. (A) Serial dilutions (1:10) were spotted onto YPD plates and incubated 

for 2 days at 30ºC. (B) Samples were incubated with PI (5 µg/mL) and fluorescence measured by flow 

cytometry. Increase of cells with PI staining is shown. (C) Samples are stained with DHE (5 µg/mL) 

and the fluorescence measured by flow cytometry. Increase of cells stained with DHE is shown.  (D) 

OD
600

 of the cultures. (E) Serial dilutions (1:10) were spotted onto SC plates containing 0, 200 and 500 

µg/mL 5-FU and incubated for 2 days at 30°C. 
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As seen in figure 10, there was no difference in the sensitivity of wild-type strain 15D and 

strain cks1Δ to 5-FU. Exposure to 5-FU did not lead to an increase in the number of cells stained 

with DHE or PI in comparison with non-treated cells (Figure 10B and 10C), indicating it does not 

cause an accumulation of ROS, typical of mitochondria-mediated apoptosis, but also does not 

lead to loss of plasma membrane integrity, typical of necrosis. Further studies will be required to 

characterize the mechanism mediating 5-FU-induced cell death in yeast, and confirm whether it 

is an active process. Nonetheless, there was no difference in the sensitivity of both strains to 

long-term exposure to 5-FU (Figure 10E), indicating CKS1 does not play a role in the cellular 

response to 5-FU. 

Cisplatin is a platinum-based chemotherapy drug with activity against a wide spectrum of 

tumors [104-108]. It acts by forming a platinum complex inside the cell which binds to DNA and 

forms adducts, leading to inter-strand and intra-strand DNA cross-links, as well as DNA-protein 

cross-links [107, 109-111]. However, nuclear DNA is not the only target of cisplatin. It also binds 

to mitochondrial DNA, interacts with phospholipids and phosphatidylserine in membranes, 

disrupts the cytoskeleton and affects the polymerization of actin [112]. When bound to DNA, 

cisplatin inhibits DNA replication and chain elongation [113-114]. Cunha et al, showed that 

cisplatin induces an atypical programmed cell death pathway in S. cerevisiae, which is active, but 

mitochondria-independent, and that proteasome inhibition protects yeast cell from cisplatin-

induce cell death [115]. In order to determine whether deletion of CKS1 affects sensitivity to 

cisplatin, wild-type strain 15D and cks1Δ strain were exposed to cisplatin for up to 180 min, at 

30ºC and viability assessed by semi-quantitative spot assay and c.f.u. counts. 
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We found that the cks1Δ mutant strain is more sensitive to transient exposure to 

cisplatin than the wild-type strain 15D, which was more significant at time 60 and 120 min, and 

also to growth on plates containing cisplatin (Figure 11B, 11D), demonstrating that Cks1p is 

involved in the cellular resistance to cisplatin. We therefore proceeded to explore whether there 

was any alteration in apoptotic markers. 

Cell membrane damage is considered a marker of necrotic cell death. Therefore, we 

tested if cisplatin-induced cell death in this strain background is accompanied by loss of 

membrane integrity. For this purpose, yeast cells were stained with PI and the fluorescence was 

evaluated by flow cytometry. As described for W303 cells [115], wild-type 15D and cks1Δ cells 

remained impermeable to PI after 180 minutes of exposure to cisplatin (Figure 12A), even 

Figure 11. Sensitivity of wild-type strain 15D and deleted strain cks1Δ to cisplatin. 

Exponential cultures of 15D and cks1Δ strains grown in YPD medium at 30ºC, were transferred to fresh 

YPD medium with (+cDDP) or without (-cDDP) 0,2 mg/mL cisplatin. Cells were grown for 180 minutes 

at 30°C. Samples were taken after 0, 60, 120 and 180 min. (A) Serial dilutions (1:10) were spotted 

onto YPD plates and incubated for 2 days at 30ºC. (B) For c.f.u. measurements, dilutions were plated 

on YPD plates, incubated for 2 days at 30°C and colonies counted. Values represent means and 

standard deviations of 3 independent experiments (**p<0,005). (C) OD600 of the cultures. (D) Serial 

dilutions (1:10) were spotted onto SC plates containing 0, 50 and 100 µg/mL cDDP and incubated for 

2 days at 30°C. 
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though there was a significant loss of cell viability under the same conditions (Figure 11B). This 

indicates cisplatin-induced yeast cell death occurs without loss of membrane integrity, supporting 

the hypothesis that cisplatin-induced death is an active process in both strains, and that the 

increased cell death observed in the cks1Δ mutant is not necrotic in nature. 

 ROS have been widely recognized as crucial cell death regulators and have been 

connected to many of the known apoptotic pathways in yeast [69, 116]. Huang et al (2003) 

showed that DNA damaging agents such as γ-irradiation and cisplatin induce apoptosis in Jurkat 

cells by increased ROS formation, leading to the generation of hydrogen peroxide and superoxide 

anion [117]. However, it has previously been reported that exposure of yeast W303 cells to 

cisplatin did not result in an increased percentage of cells stained with DHE, which detects the 

accumulation of intracellular superoxide anion [115]. In order to test the involvement of ROS in 

cisplatin-induced death in the 15D background, ROS levels were determined by flow cytometry 

using DHE. 

  

We could not detect a significant increase in the percentage of cells stained with DHE 

after exposure to cisplatin (Figure 12B), indicating that, under our experimental conditions and in 

the 15D strain background, cisplatin-induced death is also not mediated by intracellular 

Figure 12. Plasma membrane integrity and ROS accumulation of wild-type strain 15D and 

mutant strain cks1Δ exposed to cisplatin. Exponential cultures of 15D and cks1Δ strains grown 

in YPD medium at 30ºC, were transferred to fresh YPD medium with (+cDDP) or without (-cDDP) 

cisplatin. Cells were grown for 180 minutes at 30°C. Samples were taken after 0, 60, 120 and 180 

min. (A) Incubated with PI (5 µg/mL) and fluorescence measured by flow cytometry. Increase of cells 

with PI staining is shown. (B) Stained with DHE (5 µg/mL) and the fluorescence measured by flow 

cytometry. Increase of cells stained with DHE is shown. Values represent means and standard 

deviations of 3 independent experiments. 
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superoxide anion formation, and that the increased sensitivity of the cks1Δ strain to cisplatin is 

not likely a result of increased ROS levels. 

Sorensen et al (1990) and Grossman et al (1999) reported that DNA cross-links caused 

by cisplatin do not inhibit S-phase but cause a G2/M arrest in S. cerevisiae cells [113, 118]. 

Cunha et al (2013) showed that cisplatin-treated cells had an increased percentage of cells with 

sub-G0/G1 DNA content than untreated cells, especially after recovery in cisplatin-free media 

[115]. We therefore next tested whether the increased sensitivity of cks1Δ cells to cisplatin was 

due to higher levels of DNA fragmentation/degradation. For cell cycle analysis, cells were 

untreated or treated with cisplatin for 240 min, fixed and stained with sytox green, and DNA 

content was analyzed by flow cytometry. Representative histograms are shown in Figure 13A, the 

cell cycle distribution is shown in Figure 13B, and the quantification of the percentage of cells 

with sub G0/G1 DNA content after 240 min of cisplatin exposure and an additional 4 h recovery 

period are shown in Figure 13C.  
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In agreement with published data, we also observed that exposure to cisplatin leads to an 

accumulation of cells in G2/M in both the wild-type strain 15D and strain cks1Δ (Figure 13A and 

13B). The percentage of cells in the sub G0/G1 region was also higher in cisplatin-treated cells 

than in cells grown in cisplatin-free media, both after 240 min of treatment and after a 4 h 

recovery in YPD (Figure 13C). The percentage of 15D and cks1Δ cells in sub G0/G1 was similar 

Figure 13. The effect of cisplatin on cell cycle distribution. Exponential cultures of 15D and 

cks1Δ strains grown in YPD medium at 30ºC, were transferred to fresh YPD medium with (+cDDP) or 

without (-cDDP) 0,2 mg/mL cisplatin. Cells were grown for 240 minutes at 30°C. Samples were taken 

after 0 and 240 min, stained with sytox green (1 µM) and the fluorescence measured by flow cytometry. 

(A) Representative histograms. (B) Bars indicated the frequence (%) of cells in each cell cycle phase. 

(C) Cells were washed and resuspended in fresh medium without cisplatin and grown an additional 4h 

at 30ºC. The percentage of cells with Sub G0/G1 DNA content was measured by flow cytometry. Values 

represent means and standard deviations of 3 independent experiments. 
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after the treatment period, but slightly lower in cks1Δ cells after recovery, despite higher levels of 

cell death (Figure 11B). This difference was statistically significant, showing that the higher 

sensitivity of cks1Δ cells to cisplatin is not due to increased DNA fragmentation/degradation. 

 

 

Expression of yeast CKS1 from a multicopy plasmid does not alter sensitivity to 

cisplatin 

Since deletion of CKS1 resulted in higher sensitivity to cisplatin, it is conceivable that 

overexpression could result in higher resistance, potentially causing the observed higher 

resistance of Cks-overexpressing tumours to therapy. In order to characterize the phenotype of 

overexpression of Cks1p in yeast, strains 15D and cks1Δ were transformed with a multi-copy 

plasmid expressing Cks1 (YEp13-CKS1) and respective empty vector control (YEp13). As 

expected, the “aberrant” morphology of the cks1Δ strain (cks1Δ YEp13) was reversed by 

expressing Cks1p from the YEp13 vector (cks1Δ YEp13-CKS1) (Figure 14). 

 

  

 

 

 
 

 

 

 

 

 

Figure 14. Morphology of S. cerevisiae strains 15D and cks1Δ expressing YEp13 and 

YEp13-CKS1. 
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To test whether overexpression of Cks1p resulted in increased resistance to cisplatin, all 

strains were exposed to cisplatin for up 180 min, at 30ºC and viability assessed by semi-

quantitative spot assay and c.f.u. counts. 

 

 

 

 

 

 

 

 

 

There was no difference in the viability of 15D cells transformed with the empty vector 

and expressing YEp13-CKS1. However, expression of Cks1p in cks1Δ reverted the sensitivity of 

this strain to that of the wild-type strain. This indicates that either overexpression of Cks1p does 

Figure 15. Sensitivity of S. cerevisiae strain 15D and cks1Δ expressing YEp13 and 

YEp13-CKS1. Exponential cultures of 15D YEp13, 15D YEp13-CKS1, cks1Δ YEp13 and cks1Δ 

YEp13-CKS1 strains grown in SCGLU-Leu medium at 30ºC, were transferred to fresh SCGLU-Leu 

medium without (-cDDP) or with (+cDDP) 0,2 mg/mL cDDP. Cells were grown for 180 min at 30°C. 

Samples were taken after 0, 60, 120 and 180 min. (A) Serial dilutions (1:10) were spotted onto YPD 

plates and incubated for 2 days at 30ºC. (B) For c.f.u. measurements, dilutions were plated on YPD 

plates, incubated for 2 days at 30°C and colonies counted. Values represent means and standard 

deviations of 3 independent experiments (* p<0,05; **p<0,005). (C) OD600 of the cultures. 
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not have a phenotype or that expression of Cks1p from the YEp13 vector is not sufficient to 

induce an overexpression phenotype. 

 

 

Expression of yeast CKS1 from a multicopy plasmid does not alter sensitivity to 

hydroxyurea 

Hydroxyurea is a DNA replication inhibitor that represses both the elongation and 

initiation phases of replication [119]. HU inhibits ribonucleoside diphosphate reductase, thereby 

blocking DNA synthesis and repair [120-122]. HU slows down or inhibits S-phase progression 

and can compromise genetic integrity by increasing the rate of recombination [119]. HU also 

induces the generation of reactive oxygen species. The production of ROS induces oxidative 

stress, adversely affecting cellular metabolism and leading to cell cycle arrest and cell death 

[123].  

It had previously been descrived that overexpression of human Cks1 or Cks2 in human 

mammary epithelial and breast cancer-derived cell leads to override of the intra–S-phase 

checkpoint that blocks DNA replication in response to replication stress [35]. To determine 

whether a similar phenotype could be observed in yeast, 15D YEp13, 15D YEp13-CKS1, cks1Δ 

YEp13 and cks1Δ YEp13-CKS1 strains were exposed to hydroxyurea for up to 240 min, at 30ºC. 

Cells were stained with sytox green, and DNA content was analyzed by flow cytometry. 

Representative histograms are shown in figure 16. 
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As expected, we observed that exposure to HU leads to an accumulation of cells in G1/S. 

There were no significant differences in the cell cycle profiles of the 15D YEp13 and 15D YEp13-

CKS1 strains. Strain cks1Δ YEp13 still accumulated in G1/S, though the peak was broader, 

likely reflecting the “abnormal” morphology and cell cycle defects of this strain. Expressing 

YEp13-CKS1 in the cks1Δ strain reverted this phenotype, and the cell cycle profiles were similar 

Figure 16. The effect of hydroxyurea on cell cycle distribution. Exponential cultures of 15D 

YEp13, 15D YEp13-CKS1, cks1Δ YEp13 and cks1Δ YEp13-CKS1 strains grown in SCGLU-Leu medium 

at 30ºC were transferred to fresh medium without or with (+HU) hydroxyurea. Samples were collected 

after 0 and 240 min at 30ºC, stained with sytox green (1 µM) and the fluorescence measured by flow 

cytometry. 
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to those of the 15D strain. These results also indicate that either overexpression of Cks1p does 

not bypass the HU-induced cell cycle arrest in yeast or that expression of Cks1p from the YEp13 

vector is not sufficient to induce an overexpression phenotype. 

We next determined whether there were any differences in the viability of strains exposed 

to HU. Strains 15D YEp13, 15D YEp13-CKS1, cks1Δ YEp13 and cks1Δ YEp13-CKS1 were 

exposed to hydroxyurea for up to 240 min, at 30ºC and viability assessed by semi-quantitative 

spot assay. 

 

 

 

 
 

 

 

 

 

There was no cell death observed even when exposing cells to a HU concentration as 

high as 600 mM for 240 min (data not shown), indicating under these experimental conditions 

HU was cytostatic but not cytotoxic.  

Strains 15D YEp13, 15D YEp13-CKS1, cks1Δ YEp13 and cks1Δ YEp13-CKS1 were then 

spotted onto plates containing HU to evaluate their survival after long-term HU exposure (Figure 

18). 

    

Figure 17. Sensibility of S. cerevisiae strains to HU. Exponential cultures of 15D YEp13, 15D 

YEp13-CKS1, cks1Δ YEp13 and cks1Δ YEp13-CKS1 strains grown in SCGLU-Leu medium at 30ºC 

were transferred to fresh medium without or with 200 mM HU. Samples were taken after 0, 120, 180 

and 240 min. Serial dilutions (1:10) were spotted onto YPD plates and incubated for 2 days at 30ºC. 
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It has previously been described that cks1Δ cells are more sensitive to growth in the 

presence of HU [84]. We found that the viability of strain 15D expressing YEp13-CKS1 and strain 

15D with the empty vector was identical, and, as expected, strain cks1Δ YEp13 was hyper-

sensitive to HU. Expression of Cks1p (cks1Δ YEp13-CKS1) only partially reverted this phenotype, 

indicating that the protein levels of Cks1p when expressed from the YEp13 plasmid are low. This 

suggests that expression of Cks1p from the YEp13 plasmid is not sufficient to induce an 

overexpression phenotype, and that another expression system would be required to express high 

levels of Cks1p. 

Figure 18. Chronic exposure of S. cerevisiae strains to HU. Exponential cultures of 15D YEp13, 

15D YEp13-CKS1, cks1Δ YEp13 and cks1Δ YEp13-CKS1 strains grown in SCGLU-Leu medium at 

30ºC. Serial dilutions (1:10) were spotted onto SCGLU-Leu plates containing 200mM HU and incubated 

for 2 days at 30°C. 
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Cks proteins are frequently overexpressed in several cancers, correlating with poor 

prognosis, and may therefore be considered a potential prognostic marker and target for future 

development of specific therapeutic interventions in various types of cancers. However, despite 

the progress on elucidating functions of Cks proteins, strategies to eliminate tumors that 

overexpress Cks proteins have not yet been developed. Defective apoptosis induction is a major 

causative factor in the development and progression of cancer, and plays an important role in the 

resistance of tumors to conventional chemotherapy. Notably, mammalian Cks proteins seem to 

protect some cell lines from apoptosis. Several studies suggest that Cks protein levels can impact 

apoptosis, but the mechanism involved has not been elucidated or exploited as a target in cancer 

therapy. We therefore aim to determine whether Cks proteins have a specific role in apoptosis 

contributing to tumorigenesis and/or resistance of Cks-overexpressing tumors to treatment 

regimens.  

The budding yeast Saccharomyces cerevisiae has proven to be a powerful and simple 

model system to study complex biological processes, often conserved through evolution. These 

studies have recently been extended to apoptosis, and it has been shown that an apoptotic-like 

death with common features of apoptosis in mammalian cells can also occur in yeast both under 

physiological conditions and after exposure to many exogenous stimuli [69, 124]. Most functions 

attributed to Cks proteins are conserved in yeast, and indeed mammalian Cks proteins can 

functionally substitute for yeast Cks1p. Therefore, in this work we aimed to study whether yeast 

Cks1p plays a role in apoptosis. We determined that the yeast cks1∆ mutant is significantly more 

sensitive than the wild type strain 15D to transient exposure to cisplatin and, to a lesser extent, 

MMS, but not to acetic acid, hydrogen peroxide, or 5-FU, which is a strong indication of a specific 

regulated role for Cks1p in DNA damage-induced cell death, but not in general apoptosis.  

DNA damage can derive from three main sources: environmental agents such as 

ultraviolet (UV) light, ionizing radiation, and numerous genotoxic chemicals; ROS generated by 

respiration and lipid peroxidation; and spontaneous hydrolysis of nucleotide residues [125-126]. 

Yeast cells have integrated DNA repair systems with mechanisms to delay the cell cycle, called 

checkpoints [127]. This cell cycle arrest is thought to provide time for cells to repair damaged 

DNA before completing mitosis and segregating sister chromatids. Five genes (RAD9, RAD17, 

RAD24, MEC3 and DDC1) have been shown to be required for a proper DNA damage response, 

and are proposed to act at an early step of damage recognition at any stage of the cell cycle 

[128-129].  
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Genetic and biochemical studies have established a general framework for DNA damage 

checkpoint signaling in yeast (Figure 19). The central player is the phosphatidylinositol 3’ kinase-

like kinase, MEC1 [127]. Mec1p is part of a sensor mechanism that detects DNA damage in the 

form of single-stranded DNA and relays the checkpoint signal to a pair of transducing kinases. 

These kinases amplify the signal and regulate the cell cycle machinery to effect checkpoint arrest 

prior to mitosis [130]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Model of the DNA damage checkpoint response in budding yeast. MEC1 is an 

essential checkpoint factor, might be able to recognize specific DNA or protein–DNA structures. This 

function could be influenced by interaction with checkpoint proteins like Rad9p and the Rad24p group. 

DDC1 phosphorylation depends on MEC1. Mec1p may participate, together with Rad24p, Rad17p, 

Mec3p and Ddc1p, at an early step of the DNA damage recognition process. It has been found that 

Rad9p is phosphorylated after DNA damage and that this modification depends on Mec1p, Tel1p and 

the Rad24p group of proteins. Rad9p phosphorylation appears to be physiologically relevant since it 

correlates with checkpoint activation, and phosphorylated Rad9p interacts with Rad53p. PDS1 is a rate-

limiting negative regulator of anaphase that is degraded at the metaphase to anaphase transition, is 

phosphorylated in response to DNA damage in a Rad9p and Mec1p dependent manner, leading to 

metaphase arrest. *indicates damage in DNA (Longhese et al (1998) [128]). 
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RAD53 is a protein kinase involved in cell cycle arrest, transcriptional induction of repair 

genes, inhibition of late replication origin firing, and stabilization of stalled replication forks [131]. 

Rad53p is phosphorylated in response to genotoxic treatments, and this phosphorylation 

depends on the function of several DNA damage checkpoint genes [132] such Mec1p, Rad9p 

and the proteins of the Rad24p complex (RAD24, MEC3, DDC1 and RAD17) [133]. It has been 

reported that Rad53p is phosphorylated in response to exposure to HU and MMS [131], cisplatin 

[134] and UV irradiation [135]. Whether Rad53p is phosphorylated in response to 5-FU has not 

yet been described. If not, and Cks1p functions downstream of Rad53p, it could explain lack of 

sensitivity of the cks1Δ strain to 5-FU, in contrast to its sensitivity to HU, MMS and cisplatin. 

However, Rad53p is phosphorylated in response to UV irradiation, and the cks1Δ strain is not 

more sensitive to this type of DNA damage [84], and thus this hypothesis is not likely. In the 

future, it would be interesting to determine whether Rad53p is phosphorylated under our 

experimental conditions, after exposure to MMS, cisplatin, 5-FU and UV, and determine whether 

there is a correlation. It would also be interesting to determine the phenotype of a cks1Δrad53Δ 

or a cks1Δmec1Δ double mutant to determine whether they function in the same pathway. 

Exposure to 5-FU could result in Rad53p phosphorylation, like most other DNA damaging 

agents, suggesting that yeast Cks1p plays a role upstream of DNA-damage checkpoints. 

Mechanisms to repair the diverse types of DNA lesions are multiple and largely distinct. Repair of 

cisplatin-induced damage occurs mainly through nucleotide excision repair (NER) and mismatch 

repair (MMR) pathways [109]. NER removes a broad spectrum of single-strand lesions that cause 

local helix-destabilization [136]. Two different modes of damage detection are operational in NER: 

(a) transcription-coupled NER, which efficiently removes transcription-stalling lesions and allows 

quick resumption of transcription, and (b) global genome NER, which localizes lesions anywhere 

in the genome [125, 136]. MMR detects of mismatches and insertion/deletion loops and triggers 

a single-strand incision that is then acted upon by nuclease, polymerase and ligase enzymes 

[136]. Bases with small chemical alterations that do not strongly disturb the DNA double-helix 

structure are substrates for the base excision repair (BER) pathway, which is the main pathway 

used to repair 5-FU-induced lesions [137]. This group of lesions is targeted by lesion-specific DNA 

glycosylases that both recognize and remove the damaged base from the sugar-phosphate 

backbone [136]. While BER removes the damaged base, NER removes a large patch around the 

damage, even though there may be only a single bad base to correct. The difference between the 
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pathways used to repair damage caused by cisplatin and 5-FU could underlie the difference in 

phenotype obtained. 

In this work, we used a small number of DNA damaging agents. In the future, we should 

test the sensitivity of cks1Δ cells to a variety of other DNA damaging agents, with different modes 

of action; although they may all lead to phosphorylation of RAD53, preferred repair mechanisms 

will differ, and a correlation may emerge.  

It has recently been shown in cancer cell lines that cell cycle perturbations may be 

involved in acquired 5-FU resistance. There might be a slowdown in cell cycle progression 

preventing incorporation of 5-FU metabolites into DNA, providing sufficient time to correct the 

misincorporated nucleotides [138]. As deletion of Cks proteins leads to problems in the cell 

cycle, the slower growth of the cks1Δ strain may allow for increased repair of 5-FU damage, 

counteracting a role that would foster sensitivity, though this scenario is unlikely. 

Unlike the phenotype obtained by deleting CKS1, overexpression of Cks1p didn’t result in 

a readily observable phenotype, particularly regarding cisplatin sensitivity, which was unexpected. 

However, it is not always the case that overexpression of a given protein results in the opposing 

phenotype to its absence. Therefore, it is possible that overexpression of Cks1p does not cause 

resistance to cisplatin or to hydroxyurea, whereas deletion of CKS1 does result in increased 

sensitivity. It is also possible that our expression system using the YEp13 plasmid does not lead 

to high enough levels of Cks1p to result in a phenotype. To address this issue, another 

expression system could be used to express high levels of Cks1p. For this purpose, we will next 

use plasmids expressing yeast CKS1 and human CKS1 and CKS2, under the control of the GAL1 

promoter, as well as empty plasmid controls (CpG2-CKS1, YCpG2-CKShs1, YCpG2-CKShs2, and 

YCpG2) and determine the viability of all strains in response to different DNA damaging agents. If 

no phenotype is observed, assessing the role of Cks proteins in apoptosis would require the use 

of a mammalian model system. We should test if overexpression of Cks1 or Cks2 renders 

mammalian cells more resistant to apoptosis induced by several drugs normally used in cancer 

treatment, especially those used in the treatment of breast and prostate cancers, where Cks 

proteins are frequently overexpressed. Of special interest would be how controlled overexpression 

of Cks proteins in the same cell background affects the response to multiple antitumor agents, 

which would require a control cell line and cell lines stably overexpressing Cks1 or Cks2, already 

available [35]. 
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In summary, our results indicate that CKS1 deletion results in sensitivity to some, but not 

all, DNA damaging agents, which could underlie a function in apoptosis. Further studies will be 

required to determine whether overexpression Cks1p specifically leads to resistance to particular 

anti-tumor drugs, both in yeast and in mammalian cells, as well as the pathways involved. 

Elucidating this mechanism should provide novel targets to exploit in the treatment of cancers 

where Cks proteins are up-regulated. 
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