Universidade do Minho
Escola de Engenharia

Nuno Miguel Eira de Sousa

WildAniMAL
MAL Interactors Model Animator

Novembro de 2012



Universidade do Minho

Escola de Engenharia
Departamento de Informatica

Nuno Miguel Eira de Sousa

WildAniMAL
MAL Interactors Model Animator

Dissertagdo de Mestrado
Mestrado em Engenharia Informatica

Trabalho realizado sob orientacao de

Professor José Creissac Campos

Novembro de 2012



Acknowledgements

| want to thank my thesis advisor José Creissac Campos for continuously helping me while
doing this work, by making many corrections and valuable suggestions for the implementation of
the WildAniMAL and for pointing errors and problems during the design and implementation of
the tool.

| also want to thank Manuel Sousa for providing me with a practical example of an Ipod
device model, that enabled me to show how the WildAniMAL plugin can be used. Additionally |
thank him for testing the WildAniMAL plugin, with interactor models that he developed in his own
work.

Finally, | want to thank my employer - Computer Graphics Center — for giving me a day a
week for education, during the last three years, thus enabling me to conclude this master's

course with the current work.



Abstract

The IVY Workbench is a tool for modeling and analysis of interactive systems which has been

developed at the Department of Informatics of the University of Minho (http://ivy.di.uminho.pt).

It's a platform developed in Java, using a plugins mechanism. The available plugins include a set
of editors (textual and graphical) and tools to analyse the behaviour of the models. The
experience on using the tool has demonstrated the need for a model animator which could
enable a first interactive evaluation of the models. Therefore this dissertation describes the
design and implementation of WildAniMAL - a MAL (Modal Action Logic) interactors models
animator — as a plugin for the IVY Workbench. The plugin uses the NuSMV model checker

simulations capabilities, and enables users to explore the formal models interactively.



Resumo

A IVY Workbench é uma ferramenta de modelacédo e analise de sistemas interativos que tem
vindo a ser desenvolvida no Departamento de Informatica da Universidade do Minho
(http://ivy.di.uminho.pt). Trata-se de uma plataforma desenvolvida maioritariamente em Java,
utilizando um mecanismo de plugins. Os plugins existentes incluem um conjunto de editores (em
modo texto e grafico), e de ferramentas de analise do comportamento dos modelos. A
experiéncia de utilizacao da ferramenta tem, no entanto, demonstrado a necessidade de um
animador de modelos que permita efetuar uma primeira validacao interativa dos mesmos. Sendo
assim, esta dissertacao descreve o desenho e implementacao do WildAniMAL — um animador de
modelos de MAL (Modal Action-Logic) Interactors — como plugin para a IVY Workbench. O plugin
usa as capacidades de simulacdo do model checker NuSMV, e permite aos utilizadores explorar

os modelos formais de forma interativa.



Index

Acknowledgements

Abstract

Resumo

Index

Figures

Acronyms

Chapter 1 — Introduction

1.1. Goal

ii

iii

iv

vii

ix

1.2. Structure Of The Document

Chapter 2 — Theoretical Background

2.1. Model Checking

2.2. NuSMV

2.3. Finite State Machine

2.4. Binary Decision Diagrams

2.5. MAL Interactors

2.6. SMV Language

2.7.CTL

2.8. Conclusion

Chapter 3 — IVY Workbench

3.1. The IVY Workbench Approach

3.1.1 Creating Models

11

12

13

14

16

16
17




3.1.2 Expressing Properties

19

3.1.3 Verification

20

3.1.4 Trace Analysis

21

3.2. How To Create An IVY Workbench Plugin

3.3. Conclusion

Chapter 4 — Related Work

4.1. CTTE

4.2. AniMAL

4.3. Conclusion

Chapter 5 — WildAniMAL Implementation Approaches

5.1. Implementation Approaches

5.1.1 Generating a Finite State Machine

25

28

29

29

32

34

35

35
36

5.1.2 NuSMV Binary Decision Diagrams

37

5.1.3 NuSMV Simulation Capabilities

37

5.2. NuSMV Interactive Shell

5.2.1 Model Reading And Building

39
39

5.2.2 Simulation Commands

40

5.2.3 Simulation Example

41

5.3. Conclusion

Chapter 6 — WildAniMAL Implementation

6.1. WildAniMAL’s Architecture

6.2. WildAniMAL'’s Source Code Description

6.2.1 Animator Package

46

47

47

53
53

6.2.2 Constraints Package

62

6.2.3 NuSMV Package

64

6.3. Conclusion

Chapter 7 — Using WildAniMAL

7.1. WildAniMAL’s Usage Example

68

70
70

7.2. Conclusion

80

Chapter 8 — Conclusions and Future Work

81



8.1. Goal

8.2. Results

8.3. Future Work

References

Appendix | = Build.xml

Appendix Il - Ipod interactors model

Vi

81

81

83

84

87

93



Figures

FIGURE 1 MODEL CHECKING SYSTEM, ADAPTED FROM [9], WITH THE IVY WORKBENCH APPROACH. ..vueeeeeeienrrreeeeeeerareennes 4
FIGURE 2 A GRAPH OF AN EXTREMELY BASIC PROCESS IN A FINITE STATE MACHINE. ..eeuivveeveeereeeseesmeeesseeesseesssessssesssessns 8
FIGURE 3 FSM EXAMPLE OF A PARSER RECOGNIZING THE WORLD "NICE" ... uteiiecuiieeeieeitieeeeieeeesvsemeseveeeesnveeessnneeansseeens 9
FIGURE 4 DiacRam For A v BC S TAKEN FROM [16]. c.eeriiiiiiiieciiie e et eette e ettt ee e e e te e et e e e e taeeeeaaeeeannas 9
FIGURE 5 ROBDD FOR (Xx1<Y1)"(X2>Y2) WITH VARIABLE ORDERING X1<X2<Y1<Y2, TAKEN FROM [17]. ..cccuvvrurrneen. 10
FIGURE 6 IVY WORKBENCH ARCHITECTURE. ...uuuttttteeetttteeesesaurereeeeesaanseeeeeessesanssesannssseesesesannsssmeeessannssnenesesssansenees 17
FIGURE 7 MODEL EDITOR PLUGIN (GRAPHICAL). ....uvveurieeeiitieeeettieeeeteeeeetteeeeeaseeeestesesseseeassseesesssneeassseseasseseesssesensens 18
FIGURE 8 IMODEL EDITOR PLUGIN (TEXT). cuveesuteeeuueesiesueeeiteeesseesseeeseessseesssessesesissesssessnseesssessnesssesssesssesssssnnsens 18
FIGURE O PROPERTIES EDITOR. ..eeeiieeitiiteteeeiaiietteeemtttteee s e sttt e e e s e anbee e e e e e sesamsber e nsne e e e e e e saanssameeee s nnnneeeeesesanseeeas 19
FIGURE 10 BEHAVIOUR TRACE. ..cteteeeiutteteeseaautetteeemueteeeesesaausesteeeeaaaansseseeeesasanssesaaassseeeeesesanssamieeeesaasnneeeeesesanseees 21
FIGURE 11 TRACE ANALYSIS MECHANISMS (MARKERS). «vveeuveeeiteesreeesseessseessesssesensisseesssesssesssessnessnsessssesssesssssnnses 21
FIGURE 12 TREE VISUAL REPRESENTATION. ..eeuuvteuteesueureesteseseesaseesseessseeesseesssessnsiseessseessesssseesnesssseesseessessseessses 22
FIGURE 13 STATE BASED VISUAL REPRESENTATION . .ccctvtteeeeesaurerteeeesaantneereessesannserasnsseeeeesesannsssmeeessannnsenesesssanseeees 23
FIGURE 14 LOGICAL STATES VISUAL REPRESENTATION. c..cttteeesuuterteeeeeaautetteeeesesaunsesaansseeeeesesansssmeeessesnnseeeeesesanseees 23
FIGURE 15 TABULAR VISUAL REPRESENTATION. .euuveerueureesteesseesureesseesnseeesseesssessnsinseesseessesssseesnesssseesssesssessssesssens 24
FIGURE 16 ACTIVITY DIAGRAM VISUAL REPRESENTATION. .ceeiuuretteeeeeaanreeereeesennsrerasnsneeeeesesannssmeesssannnnseeesesssanseeees 24
FIGURE 17 IVY WORKBENCH PLUGINS FRAMEWORK. ..eeeteeeiiuterieeeeeaautetteeeesasanteiasusseeeeesesannssmeeaesesnnseeeeesesanseeens 25
FIGURE 18 CTTE TOOL, TAKEN FROM [25]. 1.uutiieieuiimuteeeiiieeeeseteeeseteeesstseeessaseeesntessseeesnsssessnssemesssssssnssessssssesssens 30
FIGURE 19 AN EXAMPLE OF A TASK MODEL, TAKEN FROM [25]. .eievtieieeniiiiniieniiieeiiieesiee et e st sareesireesaeenaeees 30
FIGURE 20 OVERVIEW OF THE CTT NOTATION, TAKEN FROM [28]. .eeiieiirriirieeiieiiiieieciirreee e e seirarme e e e eessnreeeseeesenneeeas 31
FIGURE 21 A SIMPLE CONCURTASKTREE TASK MODEL SIMULATOR, TAKEN FROM [28].....uveeeeeuiiieeiinesieeeesiieeeeeeeeseees 32
FIGURE 22 THERMOMETER, TAKEN FROM [29]. «uvreetieririiieeeiiiitreeeeeeeetttereee e eesaaraieesasaseeeeeesensbssmeeessenssssseseesesensenens 33
FIGURE 23 PROTOTYPE OF AN AIR CONDITION CONTROL PANEL, TAKEN FROM [29]. wevviiiiiriiiieiiiiiririee e eeeiireee e e e seneeees 34
FIGURE 24 NUSMV SIMULATION EXAMPLE. ......tttteetetttteeeeesautatteeeesaausaeteeeesasaussesaaassseeeeesesanssemieeeeseannreaeeeeesanseeens 38
FIGURE 25 INTERACTORS MODEL OF A GARAGE GATE..euveeeiureeeesureeessueeeessuseesssseessntesssseesssssesssssenesssssssssssessssssessnsees 42
FIGURE 26 STATE DIAGRAM OF GATE IMODEL. ....evtteeietitteeeeeraitereeeeesaanreeeeeeesesannserassssseeeesesannssmeesssasnnssenesesesanseees 42
FIGURE 27 NUSMV SPECIFICATION OF THE GATE MODEL. tuutettteeeeaautitteeeeeesunteiesusseeeeesesannsamieeaesesnnseeeeesesanseeens 43
FIGURE 28 THE RESULT OF PICK_STATE — —A COMMAND. ...uveeeeutrreerureeessureeessuseeeantesssseessssseessnssenesssssessssseesssssessssens 44
FIGURE 29 THE RESULT OF SIMULATE =1 —A =K 1 COMMAND. ....eervieeuieeerreniiesnieeentiseesteesseessseesmeesseessseesnsessseesseees 44

vii



FIGURE 30 THE RESULT OF CHOOSING STATE O, c.eevvuuiieeeeeeiettiieieeeeeeeetstneeeeeessesstnnaesesssessssnaaesessssssssneseseesssssssnnnnns 45

FIGURE 31 STATE BASED DIAGRAM SHOWING THE SIMULATION PATH. .veeeeuvveeeeiureeesueeeesssseeessseessssseesenssesssssssessnseeenns 45
FIGURE 32 WILDANIMAL PLUGIN ARCHITECTURE AS A PACKAGE DIAGRAM. ....eeuvteruierueeenieesteesieesseesseesseessesseesnne 48
FIGURE 33 IMAIN PACKAGE CLASS DIAGRAM. ....uuuutiteteeeaaiunreeeeesaaaunsaeeeesssaaunsseeeeessaannseeeeesesannsnseeesesasansseneeessennnnnes 49
FIGURE 34 NUSMV PACKAGE CLASS DIAGRAM. .....vttteeeiaiuurtteeeseaauusateeeessaaunseteeeseaaaunseeeseessaansssaeesesssannnsseeeesesnanne 50
FIGURE 35 CONSTRAINTS PACKAGE CLASS DIAGRAM. ....ceeuvtteetesuteesseesuteesseesseeesssessseeesseesnsessnsessnseessessseesssessseesnses 51
FIGURE 36 TRACES PACKAGE CLASS DIAGRAM. ....uuttttieeeiaiuereeeeesaaaunreeetesssasneseeeeesssasnseeeeesssannseneeesesasansseneeessesnannes 52
FIGURE 37 GRAPHICAL USER INTERFACE IMPLEMENTED BY GUI CLASS. «..eetiiiiieiiiiiieee e eeiietee e ettt e e e e e e 55
FIGURE 38 IPOD MODEL CREATION WITH IMODEL EDITOR PLUGIN. 1...vvveeesitieeeeereeesteeeesteeeessseeessnseeesnssesssssseessnsseesnns 71
FIGURE 39 IPOD INTERACTOR MODEL COMPILATION WITH PROPERTIES EDITOR PLUGIN. ....eeruveeeieeiresieesieesreesveesaneenas 72
FIGURE 40 RESULT OF PRESSING “GET INITIAL STATE” IN WILDANIMAL. ..eivuveiriiiiniieiieeeiiesieesieesieesreeseeesieeesaneenee 73
FIGURE 41 SIMULATION REACHED A “TOO MANY STATES” SITUATION . .eeecuvveeeeureeerrreeeessreeesanseessssseessssseesssssnessssseneens 74
FIGURE 42 STATE BASED REPRESENTATION OF THE TRACE CREATED IN THE SIMULATION. «..eeruverurreniresreesveesineessseesineenns 75
FIGURE 43 TABULAR REPRESENTATION OF THE TRACE CREATED IN THE SIMULATION . ...ceteesiaiiereeeeeeesainrreeeeeesannnneeeeesanan 75
FIGURE 44 LOG REPRESENTATION OF THE SIMULATION. ..uuuuutitteeeeeesunttteeeeeeaauseeeeeessesunteeeeessaesunseeeeeessasannseeeeeseaannns 76
FIGURE 45 CONSTRAINTS INSERTION. 1.eeeuuvveeesrueesasureeessuseessssseesssssseesasssesesssssessnssessssssssssnsssssesssesesnsssessssssesssnsenennn 77
FIGURE 46 RESULT OF APPLICATION OF THE CONSTRAINTS SENT.cuutterutersuereruresueesueesseesseesseesuseesssessssessseessseessseenane 77
FIGURE 47 STATE BASED REPRESENTATION OF A TRACE ORIGINATED IN A SIMULATION. 1uvveerureeureesereeseesnseesseessseessseees 79

viii



Acronyms

BDD  Binary Decision Diagrams
CMU  Carnegie Mellon University
CTEE  ConcurTaskTrees Environment
CTL Computacional Tree Logic
CTT ConcurTaskTrees

CUDD CU Decision Diagram Package
ETC Enabled Task Collection

FSM Finite State Machine

IRST Istituto per la Ricerca Scientica e Tecnologica
VY Interactors VerifYier

LTL Linear Temporal Logic

MAL Modal-Action Logic

RBC Reduced Boolean Circuit

SAT Satisfiability Problem

SMV Symbolic Model Verifier

ul User Interface

UML Unified Modeling Language



Chapter 1 - Introduction

Developing complex systems will always be a complex endeavour. When developing
interactive devices, we are faced with the challenge of understanding not only how the device
must be built, but also how it will interact with its users, and how both device and users (the
interactive system) will influence each other.

Formal (mathematically rigorous) methods have long been proposed as a means of dealing
with complexity. When considering the behaviour of systems, model checking [1] has gained
particular popularity. Several approaches to the application of model checking to reason about
interactive systems (or interactive devices) have been put forward over the last seventeen years.
See, for example, the work in [2], [3], or [4]. However, applying model checking is in itself a
complex task. Both systems and Properties to be verified must be expressed in appropriate
logics. In order to make model checking of interactive systems feasible, we must provide tools
that help in the modelling and analysis process.

The IVY Workbench tool supports the modelling and verification approach put forward in [3].
The main goal of the tool is the detection of potential usability problems early in development of
any interactive system. For that, the tool enables the automated inspection of interactive systems
models. The tool supports a modelling and analysis cycle where the models are obtained by a
modelling process based on an editor, the properties are expressed using a dedicated properties
editor, the analysis is performed using the SMV model checker [5] (more specifically NuSMV [6],
a reimplementation of that tool, that is available at http://nusmv.fbk.eu), and the counter-
examples visualized using a dedicated traces visualiser. The tool has been applied to the analysis
of different devices, from control panels in the automotive industry [7], to medical devices such
as infusion pumps [8]. While model checking through NuSMV, enables a thorough analysis of all

possible behaviours of a model, the continuous use of the tool has highlighted the need for a



lighter weight approach to the initial validation of the models. In fact, experience has shown that
before the analysis of a given design begins, there usually happens a first phase of model
validation, where the interest is in establishing that the model behaves as expected. Experience
also shows that doing this through model checking becomes cumbersome. What is needed is the
possibility of interactively explore the behaviour of the models: manually trigger events and
observe how the system evolves. Hence the need was identified of developing a component
aiming at assisting the modelling and analysis process, by providing functionalities to simulate

and validate the model being created: WildAniMAL (Watch It vaLiDation Animator for MAL).

1.1. Goal

The goal of this work is to develop a new plugin — WildAniMAL - for the IVY Workbench tool,
supporting the animation of MAL interactor models. In order to implement it, three possibilities
will be studied:

a) representing a MAL interactors model as a Finite State Machine (FSM) and use that to

drive the animation;

b) use the BDD (Binary Decision Diagrams) representation of the MAL interactors model,

created by the NuSMV model checker to perform the animation;

c) use the NuSMV model checker simulations commands, available on its interactive mode,

to perform the animation.

1.2. Structure Of The Document

This first chapter has presented the motivation and goals of the work. The remaining of the
dissertation is structured as follows. Chapter 2 introduces the main concepts needed to
understand the work. Chapter 3 introduces the IVY workbench tool. Chapter 4 describes some
related tools. Chapter 5 discusses alternatives to implementing the WildAniMAL plugin, and
chapter 6 the implementation produced. Chapter 7 describes an usage example. The dissertation

ends, in Chapter 8, with a discussion of results and ideas for further work.



Chapter 2 - Theoretical
Background

This chapter presents the theoretical background needed to explain the WildAniMAL
implementation and all the concepts related to its use, and the use of the IVY Workbench, in
which it will be integrated.

Section 2.1 presents Model Checking the technology used by the IVY Workbench to perform
verification. Section 2.2 presents NuSMV that is the model checker used in IVY Workbench, and
therefore also used to implement WildAniMAL's functionalities. Section 2.3 presents Finite State
Machines, a mathematical model of computation, and also a state’s representation, widely used
to describe computer programs. Section 2.4 presents Binary Decision Diagrams, the data
structure used to represent a Boolean function. Two representations used in NuSMV as internal
representations. Section 2.5 presents the MAL interactors language used to create models that
will be simulate in the WildAniMAL plugin, and Section 2.6 presents the SMV language, the
language into which MAL interactors models are compiled for verification and (now) animation.

Finally, CTL is presented, that is a temporal logic that is used to express properties over the

interactors model. These properties can be verified using NuSMV model checker.

2.1. Model Checking

Clarke [9] formally describes the Model Checking problem as:
Let M be a Kripke structure (i.e., state-transition graph). Let f be a formula of

temporal logic (i.e., the specification). Find all states s of M such that M; s [=f.



That is, given a state-transition graph and a specification, we want to find all states in M that
satisfy the specification.
The structure of a typical Model Checking system, as Clarke defined it [9], is described in
Figure 1. There the two mains components of a model checking system are presented:
e A preprocessor that extracts a state transition graph from a program or circuit;
e A model checker, that is, an engine that takes the state transition graph and a

temporal formula and determines whether the formula is true or not (in the case of

the IVY Workbench this is NuSMV).

Properties
Editor Visualizer
a) YVY Workbench service c) - Proposed YVY Workbench plugin
b) YVY Workbench plugin d) External service

Figure 1 Model checking system, adapted from [9], with the IVY Workbench approach.

Figure 1 includes IVY Workbench’s plugins and services that help in the several steps of the
model checking process. The IVY Workbench approach to Model Checking is presented in
Section 3.1.



There are other verification techniques other than Model Checking, such as Automated
Theorem proving or Proof Checking. Therefore is useful to present the advantages that Model
Checking has when compared to them. Some of these advantages are:

e |t provides counterexamples. In a model checker, a counterexample (an execution
trace) is produced to show why a specification does not hold. This is a great
advantage because counterexamples are great to debug complex systems. Some
people use Model Checking just for this feature;

e |t uses Temporal Logics that can easily express properties for proving over the
behaviour of modelled systems. One example of these Temporal Logics is CTL,
which is described in Section 2.7. CTL is used in the IVY Workbench tool.

In the opposite side there are also some disadvantages and one of the major ones is State
Explosion. In [3] the authors describe this problem as related to the size of the finite state
machine (this concept will be described in Section 2.3) needed to specify a given system. A
specification can generate state spaces so immense that it becomes impossible to analyse the
entire state space. To attenuate this problem, Symbolic Model Checking was developed. When
the traversal of the state space is done considering large sets of states at a time, and is based on
representations of states sets and transition relations as formulas, binary decision diagrams or
other related data structures, the model-checking method is considered Symbolic. With that
technique state spaces as large as 10%° may be analysed [10]. NuSMV is a model checker that

uses that method and will be described in the following Section.

2.2. NuSMV

NUSMV is a symbolic model checker that was first presented in [6] and [11]. It is the result
of a joint project between Carnegie Mellon University (CMU) and Istituto per la Ricerca Scientica e
Tecnologica (IRST) and is the final product of an effort of reengineering, reimplementation and
extension of CMU SMV, the original BDD-based model checker developed at CMU [5].

Over the years NuSMV had several contributions that improved it with more functionality, as

can be seen in its official site'. Now it combines a BDD-based model checking component that

! http://nusmv.fbk.eu/ Last visited in 10-28-2012.



exploits the CUDD? library developed by Fabio Somenzi at Colorado University, and a SAT-based
model checking component that includes an RBC-based Bounded Model Checker, which can be
connected to the Minisat SAT Solver® and/or to the ZChaff SAT Solver®. The University of Genova
has contributed SIM, a state-of-the-art SAT solver used until version 2.5.0, and the RBC package
used in the Bounded Model Checking algorithms.

In [12] we can see the current main functionalities that it provides:

allows for the representation of synchronous and asynchronous finite state systems;

allows for the analysis of specifications expressed in Computational Tree Logic (CTL)
and Linear Temporal Logic (LTL), using BDD-based and SAT-based model checking
techniques.
e provides Heuristics for achieving efficiency and partially controlling the state
explosion;
e provides a textual (interactive mode) and a batch mode interface to interact with its
users.

NuSMV, as a model checker, can verify properties of a finite system and for that to be
possible a model of the system (in fact, in terms of model checking, a specification of the
system) has to be created. NuSMV uses the SMV Language (see Section 2.7) to define the
specifications used as input. In [13] it is described how this language can be used to allow for the
description of Finite State Machines (FSM) which can be completely synchronous or completely
asynchronous. More specifically the SMV Language is used to describe the transition relation of
the FSM that describes the valid evolutions of the state of the FSM.

In the IVY Workbench, that model is created in the MAL Interactors language (see Section
2.5), that is easier to learn and can be compiled (using the IVY Workbench i2smv service) into a
SMV specification. After having a SMV specification, NuSMV can verify that a model satisfies a set
of desired properties specified by the user. For that, it uses two Temporal Logics: CTL or LTL.

One useful feature that NuSMV has is that it provides the user with the possibility of

simulating a NuSMV specification. As stated in [13], this way the user can explore the possible

2 http://vlsi.colorado.edu/ ~fabio/CUDD/ Last visited in 10-28-2012.

3 http://minisat.se/ Last visited in 10-28-2012.

4 http://www.princeton.edu/ ~ chaff/zchaff.html Last visited in 10-28-2012.

6




executions (traces) of the NUSMV specification. In this way, the user can check the specification
correctness, before actually engaging in the verification of properties. An example of the use of

this feature can be seen in Section 5.2.3.

2.3. Finite State Machine

When modelling the behaviour of systems, Siate Machines are one of the oldest and best
ways known. They define the state of a system at a particular point in time and characterize its
behaviour based on that state.

If we want to model and design software systems we can apply the State Machines method
by identifying the states the system can be in, which inputs or events trigger state transitions, and
what system behaviour is expected in each state. The execution of the software can be seen as a
sequence of transitions that move the system through its various states.

The characteristics of a system that enable it to be modelled as a Finite State Machine (FSM)
are [14]:

e The system must be specifiable as a finite set of states;

e The system must have a finite set of inputs and/or events that can trigger
transitions between states;

e The behaviour of the system at a given point in time depends upon the current state
and the input or event that occur at that time only;

e For each state the system may be in, behaviour is defined for each possible input
or event;

e The system has a particular initial state.

Figure 2 illustrates the main concepts that a Finite State Machine is known for.



state 1
Opened

E: gpen door

lransitio

close_door open_door

/

iransition condition

2
Closed

Figure 2 A graph of an extremely basic process in a finite state machine.

The conceptual definition of the FSM can be expressed more formally (in this case

(,8, 50,6, F)

mathematically) [15] as a quintuple , where:

e 2lis the input alphabet (a finite, non-empty set of symbols).

e S'is afinite, non-empty set of states.

e 50 s an initial state, an element of 5.

e O is the statetransition function: 0 1 S X X — .S (for a nondeterministic finite
d: 8 xX—=P(5)

automaton it becomes ,l.e., A returns a set of states).

o Fisthe set of final states, a (possibly empty) subset of 5.

An example of the graphical representation of a FSM is presented in Figure 3.



not_n not_i not_c not_e

i
Success

Figure 3 FSM example of a parser recognizing the world "nice".

2.4. Binary Decision Diagrams

Binary Decision Diagrams (BDD) [16] can be defined as a data structure that is used to
represent a Boolean function (see Figure 4 for an example). We can also say it a compressed
representation of sets or relations.

Andersen [17] provides a formal definition of a BDD. He defines it as a rooted, directed
acyclic graph with:

e one or two terminal nodes of out-degree zero labeled O or 1, and
e a set of variable nodes u of out-degree two. The two outgoing edges are given by
two functions Jow(u) and high(u). A variable varfu) is associated with each

variable node.

Figure 4 Diagram for A v BC , taken from [16].
9



When mentioning BDDs it is important to mention if they are ordered or not. Andersen
defines a BDD as Ordered (OBDD) if on all paths through the graph the variables respect a given
linear order x1 < x2 < ... <xn.

An (0)BDD is Reduced (R(0)BDD) (see Figure ) if

e (uniqueness) no two distinct nodes u and v have the same variable name and low-

and high-successor, i.e.,

var(u) = var(v); low(u) = low(v); high(u) = high(v) implies u = v;

and

e (non-redundant tests) no variable node u has identical low- and high-successor, i.e.

low(u) # high(u).

Figure 5 ROBDD for (x1<y1)™(x2¢¥y2) with variable ordering x1<x2<y1l<y?2, taken from [17].

10



In most cases, when BDDs are referred to, it is implied that we are referring to Reduced
Ordered Binary Decision Diagrams.

Bryant [18] studied the BDD potential for being used to create efficient algorithms. He
introduced a fixed variable ordering (for canonical representation) and shared sub-graphs (for
compression). After that he extended the sharing concept to several BDDs, i.e. one sub-graph by
several BDDs and, doing that, he defined the data structure Shared Reduced Ordered Binary
Decision Diagram. That new structure is normally what people have in mind when mentioning
BDDs.

The NuSMV model checker uses BDDs, because they are very efficient and can be used to
create efficient algorithms, as shown in [18]. The efficiency of algorithms is important in the area

of Model Checking, and because of that the use of BDDs by NuSMV was an obvious choice.

2.5. MAL Interactors

MAL interactors follow from the notion of interactor put forward in [19]: an object with the
capability of rendering part of its state to some presentation medium. A MAL interactor is defined
by:

e a set of typed attributes that define the interactor's state;

e 3 set of actions that define operations on the set of attributes;

e a set of axioms written in MAL [20] that define the semantics of the actions in terms of

their effect on interactor's state.

The mapping of the interactor's state to the presentation medium is accomplished by
decorating the attributes with modality annotations. MAL axioms define how the interactor's state
changes in response to actions being executed on the interactor. In [3] the axioms are defined in
five types. In the syntax of each type, the notation propfexprl,..,expr,)is used to denote a formula
on expressions exprl fo expr, using propositional operators only. Also, the names al to a,
denote interactor attributes and ae denotes an action. The five types are:

e Invariants - these are formulae that do not involve any kind of action or (reference)

event (i.e. simple propositional formulae). They must hold for all states of the interactor;

0 Syntax: prop(al,..,a,).

11



2.6.

Initialisation axioms — these are formulae that involve the reference event ([]). They
define the initial state of the interactor;

0 Syntax: [] prop(al,..,a,).
Modal axioms — these are formulae involving the modal operator. They define the
effect of actions in the state of the interactor;

0 Syntax: prop([ac] al,..,[acla, a, ..a,).
Permission axioms — these are deontic formulae involving the use of per. They
define specific conditions for actions to be permitted to happen;

0 Syntax: per(ac) — prop(al,..,a,)
Obligation axioms — these are deontic formulae involving the use of obl. They define
the conditions under which actions become obligatory.

0 Syntax: prop(al,..,a,) — obl(ac)

SMV Language

The SMV language will be used as an intermediate representation of the MAL interactors

model. Therefore an explanation of the main aspects of the SMV language is needed. The

following description of the language is adapted from [3] and [12].

An SMV specification is defined as a collection of modules. Each module defines a Finite

State Machine (FSM) and consists of a number of state variables, input variables and frozen

variables, a set of rules that define how the module makes a transition from one state to the next

and Fairness conditions that describe constraints on the valid paths of the execution of the FSM.

A state model is defined as an assignment of values to a set of state and frozen variables.

State variables can change their values throughout the evolution of the FSM. Frozen variables

cannot, as they retain their initial value, and that is what distinguishes the two. Input variables

are used to label transitions of the Finite State Machine.

An example of an SMV specification is the following;

MODULE main
- attributes
VAR
currentSong: 0..5;

12



lastDisplay: (MainMenu, Music, Playing, OFF};
playbackState: {playing, paused, stoped)};
display: {MainMenu, Music, Playing, OFF};

- actions
VAR
action. {pause, longPlay, play, nif}:

- axioms

INIT display = OFF

INIT playbackState = stoped
INIT lastDisplay = MainMenu
INIT currentSong = 0

TRANS next(action)=pause -> playbackState = playing

TRANS next(action)=play -> playbackState = stoped | playbackState =
paused

INIT action = nil

To create a SMV specification the following list of declarations is used:
e VAR - allows the declaration of stafe variables,
e IVAR - allows the declaration of /nput variables,
e FROZENVAR - allows the declaration of frozen variables
e INIT - allows the definition of the initial states of the model:
e INVAR - allows the specification of invariants over the state.
e TRANS -> allows the definition of the behaviour of the model. In these definitions,
the operator next is used to refer to the next state;
o FAIRNESS - allows the declaration of fairness constraints, that is, conditions that

must hold infinitely often over the execution paths of the model.

2.7. CTL

When reasoning about the behaviour of a system is needed, CTL can be used to express the
properties for that purpose. The detailed description of CTL and its formal description are
available in [21]. A more compact description of its operators is given here. As other similar
languages CTL provides propositional logic connectives but it also allows for operators over the

computation paths that can be reached from a state.
13



e A -for all paths (universal quantifier over paths);
e E - for some path (existential quantifier over paths).
and over states in a computation state:
e G - used to specify that a property holds at all the states in the path (universal quantifier
over states in a path);
e F - used to specify that a property holds at some state in the path (existential quantifier
over states in a path);
e X - used to specify that a property holds at the next state in the path;
e U - used to specify that a property holds at all states in the path prior to a state where a
second property holds.
These operators provide for an expressive language because combining them it is possible to
express important concepts such us:
e universally: AG(p) - p is universal (for all paths, in all states, p holds);
e inevitability: AF(p) - p is inevitable (for all paths, for some state along the path, p
holds);
o possibility: EF(p) - p is possible (for some path, for some state along that path, p
holds).

2.8. Conclusion

This chapter presented all the theoretical background needed to explain the WildAniMAL
implementation and the tool in which it is integrated - the IVY Workbench.

Section 2.1 presented Model Checking that is the area in which this work is framed, and

Section 2.2 presented NuSMV that is the model checker used widely in IVY Workbench, and
which will also be used in the WildAniMAL plugin.

Sections 2.3 and 2.4 presented Finite State Machine and Binary Decision Diagrams, two
representations studied as possible approaches for WildAniMAL's internal data structure. BDD is
used also in NuSMV as one of its data structures.

Section 2.5 presented the MAL interactors language used to create interactor models, and
Section 2.6 presented the SMV language that will be used as an intermediate representation of

the first one, because it is the language NuSMV uses.
14



Finally, CTL was presented. This language is used to express properties over the interactor

models, created with the MAL interactors language, and compiled to a NuSMV specification.

15



Chapter 3 - IVY Workbench

This chapter presents the IVY Workbench tool that supports the modelling and analysis of
interactive systems. It is a plugins platform (developed in Java) that includes a set of editors and
tools to analyse the models’ behaviour.

Section 3.1 presents the IVY Workbench approach, relating to model checking, that consists
on creating a MAL model, expressing properties over it, making a verification with the help of the
NuSMV model checker and analysing its results.

Section 3.2 describes how to create a new plugin for the IVY Workbench, as this is useful to

know how to implement the proposed WildAniMAL plugin.

3.1. The IVY Workbench Approach

In [3] and [4] an approach to the application of model checking to the analysis of interactive
systems is put forward. The approach is based in the development of models of the interactive
device, and in their verification trough model checking against properties that encode
assumptions about the usages of the device.

Figure 6 shows the architecture of the tool, added with the proposed WildAniMAL plugin. As
it can be seen, the tool consists on a number of plugins, and uses NuSMV as the verification
engine. In this section the different plugins are described (except WildAniMAL, which will be

discussed later, see Chapter 7).

16



e

(3) NuSMV Specification

Model —n-
Editor
/animm

i2smv
compiler

Interactors
Plugin
Framework

Traces

Visualizer

Figure 6 IVY Workbench architecture.

3.1.1 Creating Models

A MAL model is constructed composing interactors in a hierarchical form. The process of
MAL model creation is supported by the Model Editor plugin of the tool. The plugin has two
modes: Graphical (see Figure 7) that uses a notation similar to UML class diagrams (described in

[22]) and Text (see Figure 8) that provides code completion facilities.

17



File Project System Preferences Help

| 6 oo | W -

CE=E B8 procuan

Graphical | Text:MCPJ |

Valus
{{plane attude « ALTDial needis SALT) -» A.F&ﬁmn!ow&T_HLD & 5'.'"' altude=ALTDial mdln_m

Figure 7 Model Editor plugin (Graphical).

B E@E"  Brrocurar]
|| Graphical main.me | Text:MCP. |
[—] interactors :: 38 |interactor main =
4 Da‘g’”‘a::m 39| aggregates
t [ am . 40| airplane via plane
Da:"r;‘“ 41| dial(ClimbRate) via crDial 2
Da_ phed 42| dial(Velocity) via asDial :
umd;“’m" 43| dial(Altitude) via ALTDial
¢ D: . 44| attributes
J 45| pitchMode: PitchModes
¢ G attributes 46 ALT: boolean
D) needie - 47| actions
¢ [ actions 48| enterVs
D) setm 49| enterIAS
¢ ) main 50| enterAH
¢ (] attributes 51| enterAC
[ pitchmode 52| toggleALT
Dar 53| axioms
[ plane attitude 54| [asDial.set(t)] pitchMode'=IAS
D) plane sirspeed | | & ALT'=ALT
[} plane.climbRate 55| [crDial.set(t)]
D) eDial needie - pitchMode'=VERT_SPD & ALT'=ALT
[ asDial.needle 56| [ALTDial.set(t)]
[} ALTDIalLneedle pitchMode'=pitchMode & ALT'
¢ (= actions 57 [entezrVs] pitchMode'=VERI_SPD ¢
D enterVs ] ALT'=ALT L=
~ . - -
Line: 1 Column: 1

Figure 8 Model Editor plugin (Text).
18



3.1.2 Expressing Properties

The properties for verification are written in CTL [1]. Properties are written that express
assumptions about the expected behaviour of the device.

The process of expressing properties is supported by the Properties Editor plugin of the IVY
Workbench tool (see Figure 9). The plugin is based on sets of patterns that capture usual
properties typically verified of any interactive system. The patterns used by the IVY workbench are
described in [23]. Each pattern describes its intent, provides a practical example and has some
parameters. After choosing the most suited pattern for the property he or she wants to express,
the user of the tool has only to define the values of the parameters of the pattern. For doing that,
the tool has an assisted mode, in which the user selects attributes and actions from the model

for the parameters of the pattern.

File Project System Help
o aa |
o@

Patterns |& Formula 'EEPSUP| & 'E[P U (S &P & EX(E[TU (P & ITIDN
Lot |
¢ =3 Owyer fCurrent Parameter Values
? [ Ocurrence P slate:lcl‘onmuous
[} Assence S state=Value_locked_for_Continuous
i T: state=Value_locked_for_Continuous
D Bounded Existence

D Existence jOescripion: 5.7 precedes P
D) universanty
9 3 Order fntent To describe a relationship between a sequence of events/states (S, T) and an eventistate P and
| in which the occurrence of the the state/event P within the scope must be preceded by the occurrence of
IS followed by T within the same scope

D Constrained Chain
D Faimess
¢ ) Precedence F-ample None.

D Precegence Chain: 1 Cause - 2 Effect T T T .
[} Precedence Chain: 2 Cause - 1 Effedt Parameter P, | | ¥ |= | = | |continuous .v,llﬂ
[} Precedence - . — S §
¢ D Response Parameter S| |Value_locked_for_Continuous ~am
D Response Chain: 1 Stimulus - 2 Response

[ Response Chain: 2 Stimutus - 1 Response P ﬂ B |1l B4 ivalle_locked_lor_Comms J" +1-}

N\ Rasnanca

BOE IVAL Values
1.4

PEP'state=Value_locked_for_Continuous U state=Continuous] & 'Estate=Continuous U
— state=Value_locked_for_Continuous & 'state=Continuous & EX(EP'state=Value_locked_for_Conlinuous
Logic !cn_ {v U (state=Continuous & Istate=Value_locked_for_Continuous i1

] x -3
1EF(state=On)
P =] AG{state=On > AX{up > EX(state=0n}))
Edition {Automatic |iv) On > AX{up > % on)
AG(on > AF(state=On))
AGion > AXistata=nll

Figure 9 Properties Editor.

19



3.1.3 Verification

The verification step is performed by the NuSMV model checker. To make the verification
possible, MAL interactor models are compiled to the SMV language. A detailed description of the
verification approach is out of the scope of this dissertation. For the discussion that follows what
is important is that, when a given property is not verified, NuSMV tries to provide a behaviour of
the model (a trace) that demonstrates the falseness of the property in question. These traces
(see Figure 10 for an extract) consist of a sequence of states of the model that violates the
property under scrutiny.

Because of limitations on the SMV input language, when compared to MAL interactors, the
compilation step mentioned above introduces a series of auxiliary variables in the model. This
means that the trace is not at the same level of abstraction as the interactor model being verified.
One aspect were this is particularly evident is the treatment of actions. Because SMV models do
not have an explicit notion of action, the compilation process introduces a special attribute -
action - used for modelling, in each state, which action has just occurred.

Another aspect that deserves mention is a mismatch in the execution models of both
languages. At MAL interactors level, the actions of different interactors can happen in an
asynchronous way. Thus, an interactor can execute one action while the others remain inactive.
At the SMV level, however, the transitions occur in a synchronous way. This means that when a
module performs a transition all modules in the model must also perform a transition. To model
asynchronous state transitions, it becomes necessary to introduce a special action nil that at the
MAL interactors level (what we will call the logical level from now on) corresponds to nothing
happening, while at SMV level (what we will call physical level from now on) represents a state
transition (to a state with the same attributes values i.e. to the same logical state). This way, the
SMV module corresponding to an interactor can perform a state transition associated to a given

action, while the others execute the action associated to nil (that is, maintain the state).

20



Trace Description: CIL Counterexample

Trace Type: Counterexample

- State: 1.1 <-
others.action = nil
others.visible 0
others.newinfo 0
others mapped = 0
mail.action = nil
mail.visible = 0
mail _newinfo = 0
mail mapped = 0
action = nil

-> State: 1.2 <~
others_action = map
others.visible = 1
others mapped = 1
mail.action = update
mail.newinfo =1

Figure 10 Behaviour trace.

3.1.4 Trace Analysis

The traces produced by the verification process do, as we can expect, mention the variables
and states existing at the SMV code level (some of which were introduced at the compilation step,
as mentioned above). Thus, it is necessary to revert the compilation process so that the analysis
of the trace's meaning can be performed at the level of abstraction of the original interactor
model. A typical example would be elimination of attribute action, replacing it by some
appropriate representation of the notion of action.

Counter-example traces can, however, reach sizes in the order of the hundreds of states,
depending on the complexity of the model. Hence their analysis can become time consuming
and complex. The Traces Visualizer plugin, of the IVY Workbench tool, aims at facilitating this
analysis step, helping in determining what the problem is that is being pointed out by the trace,
and in discovering possible solutions to it. To achieve these goals the plugin resorts to visual

representations and trace analysis mechanisms (markers) that can be seen in Figure 11.

‘proc1.state |w]| =]+ [enterina [w] []Next State Color
proc1INP->runnina [w| =]+ | [1 |w]| [[]NextState B Color
‘proc2.state |w| =] [critical [w] [INextState | M Color

Figure 11 Trace Analysis mechanisms (markers).
21



The available visual representations are fully described in [24] and are the following;

Trace - the original textual representation produced by SMV;

Tree (see Figure 12) - tree representation of the trace states;

State Based (see Figure 13) - graphical representation of the trace states;

Logical States (see Figure 14) - representation similar to the previous one in which the
trace states are pre-processed to eliminate artificial states introduced by the compilation
process;

Tabular (see Figure 15) - tabular representation similar to the one existing in the SMV of
Cadence Labs;

Activity Diagram (see Figure 16) - representation focused on actions that resorts to

Activity diagrams (following the notation of UML 2.0 described in [22].

o main
proci
9 Inputs

-0

running=1 ¢
9 State

state=idle
proc2

main
proc1

o Inputs
¢ State

state=entering

=y

o broc2

o Mmain
9 proc1
9 Inputs
running=1 ¢
9 State
state=entering
¢ broc2
o Inputs
9 State

state=critical g

Figure 12 Tree visual representation.

22



GLOBAL main

1 0

4

ail

semaphore=0

running=0

]

semaphore=0

]

semaphore=0

running=0
_process_selector_=proc2

running=0
_process_selector_=proc2

[ O

semaphore=1

proci

]

state=idle

running=1

m[

state=entering

running=0

Ll

state=entering

running=0

H]

state=entering

Figure 13 State Based visual representation.

GLOBAL main

[

semaphore=0

running=0

semaphore=0

running=0

_process_selector_=proc2

semaphore=1

statesidle

running=1

state=entering

running=0

state=entering

Figure 14 Logical States visual representation.

23



1 25 3 4

main._process_selector_| procl | proc2 proc2 proci

running 0 0 0 0

semaphore 0 0 0 1
proc1.running 1e |0 0 1@

state idle entering | entering | entering
proc2.running 0 1 1 0

state idle idle entering critical @

Figure 15 Tabular visual representation.

rhain aDial plane ALTDial
] u

—y Goed)
L] L

Figure 16 Activity Diagram visual representation.

24




3.2. How To Create An IVY Workbench Plugin

The IVY Workbench is a modular tool based on plugins. A plugin is integrated into the tool by
implementing an interface that defines the methods needed for integration purposes. For
simplification purposes a plugin can also be called a tool. Each tool will be placed on a tabbed
pane so that the user can select between all the tools loaded into the framework. For example, in

Figure 17, the Model Editor, Properties Editor and Traces Analyzer tools are represented.

% IVY Workbench 1.3 [ModelEditor] E[@@

File Project System Preferences Help

‘. ﬂ ModelEditor m PropertiesEditor ‘ m TracesAnalyzer

CEm E Procurar:

I Graphical: main.me | Text: main.i

»

4
4

i

main

A v

Figure 17 IVY Workbench Plugins Framework.

The interface methods that must be implemented to construct a tool are the following:

e public void init(IServer coreServer, IToolProperties prop) throws

Exception - this method initializes the Tool. This method is called once in the life
cycle of the tool. It receives a parameter that is the server used to handle the
processing and also a parameter that contains a reference to the properties of this
tool.

25



e public void initGUI(JFrame main, JComponent rootContainer) - this
method is used to initialize the Graphic User Interface for the tool. This method is
also called once only in the life cycle of the tool. It receives the main JFrame of the
IVY Workbench tool and also receives the container in which the tool graphic

component can be added.

¢ public void gainFocus() = this method is to be invoked whenever the tool is
selected in the main tabbed pane of IVY Workbench tool. With this method we can
control what we want to do each time the tool gains control. For example if some
global data is changed by others tools then the current tool can also change its state

(by changing graphical elements or internal data) to reflect them.

¢ public void loseFocus() = this method is used whenever the tool loses the
control (is de-selected). With this method we can control what we want to do when
the user switches to other tool. For example the current tool can put some data in a
global area (common to all tools) so that the other tools can query if some global
data is available, and if so reflect some changes on their own states, by changing

graphical elements or internal data.

¢ public boolean needsSaving() - this method is used to tell if the tool needs to

save its data when a project is being saved.

e public boolean needsFocus(int event) - this method is used to return the
status related to focus. It receives a parameter that is the event by which the tool
needs focus. The event codes are the following:

O int EVENT_OPEN_PROJECT = 0;

O int EVENT_NEW_PROJECT = 1;
O int EVENT_SAVE_PROJECT = 2;
O int EVENT_CLOSE_PROJECT = 3;
O int EVENT_EXIT_PROGRAM = 0.

26



¢ public void newProject(IProjectProperties proj) = this method is invoked
whenever the main application creates a new project. It receives the project

properties (name, project working directory, author, etc.).

e public void openProject(IProjectProperties proj, String[] files) = this
method is invoked whenever the main application opens a project. It receives the

project properties and also the paths of the folders belonging to this tool.

e public String[] saveProject(IProjectProperties proj) = this method is
invoked whenever the user wants to save the current project. It will be up to the tool
to save its own data files. This method receives the project properties as a

parameter and returns the paths of the folders belonging to this tool.

¢ public void closeProject(IProjectProperties proj) = this method is invoked
whenever the IVY user wants to close the current project. It receives the project

properties.

e public void exit() = this method is invoked whenever the user exits the IVY

Workbench.

The configuration file plugin.xml is needed to properly configure the tool. The following text
explains how to fill the data fields of this configuration file.

The structure of the XML file is the following:

<?xml version="1.0" 7>
<!DOCTYPE plugin PUBLIC "-//JPF//Java Plug-in Manifest 0.4"
"hitp://jpf.sourceforge.net/plugin_0_4.dtd">

<plugin id="tool name’ version="tool version’ >
<requires>

<import plugin-id="CoreSystem" />
</requires>

27



<runtime>

<library id="tool library name’ path="tool jar filename’ type="code'>
<doc caption="API documentation">

<doc-ref path="api/index.html" caption="javadoc" />

</doc>

</library>

<library type="resources" path="icons/" id="icons"/>

</runtime>

<extension plugin-id="CoreSystem" point-id="Tool" id="tool name’>
<parameter id="class" value="tool java main class name’ />
<parameter id="name" value="tool name’ />

<parameter id="description" value="tool description’ />
<parameter id="icon" value="tool icon filename’ />

</extension>

</plugin>

The values between quotes have to be replaced to fill the configuration file. For example, to

make the configuration file of Model Editor tool the values are instantiated in this way:

‘tool name’= "NModelEditor”

‘tool version’= “0.0.1"

‘tool library name’= “Model Editor”

‘tool jar filename'= “NModelEditor.jar”

‘fool java main class name’= "Editor. Editor”
‘tool description’= “Model Edifor description”
‘fool icon filename'= “modelEditor.gif”

In the tool's directory a “build.xml” file is also needed. This file is used to build the tool

with the help of the “plugin.xml” configuration file. The build.xml (see Appendix |) is the same

for any tool (only the project name can be changed).

3.3. Conclusion

This chapter presented the IVY Workbench tool that supports the modelling and analysis of

interactive systems. Section 3.1 presented the model checking based approach supported by the

tool. Section 3.2 described how to create a new plugin for that tool.

28




Chapter 4 — Related Work

This chapter describes CTTE (ConcurTaskTrees Environment) a task modeling tool that has
animation and simulation strategies that are similar to the ones intended to be used on the
proposed MAL models animator plugin. A previous IVY Workbench plugin - aniMAL - that had a

similar goal to this work will also be described.

4.1. CTTE

CTTE” (see Figure 18) is an environment for editing and analysing task models. Its main goal
is to support the design of interactive applications focusing in the humans and their activities.

In [25] the concepts behind tasks models are presented. In is an important model because it
indicates the logical activities that an application can support. A task is defined as an activity that
should be performed by the user to reach a goal in the system. A goal can be a desired
modification of state or a query to obtain information on the current state of the system. Figure
19 presents an example of a Tasks model.

CTTE uses ConcurTaskTrees (CTT), introduced by Fabio Paternd in [26] and [27]. CTT is a
graphical notation (see Figure 20 for an example) with a set of operators used to describe the

relationships between tasks.

® Available at http://giove.isti.cnr.it/tools/CTTE (last visited 27/10/2012).

29




[l The concu:
Fle Edit View o lnsert Tools Hep

riaskTrees Environment 1,5.2 (HCE Group CNUCE - GUITARE Project) - C:\Documents and Settings) Administrator\Desktop) Ctte 152\ Ctbe) Breamples\t

. Ou
nelalad males]s]=]][¢]E]r @A x]0 = [Boawa  ~ 1~
. 0 00.0% ] 2om%
~Current Tash
|—|;°“’°' ] I i3 V| Type: | | - @
M| [ comenam custoner | SuesRepresentatie]
-
=d
£l
Lal
Higl
Priority|
l
B — -
L & g 4 ; had
3] Share Draft with Customer A @ Sol BP ::::: g:::: ::‘:lf:::"ﬁ
[=> {Sales Representative : ) equent 5 ratt
= %
(== 4 -
lid Il
m andle New Handle op
[ 4
| ﬂionoﬁhﬁm;\ -
& l .

Figure 18 CTTE tool, taken from [25].

B-o—F 10— 1-O

Select Author Select Century Select Deﬁniﬁuw
M-8

Type Name Type Surname

Figure 19 An example of a task model, taken from [25].

30



Types of Tasks
Icon | Description Unary Operators
@ Abstraction Task Icon Desq‘iption Syntax
* Iterative T1*
_‘!. Application Task [] Optional [T1]
TS . - &> | Connection T1
3 Interaction Task RS
E User Task
Temporal Relations
Icon Description Syntax
[1 Choice T1[] T2
= Order Independency T1 |=| T2
1] Concurrent T1 ||| T2
L]l Concurrent with information | T1 [[]| T2
exchange
[ Disabling T1 [> T2
> Suspend/Resume T2 [> T2
>> Enabling T1>>T2
[I7= Enabling with information T1 []>> T2
exchange

CTTE provides a simulation functionality that is described in [28]. The simulation a
ConcurTaskTree involves simulating, in some way, the execution of specific tasks in order to
reach a pre-defined goal. In a ConcurTaskTree, tasks are disposed in a hierarchical style. That is,
depending on what tasks have been performed, some tasks are enabled and others are disabled.
The first step in simulating ConcurTask-Trees is to identify the tasks that are logically enabled at
the same time and that is called an enabled task set. The set of all enabled task sets for a
specific task model is referred to as an enabled task collection (ETC).

CTTE’s tasks simulator is a basic one (see Figure 21). It displays the currently enabled tasks

in a list. Double-clicking on a task will simulate the performance of that task. When a task is

performed, the enabled tasks are updated accordingly.

31

Figure 20 Overview of the CTT notation, taken from [28].




Enabled Tasks [Click to Perform]
£ SwitchDff
3 HandleMessages

<3 Tools
L3 Settings
= SelectList

& RecallNumber

Figure 21 A simple ConcurTaskTree task model simulator, taken from [28].

CTTE is a good case study on how a MAL models animator should function. The relevance of
the CTTE environment (see Figure 21) to the present work is its concept of enabled tasks and its
simulation capabilities. This concept and the capabilities are described in [28]. The main
differences to the proposed WildAniM plugin will be the supported model (Tasks in one case and
MAL models in the other), and also that we have attributes in the states of the MAL model,
something that does not happen in CTTE.

It is expected that the WildAniMAL plugin will have a similar behaviour to that of CCTE. The
actions of the MAL interactors will be represented by similarly to CTTE tasks, and the possible
reachable states (enabled by a interactor action on a specific state) will be similar to the enabled

tasks of CTTE.

4.2. AniMAL

AniMAL, described in [29], is a prototype of a plugin that was developed for the IVY
Workbench. Its most salient feature is that of supporting the definition, at runtime, of a prototype
of the interface to be used during the animation. It allows the association, to each attribute and
action, of a widget in order to create the prototype.

The AniMAL tool obtains the data that it needs to perform its function from the CoreSystem
of the IVY Workbench. More specifically, from the IModel (interactors model) data structure.
IModel data is updated by two other plugins of the IVY Workbench. The ModelEditor plugin
updates it with model data, which consists of interactors, attributes and actions. The Traces
Visualizer plugin updates it with fail traces (sequences of states, defined by their attributes’

values, representing behaviours of the model).

32



What is interesting and useful in AniMAL is that it can generate a Ul protottype from the data
model it pulls from the CoreSystem. It uses a mapping generation strategy that can be automatic
or manual. First it creates an interactor tree from the data model. Then we can opt between
choosing which graphical elements will render each of the interactors’ attributes and actions, or
have the plugin perform that mapping automatically. If we request for the mapping to be done
automatically, then the interactors’ attributes and actions are rendered with default components.

The default components’ rendering is as follows:

e interactor - rendered as panel;
e attributes - rendered using the default widget for their type;
e actions - rendered as buttons.

If the mapping is performed manually, we can choose the widget that is assigned to each

attribute. For example, for a temperature attribute we can use a thermometer (see Figure 22) to

show the changes in the temperature value, as modelled by the atiribute.

settemp

30

Figure 22 Thermometer, taken from [29].

The list of widgets in AniMAL is extensible, which makes it very appealing to provide a
graphic evolution of the values of the attributes, instead of the traditional representations used in
these cases (e.g. State or Activity Diagrams). Theses widgets are more familiar and potentially
provide an easier insight into the behaviour of an interactors model. Figure 23 presents a Ul
proptotype with the different widgets used for each of the attributes of an Air-Conditioning

interactors model.

33



o% |VY Workbench 1.3 [AniMAL] - toyota

File Project System Preferences Help
| & animaL l 8 wodeieditor | KM PropertiesEditor | & TracesAnalyzer
main - :'awnilahle
seftemp <‘
» ‘
—
ﬁ -
15—
e 1] front |
autn H |
' )
| air ackey ~| =
4] [ I vl | T ey 1
(> ? Wy sys L
[ Parameters inspector | ‘Layout inspector | Trace Inspector | ), ac '
[ ‘Interactor Inspector | ‘Property Inspector | T alfiow
Interactor sys & airintake
Attribute  aiow & auto
width  [200 | x |207 | & fanspeed
Height [200 | y [z | & front
Widget c... YDialStr & settemp
Change to I =l &y ackey
| & ainintakekey -l

Figure 23 Prototype of an air condition control panel, taken from [29].

AniMAL'’s animation capabilities, however, are limited. The tool is only able to animate fail
traces, That is different from what has been defined as WildAnIMAL's goal: the capability to

animate the interactors models themselves.

4.3. Conclusion

This Chapter described CTTE (ConcurTaskTrees Environment) a task modelling tool. A
previous IVY Workbench animation plugin - aniMAL - was also described. Both plugins provide

useful insights into what the WildAniMAL plugin should be.

34



Chapter 5 — WildAniMAL

Implementation Approaches

This chapter discusses possible WildAniMAL implementation approaches. Section 5.1
discusses three implementation alternatives. Section 5.2 presents the chosen implementation
approach: NuSMV Simulation Capabilities.

The NuSMV model checker provides an interactive shell where commands can be entered.
The commands are grouped by the functionality they provide. There are eight main groups:
Model Reading and Building, Simulation, Checking Specifications, Bounded Model Checking,
Checking PSL Specifications, Execution, Traces, and Administration.

In the context of the present work, we are interested in those commands that help perform
an interactive simulation of a NuSMV specification. Having that in mind, the groups of commands
which are important to mention are: Model Reading and Building, and Simulation.

Sections 5.2.1 and 5.2.2 provide commands’ descriptions that are focused on those aspects
(options and environment variables) that are effectively used in this work. More detailed
descriptions can be found in [12].

Section 5.2.3 provides a NuSMV simulation example where all the presented commands are

used.

5.1. Implementation Approaches

In this Section, the main approaches to implementing the WildAniMAL plugin will be
analysed. Three approaches are considered. Section 5.1.1 looks at the possibility of generating

and using a Finite State Machine representation of the MAL interactors model to drive the

35



animation. Section 5.1.2 looks at using the BDD representation of the MAL interactors model
(created by NuSMV, the verification engine used by IVY Workbench) instead of creating our own
finite state machine. Finally, Section 5.1.3 looks at the possibility of using NuSMV's simulation

commands, available on its interactive mode, to perform the animation.

5.1.1 Generating a Finite State Machine

This approach can be described as transforming the MAL interactors model into a Finite
State Machine (FSM) model. An introduction to the theory behind FSM is available in Section 2.3.

To use this approach an algorithm to translate MAL models into some FSM representation
has to be developed and implemented. That work can be complex and time consuming and also
tests of the algorithm implementation's correctness are needed. Due to these reasons this
approach can be risky, and good results cannot be guaranteed beforehand.

The main advantage of this approach is that only the original MAL model is used, and the
results from the simulation process are easily interpreted in the context of, and incorporated into,
the MAL's model iterative creation process. Other advantage is that, if this approach can be
efficiently implemented, then it will be as easy to perform an interactive simulation of the MAL's
model (creating the FSM one step at a time) as it will the full generation of its FSM model.
Because the algorithm will be custom made it will be easily adaptable to any need desired.

To face this approach's risks, NuSMV's flat model FSM capabilities can be used. These
capabilities are supported by the following commands:

e build flat model - Compiles the flattened hierarchy into a Scalar FSM;

e build boolean model - Compiles the flattened hierarchy into boolean Scalar FSM;
e write flat model - Writes a flat model to a file;

e write boolean model - Writes a flat and boolean model to a file.

However, if the NuSMV FSM capabilities are used, then the main advantage stated above
can be lost, due to the translation process between MAL model and the NuSMV generated FSM
model. The simulation will no longer happen at the abstraction level of the MAL models, but at

the level of the NuSMV specifications created from those models.

36



5.1.2 NuSMV Binary Decision Diagrams

This approach can be described as using the BDD representation of the MAL interactors
model, created by the NuSMV model checker, to perform the animation.

Binary Decision Diagrams (presented in Section 2.4) are used by the NuSMV model checker
to perform model checking over the NuSMV model. These diagrams are not easily
understandable and can be difficult to use for the purpose of implementing the WildAniMAL
plugin.

This approach is not the best one because the initial MAL interactors model is translated to a
NuSMV model that is read by NuSMV model checker and transformed into BDD. Because two
translations steps are made, doing the analysis of the results obtained by animating the BDD,
and using them to help the modeling process of a MAL interactors model, will be a daunting task.
This is because several artificial variables can be added and transformations made between the

two models and the BDD.

5.1.3 NuSMV Simulation Capabilities

The NuSMV model checker has simulations commands that can be used to help implement
the proposed MAL interactors model animator plugin. An example of the NuSMV’s simulation

capabilities is presented in Figure 24.

37



W o o o O e o o R AVAILABLE STATES RRARR

State
semaphore = FALSE
procl.state = idle
proc2.state = entering|

This state is reachable through:

_process_selector_ = proc2
running = FALSE
proc2.running = TRUE
procl.running = FALSE

s =========—T sState —
proc2.state = idle

This state is reachable through:

1) ———mmmmmm e m -
_process_selector_ = procl
running = FALSE
proc2.running
procl.running

FALSE
TRUE

—process_selector_ = main
running = TRUE
procl.running = FALSE

_process_selector_ = proc2
running = FALSE
proc2.running = TRUE

state
procl.state = enteri ng

T?is state is reachable through:
4

_process_selector_ = procl
running = FALSE
proc2.running = FALSE
procl.running = TRUE

Figure 24 NuSMV simulation example.

Figure 24 shows the available states at a given moment in the simulation. The concept of
Available States is similar to the concept of Enabled Tasks in CTTE. Enabled Tasks are calculated
when the CTTE's user interactively selects a task to perform and CTTE'S simulator shows what
the next enabled (we can also say available) tasks are. Because the SMV Model is produced
from the MAL interactors model, in the IVY Worbench tool, it can be used for simulation purposes
with the NuSMV model checker. The NuSMV commands that can be used for that purpose are
the following;

e read_model = Reads a NuSMYV fille into NuSMV;

e pick_state - Picks a state from the set of initial states;

e simulate = Performs a simulation from the current selected state;

The difficulty of this approach is that these commands must be invoked from the proposed
WildAniMAL plugin. However, the commands are only available in interactive mode, and as such

are not well suited to be called from an external process.

38



Conceptually the main problem with this implementation approach is that the SMV Model is
slightly different from the initial MAL interactors model (as stated in Section 5.1.2). Therefore a
process of constant translation and interpretation of animation results from SMV model to MAL
model has to be made and that can be problematic and inefficient. Nevertheless, this is still
better than directly using BDDs (NuSMV uses the BDDs to run the simulation), were there would
be two steps between the original model and the representation our tool would use to support the
animation.

Considering the above, this approach was the chosen one for the implementation of the

WildAniMAL plugin.

5.2. NuSMYV Interactive Shell

The NuSMV Interactive Shell offers an interaction mode that initiates a read-eval-print loop, in
which commands can be executed. The activation of the shell is done by invoking the model
checker with the “-int” option:

system prompt> NuSMV -int <RET>

NuSMV>
When the default “NUSMV>" shell prompt is displayed, the system is ready to accept and
execute user commands.

A NuSMV command is a sequence of words. The first word represents the command to be
executed and the remaining words are its arguments. With the “set” command it is possible to

assign values to environment variables, which in turn influence the behaviour of the commands.

5.2.1 Model Reading And Building

The commands in this group are used for the parsing and compilation of the model into a

BDD and are the following:

read_model -i model-file. Reads a NuSMYV file into NuSMV.

39




If the -i option is not specified, the command reads the file specified in the environment
variable /nput_File. If the option is specified the command sets the environment variable

input_file to model-file, and reads the model from the specified file.

Lgo - Initializes the system for verification.

This command is responsible for reading the model (unless it has already been read), and
generating a BDD from it. The model is first flattened, which includes instantiating modules
by substituting their actual parameters for the formal parameters, and then prefixing the
result with each particular instance’s name, scalar variables are encoded to create a boolean

model, and then the BDD is generated.

5.2.2 Simulation Commands

The commands in this group allow simulating a NUSMV specification and are the following:

pick state [ -i [-a] |

Chooses an element from the set of initial states, and makes it the current state (replacing
the old one). The chosen state is stored as the first state of a new trace, which will grow in
number of states, as simulation evolves. The state can be chosen according to different
policies, which can be specified via command line options. By default the state is chosen in

a deterministic way.

Options:
-i = enables the user to interactively pick up an initial state. The user is requested to
choose one state from a list of possible states. If the number of possible states is too
high, then the user has to specify some further constraints on the values of the variables
in the current state;
-a = by default, states only show those variables that have changed from the previous

state. With this option, NuSMV displays all state and frozen variables regardless of

40



whether they have are changed and unchanged with respect to the previous state. This

option works only if the - option has been specified.

| simulate [-i [-a]] [k steps]

Performs a simulation from the current selected state. The command generates a sequence
of at most steps states (representing a possible execution of the model), starting from the

current state. The current state can be set via the pick_state command.

Options:

-i = enables the user to interactively choose every state of the trace, step by step. As
with pick_state, if the number of possible states is too high, then the user has to
specify constraints on the state attributes. These constraints are used only for a single
simulation step and are forgotten in the following ones.

-a > again, this makes NuSMV display all the state and frozen variables (changed and
unchanged) during every step of an interactive session (which is not done by default).

-k steps > this option defines the maximum length of the path to be generated. The
default value is determined by the default simulation steps environment variable

shown_states (ranges between 1 and 100, and default is 25).

5.2.3 Simulation Example

To illustrate the use of the NuSMV simulation commands a model of a garage gate will be
used. This model will be specified in the interactors language mentioned earlier in section 2.5.

This specification can be seen in Figure 25.

41



types
States = {opening, closing, opened, closed}

interactor main
attributes

[vis] currentState: States
actions

[vis] Ac # User Remote

Ia # Sens

axioms
[] currentState = closed

currentState = closed -> [Ac] (currentState' = opening)
currentState = opening -> [Ac] (currentState' = closing)
currentState = closing -> [Ac] (currentState' = opening)
currentState = closing -> [If] (currentState' = closed)
currentState = opening -> [Ia] (currentState' = opened)
currentState = opened -> [Ac] (currentState' = closing)

per(Ia) -> currentState = opening
per (If) -> currentState = closing

Figure 25 Interactors model of a garage gate.

To understand what this model represents we can see the state diagram in Figure 26.

Gate

' Closed "

If

VAR

Opening

Figure 26 State Diagram of gate model.

42



With the IVY Workbench tool we can compile the interactors model, in Figure 27, to a

NuSMV specification.

- = 5
EEm—— e ———

Figure 27 NuSMV specification of the gate model.

Having this NuSMV specification it is possible to simulate it using the NuSMV interactive
mode. To start the simulation we have to do the following:
system prompt> NuSMV -int gate.smv
NuSMV> go
NuSMV>
43



The previous sequence of programs reads the model to the NuSMV system. After doing that
we have to choose an initial state from the possible initial states of the model. In our case we will
use the interactive approach, in which the user is able to interactively choose the states of the

trace he wants to build. So we have to use the following command:
NuSMV> pick state —i -a

This command has the following result that is shown in Figure 28.

............... AVAILABLE STATES ***#*swaxanss

action = nil

Chosen state is: 0

Figure 28 The result of pick_state —i —-a command.

This result means that this model has only one initial state, and because of that the state is
automatically chosen as the initial state.
To proceed with the simulation we have to use the simulate command with a parameter k

with value 1, which will make the simulation advance one step. The command is:

NuSMV> simulate -i —a -k 1

and NuSMV returns the available states (see Figure 29).

Figure 29 The result of simulate -i —a -k 1 command.

44



Now we have to choose one of the available states. If we choose 0 and use the simulate

command again, we end up the result shown in Figure 30.

Figure 30 The result of choosing state O.

We can continue the simulation using the simulate command until no more states are
reachable.

In this example we showed that the path, illustrated in the State Based diagram of Figure 31,
is possible to be demonstrated using NuSMV'’s Interactive mode and a small set of its available

commands.

nil

] (]

cument State = closed

1 (]

cument State = opening

alls

cument State = opened

la

Figure 31 State Based diagram showing the simulation path.

45



5.3. Conclusion

In this chapter we described the NuSMV Interactive Mode and its available commands. To
more effectively illustrate it we presented a real example of a model: a garage gate. The model
was specified in the MAL Interactors language, compiled to a NuSMV specification, and finally a
simulation was carried out. That simulation used the commands that were previous presented.
We can conclude that NuSMV simulation commands can be useful to implement a MAL
Interactors model animator because the needed output and general mechanism is easily

available and ready to use.

46



Chapter 6 — WildAniMAL

Implementation

This chapter describes the implementation of WildAniMAL as a plugin for the IVY Workbench
tool. An architectural view with UML diagrams is provided. To provide more detail on the

implementation, an explanation of the main methods is presented.

6.1. WildAniMAL’s Architecture

Because the JAVA programming language was used, the architecture of the WildAniMAL
plugin can be easily explained by using UML diagrams for each of the Java packages created.
This scheme for presenting the architecture is well suited to provide the “main picture” of the

implementation.

47



Figure 32 WildAniMAL plugin architecture as a package diagram.

The architecture of the plugin has five packages (see Figure 32): Animator (the root
package), Traces, NuSMV, Constraints and Renderers. The plugin also depends on the Tools and
Server packages of the IVY Workbench CoreSystem main package.

The Animator root package contains the following classes: Gui, Main, TreeActions and
Parser. These classes interact with the inner packages of Animator package, as it will be shown

next.

48



Figure 33 Main package class diagram.

The Main class is responsible for implementing the interface needed to create a plugin for
the IVY Workbench tool as explained in Section 3.2. In particular, it initializes the Gui class, in the
initGui method of the interface.

The Gui class (see Figure 33), as the name may give a clue, handles the graphical user
interface of the plugin. It has the code for displaying the buttons, panels and tables, used in the

interface. It also handles the events for the buttons presses.

49



Figure 34 NuSMV package class diagram.

The NuSMV package (see Figure 34) is responsible for handling the communication
between the graphical user interface, in which the user can select simulation commands, and the

external NuSMV model checker process (that works in interactive mode as explained in Section

50



5.2). It uses the Parser class to parse the states contained in the results obtained from the
NuSMV model checker process. These states, obtained in each simulation step from NuSMV,
feed a JList. When the states are parsed it is possible to see the information associated with each

of them in another JList (Statelnfo).

TreeActions Gui
~tModel : DefaultTreeModel -lastTestFileModification : long
~listActions : HashMap<String, ArrayList<String>> -model : DefaultListModel
1 |+changeTree() 1 - ~imodel : IModel
—+getintantiatedActions() +killNuSMV()
+handleActionParameters() +restartNuSMV()
+setiModel()
PN +checkFileModifications()
< -restartSimulation()

¢

] ] '
Renderers 1 Conslraints 1
StatesRenderer
-states : ArrayList<String> e _Am:?::;:':;:“’“'ﬂ”
+gelLisiCellRendererComponent() ~valuesList : HashMap<String, ArrayList<String>>
+dearStates() )

1 |+addNewConstraint()

Combolistener

-values : JComboBox
-valuesList : HashMap<String, ArrayList<String>>

Figure 35 Constraints package class diagram.

The Constraints package (see Figure 35) has the function of enabling WildAniMAL to filter
the states obtained from NuSMV based on the values of their attributes. In each of the
simulations steps, the user has to choose a current state from the set of all possible states at
that point in the simulation. This set can become large. Hence, filtering the states with a
conjunction of conditions on the values of their attributes, helps the user focus on the states that
matter at each particular moment, and also helps him choose the right state to proceed with the
simulation.

Package Renderers is responsible for rendering the states that meet the constraints of the
filter. Currently, that is done by changing the background color.

When the future states of a simulation are more than one hundred, NuSMV does not

produce the list of possible states. In this case, “Too many States” appears in stateList.
51



Then, constraints have to be entered to filter the states (here at the level of the NuSMV model

checker process) in order to obtain the states’ list needed to proceed with the simulation.

Figure 36 Traces package class diagram.

The Traces package (see Figure 36) is responsible for showing the states resulting from the
simulation. This is achieved with the help of visual representations. These visual representations
are two of the ones already available in the Traces Visualizer plugin of the IVY Workbench:
StateBased and Tabular, and their implementation is described in [24]. They were adapted to
receive states one by one, because the trace is created step by step as the user is entering his
choices in the interactive simulation. In the Traces Visualizer plugin the trace is fully formed with
all states and is displayed promptly.

When a new state is parsed in the Parser class, a method (addState) is called in each
visual representation that adds the state info and does what is needed to update the drawn visual

representation, so that it reflects the newly added state information. In the case of the

52



StatedBased representation, the update is done by calling drawlnteractorState (which
performs a repaint).

It's easy to add more visual representations because the main class of a representation will
only have to implement the addState method, and the graphical (or textually, if wanted)
representation. This feature makes the plugin extensible regarding the visual representations

available.

6.2. WildAniMAL’s Source Code Description

This section presents a description of the most relevant aspects of the implementation’s

source code. That description will be grouped by the packages described in the previous section.

6.2.1 Animator Package

Class Main
As already mentioned, the Main class implements the plugin interface of the IVY Workbench

tool.

public class Main implements [Tool {

private JComponent container = null ;

private IServer server = null;

private Gui frame;
private IModel model;

public Main() {
frame= new Gui();
frame.savelLastFileModified();

The previous code shows that the Main class implements the ITool interface, that is, the
plugin interface of the IVY Workbench tool. The variables container and server relate to the
CoreSystem of the IVY Workbench tool, and enable the plugin to communicate with it. In

particular, they enable the WildAniMAL plugin to retrieve information from the shared data

53



structure used by all the plugins of the tool. It is through this shared information that the plugin
integrates its own functionalities (in this case, the simulation of the interactors model - using the
NuSMV specification as an intermediate representation) with the rest of the tool. The model
variable will hold all data from the interactors model and is used to retrieve information needed to
construct constraints and also to help the NuSMV package classes perform their function.

The Main() constructor initializes the GUI class which, has its name indicates, is the
Graphical User Interface of the plugin. The saveLastFileModified method is used to store in a
variable the last time when test.smv (the SMV Specification file) was modified. That information
will be used to test when a new model was compiled in the Properties Editor. Whenever a new
interactors model is compiled, the WildAniMAL simulation has to be restarted.

Another method that is used during the initialisation of the plugin is initGUI.

public void initGUI(JFrame main, final JComponent rootContainer) {
this.container = rootContainer;

container.setLayout(new BorderLayout());
container.add(frame,BorderLayout. CENTER);

The method simply adds WildAniMAL's graphical user interface (given by the GUI class as
frame variable) to the JComponent (rootContainer) that has been assigned to it by the Core
System. Each plugin is graphically located in a tab.

Next the handling of focus must be provided.

public void gainFocus() {
frame.checkFileModifications();

CServer i=(CServer)server;

model=i.getModel();
frame.setIModel(model);

The gainFocus method is executed whenever the user chooses the plugin WildAniMAL in
the IVY Workbench tool (by clicking in the respective tab). In this method, a check is made to
determine if a new interactors model was compiled, in which case the simulation will be

restarted. That is done by using the checkFileModifications method of the Gui class. Also,
54



the reference to the interactors model data structure is retrieved for future use during the
simulation process.
The loseFocus method simply stores the last time when the current interactors’s model

was compiled. That is done to enable the verification made in the gainFocus method.

public void loseFocus() {
frame.saveLastFileModified();

Finally the exit behaviour of the plugin must be provided.

public void exit() {
frame.killNuSMV();

The exit method frees all resources used in WildAniMAL plugin, and is called when the user

exits IVY Workbench application.

Class Gui
The Gui class implements WildAniMAL's graphical user interface (see Figure 37) and
handles buttons events. It also coordinates all the functionalities implemented in this plugin: the

simulation, constraints handling, drawing of traces visual representations and filters.

Tabular | State Based
Restart Simulation ¥ | e seeeemd i
Get Initial State

ACTIONS STATE INFO

PickAnAcuon To Go To A New State
CONSTRAINTS

=
|_send |
_Fiter

Figure 37 Graphical user interface implemented by GUI class.

55



The constructor of the Gui class initializes the graphical components and also the auxiliary

classes that will handle WildAniMAL's functionalities.

public Gui() {
initComponents();

GridLayout gd = new GridLayout(0,1);
cPanel.setLayout(gd);

model = (DefaultListModel) statesList.getModel();
parser = new Parser(model, statesList);

treeActions = new TreeActions();
nusmv = new NuSMVInteractiveRun("test.smv", Consola, parser);

constraints = new ConstraintsManager(cPanel, treeActions);

stRenderer = new StatesRenderer();
statesList.setCellRenderer(stRenderer);

stateBased = new StateBased(stateBasedPanel);
tabular = new Tabular(tabela, scrollTabela);

The statesList variable (a JList) holds the current states returned on each step of the
simulation. A reference to its model (data) and the component itself are passed on in the
Parser class constructor, because in the simulation process, and in the associated parsing
needed, this class updates the states list directly.

The treeActions variable (instance of TreeActions class) is also initialized here, and is
responsible for storing locally the actions of the interactors model to help constraints’ creation.
For that reason, the constraints variable (an instance of the ConstraintsManager class) is
initialized using a reference to it.

Another class that is instantiated in the Gui constructor, and the most important of them all,
is NuSMVInteractiveRun (variable nusmv). It is the nusmv variable that will setup the actual
interactive simulation, using an external NuSMV model checker process. The variable is initialized
with a JTextarea (Consola) that will receive the textual output of the commands sent to the
NuSMV process, with a reference to the Parser class (variable parser) that will be used to

56



parse that same output, and with the name of the file holding the NuSMV specification. This file's
name is hardcoded (by choice) because it is a temporary file generated in the Properties
Editor plugin of IVY Workbench when the current interactors model is compiled.

The StatesRenderer class (variable stRenderer) is also instantiated in the GUI
constructor. It is the stRenderer variable that will be responsible for showing the result of
filtering the elements of statesList (by changing their background color) when some constraints
are applied.

Finally, the StateBased (variable stateBased) and the Tabular (variable tabular)
classes are also instantiated in the Gui constructor. The two corresponding variables will enable
showing the progress of a simulation, through the visual representations they implement.
Whenever the user chooses a state to proceed with the simulation, these two variables receive
that information which will be shown with the corresponding graphical strategy. The stateBased
variable provides a kind of state diagram and the tabular variable provides a normal table.

Next the method that shares the interactors model (IModel variable), between all the

variables that need it, is provided. These variables are: nusmv, constraints and treeActions.

public void setiModel(IModel mod) {
imodel = mod;
nusmv.setimodel(mod);
constraints.setChoices(imodel);
treeActions.changeTree(imodel);

}

Next the methods that handle button events are presented.

private void btGetFirstStateActionPerformed java.awt.event.ActionEvent evt) {
nusmv.sendCommand("'pick_state -i -a");
btGetFirstState.setEnabled(false);

}

This method handles the click event on the Get Initial State button, and does that by
sending the shown command to the NuSMV model checker (using the nusmv variable).

Next, another button’s (Pick State) event handling is provided.

private void btPickStateActionPerformed(java.awt.event.ActionEvent evt) {
int index = statesList.getSelectedindex();
if (index !=-1) {
57



}
}

This method picks up the current state choice, that is, the selected number in the
statesList JList. If a choice exists (not null) then the respective state info is added to the traces
visual representations (stateBased and tabular variables). After that, the choice (state number)
is sent to NuSMV model checker and statesList is cleared. Then, the simulate command is

sent to NuSMV which will return states to fill statesList again. Finally repaints are made in order

stateBased.addState(""'+index, parser.getStatelnfo("'"+index));
tabular.addState(parser.getStatelnfo('""'+index));

if (statesList.getModel().getSize() > 1)
nusmv.sendCommand(""'+index);

model.clear();
nusmv.sendCommand('simulate - -a -k 1");
stRenderer.clearStates|();

stateBasedPanel.repaint();
tabela.repaint();
interactorsNamesPanel.repaint();

to show the state update in the trace’s visual representations.

Next the Filter button event handling is provided.

private void filterActionPerformed (java.awt.event.ActionEvent evt) {
JPanel constPanel;
JComboBox vars, op, vals;
String var, opc, val;

ArrayList<String> lista = new ArrayList<String>();

for (inti = 0; i < cPanel.getComponentCount(); i++) {

constPanel = (JPanel) cPanel.getComponent(i);

vars = (JComboBox) constPanel.getComponent(0);
op = (JComboBox) constPanel.getComponent(1);
vals = (JComboBox) constPanel.getComponent(2);

var = (String) vars.getSelectedltem();

58



opc = (String) op.getSelectedltem();
val = (String) vals.getSelectedltem();

if (val.contains("(")) {
val = treeActions.handleActionParameters(val);

}

lista.add(var +

ni nn

+opc+""+val);

The filterActionPerformed method gets the constraint conditions from cPanel into a list
(variable lista). The constraints may have action with parameters and if so a special method
handleActionParameters is used to replace the internal notation used in NuSMV (e.g.
doSomethingAction_a_b_c) by the more user friendly notation used in MAL models
(doSomethingAction(a,b,c)). After that lista is sent to the parser, which returns the states
that match the constraints’ conditions. These states are then passed on to the states renderer
(stRenderer) that renders them differently (red background) on the statesList.

The event handler for the Send button (method btSendActionPerformed) is similar to
the previous method. The difference is that the constraints are joined in a string as a conjunction
(using the & operator) and are sent to the NuSMV model checker. Hence, instead of filtering the
current list of states being displayed, this method sends constrains that will be used by NuSMV to

generate a new (smaller) list. This is particularly useful when the list of possible states is too big

(over 100 states) in which case NuSMV will not generate it.

Class Parser

The Parser class is responsible for parsing the output of the NuSMV model checker.
Because the parsing process consists mainly in obtaining states and their info, this class has a
data structure to store them and provides methods to query that information.

The patterns used in the parsing process are initialised with the addSystemPatterns

method.

private void addSystemPatterns() {
String ident="([a-zA-Z][a-zZA-Z0-9_$~ ><\\[\\I\\-1")";
String value="([a-zA-Z0-9_$~ ><\\[\\]\\-1*)":
systemPatterns.add(Pattern.compite(" (\\d+)\\)"));
systemPatterns.add(Pattern.compite(" (\\s*)"+ident

59



+(\\s")=(\\s)"(\\d)"" + value));

systemPatterns.add(Pattern. compife("\\s*Set of future states is EMPTY: "

+ "constraints too strong\\? Try again.\\s*"));
systemPatterns.add(Pattern.compite("\\s*Too many \\([0-9]+e\\+[0-9]+\\) "
+ "future states to visualize. Please specify further constraints: \\s*"));

}

The addSystemPatterns method compiles the patterns (regular expressions) used in
the parsing process of the NuSMV model checker’s output. The first pattern matches a state
number. The second pattern matches an action or attribute value (that is part of state info). The
third pattern matches the indication that after applying constraints there aren't any states to
proceed with simulation. The last pattern matches the indication that applied constraints aren’t
sufficient and more have to be specified.

The parselLine method is responsible for parsing a line of the NuSMV model checker’s
output. The parsing is done by identifying specific keywords and patterns in the text produced by
NuSMV. The first part of this method checks if the line contains “AVAILABLE STATES”, which
means that a new simulation step has started (a state has been chosen). In that case the states

structure is cleared to receive new states info.

public void parseLine(String lineRead) {
if (lineRead.contains("AVAILABLE STATES")) {
availableStates=true;
states = new HashMap<String,ArrayList<String>>();
Gui.setBtPicksState(true);
}

Next the method checks if the line contains a new state number. If so, then it also tests if the
model was on a situation where constraints insertion was needed. Then the state number is

added to states. That state number is also stored in an auxiliary variable lastState.

String aux;
if (availableStates) {
matcher = systemPatterns.get(0).matcher(lineRead);
if (matcher.lookingAt()) {
if (model.contains("Too Many States")) {
model.removeElement("Too Many States");
Gui.setConstraints(false);

60



aux = matcher.group(1);
lastState = aux;

if (model.contains(aux) && !"".equals(aux)) {
model.add(Integer. parse/nfiaux),aux);
states.put(aux, new ArrayList<String>());
}
}

After parsing a state number (lastState), all the actions and attributes values that make

part of its info are parsed, and stored in its entry in states.

else if (I"".equals(lastState)) {
matcher = systemPatterns.get(1).matcher(lineRead);
if (matcher.lookingAt()) {
aux = matcher.group(0);
if (states.containsKey(lastState) && !"".equals(aux)) {
states.get(lastState).add(aux.trim());
if (aux.contains("'action")) {
aux = aux.replace("action = ","");
model.set(Integer. parselnflastState), aux);

}

This part of the method detects and signals a situation where constraints have to be entered.

In this situation, the Pick State button is disabled, because there are not states to choose from.

matcher = systemPatterns.get(2).matcher(lineRead);
matcherl = systemPatterns.get(3).matcher(lineRead);
if (matcher.lookingAt() | | matcherl.lookingAt()) {
model.clear();
model.addElement("Too Many States");
Gui.setConstraints(true);
Gui.setBtPicksState(false);

Finally, this part of the method detects a situation where the output for a simulation step has

ended and a state choice, to proceed with the simulation, is needed.

61



if (lineRead.contains("'Choose a state form the above") ) {
availableStates = false;
lastState = """,
Gui.setBtPicksState(true);

}

6.2.2 Constraints Package

The ConstraintsManager class is responsible for managing constraints that can be sent
to the NuSMV model checker or used to filter states. This class constructor is initialized with the
constraints JPanel (see Figure 28), and with a reference to an instance of the TreeActions class
that will help with retrieving information on the actions in the interactors model.

The setChoices method (some parts of the code are presented) fills the variables choices
(all names of attributes and variables in the interactors model) and valuesList (the

corresponding values for any variable in choices).

for (int j=0; j<v.size();j++) {
elem=v.get(j);

aux = new ArrayList<String>();
def=model.getDef(elem);

if (!def.equals("")) {

if (def.contains("array")) {
choices.remove(choices.size()-1);
aux=model.getAttributeValuesOnly(elem);
valuesList.put(elem,aux);

}

else if (defs.containsKey(def))
valuesList.put(elem, defs.get(def));

else {
aux=model.getAttributeValuesOnly(elem);
valuesList.put(elem,aux);
defs.put(def,aux);

}

choices.add(elem);

}

62



In the method, when an action variable has parameters, the method
getinstantiatedActions of the TreeActions class is used, to unfold the types of these
parameters, in order to obtain all the possible combinations of parameter values.

The addNewConstraint method is responsible for creating a new constraint condition. A
constraint is graphically represented by three combo-boxes. The first holds all the elements of
choices, the second holds the operators (“=" and “!="), and the last is updated with all possible

values (values from valuesList) for the element currently selected on the first combo-box.

public void addNewConstraint() {

if (choices.size() > 0) {
JPanel constraint = new JPanel();
ArrayList<String> operators= new ArrayList<String>();
ArrayList<String> values;
JComboBox vars= new JComboBox(choices.toArray());
constraint.add(vars);
operators.add("=");
operators.add("!=");
JComboBox op= new JComboBox(operators.toArray());
constraint.add(op);

String key = choices.get(0);

if (valuesList.containsKey(key))
values = valuesList.get(key);
else
values = new ArrayList();

JComboBox vals= new JComboBox(values.toArray());
constraint.add(vals);

CombolListener cl = new CombolListener(vals,valuesList);
vars.setSelectedIndex(0);

vars.addActionListener(cl);

op.setSelectedIndex(0);

if (vals.getltemCount()>0)
vals.setSelectedIndex(0);

painel.add(constraint);
painel.updateUl();

63



A textual representation of the constraint condition is what is sent to the NuSMV model

checker, or used to filter states in statesList.

6.2.3 NuSMV Package

Class NuSMViInteractiveRun is responsible for handling the communication between the
graphical user interface, in which the user can execute simulation commands, and the external

NuSMV model checker process.

public NuSMVInteractiveRun(String nusmvfFile,
JTextArea consolal,Parser parserl){
console = new NuSMVConsole(nusmvFile,consolal,parserl);
console.loadConsole();

input = new Input(console);
console.setinput(input);

input.start();
console.execCommand(''go");

NuSMVinteractiveRun’s constructor instantiates the NuSMVConsole class (variable
console) with a reference to the file with the NuSMV specification, a reference to the JTextArea
(consolal) that will receive the output from the model checker process, and also a reference
(parameter parserl) to the Parser instance that will parse each line of the NuSMV model
checker's output. The Input class is also instantiated, which starts a thread (variable input) that
will be continuously reading data from the input stream of the NuSMV model checker process.
Finally, the command go is sent to the NuSMVConsole, and it initializes the simulation of the

current NuSMV specification (as explained in section 5.2.1).

public void run() {
while(true) {
console.readChar();
try {
waitWhileSuspended();
} catch (InterruptedException ex) { }
}

64



public void setPaused(boolean p) {
this.paused = p;
}

private void waitWhileSuspended|)
throws InterruptedException {
while (paused) {
Thread. s/eep(200);

}

The Input thread can be paused, if no data is available in the stream. That is done with a
state variable (paused) that is constantly checked (with waitWhileSuspended), in the run
method of this thread. Without this, the process would be kept active while waiting for input,
which would create a big impact in CPU usage.

Next methods of the NuSIMVConsole class are provided.

public void loadConsole() {
String[] cmdarray = {""","-int", nusmvFile};
cmdarray[0] = ""+System. getPropert"user.dir"') + File.separator +

"NuSMV" + File.separator + "bin" + File.separator + "NuSMV";

ProcessBuilder pb = new ProcessBuilder(cmdarray);
pb.redirectErrorStream(false);

try {
proc = pb.start():
} catch (IOException ex) { }

InputStream inputStream = proc.getinputStream();
OutputStream outputStream = proc.getOutputStream();

InputStreamReader inputStreamR = new InputStreamReader(inputStream);
OutputStreamWriter outputStreamW = new OutputStreamWriter(outputStream);

brinput = new BufferedReader(inputStreamR);
bwOutput = new BufferedWriter(outputStreamW);

65



The loadConsole method sets NuSMV's command path, which has to be inside IVY
Workbench application path and more specifically in NuSMV/bin/NuSMV, and starts a java

process with it. Then its input (brlnput) and output (brOutput) streams are retrieved.

void execCommand(String command) {
input.setPaused(false);

try {
bwOutput.write(command);
execNewLine();

} catch (IOException ex) {

}
}

The execCommand method is used to send a command to the NuSMV process. Each time

it is executed it starts by activating the Input thread (awaking it).

void readChar() {

intc=0;
charch =0;
try {

¢ = brinput.read();

if (c ==-1) {
input.setPaused(true);
parser.selectFirstState();
return;

ch = (char) c;
} catch (IOException ex) { return; }

The readChar method will read a character at a time from brlnput. This has to be done in
this way (the usual way is to read line by line) because sometimes the NuSMV process does not
print the last line of result, for example when it is waiting for the user to choose a state and
subsequently to press enter (newline). When brinput returns no char (a value equal to -1), then

Input thread is paused and readChar methods returns immediately.

if (ch=="\n") {
str = sb.toString();
parser.parseLine(str);

66



sb = new StringBuffer();
consola.append(str+'"\n"});
consola.setCaretPosition(consola.getDocument().getLength());

The characters consecutively read by the readChar method are accumulated in a
StringBuffer (sb), until a newline (\n) is read. In that situation, the stringBuffer is transformated
in a String (the read line), which is sent to the Parser to be parsed and printed in the JTextArea

Log. The StringBuffer sh is also cleared to begin accumulating characters to form the next line.

else {
sb.append(ch);
aux = sb.toString();

if (aux.matches(" action = [a-zA-Z0-9]+") && containsAction(aux)) {
parser.parseLine(aux);
consola.append(aux);
consola.setCaretPosition(consola.getDocument().getLength());
sb = new StringBuffer();

}

If ¢h is not newline then it is accumulated in sh. Then a test is made to determine if the
string is an action (using the containsAction method). This is the strategy used to overcome
the problem of NuSMV not printing the last line of command output, which originates the last
action of a state’s result of a command not being parsed. This strategy works because the action
is the last line printed by NuSMV in any state attributes listing.

The containsAction method checks if a string passed as a parameter (aux) is a valid

action in the interactors model.

private boolean containsAction(String aux) {

try {

ArrayList<String> actions =
imodel.getActionsVariable("'main.action");

aux = aux.replace(" action =","");

boolean match = false;

String ac;
aux = aux.trim();

67



i,

String encontrada = ""';

for(String act: actions) {
ac = act.trim();

if (ac.compareTo(aux)==0) {

match = true;
encontrada = ac;
break;

}

If an action is encountered (match is true) then an additional test is made. This handles the
situation when one action has a name that starts with another action name. For example:
setValueMCP and setValue. If this verification is not performed, then if the correct action to be

matched is setValueMCP, what is (wrongly) matched is setValue.

if (match) {
for(String act: actions) {
ac = act.trim();

if (ac.contains(encontrada) &&
ac.length() > encontrada.length())
return false;

return match;

}
catch (Exception e) {
return false;

6.3. Conclusion

This chapter described the implementation of WildAniMAL as a plugin for the IVY Workbench
tool. Section 6.1 presented a high level view of how the implementation code was organized. As
the work of implementation was a Java programming task, this was explained with UML class

diagrams, showing how classes were organized into packages.

68



Section 6.2 makes an extensive explanation of the code. One reason to do that is to fully
present some problems that were encountered during development, and how they were
overcome. By explaining the implementation in detail, it becomes easier for anyone to
understand the code and consequently improve it at a later occasion. This also made it possible
to think about how some implementation choices were made, and in the task of writing the

explanation to describe this code, some methods were implemented in a more efficient way.

69



Chapter 7 — Using WildAniMAL

This chapter demonstrates the WildAniMAL plugin of the IVY Workbench tool. Section 7.1
presents a simulation example that makes extensive use of all the functionalities available in the

plugin. Section 7.2 presents the conclusions of this chapter.

7.1. WildAniMAL’s Usage Example

To explain how the WildAniMAL plugin can be used, a small example of an Ipod-like music
player will be introduced. To be able to keep the explanation short and understandable, some
aspects of the real device will be abstracted in order to work with a simpler model.

First an interactors model of the device will be created using the Model Editor plugin of the

IVY Workbench (see Figure 38).

70



& IVY Workbench 1.3 [ModelEditor] =i
File Project System Help
@ propertiestditor | KM TracesAnalyzer | 8 WildAniMAL
& AnimaL & modelditor & rvs
DELEB -
[ Graphical: main.me | Text:ipod - smalli |
interactors : 1| /% &
? Ijmain 2|#% positions
¢ [ attributes e
3|2 main=(100,100)
[ currentsong 2.
D playbackState =
5
[} headsetsstate
B 6 |types
¢ [ actions
D sy 7| Songs = 0..MaxSongs
Dpause 8| Playback = {playing, paused, stoped} | =
D STk 9| Headsets = {pluged,unpluged}
. 10
[ previousTrack _
11 |defines
[ plugHeadsets
12| MaxSongs = 10
[ unplugHeadsets
13
14 |interactor main
15| attributes
16| currentSong: Songs
17| playbackState: Playback
18| headsetsState: Headsets
19| actions
20| play
21| pause
22| nextTrack
23| previousTrack
24| plugHeadsets
25| unplugHeadsets
26| axioms
27 [1 currentSong = 0
28 [] playbackState = stoped
29 [] headsetsState = unpluged
30 |#Pressing pause is only allowed if Ipod
31| per(pause) -> playbackState=playing =]
Line: 74 Column: 15
O —

Figure 38 Ipod model creation with Model Editor plugin.

The full interactors model is presented in Appendix Il.

71



After the model’s creation, it has to be compiled to a NuSMV specification. That is achieved
in the Properties Editor plugin of the IVY Workbench. To perform that compilation we have to click
in the “bug” button (near the “X" button) of the Properties Editor. If the compilation is successful

then the respective NuSMV specification is shown (see Figure 39).

@ IVY Workbench 1.3 [PropertiesEditor]

File Project System Help
g PropertiesEditor g TracesAnalyzer g WildAniMAL

@& Anima | 4 wodelkditor ' @ rvs

o@ 3
rll‘ Verification Window ==

] Patterns
o I IVY

o= (=] Dwyer
o (] SCAPS

Scope |Global .v} Close 1

R
Logic |CTL | ¥ ‘ ™

%

Edition |Automatic | v
: | =, =

Figure 39 Ipod interactor model compilation with Properties Editor plugin.

Now we can really start simulating the NuSMV specification, which is the interactors model
intermediate representation. When in WIdAniMAL, the first thing to do is click the “Get Initial
State” button (see Figure 40). That operation results in a list of available initial states. These
states can be accessed from the Actions list. Note that in this case the list will only have nil
actions, one for each possible initial state, since no action is performed to reach the initial state

(remember that the nil action represents a state transition without an associated action).

72



& IVY Workbench 1.3 [WildAniMAL]
File Project System Help

G Propertiestditor | KM Tracesanalyzer | K8 WildAniMAL

L o

& AnimaL & modelkditor & rvs

Restart Simulation

Get Initial State

currentSong =0
headsets State = unpluged

playback State = stoped
action = nil

Pick An Action To Go To A New State

Figure 40 Result of pressing “Get Initial State” in WildAniMAL.

In the current model, there is only one initial state (nil action) to choose. That state’s
attributes can be looked up in the State Info list (see Figure 40) by selecting the action in the
Actions list. To choose the state we have to click the “Pick An Action To Go To A New

State” button.

73



To perform the interactive simulation, we simply have to continuously choose an action from
the Actions list. Each time the “Pick ..."” button is clicked, a new list of actions appears. Each
one leading to a new state.

In this example, if the actions: nil and plugHeadsets, are chosen, in that order, then a
situation is reached, in which it is not possible to continue with the simulation, as it can be seen
in Figure 41. After plugHeadsets, the list of possible future states is too large (more than one
hundred possible states). In that case, the actions list presents only one element, which indicates

that there are “Too Many States”.

& IVY Workbench 1.3 [WildAniMAL]
File Project System Help

8 propertiestditor | M Tracesanalyzer | 8 WildAniMAL

@ AnimaL @ wmodeikditor

_|[ Tabular | State Based | Log |
Restart Simulation main ‘
Get Initial State

ACTIONS STATE INFO
curmentSong = 0

Pick An Action To Go To A New State m::::nw' v

plugHeadsets

CONSTRAINTS & ﬁ

[, ] cumentSong = 0
'_+: headsets State = pluged

playback $tate = stoped

Figure 41 Simulation reached a “Too Many States” situation.

In this case we might want to look at the sequence of the actions executed so far. The
sequence of actions and states of the interactive simulation can be shown as a State based
diagram (see Figure 42), using a Tabular representation (see Figure 43), or as a textual Log (see

Figure 44). The State Based diagram and the Table are visual representation of the trace

74



generated in the simulation. The textual Log shows the details (output of NuSMV process) of the
communication (commands and their results) between the plugin and the NuSMV model

checker.

nil

cumentSong = 0
headsets State = unpluged
playback State = stoped

plugHeadsets

cumentSong = 0
headsets State = pluged
playback State = stoped

Figure 42 State Based representation of the trace created in the simulation.

( Tabular | State Based | Log

. 1 2
currentSong | g 0
headsetsStatel unpluged | pluged
playbackState | stoped stoped

action nil plugHeadsets

Figure 43 Tabular representation of the trace created in the simulation.

75



| Tabular | State Based | Log

Figure 44 Log representation of the simulation.

In Figure 44, we can see that the current simulation reached a situation where there are too
many futures states to choose from (more than one hundred, that is the maximum number of
future states that NuSMV can handle). In this case, constrains have to be entered and that is
done as shown in Figure 45.

The constraints can be created using the + and - buttons, to add and remove them,
respectively. When all constraints are created, they are sent to the NuSMV model checker using
the “Send” button. If the constraints are successful in the job of reducing the number of future
states, then a new actions list is available to continue the simulation. That is the current case, as

shown in Figure 46.

76



CONSTRAINTS

Figure 45 Constraints insertion.

Once the constraints (see Figure 45) have been successfully sent, and a new actions list is
returned (see Figure 46), an irregular situation occurs. When filtering the actions list with the
constraint action = unplugHeadsets, using the Filter button, we can see that this action
leads to two states. The problem is that one of these makes no sense, because it means that if
the headsets are unpluged from the Ipod, then the new value of headsetsState is pluged.
Basically it means that if headsets are unpluged, they remain pluged. Because that cannot
happen in real world, the original interactors model probably has an error and has to be

corrected.

ACTIONS STATE INFO

currentSong =0
headsets State = pluged

previousTrack action = unplugHeadsets

Pick An Action To Go To A New State

CONSTRAINTS

|unplugHeadsets

Figure 46 Result of application of the constraints sent.

77



After an analysis of the interactors model, the conclusion is that under some circumstances
the behaviour of the currentSong and playbackState variables was not being defined. To

solve this two news axioms have to be added. These axioms are:

playbackState=stoped -> [unplugHeadsets] (headsetsState'=unpluged)

& keep(currentSong,playbackState)

playbackState=paused -> [unplugHeadsets] (headsetsState'=unpluged)

a keep{cur:entSong,playbackStateﬂ

These new axioms will guarantee that, when the Ipod is stoped (playback = stoped) or
paused (playback = paused), and an action to unplug the headsets is carried on, then the
headsets will be unpluged (headsetsState=unplugged) and the current song and
playbackState states will be kept. Doing this prevents the variables currentSong and
playbackState from non-deterministically assuming values.

After changing the interactors model in the Model Editor, and compiling it again in the
Properties Editor, we can go back to WildAniMAL to perform a new simulation. Doing that
simulation, we can see that now the situation “Too Many States” no longer appears and that the
Ipod model has the expected behaviour. That can be verified, looking to the state based diagram

of the new simulation, in Figure 47.

78



nil

][]

cumentSong = 0
headsets State = unpluged
playback State = stoped

(][]

cumentSong = 0
headsets State = pluged
playback State = stoped

(][]

cumentSong = 1
headsets State = pluged
playback State = playing

) (]

cumentSong = 2
headsets State = pluged
playback State = playing

4[]

cumentSong = 1
headsets State = pluged
playbackState = playing

] [

cumentSong = 1
headsets State = unpluged
playback State = paused

plugHeadsets

play

nextTrack

previousTrack

unplugHeadsets

Figure 47 State Based representation of a trace originated in a simulation.

79



7.2. Conclusion

This chapter presented an interactors model of an Ipod-like device. It was shown how that
model can be created, compiled to a NuSMV specification and simulated with WildAniMAL.

We demonstrated how WildAniMAL can be useful in the task of detecting bugs and errors in
an interactive manner. The situation (error in the model) that was presented and corrected was
representative of other similar situations that can occur in other models.

What is important to retain is that we can easily validate an interactors model and see if it
behaves how we expect it too. If that does not happen, then we can use WildAniMAL
functionalities to find out why. Doing this early validation is useful, because we can construct the
interactors model incrementally by validating some steps at a time, instead of creating the big

model and verify it as one.

80



Chapter 8 — Conclusions and

Future Work

This chapter summarizes the work done and all results achieved. Some future work can be
done in order to improve this WildAniMAL plugin, and therefore the aspects that can be worked

on are also presented.

8.1. Goal

The goal of this work was to develop a plugin to help an IVY Workbench user while creating
an interators model to interactively explore its behaviour: that is, enable the user to manually
trigger events and observe how the model evolves. WildAniMAL (Watch It vaLiDation Animator for
MAL) can perform this. It assists the modelling and analysis process, by providing functionalities

to simulate and validate the model being created.

8.2. Results

In order to implement the plugin, three possibilities were studied (see Chapter 5):
a. representing a MAL interactors model as a Finite State Machine (FSM) and use that to
drive the animation;
b. use the BDD (Binary Decision Diagrams) representation of the MAL interactors model,
created by the NuSMV model checker, to perform the animation;
c. use the NuSMV model checker simulations commands, available on its interactive mode,

to perform the animation.

81



After an analysis of the different alternatives it was decided to use the NuSMV’s simulation
capabilities in the implementation of WildAniMAL. The implementation is described in Chapter 6.

The implemented plugin supports the animation of models as intended. At each step the
user can select one of the available actions and the animator presents the state (or possible
states, in case of non-determinism) resulting from that action.

During the process of implementing the plugin, problems related to existence of non-
determinism in the models arose. These related both to NuSMV not generating the list of possible
future states, after a transition, if the number of states in the list exceeds one hundred, and also
because even if the list of possible states is less than one hundred, it might be too large for a
human user to analyse it. These issues were solved with the introduction of constraints to delimit
the effect of actions in the state of the system, and thus reduce non-determinism in the
simulation.

A first result of this dissertation is that the goal of this work, recalled in the previous Section,
has been achieved as is demonstrated by the example presented in Chapter 7.

A parallel result of the work, that is not apparent in the thesis, but is nevertheless important
for the IVY workbench development project, was the improvement of the existing plugins. When
implementing the WildAniMAL plugin, some parts of the code of the CoreSystem and of its
plugins were improved, and now more efficient data structures are used. The tool was developed
in 2006 and since then many developments and changes were introduced in the Java language.
Two examples of it, relating to data structures, are the use of ArrayLists instead of Vectors, and
HashSets instead of HashMaps. Also, when detected, some parts of the code were rewritten, to
be more easily understood or simply because minor bugs could happen as the code had some
minor faults. Other times the improvement was to clear code, as some redundancy was present.

Another result achieved is that the IVY Workbench was extensively tested, because that was
needed to test the WildAniMAL’s implementation and usage. That enabled the detection of some
situations when it did not work as expected, and demanded a need to correct the interoperability
of all the plugins and the CoreSystem of the tool. That was done. Developing WildAniMAL also
enabled us to think about how the functionalities were initially implemented and how they could

be improved. This is specifically true in some aspects of usability.

82



Another important result is that WildAniMAL implementation was fully documented, because
UML diagrams were created that describe its architecture and also because a detailed code
explanation was carried out. This results leads the way to its future improvement, as enables any
person to, relatively easily, understand its implementation and, if desired, improve its

functionalities and source code.

8.3. Future Work

As future work, a more efficient (or automatic) integration of the WildAniMAL plugin in the IVY
Worbench can be performed. Some steps of using it, require the use of other plugins of the IVY
Workbench tool. The use of the Model Editor plugin is obviously a requirement to build the
models, but using Properties Editor to compile the model created in the Model Editor should be
avoided. The user has to go there only to push a button to compile the model. That task can be
automated, but needs some changes in the CoreSystem, so that the compiler might be globally
available in the system.

Additionally work can be carried out in testing WildAniMAL with more examples. One way to
achieve this is to make it available to the Model Checking scientific community, so that different
people might benefit from its capabilities, and also contribute with their feedback to improve tool.

For example, suggesting improvements and new functionalities.

83



References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

E. M. Clarke, E. A. Emerson and A. P. Sistla, “Automatic verification of finite-state concurrent
systems using temporal logic specifications,” ACM Trans. Program. Lang. Syst., vol. 8, pp.

244-263, 1986.

F. Paternd, “Design, Specification and Verification of Interactive Systems'94,” Proceedings
of the First International Eurographics Workshop, 8-10 June 1994.

J. Campos and M. Harrison, “Model checking interactor specifications,” Aufomated Software
Engineering, vol. 8, pp. 275-310, 2001.

K. Loer e M. Harrison, A framework and supporting tool for the model-based analysis for

dependable interactive systems in the context of industrial design, 2004.
K. L. McMillan, Symbolic model checking, Kluwer Academic Publ, 1993.

A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, “NuSMV: a new Symbolic Model Verifier,”
in Proceedings Eleventh Conference on Computer-Aided Verfication (CAV'99), Trento, ltaly,
1999.

J. C. Campos and M. Harrison, “Systematic analysis of control panel interfaces using formal
tools,” XVih International Workshop on the Design, Verification and Specfication o1
Interactive Systems (DSV-1S 2008), pp. 72-85.

J. Campos and M. Harrison, “Modelling and analysing the interactive behaviour of an
infusion pump,” in Electronic Communications of the EASST 45: Fourth Internationai
Workshop on Formal Methodss for Interactive Systems (FMIS 2011), 2011.

E. M. Clarke, “The Birth of Model Checking,” in 25 Years of Model Checking, O. a. V. H.

Grumberg, Ed., Berlin, Heidelberg, Springer-Verlag, 2008, pp. 1-26.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill and J. Hwang, “Symbolic model

84



checking: 1020 states and beyond,” in Proceedings 5th Annual Symposium on Logic in

Computational Science, 1990.

[11] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, “NuSMV: a new symbolic model
checker,” International Journal on Software Tools for Technology Transfer (STTT),, 2(4)

March 2000.

[12] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore, R. M. e A. Tchaltsev,
NuSMV 2.5 User Manual, 2010.

[13] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore, R. M. e A. Tchaltsev,
NuSMV 2.5 Tutorial, 2010.

[14] D. R.  Wright, “Finite  State  Machines,” 2005. [Online].  Available:
http://www4.ncsu.edu/ ™ drwrigh3/docs/courses/csc216/fsm-notes.pdf. [Acedido em 25
October 2012].

[15] A. Gill, Introduction to the theory of finite-state machines, McGraw-Hill, 1962.

[16] S. B. Akers, “Binary Decision Diagrams,” /EEE Trans. Computers 27, vol. 6, n.° 509-516,
1978.

[17] H. R. Andersen, An Introduction to Binary Decision Diagrams, IT University of Copenhagen,

1999.

[18] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams,”
ACM Computing Surveys, vol. 24, pp. 293-318, September 1992.

[19] D. J. a. H. M. D. Duke, “Abstract interaction objects,” Comput. Graph. Forum 12, vol. 3, pp.
25-36, 1993.

[20] M. Ryan, J. Fiadeiro e T. Maibaum, “Sharing actions and attributes in modal action logic,”

Theoretical Aspects of Computer Software, pp. 569-593, 1991.
[21] E. Clarke, O. Grumberg e D. Peled, Model Checking, MIT Press, 1999.
[22] Group, Object Management, Unified Modeling Language: Superstructure version 2.0, 2005.

[23] J. C. Campos, J. Machado e E. Seabra, “Property patterns for the formal verification of

automated production systems,” pp. 5107-5112, 2008.

[24] N. M. E. Sousa and J. C. Campos, “Um visualizador de tracos de comportamento para a

85



ferramenta ivy. IVY Technical Report IVY-TR-5-03,” October 2006.

[25] G. Mori, F. Paterno and C. Santoro, “CTTE: support for developing and analyzing task
models for interactive system design,” Transactions on Software Engineering archive, vol. 28

Issue 8, August 2002.
[26] F. Paterno, Model-Based Design and Evaluation of Interactive Applications, Springer, 2000.

[27] F. Paterno, “Task models in interactive software systems,” Handbook of Software

Engineering and Knowledge Engineering, 2001.
[28] D. Paquette, Simulating task models using concrete user interface components, 2004.

[29] N. Guerreiro, S. Mendes, V. Pinheiro e J. C. Campos, “Animal - a user interface prototyper
and animator for mal interactor models,” /nferacdo 2008 - Actas da 3a. Conferéncia

Nacional em Interacédo Pessoa-Maquina, pp. 93-102, 2008.

86



Appendix | — Build.xml

<?xml version="1.0" encoding="UTF-8"?>
<project name="Ivy WorkBench" default="help" basedir=".">

<!- Properties :

app.name - Name of application.
app.version - Version of application.
build.home - The directory where the built application is to be put.
build.plugin.dev - The directory where to put the jars that are needed
for plug-in development.
ipf.system - Name of jar file to generate when targeting the jars for
plug-in development.

<property name="app.name" value="ipf"/>

<property name="app.version" value="0.1"/>

<property name="build.home" value="${basedir}/build"/>

<property name="build.plugin.dev" value="${basedir}/dev-plugin" />

<property name="ipf.system" value="${app.name}-${app.version}-system.zip" />

<l- Paths :

classpath - The class path to use when compiling the application.

->

<path id="classpath">
<fileset dir="1ib" includes=""jar" />
</path>

<typedef resource="org/java/plugin/tools/ant/jpf-tasks.properties'>
<classpath refid="classpath'/>

87



</typedef>

<!-Targets :

help - Show some help on building the application.
clean - Clean the proect build folder.
build - Compile the aplication classes.
docs - Generate Javadocs.

-

<!-Help

->

<target name="help">
<echo>
<![CDATA[
${app.name} build file:
clean - cleans up the project build folder
build - builds entire project
run - runs application
check - checks plug-ins integrity
docs - generates plug-ins documentation
dist - creates binary and source distribution packages
test - runs some tests
11>
</echo>
</target>

<I-Clean

-

<target name=""clean" description="Cleans up the project build folder">

<tstamp>

<format property="dt-stamp" pattern="yyyy-MM-dd-HH-mm" />
<format property="d-stamp" pattern="yyyy-MM-dd" />

</tstamp>

<delete dir="${build.home}" quiet="true" />
<delete dir="${build.plugin.dev}" quiet="true" />

<delete dir="${basedir}/plugins/CoreSystem/classes" quiet="true" />
<delete dir="${basedir}/plugins/ModelEditor/classes" quiet="true"/>
<delete dir="${basedir}/plugins/PropertiesEditor/classes" quiet="true"/>

88



<delete dir="${basedir}/plugins/TracesAnalyzer/classes" quiet="true" />
<delete dir="${basedir}/plugins/AniMAL/classes" quiet="true" />
<delete dir="${basedir}/plugins/WildAniMAL/classes" quiet="true" />
<delete dir="${basedir}/plugins/PVS/classes" quiet="true" />

<mkdir dir="${build.home}/plugins/CoreSystem" />
<mkdir dir="${build.home}/plugins/ModelEditor" />
<mkdir dir="${build.home}/plugins/PropertiesEditor"/>
<mkdir dir="${build.home}/plugins/TracesAnalyzer"/>
<mkdir dir="${build.home}/plugins/AniMAL" />

<mkdir dir="${build.home}/plugins/WildAniMAL" />
<mkdir dir="${build.home}/plugins/PVS"/>

</target>
<I-Init
->

<target name="-init">
<mkdir dir="${build.home}" />
</target>

<!- Build Pluglns

<target name="-build-plugins'>
<ant dir="plugins/CoreSystem" target="${target}"/>
<ant dir="plugins/ModelEditor" target="${target}" />
<ant dir="plugins,/PropertiesEditor" target="${target}"/>
<ant dir="plugins/TracesAnalyzer" target="${target}"/>
<ant dir="plugins/AniMAL" target="${target}" />
<ant dir="plugins/WildAniMAL" target="${target}"/>
<ant dir="plugins/PVS" target="${target}" />

</target>

<!- Build the Application

<target name="build" depends="-init" description="Builds entire project">
<antcall target="-build-plugins">
<param name="target" value="build"/>
</antcall>

<copy todir="${build.home}/lib">
<fileset dir="1ib" includes="" jar" />
</copy>

89



<copy todir="${build.home}">
<fileset dir=""" includes="".",**/*"
excludes="nbproject/,todo*,build*,build/,plugins/" />
</copy>

</target>

<!- Run the Application -

<target name="run" description="Runs application">
<antcall target="-build-plugins">
<param name="target" value="build"/>
</antcall>

<java jar="${build.home}/lib/jpf-boot.jar"
dir="${build.home}"
fork="true"/>
</target>

<!- Check Plugin Integrity >

<target name="check"
depends="build"
description="Checks plug-ins integrity">
<jpf-check basedir="${basedir}/plugins"
includes="*/plugin.xml,*/plugin-fragment.xml|"
verbose="true"
usepathresolver="true" />
</target>

<!- Generate Javadocs -

<target name="docs"
depends="build"
description="Generates plug-ins documentation">
<antcall target="-build-plugins'>
<param name="target" value="docs" />
</antcall>
<jpf-doc basedir="${build.home}/plugins"

includes="*/plugin.xml,*/plugin-fragment.xm|"
destdir="${build.home}/docs" />

</target>

<!- Distribution for Plug-in Development >

90



<target name="plugin-dev"
depends="clean,build"
description="Prepares Jars for Plug-in development'>
<mkdir dir="${build.plugin.dev}"/>
<copy todir="${build.plugin.dev}" includeemptydirs="false">
<fileset dir="${build.home}/lib"
includes="*.jar" />
<fileset dir="${build.home}/plugins/CoreSystem"
includes="*.jar" />
</copy>
<zip jarfile="${build.plugin.dev}/ ${ipf.system}" compress="${jar.compress}">
<fileset dir="${build.plugin.dev}"/>
</zip>
<delete dir="${build.plugin.dev}" excludes="${ipf.system}"/>
</target>

<I- Distribution

<target name="dist"
depends="clean,build,docs"
description="Prepares distribution packages'>
<jpf-zip basedir="${build.home}/plugins"
includes=""/plugin.xml,*/plugin-fragment.xml"
destdir="${build.home}/plugins" />

<delete includeemptydirs="true'>
<fileset dir="${build.home}/plugins'">
<include name=""*/*"/>
<exclude name="".zip" />
</fileset>
</delete>

<zip destfile="${build.home}, ${app.name}-bin-${app.version}.zip"
duplicate="fail"
update="false">
<fileset dir="${build.home}" includes="**/*"/>
</zip>

<zip destfile="${build.home}/ ${app.name}-src-${app.version}.zip"
duplicate="fail"
update="false'>
<fileset dir="${basedir}"

91



excludes="build,**/classes/**,.check*,.fb*,nbproject/private/**,build/**,logs/**,data/** temp/*
*,”.zip,todo.txt, plugins/ org.jpf.demo.toolbox.ftpmonitor/**"' />
</zip>

<delete includeemptydirs="true">
<fileset dir="${build.home}">
<include name="**/*" />
<exclude name="${app.name}-???-${app.version}.zip" />
</fileset>
</delete>
</target>

<l- Run Tests. -
>

<target name="test" depends="build" description="Some tests'>
<jpf-pack basedir="${build.home}/plugins"
includes="*/plugin.xml,*/plugin-fragment.xml"
destfile="${build.home}/all-plugins.jpa" />
<mkdir dir="${build.home}/all-plugins-extracted" />
<jpf-unpack srcfile="${build.home}/all-plugins.jpa"
destdir="${build.home}/all-plugins-extracted" />
</target>

</project>

92



Appendix Il - Ipod interactors model

defines
MaxSongs = 10

types

Songs = 0..MaxSongs

Playback = {playing, paused, stoped}
Headsets = {pluged, unpluged}

interactor main
attributes
currentSong: Songs
playbackState: Playback
headsetsState: Headsets
actions
play
pause
nextTrack
previousTrack
plugHeadsets
unplugHeadsets
axioms
[] currentSong = 0
[1 playbackState
[] headsetsState = unpluged

I

stoped

per (pause) -> playbackState=playing

93



#Pressing play is only allowed if Ipod stoped or paused playback
per(play) -> (playbackState=stoped | playbackState=paused)
& headsetsState=pluged

#Unpluging headsets is only allowed if they are plugged

per (unplugHeadsets) -> headsetsState = pluged

#Pluging headsets is only allowed if they are unplugged

per (plugHeadsets) -> headsetsState = unpluged

#If play button is pressed,| then the first song starts playing
playbackState=stoped & headsetsState=pluged -> [play]
(currentSeng'=1l) & (playbackState'=playing) & keep(headsetsState)

#Pressing NextTrack or PreviousTrack buttons preserves the current
#state, if Ipod stoped playback
playbackState=stoped -> [nextTrack]
keep (currentSong, playbackState, headsetsState)
playbackState=stoped -> [ previousTrack]
keep (currentSong, playbackState, headsetsState)

#When Ipod is playing songs and NextTrack button is pressed, and if

#the played song is the last one of the playlist, playback is stoped
playbackState!=stoped & currentSong=MaxSongs -> [nextTrack]
(playbackState'=stoped) & (currentSong'=0) & keep(headsetsState)

$When Ipod is playing songs and NextTrack button is pressed, and if
#the played song isn't the last one of the playlist, the next son
#in the playlist is played
playbackState!=stoped & currentSong<MaxSongs -> [nextTrack]
(currentSong'=currentSong+l) & keep(playbackState, headsetsState)

ng songs and PreviousTrack button is pressed, and

#When Ipod is playi
#if played song is the first one of the playlist, playback is stoped

playbackState!=stoped & currentSong=1 -> [previousTrack]
(playbackState'=stoped) & (currentSong'=0) & keep(headsetsState)

$When Ipod is playing songs and PreviousTrack button is pressed, and
#if the played song isn't the first one of the playlist, the previous
#playlist song in is played
playbackState!=stoped & currentSong>l -> [previousTrack]
(currentSong'=currentSong - 1) & keep(playbackState, headsetsState)

94



#If Ipod is playing something and pause button is pressed, it stays
#in pause
playbackState=playing -> [pause] (playbackState'=paused) &
keep (currentSong, headsetsState)
#When headsets are unpluged and Ipod playbackstate is paused, Ipod
#starts playing current song
playbackState=paused -> [plugHeadsets] (headsetsState'=pluged) &
(playbackState'=playing) & keep(currentSong)

#When headsets are unpluged and Ipod playbackstate is stoped, Ipod
#keeps that state

playbackState=stoped -> [plugHeadsets] (headsetsState'=pluged)

& keep (currentSong, playbackState)

#If Ipod is playing and headsets are unpluged, then playbackState
#changes to paused
playbacksState=playing -> [unplugHeadsets] (playbackState'=paused)
& (headsetsState'=unpluged) & keep(currentSong)

95



	Capa-MIMEI Preenchida
	WildAniMAL 2

