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Abstract

With the widespread availability of high-throughput technologies, it is now possi-
ble to study the behavior of dozens or even hundreds of gene/proteins through a
single experiment. Still, these experiments provide only the gene/protein expres-
sion values, telling nothing about their interactions with each other. To understand
these interactions, network inference methods need to be applied. By understanding
such interactions, new light can be shed into biological processes and, in particular,
into disease’s mechanisms of action, providing new insights for drug design: which
genes/proteins should be targeted in order to cure/prevent a specific disease.

In this thesis, we developed and tested two alternative extensions for a previously
developed model based on linear programming. Such model infers signal transduction
networks from perturbation steady-state data. The extensions now developed take
advantage of perturbation time-series data, which further improves the resolution of
causal relationships between genes/proteins.

In a first phase, we use artificial networks with simulated data to test the perfor-
mance of both extensions in different conditions. Additionally, we compare their per-
formance to the original model and to a state-of-the-art model for perturbation time-
series data, DDEPN. Overall, our second extension exhibits a better performance,
and significantly higher sensitivity. This extension assumes a given gene/protein can
only influence its targets if it is in an active form.

In a second phase, we use two experimental datasets related to ERBB signaling
and evaluate the resulting networks: 1) by finding literature support for the inferred
edges, and 2) by using a network assembled with Ingenuity IPA as true network to
do a quantitative assessment. Our results are further compared to DDEPN and the
original model in a quantitative way. Quantitatively, our second model extension is
shown to perform better than both the original model and DDEPN. Qualitatively,
we find literature support for most of the inferred edges in both datasets, while also

inferring a few plausible edges for which no literature evidence was found.
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Resumo

Com o uso generalizado de tecnologias de alto rendimento como os microarrays de
ADN, torna-se comum estudar dezenas ou mesmo centenas de genes/proteinas numa
unica experiéncia. Contudo, estas experiéncias apenas nos permitem determinar a
expressao dos genes/proteinas e nada nos dizem sobre as interagoes entre os mesmos.
Assim, torna-se necessario o uso de métodos de inferéncia de redes, de modo a estudar
as interagoes entre genes/proteinas. Ao perceber estas interagdes, nao sé é possivel
perceber melhor os processos biologicos em geral, como também o modo como actuam
as doencas, de forma a desenvolver novos medicamentos.

Nesta tese de mestrado, desenvolvemos e testamos duas extensoes para um mod-
elo baseado em programagao linear. Este modelo infere redes de transducao de sinal
a partir de experiéncias de RNAi em que as medidas sao feitas apds a perturbacio,
quando a rede se encontra em estado estacionario. Com as extensoes desenvolvidas
nesta tese é possivel tirar partido de séries temporais de dados provenientes de exper-
iéncias de RNA1i, o que permite distinguir rela¢oes de causalidade entre proteinas.

Numa primeira fase, usamos redes artificiais e dados simulados para testar a per-
formance de ambas as extensoes em diferentes condigoes. Além disso, comparamo-las
com o modelo original e com um modelo recente, DDEPN, que usa séries temporais de
dados de experiéncias em que a rede a inferir é perturbada. Em geral, a nossa segunda
extensao obtém melhores resultados, principalmente em termos de sensibilidade. Esta
extensao assume que soO proteinas activas podem influenciar outras proteinas.

Numa segunda fase, usamos dois conjuntos de dados experimentais e avaliamos os
resultados obtidos: 1) procurando referéncias na literatura para as ligagoes inferidas,
e 2) usando uma rede de referéncia para fazer uma avaliagdo quantitativa e estab-
elecer comparagoes com o modelo original e o DDEPN. Quantitativamente, a nossa
segunda extensao obtém melhores resultados do que o modelo original e o DDEPN.
Qualitativamente, encontramos suporte na literatura para a maioria das ligagoes in-
feridas pela segunda extensao. Inferimos ainda algumas ligagoes bastante plausiveis,

embora nao tenhamos encontrado suporte para estas.
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Chapter 1
Introduction

By modeling biological networks in general it is possible to understand how their
different components - genes, proteins, metabolites, etc. - interact with each other.
Three of the most important types of biological networks are gene regulatory networks
(GRNs), signal transduction networks (STNs), and metabolic networks. GRNs are
constituted by genes and proteins, and the objective is to understand how these
genes and proteins regulate each other. STNs are a set of pathways in which proteins
interact with each other, allowing the cell to respond to external stimuli. Finally,
metabolic networks are basically a series of biochemical reactions through which initial
molecules are transformed in different products.

Understanding the inner workings of these biological networks is important, not
only for the sake of knowledge itself, but also because of its potential applications,
for instance, by understanding a disease mechanisms of action, it may be possible to
prevent or cure it. The ERBB signaling network is an example of a network whose role
on disease onset needs to be better understood. Because the ERBB receptors affect
the cell cycle, when overexpressed, these can lead to high levels of cell proliferation [86]
and, by allowing defective cells to survive, may result in tumor formation. Therefore,
by understanding how this network functions, it may be possible to counteract its
negative effects in the cell cycle. Another application of this kind of knowledge is
to model metabolic networks and find how to modify the network so that the cells
can transform substrates into products at an higher rate, this is important for the
production of beer, wine, bread, among other products.

In this thesis we will focus on signal transduction networks.

Signal Transduction Networks

Signaling networks work roughly in the following way: molecules outside of the cell
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(ligands) bind to receptors located in the cell membrane and activate them, which
in turn activate other molecules inside the cell (messengers), initiating the signal
transduction process. This process stops when the signal achieves a transcription
factor that will affect gene transcription, and thus influence gene expression and
even the cell cycle progression. However, this signaling process does not necessarily
evolve in a linear way, one ligand can activate different receptors, the same messenger
can pass on the signal to different transcription factors, and so on. Hence, there
is signal cross-talk [42], and studying each receptor/messenger /transcription factor
individually is not the best approach, there is a need to take a more global approach
and study the whole network.

In this thesis we are particularly interested in the ERBB signaling network, as the

two experimental datasets used to test our model refer to this network.

ERBB signaling network

The ERBB signaling network “starts” in the ERBB molecules, receptor tyrosine
kinases located in the cell’s membrane, which trigger different signaling pathways
upon stimulation by ligands such as Epidermal Growth Factor (EGF) or neuroregulin
(NRG). The ERBB molecules family is composed by ERBB1 (also known as EGFR
and HER1), ERBB2 (Neu, HER2), ERBB3 (HER3), and ERBB4 (HER4), and is
present in several types of cells and different organs. Both ERBB1 and ERBB4 are
activated by extracellular ligands, such as EGF or NRG1-4, and directly transduce
the signal into the cell, whereas ERBB2 and ERBB3 need to form heterodimers with
other ERBB receptors in order to be activated and transduce the signal into the cell.
This is due to the lack of an extracellular ligand domain in the case of ERBB2 and
the lack of an intracellular kinase domain in the case of ERBB3. By responding to
external stimuli, the ERBB molecules initiate a signaling cascade, and influence a
number of cellular functions, namely: cell survival, proliferation, division, migration,
cell apoptosis, among others. This signal transduction network is one of the most
extensively studied.

When the behavior of the ERBB receptors deviates from the normal, either by
overexpression or underexpression of one of the receptors, a number of conditions may
occur. In particular, the overexpression of ERBB1 and ERBB2 have been linked to
the occurrence of cancer: breast cancer, gastric cancer, among others [38]. However,
disruptions in the normal functioning of ERBB receptors are not only related to tumor
development, but also to diseases such as Parkinson’s disease and schizophrenia. In

postmortem studies, protein levels of EGF and ERBB1 were shown to be diminished



in the brains of people suffering from Parkinson’s disease [39], while ERBBI is over-
expressed in the forebrain regions of people suffering from schizophrenia [30]. Plus,
the correct functioning of ERBB receptors is also critical for the adult heart mainte-
nance under stress conditions [69], and for the development of the heart trabeculae,

a structure that assures the correct functioning of the embryonic heart [32, 49, 58].

ERBB signaling network influence on the cell cycle

One process influenced by ERBB signaling is the cell cycle. The cell cycle [59] is
constituted by four phases, briefly: i) G1 phase, in which the cell size increases and
the G1 checkpoint ensures that it is ready for DNA replication. During this phase
several signals intervene to influence decisions such as whether the cell will self-renew,
differentiate, or die; ii) Synthesis, in which DNA replication takes place, by the end of
it all of the chromosomes have been replicated; iii) G2 phase, this checkpoint ensures
that the cell is ready for the next phase and mends replication errors that might have
occurred, while the cell continues to grow; iv) Mitosis, in which the cell divides into
two daughter cells containing the same genetic material.

Focusing now in the G1 phase, it starts with the association of Cyclin Dependent
Kinases (CDK) 4 and 6 with D-type Cyclins which phosporylate the retinoblastoma
protein, pRb. Once pRb is phosporylated it stimulates CDK2 and E-type Cyclins
which, in turn, further phosphorylate pRb. At this point the cell cycle becomes in-
dependent of CKD4/6 and Cyclin D complexes, and it can proceed into the S phase.
One way to stop cell cycle progression to the S phase is by activating proteins of the
pl6 (pl6, pl5, p18, pl19) and p21 family (p21 , p27, p57), since when activated the
pl6 family members are able to inactivate CDK4/6, while p21 family members can
inactivate Cyclins. Both resulting in the prevention of pRb phosporylation during the
G1 phase, and stopping the cell cycle. A shorter G1 phase and early transition to the
S phase has been linked to ERBB2 overexpression, leading to cell hyperproliferation
[86], which is key to tumor development. This effect is thought to be mediated by
the up-regulation of CDK6 and Cyclins D1 and E, as well as enhanced degradation
and relocalization of p27 [86].

The study of the ERBB signaling network as a whole, and biological networks in
general, would not be possible without the advent of high-throughput technologies,
such as gene microarrays, Reverse-Phase Protein Arrays (RPPA), or RNA interference

(RNAI) experiments.
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RNAI

RNA interference is a technique that uses double-stranded RNA (dsRNA) to inter-
fere with specific sequences of complementary mRNA and inhibit the expression of
corresponding genes.

RNAIi was first discovered by Fire and Mello [18], who noted that double-stranded
RNA (dsRNA) served as mediator in post-transcriptional silencing in Caenorhabditis
elegans, and has since then been widely used to inhibit the expression of targeted genes
in an high-throughput fashion. RNAi has also a potential application in therapy, by
silencing the expression of specific genes responsible for the disease [68].

An overview of the RNAi mechanism is shown in figure 1.1. The process can start
either with long double-stranded RNA (dsRNA) or pre-microRNA segments, however
we will focus on the dsRNA mediated process, since RNAi experiments are usually
based on this process. After entering the cell cytoplasm, the dsRNA is spliced into
smaller dsRNA segments by the Dicer enzyme. The resulting dsRNA segments are
termed small-interfering RNA (siRNA), and are then incorporated into a multi pro-
tein complex that includes the cleaving enzyme Argonaute 2 (Ago2) and the protein
complex RNA-induced silencing complex (RISC). In this RISC/Ago2 multi protein
complex, the siRNAs double strand is separated into guide and passenger strands, the
latter being discarded, while the first will target a complementary mRNA sequence
to be cleaved by the RISC/Ago2 and degraded, leading to post-transcriptional gene
silencing. However, the use of long dsRNA segments for post-transcriptional gene si-
lencing in mammals triggers an interferon anti-viral response. Therefore, chemically
synthesized siRNAs are directly introduced in the cell cytoplasm to be incorporated
into the RISC/Ago2 complex.

RNAIi, by silencing gene expression in between transcription and translation is
advantageous in relation to DNA gene knockout, since the chance that compensatory
mechanisms are activated is considerably lower. Furthermore, it is faster, less expen-
sive, and the time frame of the knockdown can be controlled by the experimenter
[44], hence allowing the systematic study of gene function and respective role in given
biological processes. Still, an RNAi experiment must be carefully designed in order

to reduce possible off-target effects, i.e., silencing genes other than the targeted ones.

Reverse-Phase Protein Arrays
Reverse-Phase Protein Arrays (RPPAs) [65] is the technique used to produce the ex-
perimental data analyzed in this work. By using RPPAs it is possible to study a cell’s

response to external stimulus, as this usually reflects on protein post-translational
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Figure 1.1: The RNA interference process described in this figure starts with a dsRNA
segment, which is cleaved by the enzyme Dicer, resulting in several siRNA segments.
The siRNA segments are then included into the RISC complex and degrade comple-
mentary mRNA sequences, resulting in post-transcriptional gene silencing.

modifications, such as phosphorylation or change in protein activity. To measure
protein abundance by using RPPAs, the cells of interest are first lysed, and the pro-
tein lysates are spotted in the array, which are then probed with an antibody specific
for the target protein, the primary antibody. Next, the array is incubated with a
secondary antibody which is labeled with a near-infrared dye, the purpose of which
is to detect the primary antibody and quantify the amount of protein present in the
spot.

Applications of RPPAs include quantitative analysis of protein expression in can-
cer cells, cell signaling analysis, or clinical prognosis/diagnosis/therapeutic prediction,
among many others. However, we are particularly interested in the use of RPPAs to
study signaling pathways, by monitoring protein dynamics in response to perturba-

tions.

1.1 Approaches to Network Inference in Biology

There are several approaches to infer biological networks, all of them modeling the
network as a graph, in which the nodes represent the network components — e.g.,

genes, proteins, transcription factors, metabolites —, and the edges represent the
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(d) ()

Figure 1.2: Several motifs present in most biological networks are: (a) cascade: one
node influences the next in a sequential way; (b) fan-in: two nodes influence a third
node; (c) fan-out: one node influences two other nodes; (d) feedback loop: one node
influences a second node, which influences a third node, and the third node influences
the first one; and (e) feedforward loop: one node influences two other nodes, and one
of these influences the remaining node.

interactions among these components. These edges might have a direction or not,
in the former case an edge from node A to node B means that A influences B, in
the latter it simply means that A and B are correlated. In addition, directed edges
can have a sign or not, specifying whether the influence of one node over another is
activating or inhibiting.

Although a given method is usually developed with the intent of inferring either
STNs or GRNs, often the same approach can be used to infer both types of networks.
For instance, Bayesian networks can be used either to infer GRNs [37] or STNs [67].
This is possible because STNs and GRNs have a similar topology that results in
similar inference challenges. For instance, both types of networks possess the same
kind of motifs, small substructures present in the network topology, such as feedback
loops, in which one activates a second node, which activates a third node, that in
turn activates the first node again. For more motif examples and description, please
see figure 1.2 and respective caption. Therefore, the choice of which approach to use
when modeling a GRN or a STN depends mostly on the data one has available, for
instance, if it is time-series data or was measured at a single time point, if it contains

perturbations or not.

Classical approaches

Some classical approaches to infer biological networks include Boolean networks
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[41], Bayesian networks (BNs) [21, 73], and the use of differential equations [4, 10,
31, 43, 75]. Boolean networks assume each node is either active or inactive and
infer the network by using logical rules. Yet, the data used to infer networks is
usually continuous and thus needs to be discretized, leading to loss of information
and possibly having a negative impact in the network inference results, since finding
the right threshold to discretize the data is usually not a straightforward process.
Several methods based on this approach exist, and can be applied to time-series
data [57, 36] or perturbation data measured at a single time point [92]. On the
other hand, Bayesian networks do not necessarily require data discretization and
can be used with continuous data. This formalism infers the connections among
biological components from a component’s state given the parents state, using data
from measurements at a single time-point. Some advantages of Bayesian networks
are their ability to accommodate noisy data and represent complicated stochastic
nonlinear connections between several nodes. However, Bayesian networks have a few
drawbacks: due to its probabilistic nature they need several repeated measurements
to infer the network topology [73], besides, BNs are limited to be acyclic and cannot
infer feedback loops in the network structure [73]. The latter can be circumvented
by using Dynamic Bayesian Networks (DBNs) [22] instead, which use time-series
data to unfold the network behavior in time, thus capturing loop structures when
present. Network inference based on differential equations also requires time-series
data, using it to model the genes/proteins behavior along time and from that infer
the respective network; a particular method is the S-System formalism within the
Biochemical Systems Analysis [76, 77]. This approach is usually computationally
very expensive.

One common trait among the methods described above, whether they use single
time-point measurements or time-series data, is that these assume the underlying
network to be in a stationary state, i.e. the connections among biological components
do not change along time. Even though the connections that are active at a given
time point ¢ may not be the same than the ones active at ¢+ 1, this is only due to the
fact that not every node has the same state in both time points, and not because the
underlying network topology has changed. Usually, the underlying network topology
only changes when there are more drastic changes in the organism, for instance due

to development [71].

Time-dependent networks

In case there is a need to consider changes in the underlying network, i.e. the
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network is not in a stationary state, the methods described previously are no longer
enough to infer these changes.

In this situation, the conditional probability of a gene to be in state X [t + 1] at
time ¢ + 1 given that it was in state X [¢] at time ¢ (P (X [t + 1] |X [t])), is not inde-
pendent of ¢ because the distribution generating the time-series changes with time,
i.e. the underlying process is non-stationary. Some methods developed to address
this problem are non-stationary or non-homogeneous DBNs [33, 34, 35, 47, 72, 71],
which are a type of piece-wise stationary model that determines the time points at

which the probability P (X [t + 1] |X [t]) changes.

In short, there are two types of methods suited to infer networks from time-series
data, one assumes that changes in the underlying network can occur, while the other
type assumes that the underlying network is the same throughout all measurements,
and the changes in the measurements results are only due to change of genes/proteins
states. The latter one is the type of networks we aim to infer with our method,
assuming a static underlying network.

Comparing to data measured at a single time point, the use of time-series data
has several advantages. One example is that, if we assume the expression of a given
protein to change before it can influence its target proteins later in time, then time-
series data helps to resolve causal relationships [12]. Yet, the measurements need to
be performed at appropriate times, i.e. after the activation of one protein and before
the activation of its targets.

Another type of data that has been shown to lead to better inference results
is perturbation data [56], where perturbation of the network can occur either by
performing RNA interference experiments, gene knockouts, or by the use of drugs.
Considering two genes with similar expression values at a given time point, it may not
be possible to infer a causal relation, i.e. which gene influences the other. However,
if each gene is perturbed in a different experiment, and the effect on the expression
of the other gene is measured, one can infer the causal relation between them.

Briefly, by using time-series and/or perturbation data causal relations between
genes/proteins can be resolved. This also helps to distinguish direct from indirect
connections, and to infer network structures such as feedback loops, that are usually

hard to infer.

Approaches using perturbation data

Different approaches exist that can take advantage of perturbation data, includ-
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ing approaches based on BNs [73, 66], DBNs [14], Boolean networks [92], Bayesian
networks with probabilistic Boolean threshold functions [40], or differential equations

[62]. However, a major recent approach is the Nested Effects Models (NEMs) formal-
ism [54, 55] to infer STNs.

Nested Effects Models

It is a probabilistic approach that aims at inferring a signaling network by perturb-
ing a set of genes and measure its influence on downstream genes. Thus, this method
infers networks from indirect steady-state observations rather than direct ones, as
most methods do. The formalism divides the nodes into S-genes and E-genes; S-
genes are the set of candidate pathway genes that are silenced, while E-genes are the
genes downstream of the S-genes which show the effects of silencing S-genes. The data
for this method is collected by stimulating the pathway while perturbing the S-genes
(using RNAi, gene knockdowns, or protein inhibiting drugs), and only the expression
of E-genes is measured, which must be significantly different when the pathway is
stimulated from when it is not. In this way, the relationships among the S-genes are
inferred from the observations of E-genes, which are used solely as reporters of the
pathway’s signal flow.

However, this approach can infer only small-scale networks (up to 6 genes). Hence,
it was later extended to infer networks on a pathway-wide scale by clustering the
E-genes based on their phenotypic profiles and using a divide and conquer approach
[55]. Yet, this approach has some disadvantages: it cannot distinguish inhibiting from
activating edges; requires data discretization leading to informations loss; cannot dis-
tinguish direct from indirect connections; and requires a large number of observations

of downstream effects for a small number of perturbations.

NEMs extensions

The NEM formalism has since then been extended by other authors [87, 23, 26, 93,
90, 25, 3, 28, 27]. In particular Froehlich et al [23] developed a new approach that
does not require data discretization, instead it represents the likelihood that a set
of E-genes is influenced by an S-gene using p-values. Two other extensions include
the ability of using time-series data, the first of these extensions is D-NEMs and was
developed by Anchang et al [3]. Tt aims at modeling the temporal evolution of multiple
rounds of signaling, gene regulation, and gene expression, by inferring the time delays
between an S-gene perturbation and its downstream effects on the E-genes. However,

to determine the time delays Anchang et al use Gibbs sampling, which makes the
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whole process of network inference very time consuming. On the other hand, Froehlich
et al developed a second extension of NEMs to use time-series data, DynoNEMs [27].
DynoNEMs unrolls the signal flow over time in a way similar to DBNs, and simply
calculates the time lag between a perturbation and a downstream effect, therefore
avoiding the use of Gibbs sampling and rendering the approach less computationally
expensive. This approach also allows the use of combinatorial perturbations, which
the original model did not allow. Furthermore, both of the approaches to use time-
series data enable, in principle, the inference of feedback loops in the network topology

and the distinction between direct and indirect connections.

Deterministic Effects Propagations Networks

An approach developed to take advantage of RNAi experiments which uses direct
observations instead of indirect ones is the Deterministic Effects Propagations Net-
works (DEPNs) model published by Froehlich et al [29]. DEPNSs is a special case
of Bayesian networks which uses both deterministic and Gaussian variables to infer
STNs. Briefly, the approach works as follows: i) for each perturbation experiment
its expected downstream effects are calculated, ii) knowing the downstream effects
of all perturbations, each protein is considered either as perturbed or unperturbed,
iii) each protein is then set as part of one out of two distributions (one for perturbed
proteins, another for unperturbed proteins), which are assumed to be Gaussian and
whose parameters are calculated either in a maximum likelihood or a Bayesian way.
This formalism was designed to be used in the opposite context of NEMs, in-
stead of requiring little perturbations and high-dimensional downstream measure-
ments, DEPNs benefit from as many perturbations as possible (which can also be
combinatorial) and do not need high-dimensional measurements. Another advantage
in relation to NEMs is that DEPNs do not require data discretization. Furthermore,
when comparing to Bayesian networks, DEPNs allow for the inference of loops in
the network topology, which is possible because the model relies on deterministic
effects propagation, rendering all measurements statistically independent. Yet, this
formalism cannot take advantage of time-series data, this would be the motivation for
the Dynamic Deterministic Propagations Networks (DDEPNs) model. Moreover, the
network topologies inferred by DEPN are always transitively closed, and the model

is computationally expensive, i.e. it is not suitable for inference of large networks.

A Linear Programming approach to STN inference

Knapp and Kaderali [45] developed a model based on linear programming (LP)
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that, like DEPN, uses perturbation steady-state data from direct observations to
infer signal transduction networks. In particular, it supports RNAi data in which
multiple genes are silenced in a single knockdown experiment. This model assumes
the network to be modeled as an information flow, in which the signaling starts at
one or more source nodes and propagates downstream in a deterministic way until it
reaches the sink nodes. The network is then inferred by formulating a linear problem,
in which the sum of all edges, baseline node activities, and slack variables must be
minimized under certain constraints.

One key advantage of this model is its reduced running time. In particular, when
comparing to DEPN, it achieves better sensitivity and specificity in a significantly
shorter amount of time.

Since the subject of this dissertation is the extension of this model to take advan-

tage of time-series data, it will be further described in section 2.2.

Dynamic Deterministic Effects Propagations Networks
DDEPN [6] uses perturbation time-series data from direct observations to infer
signaling networks. The perturbations can be both stimuli or inhibitions. Since we
are comparing the model developed in this thesis to DDEPN, it will now be described
in more detail than the previous approaches. The reason to choose DDEPN for results
comparison is that, like the model developed in this thesis, it is able to take advantage

of perturbation time-series data obtained from direct observations.

The first step in the model is, given a possible network topology, to generate a
matrix containing all the system’s reachable states. Consider V = {v;:i € 1,..., N}
as the set of nodes, where N is the number of nodes, and & =V x V' — {0,1,2}
as the adjacency matrix that defines the network,®;; = 0 means no edge, ®;; = 1
means an activati