
Universidade do Minho
Escola de Engenharia

Novembro de 2012

Nuno Miguel Eira de Sousa

WildAniMAL
MAL Interactors Model Animator

Novembro de 2012

Universidade do Minho
Escola de Engenharia

Departamento de Informática

Nuno Miguel Eira de Sousa

WildAniMAL
MAL Interactors Model Animator

Dissertação de Mestrado
Mestrado em Engenharia Informática

Trabalho realizado sob orientação de

Professor José Creissac Campos

i

Acknowledgements

I want to thank my thesis advisor José Creissac Campos for continuously helping me while

doing this work, by making many corrections and valuable suggestions for the implementation of

the WildAniMAL and for pointing errors and problems during the design and implementation of

the tool.

I also want to thank Manuel Sousa for providing me with a practical example of an Ipod

device model, that enabled me to show how the WildAniMAL plugin can be used. Additionally I

thank him for testing the WildAniMAL plugin, with interactor models that he developed in his own

work.

Finally, I want to thank my employer - Computer Graphics Center – for giving me a day a

week for education, during the last three years, thus enabling me to conclude this master’s

course with the current work.

ii

Abstract

The IVY Workbench is a tool for modeling and analysis of interactive systems which has been

developed at the Department of Informatics of the University of Minho (http://ivy.di.uminho.pt).

It's a platform developed in Java, using a plugins mechanism. The available plugins include a set

of editors (textual and graphical) and tools to analyse the behaviour of the models. The

experience on using the tool has demonstrated the need for a model animator which could

enable a first interactive evaluation of the models. Therefore this dissertation describes the

design and implementation of WildAniMAL - a MAL (Modal Action Logic) interactors models

animator – as a plugin for the IVY Workbench. The plugin uses the NuSMV model checker

simulations capabilities, and enables users to explore the formal models interactively.

iii

Resumo

A IVY Workbench é uma ferramenta de modelação e análise de sistemas interativos que tem

vindo a ser desenvolvida no Departamento de Informática da Universidade do Minho

(http://ivy.di.uminho.pt). Trata-se de uma plataforma desenvolvida maioritariamente em Java,

utilizando um mecanismo de plugins. Os plugins existentes incluem um conjunto de editores (em

modo texto e gráfico), e de ferramentas de análise do comportamento dos modelos. A

experiência de utilização da ferramenta tem, no entanto, demonstrado a necessidade de um

animador de modelos que permita efetuar uma primeira validação interativa dos mesmos. Sendo

assim, esta dissertação descreve o desenho e implementação do WildAniMAL – um animador de

modelos de MAL (Modal Action-Logic) Interactors – como plugin para a IVY Workbench. O plugin

usa as capacidades de simulação do model checker NuSMV, e permite aos utilizadores explorar

os modelos formais de forma interativa.

iv

Index

Acknowledgements ___ i

Abstract ___ ii

Resumo __ iii

Index __ iv

Figures __ vii

Acronyms __ ix

Chapter 1 – Introduction __ 1

1.1. Goal __ 2

1.2. Structure Of The Document ___ 2

Chapter 2 – Theoretical Background _______________________________________ 3

2.1. Model Checking ___ 3

2.2. NUSMV ___ 5

2.3. Finite State Machine ___ 7

2.4. Binary Decision Diagrams ___ 9

2.5. MAL Interactors __ 11

2.6. SMV Language ___ 12

2.7. CTL __ 13

2.8. Conclusion __ 14

Chapter 3 – IVY Workbench ___ 16

3.1. The IVY Workbench Approach __ 16

3.1.1 Creating Models __ 17

v

3.1.2 Expressing Properties __ 19

3.1.3 Verification __ 20

3.1.4 Trace Analysis __ 21

3.2. How To Create An IVY Workbench Plugin ___________________________________ 25

3.3. Conclusion __ 28

Chapter 4 – Related Work __ 29

4.1. CTTE ___ 29

4.2. AniMAL ___ 32

4.3. Conclusion __ 34

Chapter 5 – WildAniMAL Implementation Approaches _______________________ 35

5.1. Implementation Approaches ___ 35

5.1.1 Generating a Finite State Machine ___ 36

5.1.2 NuSMV Binary Decision Diagrams __ 37

5.1.3 NuSMV Simulation Capabilities __ 37

5.2. NuSMV Interactive Shell ___ 39

5.2.1 Model Reading And Building __ 39

5.2.2 Simulation Commands ___ 40

5.2.3 Simulation Example ___ 41

5.3. Conclusion __ 46

Chapter 6 – WildAniMAL Implementation _________________________________ 47

6.1. WildAniMAL’s Architecture __ 47

6.2. WildAniMAL’s Source Code Description ____________________________________ 53

6.2.1 Animator Package __ 53

6.2.2 Constraints Package ___ 62

6.2.3 NuSMV Package __ 64

6.3. Conclusion __ 68

Chapter 7 – Using WildAniMAL __ 70

7.1. WildAniMAL’s Usage Example __ 70

7.2. Conclusion ___ 80

Chapter 8 – Conclusions and Future Work _________________________________ 81

vi

8.1. Goal ___ 81

8.2. Results ___ 81

8.3. Future Work ___ 83

References __ 84

Appendix I – Build.xml ___ 87

Appendix II – Ipod interactors model _____________________________________ 93

Fig

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

gures

E 1 MODEL CHEC

E 2 A GRAPH OF

E 3 FSM EXAMP

E 4 DIAGRAM FO

E 5 ROBDD FOR

E 6 IVY WORKB

E 7 MODEL EDIT

E 8 MODEL EDIT

E 9 PROPERTIES

E 10 BEHAVIOUR

E 11 TRACE ANA

E 12 TREE VISUA

E 13 STATE BASE

E 14 LOGICAL ST

E 15 TABULAR V

E 16 ACTIVITY D

E 17 IVY WORK

E 18 CTTE TOOL

E 19 AN EXAMPL

E 20 OVERVIEW

E 21 A SIMPLE C

E 22 THERMOM

E 23 PROTOTYPE

E 24 NUSMV SI

E 25 INTERACTO

E 26 STATE DIAG

E 27 NUSMV SP

E 28 THE RESULT

E 29 THE RESULT

CKING SYSTEM, A

AN EXTREMELY B

PLE OF A PARSER

OR ,

R (X1⇔Y1)^(X2

ENCH ARCHITECT

TOR PLUGIN (GRA

TOR PLUGIN (TEX

EDITOR.

R TRACE.

ALYSIS MECHANIS

AL REPRESENTATI

ED VISUAL REPRE

TATES VISUAL RE

VISUAL REPRESEN

DIAGRAM VISUAL

BENCH PLUGINS

L, TAKEN FROM [

LE OF A TASK MO

OF THE CTT NO

CONCURTASKTRE

ETER, TAKEN FRO

E OF AN AIR CON

MULATION EXAM

ORS MODEL OF A

GRAM OF GATE M

PECIFICATION OF

T OF PICK_STATE

T OF SIMULATE –

ADAPTED FROM [

BASIC PROCESS IN

RECOGNIZING T

TAKEN FROM [1

2⇔Y2) WITH VA

TURE.

APHICAL).

XT).

......................

......................

SMS (MARKERS).

ON.

ESENTATION.

PRESENTATION. .

TATION.

REPRESENTATIO

 FRAMEWORK. .

[25].

ODEL, TAKEN FRO

TATION, TAKEN F

EE TASK MODEL S

OM [29].

DITION CONTRO

MPLE.

GARAGE GATE. ..

MODEL.

F THE GATE MOD

E –I –A COMMAN

–I –A –K 1 COMM

vii

[9], WITH THE IV

N A FINITE STATE

THE WORLD "NIC

16].

ARIABLE ORDERIN

......................

......................

......................

......................

......................

.

......................

......................

......................

......................

ON.

......................

......................

OM [25].

FROM [28].

SIMULATOR, TAK

......................

L PANEL, TAKEN

......................

......................

......................

EL.

ND.

MAND.

VY WORKBENCH

E MACHINE.

E".

.....................

NG X1<X2<Y1<Y

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

KEN FROM [28].

.....................

FROM [29].

.....................

.....................

.....................

.....................

.....................

.....................

 APPROACH.

......................

......................

......................

Y2, TAKEN FROM

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

M [17].

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

........ 4

........ 8

........ 9

........ 9

...... 10

...... 17

...... 18

...... 18

...... 19

...... 21

...... 21

...... 22

...... 23

...... 23

...... 24

...... 24

...... 25

...... 30

...... 30

...... 31

...... 32

...... 33

...... 34

...... 38

...... 42

...... 42

...... 43

...... 44

...... 44

viii

FIGURE 30 THE RESULT OF CHOOSING STATE 0. ... 45

FIGURE 31 STATE BASED DIAGRAM SHOWING THE SIMULATION PATH. ... 45

FIGURE 32 WILDANIMAL PLUGIN ARCHITECTURE AS A PACKAGE DIAGRAM. ... 48

FIGURE 33 MAIN PACKAGE CLASS DIAGRAM. .. 49

FIGURE 34 NUSMV PACKAGE CLASS DIAGRAM. .. 50

FIGURE 35 CONSTRAINTS PACKAGE CLASS DIAGRAM. .. 51

FIGURE 36 TRACES PACKAGE CLASS DIAGRAM. .. 52

FIGURE 37 GRAPHICAL USER INTERFACE IMPLEMENTED BY GUI CLASS. .. 55

FIGURE 38 IPOD MODEL CREATION WITH MODEL EDITOR PLUGIN. .. 71

FIGURE 39 IPOD INTERACTOR MODEL COMPILATION WITH PROPERTIES EDITOR PLUGIN. .. 72

FIGURE 40 RESULT OF PRESSING “GET INITIAL STATE” IN WILDANIMAL. .. 73

FIGURE 41 SIMULATION REACHED A “TOO MANY STATES” SITUATION. .. 74

FIGURE 42 STATE BASED REPRESENTATION OF THE TRACE CREATED IN THE SIMULATION. ... 75

FIGURE 43 TABULAR REPRESENTATION OF THE TRACE CREATED IN THE SIMULATION. ... 75

FIGURE 44 LOG REPRESENTATION OF THE SIMULATION. .. 76

FIGURE 45 CONSTRAINTS INSERTION. .. 77

FIGURE 46 RESULT OF APPLICATION OF THE CONSTRAINTS SENT. ... 77

FIGURE 47 STATE BASED REPRESENTATION OF A TRACE ORIGINATED IN A SIMULATION. ... 79

ix

Acronyms

BDD Binary Decision Diagrams

CMU Carnegie Mellon University

CTEE ConcurTaskTrees Environment

CTL Computacional Tree Logic

CTT ConcurTaskTrees

CUDD CU Decision Diagram Package

ETC Enabled Task Collection

FSM Finite State Machine

IRST Istituto per la Ricerca Scientica e Tecnologica

IVY Interactors VerifYier

LTL Linear Temporal Logic

MAL Modal-Action Logic

RBC Reduced Boolean Circuit

SAT Satisfiability Problem

SMV Symbolic Model Verifier

UI User Interface

UML Unified Modeling Language

1

Chapter 1 – Introduction

Developing complex systems will always be a complex endeavour. When developing

interactive devices, we are faced with the challenge of understanding not only how the device

must be built, but also how it will interact with its users, and how both device and users (the

interactive system) will influence each other.

Formal (mathematically rigorous) methods have long been proposed as a means of dealing

with complexity. When considering the behaviour of systems, model checking [1] has gained

particular popularity. Several approaches to the application of model checking to reason about

interactive systems (or interactive devices) have been put forward over the last seventeen years.

See, for example, the work in [2], [3], or [4]. However, applying model checking is in itself a

complex task. Both systems and Properties to be verified must be expressed in appropriate

logics. In order to make model checking of interactive systems feasible, we must provide tools

that help in the modelling and analysis process.

The IVY Workbench tool supports the modelling and verification approach put forward in [3].

The main goal of the tool is the detection of potential usability problems early in development of

any interactive system. For that, the tool enables the automated inspection of interactive systems

models. The tool supports a modelling and analysis cycle where the models are obtained by a

modelling process based on an editor, the properties are expressed using a dedicated properties

editor, the analysis is performed using the SMV model checker [5] (more specifically NuSMV [6],

a reimplementation of that tool, that is available at http://nusmv.fbk.eu), and the counter-

examples visualized using a dedicated traces visualiser. The tool has been applied to the analysis

of different devices, from control panels in the automotive industry [7], to medical devices such

as infusion pumps [8]. While model checking through NuSMV, enables a thorough analysis of all

possible behaviours of a model, the continuous use of the tool has highlighted the need for a

2

lighter weight approach to the initial validation of the models. In fact, experience has shown that

before the analysis of a given design begins, there usually happens a first phase of model

validation, where the interest is in establishing that the model behaves as expected. Experience

also shows that doing this through model checking becomes cumbersome. What is needed is the

possibility of interactively explore the behaviour of the models: manually trigger events and

observe how the system evolves. Hence the need was identified of developing a component

aiming at assisting the modelling and analysis process, by providing functionalities to simulate

and validate the model being created: WildAniMAL (Watch It vaLiDation Animator for MAL).

1.1. Goal

The goal of this work is to develop a new plugin – WildAniMAL – for the IVY Workbench tool,

supporting the animation of MAL interactor models. In order to implement it, three possibilities

will be studied:

a) representing a MAL interactors model as a Finite State Machine (FSM) and use that to

drive the animation;

b) use the BDD (Binary Decision Diagrams) representation of the MAL interactors model,

created by the NuSMV model checker to perform the animation;

c) use the NuSMV model checker simulations commands, available on its interactive mode,

to perform the animation.

1.2. Structure Of The Document

This first chapter has presented the motivation and goals of the work. The remaining of the

dissertation is structured as follows. Chapter 2 introduces the main concepts needed to

understand the work. Chapter 3 introduces the IVY workbench tool. Chapter 4 describes some

related tools. Chapter 5 discusses alternatives to implementing the WildAniMAL plugin, and

chapter 6 the implementation produced. Chapter 7 describes an usage example. The dissertation

ends, in Chapter 8, with a discussion of results and ideas for further work.

3

Chapter 2 – Theoretical

Background

This chapter presents the theoretical background needed to explain the WildAniMAL

implementation and all the concepts related to its use, and the use of the IVY Workbench, in

which it will be integrated.

Section 2.1 presents Model Checking the technology used by the IVY Workbench to perform

verification. Section 2.2 presents NuSMV that is the model checker used in IVY Workbench, and

therefore also used to implement WildAniMAL’s functionalities. Section 2.3 presents Finite State

Machines, a mathematical model of computation, and also a state’s representation, widely used

to describe computer programs. Section 2.4 presents Binary Decision Diagrams, the data

structure used to represent a Boolean function. Two representations used in NuSMV as internal

representations. Section 2.5 presents the MAL interactors language used to create models that

will be simulate in the WildAniMAL plugin, and Section 2.6 presents the SMV language, the

language into which MAL interactors models are compiled for verification and (now) animation.

Finally, CTL is presented, that is a temporal logic that is used to express properties over the

interactors model. These properties can be verified using NuSMV model checker.

2.1. Model Checking

Clarke [9] formally describes the Model Checking problem as:

Let M be a Kripke structure (i.e., state-transition graph). Let f be a formula of

temporal logic (i.e., the specification). Find all states s of M such that M; s |= f.

T

satisf

T

Figure

F

mode

Sectio

That is, given

fy the specific

The structure

e 1. There th

 A pre

 A mo

temp

the IV

Figure 1 Mo

Figure 1 inclu

el checking

on 3.1.

n a state-tran

cation.

e of a typica

he two mains

eprocessor

odel check

poral formula

VY Workbenc

odel checking

udes IVY Wo

process. Th

sition graph

l Model Che

s components

r that extracts

ker, that is,

a and determ

ch this is NuS

g system, ada

rkbench’s pl

he IVY Work

4

and a specif

ecking system

s of a model

s a state tran

an engine th

mines whethe

SMV).

apted from [9

ugins and se

bench appro

fication, we w

m, as Clarke

checking sy

nsition graph

hat takes the

er the formul

9], with the I

ervices that h

oach to Mod

want to find a

defined it [9

stem are pre

 from a prog

e state trans

a is true or n

VY Workbenc

help in the se

del Checking

all states in M

9], is describ

esented:

gram or circu

sition graph

not (in the c

ch approach

everal steps

g is present

M that

bed in

it;

and a

ase of

.

of the

ted in

5

There are other verification techniques other than Model Checking, such as Automated

Theorem proving or Proof Checking. Therefore is useful to present the advantages that Model

Checking has when compared to them. Some of these advantages are:

 It provides counterexamples. In a model checker, a counterexample (an execution

trace) is produced to show why a specification does not hold. This is a great

advantage because counterexamples are great to debug complex systems. Some

people use Model Checking just for this feature;

 It uses Temporal Logics that can easily express properties for proving over the

behaviour of modelled systems. One example of these Temporal Logics is CTL,

which is described in Section 2.7. CTL is used in the IVY Workbench tool.

In the opposite side there are also some disadvantages and one of the major ones is State

Explosion. In [3] the authors describe this problem as related to the size of the finite state

machine (this concept will be described in Section 2.3) needed to specify a given system. A

specification can generate state spaces so immense that it becomes impossible to analyse the

entire state space. To attenuate this problem, Symbolic Model Checking was developed. When

the traversal of the state space is done considering large sets of states at a time, and is based on

representations of states sets and transition relations as formulas, binary decision diagrams or

other related data structures, the model-checking method is considered Symbolic. With that

technique state spaces as large as 1020 may be analysed [10]. NuSMV is a model checker that

uses that method and will be described in the following Section.

2.2. NUSMV

NUSMV is a symbolic model checker that was first presented in [6] and [11]. It is the result

of a joint project between Carnegie Mellon University (CMU) and Istituto per la Ricerca Scientica e

Tecnologica (IRST) and is the final product of an effort of reengineering, reimplementation and

extension of CMU SMV, the original BDD-based model checker developed at CMU [5].

Over the years NuSMV had several contributions that improved it with more functionality, as

can be seen in its official site1. Now it combines a BDD-based model checking component that

1 http://nusmv.fbk.eu/ Last visited in 10-28-2012.

6

exploits the CUDD2 library developed by Fabio Somenzi at Colorado University, and a SAT-based

model checking component that includes an RBC-based Bounded Model Checker, which can be

connected to the Minisat SAT Solver3 and/or to the ZChaff SAT Solver4. The University of Genova

has contributed SIM, a state-of-the-art SAT solver used until version 2.5.0, and the RBC package

used in the Bounded Model Checking algorithms.

In [12] we can see the current main functionalities that it provides:

 allows for the representation of synchronous and asynchronous finite state systems;

 allows for the analysis of specifications expressed in Computational Tree Logic (CTL)

and Linear Temporal Logic (LTL), using BDD-based and SAT-based model checking

techniques.

 provides Heuristics for achieving efficiency and partially controlling the state

explosion;

 provides a textual (interactive mode) and a batch mode interface to interact with its

users.

NuSMV, as a model checker, can verify properties of a finite system and for that to be

possible a model of the system (in fact, in terms of model checking, a specification of the

system) has to be created. NuSMV uses the SMV Language (see Section 2.7) to define the

specifications used as input. In [13] it is described how this language can be used to allow for the

description of Finite State Machines (FSM) which can be completely synchronous or completely

asynchronous. More specifically the SMV Language is used to describe the transition relation of

the FSM that describes the valid evolutions of the state of the FSM.

In the IVY Workbench, that model is created in the MAL Interactors language (see Section

2.5), that is easier to learn and can be compiled (using the IVY Workbench i2smv service) into a

SMV specification. After having a SMV specification, NuSMV can verify that a model satisfies a set

of desired properties specified by the user. For that, it uses two Temporal Logics: CTL or LTL.

One useful feature that NuSMV has is that it provides the user with the possibility of

simulating a NuSMV specification. As stated in [13], this way the user can explore the possible

2 http://vlsi.colorado.edu/~fabio/CUDD/ Last visited in 10-28-2012.
3 http://minisat.se/ Last visited in 10-28-2012.
4 http://www.princeton.edu/~chaff/zchaff.html Last visited in 10-28-2012.

7

executions (traces) of the NUSMV specification. In this way, the user can check the specification

correctness, before actually engaging in the verification of properties. An example of the use of

this feature can be seen in Section 5.2.3.

2.3. Finite State Machine

When modelling the behaviour of systems, State Machines are one of the oldest and best

ways known. They define the state of a system at a particular point in time and characterize its

behaviour based on that state.

If we want to model and design software systems we can apply the State Machines method

by identifying the states the system can be in, which inputs or events trigger state transitions, and

what system behaviour is expected in each state. The execution of the software can be seen as a

sequence of transitions that move the system through its various states.

The characteristics of a system that enable it to be modelled as a Finite State Machine (FSM)

are [14]:

 The system must be specifiable as a finite set of states;

 The system must have a finite set of inputs and/or events that can trigger

transitions between states;

 The behaviour of the system at a given point in time depends upon the current state

and the input or event that occur at that time only;

 For each state the system may be in, behaviour is defined for each possible input

or event;

 The system has a particular initial state.

Figure 2 illustrates the main concepts that a Finite State Machine is known for.

T

math

A

Figur

The concept

ematically) [

 is

 is

 is

 is

autom

 is

An example o

re 2 A graph

tual definitio

15] as a quin

the input alp

a finite, non-

s an initial sta

the state-tra

maton it beco

s the set of fi

of the graphic

of an extrem

on of the F

ntuple

phabet (a fini

-empty set of

ate, an eleme

nsition funct

omes

nal states, a

cal represent

8

mely basic pro

SM can be

ite, non-empt

f states.

ent of .

tion:

(possibly em

tation of a FS

ocess in a fin

 expressed

, where:

ty set of sym

, i.e.,

mpty) subset

SM is presen

nite state mac

more forma

bols).

 (for a nond

 returns a

of .

ted in Figure

chine.

ally (in this

deterministic

 set of states

e 3.

case

c finite

s).

2.4

B

repre

repre

A

acycl

F

4. Binary

Binary Decis

esent a Boole

esentation of

Andersen [17

ic graph with

 one

 a se

two

varia

Figure 3 FSM

y Decisio

ion Diagram

ean function

sets or relati

7] provides

h:

or two termi

et of variable

functions lo

able node.

Figure

M example of

on Diagr

s (BDD) [16

(see Figure

ons.

a formal def

nal nodes of

e nodes u of

ow(u) and

e 4 Diagram

9

f a parser rec

rams

6] can be de

4 for an ex

finition of a

f out-degree z

out-degree

high(u). A

for

cognizing the

efined as a

xample). We

BDD. He de

zero labeled

two. The two

variable va

, taken from

e world "nice

data structu

can also say

efines it as

0 or 1, and

o outgoing e

ar(u) is asso

m [16].

".

re that is us

y it a compr

a rooted, di

edges are giv

ociated with

sed to

ressed

rected

ven by

each

W

define

linear

A

Fig

When mentio

es a BDD as

r order x1 < x

An (O)BDD i

 (uniq

and

and

 (non

low(u

gure 5 ROBD

oning BDDs

 Ordered (OB

x2 < … < xn.

is Reduced (

queness) no

high-success

var(u) = var(

n-redundant t

u) ≠ high(u).

DD for (x1⇔y1

it is import

BDD) if on al

R(O)BDD) (

two distinct

sor, i.e.,

(v); low(u) = l

tests) no vari

1)^(x2⇔y2) w

10

tant to ment

ll paths throu

(see Figure 5

nodes u and

low(v); high(u

iable node u

with variable

tion if they a

ugh the grap

5) if

d v have the

u) = high(v) i

 has identica

ordering x1<

are ordered

h the variabl

same variab

mplies u = v

al low- and h

<x2<y1<y2, ta

or not. And

les respect a

ble name an

v;

high-successo

aken from [1

dersen

 given

d low-

or, i.e.

17].

11

In most cases, when BDDs are referred to, it is implied that we are referring to Reduced

Ordered Binary Decision Diagrams.

Bryant [18] studied the BDD potential for being used to create efficient algorithms. He

introduced a fixed variable ordering (for canonical representation) and shared sub-graphs (for

compression). After that he extended the sharing concept to several BDDs, i.e. one sub-graph by

several BDDs and, doing that, he defined the data structure Shared Reduced Ordered Binary

Decision Diagram. That new structure is normally what people have in mind when mentioning

BDDs.

The NuSMV model checker uses BDDs, because they are very efficient and can be used to

create efficient algorithms, as shown in [18]. The efficiency of algorithms is important in the area

of Model Checking, and because of that the use of BDDs by NuSMV was an obvious choice.

2.5. MAL Interactors

MAL interactors follow from the notion of interactor put forward in [19]: an object with the

capability of rendering part of its state to some presentation medium. A MAL interactor is defined

by:

 a set of typed attributes that define the interactor's state;

 a set of actions that define operations on the set of attributes;

 a set of axioms written in MAL [20] that define the semantics of the actions in terms of

their effect on interactor's state.

The mapping of the interactor's state to the presentation medium is accomplished by

decorating the attributes with modality annotations. MAL axioms define how the interactor's state

changes in response to actions being executed on the interactor. In [3] the axioms are defined in

five types. In the syntax of each type, the notation prop(expr1,..,exprn) is used to denote a formula

on expressions expr1 to exprn using propositional operators only. Also, the names a1 to an

denote interactor attributes and ac denotes an action. The five types are:

 Invariants – these are formulae that do not involve any kind of action or (reference)

event (i.e. simple propositional formulae). They must hold for all states of the interactor;

o Syntax: prop(a1,..,an).

12

 Initialisation axioms – these are formulae that involve the reference event ([]). They

define the initial state of the interactor;

o Syntax: [] prop(a1,..,an).

 Modal axioms – these are formulae involving the modal operator. They define the

effect of actions in the state of the interactor;

o Syntax: prop([ac] a1,..,[ac]ag, ah,..,an).

 Permission axioms – these are deontic formulae involving the use of per. They

define specific conditions for actions to be permitted to happen;

o Syntax: per(ac) → prop(a1,..,an)

 Obligation axioms – these are deontic formulae involving the use of obl. They define

the conditions under which actions become obligatory.

o Syntax: prop(a1,..,an) → obl(ac)

2.6. SMV Language

The SMV language will be used as an intermediate representation of the MAL interactors

model. Therefore an explanation of the main aspects of the SMV language is needed. The

following description of the language is adapted from [3] and [12].

An SMV specification is defined as a collection of modules. Each module defines a Finite

State Machine (FSM) and consists of a number of state variables, input variables and frozen

variables, a set of rules that define how the module makes a transition from one state to the next

and Fairness conditions that describe constraints on the valid paths of the execution of the FSM.

A state model is defined as an assignment of values to a set of state and frozen variables.

State variables can change their values throughout the evolution of the FSM. Frozen variables

cannot, as they retain their initial value, and that is what distinguishes the two. Input variables

are used to label transitions of the Finite State Machine.

An example of an SMV specification is the following:

MODULE main
 -- attributes
 VAR
 currentSong: 0..5;

13

 lastDisplay: {MainMenu, Music, Playing, OFF};
 playbackState: {playing, paused, stoped};
 display: {MainMenu, Music, Playing, OFF};

 -- actions
 VAR
 action: {pause, longPlay, play, nil};

 -- axioms
 INIT display = OFF
 INIT playbackState = stoped
 INIT lastDisplay = MainMenu
 INIT currentSong = 0

 TRANS next(action)=pause -> playbackState = playing
 TRANS next(action)=play -> playbackState = stoped | playbackState =
paused
 INIT action = nil

To create a SMV specification the following list of declarations is used:

 VAR  allows the declaration of state variables;

 IVAR  allows the declaration of input variables;

 FROZENVAR  allows the declaration of frozen variables;

 INIT  allows the definition of the initial states of the model;

 INVAR  allows the specification of invariants over the state.

 TRANS  allows the definition of the behaviour of the model. In these definitions,

the operator next is used to refer to the next state;

 FAIRNESS  allows the declaration of fairness constraints, that is, conditions that

must hold infinitely often over the execution paths of the model.

2.7. CTL

When reasoning about the behaviour of a system is needed, CTL can be used to express the

properties for that purpose. The detailed description of CTL and its formal description are

available in [21]. A more compact description of its operators is given here. As other similar

languages CTL provides propositional logic connectives but it also allows for operators over the

computation paths that can be reached from a state.

14

 A - for all paths (universal quantifier over paths);

 E - for some path (existential quantifier over paths).

and over states in a computation state:

 G - used to specify that a property holds at all the states in the path (universal quantifier

over states in a path);

 F - used to specify that a property holds at some state in the path (existential quantifier

over states in a path);

 X - used to specify that a property holds at the next state in the path;

 U - used to specify that a property holds at all states in the path prior to a state where a

second property holds.

These operators provide for an expressive language because combining them it is possible to

express important concepts such us:

 universally: AG(p) - p is universal (for all paths, in all states, p holds);

 inevitability: AF(p) - p is inevitable (for all paths, for some state along the path, p

holds);

 possibility: EF(p) - p is possible (for some path, for some state along that path, p

holds).

2.8. Conclusion

This chapter presented all the theoretical background needed to explain the WildAniMAL

implementation and the tool in which it is integrated – the IVY Workbench.

Section 2.1 presented Model Checking that is the area in which this work is framed, and

Section 2.2 presented NuSMV that is the model checker used widely in IVY Workbench, and

which will also be used in the WildAniMAL plugin.

Sections 2.3 and 2.4 presented Finite State Machine and Binary Decision Diagrams, two

representations studied as possible approaches for WildAniMAL’s internal data structure. BDD is

used also in NuSMV as one of its data structures.

Section 2.5 presented the MAL interactors language used to create interactor models, and

Section 2.6 presented the SMV language that will be used as an intermediate representation of

the first one, because it is the language NuSMV uses.

15

Finally, CTL was presented. This language is used to express properties over the interactor

models, created with the MAL interactors language, and compiled to a NuSMV specification.

16

Chapter 3 – IVY Workbench

This chapter presents the IVY Workbench tool that supports the modelling and analysis of

interactive systems. It is a plugins platform (developed in Java) that includes a set of editors and

tools to analyse the models’ behaviour.

 Section 3.1 presents the IVY Workbench approach, relating to model checking, that consists

on creating a MAL model, expressing properties over it, making a verification with the help of the

NuSMV model checker and analysing its results.

Section 3.2 describes how to create a new plugin for the IVY Workbench, as this is useful to

know how to implement the proposed WildAniMAL plugin.

3.1. The IVY Workbench Approach

In [3] and [4] an approach to the application of model checking to the analysis of interactive

systems is put forward. The approach is based in the development of models of the interactive

device, and in their verification trough model checking against properties that encode

assumptions about the usages of the device.

Figure 6 shows the architecture of the tool, added with the proposed WildAniMAL plugin. As

it can be seen, the tool consists on a number of plugins, and uses NuSMV as the verification

engine. In this section the different plugins are described (except WildAniMAL, which will be

discussed later, see Chapter 7).

3.1.

A

MAL

mode

[22])

.1 Creati

A MAL mode

model creat

es: Graphical

and Text (se

ing Mode

el is construc

tion is suppo

 (see Figure

ee Figure 8) t

Figure 6 IVY

ls

cted compos

orted by the

7) that uses

that provides

17

Y Workbench

sing interacto

e Model Edit

 a notation s

s code compl

architecture

ors in a hier

tor plugin of

similar to UM

etion facilitie

.

rarchical form

the tool. Th

L class diagr

es.

m. The proc

he plugin ha

rams (descri

ess of

as two

bed in

Figure 7 Mode

Figure 8 Mo
18

el Editor plug

odel Editor p

gin (Graphica

plugin (Text).

al).

3.1.

T

assum

T

Work

prope

descr

param

the u

the to

for th

.2 Expre

The propertie

mptions abou

The process

bench tool

erties typicall

ribed in [23]

meters. After

ser of the too

ool has an a

e parameter

ssing Pro

es for verific

ut the expect

of expressin

(see Figure

y verified of

. Each patte

r choosing th

ol has only to

ssisted mod

rs of the patte

operties

cation are w

ted behaviou

g properties

9). The plu

any interactiv

rn describes

he most suite

o define the

e, in which t

ern.

Figure

19

written in CT

r of the devic

is supported

ugin is based

ve system. T

 its intent, p

ed pattern fo

values of the

the user sele

9 Properties

L [1]. Prope

ce.

d by the Prop

d on sets o

The patterns

rovides a pra

or the propert

e parameters

ects attribute

s Editor.

erties are wr

perties Edito

f patterns th

used by the I

actical exam

ty he or she

s of the patte

es and action

ritten that ex

or plugin of th

hat capture

IVY workbenc

ple and has

wants to ex

ern. For doing

ns from the

xpress

he IVY

usual

ch are

some

press,

g that,

model

20

3.1.3 Verification

The verification step is performed by the NuSMV model checker. To make the verification

possible, MAL interactor models are compiled to the SMV language. A detailed description of the

verification approach is out of the scope of this dissertation. For the discussion that follows what

is important is that, when a given property is not verified, NuSMV tries to provide a behaviour of

the model (a trace) that demonstrates the falseness of the property in question. These traces

(see Figure 10 for an extract) consist of a sequence of states of the model that violates the

property under scrutiny.

Because of limitations on the SMV input language, when compared to MAL interactors, the

compilation step mentioned above introduces a series of auxiliary variables in the model. This

means that the trace is not at the same level of abstraction as the interactor model being verified.

One aspect were this is particularly evident is the treatment of actions. Because SMV models do

not have an explicit notion of action, the compilation process introduces a special attribute -

action - used for modelling, in each state, which action has just occurred.

Another aspect that deserves mention is a mismatch in the execution models of both

languages. At MAL interactors level, the actions of different interactors can happen in an

asynchronous way. Thus, an interactor can execute one action while the others remain inactive.

At the SMV level, however, the transitions occur in a synchronous way. This means that when a

module performs a transition all modules in the model must also perform a transition. To model

asynchronous state transitions, it becomes necessary to introduce a special action nil that at the

MAL interactors level (what we will call the logical level from now on) corresponds to nothing

happening, while at SMV level (what we will call physical level from now on) represents a state

transition (to a state with the same attributes values i.e. to the same logical state). This way, the

SMV module corresponding to an interactor can perform a state transition associated to a given

action, while the others execute the action associated to nil (that is, maintain the state).

3.1.

T

and s

as m

of the

mode

appro

C

depen

and c

analy

and i

repre

.4 Trace

The traces pr

states existing

entioned abo

e trace's me

el. A typical

opriate repres

Counter-exam

nding on the

complex. The

ysis step, hel

in discoverin

esentations a

 Analysis

roduced by t

g at the SMV

ove). Thus, it

eaning can b

l example w

sentation of t

mple traces c

e complexity

e Traces Vis

ping in deter

ng possible s

nd trace ana

Figure

Figure

he verificatio

V code level (s

t is necessar

be performe

would be el

the notion of

can, howeve

of the mod

sualizer plugi

rmining what

solutions to i

lysis mechan

e 11 Trace A
21

10 Behaviou

on process d

some of whic

ry to revert th

d at the lev

limination o

f action.

er, reach size

el. Hence th

in, of the IVY

t the problem

it. To achiev

nisms (marke

Analysis mech

ur trace.

o, as we can

ch were intro

he compilatio

vel of abstrac

f attribute a

es in the ord

heir analysis

Y Workbench

m is that is b

ve these goa

ers) that can

hanisms (ma

n expect, men

oduced at the

on process so

ction of the

action, repla

der of the hu

can become

h tool, aims

being pointed

als the plugin

be seen in F

rkers).

ntion the var

e compilation

o that the an

original inte

acing it by

undreds of s

e time cons

at facilitatin

d out by the

n resorts to

Figure 11.

riables

n step,

nalysis

eractor

some

states,

uming

ng this

trace,

visual

T













The available

 Trace - th

 Tree (see

 State Bas

 Logical S

trace stat

process;

 Tabular (s

Cadence

 Activity D

Activity di

visual repres

he original tex

 Figure 12) -

sed (see Figu

tates (see Fi

tes are pre-p

see Figure 1

Labs;

Diagram (see

iagrams (follo

sentations ar

xtual represe

tree represe

re 13) - grap

igure 14) - r

rocessed to

5) - tabular r

e Figure 16)

owing the no

Figure 12 Tr

22

re fully descr

entation prod

entation of th

phical represe

representatio

eliminate art

representatio

) - represen

otation of UM

ree visual rep

ibed in [24]

uced by SMV

e trace state

entation of th

n similar to

tificial states

on similar to

tation focuse

L 2.0 describ

presentation.

and are the f

V;

es;

he trace state

the previous

introduced b

the one exis

ed on action

bed in [22].

.

following:

es;

s one in whic

by the comp

sting in the S

ns that reso

ch the

pilation

SMV of

orts to

Figu

Figu

ure 13 State

re 14 Logica

23

Based visua

al States visu

al representat

al representa

tion.

ation.

F

Figure

Figure 15 Tab

e 16 Activity

24

bular visual r

Diagram vis

representatio

ual represent

n.

tation.

3.2

T

imple

simpl

pane

Figure

T

. How T

The IVY Work

ementing an

lification pur

so that the u

e 17, the Mo

The interface

 publ

Exce

cycle

proc

tool.

To Creat

kbench is a m

 interface t

poses a plug

user can sele

odel Editor

Figu

e methods tha

lic void i

eption  th

e of the too

essing and a

te An IVY

modular tool

that defines

gin can also

ect between

, Properties

ure 17 IVY Wo

at must be im

init(IServer

his method in

l. It receives

also a param

25

Y Workbe

based on plu

the method

be called a

all the tools

s Editor and

orkbench Plu

mplemented

r coreServ

nitializes the

s a paramet

meter that co

ench Plu

ugins. A plug

ds needed

tool. Each to

loaded into t

d Traces An

ugins Framew

to construct

ver, IToolP

Tool. This m

ter that is th

ntains a refe

ugin

gin is integrat

for integratio

ool will be pl

he framewor

nalyzer tools

work.

a tool are th

Properties

method is call

he server us

erence to the

ted into the t

on purposes

laced on a t

rk. For exam

s are represe

he following:

 prop) th

led once in t

sed to hand

e properties o

tool by

s. For

abbed

ple, in

ented.

hrows

he life

le the

of this

26

 public void initGUI(JFrame main, JComponent rootContainer)  this

method is used to initialize the Graphic User Interface for the tool. This method is

also called once only in the life cycle of the tool. It receives the main JFrame of the

IVY Workbench tool and also receives the container in which the tool graphic

component can be added.

 public void gainFocus()  this method is to be invoked whenever the tool is

selected in the main tabbed pane of IVY Workbench tool. With this method we can

control what we want to do each time the tool gains control. For example if some

global data is changed by others tools then the current tool can also change its state

(by changing graphical elements or internal data) to reflect them.

 public void loseFocus()  this method is used whenever the tool loses the

control (is de-selected). With this method we can control what we want to do when

the user switches to other tool. For example the current tool can put some data in a

global area (common to all tools) so that the other tools can query if some global

data is available, and if so reflect some changes on their own states, by changing

graphical elements or internal data.

 public boolean needsSaving()  this method is used to tell if the tool needs to

save its data when a project is being saved.

 public boolean needsFocus(int event)  this method is used to return the

status related to focus. It receives a parameter that is the event by which the tool

needs focus. The event codes are the following:

o int EVENT_OPEN_PROJECT = 0;

o int EVENT_NEW_PROJECT = 1;

o int EVENT_SAVE_PROJECT = 2;

o int EVENT_CLOSE_PROJECT = 3;

o int EVENT_EXIT_PROGRAM = 0.

27

 public void newProject(IProjectProperties proj)  this method is invoked

whenever the main application creates a new project. It receives the project

properties (name, project working directory, author, etc.).

 public void openProject(IProjectProperties proj, String[] files)  this

method is invoked whenever the main application opens a project. It receives the

project properties and also the paths of the folders belonging to this tool.

 public String[] saveProject(IProjectProperties proj)  this method is

invoked whenever the user wants to save the current project. It will be up to the tool

to save its own data files. This method receives the project properties as a

parameter and returns the paths of the folders belonging to this tool.

 public void closeProject(IProjectProperties proj)  this method is invoked

whenever the IVY user wants to close the current project. It receives the project

properties.

 public void exit()  this method is invoked whenever the user exits the IVY

Workbench.

The configuration file plugin.xml is needed to properly configure the tool. The following text

explains how to fill the data fields of this configuration file.

The structure of the XML file is the following:

<?xml version="1.0" ?>
<!DOCTYPE plugin PUBLIC "-//JPF//Java Plug-in Manifest 0.4"
"http://jpf.sourceforge.net/plugin_0_4.dtd">

<plugin id=’tool name’ version=’tool version’ >
<requires>
<import plugin-id="CoreSystem"/>
</requires>

28

<runtime>
<library id=’tool library name’ path=’tool jar filename’ type="code">
<doc caption="API documentation">
<doc-ref path="api/index.html" caption="javadoc"/>
</doc>
</library>
<library type="resources" path="icons/" id="icons"/>
</runtime>

<extension plugin-id="CoreSystem" point-id="Tool" id=’tool name’>
<parameter id="class" value=’tool java main class name’ />
<parameter id="name" value=’tool name’ />
<parameter id="description" value=’tool description’ />
<parameter id="icon" value=’tool icon filename’ />
</extension>
</plugin>

 The values between quotes have to be replaced to fill the configuration file. For example, to

make the configuration file of Model Editor tool the values are instantiated in this way:

‘tool name’= “ModelEditor”
’tool version’= “0.0.1”
’tool library name’= “Model Editor”
’tool jar filename’= “ModelEditor.jar”
’tool java main class name’= ”Editor.Editor”
‘tool description’= “Model Editor description”
‘tool icon filename’= “modelEditor.gif”

In the tool’s directory a “build.xml” file is also needed. This file is used to build the tool

with the help of the “plugin.xml” configuration file. The build.xml (see Appendix I) is the same

for any tool (only the project name can be changed).

3.3. Conclusion

This chapter presented the IVY Workbench tool that supports the modelling and analysis of

interactive systems. Section 3.1 presented the model checking based approach supported by the

tool. Section 3.2 described how to create a new plugin for that tool.

29

Chapter 4 – Related Work

This chapter describes CTTE (ConcurTaskTrees Environment) a task modeling tool that has

animation and simulation strategies that are similar to the ones intended to be used on the

proposed MAL models animator plugin. A previous IVY Workbench plugin - aniMAL - that had a

similar goal to this work will also be described.

4.1. CTTE

CTTE5 (see Figure 18) is an environment for editing and analysing task models. Its main goal

is to support the design of interactive applications focusing in the humans and their activities.

In [25] the concepts behind tasks models are presented. In is an important model because it

indicates the logical activities that an application can support. A task is defined as an activity that

should be performed by the user to reach a goal in the system. A goal can be a desired

modification of state or a query to obtain information on the current state of the system. Figure

19 presents an example of a Tasks model.

CTTE uses ConcurTaskTrees (CTT), introduced by Fabio Paternó in [26] and [27]. CTT is a

graphical notation (see Figure 20 for an example) with a set of operators used to describe the

relationships between tasks.

5 Available at http://giove.isti.cnr.it/tools/CTTE (last visited 27/10/2012).

Figure 19

Figure 18 CT

9 An example

30

TTE tool, take

e of a task m

en from [25]

model, taken f

.

from [25].

C

Conc

reach

depen

The f

the s

speci

C

in a

perfo

CTTE provid

urTaskTree

h a pre-define

nding on wha

first step in s

same time a

fic task mod

CTTE’s tasks

list. Double-c

rmed, the en

Figure 20

es a simula

involves sim

ed goal. In a

at tasks have

simulating Co

nd that is c

el is referred

s simulator is

clicking on a

nabled tasks

0 Overview of

ation functio

ulating, in s

ConcurTaskT

e been perfor

oncurTask-Tr

alled an ena

 to as an ena

 a basic one

a task will si

are updated

31

f the CTT not

onality that

some way, t

kTree, tasks a

rmed, some

rees is to ide

abled task s

abled task co

e (see Figure

imulate the

accordingly.

tation, taken

is described

he execution

are disposed

tasks are en

entify the task

set. The set

ollection (ETC

21). It displa

performance

from [28].

d in [28]. T

n of specific

in a hierarch

abled and ot

ks that are lo

of all enable

C).

ays the curre

e of that task

The simulat

tasks in ord

hical style. T

thers are dis

ogically enab

ed task sets

ently enabled

k. When a t

tion a

der to

hat is,

abled.

bled at

 for a

d tasks

task is

C

the C

simul

differe

MAL

some

I

action

reach

tasks

4.2

A

Work

of the

action

T

of the

IMode

updat

Visua

value

Figure

CTTE is a goo

CTTE environ

lation capab

ences to the

models in t

ething that do

t is expected

ns of the MA

hable states (

 of CTTE.

. AniMA

AniMAL, des

bench. Its m

e interface to

n, of a widge

The AniMAL

e IVY Workb

el data is u

tes it with m

alizer plugin

s, representi

21 A simple

od case stud

ment (see Fi

bilities. This

 proposed W

the other), a

oes not happ

d that the Wi

AL interactor

(enabled by a

AL

scribed in [2

most salient fe

o be used du

t in order to

tool obtains

bench. More

pdated by t

model data,

updates it w

ing behaviou

e ConcurTask

y on how a M

gure 21) to t

concept an

WildAniM plug

nd also that

en in CTTE.

ldAniMAL plu

s will be rep

a interactor a

29], is a pr

eature is that

uring the ani

create the pr

the data tha

specifically,

two other pl

which consi

with fail trac

rs of the mod

32

kTree task m

MAL models

the present w

nd the capa

gin will be th

t we have a

ugin will hav

presented by

action on a s

rototype of a

t of supportin

mation. It al

rototype.

at it needs to

, from the I

ugins of the

ists of intera

ces (sequenc

del).

odel simulat

animator sho

work is its co

bilities are

e supported

ttributes in t

ve a similar b

y similarly to

specific state

a plugin tha

ng the definit

lows the ass

o perform its

Model (inter

e IVY Workbe

actors, attrib

ces of state

or, taken from

ould function

oncept of ena

described in

model (Task

the states of

behaviour to

CTTE tasks,

e) will be sim

at was deve

tion, at runtim

ociation, to e

function from

ractors mode

ench. The M

utes and ac

s, defined b

m [28].

n. The releva

abled tasks a

n [28]. The

ks in one cas

of the MAL m

that of CCTE

, and the po

milar to the en

loped for th

me, of a pro

each attribut

m the CoreS

el) data stru

ModelEditor

ctions. The T

by their attri

nce of

and its

main

se and

model,

E. The

ossible

nabled

he IVY

totype

te and

System

ucture.

plugin

Traces

butes’

W

mode

or ma

choos

have

autom

T

I

attrib

show

T

graph

these

provid

propt

intera

What is intere

el it pulls from

anual. First

sing which g

the plugin p

matically, the

The default c







f the mappin

ute. For exam

w the changes

The list of w

hic evolution

e cases (e.g.

de an easier

totype with t

actors model

esting and us

m the CoreSy

it creates an

graphical elem

perform that

en the interac

components’

interactor – r

attributes – r

actions – ren

ng is perform

mple, for a t

s in the temp

Fi

widgets in An

of the values

 State or Ac

r insight into

the different

.

seful in AniM

ystem. It use

n interactor

ments will re

mapping au

ctors’ attribut

rendering is

rendered as

rendered usi

ndered as bu

med manuall

emperature

perature value

gure 22 The

niMAL is ext

s of the attrib

ctivity Diagram

o the behavio

t widgets us

33

MAL is that it

es a mapping

tree from th

ender each o

utomatically.

tes and actio

as follows:

panel;

ng the defau

uttons.

ly, we can c

attribute we

e, as modelle

rmometer, ta

tensible, wh

butes, instea

ms). Theses

our of an in

sed for each

can generat

g generation

he data mod

of the interac

If we reques

ons are rende

lt widget for

hoose the w

can use a th

ed by the att

aken from [2

ich makes i

ad of the trad

widgets are

nteractors mo

h of the att

e a UI protot

strategy that

el. Then we

tors’ attribut

st for the ma

ered with defa

their type;

widget that is

hermometer

ribute.

9].

t very appea

ditional repre

e more famil

odel. Figure

ributes of a

type from the

t can be auto

e can opt be

tes and actio

apping to be

fault compon

s assigned to

(see Figure

aling to prov

esentations u

iar and pote

23 presents

an Air-Condit

e data

omatic

etween

ons, or

e done

ents.

o each

22) to

vide a

sed in

entially

s a UI

tioning

A

traces

anima

4.3

T

previo

usefu

Figu

AniMAL’s an

s, That is d

ate the intera

. Concl

This Chapter

ous IVY Work

ul insights int

ure 23 Protot

imation capa

ifferent from

actors model

lusion

r described

kbench anim

to what the W

type of an air

abilities, how

m what has

ls themselves

CTTE (Conc

mation plugin

WildAniMAL p

34

r condition co

wever, are lim

been defined

s.

curTaskTrees

n - aniMAL –

plugin should

ontrol panel,

mited. The to

d as WildAn

s Environme

 was also de

 be.

taken from [

ool is only ab

IMAL’s goal:

ent) a task

escribed. Bo

[29].

ble to anima

: the capabi

modelling to

oth plugins p

ate fail

ility to

ool. A

rovide

35

Chapter 5 – WildAniMAL

Implementation Approaches

This chapter discusses possible WildAniMAL implementation approaches. Section 5.1

discusses three implementation alternatives. Section 5.2 presents the chosen implementation

approach: NuSMV Simulation Capabilities.

The NuSMV model checker provides an interactive shell where commands can be entered.

The commands are grouped by the functionality they provide. There are eight main groups:

Model Reading and Building, Simulation, Checking Specifications, Bounded Model Checking,

Checking PSL Specifications, Execution, Traces, and Administration.

In the context of the present work, we are interested in those commands that help perform

an interactive simulation of a NuSMV specification. Having that in mind, the groups of commands

which are important to mention are: Model Reading and Building, and Simulation.

Sections 5.2.1 and 5.2.2 provide commands’ descriptions that are focused on those aspects

(options and environment variables) that are effectively used in this work. More detailed

descriptions can be found in [12].

Section 5.2.3 provides a NuSMV simulation example where all the presented commands are

used.

5.1. Implementation Approaches

In this Section, the main approaches to implementing the WildAniMAL plugin will be

analysed. Three approaches are considered. Section 5.1.1 looks at the possibility of generating

and using a Finite State Machine representation of the MAL interactors model to drive the

36

animation. Section 5.1.2 looks at using the BDD representation of the MAL interactors model

(created by NuSMV, the verification engine used by IVY Workbench) instead of creating our own

finite state machine. Finally, Section 5.1.3 looks at the possibility of using NuSMV's simulation

commands, available on its interactive mode, to perform the animation.

5.1.1 Generating a Finite State Machine

This approach can be described as transforming the MAL interactors model into a Finite

State Machine (FSM) model. An introduction to the theory behind FSM is available in Section 2.3.

To use this approach an algorithm to translate MAL models into some FSM representation

has to be developed and implemented. That work can be complex and time consuming and also

tests of the algorithm implementation's correctness are needed. Due to these reasons this

approach can be risky, and good results cannot be guaranteed beforehand.

The main advantage of this approach is that only the original MAL model is used, and the

results from the simulation process are easily interpreted in the context of, and incorporated into,

the MAL’s model iterative creation process. Other advantage is that, if this approach can be

efficiently implemented, then it will be as easy to perform an interactive simulation of the MAL’s

model (creating the FSM one step at a time) as it will the full generation of its FSM model.

Because the algorithm will be custom made it will be easily adaptable to any need desired.

To face this approach's risks, NuSMV's flat model FSM capabilities can be used. These

capabilities are supported by the following commands:

 build flat model - Compiles the flattened hierarchy into a Scalar FSM;

 build boolean model - Compiles the flattened hierarchy into boolean Scalar FSM;

 write flat model - Writes a flat model to a file;

 write boolean model - Writes a flat and boolean model to a file.

However, if the NuSMV FSM capabilities are used, then the main advantage stated above

can be lost, due to the translation process between MAL model and the NuSMV generated FSM

model. The simulation will no longer happen at the abstraction level of the MAL models, but at

the level of the NuSMV specifications created from those models.

37

5.1.2 NuSMV Binary Decision Diagrams

This approach can be described as using the BDD representation of the MAL interactors

model, created by the NuSMV model checker, to perform the animation.

Binary Decision Diagrams (presented in Section 2.4) are used by the NuSMV model checker

to perform model checking over the NuSMV model. These diagrams are not easily

understandable and can be difficult to use for the purpose of implementing the WildAniMAL

plugin.

This approach is not the best one because the initial MAL interactors model is translated to a

NuSMV model that is read by NuSMV model checker and transformed into BDD. Because two

translations steps are made, doing the analysis of the results obtained by animating the BDD,

and using them to help the modeling process of a MAL interactors model, will be a daunting task.

This is because several artificial variables can be added and transformations made between the

two models and the BDD.

5.1.3 NuSMV Simulation Capabilities

The NuSMV model checker has simulations commands that can be used to help implement

the proposed MAL interactors model animator plugin. An example of the NuSMV’s simulation

capabilities is presented in Figure 24.

F

Availa

when

the n

from

with t

the fo







T

WildA

are n

Figure 24 sho

able States is

n the CTTE’s

next enabled

the MAL inte

the NuSMV m

ollowing:

 read_mo

 pick_sta

 simulate

The difficulty

AniMAL plugi

ot well suited

F

ows the ava

s similar to th

user interac

(we can als

eractors mod

model check

odel  Rea

ate  Picks

e  Perform

of this appro

n. However,

d to be called

Figure 24 Nu

ilable states

he concept o

ctively selects

so say availa

del, in the IVY

ker. The NuS

ds a NuSMV

a state from

ms a simulatio

oach is that

the comman

d from an ext

38

uSMV simula

at a given m

of Enabled Ta

s a task to p

able) tasks a

Y Worbench t

SMV comman

V fille into NuS

 the set of in

on from the c

these comm

nds are only

ternal proces

tion example

moment in t

asks in CTTE

perform and

re. Because

tool, it can be

nds that can

SMV;

nitial states;

current selec

mands must

available in

ss.

e.

he simulatio

. Enabled Ta

CTTE’S simu

e the SMV M

e used for sim

n be used for

ted state;

be invoked f

interactive m

on. The conc

asks are calc

ulator shows

Model is pro

mulation pur

r that purpos

from the pro

mode, and as

cept of

ulated

s what

duced

rposes

se are

posed

s such

39

Conceptually the main problem with this implementation approach is that the SMV Model is

slightly different from the initial MAL interactors model (as stated in Section 5.1.2). Therefore a

process of constant translation and interpretation of animation results from SMV model to MAL

model has to be made and that can be problematic and inefficient. Nevertheless, this is still

better than directly using BDDs (NuSMV uses the BDDs to run the simulation), were there would

be two steps between the original model and the representation our tool would use to support the

animation.

Considering the above, this approach was the chosen one for the implementation of the

WildAniMAL plugin.

5.2. NuSMV Interactive Shell

The NuSMV Interactive Shell offers an interaction mode that initiates a read-eval-print loop, in

which commands can be executed. The activation of the shell is done by invoking the model

checker with the “-int” option:

system prompt> NuSMV -int <RET>

NuSMV>

When the default “NUSMV>” shell prompt is displayed, the system is ready to accept and

execute user commands.

A NuSMV command is a sequence of words. The first word represents the command to be

executed and the remaining words are its arguments. With the “set” command it is possible to

assign values to environment variables, which in turn influence the behaviour of the commands.

5.2.1 Model Reading And Building

The commands in this group are used for the parsing and compilation of the model into a

BDD and are the following:

read_model -í model-file. Reads a NuSMV file into NuSMV.

40

If the -i option is not specified, the command reads the file specified in the environment

variable Input_File. If the option is specified the command sets the environment variable

input_file to model-file, and reads the model from the specified file.

go - Initializes the system for verification.

This command is responsible for reading the model (unless it has already been read), and

generating a BDD from it. The model is first flattened, which includes instantiating modules

by substituting their actual parameters for the formal parameters, and then prefixing the

result with each particular instance’s name, scalar variables are encoded to create a boolean

model, and then the BDD is generated.

5.2.2 Simulation Commands

The commands in this group allow simulating a NUSMV specification and are the following:

pick state [-i [-a]]

Chooses an element from the set of initial states, and makes it the current state (replacing

the old one). The chosen state is stored as the first state of a new trace, which will grow in

number of states, as simulation evolves. The state can be chosen according to different

policies, which can be specified via command line options. By default the state is chosen in

a deterministic way.

Options:

-i  enables the user to interactively pick up an initial state. The user is requested to

choose one state from a list of possible states. If the number of possible states is too

high, then the user has to specify some further constraints on the values of the variables

in the current state;

-a  by default, states only show those variables that have changed from the previous

state. With this option, NuSMV displays all state and frozen variables regardless of

41

whether they have are changed and unchanged with respect to the previous state. This

option works only if the -i option has been specified.

simulate [-i [-a]] [-k steps]

Performs a simulation from the current selected state. The command generates a sequence

of at most steps states (representing a possible execution of the model), starting from the

current state. The current state can be set via the pick_state command.

Options:

-i  enables the user to interactively choose every state of the trace, step by step. As

with pick_state, if the number of possible states is too high, then the user has to

specify constraints on the state attributes. These constraints are used only for a single

simulation step and are forgotten in the following ones.

-a  again, this makes NuSMV display all the state and frozen variables (changed and

unchanged) during every step of an interactive session (which is not done by default).

-k steps  this option defines the maximum length of the path to be generated. The

default value is determined by the default simulation steps environment variable

shown_states (ranges between 1 and 100, and default is 25).

5.2.3 Simulation Example

To illustrate the use of the NuSMV simulation commands a model of a garage gate will be

used. This model will be specified in the interactors language mentioned earlier in section 2.5.

This specification can be seen in Figure 25.

TTo understan

Figu

nd what this m

F

ure 25 Intera

model repres

Figure 26 Sta

42

ctors model

sents we can

ate Diagram o

of a garage g

 see the stat

of gate mode

gate.

te diagram in

el.

n Figure 26.

W

NuSM

H

mode

s

N

N

With the IVY

MV specificat

Having this N

e. To start the

system prom

NuSMV> go

NuSMV>

Y Workbench

ion.

Figure

NuSMV spec

e simulation

mpt> NuSMV

 tool we ca

e 27 NuSMV

cification it is

we have to d

-int gate.smv

43

an compile t

specification

s possible to

do the followi

v

the interacto

n of the gate

o simulate it

ing:

ors model, in

model.

t using the N

n Figure 27

NuSMV inter

, to a

ractive

T

we ha

use t

trace

N

This c

T

autom

 T

with v

N

and N

The previous

ave to choos

the interactiv

he wants to

NuSMV> pic

command ha

This result m

matically cho

To proceed w

value 1, whic

NuSMV> sim

NuSMV return

sequence o

e an initial st

ve approach,

build. So we

ick state –i

as the followi

Figure

eans that thi

sen as the in

with the simu

ch will make

imulate -i –a

ns the availa

Figure 2

f programs r

tate from the

in which the

e have to use

i -a

ng result tha

28 The resu

is model has

nitial state.

lation we hav

the simulatio

a -k 1

ble states (se

9 The result

44

reads the mo

e possible ini

e user is ab

e the followin

at is shown in

ult of pick_sta

s only one ini

ve to use the

on advance o

ee Figure 29

of simulate –

odel to the N

tial states of

le to interact

g command:

n Figure 28.

ate –i –a com

tial state, an

e simulate co

one step. The

).

–i –a –k 1 co

uSMV system

the model. I

tively choose

mmand.

d because of

ommand with

e command i

ommand.

m. After doin

In our case w

e the states

f that the sta

h a paramete

is:

ng that

we will

of the

te is

er k

N

comm

W

reach

I

is pos

comm

Now we have

mand again,

We can cont

hable.

n this examp

ssible to be

mands.

e to choose o

we end up th

F

tinue the sim

ple we showe

demonstrate

Figure 31 S

one of the ava

he result sho

igure 30 The

mulation usi

ed that the pa

ed using NuS

State Based d

45

ailable states

own in Figure

e result of ch

ing the simu

ath, illustrate

SMV’s Interac

diagram show

s. If we choos

 30.

oosing state

ulate comma

ed in the Stat

ctive mode a

wing the simu

se 0 and use

0.

and until no

te Based diag

and a small

ulation path.

e the simulate

o more state

gram of Figu

set of its ava

e

es are

re 31,

ailable

46

5.3. Conclusion

In this chapter we described the NuSMV Interactive Mode and its available commands. To

more effectively illustrate it we presented a real example of a model: a garage gate. The model

was specified in the MAL Interactors language, compiled to a NuSMV specification, and finally a

simulation was carried out. That simulation used the commands that were previous presented.

We can conclude that NuSMV simulation commands can be useful to implement a MAL

Interactors model animator because the needed output and general mechanism is easily

available and ready to use.

47

Chapter 6 – WildAniMAL

Implementation

This chapter describes the implementation of WildAniMAL as a plugin for the IVY Workbench

tool. An architectural view with UML diagrams is provided. To provide more detail on the

implementation, an explanation of the main methods is presented.

6.1. WildAniMAL’s Architecture

Because the JAVA programming language was used, the architecture of the WildAniMAL

plugin can be easily explained by using UML diagrams for each of the Java packages created.

This scheme for presenting the architecture is well suited to provide the “main picture” of the

implementation.

T

packa

Serve

T

Pars

next.

F

The architec

age), Traces,

er packages o

The Animato

ser. These cl

Figure 32 Wild

cture of the

, NuSMV, Co

of the IVY Wo

r root packa

asses interac

dAniMAL plu

plugin has

onstraints and

orkbench Cor

age contains

ct with the in

48

gin architect

five packag

d Renderers.

reSystem ma

the followin

nner package

ture as a pac

ges (see Fig

 The plugin a

ain package.

g classes: G

es of Animato

ckage diagram

gure 32): A

also depends

Gui, Main, T

or package, a

m.

Animator (the

s on the Too

TreeActions

as it will be s

e root

ls and

s and

shown

T

the IV

initG

T

interf

interf

The Main cl

VY Workbenc

Gui method o

The Gui clas

face of the p

face. It also h

F

ass is respo

h tool as exp

of the interfac

ss (see Figur

lugin. It has

handles the e

Figure 33 Ma

nsible for im

plained in Sec

ce.

re 33), as th

the code for

events for the

49

ain package c

mplementing

ction 3.2. In

he name ma

r displaying t

e buttons pre

class diagram

the interface

particular, it

ay give a clu

the buttons,

esses.

m.

e needed to c

initializes the

ue, handles t

panels and t

create a plug

e Gui class,

the graphica

tables, used

gin for

in the

al user

in the

T

betwe

extern

The NuSMV

een the grap

nal NuSMV m

Fig

V package (

hical user int

model check

gure 34 NuS

(see Figure

terface, in wh

ker process (

50

SMV package

34) is resp

hich the user

(that works in

 class diagra

ponsible for

r can select s

n interactive

am.

handling th

simulation co

mode as ex

he communi

ommands, an

xplained in S

cation

nd the

ection

5.2).

NuSM

feed a

of the

T

the s

simul

that

conju

matte

simul

P

filter.

W

produ

It uses the

MV model ch

a JList. When

em in anothe

The Constra

states obtain

lations steps

point in the

unction of con

er at each pa

lation.

Package Ren

Currently, th

When the fu

uce the list

Parser clas

hecker proce

n the states a

er JList (State

Figu

aints packag

ned from N

s, the user h

e simulation.

nditions on t

articular mom

nderers is r

hat is done b

uture states

of possible s

ss to parse

ess. These s

are parsed it

eInfo).

ure 35 Constr

ge (see Figur

uSMV based

as to choose

 This set c

he values of

ment, and als

esponsible fo

y changing th

of a simula

states. In th
51

the states c

states, obtain

t is possible t

raints packag

re 35) has th

d on the va

e a current s

can become

their attribut

so helps him

or rendering

he backgrou

ation are mo

is case, “To

contained in

ned in each

to see the inf

ge class diag

he function o

alues of the

state from th

large. Henc

tes, helps th

m choose the

the states th

nd color.

ore than on

oo many S

the results o

simulation s

formation ass

gram.

of enabling W

eir attributes

he set of all

ce, filtering

e user focus

right state to

hat meet the

e hundred,

tates” appe

obtained fro

step from Nu

sociated with

WildAniMAL to

s. In each o

possible sta

the states w

 on the state

o proceed wi

e constraints

NuSMV doe

ears in stat

m the

uSMV,

h each

o filter

of the

ates at

with a

es that

ith the

of the

es not

eList.

Then

check

T

simul

are tw

State

receiv

choic

all sta

W

visua

repre

, constraints

ker process)

The Traces

lation. This is

wo of the o

teBased and

ve states one

ces in the inte

ates and is d

When a new

l representat

esentation, s

 have to be

in order to o

Fi

 package (see

s achieved w

ones already

d Tabular, a

e by one, be

eractive simu

isplayed prom

state is par

tion that adds

so that it re

entered to f

btain the sta

gure 36 Trac

e Figure 36)

with the help

available in

nd their imp

ecause the tr

ulation. In th

mptly.

rsed in the P

s the state in

eflects the n

52

filter the stat

ates’ list need

ces package

is responsib

of visual rep

n the Traces

plementation

race is create

e Traces Vis

Parser class

nfo and does

newly added

tes (here at t

ded to procee

class diagra

ble for showin

presentations

s Visualizer

is described

ed step by s

ualizer plugin

s, a method

what is need

d state info

the level of t

ed with the s

m.

ng the states

s. These visu

plugin of the

in [24]. The

tep as the u

n the trace is

(addState)

ded to updat

rmation. In

the NuSMV

simulation.

 resulting fro

ual represent

e IVY Workb

ey were adap

ser is enteri

s fully forme

) is called in

te the drawn

the case o

model

om the

tations

bench:

pted to

ng his

d with

n each

visual

of the

53

StatedBased representation, the update is done by calling drawInteractorState (which

performs a repaint).

It’s easy to add more visual representations because the main class of a representation will

only have to implement the addState method, and the graphical (or textually, if wanted)

representation. This feature makes the plugin extensible regarding the visual representations

available.

6.2. WildAniMAL’s Source Code Description

This section presents a description of the most relevant aspects of the implementation’s

source code. That description will be grouped by the packages described in the previous section.

6.2.1 Animator Package

Class Main

As already mentioned, the Main class implements the plugin interface of the IVY Workbench

tool.

public class Main implements ITool {

/** container for application. */
private JComponent container = null ;

/** application core server. */
private IServer server = null;

private Gui frame;
private IModel model;

public Main() {

frame= new Gui();
frame.saveLastFileModified();

}

 The previous code shows that the Main class implements the ITool interface, that is, the

plugin interface of the IVY Workbench tool. The variables container and server relate to the

CoreSystem of the IVY Workbench tool, and enable the plugin to communicate with it. In

particular, they enable the WildAniMAL plugin to retrieve information from the shared data

54

structure used by all the plugins of the tool. It is through this shared information that the plugin

integrates its own functionalities (in this case, the simulation of the interactors model - using the

NuSMV specification as an intermediate representation) with the rest of the tool. The model

variable will hold all data from the interactors model and is used to retrieve information needed to

construct constraints and also to help the NuSMV package classes perform their function.

The Main() constructor initializes the GUI class which, has its name indicates, is the

Graphical User Interface of the plugin. The saveLastFileModified method is used to store in a

variable the last time when test.smv (the SMV Specification file) was modified. That information

will be used to test when a new model was compiled in the Properties Editor. Whenever a new

interactors model is compiled, the WildAniMAL simulation has to be restarted.

Another method that is used during the initialisation of the plugin is initGUI.

public void initGUI(JFrame main, final JComponent rootContainer) {

this.container = rootContainer;

container.setLayout(new BorderLayout());
container.add(frame,BorderLayout.CENTER);

 }

The method simply adds WildAniMAL’s graphical user interface (given by the GUI class as

frame variable) to the JComponent (rootContainer) that has been assigned to it by the Core

System. Each plugin is graphically located in a tab.

Next the handling of focus must be provided.

 public void gainFocus() {

frame.checkFileModifications();

CServer i=(CServer)server;

model=i.getModel();
frame.setIModel(model);

 }

The gainFocus method is executed whenever the user chooses the plugin WildAniMAL in

the IVY Workbench tool (by clicking in the respective tab). In this method, a check is made to

determine if a new interactors model was compiled, in which case the simulation will be

restarted. That is done by using the checkFileModifications method of the Gui class. Also,

the r

simul

T

was c

F

T

exits

C

T

hand

simul

reference to

lation proces

The loseFoc

compiled. Th

Finally the ex

The exit met

IVY Workben

Class Gui

The Gui cla

les buttons e

lation, constr

the interact

ss.

cus method

at is done to

pu

}

xit behaviour

pu

}

thod frees al

nch applicatio

ass impleme

events. It als

raints handlin

Figure 37 G

tors model

 simply store

 enable the v

blic void lose
frame.save

of the plugin

blic void exit
frame.killN

l resources u

on.

ents WildAniM

o coordinate

ng, drawing o

raphical user

55

data structu

es the last t

verification m

eFocus() {
eLastFileMod

n must be pro

t() {
NuSMV();

used in WildA

MAL’s graph

es all the fun

of traces visu

r interface im

ure is retriev

time when th

made in the g

ified();

ovided.

AniMAL plugi

hical user in

ctionalities im

ual represent

mplemented b

ved for futur

he current in

gainFocus m

n, and is cal

nterface (see

mplemented

ations and fi

by GUI class.

re use durin

nteractors’s

method.

lled when the

e Figure 37

in this plugi

lters.

.

ng the

model

e user

7) and

n: the

56

 The constructor of the Gui class initializes the graphical components and also the auxiliary

classes that will handle WildAniMAL’s functionalities.

public Gui() {
 initComponents();

 GridLayout gd = new GridLayout(0,1);

cPanel.setLayout(gd);

model = (DefaultListModel) statesList.getModel();
parser = new Parser(model, statesList);

treeActions = new TreeActions();
nusmv = new NuSMVInteractiveRun("test.smv", Consola, parser);

constraints = new ConstraintsManager(cPanel, treeActions);

stRenderer = new StatesRenderer();
statesList.setCellRenderer(stRenderer);

stateBased = new StateBased(stateBasedPanel);
tabular = new Tabular(tabela, scrollTabela);

}

The statesList variable (a JList) holds the current states returned on each step of the

simulation. A reference to its model (data) and the component itself are passed on in the

Parser class constructor, because in the simulation process, and in the associated parsing

needed, this class updates the states list directly.

The treeActions variable (instance of TreeActions class) is also initialized here, and is

responsible for storing locally the actions of the interactors model to help constraints’ creation.

For that reason, the constraints variable (an instance of the ConstraintsManager class) is

initialized using a reference to it.

Another class that is instantiated in the Gui constructor, and the most important of them all,

is NuSMVInteractiveRun (variable nusmv). It is the nusmv variable that will setup the actual

interactive simulation, using an external NuSMV model checker process. The variable is initialized

with a JTextarea (Consola) that will receive the textual output of the commands sent to the

NuSMV process, with a reference to the Parser class (variable parser) that will be used to

57

parse that same output, and with the name of the file holding the NuSMV specification. This file’s

name is hardcoded (by choice) because it is a temporary file generated in the Properties

Editor plugin of IVY Workbench when the current interactors model is compiled.

The StatesRenderer class (variable stRenderer) is also instantiated in the GUI

constructor. It is the stRenderer variable that will be responsible for showing the result of

filtering the elements of statesList (by changing their background color) when some constraints

are applied.

Finally, the StateBased (variable stateBased) and the Tabular (variable tabular)

classes are also instantiated in the Gui constructor. The two corresponding variables will enable

showing the progress of a simulation, through the visual representations they implement.

Whenever the user chooses a state to proceed with the simulation, these two variables receive

that information which will be shown with the corresponding graphical strategy. The stateBased

variable provides a kind of state diagram and the tabular variable provides a normal table.

 Next the method that shares the interactors model (IModel variable), between all the

variables that need it, is provided. These variables are: nusmv, constraints and treeActions.

public void setIModel(IModel mod) {

imodel = mod;
nusmv.setImodel(mod);
constraints.setChoices(imodel);
treeActions.changeTree(imodel);

}

Next the methods that handle button events are presented.

private void btGetFirstStateActionPerformed(java.awt.event.ActionEvent evt) {

nusmv.sendCommand("pick_state -i -a");
btGetFirstState.setEnabled(false);

}

This method handles the click event on the Get Initial State button, and does that by

sending the shown command to the NuSMV model checker (using the nusmv variable).

Next, another button’s (Pick State) event handling is provided.

private void btPickStateActionPerformed(java.awt.event.ActionEvent evt) {
 int index = statesList.getSelectedIndex();
 if (index != -1) {

58

 //Add State to the Trace Visualizer
 stateBased.addState(""+index, parser.getStateInfo(""+index));
 tabular.addState(parser.getStateInfo(""+index));

 //SendCommand to show next states
 if (statesList.getModel().getSize() > 1)
 nusmv.sendCommand(""+index);

 model.clear();
 nusmv.sendCommand("simulate -i -a -k 1");
 stRenderer.clearStates();

 //Update Trace Visualization
 stateBasedPanel.repaint();
 tabela.repaint();
 interactorsNamesPanel.repaint();
 }
 }

This method picks up the current state choice, that is, the selected number in the

statesList JList. If a choice exists (not null) then the respective state info is added to the traces

visual representations (stateBased and tabular variables). After that, the choice (state number)

is sent to NuSMV model checker and statesList is cleared. Then, the simulate command is

sent to NuSMV which will return states to fill statesList again. Finally repaints are made in order

to show the state update in the trace’s visual representations.

Next the Filter button event handling is provided.

private void filterActionPerformed(java.awt.event.ActionEvent evt) {
 JPanel constPanel;
 JComboBox vars, op, vals;
 String var, opc, val;

 ArrayList<String> lista = new ArrayList<String>();

 for (int i = 0; i < cPanel.getComponentCount(); i++) {
 constPanel = (JPanel) cPanel.getComponent(i);

 vars = (JComboBox) constPanel.getComponent(0);
 op = (JComboBox) constPanel.getComponent(1);
 vals = (JComboBox) constPanel.getComponent(2);

 var = (String) vars.getSelectedItem();

59

 opc = (String) op.getSelectedItem();
 val = (String) vals.getSelectedItem();

 if (val.contains("(")) {
 val = treeActions.handleActionParameters(val);
 }
 lista.add(var + " " + opc + " " + val);
 }

The filterActionPerformed method gets the constraint conditions from cPanel into a list

(variable lista). The constraints may have action with parameters and if so a special method

handleActionParameters is used to replace the internal notation used in NuSMV (e.g.

doSomethingAction_a_b_c) by the more user friendly notation used in MAL models

(doSomethingAction(a,b,c)). After that lista is sent to the parser, which returns the states

that match the constraints’ conditions. These states are then passed on to the states renderer

(stRenderer) that renders them differently (red background) on the statesList.

The event handler for the Send button (method btSendActionPerformed) is similar to

the previous method. The difference is that the constraints are joined in a string as a conjunction

(using the & operator) and are sent to the NuSMV model checker. Hence, instead of filtering the

current list of states being displayed, this method sends constrains that will be used by NuSMV to

generate a new (smaller) list. This is particularly useful when the list of possible states is too big

(over 100 states) in which case NuSMV will not generate it.

 Class Parser

 The Parser class is responsible for parsing the output of the NuSMV model checker.

Because the parsing process consists mainly in obtaining states and their info, this class has a

data structure to store them and provides methods to query that information.

The patterns used in the parsing process are initialised with the addSystemPatterns

method.

private void addSystemPatterns() {
 String ident="([a-zA-Z][a-zA-Z0-9_$~.><\\[\\]\\-]*)";
 String value="([a-zA-Z0-9_$~.><\\[\\]\\-]*)";
 systemPatterns.add(Pattern.compile("(\\d+)\\)")); // State filter
 systemPatterns.add(Pattern.compile("(\\s*)"+ident

60

 + "(\\s*)=(\\s)*(\\d)*" + value)); // Action\Atribute Filter
 systemPatterns.add(Pattern.compile("\\s*Set of future states is EMPTY: "
 + "constraints too strong\\? Try again.\\s*")); // Set of Future States Empty
 systemPatterns.add(Pattern.compile("\\s*Too many \\([0-9]+e\\+[0-9]+\\) "
 + "future states to visualize. Please specify further constraints: \\s*"));
 // To Many States After Constraint Send
}

The addSystemPatterns method compiles the patterns (regular expressions) used in

the parsing process of the NuSMV model checker’s output. The first pattern matches a state

number. The second pattern matches an action or attribute value (that is part of state info). The

third pattern matches the indication that after applying constraints there aren’t any states to

proceed with simulation. The last pattern matches the indication that applied constraints aren’t

sufficient and more have to be specified.

The parseLine method is responsible for parsing a line of the NuSMV model checker’s

output. The parsing is done by identifying specific keywords and patterns in the text produced by

NuSMV. The first part of this method checks if the line contains “AVAILABLE STATES”, which

means that a new simulation step has started (a state has been chosen). In that case the states

structure is cleared to receive new states info.

public void parseLine(String lineRead) {
 if (lineRead.contains("AVAILABLE STATES")) {
 availableStates=true;
 states = new HashMap<String,ArrayList<String>>();
 Gui.setBtPicksState(true);
 }

Next the method checks if the line contains a new state number. If so, then it also tests if the

model was on a situation where constraints insertion was needed. Then the state number is

added to states. That state number is also stored in an auxiliary variable lastState.

String aux;
 if (availableStates) {
 matcher = systemPatterns.get(0).matcher(lineRead);
 if (matcher.lookingAt()) {
 if (model.contains("Too Many States")) {
 model.removeElement("Too Many States");
 Gui.setConstraints(false);

61

 }

 aux = matcher.group(1);
 lastState = aux;

 if (!model.contains(aux) && !"".equals(aux)) {
 model.add(Integer.parseInt(aux),aux);
 states.put(aux, new ArrayList<String>());
 }
 }

After parsing a state number (lastState), all the actions and attributes values that make

part of its info are parsed, and stored in its entry in states.

 else if (!"".equals(lastState)) {
 matcher = systemPatterns.get(1).matcher(lineRead);
 if (matcher.lookingAt()) {
 aux = matcher.group(0);
 if (states.containsKey(lastState) && !"".equals(aux)) {
 states.get(lastState).add(aux.trim());
 if (aux.contains("action")) {
 aux = aux.replace("action = ","");
 model.set(Integer.parseInt(lastState), aux);
 }
 }
 }
 }

This part of the method detects and signals a situation where constraints have to be entered.

In this situation, the Pick State button is disabled, because there are not states to choose from.

 matcher = systemPatterns.get(2).matcher(lineRead);
 matcher1 = systemPatterns.get(3).matcher(lineRead);
 if (matcher.lookingAt() || matcher1.lookingAt()) {
 model.clear();
 model.addElement("Too Many States");
 Gui.setConstraints(true);
 Gui.setBtPicksState(false);
 }

Finally, this part of the method detects a situation where the output for a simulation step has

ended and a state choice, to proceed with the simulation, is needed.

62

 if (lineRead.contains("Choose a state form the above")) {
 availableStates = false;
 lastState = "";
 Gui.setBtPicksState(true);
 }
 }

6.2.2 Constraints Package

The ConstraintsManager class is responsible for managing constraints that can be sent

to the NuSMV model checker or used to filter states. This class constructor is initialized with the

constraints JPanel (see Figure 28), and with a reference to an instance of the TreeActions class

that will help with retrieving information on the actions in the interactors model.

The setChoices method (some parts of the code are presented) fills the variables choices

(all names of attributes and variables in the interactors model) and valuesList (the

corresponding values for any variable in choices).

for (int j=0; j<v.size();j++) {
 elem=v.get(j);

 aux = new ArrayList<String>();
 def=model.getDef(elem);

 if (!def.equals("")) {
 if (def.contains("array")) {
 choices.remove(choices.size()-1);
 aux=model.getAttributeValuesOnly(elem);
 valuesList.put(elem,aux);
 }
 else if (defs.containsKey(def))
 valuesList.put(elem, defs.get(def));
 else {
 aux=model.getAttributeValuesOnly(elem);
 valuesList.put(elem,aux);
 defs.put(def,aux);
 }
 choices.add(elem);
 }
}

63

In the method, when an action variable has parameters, the method

getInstantiatedActions of the TreeActions class is used, to unfold the types of these

parameters, in order to obtain all the possible combinations of parameter values.

The addNewConstraint method is responsible for creating a new constraint condition. A

constraint is graphically represented by three combo-boxes. The first holds all the elements of

choices, the second holds the operators (“=” and “!=”), and the last is updated with all possible

values (values from valuesList) for the element currently selected on the first combo-box.

 public void addNewConstraint() {
 if (choices.size() > 0) {
 JPanel constraint = new JPanel();
 ArrayList<String> operators= new ArrayList<String>();
 ArrayList<String> values;
 JComboBox vars= new JComboBox(choices.toArray());
 constraint.add(vars);
 operators.add("=");
 operators.add("!=");
 JComboBox op= new JComboBox(operators.toArray());
 constraint.add(op);

 String key = choices.get(0);

 if (valuesList.containsKey(key))
 values = valuesList.get(key);
 else
 values = new ArrayList();

 JComboBox vals= new JComboBox(values.toArray());
 constraint.add(vals);
 ComboListener cl = new ComboListener(vals,valuesList);
 vars.setSelectedIndex(0);
 vars.addActionListener(cl);
 op.setSelectedIndex(0);

 if (vals.getItemCount()>0)
 vals.setSelectedIndex(0);

 painel.add(constraint);
 painel.updateUI();
 }
 }

64

A textual representation of the constraint condition is what is sent to the NuSMV model

checker, or used to filter states in statesList.

6.2.3 NuSMV Package

Class NuSMVInteractiveRun is responsible for handling the communication between the

graphical user interface, in which the user can execute simulation commands, and the external

NuSMV model checker process.

 public NuSMVInteractiveRun(String nusmvFile,
 JTextArea consola1,Parser parser1){
 console = new NuSMVConsole(nusmvFile,consola1,parser1);
 console.loadConsole();

 input = new Input(console);
 console.setInput(input);

 input.start();
 console.execCommand("go");
 }

NuSMVInteractiveRun’s constructor instantiates the NuSMVConsole class (variable

console) with a reference to the file with the NuSMV specification, a reference to the JTextArea

(consola1) that will receive the output from the model checker process, and also a reference

(parameter parser1) to the Parser instance that will parse each line of the NuSMV model

checker’s output. The Input class is also instantiated, which starts a thread (variable input) that

will be continuously reading data from the input stream of the NuSMV model checker process.

Finally, the command go is sent to the NuSMVConsole, and it initializes the simulation of the

current NuSMV specification (as explained in section 5.2.1).

 public void run() {
 while(true) {
 console.readChar();
 try {
 waitWhileSuspended();
 } catch (InterruptedException ex) { }
 }
 }

65

 public void setPaused(boolean p) {
 this.paused = p;
 }

 private void waitWhileSuspended()
 throws InterruptedException {
 while (paused) {
 Thread.sleep(200);
 }
 }

The Input thread can be paused, if no data is available in the stream. That is done with a

state variable (paused) that is constantly checked (with waitWhileSuspended), in the run

method of this thread. Without this, the process would be kept active while waiting for input,

which would create a big impact in CPU usage.

Next methods of the NuSMVConsole class are provided.

public void loadConsole() {
 String[] cmdarray = {"","-int", nusmvFile};
 cmdarray[0] = ""+System.getProperty("user.dir") + File.separator +
 "NuSMV" + File.separator + "bin" + File.separator + "NuSMV";

 ProcessBuilder pb = new ProcessBuilder(cmdarray);
 pb.redirectErrorStream(false);

 try {
 proc = pb.start();
 } catch (IOException ex) { }

 InputStream inputStream = proc.getInputStream();
 OutputStream outputStream = proc.getOutputStream();

 InputStreamReader inputStreamR = new InputStreamReader(inputStream);
 OutputStreamWriter outputStreamW = new OutputStreamWriter(outputStream);

 brInput = new BufferedReader(inputStreamR);
 bwOutput = new BufferedWriter(outputStreamW);
 }

66

The loadConsole method sets NuSMV’s command path, which has to be inside IVY

Workbench application path and more specifically in NuSMV/bin/NuSMV, and starts a java

process with it. Then its input (brInput) and output (brOutput) streams are retrieved.

 void execCommand(String command) {
 input.setPaused(false);
 try {
 bwOutput.write(command);
 execNewLine();
 } catch (IOException ex) {

 }
 }

The execCommand method is used to send a command to the NuSMV process. Each time

it is executed it starts by activating the Input thread (awaking it).

void readChar() {
 int c = 0;
 char ch = 0;
 try {
 c = brInput.read();

 if (c == -1) {
 input.setPaused(true);
 parser.selectFirstState();
 return;
 }

 ch = (char) c;
 } catch (IOException ex) { return; }

The readChar method will read a character at a time from brInput. This has to be done in

this way (the usual way is to read line by line) because sometimes the NuSMV process does not

print the last line of result, for example when it is waiting for the user to choose a state and

subsequently to press enter (newline). When brInput returns no char (a value equal to -1), then

Input thread is paused and readChar methods returns immediately.

 if (ch=='\n') {
 str = sb.toString();
 parser.parseLine(str);

67

 sb = new StringBuffer();
 consola.append(str+"\n");
 consola.setCaretPosition(consola.getDocument().getLength());
 }

The characters consecutively read by the readChar method are accumulated in a

StringBuffer (sb), until a newline (\n) is read. In that situation, the stringBuffer is transformated

in a String (the read line), which is sent to the Parser to be parsed and printed in the JTextArea

Log. The StringBuffer sb is also cleared to begin accumulating characters to form the next line.

 else {
 sb.append(ch);
 aux = sb.toString();

 if (aux.matches(" action = [a-zA-Z0-9]+") && containsAction(aux)) {
 parser.parseLine(aux);
 consola.append(aux);
 consola.setCaretPosition(consola.getDocument().getLength());
 sb = new StringBuffer();
 }

If ch is not newline then it is accumulated in sb. Then a test is made to determine if the

string is an action (using the containsAction method). This is the strategy used to overcome

the problem of NuSMV not printing the last line of command output, which originates the last

action of a state’s result of a command not being parsed. This strategy works because the action

is the last line printed by NuSMV in any state attributes listing.

The containsAction method checks if a string passed as a parameter (aux) is a valid

action in the interactors model.

private boolean containsAction(String aux) {
 try {
 ArrayList<String> actions =
 imodel.getActionsVariable("main.action");
 aux = aux.replace(" action = ","");

 boolean match = false;

 String ac;
 aux = aux.trim();

68

 String encontrada = "";

 for(String act: actions) {
 ac = act.trim();

 if (ac.compareTo(aux)==0) {
 match = true;
 encontrada = ac;
 break;
 }
 }

If an action is encountered (match is true) then an additional test is made. This handles the

situation when one action has a name that starts with another action name. For example:

setValueMCP and setValue. If this verification is not performed, then if the correct action to be

matched is setValueMCP, what is (wrongly) matched is setValue.

 if (match) {
 for(String act: actions) {
 ac = act.trim();

 if (ac.contains(encontrada) &&
 ac.length() > encontrada.length())
 return false;
 }
 }
 return match;
 }
 catch (Exception e) {
 return false;
 }
 }

6.3. Conclusion

This chapter described the implementation of WildAniMAL as a plugin for the IVY Workbench

tool. Section 6.1 presented a high level view of how the implementation code was organized. As

the work of implementation was a Java programming task, this was explained with UML class

diagrams, showing how classes were organized into packages.

69

Section 6.2 makes an extensive explanation of the code. One reason to do that is to fully

present some problems that were encountered during development, and how they were

overcome. By explaining the implementation in detail, it becomes easier for anyone to

understand the code and consequently improve it at a later occasion. This also made it possible

to think about how some implementation choices were made, and in the task of writing the

explanation to describe this code, some methods were implemented in a more efficient way.

70

Chapter 7 – Using WildAniMAL

This chapter demonstrates the WildAniMAL plugin of the IVY Workbench tool. Section 7.1

presents a simulation example that makes extensive use of all the functionalities available in the

plugin. Section 7.2 presents the conclusions of this chapter.

7.1. WildAniMAL’s Usage Example

To explain how the WildAniMAL plugin can be used, a small example of an Ipod-like music

player will be introduced. To be able to keep the explanation short and understandable, some

aspects of the real device will be abstracted in order to work with a simpler model.

First an interactors model of the device will be created using the Model Editor plugin of the

IVY Workbench (see Figure 38).

T

The full intera

Figure 38

actors model

8 Ipod model

l is presented

71

l creation wit

d in Appendix

th Model Edit

x II.

tor plugin.

A

in the

in the

then t

 N

interm

State

states

action

(reme

After the mod

e Properties E

e “bug” butto

the respectiv

Figure

Now we can

mediate repr

e” button (s

s can be ac

ns, one for e

ember that th

del’s creation

Editor plugin

on (near the

ve NuSMV sp

e 39 Ipod int

really start s

resentation. W

ee Figure 40

cessed from

each possible

he nil action

n, it has to b

of the IVY W

“X” button) o

pecification is

teractor mode

simulating th

When in Wld

0). That ope

 the Actions

e initial state

represents a

72

be compiled t

Workbench. T

of the Prope

s shown (see

el compilatio

he NuSMV sp

dAniMAL, the

eration result

s list. Note t

, since no ac

a state transi

to a NuSMV

o perform th

rties Editor.

Figure 39).

on with Prope

pecification, w

e first thing t

s in a list of

hat in this c

ction is perfo

ition without

specification

at compilatio

If the compila

erties Editor p

which is the

to do is click

f available in

case the list

ormed to rea

an associate

n. That is ach

on we have to

ation is succ

plugin.

interactors

k the “Get I

nitial states.

will only ha

ach the initia

ed action).

hieved

o click

cessful

model

Initial

These

ve nil

l state

 I

attrib

Actio

State

n the curren

utes can be

ons list. To

e” button.

Figure 40 Re

nt model, th

looked up in

choose the

esult of press

here is only

n the State

state we ha

73

sing “Get Init

one initial

 Info list (se

ave to click t

tial State” in

state (nil ac

ee Figure 40)

the “Pick A

WildAniMAL

ction) to cho

) by selecting

n Action T

.

oose. That s

g the action

To Go To A

state’s

in the

 New

 T

the A

one le

I

situat

in Fig

hund

that t

I

seque

diagra

Figure

To perform th

Actions list.

eading to a n

n this exam

tion is reache

gure 41. Afte

red possible

there are “To

n this case

ence of actio

am (see Figu

e 44). The

he interactive

Each time th

new state.

ple, if the ac

ed, in which

er plugHead

states). In th

oo Many State

Figure 41 S

we might w

ons and stat

ure 42), usin

State Based

e simulation,

he “Pick …”

ctions: nil a

it is not pos

dsets, the lis

hat case, the

es”.

Simulation rea

want to look

tes of the in

g a Tabular

d diagram a

74

 we simply h

” button is c

and plugHea

ssible to cont

st of possible

e actions list

ached a “Too

at the sequ

nteractive sim

representatio

and the Tab

have to conti

clicked, a new

adsets, are

tinue with the

e future state

presents only

o Many State

uence of the

mulation can

on (see Figur

ble are visua

nuously choo

w list of actio

chosen, in t

e simulation,

es is too larg

y one elemen

es” situation.

actions exe

n be shown

re 43), or as

al representa

ose an action

ons appears.

that order, t

, as it can be

ge (more tha

nt, which ind

ecuted so fa

as a State

a textual Lo

ation of the

n from

. Each

then a

e seen

an one

dicates

r. The

based

g (see

trace

gener

comm

check

rated in the s

munication (

ker.

Figure

Figu

simulation. T

(commands

42 State Ba

re 43 Tabula

The textual L

and their r

sed represen

ar representa

75

Log shows th

results) betw

ntation of the

ation of the tr

e details (ou

ween the pl

e trace create

race created

tput of NuSM

ugin and th

ed in the sim

in the simula

MV process)

he NuSMV

ulation.

ation.

of the

model

I

many

future

done

T

respe

the “S

states

show

n Figure 44,

y futures stat

e states that

as shown in

The constrai

ectively. Whe

Send” butto

s, then a new

wn in Figure 4

Figur

 we can see

tes to choos

t NuSMV can

 Figure 45.

nts can be

n all constra

on. If the con

w actions list

46.

re 44 Log rep

that the cur

se from (mor

n handle). In

created usi

aints are crea

nstraints are

is available t

76

presentation

rrent simulati

re than one

n this case,

ng the + an

ated, they ar

successful i

to continue t

of the simul

on reached a

hundred, tha

constrains h

nd – button

re sent to the

n the job of

the simulatio

ation.

a situation w

at is the max

ave to be en

s, to add a

e NuSMV mo

reducing the

n. That is th

where there a

ximum num

ntered and t

and remove

odel checker

e number of

he current ca

are too

ber of

that is

them,

using

future

ase, as

O

return

const

leads

the h

Basic

happe

corre

Once the con

ned (see Fig

traint action

s to two state

headsets are

cally it mean

en in real w

cted.

nstraints (see

gure 46), an

n = unplug

es. The prob

unpluged fr

ns that if he

world, the o

Figure 4

Figure 45

e Figure 45)

irregular sit

gHeadsets,

lem is that o

rom the Ipod

eadsets are

original intera

46 Result of a

77

5 Constraints

have been s

tuation occu

using the F

one of these

d, then the

unpluged, t

actors mode

application of

s insertion.

successfully

rs. When filt

Filter button

makes no se

new value o

hey remain

el probably

f the constra

sent, and a

tering the ac

, we can se

ense, becaus

of headsets

pluged. Bec

has an erro

ints sent.

new actions

ctions list wi

ee that this

se it means

sState is plu

cause that c

or and has

list is

th the

action

that if

uged.

cannot

to be

A

the b

solve

 T

pause

heads

playb

playb

 A

Prope

simul

Ipod

of the

After an anal

behaviour of

this two new

These new a

ed (playbac

sets will b

backState st

backState f

After changin

erties Editor,

lation, we ca

model has th

e new simula

ysis of the in

the curren

ws axioms ha

axioms will g

ck = pause

be unpluged

ates will be

from non-det

ng the intera

, we can go

an see that n

he expected

ation, in Figur

nteractors mo

ntSong and

ave to be add

guarantee tha

d), and an a

d (headset

e kept. Doi

erministically

actors mode

o back to W

ow the situat

behaviour. T

re 47.

78

odel, the con

playbackS

ded. These ax

at, when the

action to un

tsState=unp

ing this pre

y assuming v

el in the Mo

WildAniMAL t

tion “Too Ma

That can be v

nclusion is th

State variabl

xioms are:

e Ipod is sto

nplug the hea

plugged) a

events the

values.

odel Editor, a

to perform a

any States” n

verified, look

hat under som

es was not

ped (playba

adsets is ca

and the cu

variables cu

and compilin

a new simu

no longer app

ing to the sta

me circumst

being define

ack = stope

rried on, the

urrent song

urrentSong

ng it again

ulation. Doing

pears and th

ate based dia

tances

ed. To

ed) or

en the

g and

g and

in the

g that

hat the

agram

Figure

e 47 State Baased represe

79

entation of a t

trace originatted in a simuulation.

80

7.2. Conclusion

This chapter presented an interactors model of an Ipod-like device. It was shown how that

model can be created, compiled to a NuSMV specification and simulated with WildAniMAL.

We demonstrated how WildAniMAL can be useful in the task of detecting bugs and errors in

an interactive manner. The situation (error in the model) that was presented and corrected was

representative of other similar situations that can occur in other models.

What is important to retain is that we can easily validate an interactors model and see if it

behaves how we expect it too. If that does not happen, then we can use WildAniMAL

functionalities to find out why. Doing this early validation is useful, because we can construct the

interactors model incrementally by validating some steps at a time, instead of creating the big

model and verify it as one.

81

Chapter 8 – Conclusions and

Future Work

This chapter summarizes the work done and all results achieved. Some future work can be

done in order to improve this WildAniMAL plugin, and therefore the aspects that can be worked

on are also presented.

8.1. Goal

The goal of this work was to develop a plugin to help an IVY Workbench user while creating

an interators model to interactively explore its behaviour: that is, enable the user to manually

trigger events and observe how the model evolves. WildAniMAL (Watch It vaLiDation Animator for

MAL) can perform this. It assists the modelling and analysis process, by providing functionalities

to simulate and validate the model being created.

8.2. Results

In order to implement the plugin, three possibilities were studied (see Chapter 5):

a. representing a MAL interactors model as a Finite State Machine (FSM) and use that to

drive the animation;

b. use the BDD (Binary Decision Diagrams) representation of the MAL interactors model,

created by the NuSMV model checker, to perform the animation;

c. use the NuSMV model checker simulations commands, available on its interactive mode,

to perform the animation.

82

After an analysis of the different alternatives it was decided to use the NuSMV’s simulation

capabilities in the implementation of WildAniMAL. The implementation is described in Chapter 6.

The implemented plugin supports the animation of models as intended. At each step the

user can select one of the available actions and the animator presents the state (or possible

states, in case of non-determinism) resulting from that action.

During the process of implementing the plugin, problems related to existence of non-

determinism in the models arose. These related both to NuSMV not generating the list of possible

future states, after a transition, if the number of states in the list exceeds one hundred, and also

because even if the list of possible states is less than one hundred, it might be too large for a

human user to analyse it. These issues were solved with the introduction of constraints to delimit

the effect of actions in the state of the system, and thus reduce non-determinism in the

simulation.

A first result of this dissertation is that the goal of this work, recalled in the previous Section,

has been achieved as is demonstrated by the example presented in Chapter 7.

A parallel result of the work, that is not apparent in the thesis, but is nevertheless important

for the IVY workbench development project, was the improvement of the existing plugins. When

implementing the WildAniMAL plugin, some parts of the code of the CoreSystem and of its

plugins were improved, and now more efficient data structures are used. The tool was developed

in 2006 and since then many developments and changes were introduced in the Java language.

Two examples of it, relating to data structures, are the use of ArrayLists instead of Vectors, and

HashSets instead of HashMaps. Also, when detected, some parts of the code were rewritten, to

be more easily understood or simply because minor bugs could happen as the code had some

minor faults. Other times the improvement was to clear code, as some redundancy was present.

Another result achieved is that the IVY Workbench was extensively tested, because that was

needed to test the WildAniMAL’s implementation and usage. That enabled the detection of some

situations when it did not work as expected, and demanded a need to correct the interoperability

of all the plugins and the CoreSystem of the tool. That was done. Developing WildAniMAL also

enabled us to think about how the functionalities were initially implemented and how they could

be improved. This is specifically true in some aspects of usability.

83

 Another important result is that WildAniMAL implementation was fully documented, because

UML diagrams were created that describe its architecture and also because a detailed code

explanation was carried out. This results leads the way to its future improvement, as enables any

person to, relatively easily, understand its implementation and, if desired, improve its

functionalities and source code.

8.3. Future Work

As future work, a more efficient (or automatic) integration of the WildAniMAL plugin in the IVY

Worbench can be performed. Some steps of using it, require the use of other plugins of the IVY

Workbench tool. The use of the Model Editor plugin is obviously a requirement to build the

models, but using Properties Editor to compile the model created in the Model Editor should be

avoided. The user has to go there only to push a button to compile the model. That task can be

automated, but needs some changes in the CoreSystem, so that the compiler might be globally

available in the system.

Additionally work can be carried out in testing WildAniMAL with more examples. One way to

achieve this is to make it available to the Model Checking scientific community, so that different

people might benefit from its capabilities, and also contribute with their feedback to improve tool.

For example, suggesting improvements and new functionalities.

84

References

[1] E. M. Clarke, E. A. Emerson and A. P. Sistla, “Automatic verification of finite-state concurrent

systems using temporal logic specifications,” ACM Trans. Program. Lang. Syst., vol. 8, pp.

244-263, 1986.

[2] F. Paternó, “Design, Specification and Verification of Interactive Systems'94,” Proceedings

of the First International Eurographics Workshop, 8-10 June 1994.

[3] J. Campos and M. Harrison, “Model checking interactor specifications,” Automated Software

Engineering, vol. 8, pp. 275-310, 2001.

[4] K. Loer e M. Harrison, A framework and supporting tool for the model-based analysis for

dependable interactive systems in the context of industrial design, 2004.

[5] K. L. McMillan, Symbolic model checking, Kluwer Academic Publ, 1993.

[6] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, “NuSMV: a new Symbolic Model Verifier,”

in Proceedings Eleventh Conference on Computer-Aided Verfication (CAV'99), Trento, Italy,

1999.

[7] J. C. Campos and M. Harrison, “Systematic analysis of control panel interfaces using formal

tools,” XVth International Workshop on the Design, Verification and Specfication of

Interactive Systems (DSV-IS 2008), pp. 72-85.

[8] J. Campos and M. Harrison, “Modelling and analysing the interactive behaviour of an

infusion pump,” in Electronic Communications of the EASST 45: Fourth International

Workshop on Formal Methods for Interactive Systems (FMIS 2011), 2011.

[9] E. M. Clarke, “The Birth of Model Checking,” in 25 Years of Model Checking, O. a. V. H.

Grumberg, Ed., Berlin, Heidelberg, Springer-Verlag, 2008, pp. 1-26.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill and J. Hwang, “Symbolic model

85

checking: 1020 states and beyond,” in Proceedings 5th Annual Symposium on Logic in

Computational Science, 1990.

[11] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, “NuSMV: a new symbolic model

checker,” International Journal on Software Tools for Technology Transfer (STTT),, 2(4)

March 2000.

[12] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore, R. M. e A. Tchaltsev,

NuSMV 2.5 User Manual, 2010.

[13] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore, R. M. e A. Tchaltsev,

NuSMV 2.5 Tutorial, 2010.

[14] D. R. Wright, “Finite State Machines,” 2005. [Online]. Available:

http://www4.ncsu.edu/~drwrigh3/docs/courses/csc216/fsm-notes.pdf. [Acedido em 25

October 2012].

[15] A. Gill, Introduction to the theory of finite-state machines, McGraw-Hill, 1962.

[16] S. B. Akers, “Binary Decision Diagrams,” IEEE Trans. Computers 27, vol. 6, n.º 509-516,

1978.

[17] H. R. Andersen, An Introduction to Binary Decision Diagrams, IT University of Copenhagen,

1999.

[18] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams,”

ACM Computing Surveys, vol. 24, pp. 293-318, September 1992.

[19] D. J. a. H. M. D. Duke, “Abstract interaction objects,” Comput. Graph. Forum 12, vol. 3, pp.

25-36, 1993.

[20] M. Ryan, J. Fiadeiro e T. Maibaum, “Sharing actions and attributes in modal action logic,”

Theoretical Aspects of Computer Software, pp. 569-593, 1991.

[21] E. Clarke, O. Grumberg e D. Peled, Model Checking, MIT Press, 1999.

[22] Group, Object Management, Unified Modeling Language: Superstructure version 2.0, 2005.

[23] J. C. Campos, J. Machado e E. Seabra, “Property patterns for the formal verification of

automated production systems,” pp. 5107-5112, 2008.

[24] N. M. E. Sousa and J. C. Campos, “Um visualizador de tracos de comportamento para a

86

ferramenta ivy. IVY Technical Report IVY-TR-5-03,” October 2006.

[25] G. Mori, F. Paternò and C. Santoro, “CTTE: support for developing and analyzing task

models for interactive system design,” Transactions on Software Engineering archive, vol. 28

Issue 8, August 2002.

[26] F. Paternó, Model-Based Design and Evaluation of Interactive Applications, Springer, 2000.

[27] F. Paternó, “Task models in interactive software systems,” Handbook of Software

Engineering and Knowledge Engineering, 2001.

[28] D. Paquette, Simulating task models using concrete user interface components, 2004.

[29] N. Guerreiro, S. Mendes, V. Pinheiro e J. C. Campos, “Animal - a user interface prototyper

and animator for mal interactor models,” Interação 2008 - Actas da 3a. Conferência

Nacional em Interação Pessoa-Máquina, pp. 93-102, 2008.

87

Appendix I – Build.xml

<?xml version="1.0" encoding="UTF-8"?>
<project name="Ivy WorkBench" default="help" basedir=".">

 <!-- Properties :

 app.name - Name of application.
 app.version - Version of application.
 build.home - The directory where the built application is to be put.
 build.plugin.dev - The directory where to put the jars that are needed
 for plug-in development.
 ipf.system - Name of jar file to generate when targeting the jars for
 plug-in development.
 -->

 <property name="app.name" value="ipf"/>
 <property name="app.version" value="0.1"/>
 <property name="build.home" value="${basedir}/build"/>
 <property name="build.plugin.dev" value="${basedir}/dev-plugin"/>
 <property name="ipf.system" value="${app.name}-${app.version}-system.zip"/>

 <!-- Paths :
__

 classpath - The class path to use when compiling the application.

 -->

 <path id="classpath">
 <fileset dir="lib" includes="*.jar"/>
 </path>

 <typedef resource="org/java/plugin/tools/ant/jpf-tasks.properties">
 <classpath refid="classpath"/>

88

 </typedef>

 <!-- Targets :
__

 help - Show some help on building the application.
 clean - Clean the proect build folder.
 build - Compile the aplication classes.
 docs - Generate Javadocs.

 -->

 <!-- Help ___
-->

 <target name="help">
 <echo>
 <![CDATA[
${app.name} build file:
clean - cleans up the project build folder
build - builds entire project
run - runs application
check - checks plug-ins integrity
docs - generates plug-ins documentation
dist - creates binary and source distribution packages
test - runs some tests
]]>
 </echo>
 </target>

 <!-- Clean __
-->

 <target name="clean" description="Cleans up the project build folder">
 <tstamp>
 <format property="dt-stamp" pattern="yyyy-MM-dd-HH-mm" />
 <format property="d-stamp" pattern="yyyy-MM-dd" />
 </tstamp>

 <delete dir="${build.home}" quiet="true" />
 <delete dir="${build.plugin.dev}" quiet="true" />

 <delete dir="${basedir}/plugins/CoreSystem/classes" quiet="true" />
 <delete dir="${basedir}/plugins/ModelEditor/classes" quiet="true"/>
 <delete dir="${basedir}/plugins/PropertiesEditor/classes" quiet="true"/>

89

 <delete dir="${basedir}/plugins/TracesAnalyzer/classes" quiet="true" />
 <delete dir="${basedir}/plugins/AniMAL/classes" quiet="true" />
 <delete dir="${basedir}/plugins/WildAniMAL/classes" quiet="true" />
 <delete dir="${basedir}/plugins/PVS/classes" quiet="true" />

 <mkdir dir="${build.home}/plugins/CoreSystem"/>
 <mkdir dir="${build.home}/plugins/ModelEditor"/>
 <mkdir dir="${build.home}/plugins/PropertiesEditor"/>
 <mkdir dir="${build.home}/plugins/TracesAnalyzer"/>
 <mkdir dir="${build.home}/plugins/AniMAL"/>
 <mkdir dir="${build.home}/plugins/WildAniMAL"/>
 <mkdir dir="${build.home}/plugins/PVS"/>

 </target>

 <!-- Init ___ -
->

 <target name="-init">
 <mkdir dir="${build.home}" />
 </target>

 <!-- Build PlugIns __ -->

 <target name="-build-plugins">
 <ant dir="plugins/CoreSystem" target="${target}"/>
 <ant dir="plugins/ModelEditor" target="${target}"/>
 <ant dir="plugins/PropertiesEditor" target="${target}"/>
 <ant dir="plugins/TracesAnalyzer" target="${target}"/>
 <ant dir="plugins/AniMAL" target="${target}"/>
 <ant dir="plugins/WildAniMAL" target="${target}"/>
 <ant dir="plugins/PVS" target="${target}"/>

</target>

 <!-- Build the Application __ -->

 <target name="build" depends="-init" description="Builds entire project">
 <antcall target="-build-plugins">
 <param name="target" value="build"/>
 </antcall>

 <copy todir="${build.home}/lib">
 <fileset dir="lib" includes="*.jar" />
 </copy>

90

 <copy todir="${build.home}">
 <fileset dir="." includes="*.*,**/*"
 excludes="nbproject/,todo*,build*,build/,plugins/" />
 </copy>

 </target>

 <!-- Run the Application __ -->

 <target name="run" description="Runs application">
 <antcall target="-build-plugins">
 <param name="target" value="build"/>
 </antcall>

 <java jar="${build.home}/lib/jpf-boot.jar"
 dir="${build.home}"
 fork="true"/>
 </target>

 <!-- Check Plugin Integrity ___ -->

 <target name="check"
 depends="build"
 description="Checks plug-ins integrity">
 <jpf-check basedir="${basedir}/plugins"
 includes="*/plugin.xml,*/plugin-fragment.xml"
 verbose="true"
 usepathresolver="true" />
 </target>

 <!-- Generate Javadocs __ -->

 <target name="docs"
 depends="build"
 description="Generates plug-ins documentation">
 <antcall target="-build-plugins">
 <param name="target" value="docs" />
 </antcall>
 <jpf-doc basedir="${build.home}/plugins"
 includes="*/plugin.xml,*/plugin-fragment.xml"
 destdir="${build.home}/docs"/>
 </target>

 <!-- Distribution for Plug-in Development _______________________________ -->

91

 <target name="plugin-dev"
 depends="clean,build"
 description="Prepares Jars for Plug-in development">
 <mkdir dir="${build.plugin.dev}"/>
 <copy todir="${build.plugin.dev}" includeemptydirs="false">
 <fileset dir="${build.home}/lib"
 includes="*.jar" />
 <fileset dir="${build.home}/plugins/CoreSystem"
 includes="*.jar" />
 </copy>
 <zip jarfile="${build.plugin.dev}/${ipf.system}" compress="${jar.compress}">
 <fileset dir="${build.plugin.dev}"/>
 </zip>
 <delete dir="${build.plugin.dev}" excludes="${ipf.system}"/>
 </target>

 <!-- Distribution ___ -->

 <target name="dist"
 depends="clean,build,docs"
 description="Prepares distribution packages">
 <jpf-zip basedir="${build.home}/plugins"
 includes="*/plugin.xml,*/plugin-fragment.xml"
 destdir="${build.home}/plugins"/>

 <delete includeemptydirs="true">
 <fileset dir="${build.home}/plugins">
 <include name="**/*"/>
 <exclude name="*.zip"/>
 </fileset>
 </delete>

 <zip destfile="${build.home}/${app.name}-bin-${app.version}.zip"
 duplicate="fail"
 update="false">
 <fileset dir="${build.home}" includes="**/*"/>
 </zip>

 <zip destfile="${build.home}/${app.name}-src-${app.version}.zip"
 duplicate="fail"
 update="false">
 <fileset dir="${basedir}"

92

excludes="build,**/classes/**,.check*,.fb*,nbproject/private/**,build/**,logs/**,data/**,temp/*
,.zip,todo.txt,plugins/org.jpf.demo.toolbox.ftpmonitor/**"/>
 </zip>

 <delete includeemptydirs="true">
 <fileset dir="${build.home}">
 <include name="**/*" />
 <exclude name="${app.name}-???-${app.version}.zip" />
 </fileset>
 </delete>
 </target>

 <!-- Run Tests. ___ --
>

 <target name="test" depends="build" description="Some tests">
 <jpf-pack basedir="${build.home}/plugins"
 includes="*/plugin.xml,*/plugin-fragment.xml"
 destfile="${build.home}/all-plugins.jpa" />
 <mkdir dir="${build.home}/all-plugins-extracted" />
 <jpf-unpack srcfile="${build.home}/all-plugins.jpa"
 destdir="${build.home}/all-plugins-extracted" />
 </target>

</project>

Apppendix III – Ipodd intera

93

actors mmodel

94

95

	Capa-MIMEI Preenchida
	WildAniMAL 2

