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Summary 

Cardiovascular diseases (CVDs) are the leading cause of death in the world, representing 

30% of all global deaths. Among others, assessment of the left ventricular (LV) morphology and 

global function using non-invasive cardiac imaging is an interesting technique for diagnosis and 

treatment follow-up of patients with CVDs. Nowadays, cardiac magnetic resonance (CMR) 

imaging is the gold-standard technique for the quantification of LV volumes, mass and ejection 

fraction, requiring the delineation of endocardial and epicardial contours of the left ventricle from 

cine MR images. In clinical practice, the physicians perform this segmentation manually, being a 

tedious, time consuming and unpractical task. Even though several (semi-)automated methods 

have been presented for LV CMR segmentation, fast, automatic and optimal boundaries 

assessment is still lacking, usually requiring the physician to manually correct the contours. 

In the present work, we propose a novel fast fully automatic 3D+time LV segmentation 

framework for CMR datasets. The proposed framework presents three conceptual blocks: 1) an 

automatic 2D mid-ventricular initialization and segmentation; 2) an automatic stack initialization 

followed by a 3D segmentation at the end-diastolic phase; and 3) a tracking procedure to 

delineate both endo and epicardial contours throughout the cardiac cycle. In each block, specific 

CMR-targeted algorithms are proposed for the different steps required. Hereto, we propose 

automatic and feasible initialization procedures. Moreover, we adapt the recent B-spline Explicit 

Active Surfaces (BEAS) framework to the properties of CMR image segmentation by integrating 

dedicated energy terms and making use of a cylindrical coordinate system that better fits the 

topology of CMR data. At last, two tracking methods are presented and compared. 

The proposed framework has been validated on 45 4D CMR datasets from a publicly 

available database and on a large database from an ongoing multi-center clinical trial with 318 

4D datasets. In the technical validation, the framework showed competitive results against the 

state-of-the-art methods, presenting leading results in both accuracy and average computational 

time in the common database used for comparative purposes. Moreover, the results in the large 

scale clinical validation confirmed the high feasibility and robustness of the proposed framework 

for accurate LV morphology and global function assessment. In combination with the low 

computational burden of the method, the present methodology seems promising to be used in 

daily clinical practice. 
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Resumo 

As doenças cardiovasculares (DCVs) são a principal causa de morte no mundo, 

representando 30% destas a nível global. Na prática clínica, uma técnica empregue no 

diagnóstico de pacientes com DCVs é a avaliação da morfologia e da função global do ventrículo 

esquerdo (VE), através de técnicas de imagiologia não-invasivas. Atualmente, a ressonância 

magnética cardíaca (RMC) é a modalidade de referência na quantificação dos volumes, massa e 

fração de ejeção do VE, exigindo a delimitação dos contornos do endocárdio e epicárdio a partir 

de imagens dinâmicas de RMC. Na prática clínica diária, o método preferencial é a segmentação 

manual. No entanto, esta é uma tarefa demorada, sujeita a erro humano e pouco prática. Apesar 

de até à data diversos métodos (semi)-automáticos terem sido apresentados para a 

segmentação do VE em imagens de RMC, ainda não existe um método capaz de avaliar 

idealmente os contornos de uma forma automática, rápida e precisa, levando a que geralmente 

o médico necessite de corrigir manualmente os contornos. 

No presente trabalho é proposta uma nova framework para a segmentação automática 

do VE em imagens 3D+tempo de RMC. O algoritmo apresenta três blocos principais: 1) uma 

inicialização e segmentação automática 2D num corte medial do ventrículo; 2) uma inicialização 

e segmentação tridimensional no volume correspondente ao final da diástole; e 3) um algoritmo 

de tracking para obter os contornos ao longo de todo o ciclo cardíaco. Neste sentido, são 

propostos procedimentos de inicialização automática com elevada robustez. Mais ainda, é 

proposta uma adaptação da recente framework “B-spline Explicit Active Surfaces” (BEAS) com a 

integração de uma energia específica para as imagens de RMC e utilizando uma formulação 

cilíndrica para tirar partido da topologia destas imagens. Por último, são apresentados e 

comparados dois algoritmos de tracking para a obtenção dos contornos ao longo do tempo. 

A framework proposta foi validada em 45 datasets de RMC provenientes de uma base de 

dados disponível ao público, bem como numa extensa base de dados com 318 datasets para 

uma validação clínica. Na avaliação técnica, a framework proposta obteve resultados 

competitivos quando comparada com outros métodos do estado da arte, tendo alcançado 

resultados de precisão e tempo computacional superiores a estes. Na validação clínica em larga 

escala, a framework provou apresentar elevada viabilidade e robustez na avaliação da morfologia 

e função global do VE. Em combinação com o baixo custo computacional do algoritmo, a 

presente metodologia apresenta uma perspetiva promissora para a sua aplicação na prática 

clínica diária. 
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1. Introduction 

1.1 Anatomy and physiology of the heart 

The heart is a hollow, cone-shaped muscular organ designed to pump the blood 

throughout the blood vessels to the entire body [1]. Although its relatively small size (roughly the 

size of a closed fist) and weight (an average mass of 250g in adult females and 300g in adult 

males), the heart is able to contract an estimate of 42 million times a year and pumps 2.5 

million liters of blood during this period [1, 2]. This important organ is located in the thoracic 

cavity between lungs in the mediastinum, resting in a tilted position on the diaphragm, with its 

base (broad superior end) pointing toward the right shoulder and its apex (pointed inferior end) 

pointing to the left hip [1-3]. 

Besides pumping the blood through the systemic and pulmonary vascular systems, the 

heart is responsible for regulating the blood supply according to the current body needs and for 

keeping the oxygenated blood separated from deoxygenated one [1]. To accomplish its goal, the 

heart is divided in four chambers: two ventricles and two atria [Figure 1.1]. The atria contract 

simultaneously and send blood into adjacent ventricles, which are then responsible for pumping 

it to the main vessels that will deliver it to the body organs. Between the two atria and the two 

ventricles are the muscular interatrial and interventricular septums, respectively [1-3]. 

 
Figure 1.1 - Internal heart anatomy [1]. 
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The heart is enclosed by a two-layered membrane, the pericardium [Figure 1.2A], which 

are separated by a thin film of lubricating serous fluid. The outer layer, the parietal pericardium, 

anchors the heart to the wall of the mediastinum, while allowing enough freedom for its fast 

contraction. The inner layer, called visceral pericardium, forms the outer surface of the heart, 

also designated as epicardium [1, 3, 4]. Regarding the heart wall, it is formed by three distinct 

layers [Figure 1.2A], namely the epicardium (external layer), the myocardium (muscular middle 

layer) and the endocardium (inner layer) [1-4]. The myocardium consists of the cardiac muscle 

tissue and represents 95% of the heart, being responsible for its ability to contract and for its 

pumping function [3]. The myocardial thickness varies accordingly to the required contraction 

force for blood ejection [Figure 1.2B]. Thus, it is thicker in the left ventricle and thinner around 

the atria [1, 2]. Finally, the endocardium is a thin layer of endothelium and covers the heart 

chambers and valves [1-3].  

The cardiovascular system is divided in two main circuits: the pulmonary circuit and the 

systemic circuit [Figure 1.1]. The first relates to the blood oxygenation, while the second delivers 

blood rich in oxygen to different body organs [1-4]. In this sense, the right atrium (RA) receives 

blood from three veins, namely the superior and inferior vena cavas and coronary sinus, and 

passes it to the right ventricle (RV) through the tricuspid valve (with three leaflets). The RV is filled 

and then contracts to eject the blood through the pulmonary valve into the two pulmonary 

arteries. After oxygenation, the blood enters the heart again from the pulmonary veins into the left 

atrium (LA), which then transfers it to the left ventricle (LV) through the bicuspid (mitral) valve 

(with two leaflets). The LV is responsible for the main contraction, pumping the blood through the 

aortic valve into the ascending aorta for further delivery [1-3]. In both ventricles, conical muscular 

projections of the myocardium, called papillary muscles, are responsible for securing the chordae 

 
Figure 1.2 - (A) Heart wall and pericardium. (B) Transverse view of ventricular walls showing 
difference in myocardial thickness (adapted from [3]). 
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tendineae that held each valvular cusp in position [1, 3]. The heart perfusion itself is performed 

by the coronary circulation, of critical importance as it is related with heart attacks. 

The heart’s pumping behavior is a coordinated sequence of events controlled by the 

conduction system of the heart, which is intrinsic to it [1-4]. In other words, the heart presents 

self-excitable cardiac cells capable of generating a contraction rhythm without the need for 

external nervous stimulation [1, 2]. The conduction system consists of specialized fibers that 

generate and distribute electrical impulses through the heart and stimulate the contraction of the 

atria and ventricles [Figure 1.4]. The cardiac impulse is automatically generated in the sinoatrial 

node at a given rate, the heart rate (HR), and is propagated through the atria, causing their 

simultaneous contraction and forcing the blood to pass into the ventricles. After reaching the 

atrioventricular node in the base of the right atrium, the impulse is slightly delayed, allowing the 

atrial contraction to finish before ventricular excitation occurs. After this delay, the impulse is 

conducted through the two branches of the atrioventricular bundle until it reaches the Purkinje 

fibers. Both are responsible for the contraction of the ventricles, which occurs almost 

simultaneously, slightly earlier in the apex and spreading upward to eject the blood out of the 

ventricles into the arteries [1-5]. 

The cardiac cycle is controlled by this cyclic pattern of excitations and depolarizations, 

which is repeated approximately every 0.85s, leading to a normal HR of about 70 beats per 

minute (bpm). A normal adult HR can vary between 60 to 100 bpm [1]. The cardiac cycle can be 

described in three phases based on its electrical behavior [Figure 1.4A], using the terms systole 

(contraction of heart muscle) and diastole (relaxation of heart muscle) [1, 3]. The first phase 

 
Figure 1.3 - Conduction system of the heart [1]. 
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corresponds to the atrial systole and lasts 0.15s. During this stage, the remaining blood in the 

atria is ejected into the ventricles. Thus, both atrioventricular valves are open and the semilunar 

valves are closed. The second phase is the ventricular systole and lasts about 0.30s. During this 

stage, the isovolumetric contraction of both ventricles occurs while the atria are in diastole 

(relaxed). The blood is ejected from the ventricles to the arteries through the open semilunar 

valves, and retrograde flow is avoided by closing the atrioventricular valves. Finally, the third and 

last phase corresponds to the atrial and ventricular diastole (lasts 0.40s), all four chambers are 

relaxed and the blood fills the atria and flows passively into the ventricles. Again, both 

atrioventricular valves are open to allow communication between corresponding atrium and 

ventricle, while the semilunar valves are closed [1, 3, 4]. 

The described electrical phenomenon is responsible for an electrical current flowing 

through the myocardium, which can be recorded in an electrocardiogram (ECG) trace [1-6]. This 

record helps the physician to evaluate the electrical activity of the heart, allowing him to detect 

possible irregular heartbeats, such as arrhythmias. The recording is possible by using several 

skin electrodes placed in known locations on the limbs and chest [5, 6]. A typical normal ECG 

has three deflections [Figure 1.4B], the P wave (atrial depolarization), the QRS complex 

(ventricular depolarization) and the T wave (ventricular repolarization) [1-6]. Although abnormal 

electrical activity can be detected and diagnosed, an ECG doesn’t give any information regarding 

the mechanical activity of the heart as it doesn’t affect its electrical behavior [4]. 

 
Figure 1.4 - (A) Stages of the cardiac cycle [1]. (B) Electrocardiogram trace of a cardiac cycle 
(adapted from [4]). 
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1.2 Cardiovascular diseases 

Cardiovascular diseases (CVDs) include all anomalies of the heart and circulatory 

system, such as coronary heart diseases (CHD), cerebrovascular accident (or stroke), congenital 

heart defects (a defect present at birth), cardiomyopathies (typically associated with progressive 

thickening and stiffening of the myocardium), arrhythmias (heart rhythm disorder), valvular heart 

diseases, rheumatic heart diseases (damage to heart muscle and valves due to rheumatic fever), 

among others [6-9]. 

Heart failure (HF) is, by definition, “a clinical syndrome that occurs in patients who, 

because of inherited or acquired abnormality of cardiac structure and/or function, develop a 

constellation of clinical symptoms (dyspnea and fatigue) and signs (edema and rales) that lead to 

frequent hospitalizations, poor quality of life and shortened life expectancy” [6]. In practice, HF 

corresponds to the loss of pumping efficiency by the heart, making it unable to maintain blood 

flow to meet the required body needs [3, 6, 9]. By decreasing its pumping efficiency, there is an 

accumulation of blood in the ventricles at the end of each cycle and gradually the end-diastolic 

volume (EDV - Section 1.4) increases [3]. Such increase is responsible for the overstretching of 

the heart, which eventually starts contracting less forcefully and can compromise the fraction of 

blood that is ejected during one cardiac cycle (i.e., the ejection fraction, EF - Section 1.4) [3, 6]. 

Therefore, this conditions can be associated with a depressed ejection fraction (<40, also 

referred as systolic failure) or a preserved ejection fraction (>40-50%, also referred as diastolic 

failure or heart failure with normal ejection fraction). Among the several causes of HF, the first 

type can be associated with CHD, non-ischemic dilated cardiomyopathy, toxic/drug-induced 

damage or arrhythmias. The second type includes pathological hypertrophy, restrictive 

cardiomyopathy or, simply, aging [6]. Despite recent advances in healthcare, HF is still 

associated with poor prognosis, with 30-40% of patients dying within 1 year after diagnosis and 

60-70% within 5 years [6]. 

CHD is the predominant cause of HF and is responsible for 60-75% of all cases, 

commonly also associated with hypertension [6]. CHD results from the effects of the 

accumulation of atherosclerosis plaques (cholesterol and fatty deposits) on the inner walls of the 

coronary arteries, reducing the blood supplied to the myocardium [3, 6, 9]. As a result of these 

deposits, a partial obstruction occurs, limiting blood flow into the myocardium and the patient 

acquires myocardial ischemia. Such condition can be asymptomatic, having no prior notice of an 

impending heart attack. A heart attack, also known as myocardial infarction, is related with a 
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complete obstruction of blood flow in a coronary artery. The term infarct is associated with partial 

tissue death due to interrupted blood supply, resulting in a loss of muscle strength due to the 

myocardial tissue death and replacement by noncontractile scar tissue [3, 6, 9]. Both myocardial 

ischemia and infarction can normally be detected by the evaluation of the heart structure and 

function, namely by the detection of a reduced ejection fraction [6]. 

Cardiomyopathy is a progressive disorder in which ventricular structure or function is 

impaired due to an abnormality in the heart muscle, usually enlarged, thickened and/or stiffened 

[3, 6, 9]. In non-ischemic dilated cardiomyopathy, the most common form of cardiomyopathy, 

the ventricles are enlarged and stretched (dilated), becoming weaker and slowing their pumping 

action. In hypertrophic cardiomyopathy, the wall thickens and hence the myocardial mass 

increases, again diminishing the pumping efficiency of the affected ventricle. However, the 

ventricle contraction is largely normal, which results in a normal ejection fraction [3, 6]. 

Concerning valvular heart diseases, any disease involving a valve of the heart is included 

and the two most common disorders are valve stenosis (narrowing and blood flow restriction) and 

valve insufficiency (also referred as regurgitation and associated with an incomplete closing of the 

affected valve) [3, 6, 9]. Among these diseases, some are associated with a reduced left 

ventricular EF, namely aortic valve stenosis and aortic insufficiency, both linked with a disorder in 

the communication between left ventricle and aorta [6, 9]. 

The most relevant behavioral risk factors for CVDs include tobacco use, insufficient 

physical activity, unhealthy diet and harmful use of alcohol [6, 7, 10]. Regarding metabolic risk 

factors, high cholesterol levels, hypertension, obesity and diabetes mellitus are among the most 

relevant factors for CVD death rates. In fact, it is estimated that 4.4 million deaths annually are 

related with cholesterol levels and 7 million with hypertension [6]. The change in diet habits 

(consumption of fruits and vegetables), regular physical activity, cessation of tobacco use and 

responsible consumption of alcohol have been shown to reduce the risk of cardiovascular 

diseases. Moreover, by preventing or treating hypertension, diabetes and raised blood lipids, the 

risk for CVDs can also be reduced [6, 7]. 

Cardiovascular diseases are the leading cause of death in the world [7, 10-12]. 

According to the World Health Organization (WHO), an estimated 17.3 million people died from 

CVDs in 2008, which represent 30% of all global deaths [7, 10]. Among these, 7.3 million deaths 

were due to CHD and 6.2 million due to stroke. Moreover, by 2030, it is expected an increase to 

23.3 million deaths, annually, from CVDs [7, 10]. The worldwide death distribution is 
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disproportional, with over 80% of CVD deaths taking place in low- and middle-income countries 

[Figure 1.5]. Such remark is probably related to the limited prevention efforts and limited access 

to effective health care services in these countries, which leads to little screening and impaired 

early diagnosis and treatment of CVDs. Regarding gender distribution, the global deaths are quite 

similar between men and women [7, 10]. In disability-adjusted life years (DALYs) lost, seen as 

healthy years of life lost, cardiovascular diseases are responsible for 10% of DALYs lost in low- 

and middle-income countries and 18% in high-income countries [8]. After HIV/AIDS, CHD and 

stroke are the leading diseases in DALYs lost, with 6.8% and 5% of all DALYs lost in men, 

respectively, and 5.3% and 5.2% in women [8]. Moreover, from 47 million DALYs lost globally in 

1990 due to CHD, an increase to 82 million DALYs lost in 2020 is expected. In turn, stroke was 

responsibility for 38 million DALYs lost globally in 1990, with an expected increase to 62 million 

DALYs lost by 2020 [8]. Overall, CVD rates are declining in the high income countries, but 

increasing in low- and middle-income countries, leading to an increase of mortality and morbidity 

rates, family suffering and staggering economic costs [6]. 

In Portugal, specifically, by 2009, CVDs were responsible for 31.9% of all deaths (33.4 

thousand people), which 44.3% and 55.7% of them were men and women, respectively [12]. 

According to WHO, the estimated age-standardized mortality associated with CVD and diabetes is 

185 and 125 per 100000 for men and women, respectively [Figure 1.5], which is similar to most 

high income countries [13, 14]. Moreover, 12% and 10% of years lost in men and women, 

respectively, were related to CVDs (representing 559 and 221 years lost per 100000 males and 

females, respectively) [12]. In comparison to Europe, Portugal has similar CVD-related death 

mortality and DALYs lost for CHD, but a higher DALYs lost due to stroke [8, 12]. By 2009, such 

 
Figure 1.5 - World distribution of estimated age-standardized mortality rate due to cardiovascular 
diseases and diabetes, by 2008 [13]. 
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numbers represented a health care cost associated with CVDs of € 1.2 billion, which represented 

6% of Portugal’s total health care expenditure [12]. 

In summary, all these reports and the known global population aging highlight the 

increasing need for powerful and efficient techniques for diagnosis and treatment follow-up of 

patients with CVDs. Among others, assessment of global left ventricular function using non-

invasive cardiac imaging seems to be an interesting technique for such purpose. 

1.3 Non-invasive Cardiovascular imaging 

Cardiovascular imaging revolutionized the practice of cardiology and became a valuable 

tool for visualization of cardiac structures and assessment of cardiac function [6, 15-17]. 

Nowadays, multiple modalities and approaches are available to assist the physicians, with 

specific advantages for the study of different aspects, areas and diseases [15]. Among the 

multitude of modalities, the most frequently used in cardiology are ultrasound (US) imaging, 

magnetic resonance imaging (MRI), computed tomography (CT) and nuclear imaging (Single 

Photon Emission Computed Tomography, SPECT, and Positron Emission Tomography, PET) [6, 

15, 17-22]. As stated, the study of different aspects request different modalities: the study of the 

myocardium is normally performed using MRI, SPECT or PET; cardiac function is assessed 

essentially by US and MRI; valve structure and function is evaluated using US; coronary arteries 

and associated diseases can be assessed by CT angiography; and vessels by MRI and CT, as well 

as ultrasound for peripheral vessels [15]. Each modality has its technical principles, equipment, 

advantages and disadvantages, which will be shortly discussed in the following sections. Further 

technical and clinical description can be found in subject-specific literature [15-17, 19-22]. 

1.3.1 Ultrasound imaging 

Ultrasound imaging uses the principle of ultrasound reflection at the interface between 

different structures to produce images of the inner structures of the body, namely the heart [3, 

15, 17, 22]. The ultrasound wave is generated by a piezoelectric crystal, is then reflected in the 

internal interfaces and detected by the same piezoelectric crystal. The measurement of such 

reflections as a function of time (amplitude versus time delay) gives information about the 

position of the interface and the acquired data can be reconstructed to obtain a 2D image [19]. 

Nowadays, certain transducers are even able to obtain 3D images over time, giving real-time 

dynamic images of the heart. Echocardiography is used for visualization and assessment of 

myocardium, cardiac chambers, valves and pericardium [6, 19]. Moreover, by using the Doppler 
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effect, Doppler echocardiography allows to measure the blood flow velocity across valves, within 

cardiac chambers and through great vessels [6, 19, 22]. 

In summary, US is a non-invasive, relatively inexpensive and portable imaging modality 

able to acquire cardiac images with excellent temporal resolution and without the need for 

ionizing radiation [15, 17, 19, 22]. Despite the presence of artifacts, it is one of the most used 

modalities in cardiology practice, being used for guidance during interventions and ideal for 

cardiac emergencies [19]. However, the use of echocardiography is limited by operator 

dependence, image quality and the need for an adequate acoustic window [22, 23]. 

1.3.2 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is an imaging modality based on the measurement of 

the magnetic properties of hydrogen nuclei distributed in the body [6, 15, 17, 19]. In the 

presence of a large constant magnetic field, usually 1.5 or 3 Tesla, the protons in the body are 

aligned, being then perturbed by the use of radio-frequency pulses. After excitation, they relax 

back to their initial state, resulting in a signal that can be detected and processed to generate an 

image [6, 17, 20]. Due to the huge amount of sequences (combinations of radio-frequency and 

magnetic field gradient pulses), MRI has the ability to generate a plenitude of different images 

with distinct characteristics and goals [23]. Although cardiac motion can be a challenge, one is 

able to obtain both static and cine (dynamic) images (by prospective or retrospective gating with 

an ECG), allowing the study of anatomy and function. Currently, cardiac magnetic resonance 

(CMR) is the gold-standard modality for accurate quantification of ventricular volumes, mass and 

ejection fraction, presenting a high accuracy, reliability and reproducibility [6, 24-27]. To this end, 

both long-axis (LAX) and short-axis (SAX) images can be acquired [Figure 1.6], consisting in the 

imaging of the structure axis and orthogonal views, respectively. Normally, a stack of SAX cuts is 

 
Figure 1.6 - Steady-state free precession (SSFP) cardiac magnetic resonance (CMR) images in: (A) 
two-chamber long-axis (LAX); (B) four-chamber LAX; and (C) short-axis (SAX) views. 
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acquired to cover the studied structure, while one or two LAX views (two-chamber or four-

chamber views) allow further evaluation [16, 17]. 

The main advantages of MRI are its non-invasiveness and lack of ionizing radiation, as 

well as its flexibility to acquire images in any image plane [6, 15, 17-20, 22-24]. Moreover, it 

provides a better contrast between different soft tissues than other modalities, namely CT. In 

cardiology practice, the variety of MR sequences and its moderately high spatial resolution permit 

the assessment of ventricular function, as well as information on morphology, myocardial 

perfusion, tissue viability and contractility, metabolism or even blood flow [6, 19, 23-25]. Thus, it 

is used for the diagnosis and follow-up of congenital heart diseases, cardiomyopathies, cardiac 

masses and other CVDs [6, 25]. However, MRI has the disadvantage of presenting a relatively 

low temporal resolution, relatively long scan time, high exam cost and contraindications in the 

presence of implanted cardiac devices. In certain sequences, the use of contrast, e.g. 

gadolinium, can be a limiting feature in patients with a renal disease [6, 17, 20]. Nevertheless, 

given its excellent accuracy and reproducibility [27], it remains the gold-standard modality for left 

ventricular morphology and global function assessment. Thus, the present study will focus on this 

modality. 

1.3.3 Computed Tomography 

Computed tomography (CT) is a fast, simple and non-invasive technique that produces 

images representing the X-ray attenuation properties of the scanned tissues [6, 15, 19, 21]. By 

transmitting an X-ray beam through the body, a 2D projection of such attenuation image is 

obtained, which can be acquired for several angles. By reconstruction algorithms, the set of 2D 

projections can be combined to create an image of the actual attenuation at each point scanned. 

At the end, a stack of 2D cross-sectional images are acquired with excellent spatial resolution 

and good soft tissue contrast [6, 19, 21]. After several technological advances, the use of multi-

slice CT led to the improvement of the temporal resolution as well [19]. To obtain dynamic 3D 

images, the acquisition of volumes can be prospectively or retrospectively gated with an ECG, 

allowing the reconstruction of these images at specific phases of the cardiac cycle [6, 21]. 

In cardiology practice, CT has become the standard modality for the visualization of the 

coronary arteries, with assessment of coronary calcification, stenosis grading and atherosclerosis 

plaques characterization by coronary CT angiography (requiring contrast agents) [6, 21]. 

Moreover, CT allows to assess anatomy and global function of the heart, pericardium and 
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masses [6]. In contrast, the use of ionizing radiation and the need for iodinated contrast agents 

are some limiting factors associated with this modality [6, 21, 23]. 

1.3.4 Nuclear imaging 

Nuclear imaging is a modality based on detecting radioactive labeled biochemical 

compounds (tracers) administrated to the patient usually by intravenous injection. Once inside 

the body, these specifically designed radioisotopes are able to trace physiological processes. Due 

to its active form, during radioactive decay they emit radiation in the form of photons that can be 

detected and used to create images of their distribution [6, 15, 18, 19, 22]. There are two main 

techniques in diagnostic nuclear medicine: SPECT and PET. In SPECT, gamma-emitting 

radionuclides are used and one or more gamma cameras detect the released gamma photons. 

After obtaining several 2D projections at different angles, a tomographic reconstruction can be 

performed to create a cross-sectional image of the tracer distribution which is linked to the 

process being studied [19]. In PET, positron-emitting radionuclides are used and a coincidence 

detector registers the emission events as a function of position and time. Afterwards, a 

processing unit is able to create a 3D volume of the radionuclide distribution [18, 19]. In contrast 

to CT and MR, designed mainly for anatomical imaging, SPECT and PET are designed for 

physiologic, metabolic and molecular imaging, being able to describe specific processes 

undergoing inside our body [6, 15, 18, 19]. Nowadays, hybrid scanners are combining PET or 

SPECT with high spatial resolution CT, or even MR, to associate the anatomical information given 

by the latter with the functional evaluation obtained with nuclear imaging, which is increasing 

their usefulness in clinical practice [19, 22]. 

In cardiology, these modalities are considered robust, accurate and reliable for clinical 

imaging of several diseases, namely for the assessment of myocardial perfusion, metabolism and 

viability, as well as the study of CHD and ventricular function. Its main disadvantages are the 

need for radiation and the limited spatial resolution obtained [15, 19, 22]. 

1.4 Quantification of cardiac function 

The accurate assessment of cardiac performance is clinically important to determine the 

disease severity and to evaluate the efficiency of the treatment. Non-invasive imaging is part of 

the daily clinical examination and has a primary role in the clinical assessment and patient 

management. Such clinical evaluation comprises both global and regional function of the heart 

[16, 17, 28, 29]. Although all four chambers have their clinical value in cardiac performance 
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assessment, the left ventricle has a vital role in cardiac function, thus explaining the interest in 

characterizing its global and regional function [29]. Therefore, the assessment of global left 

ventricular function (in CMR datasets) will be the main purpose of the present work. 

Assessment of global left ventricular function comprises the measurement of the 

adequacy of the LV to pump the blood into the aorta. Concerning CVDs diagnosis and follow-up, 

physicians are especially interested in computing left ventricular volumes and mass at two 

moments of the cardiac cycle, corresponding to the time of maximal filling/relaxation (end-

diastole, ED) and maximum emptying/contraction (end-systole, ES) [16, 28, 29]. Although ideally 

the changes in volumes and mass, as well as the rate of changes, could be essential for 

completely describe the global function, clinical routine only focuses on these two time points 

[16]. Thus, two cardiac indices are measured for global morphological assessment, namely end-

diastolic volume (EDV) and end-systolic volume (ESV). From these two volumetric parameters, 

other global cardiac functional parameters can be deduced, such as stroke volume (SV), cardiac 

output (CO) and ejection fraction (EF) [16, 28, 29]. SV is defined as the volume ejected between 

the end-diastole and end-systole moments and is given by equation (1.1). In turn, cardiac output 

measures the quantity of oxygenated blood supplied to the body. It depends on the patient’s 

heart rate, is expressed in liters per minute and is given by equation (1.2). Lastly, EF is the 

volumetric fraction of blood pumped out in each cardiac cycle, being computed from SV and EDV 

according to equation (1.3). EF is normally considered one of the most meaningful measures of 

the LV function [28, 29], with clinical value in HF, valvular heart disease, among others [6, 30-

33]. Note that the accuracy by which both EDV and ESV are determined limit the reliability of the 

deduced cardiac parameters, which in turn can have an influence in patient management and 

disease diagnosis [16]. Another important global ventricular parameter is left ventricular mass 

(LVM) [16, 28, 29], which was proven to have a role in predicting morbidity and mortality in CHD 

[16, 34]. The computation of LVM can be obtained by multiplying the myocardial volume (volume 

between endocardium and epicardium,     ) with the specific density of this tissue, according to 

equation (1.4). These clinically relevant functional parameters can then be used by a physician to 

assess the global cardiac function of the subject by comparing them to established ranges of 

normal CMR values for healthy subjects [6, 35]. 

   (   )          (1.1)  

   (     )⁄        (1.2)  
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In order to compute these cardiac parameters, two different approaches can be used, 

namely geometric assumptions and true volumetric quantification [16, 36]. Geometric 

assumptions use standardized measurements of the cavity to compute its volume by assuming a 

specific geometric model. To this end, both SAX images (hemisphere cylinder model, modified 

Simpson’s technique or Teichholz model) and LAX images (biplane ellipsoid and single-plane 

ellipsoid model) or a combination of both (e.g., combined triplane model) can be used, with 

specific assumptions and, therefore, limitations [16, 36]. The main advantage of geometric 

assumptions is the rapid quantification, as only a limited number of measurements should be 

performed. However, the geometric model and its assumptions are only reliable if they coarsely 

correspond to the real patient-specific LV shape, which may not be the case in locally diseased 

ventricles [16]. Moreover, the intra- and inter-observer variability associated with all these models 

is considerably high for clinical, or even academic, use [36]. On the other hand, using the 

aforementioned non-invasive imaging modalities, namely 3D-echocardiography, CT and MRI, a 

true volumetric quantification is feasible by relying on the Simpson’s rule, i.e. the sum of multiple 

smaller volumes of similar configuration. According to this method, the quantification of separate 

volumes (one for each image in a stack covering the LV) and their summation result in the total 

ventricle volume [16, 28, 29, 36]. Such volumetric quantification generally leads to more reliable 

volumes and mass estimation, but it is more time-consuming, both in terms of image acquisition 

and post-processing [16]. In practice, true volumetric quantification is generally used for its 

accuracy and reproducibility, therefore being addressed in the present work. 

Thus, in order to quantify the above cardiac indices, the delineation of both endocardial 

and epicardial contours of the left ventricle from a stack of cardiac images, namely cine MR 

images, is required. From the endocardial delineation, one is able to compute the corresponding 

LV cavity’s area. Then, this area is multiplied by the interslice distance (slice thickness plus slice 

gap, if present), resulting in the volume calculation for the studied slice. By repeating this process 

for all slices covering the LV, from the atrioventricular ring to the apex, and summing them, the 

total ventricular volume is obtained [16]. Therefore, EDV, ESV, SV, CO and EF can be computed 

and used for clinical evaluation. For LVM computation, both delineated contours should be used. 

In this sense, the myocardial volume (    ) correspond to the subtraction of the cavity’s volume 

(area inside endocardium) from the epicardial volume (area inside epicardium). Again, by 
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computing the area for each slice and multiplying by the interslice distance, LVM is then obtained 

by summing all volumes and multiplying by the myocardium density (equation (1.4)) [16]. 

In addition to clinical cardiac indices computation, the delineated contours are also 

important for analysis of wall abnormalities and comparison with other images of the same 

subject (other CMR sequences or even other modalities, such as CT). In this sense, a 17-

segment frame of reference is usually used [16], dividing the left ventricle into three SAX planes 

along the LV long-axis: basal, mid-ventricular (or mid-cavity) and apical slices [Figure 1.7]. Each 

SAX plane is further radially divided into segments: 6 segments for basal and mid-ventricular 

levels and 4 segments for the apical level [Figure 1.7A-C]. The 17th segment corresponds to the 

apex, being only visualized in LAX images. Such division will be used throughout this work to 

locate and analyze the delineation (in)accuracy. 

Besides global ventricular function, also regional function can be assessed, namely 

myocardial wall thickness, systolic wall thickening and circumferential and longitudinal wall 

motion or shortening [16, 28]. Myocardial thickness can be calculated taking into account both 

endocardial and epicardial contours. Concerning wall thickening, its absolute or percentual value 

can be computed by considering both ED and ES regional wall thickness. Moreover, the internal 

deformation of the myocardial wall can also be studied and quantified by strain analysis [28]. 

Note that the LV division scheme presented above is fundamental in such regional assessment of 

LV performance [Figure 1.7]. Although important for several cardiac diseases, these regional 

cardiac indices will not be addressed in the present work. Notwithstanding, it is crucial to keep in 

mind the importance of longitudinal wall motion in the computation of volumes, in order to 

correct for through-plane motion [16]. 

 
Figure 1.7 - 17-segment frame of references used for LV division. 
The 17-segment division separates the SAX slices into (A) 6 basal, (B) 6 mid-ventricular and (C) 4 apical 
segments, with (D) segment 17 being the apex in LAX image. Nomenclature of the segments: 1, 7 and 13: 
anterior; 2 and 8: anteroseptal; 3 and 9: inferoseptal; 4, 10 and 15: inferior; 5 and 11: inferolateral; 6 and 12: 
anterolateral. 
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1.5 Motivation 

In clinical practice, manual segmentation is usually performed for LV contouring, being a 

tedious, time consuming and unpractical task [29], normally requiring between 6 to 20 minutes 

to segment all slices covering the LV only in the ED and ES cardiac phases [29, 36, 37]. 

Moreover, manual delineation is prone to intra- and inter-observer variability, mainly associated 

with the choice of ED and ES phases, the choice of the most basal LV slice and the chosen 

endocardial edge selection approach (Section 2.1) [35, 36]. In fact, the analysis methodology 

used is a major source of variability in a “real-world” scenario, leading to significant differences in 

the quantification of LV indices. In practice, such differences would request specific reference 

ranges depending on the contouring methodology used [36]. Although manual segmentation is 

still extensively used in clinical practice for left ventricle delineation in CMR datasets, its 

disadvantages  allow  us  to understand the  importance of developing a robust, efficient, 

accurate and fast segmentation method. Such solution would permit to compute relevant cardiac 

parameters without the user-induced variability and in a more time efficient manner. 

To date, several methods have been presented for (semi-)automated LV CMR 

segmentation (Section 2.2) [29]. Moreover, several commercial software packages are nowadays 

available for manual, semi-automated or automated analysis of CMR datasets (Section 2.3). 

Notwithstanding, due to the difficulties in designing a solution able to deal with the segmentation 

challenges presented in CMR images (Section 2.2) [29, 38], fast, automatic and optimal 

boundaries assessment from base to apex is still lacking, usually requiring the physician to 

manually correct the contours [36, 37, 39, 40]. Thus, LV CMR segmentation remains an open 

problem with significant clinical value, easily noticed by the constant attention in the research 

field [29, 38, 41-46]. 

Both available (semi-)automated methods in research and their commercial counterparts 

are still requiring user interaction (in different levels) or lack accuracy and robustness for having 

success in daily clinical practice [39, 40]. Moreover, only a few allow tracking of the contours 

throughout the cardiac cycle by segmenting every cardiac phase. Such delineation of the full 

3D+time CMR dataset can introduce further knowledge about the variation of left ventricular 

volumes and other quantitative parameters, which may be used to complement the heart 

contractile function characterization [3]. At last, the time required to obtain these segmentations 

is a limiting factor, being a critical aspect for success when introducing a methodology in daily 

clinical practice. 
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1.6 Aims and contributions 

The focus of the present work was to develop a fast fully automatic 3D+time LV 

myocardial segmentation framework for CMR datasets with accurate shape delineation and low 

computational burden, to be of interest in daily clinical practice, allowing both left ventricular 

morphology and global function assessment. Hereto, the recent B-spline Explicit Active Surfaces 

(BEAS) framework developed by Barbosa et al. [47] (Section 2.4) was used as starting point to 

design the LV CMR-specific segmentation platform. 

The main goals/contributions of the present work are as follow: 

1. Study of the state-of-the-art of LV segmentation for CMR datasets, along with the 

challenges and difficulties present in these images; 

2. Development of a CMR myocardial segmentation framework and subsequent 

validation of each step of the methodology, including: 

a) Development of a novel automatic initialization procedure, based on 

thresholding and elliptical template matching, for LV detection and 

initialization in mid-ventricular SAX cuts. 

b) BEAS algorithm implementation for coupled 2D CMR segmentation; 

c) Development of a hybrid CMR-targeted segmentation energy designed to 

tackle the specific challenges of this modality; 

d) Development of an automatic stack initialization algorithm, using a 

threshold-based BEAS formulation, and a method for correction of 

misalignment between slices; 

e) 3D extension of the BEAS framework, including reformulation of the 

segmentation problem for a cylindrical space, suited to deal with the 

CMR data anisotropy; 

f) Implementation and study of two tracking methodologies, namely a 

profile matching based BEAS and an anatomical affine optical flow 

method, for endo and epicardial boundary detection throughout the 

cardiac cycle. 

3. Clinical validation of the developed framework in an extensive database with 

“real-world” variability in both contrast and anatomical and functional 

characteristics. 
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1.7 Thesis Overview 

The current chapter introduced the clinical context of the present work, giving an 

overview on the cardiovascular system and related diseases, along with a description of non-

invasive imaging modalities used in cardiology. Moreover, an explanation of the quantification 

methods for left ventricular global function assessment was given. Finally, the motivation, the 

goal and the main contributions were presented. The next chapters will be devoted to the 

development of the introduced topics. 

The second chapter aims to present the state-of-the-art on LV CMR segmentation, 

including research and commercial solutions. Manual contouring techniques, challenges and 

pitfalls are also discussed to better understand how a (semi-)automated method can help in 

clinical practice. At last, the B-spline Explicit Active Surface framework, which will be used as 

starting point to design the LV CMR-specific segmentation platform, is described. 

The third chapter presents the methodologies developed in the present thesis to achieve 

the main goal of this work, comprehending an automatic 2D mid-ventricular initialization and 

segmentation method, an automatic stack initialization and a 3D segmentation algorithm for the 

ED phase, and two tracking procedures to delineate both endo and epicardial contours 

throughout the cardiac cycle. 

The fourth chapter focuses on the achieved results, on a publicly available database, for 

each developed module of the proposed framework. In addition, a comparison against state-of-

the-art methods is given to understand the relevance of the present work in the scientific context. 

The fifth chapter discusses the main results and gives some insights on the accuracy and 

robustness of the proposed framework for LV CMR segmentation. 

The sixth chapter reveals the clinical validation of the proposed automatic segmentation 

framework in an extensive multi-center database with “real-world” variability, ultimately assessing 

the interest from the daily clinical practice point-of-view. 

Finally, the seventh chapter presents the main conclusions of the present thesis and 

gives some perspectives about possible future developments/improvements. 
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2. Cardiac Segmentation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





2. Cardiac Segmentation  

 

23 
 

2. Cardiac Segmentation 

2.1 Computed-assisted manual contouring in CMR datasets 

In daily clinical practice, manual contouring is the method of choice for true volumetric 

quantification of left ventricular global function in CMR datasets. To this end, the physician or 

radiologist has to delineate both endocardial and epicardial contours in all slices covering the LV, 

from the atrioventricular ring to the apex, in at least two cardiac phases: ED and ES [Figure 2.1]. 

Usually, 6 to 20 min are required for this delineation [29, 36, 37], which affects the time taken to 

execute a full cardiac exam. In fact, adding the relatively long scan time associated with MRI [17, 

20], a basic cardiac exam spends between 45 to 60 min for acquisition and analysis, which has 

implications for patient management and health costs. Nevertheless, when appropriately ordered, 

CMR can be cost effective by triggering major improvements in diagnostic accuracy, risk 

assessment and therapeutic decision making, therefore decreasing the overall exam use, 

shortening diagnosis time, improving patient outcome, decreasing hospitalizations and length of 

stay and reducing invasive procedures use [48, 49]. 

In order to be meaningful, the cardiac parameters quantified after contouring should be 

compared to normal reference ranges for healthy subjects. To this end, several studies have 

been performed to assess these ranges for different MRI acquisition sequences, such as SSFP 

[35, 50-52], Fast Low Angle Shot [53] or Turbo Gradient Echo [50]. Moreover, some of these 

studies evaluate the influence of gender, body surface area or age in these values [35, 50, 52], 

allowing a personalized management according to the patient’ characteristics [52]. 

 
Figure 2.1 - An example manual contouring of endocardial and epicardial contours in all slices 
covering the LV, from the atrioventricular ring to the apex, in the end-diastolic phase. 
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Notwithstanding the high reproducibility of CMR [26, 27, 54, 55], the variability in 

cardiac parameters associated with contouring is still substantial to be underestimated. Several 

studies have tried to quantify it and determine its major sources [35, 36, 56-61], in order to 

better understand it and ultimately mitigate its effects. One of the potential sources for variability 

is associated with the imaging parameters used in acquisition. Hogan et al. studied its effects in 

SSFP images and concluded that similar measurements in LV volumes, mass and EF are 

obtained for slight variations in slice thickness and interslice gap, flip angle, repetition time, echo 

time, matrix size and field of view, giving comparable and interchangeable values [60]. Therefore, 

the main variations are not associated with acquisition, but primarily with the subsequent 

analysis. In fact, manual contouring is responsible for the majority of variability in cardiac 

parameters quantification, with both intra- and inter-observer variability present [36, 56]. Among 

the plenitude of possible causes of variability, the choice of ED and ES phases, the choice of 

basal slice and the edge selection approach are the main sources [35, 36, 58, 59]. 

The edge selection approach was identified as the fundamental problem in manual 

contouring, with different delineation methodologies being employed by different physicians [35, 

36, 59]. Such problem is less significant in epicardial border tracing, as little confounding edges 

are found and only mass is affected, but it is huge in endocardial contouring [36]. The difficulty 

with endocardial contour is associated with trabeculae and papillary muscles (TPMs), yielding 

variability and affecting the measurement reproducibility [59, 61]. Depending on the physician, 

clinical center or software used, four main possibilities for endocardial delineation are employed: 

1) contouring of the “compacted” endocardial border [Figure 2.2A]; 2) detailed tracing of TPMs, 

only delineating LV blood pool [Figure 2.2B]; 3) delineation of the “compacted” endocardial 

border and major papillary muscles [Figure 2.2C]; and 4) contouring of the “compacted” 

endocardial border, followed by intensity-based thresholding technique to distinguish blood pool 

 
Figure 2.2 - Different methodologies for endocardial contouring. 
 (A) Delineation of “compacted” endocardial border; (B) Detailed tracing of TPMs; (C) Contouring of “compacted” 
endocardial boundary and major papillary muscles; (D) Delineation of “compacted” endocardial border, plus 
computer-based signal intensity distinction between LV cavity and TPMs. 
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from TPMs [Figure 2.2D]. Regarding the quantification of LV parameters, case 1 includes TPMs 

in volumetric measurements of the cavity, while case 2 includes them in the LV mass (excluding 

them from cavity volumes). In cases 3 and 4, the two options can be obtained, including TPMs in 

mass calculation or including them in the ventricular cavity for cavity volumes computation, with 

different approaches regarding the trabeculae. 

Besides edge contouring, LV base identification contributes substantially to the variability 

[35, 36]. In this context, two main possibilities can be employed depending on the images used: 

short-axis or long-axis derived LV base positioning. Note that often only SAX images are acquired 

for analysis, therefore impeding the use of LAX-derived identification. In SAX-derived identification, 

an arbitrary criterion has to be used, such as the inclusion of the slice having 50% or 75% of the 

cavity surrounded by myocardium. Alternatively, when both ventricular and atrial myocardium are 

present, some physicians prefer to delineate the LV cavity followed by a straight or curved line 

through the blood pool. In LAX-derived positioning, the mitral valve is identified in the LAX image 

and subsequently related with the stack of SAX cuts, possibly falling between two slices and 

including only the respective percentage of thickness. According to [36], if LAX images are 

available, LAX LV base identification is suggested as it has proven to be more robust. Moreover, 

the LV base should be tracked throughout the cardiac cycle, allowing to detect and correct for 

longitudinal contraction [16, 58]. 

Finally, the choice of end-diastole and end-systole moments was reported as the third 

major source of variability, although considerably less influent than the previous two [35, 36]. In 

practice, both moments are identified visually by selecting the largest and smallest cavities 

associated with maximum relaxation (ED) and contraction (ES), respectively. In this sense, ED is 

normally easy to identify, while ES can be less evident. Nevertheless, normally only one single 

frame of difference is seen [35]. Alternatively, automatic ES determination is sometimes 

employed using specific software, being more accurate and involving less manual input [36]. 

In summary, the variability in contouring methodology used in the “real-world” scenario 

leads to significant differences in the quantified LV indices [36]. In practice, such differences 

would request specific reference ranges depending on the contouring methodology used, which is 

cumbersome and impractical. Thus, (semi-)automated segmentation methods are fundamental 

to mitigate the effects introduced by manual contouring/input and, ultimately, obtain more 

confident, accurate and robust quantifications. 
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2.2 (Semi-)Automated CMR segmentation 

Due to the importance of developing an accurate and robust framework, to date, several 

methods have already been presented for (semi-)automated LV CMR segmentation, most of them 

gathered in the recent review of Petitjean and Dacher [29]. Despite such effort, fast, automatic 

and optimal boundaries assessment from basal to apical slices is still lacking, usually requiring 

the physician to manually correct the contours. Thus, LV segmentation is still an open problem, 

whose efforts seen in the research field reinforce the difficulties in designing a framework that 

can deal with the segmentation challenges presented in CMR images [29, 38, 62-64], such as: 

 the poor contrast between myocardium and surrounding structures (e.g., lungs 

and liver) [Figure 2.3B]; 

 the heterogeneities in the LV cavity brightness due to blood flow [Figure 2.3D]; 

 the presence of TPMs with similar intensities to the myocardium [Figure 2.3G]; 

 the partial volume effects (PVE) in apical slices due to limited MRI resolution; 

 the inherent noise associated with cine CMR and caused by motion artifacts, 

heart dynamics and intensity inhomogeneity; 

 and the considerable shape and intensity variability of the left ventricle across 

patients [Figure 2.3], notably in pathological cases. 

According to [29], the plenitude of methodologies found in the literature for LV CMR 

segmentation can be divided in two main categories: weak or no prior methods and strong prior 

methods. The first category uses weak assumptions, like spatial relations (e.g., the RV is to the 

left of the LV), anatomical assumptions (e.g., circular geometry of the LV) or intensity-based 

 
Figure 2.3 - Left ventricle shape and thickness variability at mid-ventricular slice across patients. 
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relationships (e.g, myocardium is darker than the LV cavity in SSFP CMR images) to guide and 

constrain the LV segmentation, increasing its robustness and accuracy. Thus, weak or no prior 

category includes image-based techniques (thresholding [65-67], dynamic programming [43, 44, 

68], etc.), pixel classification methods (gaussian mixture model fitting [69-71], clustering [72, 

73], etc.) and deformable models (active contours, level-sets and variants) [38, 45, 62-64, 74-

83]. The second category, strong prior methods, include shape prior based deformable models 

[64, 84], active shape and appearance models (ASM/AAM) [85-89] and atlas based methods 

[90-92], which focus on higher-level shape and intensity information and normally require a 

training dataset with manual segmentations. By imposing constraints based on learned features 

from manual delineations, these methods are normally able to overcome some of the 

aforementioned imaging challenges (presence of TPMs, intensity heterogeneities and low 

contrast) without user interaction [29]. However, building a training set with manual contours is 

time-consuming and extremely difficult. Moreover, although efficient in most cases, the use of 

training datasets intrinsically links the method’s ability to handle clinical variability to the amount 

of different morphological and physiological cardiac information included in the training phase. 

Due to the vast amount of methods present in the literature, we chose to give a general overview 

of each mentioned technique by shortly describing their principles (in Sections 2.2.1 to 2.2.6). 

Besides prior information, the level of user interaction associated with a given 

methodology is also crucial. In this sense, 3 levels can be distinguished: fully automated; limited 

user interaction (e.g., pointing the LV center or dragging a circle); and advanced user interaction 

(e.g., requiring a manual segmentation in the first image of a sequence). Taking into account the 

prior information division, weak or no prior methods tend to require minimal or advanced user 

interaction, while strong prior methods tend to be fully automatic [29]. Such observation clearly 

shows a tradeoff between used prior information and required user interaction. In this sense, 

Section 2.2.7 will focus on the state-of-the-art in automatic localization of the heart and LV. 

2.2.1 Image-based methods 

Image-based techniques rely mainly on intensity information and geometric assumptions 

to delineate both contours, usually using thresholding [65-67] and/or dynamic programming (DP) 

[43, 44, 68]. While thresholding rely uniquely on the image intensity, DP searches for the optimal 

path in a cost matrix that assigns a low cost to object boundaries. The design of the cost matrix is 

the main problem in DP and can be computed based on simple thresholding [68], fuzzy logic, 

radial lines or image gradient values [43, 44, 93], giving DP more flexibility. 
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Independently on the approach used, most image-based methods conceptually divide the 

problem in 3 steps: endocardial contouring, epicardial contouring and contours smoothing. 

Typically, the two contours are differently and separately segmented, relying on the endocardial 

contour in the second step to delineate the epicardium [43, 44, 66, 67]. Moreover, because 

TPMs present a similar intensity to the myocardium, these methods usually lead to the wrong 

inclusion of TPMs in the myocardium, either when using thresholding or gradient-based DP. 

Therefore, computation of the endocardial contour’s convex hull [68], mathematical 

morphological (MM) operators [93] or smoothing by Fast Fourier Transform or Bezier curve fitting 

[43, 44, 66, 67] are used to smooth the endocardial contour and completely or partially 

overcome TPMs, obtaining roughly circular LV shapes. 

2.2.2 Pixel classification methods 

Pixel classification is the process of assigning a label for each pixel (or voxel) to be 

segmented, thus including them in a particular class (e.g., blood pool vs. myocardium) [19]. The 

classification process is possible by analyzing a set of representative features (e.g., image 

intensity, local entropy, etc.), followed by a labeling to the most likely class. In the end, all pixels 

assigned for the same class share the same features’ characteristics. Pixel classification includes 

unsupervised and supervised techniques. While unsupervised techniques only use weak 

assumptions and no user interaction is needed for the classification process, supervised ones 

require a learning phase, for which labeled example pixels need to be available (by manual or 

automatic learning) [19, 29]. 

In LV CMR segmentation, gray level values are often used as features and mostly 

unsupervised techniques are employed, namely Gaussian Mixture Model (GMM) fitting [43, 69-

71] and clustering [72, 73]. The principle of GMM is to describe the image histogram by a 

mixture of gaussian distributions using the Expectation-Maximization (EM) algorithm [94]. To this 

end, the number of classes has to be set a priori, usually considering two to five distributions 

(e.g., blood pool, myocardium and background [71]). The classification is an iterative process, 

where in each stage the distributions’ parameters are estimated while trying to maximize the 

likelihood of each pixel belonging to a given class [94]. After pixel classification, each connected 

component can be post-processed using MM to reduce noise [72] and/or smoothing operations 

[43], yielding the final contours. On the other hand, clustering is the process of data aggregation 

in clusters in a feature space [29]. Clustering is commonly performed through K-means algorithm 

[73] or, more generally, fuzzy C-means (allowing partial membership in classes). After this step, 
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each cluster is studied to determine the object of interest (e.g., considering the LV’s circular 

aspect or gray level intensity) and then post-processed to obtain smooth contours [73]. 

2.2.3 Deformable models 

Active contours, or snakes, were one of the  first methodologies of deformable models to 

be presented [95]. They are a flexible framework where the shape to recover is captured by 

propagating an evolving interface while minimizing an energy functional that reflects the object’s 

properties [47]. Their flexibility is mainly related to the easy incorporation of prior knowledge 

about the object’s shape and expected intensity distribution, as well as of temporal constraints 

[29]. In this sense, the energy functional comprises internal forces (or regularization terms, 

constraining the curve evolution) and image forces (or data-driven terms, derived from image 

features) [29, 47]. In the classical parametric formulation, the energy functional minimization is 

solved using partial differential equations [95]. Later, Osher and Sethian [96] proposed the level-

set framework, where the desired contour corresponds to the zero level of a higher-dimensional 

signed distance function. This framework brought topological flexibility and increased their 

applicability by allowing multiple objects segmentation [97]. 

In LV CMR segmentation, these methods have been used extensively during the last 

decades, allowing 2D, 3D and even 3D+time approaches to be developed [29]. About their 

technological evolution, the focus is mainly in the design of data-driven terms, where information 

about the ventricle’s shape and intensity can be introduced in several different ways. Data-driven 

terms are usually classified as edge-based or region-based. Edge-based energy terms use image 

gradients to identify object boundaries and attract the contours toward edges [45, 63, 74-78], 

while region-based ones use regional properties inside and outside the object to evolve the 

contour [47, 63, 74-77, 98]. Among edge-based energies, Gradient Vector Flow (GVF) algorithm 

[99] is one of the most widely employed [45, 74, 78, 79], where the image gradient is diffused to 

create an edge map used to attract contours towards boundaries (even into concavities). The 

regularization terms are frequently based on curvature or smoothing constraints, although some 

frameworks implicitly incorporate such regularization in the curve’s parameterization [47]. To 

improve accuracy, some authors combine both edge-based and region-based terms, while also 

adding smoothness constraints, contour interaction and/or shape priors [63, 64, 74-77]. For 

contour interaction, coupled formulations have been proposed to obtain a globally optimal 

segmentation for both endo and epicardial contours. The central idea is to halt the propagation 

when the distance between contours goes locally beyond the acceptable limits [74] or globally 
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beyond an average thickness [63]. Moreover, temporal constraints can be added to obtain 

consistent contours through temporal sequences of images [62, 64, 80], either by sequential 

approach (segmentation in time t used at time t+1), by encoding prior knowledge about cardiac 

temporal evolution or using segmentation/registration coupled approaches. 

The main limitation of active contours, level-sets and variants are their sensitivity to 

initialization, requiring some user interaction either in a minimal way [63, 74, 76] or in an 

advanced way (e.g. required a manual contour in the first frame) [64, 80]. Nevertheless, several 

authors proposed automatic initialization procedures, focusing on obtaining a robust initialization 

for subsequent segmentation (see Section 2.2.7). 

Besides active contours and level-sets, some methodologies use biomechanical models 

to constrain the segmentation [81-83], including information on fiber orientation (to mimic 

myocardial contractility), material’s elastic properties, among other features. Such models are 

usually solved using finite element methods and require solid knowledge of cardiac motion and 

tissue deformation (strain) [29]. The main idea of these models is to study myocardial 

contraction during the cardiac cycle by tracking it over the acquired image sequences. 

2.2.4 Shape-prior based deformable models 

Shape-prior based deformable models use the same energy minimization principles 

discussed in the previous section, but add anatomical constraints into the contours’ evolution. To 

this end, anatomical reference models can be used, generated from a manually segmented first 

frame or a set of binary training images, and embedded as multiplicative or additive terms in the 

energy functional to be minimized [29]. When using a manually segmented first frame, the model 

usually incorporates both geometry and intensity in the evolution, trying to retain the known 

shape and intensity distribution over time [64]. The geometry consistency can be introduced as a 

mean distance to the reference shape model [84] or an overlapping measurement between the 

current segmentation and the reference manual contour [64]. One should note that when using 

training data, spatial (and temporal if required) alignment of the manually segmented images is 

fundamental to compensate for ventricle’s position and size differences among datasets [29]. 

2.2.5 Active Shape and Appearance Models 

Active Shape Models (ASMs) are strong-prior methods where a statistical model 

comprising the typical shape and typical shape variability of an object of interest is iteratively 

deformed to fit the searched object in a new image [100]. To generate the statistical model, a set 

of training images (labeled examples of the object of interest) are combined by means of 
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statistical methods, namely by Principal Component Analysis, to describe the average points’ 

position and its main modes of variation. This model is called a “point distribution model” and is 

then used to segment the object in a new image. The segmentation process comprises two 

steps: first, the points’ position are estimated to best fit the image data (using data-driven terms); 

and second, the model parameters are updated to best match the new positions, while still 

constraining the object’s shape to remain close to the typical shape and its usual variability. 

Later, Active Appearance Models (AAMs) were described [101], learning both shape and texture 

variability in the training phase, which constrains the geometry and intensity distributions of the 

searched object. Note that all images in the training set should be aligned in order to create the 

statistical model, but also normalized for their intensities in the case of AAMs. In summary, 

ASM/AAM can be seen as “smart snakes”, where the shape and/or intensity variation in a 

population are defined explicitly to constrain the segmentation of the object [100, 101]. 

In LV CMR segmentation, both methods were already reported separately [85, 86], but 

usually they are combined to complement their unique advantages and mitigate their pitfalls [87, 

88]. In this sense, a hybrid model uses an AAM for global appearance estimation, followed by a 

hybrid ASM/AAM stage for position refinement, as ASMs have greater ability to find local 

structures [29]. Moreover, an extension of these methods towards temporal segmentation was 

already reported for 2D+time LV delineation and denominated Active Appearance Motion Model 

[89]. In this methodology, is important to keep in mind the required huge training set to 

encompass all the typical shape, appearance and contraction patterns of the LV across subjects. 

Obviously, the computational burden associated with all these methods, especially in 3D and 

2D+time cases, is substantially higher than the aforementioned categories, hampering their use 

in clinical practice. Moreover, the computation of a statistical model with only a typical shape and 

shape variability disregard pathological variability, frequently outnumbered in the training set [29, 

41]. To overcome this limitation, recently, Eslami et al. proposed a framework based on guided 

random walks with high-level prior knowledge but without the need for statistical shape models 

[41]. Instead, they guide the segmentation using the closest subject in the database, which 

brings advantages in pathological cases. Nevertheless, their ability is still linked to the amount of 

morphology and physiological clinical variability present in the labeled examples. 

2.2.6 Atlas-guided segmentation 

Like other strong-prior methods, the key idea behind atlas-guided segmentation is to use 

an atlas (labeled example of the anatomy to be segmented) to incorporate both intensity and 
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spatial information during the segmentation process [90, 91]. The atlas is created from a single 

subject example (single-subject or topological atlases) or from a population of labeled examples 

(statistical or probabilistic atlases). In the second type, each dataset in the population should be 

manually segmented and later registered to each other to fuse them into one single statistical 

atlas [29]. Then, the principle is to register the labeled atlas onto the new image to be 

segmented. In this process, non-rigid registration (NRR) is frequently used to allow elastic 

deformations, while trying to maximize the similarity (sum of squared differences, mutual 

information, etc.) between the atlas and the target image. After the registration process, the 

transformation between the atlas and the new image is used to obtain the final subject-specific 

labeling [29, 90, 91]. As NRR has a lot of degrees of freedom, regularization terms (smoothing 

terms, statistical models, etc.) have to be implemented to constrain the deformation process, 

being one of the main focuses of research in these methods [29]. 

In CMR segmentation, atlas-based segmentation enables whole heart segmentation, by 

including in the atlas the expected anatomy of ventricles, atria and main vessels [91, 92]. These 

atlases use labeled examples in the ED frame and are applied in this cardiac phase in the new 

dataset. Then, to propagate the segmentation throughout the cardiac cycle, the same principle of 

NRR is employed [90]. Although it is a flexible framework, since the atlas is only used as a 

starting point in the registration process, the anatomic prior used has little influence in the final 

segmentation, which limits its ability to accurately constrain the segmentation [47, 91]. 

2.2.7 Automatic localization of the heart and left ventricle 

In the above sections, several frameworks used in LV CMR segmentation were described. 

However, their majority is still only semi-automated methods, needing minimal or advanced user 

interaction. Thus, several authors focused on developing automatic initialization procedures to 

obtain fully automatic frameworks [69, 70, 102-110]. The multitude of methods proposed in the 

literature can be mainly divided in two categories, namely time-based approaches and object 

detection techniques, many times fused in hybrid strategies to increase their robustness [29]. 

Moreover, these methods are frequently divided in two steps: the localization of the heart and the 

detection of the left ventricle’s center, approximate shape and/or size [104, 106, 107]. 

Time-based techniques rely on the assumption that the heart is the only moving object in 

the image (or the one with higher mobility) [29]. In this sense, the temporal sequence of images 

is used to create a motion map, which is afterwards analyzed to detect the brightest object 

corresponding to a moving object, the heart. This motion map is usually created using a 
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difference [70, 102-104] or variance [69, 105-108] image by analyzing through the time 

dimension. In the end, a rough location of the heart is obtained, defining a region of interest (ROI) 

including the LV. After the heart location, thresholding [69, 102, 104, 107] and/or object 

detection techniques [70, 106] are used to further restrain the defined ROI to only include the LV 

and, ultimately, obtain its center and/or approximated size. Note that these approaches, being 

mainly image-based, depend on the image intensities, as well as on the acquired MRI sequence. 

In object detection techniques, the principle is to locate the LV taking into account its 

expected shape, namely the circular aspect of the LV cavity or the annular ring shape of the 

myocardium [29]. To this end, most methods use a circular Hough transform, which searches for 

circular objects within a given image/ROI [70, 106, 109]. The principle is to search for multiple 

circles with different radius and account for their adjustability to the input image, in order to find 

the circle that best fits the feature space given (e.g., binary image with edge points). Interestingly, 

for US, a Hough transform for annular shapes was proposed, searching for two concentric circles 

and increasing the detection robustness [111]. In a similar way, a template matching approach 

was proposed in [110] to detect the myocardium, using a radially-symmetric kernel modeling a 

dark ring to mimic the myocardium appearance in SSFP CMR sequences. All the aforementioned 

object detection techniques rely on the assumption of one (or two) circular shape(s), reducing 

their detection robustness in subjects with elliptical LV shapes. 

2.3 Commercial Software Packages 

From the methodologies developed in research, several commercial software packages 

were created and made available for manual and (semi-)automated analysis of CMR datasets. 

Currently, all the major vendors of MRI machines have their own post-processing 

software package for LV and RV function assessment, myocardial perfusion evaluation and flow 

analysis [16]. In fact, Cardiac Explorer (Philips, Netherlands), ReportCard 4.0 (GE Healthcare, 

United Kingdom) and syngo Argus 4DVF (Siemens, Germany) are currently being introduced in 

clinical practice, allowing (semi-)automated LV segmentation in CMR datasets  [35, 56, 60, 61]. 

Moreover, they provide comprehensive clinical reports, encompassing global function parameters 

and regional myocardial function plots and analyses. According to their manufacturers, they are 

easy to use and take between a few seconds to a minute to perform the analyses and generate a 

report. The syngo Argus 4D VF  uses a heart model-based algorithm to perform the 

segmentation, requiring the identification of some landmarks, namely the center of the LV apex 
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and base in SAX slices and the mitral valve location in ED and ES phases in the corresponding 

LAX views. Nevertheless, an integrated tool is also available, denominated Inline VF (Siemens, 

Germany), allowing real-time functional analyses during image acquisition. To this end, both 

basal and apical slices should be located during the exam acquisition preparation and then these 

are automatically tracked by a motion compensation algorithm. During acquisition, the heart is 

being located automatically and both endo and epicardial contours are segmented without user 

interaction. In the end, both images and analysis report can be visualized. The other two 

solutions, Cardiac Explorer and ReportCard 4.0, are not freely described by their manufacturers. 

Note that all these solutions allow manual correction and the inclusion or exclusion of TPMs 

according to the user selection. 

Besides machine vendors’ software, also independent solutions are currently available, 

namely CMRTools (Cardiovascular Imaging Solutions, United Kingdom),  QMass MR (Medis, 

Netherlands), 4D  LV-Analysis  MR  (TomTec, Germany), cmr42 (Circle Cardiovascular Imaging, 

Canada), CAAS MRV (PIE Medical Imaging, Netherlands) and Segment CMR (Medviso, Sweden). 

As an example, CMRTools uses a semi-automated framework, requiring both SAX and LAX views 

to be used for analysis. The user identifies the apex and the LV blood pool axis (in a LAX view) 

and then an automated endo and epicardial delineation is performed. Afterwards, the user can 

control an intensity-based thresholding tool to distinguish blood pool from TPMs, therefore 

including these in the myocardial mass rather than in the cavity volume. Before computing the 

cardiac indices and to correct for longitudinal contraction, the motion of the mitral valve plane 

should be defined by the user [52]. In summary, the majority of these solutions incorporate long-

axis motion correction by including LAX views in the analyses to optimize the short-axis contours. 

For this process (mitral valve positioning) or for LV localization, usually some degree of user 

interaction is still required to obtain accurate results. Nevertheless, manual contouring tools are 

also available for correction of automated contours or complete manual delineation, if preferred. 

2.4 B-spline Explicit Active Surfaces (BEAS) 

Recently, Barbosa et al. [47] proposed the B-spline Explicit Active Surfaces (BEAS) 

framework with the intent to achieve real-time 3D segmentation. This framework arises from the 

fusion of three previously presented formalisms [Figure 2.4]: the variational B-spline level-set 

formulation of Bernard et al. [112], the Active Geometric Functions (AGFs) of Duan et al. [113] 

and the localized region-based active contours of Lankton and Tannenbaum [98]. 
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As stated in Section 2.2.3, active contours were initially presented as a variational 

framework where the shape to be recovered is captured by propagating an evolving interface 

[95].  Later, the level-set framework [96] was proposed to handle topological changes by 

describing the contour as the zero level of a higher-dimensional function. However, by increasing 

the dimensionality of the problem, it increases the computational cost. Although strategies like 

narrow-banding or fast marching schemes were later proposed to optimize its evolution, level-sets 

remain a computationally demanding approach [113]. To overcome such problem, two new 

formulations were recently proposed. Bernard et al. [112] presented a variational B-spline level-

set formulation, where the implicit level-set function is modeled as a combination of B-spline 

basis functions and its minimization is expressed as a sequence of 1D convolutions. Therefore, 

an efficient algorithm is obtained, while still keeping the topological flexibility of level-sets. In 

parallel, Duan et al. [113] proposed an explicit representation of active contours using geometric 

functions and, therefore, reduced the dimensionality of the segmentation problem, yielding real-

time segmentation. However, such computational advantage brought topological limitations due 

to the explicit formulation employed. For further principles, mathematical background and 

applications description on active contours and level-sets, the reader is referred to subject-

specific literature, such as the seminal books written by Stanley Osher [114, 115]. 

Concerning the used energy functional, the first methodologies used edge-based terms, 

making the segmentation sensitive to noise and dependent on the initial position of the contour 

[116]. To mitigate such problems, Chan and Vese [116] proposed their “active contours without 

edges” by using global region-based energies. Instead of depending on the gradient of the image, 

it assumes nearly piecewise-constant regions and use regional properties inside and outside the 

object to evolve the contour. Thus, it increases the robustness against initial curve placement and 

giving robustness to image noise. Notwithstanding, global region-based energies fail to segment 

heterogeneous objects. To this end, Lankton and Tannenbaum [98] proposed a localized region-

based formulation, considering a local region around each contour point to locally evolve it. 

However, such localization increases the associated computational cost. 

Based on these formulations, the BEAS framework [47] was proposed by expanding 

AGFs to a B-spline formulation [Figure 2.4] and, thus, presenting several advantages, namely: 

 it achieves real-time performance for 3D segmentation by expressing the active 

contours evolution as a succession of fast 1D convolutions; 
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 it allows explicit control over the smoothness of the interface through the scale 

factor of the underlying B-spline formulation, without requiring regularization 

terms to be added to the energy (implicit smoothing); 

 it allows using local and global region-based energies initially designed for level-

set framework by relating both explicit and implicit formulations. 

In terms of formalism, the key concept is to regard the boundary of an object as an 

explicit function, where one of the coordinates of the points within the surface,          , is 

given explicitly as a function of the remaining coordinates, i.e.     (       ). Such explicit 

representation of the interface limits the topology flexibility, which is a mild constraint for the goal 

of this work as only one connected object, the myocardium, needs to be segmented. Moreover, it 

can be seen as introducing prior information in the model since the segmented object will have 

the topology induced by the coordinate system (and associated geometric function used) [47]. 

According to this framework [47],   is defined as a linear combination of B-spline basis function: 

     (       )   (  )  ∑       (
  

 
  )

      

 (2.1)  

where   ( ) is the uniform symmetric (   )-dimensional B-spline of degree d. The knots of 

the B-spline are located on a rectangular grid defined on the chosen coordinate system, with a 

regular spacing given by h. The coefficients of the B-spline representation are gathered in     , 

which controls the object’s surface. Therefore, the energy minimization is performed with respect 

to these B-spline coefficients, ultimately yielding the desired segmentation. 

 
Figure 2.4 - Overview of the evolution towards B-spline Explicit Active Surfaces (BEAS). 



 

37 
 

3. Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





3. Methodology  

 

39 
 

3. Methodology 

3.1 General Overview 

The ultimate goal of the present thesis was to obtain an accurate and fast 3D+time LV 

segmentation framework for CMR datasets, in order to assess both cardiac morphology and 

global function. To this end, based on the studied state-of-the-art methods, we propose to divide 

our approach into three conceptual blocks [Figure 3.1]. 

The first block corresponds to an automatic 2D mid-ventricular segmentation, divided in 

two modules. The first one focuses on obtaining an initial contour for a mid-ventricular slice at the 

ED phase. Hereto, a fast and robust automatic initialization procedure is proposed (Section 3.2). 

The second module uses the BEAS framework to segment the considered mid-ventricular slice. 

As stated in Section 2.2.3, the energy functional is the main factor for an accurate segmentation, 

thus a specifically designed energy for SSFP CMR images was developed (Section 3.3). 

The second block focuses on 3D segmentation for the ED phase. Again, two modules 

should be addressed to accomplish this task. The first one comprehends an automatic stack 

initialization to obtain initial contours for all slices covering the LV (Section 3.4). The second one 

presents a 3D extension of the BEAS framework to effectively segment these slices (Section 3.5). 

Once more, the energy functional was designed to best match the needs of CMR images. 

At last, the third block focuses on tracking the segmented contours of the ED phase over 

all cardiac phases, ultimately obtaining both endo and epicardial contours at the ES phase 

(Section 3.6). To this end, two strategies have been compared, namely a local tracking 

methodology and a global tracking method. 

Using the resulting delineations, one is able to compute several clinical cardiac indices, 

namely end-diastolic volume, end-systolic volume, stroke volume, left ventricular mass and 

ejection fraction, with a fully automatic pipeline. 

 
Figure 3.1 - General overview of the proposed fully automatic 3D+time myocardial segmentation 
framework for CMR datasets. 
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3.2 Automatic Mid-ventricular Initialization 

In order to effectively segment the LV, its location and its approximate shape and/or size 

are required for constraining the segmentation process in a given region of interest. However, the 

variability in LV shape, myocardial thickness, image intensities and contrast seen in CMR images 

hampers automatic LV detection [29]. In many cases, such initialization demands user input to 

obtain accurate results and surpass the abovementioned challenges. Nevertheless, we intend to 

develop an automatic initialization algorithm consisting in two steps. The first step focuses on the 

LV localization in a mid-ventricular slice, in order to define a ROI centered in the left ventricle. 

Despite many authors propose to first detect the heart and afterwards detect the LV [104, 106, 

107], we aim to directly locate the left ventricular cavity using prior knowledge about its relative 

intensity and shape. After locating the cavity, the second step of the initialization algorithm 

focuses on obtaining two initial contours of the endocardium and epicardium to be used in the 

subsequent segmentation (Section 3.3). In summary, we propose to combine and improve the 

two methods described in [67] and [110] to develop a fast automatic initialization approach 

capable of detecting LV elliptical annular shapes. Note that we propose to address the 

initialization problem only in the mid-ventricular level at ED phase to reduce possible variability, to 

increase the robustness of our assumptions and, therefore, to increase the method’s feasibility. 

After dealing with the mid-ventricular slice, one can use the added knowledge to better initialize 

and segment the remaining slices covering the LV (Section 3.4 and 3.5). 

3.2.1 LV Localization 

To detect the LV centroid, Lu et al. [67] binarize a mid-ventricular slice using Otsu 

thresholding [117] and analyze each object in the brighter class [Figure 3.2]. The more circular 

object, evaluated based on a roundness metric, is assumed to be the LV cavity. However, the 

method is highly dependent on the binarization, which may fail due to other structures in the 

image or due to artifacts [Figure 3.2D]. 

In order to increase the feasibility and robustness of the LV localization step, we propose 

to improve Lu’s method by replacing the classical Otsu thresholding by its multilevel version 

[117], followed by a more comprehensive search procedure. Thus, we assume that the image’s 

content can be divided into four classes: blood, soft tissues (myocardium plus surrounding 

tissues), background and one related to artifacts. Moreover, three other assumptions are made, 

namely: 1) the heart is nearly in the center of the mid-ventricular image, as it is the object of 

interest and is usually centered during image acquisition; 2) the LV cavity is more circular than 



3. Methodology  

 

41 
 

the right ventricle (RV) cavity, allowing to distinguish them based on their shape; and 3) the blood 

intensity is higher than the myocardial one in the used images (SSFP sequences), although no 

intensity relation between RV and LV blood pools is assumed. 

First, a centered, fixed rectangular ROI is specified with half the image size [Figure 3.3A], 

which takes into account the assumed central position of the heart in the image. Then, a 

multilevel Otsu thresholding [117] is used to divide the image in four classes [Figure 3.3B]. In the 

multilevel Otsu thresholding, an exhaustive search for optimal intensity thresholds that minimize 

the inter-class variance is performed in order to divide the image histogram into N classes of 

pixels [117]. Obviously, the subsequent object’s analysis should be adapted to account for the 

increased number of classes and for the possible division of the structures across these classes. 

Since the blood pool is usually the brightest object in the image, it is expected to be included in 

the brighter class. However, the presence of artifacts can shift the LV cavity to the second 

brightest class. Moreover, if heterogeneities exist due to blood flow, it can even be divided 

between the two brightest classes. At last, in the cases where strong artifacts exist, the LV cavity 

can be shifted to the third brightest class. Thus, the subsequent analysis includes 3 independent 

images: one with the brighter class alone, a second combining the two brightest classes and a 

third with only the third brightest class [Figure 3.3C]. The background in the fourth class is 

always discarded, usually associated with air signal intensity (e.g., lungs). 

After obtaining the 3 referred images, the objects of each image are filtered to remove 

the smallest ones (a threshold empirically set to 150 pixels) and the convex hull of the remaining 

ones is computed. The filter step reduces the computational burden of the method by discarding 

small objects, hardly corresponding to the LV blood pool, from the subsequent analysis. To locate 

the LV cavity, the roundness metric [67] of each considered object is calculated using both area 

(  ) and perimeter (  ). This metric measures the approximation of the object’s shape to a circle 

(in a range of 0 to 1). To improve the method’s accuracy, the distance of the objects’ centroid to 

 
Figure 3.2 - LV localization algorithm proposed by Lu et al. [67]. 
(A) Original image and used ROI; (B) Otsu thresholding; (C) LV object search, computing the roundness metric 
(values in red) for each object’s convex hull (red lines); and (D) detected LV object and its centroid. 
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the image center is added and used as feature to locate the cavity. Therefore, the LV blood pool, 

and its centroid, is identified as the object with highest    value [Figure 3.3D], defined as: 

    
    

  
    (3.1)  

where 
    

  
 is the roundness metric and    is the normalized distance of centroid   to the 

image’s center. 

3.2.2 Elliptical Annular Template Matching Algorithm 

After locating the LV cavity, its size and shape has to be estimated to initialize two 

contours to be used in the segmentation. Instead of roughly delineating the endocardial boundary 

and, subsequently, the epicardial one (as stated in Section 2.2.1), we propose to use an object 

detection technique (Section 2.2.7) to identify the myocardium and obtain both contours in a 

single step. Since the myocardium has a darker appearance compared to both blood pools in 

SSFP sequences, a radially-symmetric kernel modeling a dark ring was used by Ciofolo et al. 

[110] to detect the myocardium and initialize both endo and epicardial contours. However, their 

template matching fails to detect elliptical LV shapes, as only a circular ring is considered. 

We propose to improve their template matching by applying an affine transformation 

(scaling plus rotation) to the used kernel, thus obtaining a dark elliptical ring, which theoretically 

increases the overall LV detection robustness. The key idea is to create several kernels describing 

different possible shapes, thicknesses and sizes of the myocardium and apply a template 

matching algorithm to detect the optimal fitting. Therefore, we construct kernels of different radii 

( ) and standard deviations ( , according the expected wall thickness) and an affine 

transformation is applied for different orientations ( ) and major/minor axis ratios (major and 

minor axis radii as   and  , respectively), using the following equations (based on cartesian to 

polar space conversion, image coordinates mapping and inverse transformation): 

 
Figure 3.3 - Proposed LV localization algorithm. 
(A) Original image and used ROI; (B) multilevel Otsu thresholding; (C) class decomposition for LV object search 
(from left to right and top to bottom: multilevel Otsu thresholding, brighter class, two brightest classes combined 
and third brightest class); and (D) detected LV object and its centroid based on equation (3.1). 
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To reduce the search space, the detected object from the LV localization method is used 

to fit an ellipse and estimate the major axis radius and orientation [Figure 3.4A]. We then use 5 

orientations around the estimated one (0,  45º and  90º). Moreover, 3 variations of the 

measured radius combined with 4 standard deviations allow covering the myocardial size and 

thickness range, while also accounting for errors in the estimated radius. Finally, 4 axes ratios 

are used to consider different ellipse eccentricity values to best fit the subject-specific LV shape. 

In total, 240 kernels will be considered in the analysis [Figure 3.4B]. For every constructed 

kernel, a block matching search within the image ROI is performed using normalized cross 

correlation [Figure 3.4C]. The position maximizing the cross correlation value defines the optimal 

center for the kernel under evaluation. The kernel having the maximum cross correlation value 

among all kernels analyzed [Figure 3.4D] then defines the optimal center, orientation, radius and 

axes ratio, used to draw two ellipses to be used as initial contours [Figure 3.4E]. 

3.3 Coupled Myocardial 2D Segmentation 

In this section, a 2D version of the B-spline Explicit Active Surfaces [47] framework will 

be described for segmenting the mid-ventricular slice. Within this framework, several details 

should be addressed to obtain accurate results, namely the properties of the energy functional 

used, the employed formulation for both endo and epicardial contours and the control over the 

contours’ smoothing.  

 
Figure 3.4 - Annular template matching algorithm. 
(A) LV object from LV localization, overlay with fitted ellipse and estimated major and minor radius; (B) several 
constructed kernels for template matching with different orientations, radius, standard deviations and ellipse 
eccentricities; (C) principle of block matching strategy using normalized cross correlation; (D) original image 
overlay with optimal kernel; and (E) resulting elliptical initial contours. 
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3.3.1 Endocardial and Epicardial Contour Coupling 

In typical active contour formulations, the 

endo and epicardial boundaries are defined 

separately and additional penalties guarantee 

their coupling [63, 74]. Since the segmentation is 

assessed in both endo and epicardial interfaces, a 

coupled formulation would allow controlling the 

contours’ evolution towards a global optimum. 

Inspired by the strategy used in [118] for LV 

segmentation in US images, we model the endo 

and epicardial contours as a combination of two 

explicit functions representing the myocardial wall 

position and wall thickness [Figure 3.5], respectively. Thereby, each contour is defined as: 

      ( )       
( )         

( ) (3.4)  

     ( )       
( )         

( ) (3.5)  

where      
( ) gives the center position of the myocardial wall (dashed light blue line in Figure 

3.5) as a function of    and        
( ) encodes half of the myocardial wall thickness. Both 

      and      act as interfaces between the blood pool (  ), the myocardium (   ) and the 

surrounding structures (   ). Note that this representation is defined in the polar domain and 

therefore the geometric function used in BEAS is defined as     ( ). 

The fundamental advantage of such formulation is that, by applying different scales to 

     
( ) and        

( ), one can implicitly smooth the local variation of the myocardial 

thickness (in order to keep it smooth) without affecting the overall ability to capture more 

complex myocardial shapes [118]. In other words, there are two distinct degrees of freedom to 

control the myocardium shape and thickness smoothing. Moreover, it allows global shape 

constraints to be applied as shape penalties in the energy functional, controlling the coupled 

segmentation instead of each separated contour [118] and increasing the algorithm robustness 

by driving the segmentation towards a combined global optimum. 

3.3.2 2D Region-based Energy Functional 

As described in Section 2.4, Lankton and Tannenbaum [98] have recently introduced the 

concept of localized region-based energies, which overcome the limitations of classical edge-

 
Figure 3.5 - Conceptual diagram of the 
coupled formulation used to represent both 
endo and epicardial contours [118]. 
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based and global region-based energy functionals. The idea is that objects with heterogeneous 

statistics can be successfully segmented by analyzing a local region around each point. In this 

sense, it assumes local homogeneous regions, although no assumption of global uniform regions 

is made. By considering each point separately, each contour point evolves based on its own local 

regional statistics, so as to minimize the combined global energy [98]. In order to compute these 

statistics, a local neighborhood has to be considered and afterwards separated into local interior 

and local exterior regions according to the curve’s position at a given iteration. Figure 3.6 

schematically represents the principle of localized region-based energies considering a squared 

neighborhood. One should keep in mind that the computation of local statistics is associated with 

an increased computational cost compared to global region-based energies. Moreover, localized 

energies are inherently more sensitive to the initial contour position than their global 

counterparts. Therefore, and besides ensuring a good initialization, the size of the chosen 

neighborhood region should be defined based on the scale of the object of interest and the 

presence and proximity of surrounding structures [98]. 

In CMR images, the left ventricle appears as a heterogeneous structure due to noise, 

blood flow and the presence of TPMs. In this sense, localized region-based energies seem to be 

the primary choice for its segmentation. We thus propose to use two different localized region-

based energies for the endo and epicardial contours by taking into account their respective 

characteristics. Since the cavity is always brighter than the myocardial tissue in SSFP sequences, 

a signed version of the localized Yezzi (LY) energy [98] is used for the endocardial contour 

(henceforward referred as signed localized Yezzi – SLY). This energy explicitly introduces the 

expected intensity relation between    and     regions, forcing the contour to evolve towards 

 
Figure 3.6 - Principle of localized region-based energies.  
The squared region corresponds to the neighborhood of the contour point 
(yellow dot), separated according to the contour’s position into (A) local 
exterior (    ) and (B) local interior (   ) regions, whose statistics are later 
used to evolve the contour. 
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an interface whose internal region is brighter than the external one. On the other hand, since the 

external region (   ) is relatively unpredictable due to the variability in structures encountered 

(e.g., lungs, RV or soft tissues – [Figure 3.3A]), an unsigned constant intensity model is chosen 

by using the localized Chan-Vese (LCV) energy [98]. Besides the choice of signed or unsigned 

version, LY and LCV energies slightly differ on their segmentation principles. While the LCV 

energy assumes two uniform regions and tries to find the contour for which the interior and 

exterior regions best approximate two given local means, LY energy relies on the assumption that 

the two regions should have maximally separate mean intensities, so that local internal and 

external means have the largest difference possible [98]. Therefore, the Yezzi energy is suitable 

for endocardial segmentation as two distinct signal intensities are expected, although not 

applicable for epicardium as no assumption can be made (e.g., myocardium and surrounding 

tissues can have locally similar signal intensity means). On the other hand, the Chan-Vese energy 

only tries to find a local homogeneous separation, being suitable for epicardial segmentation. 

Additionally, the localized energy functionals were modified by adding weights to the 

inner and outer regions of the endocardial and epicardial interfaces, respectively. This weighted 

formulation allows an explicit control over the equilibrium point in between the two regions, 

therefore pushing the contour towards the myocardial region if a weight smaller than one is 

considered [Figure 3.7A]. In practice, this strategy mimics the physician’s knowledge when 

manually contouring, where they place the contours closer to the myocardium to avoid TPMs to 

be included in this region, as illustrated in Figure 3.7B-C. 

Given the topology of the segmentation problem, the proposed energy functional is 

defined as: 

   ∫   ̅   (  )   
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and    is the scalar weight applied to the region  ;      ,        and        represent the local 

intensity means in the vicinity of   for the inner, myocardial and outer regions, as defined in [98], 
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respectively.    
 is the Heaviside operator applied to the level-set like function   ( )  

  ( 
 )    , representing the region inside the interface  . Moreover, considering a generic 

function  ( ) in   , note  ̅ as the restriction of   over interface  . Thus,  (̅  ) corresponds to 

the image value at position   { (  )        }. Equations (3.7) and (3.8) represent the 

weighted SLY and LCV energies, respectively. These energies directly influence the resulting 

segmented object. 

Since the model is defined based on the myocardial wall position and thickness, the 

evolution of the myocardial region can be expressed as: 
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Moreover, given the B-spline formulation of BEAS, it can be shown that the energy is 

directly minimized through the optimization of the B-spline coefficients     . This implies the 

computation of the derivative of the chosen energy functional with respect to each B-spline 

coefficient       [47]. In this sense, the derivative of the energy function with respect to the B-

spline coefficients encoding the wall position and wall thickness, respectively, is expressed as: 
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Thus, using the energy functionals for endo and epicardial contours proposed above, the 

energy minimization process can be achieved using the following evolution equations: 

 
Figure 3.7 - Principle of the proposed weighted localized region-based energies. 
(A) Schematic representation of the weights influence in the proposed weighted energy functionals. (B) Example of 
a mid-ventricular CMR image with manual reference contours. (C) Two profile of the image in (B) with indication of 
reference contour points (indicated in red and green) and local means of   ,     and     regions (indicated in 
black). 
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and      
 and     

 are the areas of the myocardial and inner regions used to estimate the 

local means        and      , respectively [98]. Equations (3.17) and (3.18) reflect the features 

of the myocardial boundaries to be segmented (derived from SLY and LCV energies, 

respectively), being denominated feature functions. 

3.4 Automatic Stack Initialization 

The previous sections focused on obtaining an accurate and automatic segmentation for 

a mid-ventricular slice in the ED phase. Notwithstanding, the goal of the present framework is to 

segment all SAX slices from base to apex and from ED to ES, which demands a previous 

initialization in these slices. As stated in Section 3.2, the proposed automatic 2D initialization 

algorithm was designed to address the initialization problem only in the mid-ventricular level, 

presenting limitations when applied to other slices (e.g., myocardium at basal and apical levels 

differs in shape and in the surrounding structures). Nevertheless, the knowledge from the 

previous 2D segmentation can be used to initialize the remaining slices. In this section, an 

automatic 3D stack initialization is proposed, avoiding the need for a manual initialization which 

would require a tremendous user input. 

A first concern when designing a stack initialization algorithm is related to the choice of 

the basal and apical slices, in order to confine the initialization to slices covering the LV. Hereto, 

the proposed framework assumes that the stack is previously cropped during loading or even 

during acquisition (e.g., like in Inline VF from Siemens), therefore avoiding the user interaction in 
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this step. In case this was not done, a simple solution would be to have the user input two points 

at run-time, corresponding to the choice of the basal and apical slices in the ED phase. Note that 

this strategy can be regarded as a minor input and is frequently used in commercial software 

packages (e.g., CMRTools, CAAS MRV, Segment CMR, Inline VF, among others) to increase the 

methods’ feasibility and to reduce errors (see Section 2.3). 

The simplest initialization would consist of naively using the segmentation results at the 

mid-ventricular level as initial contours at other slices in the stack, plus a possible scaling to 

account for the different sizes of the LV SAX cuts from base to apex. However, this approach 

makes two unreliable assumptions: it first considers that the relative LV size in different slices is 

known or can be estimated a priori; moreover, it assumes the cavity center is always placed in 

the same position, which may not be true due to the known misalignment of the slices in CMR 

datasets. Thus, we propose a threshold-based BEAS formulation to initialize both endo and 

epicardial contours in the full stack, while at the same time estimating the slices misalignment. 

The idea is to use the subject-specific intensity information learned in the mid-ventricular 

level to obtain coarse delineations at other levels. First, we estimate the intensity distribution of 

the LV cavity and myocardial wall based on the previous segmentation [Figure 3.8A-B]. To this 

end, the Expectation-Maximization (EM) algorithm [53] is used, assuming a mixture of two 

gaussians to describe the LV (cavity plus myocardium) histogram. Although the EM algorithm 

implicitly classifies each pixel according to their probability of belonging to each considered class, 

we are not interested in this segmentation but instead in the distributions’ parameters. In this 

sense, after estimating these parameters (mean and standard deviation of both classes: cavity 

 
Figure 3.8 - Proposed automatic stack initialization procedure. 
(A) Mid-ventricular slice ROI overlay with fully automatic 2D segmentation; (B) LV mask obtained using epicardial 
contour (C) LV histogram, corresponding intensity distributions’ parameters estimated based on EM algorithm and 
threshold definition; (D), (F) and (H) coarse delineation of the endocardium using threshold-based BEAS; (E), (G) 
and (I) final initialization for both endo and epicardial contours using coupled threshold-based BEAS. Note that (D) 
and (E) represent a basal slice, (F) and (G) a mid-ventricular one and (H) and (I) an apical slice. 
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and myocardium), two thresholds are defined, namely the minimum cavity intensity (   ) and the 

minimum myocardium intensity (   ) thresholds [Figure 3.8C]. Due to the presence of TPMs and 

because they should be included in the blood pool, the cavity’s distribution is discarded and only 

the myocardial one is used to define both thresholds. The cavity intensity threshold is defined as 

the 95 percentile of the myocardial distribution, which is a sufficiently high value to capture the 

full blood pool plus TPMs, but avoids the contour leakage to the myocardium. On the other hand, 

the myocardium intensity threshold is defined as the 10 percentile of the myocardial distribution, 

allowing the algorithm to capture most of the myocardial wall while avoiding the leakage to darker 

regions, like the lungs. Then, the two defined thresholds can be used to estimate coarse 

delineations of the endocardium and the epicardium. 

To obtain a coarse delineation of the endocardium, we start by placing an initial circular 

contour with a small radius (2px) centered in the LV cavity’s center of the mid-ventricular slice 

and we evolve it using the minimum cavity intensity threshold [Figure 3.9A]. If the intensity of the 

contour point is higher than the threshold, the contour is allowed to grow. In contrast, when it is 

lower than the threshold, the contour is shrunk. This strategy for contours’ evolution is inspired in 

the simplistic intensity-threshold-based data term presented in [119]. Moreover, at each iteration 

an additional step is performed focusing on re-initializing the cavity’s center and consequently 

resample the contour in the polar domain. The idea behind this step is to improve the estimated 

center for each slice independently [Figure 3.9A]. Finally, the evolution stops when the area 

enclosed by the contour does not significantly change for a few iterations. 

We then initialize an epicardial contour with the thickness obtained in the 2D mid-

ventricular segmentation and we grow it using the minimum myocardium intensity threshold 

 
Figure 3.9 - Principle of threshold-based BEAS to obtain coarse endo and epicardial delineations. 
(A) Endocardium delineation by contour’s evolution using the minimum cavity intensity threshold (   ), with re-

initialization of the cavity’s center. (B) Coupled threshold-based BEAS for epicardial delineation and endocardial 
contour correction (not shown in this simulated example). Both minimum cavity intensity (   ) and minimum 
myocardium intensity (   ) thresholds are used for this stage. 
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[Figure 3.9B]. To improve the initialization robustness, the coupling strategy described in Section 

3.3.1 is used in this second stage. Thus, each contour uses its respective threshold during 

evolution towards a global optimum. Note that the epicardium uses both thresholds to limit its 

growth in both sides. This strategy allows the epicardial contour delineation, while also enabling a 

better endocardial definition by surpassing possible errors in the first stage. Again, the evolution 

stops when the area enclosed by both contours stays nearly constant for a few iterations. 

Interestingly, one should note that the implicit smoothing enforced by BEAS is used to smooth 

the contours while growing, eventually helping surpass papillary muscles during evolution. 

The proposed method is applied for each slice in the stack [Figure 3.8D-I], progressively 

using the LV cavity’s center from previously initialized adjacent slices to start the endocardial 

contour. In the end, it provides a consistent initialization for the subsequent three-dimensional 

segmentation, while estimating the slices misalignment (given by the center’s estimations). 

3.5 Coupled Myocardial 3D Segmentation 

3.5.1 BEAS 3D Extension 

The proposed automatic initialization procedure allows obtaining an initial contour, plus 

an estimate for the LV cavity’s center, for each slice. Using such initialization, the segmentation 

could be independently applied in each of them. However, it would not take into account the 

known spatial continuity of the left ventricle. Thus, a 3D segmentation enforcing a spatial 

continuity allows a more robust segmentation, minimizing possible errors in individual slices. 

Although we could directly segment the stack of slices, the spatial continuity and smoothing 

along the third dimension would result in unpredictable shapes due to the misalignment. We thus 

propose to correct the misalignment prior to the segmentation by considering the LV cavity’s 

centers estimated during the stack initialization. To this end, a translation is applied for each slice 

correcting the center’s position, resulting in a straight LV axis, as illustrated in Figure 3.10, and 

therefore allowing a true three-dimensional modeling of the LV surface. 

The idea is to extend the BEAS framework towards a 3D segmentation in order to enforce 

spatial continuity and obtain higher accuracy. Taking into account the BEAS formulation [47], an 

important step towards the 3D LV modeling is the choice of an appropriate coordinate system. As 

the CMR slices have a relatively large thickness, considering a spherical coordinate system 

(which would be the most straightforward BEAS extension) is unfeasible, since image data is 

highly anisotropic and the pixel intensities between slices can’t be reliably estimated. Therefore, 
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we propose to use a cylindrical coordinate system, where the third dimension has only a finite 

number of possible values corresponding to the number of slices in the cropped stack [Figure 

3.11]. At the same time, we improve the formulation introduced in [118] for an implicit coupled 

propagation by extending it to a three-dimensional parameterization of the myocardial region, 

making use of the cylindrical topology of the CMR data. Thus, the 3D extension of equations (3.4) 

and (3.5) yields:  

      (   )       
(   )         

(   ) (3.19)  

     (   )       
(   )         

(   ) (3.20)  

where      
(   ) gives the center position of the myocardial wall as a function of   and slice 

level  , and        
(   ) encodes half of the myocardial wall thickness. 

One should note that the proposed formulation only allows the surface points to evolve 

radially, inside its own initial z-plane. Such constrain is crucial as any inter-slice information is 

unknown. Moreover, several other points are important to ensure a proper surface evolution. On 

one hand, extending the local neighborhood to a cubic local volume could lead to incorrect local 

intensity means calculations due to the data anisotropy and considerable slice thickness. As 

such, we continue to use an in-slice squared region to update the local intensity means around 

each interface. On the other hand, the introduction of a new dimension requires an additional B-

spline scale to be defined in the BEAS formulation. However, it has to be a low scale to avoid 

over-smoothing of the 3D surface in the third dimension, as a reduced number of slices are 

acquired to cover the left ventricle. 

3.5.2 3D Hybrid Energy Functional 

As stated in Section 2.2.3, the energy functional employed for contours’ evolution is vital 

for an accurate contouring. As such, we propose to design an energy functional that best match 

 
Figure 3.10 - Misalignment correction based on the LV cavity’s 
center estimated during stack initialization. 
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the needs of CMR images. Although the proposed energy in Section 3.3.2 is suited for the 

segmentation in mid-ventricular slices, new challenges arise (or become more pronounced) from 

the inclusion of basal and apical slices in the process. The major remaining challenge concerns 

the epicardial delineation, where multiple local minima near the boundary may misguide the 

contours’ evolution. Moreover, the outside intensity mean is commonly similar to the myocardial 

mean (although usually with different variance/homogeneity), preventing contours’ evolution 

towards the right “unseen” boundary when only using region-based energies. This situation is 

particularly critical in apical slices due to partial volume effects. Similar results are found when 

the initial contour stays in the middle of the myocardium, which is an almost homogeneous 

region, as the LCV energy will become null, inhibiting the evolution. These remarks highlight the 

importance of adding a new energy term, in order to introduce better robustness against 

initialization and increase the accuracy in finding the correct epicardial boundary. 

Due to the contrast in MR images and subsequent clear-sighted edges, several authors 

use edge-based energy terms to evolve the contours and segment the LV [63, 74, 76]. Although 

such edges are well defined at the endocardium, they usually lead to wrong contouring when 

TPMs are present unless other strategy is added. In what concerns epicardial boundary, the 

edges can help during segmentation in septal segments, although weak edges are found in the 

remaining segments between myocardium and other tissues. Nevertheless, even with this low 

contrast between myocardium and surrounding structures (e.g., lungs), it can potentially help in 

epicardial delineation if properly included. Taking this into account, we propose to use a hybrid 

energy in the epicardial energy functional by introducing an edge-based term besides the region-

based one. This term is only applied in the epicardium, because the presence of TPMs in the 

blood pool may mislead the contour’s evolution due to additional edges. Furthermore, as a result 

of higher contrast between cavity and muscle, the segmentation result in the endocardium is 

expected to be better than the epicardial one. The proposed edge-based term relies on the 

 
Figure 3.11 - Endocardial LV 3D-surface representation through an explicit function in the 
cylindrical domain. 
(A) Stack of 2D slices; (B) LV 3D-surface in Cartesian coordinates; (C) Correspondence between the cartesian 
and cylindrical domains; (D) Explicit function in the cylindrical domain. 
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computation of an edge map and its subsequent post-processing. Inspired by Lee et al. [120], for 

each slice in the ED phase an edge map is computed following four steps: 

1. The image is mapped to polar space using the LV cavity’s center estimated 

during the automatic stack initialization [Figure 3.12B]; 

2. A Canny edge detector [121] is applied in the polar domain to extract the edge 

information [Figure 3.12C]; 

3. A post-processing step is applied to filter the edge information [Figure 3.12D]. In 

fact, the initial endocardial contour is used to filter out any edge belonging to the 

cavity’s boundary or inner region. Moreover, the edges in more remote regions 

are also cleaned as they are associated with an unlikely myocardial thickness; 

4. The edge energy map is computed by calculating the unsigned distance of every 

pixel to the closest edge point [Figure 3.12E], which allows improving the edge 

detection robustness by filling small gaps in missed edges [122]. 

Unlike GVF method (Section 2.2.3) [99], a contour evolved using our edge map would be 

unable to converge to boundary concavities. Notwithstanding, in the LV segmentation, this is not 

a drawback as only convex shapes need to be delineated. Moreover, it still introduces a high 

capture range, as presented by GVF, without substantially increasing the methods’ computational 

cost. At last, the use of a distance function to map the edges can even be seen as an advantage, 

as missed edges (due to weak boundaries) can be filled by this process and thus avoiding 

leakage of the contour during evolution. Such advantage is particularly vital in apical slices with 

weak edges or in basal slices with left ventricular outflow tract (LVOT). One should note that this 

effect is even augmented due to the implicit smoothing enforced by BEAS during evolution. 

Using the resulting edge energy map,  ( ), as a new term in the epicardial energy, the 

complete proposed energy functional for 3D segmentation is defined as: 

 
Figure 3.12 - Edge map computation for hybrid epicardial energy functional. 
(A) Mid-ventricular slice ROI; (B) Image ROI in polar domain; (C) Edge information by Canny edge detector; (D) 
Post-processed edge map; (E) Edge energy map overlay with radial vector field. 
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where   is a positive hyperparameter to balance the two terms in the epicardial energy. 

By applying a similar derivation to the one in Section 3.3.2, the energy minimization 

process can be achieved using the following evolution equations: 
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where    ̅ is the edge energy map gradient along the radial direction [Figure 3.12E]. After 

energy minimization, both endo and epicardial contours in the full stack of slices covering the left 

ventricle are obtained. 

3.6 3D+time Tracking 

In the previous sections, a 3D segmentation for all slices covering the LV at the ED phase 

was achieved, which already allow us to compute end-diastolic volume and left ventricular mass. 

In order to compute end-systolic volume, stroke volume and ejection fraction, one requires the 

segmentation to be performed also at the ES phase. Several approaches can be used for this 

purpose, namely temporal segmentation or tracking procedures. The segmentation approaches 

focus on delineating the LV in a sequence of images, using specific energy terms for temporal 

integration [62, 64]. In contrast, tracking-based approaches normally focus on following specific 

patterns along the sequence of images [80, 123]. 

The temporal segmentation usually employs a sequential approach for temporal 

integration, which uses the result from phase   as an initialization for phase     [64]. Thus, 

the contours would be propagated sequentially and a segmentation step would be applied to 

properly delineate the contours for the given phase. This approach would assume that the 

differences between phases (due to contraction of the ventricle) are small in comparison to the 

local squared region used in our energies. In most cases and as long as the temporal resolution 
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during image acquisition is kept high, such assumption would be valid. Nonetheless, due to the 

different image characteristics throughout the cardiac cycle (e.g., more pronounced presence of 

TPMs, less circular shape, among others), the segmentation energy should be redesigned for 

temporal inclusion [38, 62]. 

Thus, we propose to use a tracking algorithm to delineate the LV in all cardiac phases. 

To this end, two approaches will be presented to compare local and global based methods: a 

profile matching based BEAS inspired by [80] and a global anatomical affine optical flow method, 

firstly presented for US data [123]. While a localized methodology allows tracking each region 

separately and accounts for different contraction patterns (present in pathological cases), the 

global methodology focuses on obtaining a consistent tracking over the cardiac cycle while 

avoiding contour drifting when there is limited spatiotemporal information. These two methods 

will be presented and described in the following sections. 

3.6.1 BEAS Profile Matching 

Hautvast et al. [80] presented a fast, robust and accurate propagation method based on 

profile matching. The method uses the assumption of temporal consistency of the tracked 

patterns, trying to retain a constant contour environment by matching gray values in profiles 

perpendicular to the contours. The idea is to use the profile learned by manual contouring at the 

ED phase to search radially for similar ones in subsequent phases. In their method, each contour 

(endo or epicardium) is tracked independently over the cardiac cycle. Nonetheless, the same 

principle has also been previously presented by their colleagues using a coupled strategy [124]. 

However, their coupled formulation requires a more complex fitting process, as both location and 

thickness should be adjusted to fit the new image. 

We propose to use the profile matching principle to obtain both energy and radial force to 

drive the contours in a 3D BEAS formulation, which we denominated BEAS Profile Matching 

(BEASPM). Thus, besides keeping a temporal consistency of patterns, we also ensure a three-

dimensional spatial continuity of the contours tracked throughout the cardiac cycle, which was 

not addressed in [80]. Moreover, due to the implicit smoothing associated with the BEAS 

framework, one explicitly controls the smoothing of the 3D surface, which potentially reduces 

errors associated with lack of spatiotemporal information. At last, although each contour’s profile 

is matched separately, the coupled formulation employed in the framework (see Section 3.3.1 

and 3.5.1) ensures a combined global optimization of both endo and epicardial contours during 

evolution, without requiring explicit constraints over the myocardial thickness. 
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The profile matching energy,    , is computed by considering the sum of absolute 

differences (SAD) between two radial profiles (at time     and  ) and a penalization term 

[Figure 3.13A-F]. Such penalization is designed mainly to avoid large movements, as they are not 

expected between consecutive frames. Moreover, it avoids over-estimation of the myocardial 

contraction in the presence of TPMs, which was reported as a drawback of Hautvast and 

colleagues’ method [125]. Thus, denoting      and    as the intensity images at time     and 

 , respectively, the energy for each contour is given by: 

    
(    
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(3.24)  

 

where    is a positive hyper-parameter to balance the two terms (SAD and penalization) in the 

energy functional of each interface  . Moreover, the profiles’ size is constant (           ) 

and they are centered on the contours unless a smaller local thickness is present (   

       
 and           

 for endo and epicardial contours, respectively). The above equation 

is used to compute the energy for each slice considered at the ED phase. 

By computing the energy gradient in the radial direction,    ̅   
, one obtains a radial 

force for driving both endo and epicardial contours [Figure 3.13G-H]. The minimization of such 

energy gives the best global matching surface for a given cardiac phase. Thus, the energy 

minimization process can be achieved using the following evolution equations: 

 
Figure 3.13 - Principle of BEAS Profile Matching (BEASPM) methodology for LV tracking. 
(A) Endocardial and (B) epicardial reference profiles at reference phase (time    ); (C) Endocardial and (D) 
epicardial search profiles at target phase (time  ); (E) Endocardial and (F) epicardial profile matching energy 

computed using sum of absolute differences and motion penalization; (G) Endocardial and (H) epicardial radial 
force for contours’ evolution, computed as the energy gradient in the radial direction. 
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The propagation is progressively applied to adjacent phases using the previous LV 

surface, until every cardiac phase has been segmented. 

3.6.2 Anatomical Affine Optical Flow 

Barbosa et al. [123] recently presented a global affine optical flow method for tracking 

the LV in three-dimensional US data by considering an anatomically constrained affine motion 

model. The principle is to estimate a global affine motion (translation, rotation, scaling and skew) 

between two consecutive frames by summing the estimated motion over the reference contour 

points in the previous frame (initially considering the ED contour). Such constrained estimation 

only considers anatomical regions of interest by defining a cubic region around each contour 

point and ultimately avoids the influence of adjacent tissues during motion estimation [Figure 

3.14A]. Moreover, by including an iterative displacement refinement scheme, the algorithm is still 

able to accurately capture large movements [123, 126]. The idea is to sequentially accumulate 

the estimated displacement fields, thus iteratively reducing the motion left to be estimated. 

We propose to use this method for LV tracking in CMR datasets. However, because CMR 

data is highly anisotropic, the motion can’t be reliably estimated in the third dimension. At the 

same time, describing a three-dimensional ventricle’s motion with in-slice movements would lead 

to overestimation of the displacements in basal and mid-ventricular slices and a motion 

underestimation in apical slices (note their relative size). Thus, we chose to implement a 2D 

version of such algorithm and we apply it separately for each slice covering the LV. Furthermore, 

as both endo and epicardial contours need to be tracked through all phases, the affine motion 

estimation is performed independently for each contour in a pairwise fashion, starting from the 

3D LV surface at the ED phase. Despite performing a two-dimensional motion estimation, since 

the ED contours were segmented using a 3D formulation and the motion model used integrates 
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information from the entire contour inside each slice (global formulation), a consistent and spatial 

continuous tracking of the LV surface is expected (although not explicitly enforced).  

The principle of optical flow tracking (OFT) is to compute the displacement field of 

objects in an image based on the assumption that their intensity remains constant [127]. In other 

words, optical flow assumes that the intensity of a particular point in a moving pattern does not 

change over time, which implies that any difference in the local appearance of a region over a 

temporal sequence is uniquely defined by the underlying motion (equation (3.27)) [123]. By 

estimating such displacements, one can describe the object’s motion through the studied 

sequence. Let  (       ) denote the pixel intensity at location           and time   for a 

given slice temporal sequence. The optical flow assumption can be expressed as: 

  (                  )   (   ) (3.27)  

Based on the least square solution of the optical flow equation presented by Lucas and 

Kanade [127], the 2D affine motion for each slice can be estimated by minimizing the following 

energy: 

      ∫  (           )(   
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 (3.28)  

where 
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encode the motion field to be estimated along    and   , respectively.        
    

  is the 

local image spatial gradient, whereas    corresponds to the temporal derivative. As in [123], in 

order to reduce the effect of noise in the assessment of the spatial gradient,   ( ) was 

computed using gaussian derivative kernels along    and   , with    .    was simply 

estimated with finite forward differences.   is a local windows function centered in the position 

          and, according to the anatomical constraint introduced in [123], is given by: 

  ( )  ∑  (  )

    

 (3.31)  

where  ( ) is a neighborhood function defined as a 2D square center in   and      stands 

for the sampled points in the LV contour being tracked.   was defined as a     square 

centered in the target point. Such region is smaller than the one in US data [123] due to the 

larger pixel spacing in CMR images and reduced uncertainty associated with this data. To further 

decrease the method’s computational burden, we propose to subsample the contours by a factor 
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of 4, reducing the required local motion estimations. Such subsampling is possible because 

superposition of local regions can be avoided without losing robustness for the global motion 

estimation [Figure 3.14]. 

By differentiating equation (3.28) with respect to the affine motion field components 

[123], the minimization of the weighted least-square criterion can be expressed as the solution 

of: 

            (3.32)  

where   encodes the elements of the affine motion,      is the spatial gradient vector and 

     is the image mismatch vector. These components are expressed as: 
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Further, and as stated above, the estimation is performed iteratively for each pair of 

frames, allowing the accumulation of displacement fields and capturing larger ventricle’s 

movements [123, 126]. Such refinement scheme helps overcome the small displacements 

assumption made by Lucas and Kanade equation [127]. In order to keep the computational 

 
Figure 3.14 - Effect of contours’ subsampling in analyzed region of interest for motion estimation. 
The solid line represents the contour being tracked, while the overlay squares represent the anatomical regions of 
interest used to estimate the motion. A subsampling factor of 1, 2, 3, 4 and 8 was applied in (A) to (E) 
endocardial and (F) to (J) epicardial contour. The higher the factor, the less overlapping region exists, until no 
overlap occurs ((E) and (J)). One should avoid subsampling further than a factor of 4 to avoid losing robustness by 
incomplete region of interest. Nevertheless, until a factor of 4, a lower number of points lead to a reduced number 
of local motion estimations to be performed, therefore decreasing the computational burden of the method. 
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burden of the method low, we chose to perform 4 iterations and then exit the algorithm, which 

already provides a good balance between motion accuracy and overall computational time.  

Finally, the propagation is applied sequentially between adjacent phases using the 

previous LV contours, until every cardiac phase has been delineated. Note that to minimize error 

accumulation, we ensure a minimal number of propagation steps by propagating the contours in 

both directions for half the total number of cardiac phases. 

3.7 Implementation Details 

3.7.1 BEAS Contours’ Evolution 

In active contours frameworks, gradient descent minimization is the most frequently used 

optimization scheme to minimize the energy functional for segmentation [63, 74-76]. To this end, 

a modified version of gradient descent with feedback step adjustment algorithm is used, as 

proposed in the original BEAS framework [47]. According to this algorithm, the B-spline 

coefficients will evolve as: 

     (   )      ( )   
  

     ( )
 (3.36)  

At each step, the B-spline coefficients are updated and the corresponding energy is 

calculated. If the given step leads to a decrease in the global energy, the update is considered 

successful and the B-spline coefficients of the current iteration,     (   ), are kept to the next 

one, while the step size   is set to 1. If not,     (   ) are still kept, but the step size of the next 

iteration is divided by     , yielding a more conservative step. If a new energy minimum is not 

found in a few iterations, the algorithm exits and the last energy minimum, and corresponding 

contours, are chosen as result. By not exiting the algorithm in the first detected minimum, the 

algorithm is still able to escape small local minima and better converge to the optimal solution 

[47]. Obviously, the number of iterations that the algorithm is allowed to continue without finding 

a new energy minimum should be properly defined to allow escaping local minima, but at the 

same time without being too big, as the computational time increases with an increased number 

of iterations. In the presented results, this value was set to 10. 

3.7.2 Segmentation parameters 

Concerning BEAS-related parameters in the 2D segmentation,   was set to    and     

for the wall position and thickness respectively, while for the 3D initialization and segmentation a 

value of    and     was used. The increased spacing allows a higher degree of smoothness of 
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the surface’s shape and thickness, overcoming possible errors due to the presence of TPMs or in 

cases of low contrast and reduced spatial information (e.g., in apical slices). Regarding the 

smoothing across slices, a value of    was set, which avoids over-smoothing in the third 

dimension, as specified in Section 3.5.1. Similar to [118], 64 points were used on each 

boundary for the contour discrete representation. Such value is large enough to capture the level 

of shape detail required for myocardial segmentation, while also dense enough to extract reliable 

information taking into account the complexity and heterogeneity of the image properties, as 

recommended in [47]. Furthermore, a local region of size 1  1  and 11 11 was used to assess 

local region statistics for the endo and epicardial contours, respectively. The local region is 

smaller for the epicardium because of the unpredictability of the outer region, which may 

introduce errors in the local mean estimations. The proposed region weights,   , were set to 0.3 

for the    and     regions. As stated in Section 3.3.2, values lower than one push the contours 

towards the myocardial region, surpassing the presence of TPMs. The chosen values allow a 

good compromise for contour delineation and without leakage into the myocardial region. At last, 

the parameter   in the hybrid epicardial energy functional was empirically set to 0.05, in order to 

equally balance the two terms. For further general considerations and implementation details 

about BEAS, the reader is referred to the work of Barbosa et al. [47]. 

Since it is possible that both contours are attracted towards the same image feature 

leading to their merging, we included a thickness constraint in the evolution. This prevents the 

contours’ merging by locally penalizing the two interfaces to have a minimum thickness of 1px 

between them. Let us note that in [63], Chen et al. also introduced a thickness constraint in the 

energy, but they considered it as a global term (a deviation from the average thickness), modeled 

as two distinct level-sets and not considering its local variation. 

Moreover, a curvature-based shape prior is also included in the energy functional to avoid 

concave shapes. This was simply implemented as a soft inflating balloon force in regions where 

the contour had negative curvature. The purpose of such prior is to also ensure the correct 

segmentation of TPMs. To this end, the curvature ( ) in each point of the model surface is 

analyzed according to the following equation (for polar coordinates): 

   
      

       

(     
 )   

 
(3.37)  

where    and     represent the first and second order derivatives of   in order of  . 
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Regarding BEASPM, in what concerns BEAS-related parameters, we set   to    and     

for the wall position and thickness, respectively, and    along the third dimension. Moreover, the 

profile’s size in the reference frame is 1 px, while the size of the search profile in the target 

frame is 41px, allowing enough freedom for contraction/expansion during the cardiac cycle but 

avoiding using the full radial profile to lower the computational burden. The resolution of profiles’ 

sampling was set to 0.25px (using nearest-neighbor interpolation method) to ensure a good 

tradeoff between sharp definition and computational burden.    was empirically set to 25 and 50 

for the endo and epicardial energy functionals, respectively, in order to balance both energy 

components and give higher importance to the similarity measure (SAD). 
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4. Results 

4.1 Data 

To assess the performance of the proposed framework, we used the cine steady state 

free precession (SSFP) MR SAX datasets available for the MICCAI 2009 Cardiac MR Left Ventricle 

Segmentation Challenge [128]. The database includes 45 cardiac MRI datasets obtained with a 

1.5T GE Signa MRI, during 10- to 15-s breath holds with a temporal resolution of 20 phases over 

the cardiac cycle. Per patient, six to twelve images were obtained from the atrioventricular ring to 

the apex (thickness    mm,  OV   32 mm 32 mm, matrix   2   2  ), with an isotropic pixel 

spacing ranging from 1.29 to 1.56mm. The database contains 32 males (mean age, 59 ± 15.2 

years; range, 23 – 83 years) and 13 females (mean age, 67 ± 12.8 years; range, 46 – 88 

years). The data includes 12 patients with heart failure and myocardial infarction (HF-I), 12 with 

heart failure without myocardial infarction (HF-NI), 12 with hypertrophic cardiomyopathy (HYP) 

and 9 normal cases (N). Moreover, it provides a ground truth, drawn by an experienced 

cardiologist, in all slices for endocardium and epicardium at the ED phase and for endocardium 

at the ES phase. All reported results consider manual contours drawn to include TPMs in the LV 

cavity. The present database was chosen as it enables a direct comparison against other state-of-

the-art methods which have reported their segmentation performance in this same database. 

4.2 Evaluation Metrics 

In order to evaluate the accuracy and robustness of the proposed framework, each 

module of the methodology was tested and validated in the following sections. 

The evaluation code provided in [128] is used to assess the segmentation performance 

against reference manual contours, evaluating the Dice metric, the average perpendicular 

distance (APD) and the percentage of “good contours” (contours for which the APD is less than 

5mm). In order to understand the maximum local error of the framework, we also compute the 

Hausdorff distance, which is defined as the maximum perpendicular distance between contours. 

The APD measures the perpendicular distance from the automatically segmented contour to the 

corresponding manual contour, averaged over all contour points [Figure 4.1A and C]. A lower 

value indicates a better match and increased proximity between contours. The Dice metric [42], 

in its turn, measures the similarity between manual and automatic segmentation by measuring 

their area overlap [Figure 4.1B and D]. Its value ranges from 0 to 1, with higher values implying 
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better match between automatic and manual segmentations. In practice, it is computed using 

the following expression: 

      
    

     
 

(4.1)  

where   ,    and     represent, respectively, the areas of the automatically segmented 

contour, the reference manual contour and the intersection between them. 

Each measure was computed slice by slice and a mean value for all slices of a dataset 

was calculated. However, the original evaluation code only considers “good contours” when 

computing these means (excluding the remaining slices). Besides this limitation, it also removes 

the slices only present in one of the cardiac phases (ED or ES), disregarding longitudinal 

contraction. Taking into account the interest in future comparisons with methods that also use 

this database, the results obtained with the original code are reported. Nevertheless, to overcome 

both limitations and fully understand the framework performance, the segmentation metrics were 

also computed considering all available contours in a customized evaluation code. 

Moreover, to assess the clinical added value of the proposed 3D+time automatic 

segmentation, we compute several cardiac indices used in daily clinical practice to assess both 

global LV morphology and function. In this sense, the end-diastolic volume, end-systolic volume, 

stroke volume, left ventricular mass and ejection fraction were estimated for each CMR dataset. 

Linear regression and Bland-Altman analysis [129] were performed to assess the correlation 

between reference clinical indices and the automatically computed ones. Again, the evaluation 

code presents the aforementioned limitations preventing the correct evaluation. To allow future 

comparisons, such results are still reported for both LVM and EF, as stated in [128]. 

Nonetheless, the customized code is also used to report clinically correct values using all 

contours initially consider by the expert during manual segmentation. 

 
Figure 4.1 - Evaluation metrics used for segmentation performance assessment. 
Average perpendicular distance (APD) measured between automatic and manual contours for (A) endocardium 
and (C) epicardium. The Hausdorff distance (maximum perpendicular distance) is also reported for local 
maximum error evaluation. Dice metric measured for (B) endocardial and (D) epicardium (green area: reference 
manual contour; red area: automatically segmented contour; yellow: intersection between them). 
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At last, the average computational time for each step of the proposed approach was also 

measured, along with the average total computational time to segment a dataset. The reported 

CPU times were obtained using MATLAB code running on a 2.4 GHz dual-core laptop. 

4.3 Automatic Mid-ventricular Initialization 

We developed a novel automatic initialization procedure for LV detection and initialization 

in mid-ventricular SAX cuts, based on a multilevel Otsu thresholding and an elliptical annular 

template matching. In order to evaluate its performance, both modules, LV localization and 

template matching, were tested against their original counterparts. 

The feasibility of the proposed LV localization approach was tested against the method in 

[67] by considering a correct location when the identified object’s centroid was less than 5px 

away from the reference LV center. The proposed automatic LV localization method was able to 

retrieve the correct LV centroid in all 45 mid-ventricular slices. In contrast, the method in [67] 

was only able to locate the LV in 36 cases. In Figure 4.2, two example SAX images are presented 

and their corresponding conventional and multilevel Otsu thresholding applied over the defined 

ROI. Note that the results for the method in [67] were obtained using the parameters defined by 

the authors (a ROI with 11 px and an objects’ area threshold of 40px). 

In its turn, the proposed automatic initialization algorithm, using an elliptical annular 

 
Figure 4.2 - Comparison between proposed LV localization procedure and method in [67] for 
datasets N-7 and HF-NI-15. 
(A) and (E) Original image and used ROI; (B) and (F) conventional Otsu thresholding [67]; (C) and (G) multilevel 
Otsu thresholding and class decomposition for LV object search (from left to right and top to bottom: multilevel 
Otsu thresholding, brightest class, two brightest classes combined, third brightest class); (D) and (H) LV object 
and its centroid (red: Lu et al. method [67]; blue: proposed method). 
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template matching procedure, was compared quantitatively against the original circular template 

matching in [110] by considering a poor initialization when the Hausdorff distance to the 

reference contours was over 10px for the endo and/or epicardium. The Hausdorff distance was 

chosen for evaluation metric in this case, as during the subsequent segmentation the region-

based energy only computes its statistics in a local window of size 1  1  and 11 11 for endo 

and epicardium, respectively. Therefore, a maximum perpendicular distance over 10px would 

correspond to a region outside the convergence basin of the algorithm. This can be easily 

understood by considering that the local windows where the statistical parameters are estimated 

act as the line of sight of the contour evolution process. Thus, if the maximum perpendicular 

distance is too high, it prevents the correct segmentation of the interface, since the contour is not 

able to “see” the correct boundary position. 

Figure 4.3 shows two examples of the performance of the proposed elliptical annular 

template matching algorithm for one circular and one elliptical shaped left ventricle. The 

proposed approach return an appropriate initialization (i.e., Hausdorff distance lower than 10px) 

in 41 out of 45 cases, thus  yielding a feasibility 91.1%, against a feasibility of 71.1% (32/45) for 

the original method [110]. The 4 wrongly initialized images [Figure 4.4] will be discarded for the 

subsequent 2D segmentation analysis, but later included in the 3D and 3D+time analysis as it 

was found that the proposed stack initialization is able to recover from these incorrect or sub-

optimal initializations. 

 
Figure 4.3 - Automatic template matching initialization and segmentation result for the proposed 
energy in two mid-ventricular SAX images (from datasets HF-NI-13 and HYP-3). 
(A) and (E) Original image ROI; (B) and (F) circular template matching in [110] and optimal kernel; (C) and (G) 
proposed elliptical annular template matching algorithm and optimal kernel; (D) and (H) segmentation result for 
endo and epicardial contours (red: endocardium; green: epicardium; yellow: ground truth). 
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4.4 Coupled Myocardial 2D Segmentation 

After obtaining two initial contours from the proposed initialization algorithm, the coupled 

myocardial segmentation is applied to find the true contours in the mid-ventricular slice. At this 

point, we pretend to evaluate the proposed 2D energy functional, designed specifically for CMR 

images, using the localized Chan-Vese energy in [98] as benchmark. In order to understand the 

influence of an automatic initialization, we performed this comparison with both automatic and 

manual initializations. In the latter case, both contours were manually initialized as two 

concentric ellipses fitted to 6 input points introduced by a non-expert user. One should note that 

the chosen benchmark was applied using the proposed coupled formulation and with the same 

BEAS-related parameters (spacing, local regions size, etc.). Thus, the evaluated differences will 

regard the weighted formulation and the specific energy for each contour (SLY and LCV for endo 

and epicardium, respectively). 

The performance of the proposed 2D segmentation approach against the chosen 

benchmark in the 41 mid-ventricular SAX images is shown in Table 4.1. Two segmentation 

examples using the presented modified energy functionals are presented in Figure 4.3D and H. 

Moreover, Figure 4.5 presents 4 mid-ventricular slices segmented using the CMR-targeted energy 

and chosen benchmark, so as to visually depict the major conceptual differences between them. 

In Figure 4.6 and Figure 4.7, several segmentation examples are presented to evaluate the 

 
Figure 4.4 - LV localization and elliptical template matching limitations. 
(A) - (D) LV cavity object detected using the proposed LV localization algorithm; (E) - (H) Corresponding initial 
contours obtained using the proposed elliptical annular template matching algorithm. The presented mid-
ventricular slices are from the following datasets: (A) and (E) HF-NI-4; (B) and (F) HF-NI-31; (C) and (G) HF-NI-
33; (D) and (H) HF-HYP-40. 
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robustness against initialization, illustrating the initial contours used (automatically or manually 

obtained) and the final contours obtained after contours’ evolution. 

In Appendix A, a combined local and global region-based formulation for the myocardial 

region taking advantage of its homogeneity in mid-ventricular slices is presented. Moreover, the 

influence of each added feature in the energy functional is also studied, ultimately giving insights 

about the importance of a CMR-targeted energy. Later, when also considering basal and apical 

slices, partial volume effects and intensity inhomogeneities (due to the MRI bias field) prevent the 

introduction of the myocardial homogeneity assumption in the 3D segmentation. Therefore, and 

for consistency, we chose not to include it also in the 2D segmentation (thus only presented in 

Appendix A).  
 

 

 

 

 

Table 4.1 - 2D Segmentation performance for endo and epicardium (# = 41, μ ± σ). 

 Initialization Energy 
Dice APD (mm) Hausdorff (mm) 

Endo Epi Endo Epi Endo Epi 
A Manual [98] 0.93 ± 0.04 0.93 ± 0.02 1.98 ± 0.90 2.51 ± 1.01 4.51 ± 1.80 5.60 ± 1.60 

B Manual Proposed 0.95 ± 0.03 0.96 ± 0.02 1.31 ± 0.58 1.56 ± 0.58 3.58 ± 1.70 4.18 ± 1.46 

C Automatic [98] 0.90 ± 0.08 0.92 ± 0.04 2.65 ± 1.73 2.87 ± 1.21 6.30 ± 3.53 6.82 ± 2.93 

D Automatic Proposed 0.93 ± 0.05†* 0.94 ± 0.03†* 1.91 ± 1.36†* 2.21 ± 0.95†* 5.19 ± 3.56†* 5.81 ± 2.93†* 

No significant difference was found against A. 
†       , paired t-test against B. 
*       , paired t-test against C. 

 

 

 
Figure 4.5 - 2D segmentation results for (A)-(D) the chosen benchmark energy from [98] and (E)-(F) 
the proposed modified energy functional in 4 example mid-ventricular SAX images. 
The presented mid-ventricular slices are from the following datasets: (A) and (E) HF-I-7; (B) and (F) HF-I-9; (C) 
and (G) HF-I-40; (D) and (H) HF-NI-3 (red: endocardium; green: epicardium; yellow: ground truth). The white 
arrows highlight interesting regions of improvements with the added energy features. 
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4.5 Coupled Myocardial 3D Segmentation 

Table 4.2 summarizes the performance for the 3D segmentation, computed using both 

original evaluation code (OC) and customized code (CC). Again, both automatic and manual 

initializations were considered for comparison. Note that the manual initialization is only applied 

in the mid-ventricular slice (as in the 2D segmentation results) and the proposed automatic stack 

initialization is afterward used. As stated in Section 4.3, all 45 datasets are included in the 

performance evaluation. 

 
Figure 4.6 - Segmentation results for 8 mid-ventricular SAX images, after automatic initialization. 
The presented mid-ventricular slices are from the following datasets: (A) HF-I-7; (B) HF-I-9; (C) HF-I-11; (D) HF-I-
40; (E) HF-NI-7; (D) HYP-1; (D) HYP-37; (D) N-9 (red: endocardium; green: epicardium; cyan: initial contours). 

 

 

 
Figure 4.7 - Segmentation results for 8 mid-ventricular SAX images, after manual initialization. 
The presented mid-ventricular slices are from the following datasets: (A) HF-I-7; (B) HF-I-12; (C) HF-NI-15; (D) 
HF-NI-31; (E) HF-NI-34; (D) HF-NI-36; (D) HYP-6; (D) N-6 (red: endocardium; green: epicardium; cyan: initial 
contours). 
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To also assess the overall performance distribution rather than only average results, 

Figure 4.8 presents the boxplots for each metric for both endo and epicardial contours using the 

customized code. Moreover, the spatial error distribution from basal to apical slices of both APD 

and Hausdorff distance metrics are illustrated in Figure 4.9. Note that the Dice metric distribution 

is not presented as it is influenced by the relative size of the object (which is smaller in apical 

slices) and thus not suitable for comparison between slices (i.e., smaller areas have an implicitly 

smaller Dice for the same APD). The distribution was obtained by normalizing the slices   level 

into the range 0 to 1 and dividing the resultant errors dispersion into 5 equal classes. 

At last, Figure 4.10 gives three segmentation examples with several slices from base to 

apex, with their respective 3D surfaces illustrated in Figure 4.11. In the latter image, the inter-

slice data was interpolated for better visualization. In addition, the estimated misalignment was 

correct prior 3D visualization, thus yielding a spatially smoothed surface. 

Further, in Appendix B, the influence of the edge-based term in the epicardial energy 

functional, and the importance of its combination with a region-based term, is inspected. 

Moreover, in Appendix C, the choice of the parameters that influence the 3D segmentation 

performance (as described in Section 3.7) is addressed and the influence of their variation is 

investigated. 

Table 4.2 - 3D segmentation performance for endo and epicardium (# = 45, μ ± σ). 

 Initialization 
Dice APD (mm) Hausdorff (mm) Good Contours (%) 

Endo Epi Endo Epi Endo Epi Endo Epi 

OC 
Manual 0.94 ± 0.03 0.94 ± 0.03 1.46 ± 0.48 1.77 ± 0.36 3.80 ± 1.03 4.58 ± 0.91 98.2 ± 5.4 97.6 ± 6.4 

Automatic 0.93 ± 0.03 0.94 ± 0.02 1.50 ± 0.47 1.80 ± 0.41 3.97 ± 1.24 4.65 ± 1.14 97.4 ± 8.2 95,4 ± 9.6 

CC 
Manual 0.92 ± 0.04 0.93 ± 0.03 1.56 ± 0.60 1.89 ± 0.53 4.02 ± 1.34 4.80 ± 1.19 98.2 ± 5.4 97.6 ± 6.4 

Automatic 0.92 ± 0.04 0.93 ± 0.03 1.70 ± 0.89 2.06 ± 0.84† 4.34 ± 1.91 5.14 ± 1.79 97.4 ± 8.2 95,4 ± 9.6 
† p    .  , paired t-test against manually initialized results (for corresponding evaluation code). 

Original code (OC) only considers “good contours”, while the customized code (CC) uses all segmented slices. 

 

 
Figure 4.8 - Boxplots of computed (A) Dice metric, (B) APD and (C) Hausdorff distance for both 
endo and epicardial contours using the proposed automatic 3D segmentation (# = 45). 
The ends of whiskers represent the lowest and highest datum still within 1.5 times the inter-quartile range of the 
lower and upper quartile, respectively. Any data value larger is considered an outlier and plotted as a dot. The 
plotted results were computed using the customized code, where all slices are included. 
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Figure 4.9 - Boxplots for APD and Hausdorff metrics distribution from basal to 
apical slices using the proposed automatic 3D segmentation (# = 45). 
(A) APD for endocardial contour; (B) APD for epicardial contour; (C) Hausdorff distance for 
endocardial contour; (D) Hausdorff distance for epicardial contour. The ends of the whiskers 
represent the lowest and higher datum still within 1.5 times the inter-quartile range of the 
lower and upper quartile, respectively. The crosses represent the mean values for each 
metric. The results were computed using the customized code, where all slices are included. 

 

 

 

 
Figure 4.10 - Automatic 3D segmentation results for three example CMR datasets. 
The presented slices are from the following datasets: (A) HF-I-5, (B) HYP-3 and (C) N-2 (red: endocardium; green: 
epicardium; yellow: ground truth). 
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4.6 3D+time Tracking 

To propagate both endocardial and epicardial contours over all cardiac phases, two 

tracking methodologies were presented, namely BEAS profile matching (BEASPM) and global 

anatomical affine optical flow (OFT). We proposed to compare these two opposed methodologies 

in order to evaluate the possible differences between a local and a global tracking algorithm. 

Again, the tracking performance at this stage will be assessed. To this end, besides the endo and 

epicardial manual contours at the ED phase, the endocardial manual contours in ES phase were 

also considered. Note that the MICCAI challenge database does not provide the epicardial 

reference contour in ES phase. Moreover, one should note that to allow direct comparison 

between the expert contours and ours, the ES phase and its corresponding basal and apical 

slices are chosen based on the manual contours. While the ES phase could be automatically 

determined using the LV cavity’s volume (smaller one), the basal and apical slices couldn’t be 

defined without long-axis views (which are not provided in the used database). 

Regarding this 3D+time myocardial segmentation, Table 4.3 and Table 4.4 present the 

overall segmentation plus tracking performance (computed using our customized code) for the 

local and global tracking methods, respectively, for all 45 datasets and also categorized by 

pathology. Based on the similarity between automatic and manual initializations in the 3D 

segmentation results [Table 4.2], we chose not to include this comparison in the 3D+time case. 

Figure 4.12 gives an example tracking result over the cardiac cycle for both methods. The 

corresponding 3D LV surface evolution from ED phase to ES phase for the same dataset is 

illustrated in Figure 4.13, computed using the global optical flow method. Moreover, a complete 

3D LV surface evolution, illustrating the full cardiac cycle, is presented in Figure 4.14. 

The comparison of the proposed approach against state-of-the-art methods that used the 

same database [43-45, 66, 78, 130-133] is presented in Table 4.5, with both tracking 

methodologies reported and using the original evaluation code for metrics computation. 

Moreover, the average total computational time to segment a dataset using either methodology is 

 
Figure 4.11 - 3D LV surface from the three datasets presented in Figure 4.10. 
The presented surfaces are from the following datasets (A) HF-I-5, (B) HYP-3 and (C) N-2. 
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also presented. One should note that other authors also reported their results using the MICCAI 

database [46, 134-136], but their performance was inferior to the ones here included. 

 

 

 

Table 4.3 - 3D+time segmentation performance for endo and epicardial contours using BEAS 
profile matching, categorized by pathology and average result (# = number of datasets, μ ± σ). 

 # 
Dice APD (mm) Hausdorff (mm) Good Contours (%) 

Endo Epi Endo Epi Endo Epi Endo Epi 
HF-I 12 0.92 ± 0.05*† 0.94 ± 0.03 1.88 ± 1.18 1.93 ± 0.96 4.48 ± 2.28 5.09 ± 1.91 95.3 ± 10.6 95.1 ± 12.6 

HF-NI 12 0.91 ± 0.03‡§ 0.92 ± 0.04 2.00 ± 0.55 2.17 ± 0.86 5.22 ± 1.82 5.37 ± 2.09 96.4 ± 4.7 93.8 ± 9.4 

HYP 12 0.85 ± 0.05*‡ 0.91 ± 0.03 2.09 ± 0.42 2.14 ± 0.63 4.61 ± 0.88 5.18 ± 1.36 96.8 ± 5.1 98.3 ± 3.7 

N 9 0.86 ± 0.04†§ 0.92 ± 0.03 2.15 ± 0.73 2.01 ± 0.83 5.07 ± 1.53 4.87 ± 1.65 94.9 ± 8.9 94.0 ± 9.9 

Total 45 0.89 ± 0.05 0.93 ± 0.03 2.02 ± 0.78 2.06 ± 0.84 4.83 ± 1.75 5.14 ± 1.79 95.9 ± 7.7 95.4 ± 9.6 
* p    .  , unpaired t-test between HF-I and HYP; † p    .  , unpaired t-test between HF-I and N; ‡ p    .  , unpaired t-test 
between HF-NI and HYP; § p    .  , unpaired t-test between HF-NI and N. 

Metrics computed using the customized code, which considers all available contours. 
 

Table 4.4 - 3D+time segmentation performance for endo and epicardial contours using global 
optical flow tracking, categorized by pathology and average results (# = number of datasets, μ ± σ). 

 # 
Dice APD (mm) Hausdorff (mm) Good Contours (%) 

Endo Epi Endo Epi Endo Epi Endo Epi 
HF-I 12 0.92 ± 0.05*† 0.94 ± 0.03 1.93 ± 1.28 1.93 ± 0.96 4.66 ± 2.38 5.09 ± 1.91 93.3 ± 12.0 95.1 ± 12.6 

HF-NI 12 0.91 ± 0.03‡§ 0.92 ± 0.04 2.01 ± 0.57 2.17 ± 0.86 5.42 ± 2.01 5.37 ± 2.09 94.2 ± 3.6 93.8 ± 9.4 

HYP 12 0.81 ± 0.06*‡ 0.91 ± 0.03 2.40 ± 0.61 2.14 ± 0.63 4.95 ± 0.93 5.18 ± 1.36 90.1 ± 9.6 98.3 ± 3.7 

N 9 0.85 ± 0.05†§ 0.92 ± 0.03 2.25 ± 0.79 2.01 ± 0.83 5.22 ± 1.58 4.87 ± 1.65 93.2 ± 8.6 94.0 ± 9.9 

Total 45 0.87 ± 0.07 0.93 ± 0.03 2.14 ± 0.88 2.06 ± 0.84 5.05 ± 1.79 5.14 ± 1.79 92.7 ± 9.5 95.4 ± 9.6 
* p    .  , unpaired t-test between HF-I and HYP; † p    .  , unpaired t-test between HF-I and N; ‡ p    .  , unpaired t-test 
between HF-NI and HYP; § p    .  , unpaired t-test between HF-NI and N. 

Metrics computed using the customized code, which considers all available contours. 

 

 
Figure 4.12 - Automatic 3D+time segmentation result using BEAS profile matching (BEASPM) and 
global optical flow method (OFT) for an example CMR dataset. 
The presented SAX slices are from the HF-I-12 dataset, at phases number 20, 16, 13, 11 and 9 (magenta: 
automatic contour at ED phase; red: BEASPM; green: OFT; yellow: ground truth). 
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To better understand the computational burden of each module of the proposed 

framework, the average computational time for each step is reported in Table 4.6, along with the 

average total computational time to segment a dataset using each proposed tracking algorithm. 

Concerning the validation of clinical parameters, the correlation coefficient obtained by 

regression analysis, and both bias and limits of agreement (LOA) obtained by Bland-Altman 

analysis are presented in Table 4.7 for both tracking methods and for both versions of evaluation 

code (OC and CC). Figure 4.15 and Figure 4.16 present the linear regression and Bland-Altman 

plots, respectively, obtained for EDV, ESV, LVM and EF using BEAS profile matching (computed 

 
Figure 4.13 - 3D LV surface evolution from ED phase to ES phase using global optical flow method 
for an example CMR dataset. 
The presented surfaces are from the HF-I-12 dataset, at phases (A) 20, (B) 16, (C) 11 and (D) 9. 

 

 
Figure 4.14 - Complete 3D LV surface evolution using global optical flow method for an example 
CMR dataset. 
The illustrated surfaces represent a full cardiac cycle and are from the HYP-3 dataset, at phases (A) 20 (ED), (B) 
17, (C) 14 (D) 11, (E) 10, (F) 8(ES), (G) 4, (H) 1. 

 

 

 

 

Table 4.5 - Comparison of segmentation performance between proposed approaches and state-of-
the-art (# = number of datasets). 

Method # Time (s) 
Dice APD (mm) Good Contours (%) 

Endo Epi Endo Epi Endo Epi 
Proposed with BEASPM 45 15.9 ± 3.1 0.90 ± 0.04 0.94 ± 0.02 1.79 ± 0.42 1.80 ± 0.41 95.9 ± 7.7 95.4 ± 9.6 

Proposed with OFT 45 11.1 ± 2.8 0.90 ± 0.05 0.94 ± 0.02 1.76 ± 0.45 1.80 ± 0.41 92.7 ± 9.5 95.4 ± 9.6 

Constantinides et al. [78] 30 - 0.89 ± 0.04 0.92 ± 0.02 2.04 ± 0.47 2.35 ± 0.57 90.4 92.6 

Constantinides et al. [45] 45 ≈    0.86 ± 0.05 0.91 ± 0.03 2.44 ± 0.56 2.80 ± 0.71 80 ± 16 71 ± 26 

Hu et al. [43] 45 153.9 ± 32.1 0.89 ± 0.03 0.94 ± 0.02 2.24 ± 0.40 2.19 ± 0.49 91.1 ± 9.4 91.2 ± 8.5 

Huang et al. [66] 45 - 0.89 ± 0.04 0.93 ± 0.02 2.16 ± 0.46 2.22 ± 0.43 79.2 ± 19.0 83.9 ± 16.8 

Jolly [130] 30 ≈    0.88 ± 0.04 0.93 ± 0.02 2.26 ± 0.59 1.97 ± 0.48 95.6 ± 8.8 97.3 ± 5.8 

Liu et al. [44] 45 129.5 ± 30.4 0.88 ± 0.03 0.94 ± 0.02 2.36 ± 0.39 2.19 ± 0.49 91.2 ± 8.5 90.8 ± 10.7 

Schaerer et al. [131] 45 - 0.87 ± 0.04 0.92 ± 0.02 2.97 ± 0.38 3.14 ± 0.33 - - 

Uzunbas et al. [132] 15 ≈ 4  0.82 ± 0.06 0.91 ± 0.03 2.98 ± 0.88 1.78 ± 0.35 - - 

Wijnhout et al. [133] 15 ≈    0.89 ± 0.03 0.93 ± 0.01 2.29 ± 0.57 2.28 ± 0.39 86.4 ± 11.0 94.2 ± 7.0 

Metrics computed using original evaluation code, which considers only “good contours” for metrics computation. 

BEASPM – BEAS profile matching; OFT – global optical flow tracking. 
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using the customized code). Global optical flow tracking plots are not presented due to their 

similarity with local tracking method (see Table 4.5). 

 

 

 

Table 4.6 - Average computational time for each 
step of the proposed approach (# = 45, μ ± σ). 

Method Time (s) 

LV Location 0.10 ± 0.02 

Template Matching 1.16 ± 0.37 

2D Segmentation 0.22 ± 0.05 

Stack Initialization 0.55 ± 0.10 

3D Segmentation 6.21 ± 2.41 

Profile Matching 7.62 ± 0.80 - 

Anatomical OFT - 2.89 ± 0.49 

Total 15.86 ± 3.06 11.13 ± 2.76 

 
Table 4.7 - Linear regression and Bland-Altman analysis for clinical cardiac indices for both 
tracking methodologies (# = 45). 

 Code 
EDV ESV SV LVM EF 

R Bias LOA R Bias LOA R Bias LOA R Bias LOA R Bias LOA 

BEASPM 
OC - - - - - - - - - 0.906 -0.01 35.76 0.962 1.11 10.49 

CC 0.985 -2.46 29.46 0.991 -3.31 24.57 0.924 0.85 21.01 0.951 5.51* 27.70 0.976 1.03 9.25 

OFT 
OC - - - - - - - - - 0.906 -0.01 35.76 0.977 2.45* 9.47 

CC 0.985 -2.46 29.46 0.988 -3.83 28.96 0.855 1.38 15.82 0.951 5.51* 27.70 0.976 3.00* 10.97 
*       , paired t-test against zero. 
Original code (OC) only considers “good contours”, while the customized code (CC) uses all segmented slices. 

BEASPM – BEAS profile matching; OFT – global optical flow tracking. 

Limits of agreement (LOA) represented as  1.  σ. 

 

 
Figure 4.15 - Linear regression for (A) end-diastolic volume (EDV); (B) end-
systolic volume (ESV); (C) left ventricular mass (LVM); and (D) ejection fraction 
(EF) using BEAS profile matching. 
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Figure 4.16 - Bland-Altman analysis for (A) end-diastolic volume (EDV); (B) end-
systolic volume (ESV); left ventricular mass (LVM); and (D) ejection fraction (EF) 
using BEAS profile matching. 
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5. Discussion 

5.1 Automatic Mid-ventricular Initialization 

The first module of the proposed framework intends to achieve an automatic initialization 

for endo and epicardial contours in a mid-ventricular slice at the ED phase. To accomplish this, 

the methods in [67] and [110] were modified and combined to detect the elliptical left ventricular 

myocardial shape in SSFP sequences. 

The proposed method for automatic LV localization was found to be superior to the 

method of Lu et al. [67], retrieving a correct LV centroid for the 45 mid-ventricular slices (against 

only 36 using the original method). These results are mainly due to the multilevel Otsu 

thresholding employed, which decreases the method’s dependency on the image signal 

intensities by describing it with an increased number of classes [Figure 4.2]. Moreover, by adding 

the distance to the image’s center in the cost function, the robustness was improved by avoiding 

misinterpretation when other circular objects exist in the image [Figure 4.2]. Although we added 

an assumption of 4 classes and had to perform the subsequent class decomposition, the method 

seems generic and we expect it to remain valid if applied to other datasets. Moreover, although 

this methodology is designed for cine SSFP sequences where the blood appears brighter, the left 

ventricle localization in dark-blood sequences would be straightforward by simply redefining the 

assumption of a brighter cavity (inverting it to a darker one). 

On the other hand, the proposed elliptical annular template matching algorithm provided 

a higher feasibility than the original circular template matching method in [110], with 91.1% 

(41/45) of feasibility against 71.1% (32/45). Thus, it was found to be superior in estimating the 

initial contours, as it allows searching for elliptical shapes rather than only circular ones. This fact 

is particularly relevant considering that several cardiomyopathies lead to significant geometrical 

distortion of the normal LV ellipsoidal shape. Moreover, the proposed approach avoids the need 

for an image normalization step and an intensity-based search, since it uses the normalized 

cross-correlation of an object with a dark ring template. Again, such assumptions could be easily 

adapted to dark-blood sequences by simply inverting the intensity transitions between searched 

object and background in the computed kernels. Despite the increased feasibility, according to 

the chosen validation criterion, four cases were considered wrongly initialized [Figure 4.4]. The 

analysis of these cases showed that, in part, it is a result from incomplete object detection in the 

previous LV localization step [Figure 4.4B-D]. Note that the LV centroid is correct, but the 
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presence of TPMs hampers the complete cavity detection. In fact, when in combination, the 

presence of loose papillary muscles can help misguide our template matching towards a partial 

LV cavity [Figure 4.4B-C]. At last, in one dataset, the presence of a thin myocardial wall close to 

the lungs leaded to a wrong detection of the myocardium (i.e., the lungs’ dark signal intensity can 

be interpreted as myocardium when lacking a sufficiently thick wall) [Figure 4.4A]. 

In sum, the proposed algorithms achieved a high feasibility and robustness against the 

diversity of image characteristics (e.g., artifacts, surrounding structures, presence of TPMs, 

image contrast, etc.), providing consistent initializations for the subsequent steps of the proposed 

approach. 

5.2 Coupled Myocardial 2D Segmentation 

The second module focuses on segmenting the initialized mid-ventricular slices using the 

BEAS framework. A CMR-targeted energy was designed to accomplish this task, by including a 

weighted energy formulation and specific region-based energies for each contour according to 

their characteristics. The SLY energy was chosen for the endocardium to take advantage of the 

known intensity relation between cavity and myocardium. On the other hand, the LCV energy was 

chosen for the epicardium based on the unpredictability of the outer region and due to the similar 

intensity means between myocardium and surrounding tissues. Moreover, a coupled formulation 

is used, searching for a combined global optimum with separate control over the myocardium 

shape and thickness. 

According to Table 4.1, the proposed automatic initialization reduces the segmentation 

accuracy compared to a manual initialization (C against A and D against B). Nonetheless, when 

combined with the proposed energy, it preserves the segmentation accuracy while avoiding the 

need for a manual initialization (D against A – no significant difference). When analyzing the 

proposed energy only (D against C and B against A), the accuracy increased in the three 

measured metrics for both endo and epicardial contours. Figure 4.5 visually presents such 

increased accuracy. In fact, the weighted formulation pushes the epicardium closer to the 

myocardium, avoiding being trapped in outer boundaries (e.g., between pericardium and lungs or 

in RV trabeculae) [Figure 4.5E-H]. Moreover, it also helps delineating the endocardium by 

surpassing the presence of trabeculae and papillary muscles [Figure 4.5A and C]. At last, note 

that each contour evolves towards a well-defined boundary according to the region-based 

energies principles. However, occasionally, the physician draws the contours differently based on 
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his notion of trabeculae and based on the remaining spatiotemporal information at other slices 

(which are not used at this stage) [Figure 4.5B]. Such situation can lead to differences in the 

segmentation when compared to manually drawn contours, without effectively being an ill-defined 

segmentation. The same remarks on the energy features were observed in Figure 4.6 and Figure 

4.7, with the CMR-targeted energy being able to surpass the presence of TPMs and to evolve 

towards the true boundaries by taking advantage of the respective energy principles. Such results 

reinforce the robustness of the proposed energy against initialization (in the present case, for 

both automatic and manual ones). 

In summary, the proposed energy functional for 2D segmentation shown to be efficient 

and robust to obtain a first mid-ventricular delineation for further initialization and segmentation, 

even in a database with a wide range of pathological cases, anatomy and image contrast. 

5.3 Coupled Myocardial 3D Segmentation 

The two previous modules (first conceptual block of the framework) focused on obtaining 

an accurate and automatic segmentation for a mid-ventricular slice at the ED phase. In the 

second conceptual block, a full 3D segmentation at the ED phase is intended. To this end, two 

modules were designed and presented: an automatic stack initialization and a 3D segmentation 

algorithm. 

Concerning the proposed automatic stack initialization, it was able to retrieve fairly close 

coarse delineations for both endo and epicardial contours. In fact, it even recovers from the four 

wrongly initialized images in the previous step, allowing us to include them in the subsequent 3D 

and 3D+time analysis. The ability to include these images may be linked to the robustness of the 

EM algorithm and the simple but powerful principle of thresholding. In other words, even if the 

initial 2D mid-ventricular segmentation has a less accurate result, the applied mask and 

subsequent EM algorithm still allow a good estimation of the intensity distributions for the LV 

cavity and myocardial wall. After properly estimating the two gaussian distributions parameters, 

both myocardial and cavity intensity thresholds are also appropriately defined. Consequently, the 

initial contours obtained for all slices from base to apex are fairly close to the real boundaries, 

which permit the proposed 3D localized energy functional to obtain an accurate result during 

segmentation. Moreover, the proposed method is at the same time able to adequately correct 

occasional misalignment between slices. Such feature is possible due to the center re-estimation 

during contour growing, which adapts itself to dataset-specific motion artifacts [Figure 3.10]. 
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Thus, during segmentation a true three-dimensional modeling of the LV surface is possible, 

allowing a 3D spatial continuous delineation to be obtained. 

Regarding the subsequent segmentation, the proposed BEAS extension and associated 

hybrid energy functional proved to give accurate results in all 4 metrics used [Table 4.2]. In fact, 

the accuracy was higher compared to the 2D mid-ventricular segmentation [Table 4.1], with 

negligible difference between manual and automatic initializations. This last result is mainly due 

to the robustness of the automatic stack initialization procedure, which is fairly insensitive against 

the 2D segmentation obtained in the previous stage (as stated above). Analyzing Table 4.2, we 

observe that a high percentage of “good contours” was obtained, with an average of  7.4% and 

95.4% for endo and epicardial contours, respectively. Usually, the slices considered bad were in 

the apex (due to its small size and low contrast with its background) or in basal slices in the 

presence of left ventricular outflow tract. The latter problem was still not directly addressed in the 

proposed framework, being only avoided in most cases by the smoothing factor chosen (see 

Figure 4.10A). Nevertheless, it increases the measured distances and is the main contributor to 

the reported average Hausdorff distance. Note the increased average and standard deviation in 

this metric when considering all slices (CC compared to OC), although only a few percentages of 

contours are added. As expected, the reported values for the customized code are worse due to 

the inclusion of slices considered poorly segmented. Such results reinforce the need to look 

together for the performance metrics and percentage of “good contours” when using the original 

evaluation code. 

Figure 4.8 gives an overview of the proposed methodology performance in segmenting 

the ED phase, with approximately 75% of the studied datasets with a Dice metric higher than 

0.90 for both endo and epicardial contours. At the same time, these datasets also present an 

APD under 2 mm for both contours and a maximum local error around 4 - 5 mm. Taking into 

account the observed outliers, it is important to note that two of these are from the four cases 

having a poor 2D initialization. The other outliers are associated with datasets with considerable 

heterogeneity between slices, hampering the correct automatic initialization of apical and basal 

slices further away from the initial mid-ventricular slice when using our threshold-based strategy. 

Regarding the errors distribution from base to apex, the analysis of Figure 4.9 allows to 

conclude that although the median value is not significantly different across the entire LV, the 

average value (crosses) show a tendency for higher errors in basal and apical slices, rather than 

in mid-ventricular ones. Such result is primarily linked to the occurrence of poorly segmented 
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slices at the two ends of the LV (due to the LVOT in basal slices and to PVE in apical ones, as 

stated above). Notwithstanding, overall the segmentation is robust independently from the slice 

level. 

Figure 4.10 confirms the robustness of the proposed 3D segmentation against different 

myocardial intensities, contrast and presence of TPMs (note the second mid-ventricular slice in 

Figure 4.10B). Moreover, the illustrated LV surfaces in Figure 4.11 reinforce the interest of the 

misalignment correction step and the three-dimensional spatial continuity of the segmentations. 

The analysis of the importance of each proposed feature (Appendix B) lead to the conclusion that 

the added weights influence the result most, followed by the SLY energy used for the 

endocardium and the edge-based energy term in the epicardium. Moreover, the 3D segmentation 

results showed to be stable against variations in the chosen parameters (Appendix C), which 

gives crucial insights about the robustness of the present algorithm. 

5.4 3D+time Tracking 

The third and last conceptual block of the proposed framework aims to track endo and 

epicardial contours throughout the cardiac cycle, in order to obtain these contours at the ES 

phase for clinical parameters computation. In Section 3.6, we presented two methods for LV 

CMR tracking, i.e. the BEAS profile matching and the global optical flow tracking, whose results 

were presented in Section 4.6. According to these results, an accurate tracking was achieved in 

the 3D+time approach, independently of the tracking methodology used [Table 4.3, Table 4.4]. 

However, a decrease in the endocardium accuracy for the 3 measured metrics is detected 

compared to the aforementioned 3D results [Table 4.2]. This remark is in part related with the 

greater difficulty in distinguishing the compacted TPMs from the myocardial tissue in ES slices. 

Note that the epicardial results are unchanged as they are not evaluated in the ES phase due to 

lack of manual contouring. Nevertheless, the percentage of “good contours” is still high for the 

endocardium, with an average 95.9% for BEASPM and 92.3% for OFT. Moreover, the APD for 

both endocardium and epicardium are kept around 2 mm when considering all contours in both 

ED and ES phases (CC). When dividing the studied datasets by pathology, no significant 

difference is found between average APD between these groups. Regarding the Dice metric, 

significant differences were found for the endocardial contour between some groups. However, 

this can be related to the different cavity size between groups of subjects, since the differences in 

average APD are not significant. In sum, these results suggest that the proposed algorithm is 
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robust against different pathologies and ventricle’s anatomy and function. Additionally, the 

achieved LV surfaces are spatially smooth and remain so throughout the cardiac cycle [Figure 

4.13, Figure 4.14]. As expected, the left ventricle starts relaxed, contracts until the end-systole 

phase, and relaxes back until it acquires its initial state [Figure 4.14]. 

The comparison between local and global tracking methods is not conclusive, although a 

trend for higher performance of BEASPM over OFT is observed for the studied datasets. Figure 

4.12 depicts some differences between methods but these are not consistent or significant. Note 

that BEASPM tracks the LV motion locally, but the implicit smoothing associated with BEAS 

formulation keeps it properly delineated and without jittered contours. On the other hand, OFT 

searches for motion locally but integrates it in a global affine motion transformation (hence its 

designation of global tracking). These principles can explain the similarities in the tracking 

between both methods. Notwithstanding, OFT has the tendency of tracking the endocardial 

border close to the LV blood pool, disregarding the appearance of more pronounced TPMs after 

contraction (note the significant bias in EF in Table 4.7). BEASPM, due to the pattern tracking 

principle and motion penalization, is better suited to keep the contour around TPMs throughout 

the cardiac cycle. However, OFT is more generic will less parameters to define (only generic ones 

that mostly affect CPU time and not accuracy), while BEASPM can be more influenced by the 

dataset’s pixel spacing, temporal resolution and contrast throughout the frames [80]. Concerning 

the measured computational times, OFT is faster than BEASPM, mainly because the latter 

requires local evolution of both endo and epicardial contours (see Table 4.6). In summary, the 

difference between local and global tracking performance is inconclusive until further evaluation 

on different datasets with higher variability of resolution, contrast and ventricle’s contraction. 

One should note that the proposed framework does not track the mitral valve plane 

throughout the cardiac cycle. Instead, we ask the user to input two points in the basal and apical 

slices at ES phase (in fact, they are obtained looking to the reference manual contours). This 

strategy was employed to allow direct comparison between the expert contours and the 

automatic ones (to obtain the above performance metrics). In practice, the ES phase could be 

automatically determined using the LV cavity’s volume (smaller one), which could be different 

from the manually selected one. Note that the ES phase was visually chosen during manual 

contouring, which does not mean it is completely correct (see Section 2.1). Concerning the basal 

and apical slices, they cannot be reliably defined without long-axis views (remember the different 

arbitrary criterions possible for SAX-derived base identification - Section 2.1). As the main goal of 
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this thesis was to design a segmentation framework for SAX CMR images (LAX views are not 

always acquired), the information on the mitral valve plane cannot be reliably estimated and we 

chose to ask for user input to overcome this limitation. In the future, we intend to include the 

possibility of using LAX views (if acquired) to avoid user input and to track the LV longitudinal 

contraction automatically. Such strategy was reported as more robust and viable for LV base 

identification [36, 58]. 

According to Table 4.5, the proposed framework proved to be competitive to the state-of-

the-art frameworks that used the MICCAI database for validation, providing leading results for 

both accuracy and computational times. This observation was valid for all segmentation 

performance measures employed, with a smaller average APD, superior Dice metric and higher 

percentage of “good contours”. Note that the original evaluation code only considers “good 

contours” for computation of mean, implying that our results are more accurate even including a 

higher percentage of slices. At the same time, the framework showed to be very fast [Table 4.6], 

presenting an average total computational time of 15.86 ± 3.06s or 11.16 ± 2.76s per dataset 

(around 0.06 – 0.09s per image) in a MATLAB implementation. A faster framework can be 

achieved if implemented in a compiled language, such as C++. Moreover, since a fully manual 

contouring takes between 6 to 20 min for only ED and ES phases [29, 36, 37], the proposed 

framework already seems to be fast and accurate enough to be of interest in daily clinical 

practice. Additionally, it can add clinical relevant information by using the full 3D+time 

delineations to compute the volumes changes and corresponding change velocities throughout 

the cardiac cycle [16]. 

Linear regression revealed a high correlation for all clinical cardiac indices, ultimately 

showing the accuracy and interest of the proposed framework for automatic assessment of LV 

morphology and global function [Table 4.7, Figure 4.15]. Again, no major difference was found 

between both tracking methodologies, with BEASPM having a slightly better correlation for ESV 

while OFT presents a higher correlation for SV. Regarding Bland-Altman’s limits of agreement 

[Figure 4.16], the reported values are slightly higher than other frameworks in the literature [38, 

41]. Nonetheless, these methods require some level of user interaction for the segmentation 

process [41] or were only validated on patients with a specific pathology [38]. In our case, a fully 

automatic framework is being proposed and validated on a database with both healthy subject 

and patients, which demands a generic framework. Additionally, the method in [38] takes about 

1h to segment a 4D dataset in a C++ implementation, while in [41] 181.3s are required in 
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average using a MATLAB implementation. In the present work, the proposed framework requires 

less than 16s for the segmentation of a 4D dataset. 

5.5 Preliminary conclusions 

In summary, a novel fully automatic 3D+time segmentation framework for CMR datasets 

was presented, studied and validated. The proposed approach showed to be efficient, accurate, 

robust and fast compared to the available state-of-the-art frameworks, presenting leading results 

in both accuracy and average computational time in the common database used for comparative 

purposes. The average computational time to analyze a dataset was in average under 16s, with 

an overall correlation with reference contours of, approximately, 0.99, 0.99, 0.92, 0.95 and 0.98 

for EDV, ESV, SV, LVM and EF, respectively. Such results show the appeal of the proposed 

framework for automatic assessment of LV morphology and global function in daily clinical 

practice. Nevertheless, we intend to validate the proposed framework on a different database 

with “real-world” variability in both contrast and anatomical and functional characteristics to 

further understand the interest and general robustness of the proposed methodology. Such 

clinical validation is presented in the following chapter. 
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6. Clinical Validation 

In the present chapter, we intend to further evaluate the proposed framework in order to 

assess its potential clinical added value. To this end, a feasibility study and practical validation in 

a clinical setting is presented using a large database acquired for an ongoing multi-center clinical 

trial. This data corresponds to patients with suspicion of ongoing (chronic) myocardial ischemic 

disease and has been acquired in different laboratories across Europe, while being analyzed in a 

core lab whose expertize focuses on MR imaging. The present validation is crucial to test the 

robustness of the presented framework against clinical variability, where considerable shape, 

function and image brightness variations of the left ventricle across subjects are observed [Figure 

6.1]. Moreover, taking into account the often sub-optimal image quality in the clinical setting [36], 

this study allows a complete assessment of the algorithm performance. 

 
Figure 6.1 - Left ventricle variability at mid-ventricular slice across subjects in the clinical trial data. 
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6.1 Data 

The clinical trial database currently includes 318 cardiac MRI datasets, with a temporal 

resolution of 30 phases over the cardiac cycle. Per patient, six to thirteen 2D SAX slices were 

obtained from the atrioventricular ring to the apex, with an isotropic pixel spacing ranging from 

1.11 to 1.56mm. For each dataset, reference contours, drawn by an experienced cardiologist, 

are available for all slices for both endocardium and epicardium at the ED and ES phases. 

Furthermore, reference clinical values for EDV, ESV, SV, LVM and EF from blinded core lab 

analysis are also available. All reported results consider manual contours drawn to include TPMs 

in the LV cavity. 

6.2 Experiments 

To quantify the applicability of the proposed framework for automatic LV segmentation, 

its global feasibility was tested by considering a successful initialization when the detected and 

delineated object roughly corresponds to the LV. In other words, if any of the initialization steps 

(LV localization, template matching or stack initialization) fails to correctly detect and/or roughly 

delineate the LV (by visual inspection), one considers the current analysis incorrect. 

On the other hand, to evaluate the accuracy of the segmentation, the customized 

evaluation code employed in the technical validation (Section 4.2) was used. The evaluation code 

calculates the Dice metric, the average perpendicular distance (APD), the percentage of “good 

contours” (contours for which the APD is less than 5mm) and the Hausdorff distance. 

Moreover, the cardiac indices used in daily clinical practice, namely EDV, ESV, SV, LVM 

and EF, are also estimated for each dataset. Linear regression and Bland-Altman analysis [129] 

were then performed to assess the correlation and agreement between reference clinical indexes 

and the automatically computed ones. 

Finally, the average total computational time required to segment a 4D dataset was 

measured. The reported CPU times were obtained using MATLAB code running on a 2.4 GHz 

dual-core laptop. 

6.2 Results 

Based on the abovementioned criterion, the proposed framework yielded a feasibility of 

95% (302/318). From the 16 datasets (5.0%) considered incorrectly analyzed, 7 were related to 

the LV localization step (2.2%), 5 to the template matching procedure (1.6%) and 4 to the stack 

initialization (1.2%). Figure 6.2 presents one example for each of the causes mentioned. 
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Concerning the 3D+time myocardial segmentation, Table 6.1 presents the overall 

segmentation plus tracking performance, considering all 302 correctly initialized datasets, for 

both local and global tracking methods. Based on the results in Table 6.1 and linear regression 

between automatic and reference clinical values for BEASPM (data not shown), OFT outperforms 

BEASPM in the clinical trial database, showing increased robustness and stability against clinical 

variability. Note that for clinical indices computation, the endocardial contour delineation in the 

ES phase is used, while the epicardial one is discarded. Therefore, taking into account that OFT 

performed better for the endocardium, it is reasonable to conclude that OFT best fits the needs of 

the clinical practice. Consequently, the remaining results will focus only on this approach. 

To also assess the overall performance distribution rather than only average results, 

Figure 6.3 presents the boxplots for each metric for both endocardial and epicardial contours in 

the full 3D+time analysis. Moreover, the spatial error distribution from basal to apical slices of 

both APD and Hausdorff distance metrics are illustrated in Figure 6.4. 

Figure 6.5 illustrates three example segmentations in the ED phase using the proposed 

3D segmentation algorithm. Figure 6.6 and Figure 6.7 present two segmentation and tracking 

results. Moreover, two complete 3D LV surface evolutions, illustrating the full cardiac cycle, are 

presented in Figure 6.8 and Figure 6.9. 

 
Figure 6.2 - Causes of incorrect analysis of datasets in the clinical trial database. 
(A) LV localization failure due to non-centered LV; (B) elliptical template matching failure due to non-uniform wall 
thickness and sub-optimal image quality; and (C) dataset with considerable heterogeneity across slices in the ED 
phase, which lead to incorrect automatic stack initialization due to improper thresholds definition. 

 

Table 6.1 - 3D+time segmentation performance for endo and epicardial contours for the clinical 
trial database (# = 302, μ ± σ). 

Method 
Dice APD (mm) Hausdorff (mm) Good Contours (%) 

Endo Epi Endo Epi Endo Epi Endo Epi 
BEASPM 0.86 ± 0.05 0.90 ± 0.03 2.25 ± 0.90 2.69 ± 0.88 4.99 ± 1.71 5.77 ± 1.68 90.7 ± 10.7 89.4 ± 9.3 

OFT 0.88 ± 0.04 0.90 ± 0.04 1.91 ± 0.71 2.76 ± 0.90 4.59 ± 1.65 5.95 ± 1.76 93.8 ± 6.8 88.7 ± 9.2 

All differences between methods are significant (p    .  , paired t-test). 
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Regarding the automatically computed clinical parameters, the correlation coefficient 

obtained by regression analysis, and both bias and limits of agreement (LOA) obtained by Bland-

Altman analysis are presented in Table 6.2 for all 5 clinical indices considered. Moreover, Figure 

6.10 and Figure 6.11 present the linear regression and Bland-Altman plots, respectively, 

obtained for EDV, ESV, LVM and EF. 

Finally, the average computational time to segment a 4D dataset was 11.00 ± 2.83s. 
 

 

 

 

 
Figure 6.3 - Boxplots of computed (A) Dice metric, (B) APD and (C) Hausdorff distance for both 
endo and epicardial contours using the proposed 3D+time framework (# = 302). 
The ends of whiskers represent the lowest and highest datum still within 1.5 times the inter-quartile range of the 
lower and upper quartile, respectively. Any data value larger is considered an outlier and plotted as a dot. The 
results were obtained using global anatomical optical flow method. 

 

 
Figure 6.4 - Boxplots for APD and Hausdorff metrics distribution from basal to 
apical slices using the proposed automatic 3D+time framework (# = 302). 
(A) APD for endocardial contour; (B) APD for epicardial contour; (C) Hausdorff distance for 
endocardial contour; (D) Hausdorff distance for epicardial contour. The ends of the whiskers 
represent the lowest and higher datum still within 1.5 times the inter-quartile range of the lower 
and upper quartile, respectively. The crosses represent the mean values for each metric. The 
results were obtained using global anatomical optical flow method. 
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Figure 6.5 - Automatic 3D segmentation results for 3 CMR datasets from the clinical trial database. 
The presented slices are from the following datasets: (A) 5165, (B) 6690 and (C) 6694 (red: endocardium; 
green: epicardium; yellow: ground truth). 

 

 

 
Figure 6.6 - Automatic 3D+time segmentation and tracking result using global optical flow method 
for dataset 5192 from the clinical trial database. 
The SAX slices are from phases 1, 4, 8 and 12 (red: endocardium; green: epicardium; yellow: ground truth). 
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Figure 6.7 - Automatic 3D+time result for dataset 6509 from the clinical trial database. 
The SAX slices are from phases 1, 4, 8 and 12 (red: endocardium; green: epicardium; yellow: ground truth). 

 

 

 
Figure 6.8 - Complete 3D LV surface evolution for dataset 5050 from the clinical trial database. 
The illustrated surfaces represent a full cardiac cycle, more precisely at phases (A) 1 (ED), (B) 5, (C) 10 (D) 
14 (ES), (E) 17, (F) 21, (G) 25, (H) 30. 
 

 
Figure 6.9 - Complete 3D LV surface evolution for dataset 5145 from the clinical trial database. 
The illustrated surfaces represent a full cardiac cycle, more precisely at phases (A) 1 (ED), (B) 5, (C) 9 (D) 12 
(ES), (E) 15, (F) 20, (G) 25, (H) 30. 
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Table 6.2 - Linear regression and Bland-Altman analysis for the clinical indices studied (# = 302). 

EDV ESV SV LVM EF 
R Bias LOA R Bias LOA R Bias LOA R Bias LOA R Bias LOA 

0.985 -4.08* 17.60 0.981 1.18* 19.09 0.906 -5.26* 17.80 0.840 20.41* 39.94 0.920 -1.53* 9.66 
*       , paired t-test against zero. 

Limits of agreement (LOA) represented as  1.  σ. 

 

 
Figure 6.10 - Linear regression for (A) end-diastolic volume (EDV); (B) end-systolic 
volume (ESV); (C) left ventricular mass (LVM); and (D) ejection fraction (EF). 

 

 
Figure 6.11 - Bland-Altman analysis for (A) end-diastolic volume (EDV); (B) end-
systolic volume (ESV); left ventricular mass (LVM); and (D) ejection fraction (EF). 
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6.3 Discussion 

6.3.1 Feasibility study 

The proposed framework intends to provide a fully automatic segmentation of CMR 

datasets to be used in clinical practice. Understandably, its feasibility, and thus its ability to 

analyze a given dataset independent of the acquisition system, image quality or subject-specific 

anatomy and function, is one of the most crucial characteristic to be evaluated to understand the 

potential added value of such solution. In the large multi-center database used, the proposed 

framework achieved 95% feasibility, which is a high and, hence, extremely interesting result.  

Concerning the 5% remaining datasets, it was found that the different initialization steps 

are the causes of such incorrect detection and/or delineation. Figure 6.2 allow us to understand 

some of the difficulties involved. When performing the LV localization algorithm, based on 

multilevel Otsu thresholding and search procedure, one of the fundamental assumptions is that 

the LV is (nearly) centered in the image. However, in the used database, the original images were 

cropped in the core lab for manual evaluation. In this process, the clinician was not concerned in 

centering the LV, which originated images with non-centered LV like the one in Figure 6.2A. This 

was one of the main causes of LV localization failure (4/7). Note that such cropping procedure 

also prevented a comprehensive evaluation of the robustness of the proposed LV localization 

method. Other causes for failure were related with sub-optimal image quality, including high 

heterogeneity inside blood pool and low contrast with myocardium. Importantly, if the correct 

object is manually chosen, the remaining segmentation is performed successfully in the majority 

of these cases. 

Another cause for the analysis failure was associated with the proposed elliptical 

template matching procedure (5/318). In this situation, the main reason for incorrect object 

detection was related with the subject-specific anatomy and sub-optimal image quality. In fact, in 

3 datasets, a thin myocardial wall in combination with low contrast between myocardium, lungs 

and surrounding tissues prevents a correct matching. Regarding the myocardial wall thickness, 

one should note that the proposed method assumes a constant thickness for the creation of the 

kernels. Therefore, it has a tendency to fit the template to the thinner part of the myocardial wall, 

disregarding the remaining thicker walls (which is the case of Figure 6.2B). The remaining 

datasets failed due to low contrast (1/5) or pronounced presence of papillary muscles (1/5). 

Finally, the automatic stack initialization was also identified as one of the causes for 

failure (4/318), with the main reason related with extreme heterogeneities between slices at ED 
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phase (see example in Figure 6.2C). Other possible causes were related with the pronounced 

presence of TPMs (or loose papillary muscles in the cavity, 1/4) and problems with basal slices 

when only approximately 50% of the cavity was surrounded by myocardium (1/4). 

6.3.2 Segmentation Accuracy 

The segmentation accuracy was assessed for the correctly initialized datasets (302/318) 

using both local and global tracking methods. Based on the results in Table 6.1, both methods 

presented accurate results, with OFT performing better for the endocardium and with comparable 

results for the epicardium. 

Taking into account the results obtained for the MICCAI database [Table 4.3, Table 4.4], 

the endocardial results seem comparable, presenting similar average Dice metric, APD and 

Hausdorff distance for both OFT and BEASPM. In contrast, it seems that there is a difference in 

the epicardial results between the two databases. Nevertheless, one should note that in the 

current analysis both ED and ES phases were manually segmented, while in the MICCAI 

database only the endocardial contour was analyzed in the ES phase. Therefore, and based on 

the results for the 3D segmentation in the clinical trial database (data not shown), the observed 

decrease is related with the tracking stage and not with the proposed 3D BEAS segmentation. In 

this sense, it is possible to conclude that the presented algorithms track better the endocardium 

than the epicardium. Such conclusion is plausible as the interface between the LV cavity and the 

myocardium has higher contrast than the interface with the surrounding structures. In the OFT 

approach, higher contrast in the data (and so less data uncertainty) allows better estimation of 

the local motions, explaining the increased accuracy for the endocardium. On the other hand, 

BEASPM tries to find the best fitting between reference and target profiles, which fundamentally 

means higher robustness when more defined features (related with higher contrast) are present. 

In a direct comparison between BEASPM and OFT, the latter seems to perform better. In 

a clinical setting, the quantification of the cardiac indices is paramount. Such parameters require 

the delineation of both contours in the ED phase and the endocardium in the ES phase. 

Therefore, the tracking algorithm affects directly the endocardial contour in the ES phase, and, 

consequently, the quantification of ESV, SV and EF. As aforementioned, OFT presented higher 

accuracy for the endocardial contour [Table 6.1], allowing one to conclude that it fits better the 

needs of clinical practice. 

Figure 6.3 gives an overview of the proposed framework performance in segmenting a 

full dataset, with near 80% of the studied datasets with a Dice metric higher than 0.85 for both 
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endo and epicardial contours. At the same time, these datasets also present an APD under 2.5 

and 3.5 mm for both endocardial and epicardial contours, respectively, and a maximum local 

error around 6 - 7 mm. Regarding the errors distribution from basal to apical slices, the analysis 

of Figure 6.4 allow us to conclude that there is a tendency for higher errors in basal and apical 

slices, rather than in mid-ventricular ones (note the median and mean values). As stated in 

Section 5.3, this result is linked to the occurrence of poorly segmented slices at the two ends of 

the LV due to the LVOT in basal slices and to PVE in apical ones. Notwithstanding, overall the 

segmentation proved to be accurate and robust independently from the slice level, as concluded 

during the technical evaluation. 

Such result is also confirmed by the examples in Figure 6.5. Yet, in the basal slice of the 

first dataset (A), it is clear the abovementioned sub-optimal accuracy in the LVOT. Note that the 

segmentation is quite accurate in terms of myocardial wall delineation, however the clinician 

tends to consider the septal portion as outflow tract and its volume is removed from the cavity. 

The proposed framework still not directly mimics this preference of the clinician, thus being 

responsible for a decrease in the global performance. Regarding the tracking robustness, Figure 

6.6 and Figure 6.7 presented two example segmentations over the cardiac cycle in three different 

slice levels, showing accurate delineations. The overall aspect of the LV surface is also illustrated 

in Figure 6.8 and Figure 6.9. In these figures, the longitudinal contraction was taken into account 

based on the apical and basal slice levels and the common assumption of near incompressibility 

of the left ventricular myocardium (i.e., approximately constant mass) [137]. 

Overall, the current analysis allowed us to conclude that the segmentation accuracy 

observed in the technical evaluation was kept during the present clinical validation, even with the 

considerable amount of image quality, anatomy and function variability. 

6.3.3 Clinical indices validation 

In addition to the framework’s feasibility and accuracy (in terms of Dice metric, APD and 

Hausdorff distance), the ability to automatically quantify the cardiac indices with comparable 

values to the physician is of utmost importance for success when introducing a methodology in 

daily clinical practice. In this sense, the correlation between manual and automatically calculated 

cardiac parameters was assessed [Table 6.2, Figure 6.10, Figure 6.11]. A high correlation for 

both volumetric measurements (i.e. EDV and ESV, 0.985 and 0.981, respectively) was obtained, 

resulting also in appealing correlations for stroke volume and ejection fraction (0.906 and 0.920, 

respectively). However, the values obtained were slightly lower than the ones found for the 
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MICCAI database. Notwithstanding, one should have in mind that the clinical trial database 

included a substantially higher number of datasets, with a broader range of variability in image 

characteristics and subjects’ anatomy, which complicates the analysis and intrinsically demands 

for a generic approach. Regarding left ventricular mass, the correlation was lower, with wider 

limits of agreement [Figure 6.11C]. Such result is mainly related to the sub-optimal image quality 

and low contrast present in these datasets, but also due to the different edge selection approach 

employed by the core lab specialist. 

Comparing to the recent study of Miller et al. [36] about the impact of “real-world” 

variability in the analysis methodologies used for manual contouring, our results present similar 

correlations to the ones reported. In fact, according to their study, the variability among 

physicians can reach correlations of about 0.93 to 0.99 for EDV and ESV or about 0.91 to 0.96 

for EF, which shows the competitiveness of the proposed framework for automatic contouring. 

Globally, the results were promising for the distinct cardiac indices, reinforcing the potential of 

the proposed methodology for left ventricular morphology and global function assessment. In 

combination, the average computational time to segment a full 4D dataset (around 11s, with a 

MATLAB code) is exciting when compared to the manual analysis time (between 6 to 20min [29, 

36, 37], for the ED and ES phases only), which may facilitate the introduction of the proposed 

framework in clinical practice. Actually, the current analysis time can even be sped up if the 

algorithm is implemented in C++ or on GPU, which ultimately shows that a one second analysis 

is highly feasible. 

In summary, given that these results were obtained in a large multi-center database, with 

“real-world” clinical variability and subject to blinded core lab analysis, this is the most accurate 

picture of the potential performance of the algorithm in daily clinical practice. Thus, without a 

doubt, these results reassure the feasibility, accuracy, quality and robustness of the proposed 

framework for fast fully automatic 3D+time myocardial segmentation and global function 

assessment in daily clinical practice. 
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7. Main Conclusions 

The present work aimed to develop a fast fully automatic 3D+time LV myocardial 

segmentation framework for CMR datasets with accurate shape delineation and low 

computational burden. To this extent, we proposed a novel framework presenting 3 conceptual 

blocks: 1) an automatic 2D mid-ventricular initialization and segmentation; 2) an automatic stack 

initialization followed by a 3D segmentation at the ED phase; and 3) a tracking procedure to 

delineate both endo and epicardial contours throughout the cardiac cycle. To this end, a fast 

automatic initialization approach capable of detecting LV elliptical annular shapes was presented 

through the combination of a LV localization method and an elliptical annular template matching 

algorithm. Moreover, an adapted version of the BEAS framework to CMR images is proposed for 

both 2D and 3D segmentations. In this sense, we integrated dedicated energy terms for accurate 

segmentation and we made use of a cylindrical coordinate system that better fits the topology of 

CMR data. An automatic stack initialization using a threshold-based BEAS formulation was also 

presented for 3D initialization and misalignment correction. Finally, and to propagate both 

contours over all cardiac phases, a local and a global tracking method, i.e. a profile matching 

based BEAS and global anatomical affine optical flow method, were presented and compared. 

The proposed framework has been validated on 45 CMR datasets from a publicly 

available database and on 318 CMR datasets from an ongoing multi-center clinical trial. The 

framework showed competitive results against the state-of-the-art methods, presenting leading 

results in both accuracy and average computational time in the common database used for 

comparative purposes. Moreover, the results in the large scale clinical validation confirmed the 

high feasibility and robustness of the proposed framework for accurate left ventricular 

morphology and global function assessment. In combination with the low computational burden 

of the method, the current methodology seems promising to be used in daily clinical practice. 

In the future, we intend to include the possibility of using LAX views (if acquired). Such 

solution would allow increasing the feasibility of the automatic initialization and the robustness of 

the tracking, by allowing LV base identification and tracking throughout the cardiac cycle. 

Moreover, we intend to include new terms in the proposed CMR-targeted energy, namely a 

shape-prior term, to further increase the robustness of the segmentation, particularly in the 

epicardial contour. In addition, and taking into account the increased accuracy of the OFT 

method, we intend to design a more localized optical flow tracking methodology to increase its 

accuracy while keeping the near real-time performance of the framework. 
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Appendixes 

Appendix A: Combined global and local region-based energy 

In Section 3.3, a CMR-targeted energy was proposed based on a weighted region-based 

energy functional with two different energies for the endocardium and epicardium. On the one 

hand, a signed localized Yezzi (SLY) energy was proposed for the endocardium, taking advantage 

of the known relative signal intensity of the cavity and myocardium. On the other hand, an 

unsigned localized Chan-Vese energy (LCV) was used for the epicardium, based on the low 

contrast between cardiac muscle and surrounding tissues and their relative homogeneity. 

In this appendix, a new energy feature is presented, which explicitly takes advantage of 

the myocardial region homogeneity in mid-ventricular slices. The strategy (henceforward referred 

as myoGL) is to combine global and local principles for the computation of local statistics in the 

myocardium. This method is only applied to the myocardial region as it is the only one with fair 

homogeneity in mid-ventricular slices. The presence of TPMs and heterogeneities due to blood 

flow in the cavity and the diversity of structures adjacent to the LV (lungs, RV, pericardium and 

abdominal organs) prevent global modeling of the inner and outer regions, respectively. 

Based on the proposed energy for 2D segmentation (equations (3.6) to (3.10)), the 

proposed strategy requires a new equation for the computation of the mean intensity of the 

myocardial region, which is now given by         (             )  .  Note        as 

the local mean intensity of the myocardial region (as used previously) and        as the global 

mean intensity estimated using the entire myocardium. The latter tries to introduce a global term 

in the energy formulation, in order to overcome possible initialization problems and thus 

increasing the methods’ robustness. 

With the aim of evaluating the proposed energy feature, the segmentation performance 

was assessed in the 41 mid-ventricular SAX images considered in Section 4.4. Again, for 

comparative purposes, a non-weighted localized Chan-Vese energy [98] applied for both 

boundaries is used as benchmark. At the same time, we also intend to study the influence of the 

added weights, as well as the different energies considered for the two contours. Table A.1 

presents the segmentation accuracy (using the automatic initialization) for different combinations 

of features in the proposed energy functional. A paired t-test was performed to assess if there 

was a statistical difference between the combinations tested (always between a given 

combination and the previous ones). 
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The analysis of Table A.1 allow us to conclude that any of the features introduced lead to 

a statistical increase of the accuracy when compared to the benchmark energy (note the result of 

the paired t-test against A for cases B to E). Moreover, it is also possible to conclude that the 

weighted formulation was responsible for the largest improvement. Regarding the localized 

energies used, there is no significant difference for both Dice and APD for the 2D segmentation in 

the proposed energy (C against B and E against D). However, a significant improvement was 

observed in the 3D segmentation (Appendix B), which proves the added value of using the SLY 

energy to take advantage of the known relative intensity between cavity and cardiac muscle. 

Concerning the presented combined local and global formulation for the myocardial region, one 

is able to observe a significant improvement for the epicardial contour and a tendency for higher 

accuracy for the endocardium. However, as stated in Section 4.4, such result was not observed 

for the 3D segmentation (data not shown), due to partial volume effects in apical slices and low 

contrast between myocardium and surrounding structures. Thus, and for consistency, this 

strategy was also removed in the 2D segmentation. 

In summary, the present analysis shows the importance of designing an energy specific 

for CMR images, taking advantage of the a priori knowledge about these images. The proposed 

energy has proven to be superior to the benchmark energy, increasing the segmentation 

accuracy and the robustness against initialization. 

Appendix B: Influence of energy features in 3D segmentation accuracy 

In order to improve the segmentation accuracy in the proposed 3D BEAS segmentation, 

we presented a hybrid energy functional for the epicardium, by adding to our previous 2D 

epicardial energy an edge-based term. The main purpose was to address the problem of local 

minima close to the epicardial boundary, as well as to minimize the effect of low contrast in the 

Table A.1 - 2D Segmentation performance for endo and epicardium with multiple combinations of 
the proposed features in the energy functional (# = 41, μ ± σ). 

 Energy    myoGL 
Dice APD (mm) Hausdorff (mm) 

Endo Epi Endo Epi Endo Epi 
A LCV 1.0 No 0.90 ± 0.07 0.92 ± 0.03 2.51 ± 1.61 2.83 ± 1.19 5.85 ± 3.17 6.82 ± 2.86 

B LCV 0.3 No 0.93 ± 0.05‡ 0.94 ± 0.03‡ 1.81 ± 1.19‡ 2.13 ± 0.91‡ 4.55 ± 2.86‡ 5.53 ± 2.70‡ 

C SLY/LCV 0.3 No 0.93 ± 0.05‡ 0.94 ± 0.03‡ 1.91 ± 1.36‡ 2.21 ± 0.95‡ 5.19 ± 3.56‡† 5.81 ± 2.93‡ 

D LCV 0.3 Yes 0.94 ± 0.04‡ 0.94 ± 0.02‡ 1.68 ± 0.98‡ 1.90 ± 0.76‡†* 4.37 ± 2.92‡* 4.99 ± 2.62‡†* 

E SLY/LCV 0.3 Yes 0.94 ± 0.04‡* 0.94 ± 0.02‡†* 1.60 ± 1.05‡* 1.96 ± 0.74‡†* 4.20 ± 2.61‡* 5.07 ± 2.47‡†* 
‡       , paired t-test against A. 
†       , paired t-test against B. 
*       , paired t-test against C. 

No significant difference was found against D. 
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segmentation performance. Nonetheless, the advantage of such strategy was still not properly 

evaluated. Moreover, the reason behind a hybrid energy (instead of a pure edge-based one) was 

also not addressed in the main body of the text for the sake of space. 

In this appendix, we intend to investigate the interest in a hybrid energy for the epicardial 

boundary energy, but also to better understand the importance of each individual energy features 

used. Table A.2 presents the segmentation accuracy (using the proposed automatic initialization 

and applying in all 45 datasets used in Section 4.5) for different combinations of features in the 

proposed energy functional. The analysis addressed the introduction of the weighted formulation, 

the introduction of the two different energy principles for each contour (SLY and LCV), as well as 

the importance of the edge-based term (without it, only with it and combined with region-based 

term). A paired t-test was performed to assess if there was a statistical difference between the 

combinations tested (always between a given combination and the previous ones). 

As stated in Appendix A, Table A.2 corroborates the fact that the weighted formulation is 

the energy feature that influences the performance most. Again, a significant increase of all 

measures is observed for both endo and epicardial contours (B against A). Moreover, Table A.2 

definitely proves that the use of the SLY energy for the endocardium leads to a significant 

increase in the segmentation accuracy (C against B). Concerning the proposed hybrid epicardial 

energy, a significant improvement in the epicardium results are observed, which reinforces the 

interest in using the edge-based term in combination with the LCV energy (E against D and C). 

Importantly, note that, if used alone, the edge-based term lead to a decrease in the segmentation 

performance (D against C). Such result shows that, although CMR presents clear-sighted edges, 

it is not viable to use only edge information during segmentation. 

In summary, based on the successive performance increases, the present analysis leads 

Table A.2 - 3D Segmentation performance for endo and epicardium with multiple combinations of 
the proposed features in the energy functional (# = 45, μ ± σ). 

 Energy    
R/E/ 

H 
Dice APD (mm) Hausdorff (mm) 

Endo Epi Endo Epi Endo Epi 
A LCV 1.0 R 0.85 ± 0.06 0.90 ± 0.04 3.01 ± 1.03 2.90 ± 1.02 6.81 ± 1.97 6.38 ± 1.84 

B LCV 0.3 R 0.90 ± 0.05‡ 0.91 ± 0.04‡ 1.92 ± 0.92‡ 2.43 ± 0.89‡ 4.74 ± 1.94‡ 5.81 ± 1.92‡ 

C SLY/LCV 0.3 R 0.92 ± 0.05‡† 0.92 ± 0.04‡† 1.71 ± 0.91‡† 2.21 ± 0.88‡† 4.37 ± 2.06‡† 5.40 ± 1.96‡† 

D SLY/LCV 0.3 E 0.91 ± 0.05‡* 0.91 ± 0.04‡ 1.94 ± 0.92‡* 2.53 ± 1.02‡* 4.99 ± 1.93‡* 6.05 ± 1.98‡* 

E SLY/LCV 0.3 H 0.92 ± 0.04‡†§ 0.93 ± 0.03‡†*§ 1.70 ± 0.89‡†§ 2.06 ± 0.84‡†*§ 4.34 ± 1.91‡†§ 5.14 ± 1.79‡†*§ 

Epicardial energy term was defined as region-based only (R), edge-based only (E) or hybrid energy (H). 
‡       , paired t-test against A. 
†       , paired t-test against B. 
*       , paired t-test against C. 
§       , paired t-test against D. 
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to the conclusion that the added weights influence the result most, followed by the SLY energy 

used for the endocardium and the edge-based energy term in the epicardium. Moreover, it seems 

that the use of edge-based information results in increased accuracy, but only if used in 

combination with a region-based term. 

Appendix C: Sensitivity Analysis 

The proposed 3D segmentation algorithm has already showed its robustness and 

accuracy (Section 4.5 and Appendix B). Notwithstanding, the presented method requires setting 

several parameters, which were empirically set or defined based on a priori knowledge of the 

object of interest (Section 3.7.2). So far, the influence of these parameters in the obtained results 

was not studied, raising the hypothesis of eventual parameter over-tuning and consequent critical 

performance sensitivity to their variation. 

In this appendix, the influence of the parameters variation was assessed to study the 

robustness and stability of the proposed methodology. To this end, the 8 more significant 

parameters of the algorithm were included in the analysis, namely the inner and outer region 

weights (     and     ), the sizes of the local squared regions for statistics computation 

(          and         ), the threshold values for automatic stack initialization (        

and       ), the hyperparameter   controlling the balance between the region-based and edge-

based terms, and the number of points for contour discrete representation (       ). The range 

where the parameter influence is evaluated was defined as a ±50% variation around the 

aforementioned chosen parameters values (Section 3.7.2). Each dataset was then segmented 

using the new value of one parameter while keeping the remaining ones fixed to their original 

value. 

Regarding the chosen parameters, the first four (region weights and sizes of local 

regions) influence both the 2D and 3D segmentation result, therefore affecting the initial mid-

ventricular segmentation and the subsequent surface delineation in the ED phase. In between, 

the threshold values have a direct influence in the obtained coarse stack initialization for the 

subsequent 3D segmentation. The parameter   affects the hybrid epicardial energy, controlling 

the relative importance of both region-based and edge-based terms and thus influencing the 3D 

segmentation. At last, the number of points for discretization, relative to the spacing chosen for 

the B-splines support ( ), controls the surface’s smoothing. Again, the 2D segmentation, stack 

initialization and 3D segmentation are influenced by this parameter. Please note that, due to the 
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multiscale operation involved in the BEAS framework, the number of discrete contours’ points 

should be a base-2 number. Therefore, its range was defined as a -50% to +100% variation 

around the initial predefined value (64 points). 

Figure A.1 illustrates the influence of the variation of each parameter in the automatic 3D 

segmentation performance, evaluated using the average Dice metric and APD. 

According to Figure A.1A, the variation of the inner region weight does not have a major 

impact in the segmentation performance, although there seems to be an optimal range around 

 
Figure A.1 - Influence of the variation of 8 parameters in the 3D segmentation performance. 
(A) and (B) Inner and outer region weights ([0.15; 0.45]); (C) and (D) sizes of the local region ([9 9; 21 21] 
and [5 5; 17 17] for endo and epicardial regions, respectively); (E) and (F) threshold for stack initialization 

([92.5%; 97.5%] and [5%; 15%] for endo and epicardial thresholds, respectively); (G) parameter   for hybrid 
epicardial energy ([0.025; 0.075]); and (H) number of points for contours discrete representation ([32; 128]), 
(red: endocardium; green: epicardium). 
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the chosen value. In fact, the measured variation in the accuracy was just of 1% in the average 

Dice metric and 0.3mm in the average APD. The same result was observed for the outer region 

[Figure A.1B], although with even smaller impact in the performance (0.6% and 0.15mm for Dice 

and APD, respectively, at the endpoints). Note that the variation of each weight also affects the 

other contour, due to the coupled formulation employed (Sections 3.3.1 and 3.5.1), although the 

performance is kept quite constant. 

Regarding the size of the local region for the endocardial contour evolution [Figure A.1C], 

there is little influence in the outcome for the studied range. However, it was also verified that 

larger regions led to a small increase of the performance. This can be justified by the fact that the 

endocardial boundary is better defined (due to high contrast between cavity and cardiac muscle), 

which is favored by a larger region for higher robustness against initialization and noise. 

Concerning the epicardial contour, the variation of its local region size appears to have no 

influence [Figure A.1D], although there is a tendency for a decreased accuracy in the endpoints 

(note the Dice metric). Again, this result is expectable, since a larger region in the epicardium will 

introduce further unpredictability from the outer region, as well as a smaller region will limit the 

line of sight for the contours’ evolution, impeding its growing and correct placement. 

Concerning the threshold values for the automatic stack initialization, the analysis 

showed that the minimum cavity threshold (       ) is more sensitive to variations that the 

minimum myocardial threshold (      ) [Figure A.1E-F]. Furthermore, it was verified that smaller 

values for the endocardial threshold led to an increased performance. Such result may be 

explained by the fact that such decrease in the threshold is mimicking the purpose of the region 

weights (by pushing the endocardial boundary towards the myocardium). 

The parameter   showed no effect on the segmentation performance [Figure A.1G]. 

Note, however, that even with small values it is better to have a hybrid epicardial energy than a 

pure region-based or edge-based one (Appendix B). 

At last, the variation of the discretization showed that there is an intrinsic trade-off 

between a proper shape support and a smooth interface evolution. In fact, if used a small 

number of points (32 in the experiment), the segmented shapes are not able to capture all the 

shape details of the LV. For the studied case, the large spacing defined (Section 3.7.2) with such 

small number of points lead to segmentations close to a perfect circle, which ultimately affects 

both stack initialization and 3D segmentation. On the other endpoint, an increase in the number 

of points only resulted in a slight decrease in the accuracy. Thus, increasing the DOF of the 
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segmented LV enables to capture finer shape details, while at the expense of a small decrease in 

the segmentation robustness. 

Overall, the present analysis showed the robustness of the proposed framework, with 

only slight variations in the segmentation performance for most of the parameters analyzed. This 

result is of utmost importance to demonstrate its feasibility against variability. 




