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Abstract 

The IVY Workbench is a tool for modeling and analysis of interactive systems which has been 

developed at the Department of Informatics of the University of Minho (http://ivy.di.uminho.pt). 

It's a platform developed in Java, using a plugins mechanism. The available plugins include a set 

of editors (textual and graphical) and tools to analyse the behaviour of the models. The 

experience on using the tool has demonstrated the need for a model animator which could 

enable a first interactive evaluation of the models. Therefore this dissertation describes the 

design and implementation of WildAniMAL - a MAL (Modal Action Logic) interactors models 

animator – as a plugin for the IVY Workbench. The plugin uses the NuSMV model checker 

simulations capabilities, and enables users to explore the formal models interactively.  
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Resumo 

A IVY Workbench é uma ferramenta de modelação e análise de sistemas interativos que tem 

vindo a ser desenvolvida no Departamento de Informática da Universidade do Minho 

(http://ivy.di.uminho.pt). Trata-se de uma plataforma desenvolvida maioritariamente em Java, 

utilizando um mecanismo de plugins. Os plugins existentes incluem um conjunto de editores (em 

modo texto e gráfico), e de ferramentas de análise do comportamento dos modelos. A 

experiência de utilização da ferramenta tem, no entanto, demonstrado a necessidade de um 

animador de modelos que permita efetuar uma primeira validação interativa dos mesmos. Sendo 

assim, esta dissertação descreve o desenho e implementação do WildAniMAL – um animador de 

modelos de MAL (Modal Action-Logic) Interactors – como plugin para a IVY Workbench. O plugin 

usa as capacidades de simulação do model checker NuSMV, e permite aos utilizadores explorar 

os modelos formais de forma interativa.  
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Chapter 1 – Introduction  

Developing complex systems will always be a complex endeavour. When developing 

interactive devices, we are faced with the challenge of understanding not only how the device 

must be built, but also how it will interact with its users, and how both device and users (the 

interactive system) will influence each other. 

Formal (mathematically rigorous) methods have long been proposed as a means of dealing 

with complexity. When considering the behaviour of systems, model checking [1] has gained 

particular popularity. Several approaches to the application of model checking to reason about 

interactive systems (or interactive devices) have been put forward over the last seventeen years. 

See, for example, the work in [2], [3], or [4]. However, applying model checking is in itself a 

complex task. Both systems and Properties to be verified must be expressed in appropriate 

logics. In order to make model checking of interactive systems feasible, we must provide tools 

that help in the modelling and analysis process. 

The IVY Workbench tool supports the modelling and verification approach put forward in [3]. 

The main goal of the tool is the detection of potential usability problems early in development of 

any interactive system. For that, the tool enables the automated inspection of interactive systems 

models. The tool supports a modelling and analysis cycle where the models are obtained by a 

modelling process based on an editor, the properties are expressed using a dedicated properties 

editor, the analysis is performed using the SMV model checker [5] (more specifically NuSMV [6], 

a reimplementation of that tool, that is available at http://nusmv.fbk.eu), and the counter-

examples visualized using a dedicated traces visualiser. The tool has been applied to the analysis 

of different devices, from control panels in the automotive industry [7], to medical devices such 

as infusion pumps [8]. While model checking through NuSMV, enables a thorough analysis of all 

possible behaviours of a model, the continuous use of the tool has highlighted the need for a 
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lighter weight approach to the initial validation of the models. In fact, experience has shown that 

before the analysis of a given design begins, there usually happens a first phase of model 

validation, where the interest is in establishing that the model behaves as expected. Experience 

also shows that doing this through model checking becomes cumbersome. What is needed is the 

possibility of interactively explore the behaviour of the models: manually trigger events and 

observe how the system evolves. Hence the need was identified of developing a component 

aiming at assisting the modelling and analysis process, by providing functionalities to simulate 

and validate the model being created: WildAniMAL (Watch It vaLiDation Animator for MAL). 

1.1.   Goal 

The goal of this work is to develop a new plugin – WildAniMAL – for the IVY Workbench tool, 

supporting the animation of MAL interactor models. In order to implement it, three possibilities 

will be studied:  

a) representing a MAL interactors model as a Finite State Machine (FSM) and use that to 

drive the animation;  

b) use the BDD (Binary Decision Diagrams) representation of the MAL interactors model, 

created by the NuSMV model checker to perform the animation;  

c) use the NuSMV model checker simulations commands, available on its interactive mode, 

to perform the animation.  

1.2.   Structure Of The Document 

This first chapter has presented the motivation and goals of the work. The remaining of the 

dissertation is structured as follows. Chapter 2 introduces the main concepts needed to 

understand the work. Chapter 3 introduces the IVY workbench tool. Chapter 4 describes some 

related tools. Chapter 5 discusses alternatives to implementing the WildAniMAL plugin, and 

chapter 6 the implementation produced. Chapter 7 describes an usage example. The dissertation 

ends, in Chapter 8, with a discussion of results and ideas for further work.  
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Chapter 2 – Theoretical 

Background 

 
This chapter presents the theoretical background needed to explain the WildAniMAL 

implementation and all the concepts related to its use, and the use of the IVY Workbench, in 

which it will be integrated. 

Section 2.1 presents Model Checking the technology used by the IVY Workbench to perform 

verification. Section 2.2 presents NuSMV that is the model checker used in IVY Workbench, and 

therefore also used to implement WildAniMAL’s functionalities. Section 2.3 presents Finite State 

Machines, a mathematical model of computation, and also a state’s representation, widely used 

to describe computer programs. Section 2.4 presents Binary Decision Diagrams, the data 

structure used to represent a Boolean function. Two representations used in NuSMV as internal 

representations. Section 2.5 presents the MAL interactors language used to create models that 

will be simulate in the WildAniMAL plugin, and Section 2.6 presents the SMV language, the 

language into which MAL interactors models are compiled for verification and (now) animation. 

Finally, CTL is presented, that is a temporal logic that is used to express properties over the 

interactors model. These properties can be verified using NuSMV model checker.     

2.1.   Model Checking 

Clarke [9] formally describes the Model Checking problem as: 

Let M be a Kripke structure (i.e., state-transition graph). Let f be a formula of 

temporal logic (i.e., the specification). Find all states s of M such that M; s |= f. 
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There are other verification techniques other than Model Checking, such as Automated 

Theorem proving or Proof Checking. Therefore is useful to present the advantages that Model 

Checking has when compared to them. Some of these advantages are: 

 It provides counterexamples. In a model checker, a counterexample (an execution 

trace) is produced to show why a specification does not hold. This is a great 

advantage because counterexamples are great to debug complex systems. Some 

people use Model Checking just for this feature; 

 It uses Temporal Logics that can easily express properties for proving over the 

behaviour of modelled systems. One example of these Temporal Logics is CTL, 

which is described in Section 2.7. CTL is used in the IVY Workbench tool. 

In the opposite side there are also some disadvantages and one of the major ones is State 

Explosion. In [3] the authors describe this problem as related to the size of the finite state 

machine (this concept will be described in Section 2.3) needed to specify a given system. A 

specification can generate state spaces so immense that it becomes impossible to analyse the 

entire state space. To attenuate this problem, Symbolic Model Checking was developed. When 

the traversal of the state space is done considering large sets of states at a time, and is based on 

representations of states sets and transition relations as formulas, binary decision diagrams or 

other related data structures, the model-checking method is considered Symbolic. With that 

technique state spaces as large as 1020 may be analysed [10]. NuSMV is a model checker that 

uses that method and will be described in the following Section.           

2.2.   NUSMV  

NUSMV is a symbolic model checker that was first presented in [6] and [11]. It is the result 

of a joint project between Carnegie Mellon University (CMU) and Istituto per la Ricerca Scientica e 

Tecnologica (IRST) and is the final product of an effort of reengineering, reimplementation and 

extension of CMU SMV, the original BDD-based model checker developed at CMU [5].  

Over the years NuSMV had several contributions that improved it with more functionality, as 

can be seen in its official site1. Now it combines a BDD-based model checking component that 

                                                 
1 http://nusmv.fbk.eu/ Last visited in 10-28-2012. 
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exploits the CUDD2 library developed by Fabio Somenzi at Colorado University, and a SAT-based 

model checking component that includes an RBC-based Bounded Model Checker, which can be 

connected to the Minisat SAT Solver3 and/or to the ZChaff SAT Solver4. The University of Genova 

has contributed SIM, a state-of-the-art SAT solver used until version 2.5.0, and the RBC package 

used in the Bounded Model Checking algorithms. 

In [12] we can see the current main functionalities that it provides: 

 allows for the representation of synchronous and asynchronous finite state systems; 

 allows for the analysis of specifications expressed in Computational Tree Logic (CTL) 

and Linear Temporal Logic (LTL), using BDD-based and SAT-based model checking 

techniques. 

 provides Heuristics for achieving efficiency and partially controlling the state 

explosion; 

 provides a textual (interactive mode) and a batch mode interface to interact with its 

users. 

NuSMV, as a model checker, can verify properties of a finite system and for that to be 

possible a model of the system (in fact, in terms of model checking, a specification of the 

system) has to be created. NuSMV uses the SMV Language (see Section 2.7) to define the 

specifications used as input. In [13] it is described how this language can be used to allow for the 

description of Finite State Machines (FSM) which can be completely synchronous or completely 

asynchronous. More specifically the SMV Language is used to describe the transition relation of 

the FSM that describes the valid evolutions of the state of the FSM.  

In the IVY Workbench, that model is created in the MAL Interactors language (see Section 

2.5), that is easier to learn and can be compiled (using the IVY Workbench i2smv service) into a 

SMV specification. After having a SMV specification, NuSMV can verify that a model satisfies a set 

of desired properties specified by the user. For that, it uses two Temporal Logics: CTL or LTL.  

One useful feature that NuSMV has is that it provides the user with the possibility of 

simulating a NuSMV specification. As stated in [13], this way the user can explore the possible 

                                                 
2 http://vlsi.colorado.edu/~fabio/CUDD/ Last visited in 10-28-2012. 
3 http://minisat.se/ Last visited in 10-28-2012. 
4 http://www.princeton.edu/~chaff/zchaff.html Last visited in 10-28-2012. 
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executions (traces) of the NUSMV specification. In this way, the user can check the specification 

correctness, before actually engaging in the verification of properties. An example of the use of 

this feature can be seen in Section 5.2.3.    

2.3.   Finite State Machine 

When modelling the behaviour of systems, State Machines are one of the oldest and best 

ways known. They define the state of a system at a particular point in time and characterize its 

behaviour based on that state.  

If we want to model and design software systems we can apply the State Machines method 

by identifying the states the system can be in, which inputs or events trigger state transitions, and 

what system behaviour is expected in each state. The execution of the software can be seen as a 

sequence of transitions that move the system through its various states. 

The characteristics of a system that enable it to be modelled as a Finite State Machine (FSM) 

are [14]: 

 The system must be specifiable as a finite set of states; 

 The system must have a finite set of inputs and/or events that can trigger 

transitions between states; 

 The behaviour of the system at a given point in time depends upon the current state 

and the input or event that occur at that time only; 

  For each state the system may be in, behaviour is defined for each possible input 

or event; 

 The system has a particular initial state. 

Figure 2 illustrates the main concepts that a Finite State Machine is known for. 
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In most cases, when BDDs are referred to, it is implied that we are referring to Reduced 

Ordered Binary Decision Diagrams.  

Bryant [18] studied the BDD potential for being used to create efficient algorithms. He 

introduced a fixed variable ordering (for canonical representation) and shared sub-graphs (for 

compression). After that he extended the sharing concept to several BDDs, i.e. one sub-graph by 

several BDDs and, doing that, he defined the data structure Shared Reduced Ordered Binary 

Decision Diagram. That new structure is normally what people have in mind when mentioning 

BDDs.  

The NuSMV model checker uses BDDs, because they are very efficient and can be used to 

create efficient algorithms, as shown in [18]. The efficiency of algorithms is important in the area 

of Model Checking, and because of that the use of BDDs by NuSMV was an obvious choice.    

2.5.   MAL Interactors  

MAL interactors follow from the notion of interactor put forward in [19]: an object with the 

capability of rendering part of its state to some presentation medium. A MAL interactor is defined 

by: 

 a set of typed attributes that define the interactor's state; 

 a set of actions that define operations on the set of attributes; 

 a set of axioms written in MAL [20] that define the semantics of the actions in terms of 

their effect on interactor's state. 

The mapping of the interactor's state to the presentation medium is accomplished by 

decorating the attributes with modality annotations. MAL axioms define how the interactor's state 

changes in response to actions being executed on the interactor. In [3] the axioms are defined in 

five types. In the syntax of each type, the notation prop(expr1,..,exprn) is used to denote a formula 

on expressions expr1 to exprn using propositional operators only. Also, the names a1 to an 

denote interactor attributes and ac denotes an action. The five types are: 

 Invariants – these are formulae that do not involve any kind of action or (reference) 

event (i.e. simple propositional formulae). They must hold for all states of the interactor; 

o Syntax: prop(a1,..,an). 
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 Initialisation axioms – these are formulae that involve the reference event ([]). They 

define the initial state of the interactor; 

o Syntax: [] prop(a1,..,an). 

 Modal axioms – these are formulae involving the modal operator. They define the 

effect of actions in the state of the interactor; 

o Syntax: prop([ac] a1,..,[ac]ag, ah,..,an). 

 Permission axioms – these are deontic formulae involving the use of per. They 

define specific conditions for actions to be permitted to happen; 

o Syntax: per(ac) →  prop(a1,..,an) 

 Obligation axioms – these are deontic formulae involving the use of obl. They define 

the conditions under which actions become obligatory.   

o Syntax: prop(a1,..,an) → obl(ac)             

2.6.   SMV Language  

The SMV language will be used as an intermediate representation of the MAL interactors 

model. Therefore an explanation of the main aspects of the SMV language is needed. The 

following description of the language is adapted from [3] and [12].  

An SMV specification is defined as a collection of modules. Each module defines a Finite 

State Machine (FSM) and consists of a number of state variables, input variables and frozen 

variables, a set of rules that define how the module makes a transition from one state to the next 

and Fairness conditions that describe constraints on the valid paths of the execution of the FSM. 

A state model is defined as an assignment of values to a set of state and frozen variables. 

State variables can change their values throughout the evolution of the FSM. Frozen variables 

cannot, as they retain their initial value, and that is what distinguishes the two. Input variables 

are used to label transitions of the Finite State Machine.  

An example of an SMV specification is the following: 

 
MODULE main 
  -- attributes 
  VAR  
    currentSong: 0..5; 
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    lastDisplay: {MainMenu, Music, Playing, OFF}; 
    playbackState: {playing, paused, stoped}; 
    display: {MainMenu, Music, Playing, OFF}; 
 
  -- actions 
  VAR  
    action: {pause, longPlay, play, nil}; 
 
  -- axioms  
  INIT display = OFF 
  INIT playbackState = stoped 
  INIT lastDisplay = MainMenu 
  INIT currentSong = 0 
  
  TRANS next(action)=pause -> playbackState = playing 
  TRANS next(action)=play -> playbackState = stoped | playbackState = 
paused 
  INIT action = nil 

  

To create a SMV specification the following list of declarations is used: 

 VAR  allows the declaration of state variables; 

 IVAR  allows the declaration of input variables; 

 FROZENVAR  allows the declaration of frozen variables; 

 INIT  allows the definition of the initial states of the model; 

 INVAR  allows the specification of invariants over the state. 

 TRANS  allows the definition of the behaviour of the model. In these definitions, 

the operator next is used to refer to the next state; 

 FAIRNESS  allows the declaration of fairness constraints, that is, conditions that 

must hold infinitely often over the execution paths of the model. 

2.7.   CTL 

When reasoning about the behaviour of a system is needed, CTL can be used to express the 

properties for that purpose. The detailed description of CTL and its formal description are 

available in [21]. A more compact description of its operators is given here. As other similar 

languages CTL provides propositional logic connectives but it also allows for operators over the 

computation paths that can be reached from a state. 
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 A - for all paths (universal quantifier over paths); 

 E - for some path (existential quantifier over paths). 

and over states in a computation state: 

 G - used to specify that a property holds at all the states in the path (universal quantifier 

over states in a path); 

 F - used to specify that a property holds at some state in the path (existential quantifier 

over states in a path); 

 X - used to specify that a property holds at the next state in the path; 

 U - used to specify that a property holds at all states in the path prior to a state where a 

second property holds. 

These operators provide for an expressive language because combining them it is possible to 

express important concepts such us: 

 universally: AG(p) - p is universal (for all paths, in all states, p holds); 

 inevitability: AF(p) - p is inevitable (for all paths, for some state along the path, p 

holds); 

 possibility: EF(p) - p is possible (for some path, for some state along that path, p 

holds).  

2.8.   Conclusion  

This chapter presented all the theoretical background needed to explain the WildAniMAL 

implementation and the tool in which it is integrated – the IVY Workbench.  

Section 2.1 presented Model Checking that is the area in which this work is framed, and 

Section 2.2 presented NuSMV that is the model checker used widely in IVY Workbench, and 

which will also be used in the WildAniMAL plugin. 

Sections 2.3 and 2.4 presented Finite State Machine and Binary Decision Diagrams, two 

representations studied as possible approaches for WildAniMAL’s internal data structure. BDD is 

used also in NuSMV as one of its data structures.  

Section 2.5 presented the MAL interactors language used to create interactor models, and 

Section 2.6 presented the SMV language that will be used as an intermediate representation of 

the first one, because it is the language NuSMV uses. 
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Finally, CTL was presented. This language is used to express properties over the interactor 

models, created with the MAL interactors language, and compiled to a NuSMV specification.  
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Chapter 3 – IVY Workbench 

This chapter presents the IVY Workbench tool that supports the modelling and analysis of 

interactive systems. It is a plugins platform (developed in Java) that includes a set of editors and 

tools to analyse the models’ behaviour.  

 Section 3.1 presents the IVY Workbench approach, relating to model checking, that consists 

on creating a MAL model, expressing properties over it, making a verification with the help of the 

NuSMV model checker and analysing its results. 

Section 3.2 describes how to create a new plugin for the IVY Workbench, as this is useful to 

know how to implement the proposed WildAniMAL plugin.   

3.1.   The IVY Workbench Approach 

In [3] and [4] an approach to the application of model checking to the analysis of interactive 

systems is put forward. The approach is based in the development of models of the interactive 

device, and in their verification trough model checking against properties that encode 

assumptions about the usages of the device. 

Figure 6 shows the architecture of the tool, added with the proposed WildAniMAL plugin. As 

it can be seen, the tool consists on a number of plugins, and uses NuSMV as the verification 

engine. In this section the different plugins are described (except WildAniMAL, which will be 

discussed later, see Chapter 7).  
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3.1.3   Verification 

The verification step is performed by the NuSMV model checker. To make the verification 

possible, MAL interactor models are compiled to the SMV language. A detailed description of the 

verification approach is out of the scope of this dissertation. For the discussion that follows what 

is important is that, when a given property is not verified, NuSMV tries to provide a behaviour of 

the model (a trace) that demonstrates the falseness of the property in question. These traces 

(see Figure 10 for an extract) consist of a sequence of states of the model that violates the 

property under scrutiny. 

Because of limitations on the SMV input language, when compared to MAL interactors, the 

compilation step mentioned above introduces a series of auxiliary variables in the model. This 

means that the trace is not at the same level of abstraction as the interactor model being verified. 

One aspect were this is particularly evident is the treatment of actions. Because SMV models do 

not have an explicit notion of action, the compilation process introduces a special attribute - 

action - used for modelling, in each state, which action has just occurred.  

Another aspect that deserves mention is a mismatch in the execution models of both 

languages. At MAL interactors level, the actions of different interactors can happen in an 

asynchronous way. Thus, an interactor can execute one action while the others remain inactive. 

At the SMV level, however, the transitions occur in a synchronous way. This means that when a 

module performs a transition all modules in the model must also perform a transition. To model 

asynchronous state transitions, it becomes necessary to introduce a special action nil that at the 

MAL interactors level (what we will call the logical level from now on) corresponds to nothing 

happening, while at SMV level (what we will call physical level from now on) represents a state 

transition (to a state with the same attributes values i.e. to the same logical state). This way, the 

SMV module corresponding to an interactor can perform a state transition associated to a given 

action, while the others execute the action associated to nil (that is, maintain the state). 
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 public void initGUI(JFrame main, JComponent rootContainer)  this 

method is used to initialize the Graphic User Interface for the tool. This method is 

also called once only in the life cycle of the tool. It receives the main JFrame of the 

IVY Workbench tool and also receives the container in which the tool graphic 

component can be added. 

 

 public void gainFocus()  this method is to be invoked whenever the tool is 

selected in the main tabbed pane of IVY Workbench tool. With this method we can 

control what we want to do each time the tool gains control. For example if some 

global data is changed by others tools then the current tool can also change its state 

(by changing graphical elements or internal data) to reflect them. 

 

 public void loseFocus()  this method is used whenever the tool loses the 

control (is de-selected). With this method we can control what we want to do when 

the user switches to other tool. For example the current tool can put some data in a 

global area (common to all tools) so that the other tools can query if some global 

data is available, and if so reflect some changes on their own states, by changing 

graphical elements or internal data. 

 

 public boolean needsSaving()  this method is used to tell if the tool needs to 

save its data when a project is being saved. 

 

 public boolean needsFocus(int event)  this method is used to return the 

status related to focus. It receives a parameter that is the event by which the tool 

needs focus. The event codes are the following:   

o int EVENT_OPEN_PROJECT = 0; 

o int EVENT_NEW_PROJECT = 1; 

o int EVENT_SAVE_PROJECT = 2; 

o int EVENT_CLOSE_PROJECT = 3; 

o int EVENT_EXIT_PROGRAM = 0. 
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 public void newProject(IProjectProperties proj)  this method is invoked 

whenever the main application creates a new project. It receives the project 

properties (name, project working directory, author, etc.). 

 

 public void openProject(IProjectProperties proj, String[] files)  this 

method is invoked whenever the main application opens a project. It receives the 

project properties and also the paths of the folders belonging to this tool. 

 

 public String[] saveProject(IProjectProperties proj)  this method is 

invoked whenever the user wants to save the current project. It will be up to the tool 

to save its own data files. This method receives the project properties as a 

parameter and returns the paths of the folders belonging to this tool.   

 

 public void closeProject(IProjectProperties proj)  this method is invoked 

whenever the IVY user wants to close the current project. It receives the project 

properties. 

 

 public void exit()  this method is invoked whenever the user exits the IVY 

Workbench. 

 

The configuration file plugin.xml is needed to properly configure the tool. The following text 

explains how to fill the data fields of this configuration file.  

The structure of the XML file is the following: 

 

<?xml version="1.0" ?> 
<!DOCTYPE plugin PUBLIC "-//JPF//Java Plug-in Manifest 0.4" 
"http://jpf.sourceforge.net/plugin_0_4.dtd"> 
 
<plugin id=’tool name’ version=’tool version’ > 
<requires> 
<import plugin-id="CoreSystem"/> 
</requires> 
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<runtime> 
<library id=’tool library name’ path=’tool jar filename’ type="code"> 
<doc caption="API documentation"> 
<doc-ref path="api/index.html" caption="javadoc"/> 
</doc> 
</library> 
<library type="resources" path="icons/" id="icons"/> 
</runtime> 
 
<extension plugin-id="CoreSystem" point-id="Tool" id=’tool name’> 
<parameter id="class" value=’tool java main class name’ /> 
<parameter id="name" value=’tool name’ /> 
<parameter id="description" value=’tool description’ /> 
<parameter id="icon" value=’tool icon filename’ /> 
</extension> 
</plugin> 

 

 The values between quotes have to be replaced to fill the configuration file. For example, to 

make the configuration file of Model Editor tool the values are instantiated in this way: 

 
‘tool name’= “ModelEditor” 
’tool version’= “0.0.1” 
’tool library name’= “Model Editor” 
’tool jar filename’= “ModelEditor.jar” 
’tool java main class name’= ”Editor.Editor” 
‘tool description’= “Model Editor description” 
‘tool icon filename’= “modelEditor.gif” 

 
In the tool’s directory a “build.xml” file is also needed. This file is used to build the tool 

with the help of the “plugin.xml” configuration file. The build.xml (see Appendix I) is the same 

for any tool (only the project name can be changed). 

3.3.   Conclusion 

This chapter presented the IVY Workbench tool that supports the modelling and analysis of 

interactive systems. Section 3.1 presented the model checking based approach supported by the 

tool. Section 3.2 described how to create a new plugin for that tool.  
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Chapter 4 – Related Work 

This chapter describes CTTE (ConcurTaskTrees Environment) a task modeling tool that has 

animation and simulation strategies that are similar to the ones intended to be used on the 

proposed MAL models animator plugin. A previous IVY Workbench plugin - aniMAL - that had a 

similar goal to this work will also be described. 

4.1.   CTTE 

CTTE5 (see Figure 18) is an environment for editing and analysing task models. Its main goal 

is to support the design of interactive applications focusing in the humans and their activities.  

In [25] the concepts behind tasks models are presented. In is an important model because it 

indicates the logical activities that an application can support. A task is defined as an activity that 

should be performed by the user to reach a goal in the system. A goal can be a desired 

modification of state or a query to obtain information on the current state of the system. Figure 

19 presents an example of a Tasks model. 

CTTE uses ConcurTaskTrees (CTT), introduced by Fabio Paternó in [26] and [27]. CTT is a 

graphical notation (see Figure 20 for an example) with a set of operators used to describe the 

relationships between tasks. 

                                                 
5 Available at http://giove.isti.cnr.it/tools/CTTE  (last visited 27/10/2012). 
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Chapter 5 – WildAniMAL 

Implementation Approaches 

This chapter discusses possible WildAniMAL implementation approaches. Section 5.1 

discusses three implementation alternatives. Section 5.2 presents the chosen implementation 

approach: NuSMV Simulation Capabilities. 

The NuSMV model checker provides an interactive shell where commands can be entered. 

The commands are grouped by the functionality they provide. There are eight main groups: 

Model Reading and Building, Simulation, Checking Specifications, Bounded Model Checking, 

Checking PSL Specifications, Execution, Traces, and Administration.  

In the context of the present work, we are interested in those commands that help perform 

an interactive simulation of a NuSMV specification. Having that in mind, the groups of commands 

which are important to mention are: Model Reading and Building, and Simulation.  

Sections 5.2.1 and 5.2.2 provide commands’ descriptions that are focused on those aspects 

(options and environment variables) that are effectively used in this work. More detailed 

descriptions can be found in [12].  

Section 5.2.3 provides a NuSMV simulation example where all the presented commands are 

used. 

5.1.   Implementation Approaches 

In this Section, the main approaches to implementing the WildAniMAL plugin will be 

analysed. Three approaches are considered. Section 5.1.1 looks at the possibility of generating 

and using a Finite State Machine representation of the MAL interactors model to drive the 
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animation. Section 5.1.2 looks at using the BDD representation of the MAL interactors model 

(created by NuSMV, the verification engine used by IVY Workbench) instead of creating our own 

finite state machine. Finally, Section 5.1.3 looks at the possibility of using NuSMV's simulation 

commands, available on its interactive mode, to perform the animation. 

5.1.1   Generating a Finite State Machine 

This approach can be described as transforming the MAL interactors model into a Finite 

State Machine (FSM) model. An introduction to the theory behind FSM is available in Section 2.3. 

To use this approach an algorithm to translate MAL models into some FSM representation 

has to be developed and implemented. That work can be complex and time consuming and also 

tests of the algorithm implementation's correctness are needed. Due to these reasons this 

approach can be risky, and good results cannot be guaranteed beforehand. 

The main advantage of this approach is that only the original MAL model is used, and the 

results from the simulation process are easily interpreted in the context of, and incorporated into, 

the MAL’s model iterative creation process. Other advantage is that, if this approach can be 

efficiently implemented, then it will be as easy to perform an interactive simulation of the MAL’s 

model (creating the FSM one step at a time) as it will the full generation of its FSM model. 

Because the algorithm will be custom made it will be easily adaptable to any need desired. 

To face this approach's risks, NuSMV's flat model FSM capabilities can be used. These 

capabilities are supported by the following commands: 

 build flat model - Compiles the flattened hierarchy into a Scalar FSM; 

 build boolean model - Compiles the flattened hierarchy into boolean Scalar FSM; 

 write flat model - Writes a flat model to a file; 

 write boolean model - Writes a flat and boolean model to a file. 

However, if the NuSMV FSM capabilities are used, then the main advantage stated above 

can be lost, due to the translation process between MAL model and the NuSMV generated FSM 

model. The simulation will no longer happen at the abstraction level of the MAL models, but at 

the level of the NuSMV specifications created from those models. 
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5.1.2   NuSMV Binary Decision Diagrams 

This approach can be described as using the BDD representation of the MAL interactors 

model, created by the NuSMV model checker, to perform the animation. 

Binary Decision Diagrams (presented in Section 2.4) are used by the NuSMV model checker 

to perform model checking over the NuSMV model. These diagrams are not easily 

understandable and can be difficult to use for the purpose of implementing the WildAniMAL 

plugin. 

This approach is not the best one because the initial MAL interactors model is translated to a 

NuSMV model that is read by NuSMV model checker and transformed into BDD. Because two 

translations steps are made, doing the analysis of the results obtained by animating the BDD, 

and using them to help the modeling process of a MAL interactors model, will be a daunting task. 

This is because several artificial variables can be added and transformations made between the 

two models and the BDD. 

5.1.3   NuSMV Simulation Capabilities 

The NuSMV model checker has simulations commands that can be used to help implement 

the proposed MAL interactors model animator plugin. An example of the NuSMV’s simulation 

capabilities is presented in Figure 24.  



 

 

 

F

Availa

when

the n

from 

with t

the fo







T

WildA

are n

Figure 24 sho

able States is

n the CTTE’s 

next enabled 

the MAL inte

the NuSMV m

ollowing: 

 read_mo

 pick_sta

 simulate

The difficulty 

AniMAL plugi

ot well suited

F

ows the ava

s similar to th

user interac

(we can als

eractors mod

model check

odel  Rea

ate  Picks 

e  Perform

of this appro

n. However, 

d to be called

Figure 24 Nu

ilable states 

he concept o

ctively selects

so say availa

del, in the IVY

ker. The NuS

ds a NuSMV 

a state from

ms a simulatio

oach is that 

the comman

d from an ext

38

uSMV simula

at a given m

of Enabled Ta

s a task to p

able) tasks a

Y Worbench t

SMV comman

V fille into NuS

 the set of in

on from the c

these comm

nds are only

ternal proces

tion example

moment in t

asks in CTTE

perform and

re.  Because

tool, it can be

nds that can

SMV; 

nitial states;

current selec

mands must 

available in

ss.  

 

e. 

he simulatio

. Enabled Ta

CTTE’S simu

e the SMV M

e used for sim

n be used for

ted state; 

be invoked f

interactive m

on. The conc

asks are calc

ulator shows

Model is pro

mulation pur

r that purpos

from the pro

mode, and as

cept of 

ulated 

s what 

duced 

rposes 

se are 

posed 

s such 



 

 

 

39

Conceptually the main problem with this implementation approach is that the SMV Model is 

slightly different from the initial MAL interactors model (as stated in Section 5.1.2). Therefore a 

process of constant translation and interpretation of animation results from SMV model to MAL 

model has to be made and that can be problematic and inefficient. Nevertheless, this is still 

better than directly using BDDs (NuSMV uses the BDDs to run the simulation), were there would 

be two steps between the original model and the representation our tool would use to support the 

animation. 

Considering the above, this approach was the chosen one for the implementation of the 

WildAniMAL plugin. 

5.2.      NuSMV Interactive Shell 

The NuSMV Interactive Shell offers an interaction mode that initiates a read-eval-print loop, in 

which commands can be executed. The activation of the shell is done by invoking the model 

checker with the “-int” option:  

system prompt> NuSMV -int <RET> 

NuSMV> 

When the default “NUSMV>” shell prompt is displayed, the system is ready to accept and 

execute user commands. 

A NuSMV command is a sequence of words. The first word represents the command to be 

executed and the remaining words are its arguments. With the “set” command it is possible to 

assign values to environment variables, which in turn influence the behaviour of the commands.  

5.2.1   Model Reading And Building 

The commands in this group are used for the parsing and compilation of the model into a 

BDD and are the following:  

 

read_model -í model-file. Reads a NuSMV file into NuSMV.                          
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If the -i option is not specified, the command reads the file specified in the environment 

variable Input_File. If the option is specified the command sets the environment variable 

input_file to model-file, and reads the model from the specified file. 

 

go - Initializes the system for verification.                                
 

This command is responsible for reading the model (unless it has already been read), and 

generating a BDD from it. The model is first flattened, which includes instantiating modules 

by substituting their actual parameters for the formal parameters, and then prefixing the 

result with each particular instance’s name, scalar variables are encoded to create a boolean 

model, and then the BDD is generated.  

5.2.2   Simulation Commands 

The commands in this group allow simulating a NUSMV specification and are the following:   

 

pick state [ -i [-a] ]  
 

Chooses an element from the set of initial states, and makes it the current state (replacing 

the old one). The chosen state is stored as the first state of a new trace, which will grow in 

number of states, as simulation evolves. The state can be chosen according to different 

policies, which can be specified via command line options. By default the state is chosen in 

a deterministic way. 

 

Options: 

-i  enables the user to interactively pick up an initial state. The user is requested to 

choose one state from a list of possible states. If the number of possible states is too 

high, then the user has to specify some further constraints on the values of the variables 

in the current state; 

-a  by default, states only show those variables that have changed from the previous 

state. With this option, NuSMV displays all state and frozen variables regardless of 
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whether they have are changed and unchanged with respect to the previous state. This 

option works only if the -i option has been specified. 

 

simulate [-i [-a]] [-k steps] 
 

Performs a simulation from the current selected state. The command generates a sequence 

of at most steps states (representing a possible execution of the model), starting from the 

current state. The current state can be set via the pick_state command. 

 

Options: 

-i  enables the user to interactively choose every state of the trace, step by step. As 

with pick_state, if the number of possible states is too high, then the user has to 

specify constraints on the state attributes. These constraints are used only for a single 

simulation step and are forgotten in the following ones. 

-a  again, this makes NuSMV display all the state and frozen variables (changed and 

unchanged) during every step of an interactive session (which is not done by default).  

-k steps  this option defines the maximum length of the path to be generated. The 

default value is determined by the default simulation steps environment variable 

shown_states (ranges between 1 and 100, and default is 25). 

5.2.3   Simulation Example 

To illustrate the use of the NuSMV simulation commands a model of a garage gate will be 

used. This model will be specified in the interactors language mentioned earlier in section 2.5. 

This specification can be seen in Figure 25. 
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5.3.   Conclusion 

In this chapter we described the NuSMV Interactive Mode and its available commands. To 

more effectively illustrate it we presented a real example of a model: a garage gate. The model 

was specified in the MAL Interactors language, compiled to a NuSMV specification, and finally a 

simulation was carried out. That simulation used the commands that were previous presented. 

We can conclude that NuSMV simulation commands can be useful to implement a MAL 

Interactors model animator because the needed output and general mechanism is easily 

available and ready to use. 
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Chapter 6 – WildAniMAL 

Implementation 

This chapter describes the implementation of WildAniMAL as a plugin for the IVY Workbench 

tool. An architectural view with UML diagrams is provided. To provide more detail on the 

implementation, an explanation of the main methods is presented.   

6.1.   WildAniMAL’s Architecture 

Because the JAVA programming language was used, the architecture of the WildAniMAL 

plugin can be easily explained by using UML diagrams for each of the Java packages created. 

This scheme for presenting the architecture is well suited to provide the “main picture” of the 

implementation. 
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StatedBased representation, the update is done by calling drawInteractorState (which 

performs a repaint).  

It’s easy to add more visual representations because the main class of a representation will 

only have to implement the addState method, and the graphical (or textually, if wanted) 

representation. This feature makes the plugin extensible regarding the visual representations 

available. 

6.2.   WildAniMAL’s Source Code Description 

This section presents a description of the most relevant aspects of the implementation’s 

source code. That description will be grouped by the packages described in the previous section. 

6.2.1   Animator Package 

Class Main 

As already mentioned, the Main class implements the plugin interface of the IVY Workbench 

tool. 

 
public class Main implements ITool { 

/** container for application. */ 
private JComponent container = null ; 
 
/** application core server. */ 
private IServer server = null; 
 
private Gui frame; 
private IModel model; 
 
public Main() { 

frame= new Gui(); 
frame.saveLastFileModified(); 

} 
 

 The previous code shows that the Main class implements the ITool interface, that is, the 

plugin interface of the IVY Workbench tool. The variables container and server relate to the 

CoreSystem of the IVY Workbench tool, and enable the plugin to communicate with it. In 

particular, they enable the WildAniMAL plugin to retrieve information from the shared data 
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structure used by all the plugins of the tool. It is through this shared information that the plugin 

integrates its own functionalities (in this case, the simulation of the interactors model - using the 

NuSMV specification as an intermediate representation) with the rest of the tool. The model 

variable will hold all data from the interactors model and is used to retrieve information needed to 

construct constraints and also to help the NuSMV package classes perform their function.  

The Main() constructor initializes the GUI class which, has its name indicates, is the 

Graphical User Interface of the plugin. The saveLastFileModified method is used to store in a 

variable the last time when test.smv (the SMV Specification file) was modified. That information 

will be used to test when a new model was compiled in the Properties Editor. Whenever a new 

interactors model is compiled, the WildAniMAL simulation has to be restarted. 

Another method that is used during the initialisation of the plugin is initGUI. 

 
public void initGUI(JFrame main, final JComponent rootContainer) { 

this.container = rootContainer; 
    

container.setLayout(new BorderLayout()); 
container.add(frame,BorderLayout.CENTER); 

  } 
 

The method simply adds WildAniMAL’s graphical user interface (given by the GUI class as 

frame variable) to the JComponent (rootContainer) that has been assigned to it by the Core 

System. Each plugin is graphically located in a tab. 

Next the handling of focus must be provided.    

   
  public void gainFocus() { 

frame.checkFileModifications(); 
     

CServer i=(CServer)server; 
     

model=i.getModel(); 
frame.setIModel(model); 

  } 
 

The gainFocus method is executed whenever the user chooses the plugin WildAniMAL in 

the IVY Workbench tool (by clicking in the respective tab). In this method, a check is made to 

determine if a new interactors model was compiled, in which case the simulation will be 

restarted. That is done by using the checkFileModifications method of the Gui class. Also, 
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 The constructor of the Gui class initializes the graphical components and also the auxiliary 

classes that will handle WildAniMAL’s  functionalities.  

 
public Gui() { 
 initComponents(); 
       
      GridLayout gd = new GridLayout(0,1); 
         

cPanel.setLayout(gd); 
               
model = (DefaultListModel) statesList.getModel(); 
parser = new Parser(model, statesList); 
            
treeActions = new TreeActions();     
nusmv = new NuSMVInteractiveRun("test.smv", Consola, parser); 
                 
constraints = new ConstraintsManager(cPanel, treeActions);  
        
stRenderer = new StatesRenderer(); 
statesList.setCellRenderer(stRenderer); 
         
stateBased = new StateBased(stateBasedPanel); 
tabular = new Tabular(tabela, scrollTabela); 

} 
 

The statesList variable (a JList) holds the current states returned on each step of the 

simulation. A reference to its model (data) and the component itself are passed on in the 

Parser class constructor, because in the simulation process, and in the associated parsing 

needed, this class updates the states list directly.  

The treeActions variable (instance of TreeActions class) is also initialized here, and is 

responsible for storing locally the actions of the interactors model to help constraints’ creation. 

For that reason, the constraints variable (an instance of the ConstraintsManager class) is 

initialized using a reference to it.     

Another class that is instantiated in the Gui constructor, and the most important of them all, 

is NuSMVInteractiveRun (variable nusmv). It is the nusmv variable that will setup the actual 

interactive simulation, using an external NuSMV model checker process. The variable is initialized 

with a JTextarea (Consola) that will receive the textual output of the commands sent to the 

NuSMV process, with a reference to the Parser class (variable parser) that will be used to 
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parse that same output, and with the name of the file holding the NuSMV specification. This file’s 

name is hardcoded (by choice) because it is a temporary file generated in the Properties 

Editor plugin of IVY Workbench when the current interactors model is compiled.  

The StatesRenderer class (variable stRenderer) is also instantiated in the GUI 

constructor. It is the stRenderer variable that will be responsible for showing the result of 

filtering the elements of statesList (by changing their background color) when some constraints 

are applied.      

Finally, the StateBased (variable stateBased) and the Tabular (variable tabular) 

classes are also instantiated in the Gui constructor. The two corresponding variables will enable 

showing the progress of a simulation, through the visual representations they implement. 

Whenever the user chooses a state to proceed with the simulation, these two variables receive 

that information which will be shown with the corresponding graphical strategy. The stateBased 

variable provides a kind of state diagram and the tabular variable provides a normal table. 

  Next the method that shares the interactors model (IModel variable), between all the 

variables that need it, is provided. These variables are: nusmv, constraints and treeActions. 

 
public void setIModel(IModel mod) { 

imodel = mod; 
nusmv.setImodel(mod); 
constraints.setChoices(imodel); 
treeActions.changeTree(imodel);  

} 
 
Next the methods that handle button events are presented.  

 
private void btGetFirstStateActionPerformed(java.awt.event.ActionEvent evt) { 

nusmv.sendCommand("pick_state -i -a"); 
btGetFirstState.setEnabled(false); 

} 
 
This method handles the click event on the Get Initial State button, and does that by 

sending the shown command to the NuSMV model checker (using the nusmv variable).  

Next, another button’s (Pick State) event handling is provided.  

 
private void btPickStateActionPerformed(java.awt.event.ActionEvent evt) {                                          
        int index = statesList.getSelectedIndex(); 
        if (index != -1) { 
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            //Add State to the Trace Visualizer 
            stateBased.addState(""+index, parser.getStateInfo(""+index));          
            tabular.addState(parser.getStateInfo(""+index)); 
              
            //SendCommand to show next states 
            if (statesList.getModel().getSize() > 1) 
                nusmv.sendCommand(""+index); 
             
            model.clear(); 
            nusmv.sendCommand("simulate -i -a -k 1"); 
            stRenderer.clearStates(); 
             
            //Update Trace Visualization 
            stateBasedPanel.repaint(); 
            tabela.repaint(); 
            interactorsNamesPanel.repaint(); 
        } 
    }          

 
This method picks up the current state choice, that is, the selected number in the 

statesList JList. If a choice exists (not null) then the respective state info is added to the traces 

visual representations (stateBased and tabular variables). After that, the choice (state number) 

is sent to NuSMV model checker and statesList is cleared. Then, the simulate command is 

sent to NuSMV which will return states to fill statesList again. Finally repaints are made in order 

to show the state update in the trace’s visual representations.  

Next the Filter button event handling is provided.  

 
private void filterActionPerformed(java.awt.event.ActionEvent evt) {                                        
        JPanel constPanel; 
        JComboBox vars, op, vals; 
        String var, opc, val; 
 
        ArrayList<String> lista = new ArrayList<String>(); 
 
        for (int i = 0; i < cPanel.getComponentCount(); i++) { 
            constPanel = (JPanel) cPanel.getComponent(i); 
 
            vars = (JComboBox) constPanel.getComponent(0); 
            op = (JComboBox) constPanel.getComponent(1); 
            vals = (JComboBox) constPanel.getComponent(2); 
 
            var = (String) vars.getSelectedItem(); 
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            opc = (String) op.getSelectedItem(); 
            val = (String) vals.getSelectedItem(); 
 
            if (val.contains("(")) { 
                val = treeActions.handleActionParameters(val); 
            } 
            lista.add(var + " " + opc + " " + val); 
        } 
 

The filterActionPerformed method gets the constraint conditions from cPanel into a list 

(variable lista). The constraints may have action with parameters and if so a special method 

handleActionParameters is used to replace the internal notation used in NuSMV (e.g. 

doSomethingAction_a_b_c) by the more user friendly notation used in MAL models 

(doSomethingAction(a,b,c)). After that lista is sent to the parser, which returns the states 

that match the constraints’ conditions. These states are then passed on to the states renderer 

(stRenderer) that renders them differently (red background) on the statesList.    

The event handler for the Send button (method btSendActionPerformed) is similar to 

the previous method. The difference is that the constraints are joined in a string as a conjunction 

(using the & operator) and are sent to the NuSMV model checker. Hence, instead of filtering the 

current list of states being displayed, this method sends constrains that will be used by NuSMV to 

generate a new (smaller) list. This is particularly useful when the list of possible states is too big 

(over 100 states) in which case NuSMV will not generate it. 

  

 Class Parser 

 The Parser class is responsible for parsing the output of the NuSMV model checker. 

Because the parsing process consists mainly in obtaining states and their info, this class has a 

data structure to store them and provides methods to query that information.   

The patterns used in the parsing process are initialised with the addSystemPatterns 

method. 

  

private void addSystemPatterns() { 
        String ident="([a-zA-Z][a-zA-Z0-9_$~.><\\[\\]\\-]*)"; 
        String value="([a-zA-Z0-9_$~.><\\[\\]\\-]*)"; 
        systemPatterns.add(Pattern.compile("(\\d+)\\)")); // State filter 
        systemPatterns.add(Pattern.compile("(\\s*)"+ident  
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        + "(\\s*)=(\\s)*(\\d)*" + value)); // Action\Atribute Filter   
        systemPatterns.add(Pattern.compile("\\s*Set of future states is EMPTY: " 
        + "constraints too strong\\? Try again.\\s*")); // Set of Future States Empty 
        systemPatterns.add(Pattern.compile("\\s*Too many \\([0-9]+e\\+[0-9]+\\) " 
        + "future states to visualize. Please specify further constraints: \\s*")); 
        // To Many States After Constraint Send    
} 
 

The addSystemPatterns method compiles the patterns (regular expressions) used in 

the parsing process of the NuSMV model checker’s output. The first pattern matches a state 

number. The second pattern matches an action or attribute value (that is part of state info). The 

third pattern matches the indication that after applying constraints there aren’t any states to 

proceed with simulation. The last pattern matches the indication that applied constraints aren’t 

sufficient and more have to be specified. 

The parseLine method is responsible for parsing a line of the NuSMV model checker’s 

output. The parsing is done by identifying specific keywords and patterns in the text produced by 

NuSMV. The first part of this method checks if the line contains “AVAILABLE STATES”, which 

means that a new simulation step has started (a state has been chosen). In that case the states 

structure is cleared to receive new states info. 

 
public void parseLine(String lineRead) { 
        if (lineRead.contains("AVAILABLE STATES")) { 
            availableStates=true; 
            states = new HashMap<String,ArrayList<String>>();         
            Gui.setBtPicksState(true); 
        } 

 
Next the method checks if the line contains a new state number. If so, then it also tests if the 

model was on a situation where constraints insertion was needed. Then the state number is 

added to states. That state number is also stored in an auxiliary variable lastState. 

         
String aux; 
        if (availableStates) { 
            matcher = systemPatterns.get(0).matcher(lineRead); 
            if (matcher.lookingAt()) { 
                if (model.contains("Too Many States")) { 
                    model.removeElement("Too Many States"); 
                      Gui.setConstraints(false);   
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                } 
                 
                aux = matcher.group(1); 
                lastState = aux; 
                 
                if (!model.contains(aux) && !"".equals(aux)) { 
                    model.add(Integer.parseInt(aux),aux); 
                    states.put(aux, new ArrayList<String>()); 
                } 
            } 
 
After parsing a state number (lastState), all the actions and attributes values that make 

part of its info are parsed, and stored in its entry in states.  

 
   else if (!"".equals(lastState)) { 
                matcher = systemPatterns.get(1).matcher(lineRead); 
                if (matcher.lookingAt()) { 
                    aux = matcher.group(0); 
                    if (states.containsKey(lastState) && !"".equals(aux)) { 
                         states.get(lastState).add(aux.trim()); 
                         if (aux.contains("action")) { 
                             aux = aux.replace("action = ",""); 
                             model.set(Integer.parseInt(lastState), aux);          
                         }    
                    } 
                } 
    } 

 
This part of the method detects and signals a situation where constraints have to be entered. 

In this situation, the Pick State button is disabled, because there are not states to choose from.  

 
       matcher = systemPatterns.get(2).matcher(lineRead); 
        matcher1 = systemPatterns.get(3).matcher(lineRead); 
        if (matcher.lookingAt() || matcher1.lookingAt()) { 
            model.clear(); 
            model.addElement("Too Many States"); 
            Gui.setConstraints(true);   
            Gui.setBtPicksState(false); 
        } 
 

Finally, this part of the method detects a situation where the output for a simulation step has 

ended and a state choice, to proceed with the simulation, is needed.   
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        if (lineRead.contains("Choose a state form the above") ) { 
            availableStates = false;    
            lastState = "";    
            Gui.setBtPicksState(true);    
        } 
    } 

6.2.2   Constraints Package 

The ConstraintsManager class is responsible for managing constraints that can be sent 

to the NuSMV model checker or used to filter states. This class constructor is initialized with the 

constraints JPanel (see Figure 28), and with a reference to an instance of the TreeActions class 

that will help with retrieving information on the actions in the interactors model. 

The setChoices method (some parts of the code are presented) fills the variables choices 

(all names of attributes and variables in the interactors model) and valuesList (the 

corresponding values for any variable in choices).    

 
for (int j=0; j<v.size();j++ ) { 
            elem=v.get(j); 
 
            aux = new ArrayList<String>();        
            def=model.getDef(elem); 
 
            if (!def.equals("")) { 
               if (def.contains("array")) { 
                    choices.remove(choices.size()-1); 
                    aux=model.getAttributeValuesOnly(elem); 
                    valuesList.put(elem,aux); 
               } 
                else if (defs.containsKey(def)) 
                    valuesList.put(elem, defs.get(def)); 
                else { 
                    aux=model.getAttributeValuesOnly(elem); 
                    valuesList.put(elem,aux); 
                    defs.put(def,aux); 
                } 
               choices.add(elem); 
            } 
} 
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In the method, when an action variable has parameters, the method 

getInstantiatedActions of the TreeActions class is used, to unfold the types of these 

parameters, in order to obtain all the possible combinations of parameter values.   

The addNewConstraint method is responsible for creating a new constraint condition. A 

constraint is graphically represented by three combo-boxes. The first holds all the elements of 

choices, the second holds the operators (“=” and “!=”), and the last is updated with all possible 

values (values from valuesList) for the element currently selected on the first combo-box.      

 

    public void addNewConstraint() { 
        if (choices.size() > 0) { 
            JPanel constraint = new JPanel(); 
            ArrayList<String> operators= new ArrayList<String>(); 
            ArrayList<String> values; 
            JComboBox vars= new JComboBox(choices.toArray()); 
            constraint.add(vars);  
            operators.add("="); 
            operators.add("!="); 
            JComboBox op= new JComboBox(operators.toArray()); 
            constraint.add(op); 
 
            String key = choices.get(0); 
 
            if (valuesList.containsKey(key)) 
                values = valuesList.get(key); 
            else 
                values = new ArrayList(); 
             
            JComboBox vals= new JComboBox(values.toArray()); 
            constraint.add(vals); 
            ComboListener cl = new ComboListener(vals,valuesList); 
            vars.setSelectedIndex(0); 
            vars.addActionListener(cl); 
            op.setSelectedIndex(0); 
             
            if (vals.getItemCount()>0) 
                vals.setSelectedIndex(0); 
 
            painel.add(constraint); 
            painel.updateUI(); 
      } 
   } 
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A textual representation of the constraint condition is what is sent to the NuSMV model 

checker, or used to filter states in statesList. 

6.2.3   NuSMV Package 

Class NuSMVInteractiveRun is responsible for handling the communication between the 

graphical user interface, in which the user can execute simulation commands, and the external 

NuSMV model checker process. 

 
        public NuSMVInteractiveRun(String nusmvFile,  
                JTextArea consola1,Parser parser1){ 
            console = new NuSMVConsole(nusmvFile,consola1,parser1); 
            console.loadConsole(); 
             
            input = new Input(console); 
            console.setInput(input); 
             
            input.start(); 
            console.execCommand("go"); 
         }    

 

NuSMVInteractiveRun’s constructor instantiates the NuSMVConsole class (variable 

console) with a reference to the file with the NuSMV specification, a reference to the JTextArea 

(consola1) that will receive the output from the model checker process, and also a reference 

(parameter parser1) to the Parser instance that will parse each line of the NuSMV model 

checker’s output. The Input class is also instantiated, which starts a thread (variable input) that 

will be continuously reading data from the input stream of the NuSMV model checker process. 

Finally, the command go is sent to the NuSMVConsole, and it initializes the simulation of the 

current NuSMV specification (as explained in section 5.2.1). 

 

        public void run() { 
                while(true) { 
                    console.readChar(); 
                    try { 
                        waitWhileSuspended(); 
                    } catch (InterruptedException ex) { } 
                } 
        } 
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        public void setPaused(boolean p) { 
            this.paused = p; 
        } 
         
        private void waitWhileSuspended()  
                throws InterruptedException { 
             while (paused) { 
                Thread.sleep(200); 
             } 
        } 

 

The Input thread can be paused, if no data is available in the stream. That is done with a 

state variable (paused) that is constantly checked (with waitWhileSuspended), in the run 

method of this thread. Without this, the process would be kept active while waiting for input, 

which would create a big impact in CPU usage. 

Next methods of the NuSMVConsole class are provided. 

 
         

public void loadConsole() { 
                String[] cmdarray = {"","-int", nusmvFile}; 
                cmdarray[0] = ""+System.getProperty("user.dir") + File.separator + 
                        "NuSMV" + File.separator + "bin" + File.separator + "NuSMV"; 
                 
                ProcessBuilder pb = new ProcessBuilder(cmdarray); 
                pb.redirectErrorStream(false); 
                 
                try { 
                    proc = pb.start(); 
                } catch (IOException ex) { } 
                 
                InputStream inputStream = proc.getInputStream(); 
                OutputStream outputStream = proc.getOutputStream(); 
 
                InputStreamReader inputStreamR = new InputStreamReader(inputStream); 
                OutputStreamWriter outputStreamW = new OutputStreamWriter(outputStream); 
                 
                brInput = new BufferedReader(inputStreamR); 
                bwOutput = new BufferedWriter(outputStreamW); 
        } 
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The loadConsole method sets NuSMV’s command path, which has to be inside IVY 

Workbench application path and more specifically in NuSMV/bin/NuSMV, and starts a java 

process with it. Then its input (brInput) and output (brOutput) streams are retrieved. 

 
        void execCommand(String command) { 
            input.setPaused(false);  
            try { 
                bwOutput.write(command); 
                execNewLine(); 
            } catch (IOException ex) { 
                 
            }   
        } 

 
The execCommand method is used to send a command to the NuSMV process. Each time 

it is executed it starts by activating the Input thread (awaking it). 

      
void readChar() { 
                int c = 0; 
                char ch = 0; 
                try { 
                    c = brInput.read(); 
                     
                    if (c == -1) { 
                        input.setPaused(true); 
                        parser.selectFirstState(); 
                        return; 
                    } 
                     
                    ch = (char) c; 
                } catch (IOException ex) { return; } 

 
The readChar method will read a character at a time from brInput. This has to be done in 

this way (the usual way is to read line by line) because sometimes the NuSMV process does not 

print the last line of result, for example when it is waiting for the user to choose a state and 

subsequently to press enter (newline). When brInput returns no char (a value equal to -1), then 

Input thread is paused and readChar methods returns immediately.  

 
 if (ch=='\n') { 
                    str = sb.toString(); 
                    parser.parseLine(str); 
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                    sb = new StringBuffer(); 
                    consola.append(str+"\n"); 
                    consola.setCaretPosition(consola.getDocument().getLength());                 
 } 

 

The characters consecutively read by the readChar method are accumulated in a 

StringBuffer (sb), until a newline (\n) is read. In that situation, the stringBuffer is transformated 

in a String (the read line), which is sent to the Parser to be parsed and printed in the JTextArea 

Log. The StringBuffer sb is also cleared to begin accumulating characters to form the next line.   

 
          else { 
                    sb.append(ch); 
                    aux = sb.toString(); 
      
                    if (aux.matches("  action = [a-zA-Z0-9]+") && containsAction(aux)) { 
                        parser.parseLine(aux); 
                        consola.append(aux); 
                        consola.setCaretPosition(consola.getDocument().getLength());   
                        sb = new StringBuffer(); 
                    }   

 
If ch is not newline then it is accumulated in sb. Then a test is made to determine if the 

string is an action (using the containsAction method). This is the strategy used to overcome 

the problem of NuSMV not printing the last line of command output, which originates the last 

action of a state’s result of a command not being parsed. This strategy works because the action 

is the last line printed by NuSMV in any state attributes listing. 

The containsAction method checks if a string passed as a parameter (aux) is a valid 

action in the interactors model.  

 
private boolean containsAction(String aux) { 
            try { 
            ArrayList<String> actions =   
                    imodel.getActionsVariable("main.action"); 
            aux = aux.replace("  action = ",""); 
 
            boolean match = false; 
                 
            String ac; 
            aux = aux.trim();  
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            String encontrada = ""; 
                 
            for(String act: actions) { 
                ac = act.trim(); 
                     
                if ( ac.compareTo(aux)==0 )   {  
                        match = true; 
                        encontrada = ac; 
                        break; 
                } 
           } 

 
If an action is encountered (match is true) then an additional test is made. This handles the 

situation when one action has a name that starts with another action name. For example: 

setValueMCP and setValue. If this verification is not performed, then if the correct action to be 

matched is setValueMCP, what is (wrongly) matched is setValue. 

 

   if (match) { 
                for(String act: actions) { 
                    ac = act.trim(); 
 
                    if (ac.contains(encontrada) &&  
                        ac.length() > encontrada.length()) 
                            return false; 
                } 
            } 
                        return match; 
            } 
            catch (Exception e) { 
                return false; 
            } 
        } 

6.3.   Conclusion 

This chapter described the implementation of WildAniMAL as a plugin for the IVY Workbench 

tool. Section 6.1 presented a high level view of how the implementation code was organized. As 

the work of implementation was a Java programming task, this was explained with UML class 

diagrams, showing how classes were organized into packages.  
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Section 6.2 makes an extensive explanation of the code. One reason to do that is to fully 

present some problems that were encountered during development, and how they were 

overcome. By explaining the implementation in detail, it becomes easier for anyone to 

understand the code and consequently improve it at a later occasion. This also made it possible 

to think about how some implementation choices were made, and in the task of writing the 

explanation to describe this code, some methods were implemented in a more efficient way. 
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Chapter 7 – Using WildAniMAL 

This chapter demonstrates the WildAniMAL plugin of the IVY Workbench tool. Section 7.1 

presents a simulation example that makes extensive use of all the functionalities available in the 

plugin. Section 7.2 presents the conclusions of this chapter. 

7.1.   WildAniMAL’s Usage Example 

To explain how the WildAniMAL plugin can be used, a small example of an Ipod-like music 

player will be introduced.  To be able to keep the explanation short and understandable, some 

aspects of the real device will be abstracted in order to work with a simpler model. 

First an interactors model of the device will be created using the Model Editor plugin of the 

IVY Workbench (see Figure 38).    
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7.2.   Conclusion 

This chapter presented an interactors model of an Ipod-like device. It was shown how that 

model can be created, compiled to a NuSMV specification and simulated with WildAniMAL.  

We demonstrated how WildAniMAL can be useful in the task of detecting bugs and errors in 

an interactive manner. The situation (error in the model) that was presented and corrected was 

representative of other similar situations that can occur in other models. 

What is important to retain is that we can easily validate an interactors model and see if it 

behaves how we expect it too. If that does not happen, then we can use WildAniMAL 

functionalities to find out why. Doing this early validation is useful, because we can construct the 

interactors model incrementally by validating some steps at a time, instead of creating the big 

model and verify it as one. 
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Chapter 8 – Conclusions and 

Future Work  

This chapter summarizes the work done and all results achieved. Some future work can be 

done in order to improve this WildAniMAL plugin, and therefore the aspects that can be worked 

on are also presented.    

8.1.   Goal 

The goal of this work was to develop a plugin to help an IVY Workbench user while creating 

an interators model to interactively explore its behaviour: that is, enable the user to manually 

trigger events and observe how the model evolves. WildAniMAL (Watch It vaLiDation Animator for 

MAL) can perform this. It assists the modelling and analysis process, by providing functionalities 

to simulate and validate the model being created.  

8.2.   Results 

In order to implement the plugin, three possibilities were studied (see Chapter 5):  

a. representing a MAL interactors model as a Finite State Machine (FSM) and use that to 

drive the animation;  

b. use the BDD (Binary Decision Diagrams) representation of the MAL interactors model, 

created by the NuSMV model checker, to perform the animation;  

c. use the NuSMV model checker simulations commands, available on its interactive mode, 

to perform the animation.  
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After an analysis of the different alternatives it was decided to use the NuSMV’s simulation 

capabilities in the implementation of WildAniMAL. The implementation is described in Chapter 6.  

The implemented plugin supports the animation of models as intended. At each step the 

user can select one of the available actions and the animator presents the state (or possible 

states, in case of non-determinism) resulting from that action.  

During the process of implementing the plugin, problems related to existence of non-

determinism in the models arose. These related both to NuSMV not generating the list of possible 

future states, after a transition, if the number of states in the list exceeds one hundred, and also 

because even if the list of possible states is less than one hundred, it might be too large for a 

human user to analyse it. These issues were solved with the introduction of constraints to delimit 

the effect of actions in the state of the system, and thus reduce non-determinism in the 

simulation. 

A first result of this dissertation is that the goal of this work, recalled in the previous Section, 

has been achieved as is demonstrated by the example presented in Chapter 7. 

A parallel result of the work, that is not apparent in the thesis, but is nevertheless important 

for the IVY workbench development project, was the improvement of the existing plugins. When 

implementing the WildAniMAL plugin, some parts of the code of the CoreSystem and of its 

plugins were improved, and now more efficient data structures are used. The tool was developed 

in 2006 and since then many developments and changes were introduced in the Java language. 

Two examples of it, relating to data structures, are the use of ArrayLists instead of Vectors, and 

HashSets instead of HashMaps. Also, when detected, some parts of the code were rewritten, to 

be more easily understood or simply because minor bugs could happen as the code had some 

minor faults. Other times the improvement was to clear code, as some redundancy was present. 

Another result achieved is that the IVY Workbench was extensively tested, because that was 

needed to test the WildAniMAL’s implementation and usage. That enabled the detection of some 

situations when it did not work as expected, and demanded a need to correct the interoperability 

of all the plugins and the CoreSystem of the tool. That was done. Developing WildAniMAL also 

enabled us to think about how the functionalities were initially implemented and how they could 

be improved. This is specifically true in some aspects of usability.          
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  Another important result is that WildAniMAL implementation was fully documented, because 

UML diagrams were created that describe its architecture and also because a detailed code 

explanation was carried out. This results leads the way to its future improvement, as enables any 

person to, relatively easily, understand its implementation and, if desired, improve its 

functionalities and source code.        

8.3.   Future Work 

As future work, a more efficient (or automatic) integration of the WildAniMAL plugin in the IVY 

Worbench can be performed. Some steps of using it, require the use of other plugins of the IVY 

Workbench tool. The use of the Model Editor plugin is obviously a requirement to build the 

models, but using Properties Editor to compile the model created in the Model Editor should be 

avoided. The user has to go there only to push a button to compile the model. That task can be 

automated, but needs some changes in the CoreSystem, so that the compiler might be globally 

available in the system.  

Additionally work can be carried out in testing WildAniMAL with more examples. One way to 

achieve this is to make it available to the Model Checking scientific community, so that different 

people might benefit from its capabilities, and also contribute with their feedback to improve tool. 

For example, suggesting improvements and new functionalities.   

     

 

 



 

 

 

84

References 

 

[1]  E. M. Clarke, E. A. Emerson and A. P. Sistla, “Automatic verification of finite-state concurrent 

systems using temporal logic specifications,” ACM Trans. Program. Lang. Syst., vol. 8, pp. 

244-263, 1986.  

[2]  F. Paternó, “Design, Specification and Verification of Interactive Systems'94,” Proceedings 

of the First International Eurographics Workshop, 8-10 June 1994.  

[3]  J. Campos and M. Harrison, “Model checking interactor specifications,” Automated Software 

Engineering, vol. 8, pp. 275-310, 2001.  

[4]  K. Loer e M. Harrison, A framework and supporting tool for the model-based analysis for 

dependable interactive systems in the context of industrial design, 2004.  

[5]  K. L. McMillan, Symbolic model checking, Kluwer Academic Publ, 1993.  

[6]  A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, “NuSMV: a new Symbolic Model Verifier,” 

in Proceedings Eleventh Conference on Computer-Aided Verfication (CAV'99), Trento, Italy, 

1999.  

[7]  J. C. Campos and M. Harrison, “Systematic analysis of control panel interfaces using formal 

tools,” XVth International Workshop on the Design, Verification and Specfication of 

Interactive Systems (DSV-IS 2008), pp. 72-85.  

[8]  J. Campos and M. Harrison, “Modelling and analysing the interactive behaviour of an 

infusion pump,” in Electronic Communications of the EASST 45: Fourth International 

Workshop on Formal Methods for Interactive Systems (FMIS 2011), 2011.  

[9]  E. M. Clarke, “The Birth of Model Checking,” in 25 Years of Model Checking, O. a. V. H. 

Grumberg, Ed., Berlin, Heidelberg, Springer-Verlag, 2008, pp. 1-26. 

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill and J. Hwang, “Symbolic model 



 

 

 

85

checking: 1020 states and beyond,” in Proceedings 5th Annual Symposium on Logic in 

Computational Science, 1990.  

[11] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, “NuSMV: a new symbolic model 

checker,” International Journal on Software Tools for Technology Transfer (STTT),, 2(4) 

March 2000.  

[12] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore, R. M. e A. Tchaltsev, 

NuSMV 2.5 User Manual, 2010.  

[13] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore, R. M. e A. Tchaltsev, 

NuSMV 2.5 Tutorial, 2010.  

[14] D. R. Wright, “Finite State Machines,” 2005. [Online]. Available: 

http://www4.ncsu.edu/~drwrigh3/docs/courses/csc216/fsm-notes.pdf. [Acedido em 25 

October 2012]. 

[15] A. Gill, Introduction to the theory of finite-state machines, McGraw-Hill, 1962.  

[16] S. B. Akers, “Binary Decision Diagrams,” IEEE Trans. Computers 27, vol. 6, n.º 509-516, 

1978.  

[17] H. R. Andersen, An Introduction to Binary Decision Diagrams, IT University of Copenhagen, 

1999.  

[18] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams,” 

ACM Computing Surveys, vol. 24, pp. 293-318, September 1992.  

[19] D. J. a. H. M. D. Duke, “Abstract interaction objects,” Comput. Graph. Forum 12, vol. 3, pp. 

25-36, 1993.  

[20] M. Ryan, J. Fiadeiro e T. Maibaum, “Sharing actions and attributes in modal action logic,” 

Theoretical Aspects of Computer Software, pp. 569-593, 1991.  

[21] E. Clarke, O. Grumberg e D. Peled, Model Checking, MIT Press, 1999. 

[22] Group, Object Management, Unified Modeling Language: Superstructure version 2.0, 2005. 

[23] J. C. Campos, J. Machado e E. Seabra, “Property patterns for the formal verification of 

automated production systems,” pp. 5107-5112, 2008.  

[24] N. M. E. Sousa and J. C. Campos, “Um visualizador de tracos de comportamento para a 



 

 

 

86

ferramenta ivy. IVY Technical Report IVY-TR-5-03,” October 2006. 

[25] G. Mori, F. Paternò and C. Santoro, “CTTE: support for developing and analyzing task 

models for interactive system design,” Transactions on Software Engineering archive, vol. 28 

Issue 8, August 2002.  

[26] F. Paternó, Model-Based Design and Evaluation of Interactive Applications, Springer, 2000. 

[27] F. Paternó, “Task models in interactive software systems,” Handbook of Software 

Engineering and Knowledge Engineering, 2001.  

[28] D. Paquette, Simulating task models using concrete user interface components, 2004.  

[29] N. Guerreiro, S. Mendes, V. Pinheiro e J. C. Campos, “Animal - a user interface prototyper 

and animator for mal interactor models,” Interação 2008 - Actas da 3a. Conferência 

Nacional em Interação Pessoa-Máquina, pp. 93-102, 2008.  

 

 

 

 

 

 



 

 

 

87

Appendix I – Build.xml 

 

<?xml version="1.0" encoding="UTF-8"?> 
<project name="Ivy WorkBench" default="help" basedir="."> 
   
  <!-- Properties : 
___________________________________________________________ 
   
        app.name - Name of application. 
        app.version - Version of application. 
        build.home - The directory where the built application is to be put. 
        build.plugin.dev - The directory where to put the jars that are needed 
                           for plug-in development. 
        ipf.system - Name of jar file to generate when targeting the jars for 
                     plug-in development. 
  --> 
   
  <property name="app.name" value="ipf"/> 
  <property name="app.version" value="0.1"/> 
  <property name="build.home" value="${basedir}/build"/> 
  <property name="build.plugin.dev" value="${basedir}/dev-plugin"/> 
  <property name="ipf.system" value="${app.name}-${app.version}-system.zip"/> 
   
  <!-- Paths : 
________________________________________________________________ 
   
        classpath - The class path to use when compiling the application. 
         
  --> 
   
  <path id="classpath"> 
    <fileset dir="lib" includes="*.jar"/> 
  </path> 
 
  <typedef resource="org/java/plugin/tools/ant/jpf-tasks.properties"> 
    <classpath refid="classpath"/> 
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  </typedef> 
 
  <!-- Targets : 
______________________________________________________________ 
   
        help - Show some help on building the application. 
        clean - Clean the proect build folder. 
        build - Compile the aplication classes. 
        docs - Generate Javadocs. 
         
  --> 
   
  <!-- Help _______________________________________________________________ 
--> 
   
  <target name="help"> 
    <echo> 
      <![CDATA[ 
${app.name} build file: 
clean - cleans up the project build folder 
build - builds entire project 
run   - runs application 
check - checks plug-ins integrity 
docs  - generates plug-ins documentation 
dist  - creates binary and source distribution packages 
test  - runs some tests 
]]> 
    </echo> 
  </target> 
 
  <!-- Clean ______________________________________________________________ 
--> 
   
  <target name="clean" description="Cleans up the project build folder"> 
    <tstamp> 
      <format property="dt-stamp" pattern="yyyy-MM-dd-HH-mm" /> 
      <format property="d-stamp" pattern="yyyy-MM-dd" /> 
    </tstamp> 
 
    <delete dir="${build.home}" quiet="true" /> 
    <delete dir="${build.plugin.dev}" quiet="true" /> 
 
    <delete dir="${basedir}/plugins/CoreSystem/classes" quiet="true" /> 
    <delete dir="${basedir}/plugins/ModelEditor/classes" quiet="true"/> 
    <delete dir="${basedir}/plugins/PropertiesEditor/classes" quiet="true"/> 
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    <delete dir="${basedir}/plugins/TracesAnalyzer/classes" quiet="true" /> 
    <delete dir="${basedir}/plugins/AniMAL/classes" quiet="true" /> 
    <delete dir="${basedir}/plugins/WildAniMAL/classes" quiet="true" /> 
    <delete dir="${basedir}/plugins/PVS/classes" quiet="true" /> 
 
    <mkdir dir="${build.home}/plugins/CoreSystem"/> 
    <mkdir dir="${build.home}/plugins/ModelEditor"/> 
    <mkdir dir="${build.home}/plugins/PropertiesEditor"/> 
    <mkdir dir="${build.home}/plugins/TracesAnalyzer"/> 
    <mkdir dir="${build.home}/plugins/AniMAL"/> 
    <mkdir dir="${build.home}/plugins/WildAniMAL"/> 
    <mkdir dir="${build.home}/plugins/PVS"/> 
 
  </target> 
 
  <!-- Init _______________________________________________________________ -
-> 
   
  <target name="-init"> 
    <mkdir dir="${build.home}" /> 
  </target> 
 
  <!-- Build PlugIns ______________________________________________________ --> 
   
  <target name="-build-plugins"> 
    <ant dir="plugins/CoreSystem" target="${target}"/> 
    <ant dir="plugins/ModelEditor" target="${target}"/>   
    <ant dir="plugins/PropertiesEditor" target="${target}"/>     
    <ant dir="plugins/TracesAnalyzer" target="${target}"/>  
    <ant dir="plugins/AniMAL" target="${target}"/>  
    <ant dir="plugins/WildAniMAL" target="${target}"/> 
    <ant dir="plugins/PVS" target="${target}"/> 
     
</target> 
 
  <!-- Build the Application ______________________________________________ --> 
   
  <target name="build" depends="-init" description="Builds entire project"> 
    <antcall target="-build-plugins"> 
      <param name="target" value="build"/> 
    </antcall> 
     
    <copy todir="${build.home}/lib"> 
      <fileset dir="lib" includes="*.jar" /> 
    </copy> 
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    <copy todir="${build.home}"> 
      <fileset dir="." includes="*.*,**/*"  
               excludes="nbproject/,todo*,build*,build/,plugins/" /> 
    </copy> 
    
  </target> 
 
  <!-- Run the Application ________________________________________________ --> 
   
  <target name="run" description="Runs application"> 
    <antcall target="-build-plugins"> 
      <param name="target" value="build"/> 
    </antcall> 
     
    <java jar="${build.home}/lib/jpf-boot.jar" 
          dir="${build.home}" 
          fork="true"/> 
  </target> 
 
  <!-- Check Plugin Integrity _____________________________________________ --> 
   
  <target name="check" 
          depends="build" 
          description="Checks plug-ins integrity"> 
    <jpf-check basedir="${basedir}/plugins" 
               includes="*/plugin.xml,*/plugin-fragment.xml" 
               verbose="true" 
               usepathresolver="true" /> 
  </target> 
 
  <!-- Generate Javadocs __________________________________________________ --> 
   
  <target name="docs" 
          depends="build" 
          description="Generates plug-ins documentation"> 
    <antcall target="-build-plugins"> 
      <param name="target" value="docs" /> 
    </antcall> 
    <jpf-doc basedir="${build.home}/plugins" 
             includes="*/plugin.xml,*/plugin-fragment.xml" 
             destdir="${build.home}/docs"/> 
  </target> 
 
  <!-- Distribution for Plug-in Development _______________________________ --> 
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  <target name="plugin-dev" 
          depends="clean,build" 
          description="Prepares Jars for Plug-in development"> 
    <mkdir dir="${build.plugin.dev}"/> 
    <copy todir="${build.plugin.dev}" includeemptydirs="false"> 
      <fileset dir="${build.home}/lib" 
               includes="*.jar" /> 
      <fileset dir="${build.home}/plugins/CoreSystem" 
               includes="*.jar" /> 
    </copy> 
    <zip jarfile="${build.plugin.dev}/${ipf.system}" compress="${jar.compress}"> 
      <fileset dir="${build.plugin.dev}"/> 
    </zip>     
    <delete dir="${build.plugin.dev}" excludes="${ipf.system}"/> 
  </target> 
   
  <!-- Distribution _______________________________________________________ --> 
   
  <target name="dist" 
          depends="clean,build,docs" 
          description="Prepares distribution packages"> 
    <jpf-zip basedir="${build.home}/plugins" 
             includes="*/plugin.xml,*/plugin-fragment.xml" 
             destdir="${build.home}/plugins"/> 
              
    <delete includeemptydirs="true"> 
      <fileset dir="${build.home}/plugins"> 
        <include name="**/*"/> 
        <exclude name="*.zip"/> 
      </fileset> 
    </delete> 
     
    <zip destfile="${build.home}/${app.name}-bin-${app.version}.zip" 
         duplicate="fail" 
         update="false"> 
      <fileset dir="${build.home}" includes="**/*"/> 
    </zip> 
     
    <zip destfile="${build.home}/${app.name}-src-${app.version}.zip" 
         duplicate="fail" 
         update="false"> 
      <fileset dir="${basedir}" 
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excludes="build,**/classes/**,.check*,.fb*,nbproject/private/**,build/**,logs/**,data/**,temp/*
*,*.zip,todo.txt,plugins/org.jpf.demo.toolbox.ftpmonitor/**"/> 
    </zip> 
     
    <delete includeemptydirs="true"> 
      <fileset dir="${build.home}"> 
        <include name="**/*" /> 
        <exclude name="${app.name}-???-${app.version}.zip" /> 
      </fileset> 
    </delete> 
  </target> 
 
  <!-- Run Tests. _________________________________________________________ --
> 
 
  <target name="test" depends="build" description="Some tests"> 
    <jpf-pack basedir="${build.home}/plugins" 
              includes="*/plugin.xml,*/plugin-fragment.xml" 
              destfile="${build.home}/all-plugins.jpa" /> 
    <mkdir dir="${build.home}/all-plugins-extracted" /> 
    <jpf-unpack srcfile="${build.home}/all-plugins.jpa" 
                destdir="${build.home}/all-plugins-extracted" /> 
  </target> 
   
</project> 
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