
Down with Variables

Alcino Cunha Jorge Sousa Pinto José Proença

{alcino,jsp,proenca}@di.uminho.pt

Techn. Report DI-PURe-05.06.01

2005, June

PURe
Program Understanding and Re-engineering: Calculi and Applications

(Project POSI/ICHS/44304/2002)

Departamento de Informática da Universidade do Minho
Campus de Gualtar — Braga — Portugal

DI-PURe-05.06.01
Down with Variables by Alcino Cunha and Jorge Sousa Pinto and José
Proença

Abstract

The subject of this paper is point-free functional programming in Haskell.
By this we mean writing programs using categorically-inspired combina-
tors, algebraic data types defined as fixed points of functors, and impicit
recursion through the use of type-parameterized recursion patterns. This
style of programming is appropriate for program calculation (reasoning
about programs equationally), but difficult to actually use in practice –
most programmers use a mixture of the above elements with explicit re-
cursion and manipulation of arguments. In this paper we present a mech-
anism that allows programmers to convert classic point-wise code into
point-free style, and a Haskell library that enables the direct execution
of the resulting code. Together, they make possible the use of point-free
either as a direct programming style or as a domain into which programs
can be transformed before being subject to further manipulation.

1 Introduction

The origins of the point-free style can be traced back to the ACM Turing
Award Lecture given by John Backus in 1977 [1]. Instead of explicitly
referring arguments, Backus recommended the use of functional forms
(combinators) to build functions by combining simpler ones. The partic-
ular choice of combinators should be driven by the power of the associated
algebraic laws; the desired result is an effective program calculus in which
equational reasoning and program transformation can be performed.

Category theory has proven very successful in providing such a set of
combinators. Function composition, the most fundamental combinator of
point-free programming, is also the fundamental concept of this theory,
and the universal characterization of types in a categorical setting is a
good source for combinators and the associated laws. In particular, we
will be interested in almost bicartesian closed categories, that is, categories
with products, non-empty sums, exponentials, and terminal object. The
set of combinators that characterizes these categories is nowadays stan-
dard among point-free programmers [23, 3, 11].

The point-free style of programming is usually combined with the
use of recursion patterns to replace explicit recursion. These encapsulate
standard shapes of recursion that, likewise to point-free combinators, are
characterized by a rich set of equational laws. In the context of equational
reasoning these laws replace fixpoint induction, and in program transfor-
mation they can be used to shortcut the classic fold/unfold transformation
cycle [4]. For example, well known concepts like folding or fusion over lists
were first introduced by Bird to derive accumulator-based implementa-
tions of inefficient specifications [2].

The drawback of using the point-free style is that, as the examples
in this paper show, programs written without variables are not always
easy to write or understand. In fact, it is virtually impossible to program
without using variables here and there. The difficulties associated with
the point-free style are our point of departure for the present paper.

This paper has two goals. The first is to present a mechanism for
translating pointwise Haskell [14] code into point-free form. Equipped
with such a tool, programmers may freely program in their favorite id-
iom and then have variables automatically eliminated, so that reasoning,
calculation, and transformation can be performed. Interestingly, the need
for such a mechanism was recently mentioned in the Haskell mailing list,
in a thread concerning the advantages/disadvantages of the point-free
style [17]:

[. . .] it is easier to reason equationally with point-free programs,
even if the intended computation is often easier for mere mortals
to see when named values are used. So point-free style helps when
trying to apply program transformation techniques, and translation
to make greater use of point-free idioms may be a useful precursor
to transforming a program.

The second goal is to present a library for point-free programming
in Haskell, that will be used to execute the code that results from the
above translation. Of course, it can also be used to directly program in
the point-free style with recursion patterns. Following the typical joke
about point-free programming we have named this the Pointless Haskell
library. It inherits a polytypic implementation of recursion patterns from
PolyP [25], a generic programming library. With the help of extensions
to the Haskell type system, we have implemented an implicit coercion
mechanism that provides a limited form of structural equivalence between
types. This has allowed us to embed in Haskell a syntax almost identical
to the one used at the theoretical level for point-free terms.

Section 2 presents the basic point-free combinators and the equational
laws that characterize them. It also describes how they are implemented
in the Pointless library. Section 3 starts with the presentation of a simply-
typed λ-calculus with products and sums, and then describes how it can
be translated into the point-free style. Section 4 introduces recursion:
data types are viewed as fixed points of functors, and recursive functions
are declared implicitly by means of recursion patterns, namely hylomor-
phisms. Section 5 describes how Pointless Haskell incorporates generic
recursion patterns and recursive types within the point-free style. Sec-
tion 6 extends the pointwise to point-free translation to handle recursion:
it defines two methods to replace fixpoint definitions by hylomorphisms.
Section 7 shows how a limited form of pattern matching can be added
to the core λ-calculus, making it easier to encode many typical Haskell
definitions.

2 Point-free Programming

A category is a collection of objects and a collection of arrows between
objects, to be used as denotations for types and functions, respectively.
Two arrows g : A → B and f : B → C can be composed as f ◦ g : A →
C, and for each object A there exists an identity arrow idA : A → A.
Composition and identity obey the following associative and naturality

laws, that are implicitly used in calculations.

f ◦ (g ◦ h) = (f ◦ g) ◦ h

id ◦ f = f ◦ id = f

Notice that typing subscripts in the basic constants (such as id) will be
dropped when irrelevant or derivable from context. The same applies to
the types of the meta-variables mentioned in laws.

Most research on point-free programming has been carried out in the
context of total functions and total elements. Technically, this means that
the concrete category is Set (of sets and total functions). Unfortunately,
this category is not a good semantic model for most functional languages,
namely Haskell, since it hardens the treatment of arbitrary recursive and
partial definitions. Another problem is that finite and infinite data types
are different things that cannot be combined, thus excluding, for example,
functions defined by induction that work for both, and the hylomorphism
recursion pattern to be presented later. We overcome these problems by
moving to the category CPO, where objects are pointed complete par-
tial orders and arrows are continuous functions, as described in [23]. In
practice this means that every object A has a distinguished bottom ele-
ment (denoted ⊥A), and some laws became polluted with strictness side-
conditions (a function is strict if it preserves bottoms).

An object 1 is terminal if given any other object A there exists exactly
one arrow from A to 1 denoted bangA. The terminal object in CPO is
the singleton set whose only element is ⊥1. bang is characterized by the
following laws.

bang1 = id1 Bang-Reflex

bang ◦ f = bang Bang-Fusion

Elements of a type A are represented categorically by arrows of type
1 → A, usually called points. Given an element x ∈ A, x denotes the
corresponding point in the category. By composing points with bang it
is possible to define constant morphisms, that ignore the argument and
always return a specific value.

The product of two objects A and B is an object A × B, together
with a pair of projections fst : A × B → A and snd : A × B → B, such
that for every object C, and arrows g : C → A and h : C → B, there
exists exactly one arrow from C to A × B, denoted by g M h, satisfying
the following law.

f = g M h ⇔ fst ◦ f = g ∧ snd ◦ f = h Prod-Uniq

In CPO products are implemented by cartesian products, with obvious
choice for the projections, and the split combinator implemented as (g M
h) x = (g x, h x). Due to Prod-Uniq, products are characterized by the
following laws.

fst M snd = id Prod-Reflex

fst ◦ (f M g) = f ∧ snd ◦ (f M g) = g Prod-Cancel

(f M g) ◦ h = f ◦ h M g ◦ h Prod-Fusion

It is also possible to define a product combinator and the absorption law
that relates it to split. Notice that composition has higher priority than
all the remaining combinators.

f × g = f ◦ fst M g ◦ snd Prod-Def

(f × g) ◦ (h M i) = f ◦ h M g ◦ i Prod-Absor

As a first example of point-free programming and equational reasoning
let us define the swap function

swap : A×B → B ×A
swap = snd M fst

and prove that it justifies the isomorphism A×B ' B ×A.

swap ◦ swap = id Swap-Iso

26666666666664

swap ◦ swap
= { swap definition }

(snd M fst) ◦ (snd M fst)
= {Prod-Fusion }

snd ◦ (snd M fst) M fst ◦ (snd M fst)
= {Prod-Cancel }

fst M snd
= {Prod-Reflex }

id

The coproduct of two objects A and B is an object A + B, together
with a pair of injections inl : A → A + B and inr : B → A + B, such
that for every object C, and arrows g : A → C and h : B → C, there
exists exactly one arrow from A + B to C, denoted by g O h, satisfying
the following law.

f = g O h ⇔ f ◦ inl = g ∧ f ◦ inr = h Coprod-Uniq

Unfortunately, it is well know that CPO does not have true coproduts.
In this category, as in most lazy functional languages, this construction is
usually approximated by the separated sum (henceforth denoted just by
sum), where a new bottom element is added to the tagged union of the
elements of both sets.

A + B = ({0} ×A) ∪ ({1} ×B) ∪ {⊥A+B}

On sums it is possible to define the injections and the either combinator
as follows.

inl x = (0, x)
inr x = (1, x)

(g O h) ⊥ = ⊥
(g O h) (0, x) = g x
(g O h) (1, x) = h x

Although Coprod-Uniq is not verified by sums, they can still be given
a unique characterization if attention is restricted to strict functions.

f = g O h ⇔ f ◦ inl = g ∧ f ◦ inr = h ∧ f strict Sum-Uniq

Again, the following laws can be derived from Sum-Uniq. Notice that
fusion can only be applied to strict functions.

inl O inr = id Sum-Reflex

(f O g) ◦ inl = f ∧ (f O g) ◦ inr = g Sum-Cancel

f ◦ (g O h) = f ◦ g O f ◦ h ⇐ f strict Sum-Fusion

Dually to products it is possible to define the sum function combinator.

f + g = inl ◦ f O inr ◦ g Sum-Def

(f O g) ◦ (h + i) = f ◦ h O g ◦ i Sum-Absor

Finally we also have exponentials. The exponentiation of an object B
to A is an object BA, together with an application function ap : BA×A →
B, such that for every object C, and g : C×A → B, g is the unique arrow
from C to BA satisfying the following law.

f = g ⇔ g = ap ◦ (f × id) Exp-Uniq

In CPO the object BA contains all continuous functions with domain A
and codomain B, whose least element is the function that always returns
⊥B. The application and curry combinators are defined as

ap (f, x) = f x g x y = g (x, y)

Some of the laws that characterize exponentiation are

ap = id Exp-Reflex

ap ◦ (f × id) = f Exp-Cancel

f ◦ g = f ◦ (g × id) Exp-Fusion

and the exponentiation combinator can be defined as follows.

f• = f ◦ ap Exp-Def

f• ◦ g = f ◦ g Exp-Absor

The following functions distribute the product over the sum and vice-
versa.

distr : A× (B + C) → (A×B) + (A× C)
distr = (swap + swap) ◦ ap ◦ ((inl O inr)× id) ◦ swap

undistr : (A×B) + (A× C) → A× (B + C)
undistr = (id× inl) O (id× inr)

Unfortunately, due to the absence of coproducts, CPO is not a dis-
tributive category, which means that A × (B + C) is not isomorphic to
(A×B)+ (A×C). In fact, there are more elements in the first type: distr
maps a value (x,⊥) into ⊥, making impossible for undistr to recover the
original x. Even so, it is still true that distr ◦ undistr = id.

A category that has products, exponentials, and terminal object is
called cartesian closed. In these categories, the set of arrows from A to
B can be represented by the object BA. Formally, this means that an
f : A → B can be internalized as a point f : 1 → BA, and vice versa.
Moreover, it is possible to define the conversions between a function and
its point using the basic combinators previously defined. Given any arrow
f : A → B we have [21]

f = f ◦ snd To-Point

f = ap ◦ (f ◦ bang M id) From-Point

2.1 Implementation of the Basic Combinators

Most of the basic functions, combinators, and types presented above are
already part of the Haskell 98 standard prelude [14]. However, there is a
subtle difference in the definition of functions like id or fst. These were
defined as families of monomorphic functions, indexed by the specific

type they operate on. Since most of the times this type can be easily
inferred from the context, the indexes are usually omitted. The Haskell
type system is polymorphic, which means that a single definition can be
given for these function.

There is also a polymorphic bottom value predefined, namely undefined.
Since it will be used often, it is convenient to define a shorter alias, with
the advantage that it graphically resembles the mathematical notation.

_L :: a

_L = undefined

Using the standard Haskell 98 it is not possible to define a type that
implements the terminal object, because any type declaration must have
at least one constructor. The best approach would be to use the special
predefined unit data type (). However, since it still has two elements,
namely () and _L, it is not the terminal object of our semantic domain.
The same discussion applies to any isomorphic data type with a single
constructor without parameters. The problem can be solved by resorting
to the use of Haskell extensions, since a data type without constructors
can be declared.

data One

The only element of this data type is _L and as such it is indeed a terminal
object. bang and the combinator · , that converts elements into points,
can be implemented as follows. Due to Haskell limitations the syntactic
notation must be compromised.

bang :: a -> One

bang _ = _L

pnt :: a -> One -> a

pnt x = _ -> x

It is well known that Haskell semantics differs from the standard CPO
denotational semantics, since all data types are by default pointed and
lifted (every type has a distinct bottom element). This means that Haskell
does not have true categorical products because (_L,_L) /= _L, nor true
categorical exponentials because (_ -> _L) /= _L. Concerning prod-
ucts, any function defined using pattern matching, such as \(_,_) -> 0,
can distinguish between (_L,_L) and _L. For exponentials, the examples
are more subtle and typically involve using the standard seq function. As
discussed in [8], this fact complicates equational reasoning because the
standard laws about products and functions no longer hold.

In the context of point-free programming this problem can be al-
leviated by prohibiting the use of seq. For products, since no pattern
matching is used, values should be inspected using the predefined pro-
jections fst and snd (that cannot distinguish between (_L,_L) and _L),
and thus we can “pretend” to have unlifted products. The same applies
to exponentiation, since standard function application cannot distinghish
between _ -> _L and _L.

The infix split and product combinators can be defined as follows.

infix 6 /\

(/\) :: (a -> b) -> (a -> c) -> a -> (b,c)

(/\) f g x = (f x, g x)

infix 7 ><

(><) :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)

f >< g = f . fst /\ g . snd

Unlike product, the separated sum is by definition lifted, so there is
no problem in representing it by a Haskell data type. The predefined
Either data type is used. The following new aliases are defined for the
constructors.

inl :: a -> Either a b

inl = Left

inr :: b -> Either a b

inr = Right

The infix alias either and sum combinators are also defined.

infix 4 \/

(\/) :: (b -> a) -> (c -> a) -> Either b c -> a

(\/) f _ (Left x) = f x

(\/) _ g (Right y) = g y

infix 5 -|-

(-|-) :: (a -> b) -> (c -> d) -> Either a c -> Either b d

f -|- g = inl . f \/ inr . g

Concerning exponentiation, the curry combinator is predefined but
we need an uncurried version of the application function.

app :: (a -> b, a) -> b

app (f,x) = f x

An explicit exponentiation combinator is not defined because it just cor-
responds to the left-sectioning of the composition operator, with the ad-
ditional advantage of a similar graphical notation.

Equipped with these definitions, point-free expressions can be directly
translated to Haskell. The examples presented in the previous section can
be encoded as follows.

swap :: (a,b) -> (b,a)

swap = snd /\ fst

distr :: (c, Either a b) -> Either (c,a) (c,b)

distr = (swap -|- swap) . distl . swap

where distl = app . ((curry inl \/ curry inr) >< id)

undistr :: Either (c,a) (c,b) -> (c, Either a b)

undistr = (id >< inl) \/ (id >< inr)

3 From Pointwise to Point-free

The well-known equivalence between simply-typed λ-calculus (with pairs
and terminal type) and cartesian closed categories was first stated by
Lambek [18]. One half of this correspondence is testified by a translation
from pointwise terms to categorical combinators, that was later used by
Curien to define a new implementation technique for functional languages
– the categorical abstract machine [7]. This translation is also the starting
point for our point-free derivation mechanism. In this section we show how
it can be extended to handle sums. Recursion will be handled in the next
section.

3.1 A Simply Typed λ-calculus

We start by defining a point-wise language which is essentially a λ-
calculus with product and sum types, as well as terminal type. The types
and terms of the language are given by the following grammar. We reuse
the keywords for denoting the projections and the injections.

A,B ::= 1 | τ | A → B | A×B | A + B
M,N ::= ∗ | x | c | M N | λx : A. M |

〈M,N〉 | fst M | snd M |
case M of x → N ; y → N | inl M | inr M

τ ranges over base types; x stands for a variable and c for a constant
of type ∆(c); fst M, snd M are projections from a product type and
inl M, inr M are injections into a sum type. 〈·, ·〉 is a pairing construct
and case allows to perform case-analysis on sums. Finally, ∗ is the unique
inhabitant of the terminal type. The usual notions of free and bound

variable are defined on terms. FV(M) denotes the set of free variables
in M , and M [N/x] the capture-avoiding substitution of N for the free
occurrences of x in M .

As an example of using this λ-calculus, we define both swap and distr
in the point-wise style.

swap : A×B → B ×A
swap = λx.〈snd x, fst x〉

distr : A× (B + C) → (A×B) + (A× C)
distr = λx.case (snd x) of y → inl 〈fst x, y〉;

z → inr 〈fst x, z〉

3.2 The Translation

The translation from the typed λ-calculus (pointwise) to the internal
language of a cartesian closed category (point-free) is rather ingenious.
It is detailed in many text books on the subject, for instance [19, ?].
The way variables are handled resembles the translation of the lambda
calculus into the de Bruijn notation [9], where variables are represented
by integers that measure the distance to the abstraction were they where
bound. There are some suggestions about how it can be extended to cover
sums in [5], but the translation is not fully detailed and its soundness is
not proved. The approach presented here is slightly different.

The translation keeps track of variables by imposing some additional
structure on the typing contexts. These will now be represented by left-
nested pairs, defined by the grammar

Γ ::= ε | 〈Γ, x : A〉

with x a variable and A a type. In point-free terms, each variable is
replaced by the path to its position in the context tuple, given as follows

path(〈c, y〉, x) =
{

snd if x = y
path(c, x) ◦ fst otherwise

The translation function, denoted Φ, is overloaded and defined on
types, typing contexts, and point-wise terms. It is assumed that each base
type τ is represented by an object in the category, denoted by Φ(τ). For
the remaining types the translation into an object is defined as expected.

Φ(1) = 1
Φ(A×B) = Φ(A)× Φ(B)
Φ(A + B) = Φ(A) + Φ(B)
Φ(A → B) = Φ(B)Φ(A)

Analogously, the object that represents a typing context is generated
as follows.

Φ(ε) = 1
Φ(〈Γ, x : A〉) = Φ(Γ)× Φ(A)

The translation from λ-terms to arrows in the category operates on
typing judgments. A judgment Γ ` M : A will be translated as

Φ(Γ ` M : A) : Φ(Γ) → Φ(A)

according to the following rules. In order to simplify the presentation,
type information is omitted.

Φ(Γ ` ?) = bang
Φ(Γ ` c) = c ◦ bang
Φ(Γ ` x) = path(Γ, x)
Φ(Γ ` MN) = ap ◦ (Φ(Γ ` M) M Φ(Γ ` N))
Φ(Γ ` λx.M) = Φ(〈Γ, x〉 ` M)
Φ(Γ ` 〈M,N〉) = Φ(Γ ` M) M Φ(Γ ` N)
Φ(Γ ` fst M) = fst ◦ Φ(Γ ` M)
Φ(Γ ` snd M) = snd ◦ Φ(Γ ` M)
Φ(Γ ` inl M) = inl ◦ Φ(Γ ` M)
Φ(Γ ` inr M) = inr ◦ Φ(Γ ` M)
Φ(Γ ` case L of x → M ; y → N) =

ap ◦ (either ◦ (Φ(Γ ` λx.M) M Φ(Γ ` λy.N)) M Φ(Γ ` L))

We will now present some examples of translating terms in the carte-
sian closed fragment and delay the explanation of case translation for a
moment.

The translation of a closed term M : A → B is the point that repre-
sents it in the category, that is, a morphism of type 1 → Φ(B)Φ(A). As
seen in Section 2, since the category is cartesian closed, this point can be
converted into the expected morphism of type A → B using From-Point.
As such, for closed terms of functional type the translation is defined as
follows.

ap ◦ (Φ(ε ` M) ◦ bang M id)

For example, for the identity function we have

Φ(ε ` λx : A.x) = snd : 1 → AA

Since this is a closed term of functional type, it is possible to convert the
result to a morphism of type A → A and prove that it is indeed equivalent
to id.

2666666664

ap ◦ (snd ◦ bang M id)
= {Prod-Absor }

ap ◦ (snd× id) ◦ (bang M id)
= {Exp-Cancel }

snd ◦ (bang M id)
= {Prod-Cancel }

id

For the swap function we get the following translation.

Φ(ε ` swap) = snd ◦ snd M fst ◦ snd : 1 → B ×AA×B

Again, since it is of functional type, some simple calculations show that
it is equivalent to the expected definition.26666666666664

ap ◦ (snd ◦ snd M fst ◦ snd ◦ bang M id)
= {Prod-Absor }

ap ◦ (snd ◦ snd M fst ◦ snd× id) ◦ (bang M id)
= {Exp-Cancel }

(snd ◦ snd M fst ◦ snd) ◦ (bang M id)
= {Prod-Fusion }

snd ◦ snd ◦ (bang M id) M fst ◦ snd ◦ (bang M id)
= {Prod-Cancel }

snd M fst

Concerning the translation of the case construct, notice that, using
a mixed pointwise and point-free style, case L of x → M ; y → N is
equivalent to (λx.M O λy.N)L. This equivalence exposes the fact that a
case is just an instance of application, and as such its translation exhibits
the same top level structure:

ap ◦ Φ(Γ ` λx.M O λy.N) M Φ(Γ ` L)

The question remains of how to combine Φ(Γ ` λx.M) : Γ → CA and
Φ(Γ ` λy.N) : Γ → CB using either. Our solution is based on the inter-
nalization of the uncurried version of this combinator, that can be defined
in point-free as follows.

either : CA × CB → CA+B

either = (ap O ap) ◦ (fst× id + snd× id) ◦ distr

In order to exemplify the translation of sums, consider its application
to the pointwise definition of coswap.

coswap : A + B → B + A
coswap = λx.case x of y → inr y; z → inl z

The following result is obtained.

ap ◦ (either ◦ (inr ◦ snd M inl ◦ snd) M snd) : 1 → B + AA+B

To show that this expression corresponds to the expected definition we
need the following result concerning either the proof of which can be found
in [6].

either ◦ (f ◦ snd M g ◦ snd) = (f O g) ◦ snd Either-Const

The simplification can now be carried out as follows.266666666666664

ap ◦ (ap ◦ (either ◦ (inr ◦ snd M inl ◦ snd) M snd) ◦ bang M id)
= {Prod-Absor, Exp-Cancel }

ap ◦ (either ◦ (inr ◦ snd M inl ◦ snd) M snd) ◦ (bang M id)
= {Either-Const }

ap ◦ ((inr O inl) ◦ snd M snd) ◦ (bang M id)
= {Prod-Absor, Exp-Cancel }

(inr O inl) ◦ snd ◦ (id M snd) ◦ (bang M id)
= {Prod-Cancel }

inr O inl

A more substantial example is the translation of the point-wise version
of distr presented in Section 3.1. The (very long) result together with the
calculation that shows its equivalence to distr is shown in Figure 1.

It can be shown that the translation Φ is sound, i.e, all equivalences
proved with an equational theory for the λ-calculus can also be proved in
the categorical setting using the equations of Section 2. For the cartesian
closed subset see for instance [7, 20]. The fundamental result is that the
notion of substitution is replaced by composition. For the soundnesse of
the sum translation see [6].

4 Programming With Recursion Patterns

Meijer, Fokkinga, and Paterson pioneered the study of recursion patterns
in CPO [23]. Besides presenting traditional folds and unfolds, they also
introduced a new pattern, called hylomorphism, that was later proved to
be powerful enough to allow for the definition of any fixpoint [24]. Hylo-
morphisms will here be used to replace explicit recursion in pointwise def-
initions. Before presenting the translation of fixpoints, this section briefly
reviews the categorical approach to recursive data types and hylomor-
phisms. In the next section we show how these concepts are incorporated
in the Pointless Haskell library.

266666666666666666666666666666666664

ap ◦ (ap ◦ (either ◦ (inl ◦ (fst ◦ snd ◦ fst M snd) M inl ◦ (fst ◦ snd ◦ fst M snd)) M snd ◦ snd) ◦ bang M id)
= {Prod-Absor, Exp-Cancel, Prod-Def }

ap ◦ (either ◦ (inl ◦ (fst ◦ snd× id) M inl ◦ (fst ◦ snd× id)) M snd ◦ snd) ◦ (bang M id)
= {Exp-Fusion, Prod-Fusion }

ap ◦ (either ◦ (inl M inr) ◦ fst ◦ snd M snd ◦ snd) ◦ (bang M id)
= {Prod-Fusion, Prod-Cancel, Prod-Def }

ap ◦ (either ◦ (inl M inr)× id)
= { either definition }

ap ◦ ((ap O ap) ◦ (fst× id + snd× id) ◦ distr ◦ (inl M inr)× id)
= {× functor, Exp-Cancel }

(ap O ap) ◦ (fst× id + snd× id) ◦ distr ◦ ((inl M inr)× id)
= {+ functor, distr natural }

(ap O ap) ◦ (fst× id + snd× id) ◦ ((inl M inr)× id + (inl M inr)× id) ◦ distr
= {+ functor, × functor, Prod-Cancel }

(ap O ap) ◦ (inl× id + inr × id) ◦ distr
= {Sum-Absor, Exp-Cancel }

(inl O inr) ◦ distr
= {Sum-Reflex }

distr

Fig. 1. Translation of distr

4.1 Recursive Data Types Categorically

Consider the following Haskell declarations of natural numbers and poly-
morphic lists.

data Nat = Zero | Succ Nat

data List a = Nil | Cons a (List a)

In order to present a general theory for data types, it is first necessary
to circumvent some “irregularities” in constructor declaration, namely,
the fact that there may exist an arbitrary number of constructors, and
that each may have an arbitrary number of arguments. This last problem
is easily solved by treating constants as functions with domain 1, and by
uncurrying constructors with more than one parameter. For naturals and
lists this technique can be illustrated by the following declarations.

zero : 1 → Nat
succ : Nat → Nat

nil : 1 → List A
cons : A× List A → List A

All the constructors of a data type share the same target type. As
such, the either combinator can be used to pack all of them in a single
declaration, as in the following declaration for naturals.

zero O succ : 1 + Nat → Nat

Since the domain is an expression involving the target type, the categori-
cal concept of functor can be used to factor this type out. A functor F is
a mapping between categories that preserves compositions and identities.
Endofunctors in CPO will be used, mapping types to types, and func-
tions to functions. The basic set of functors includes the identity functor
Id, whose action on types is defined as Id A = A, and on functions as
Id f = f . It also includes the constant functor: given a type A, the func-
tor A is defined on types as A B = A, and on functions as A f = idA.
Analogously, a bifunctor ? maps pairs of types to types, and pairs of func-
tions to functions. Given two monofunctors F and G and a bifunctor ?,
a new monofunctor F ?̂ G can be defined by lifting ? as follows.

(F ?̂ G) A = (F A) ? (G A)
(F ?̂ G) f = (F f) ? (G f)

The packed representation of the constructors of a data type T will be
denoted by inT , and the base functor that captures its signature by FT .
Notice that with this approach, the type of inT is always FT T → T . For
polymorphic data types the type variables will be omitted in subscripts
in order to improve readability.

FNat = 1 +̂ Id
inNat = zero O succ

FList = 1 +̂ A ×̂ Id
inList = nil O cons

A recursive data type T is then defined by taking the fixed point
of its base functor FT . Reynolds proved that in CPO, given a locally
continuous and strictness-preserving base functor F , there exists a unique
data type T = µF and two unique strict functions inT : F T → T and
outT : T → F T that are each other’s inverse [27]. Fokkinga and Meijer
[10] showed that all polynomial, and even all regular functors, are locally
continuous and strictness-preserving. A polynomial functor is either the
identity functor, a constant functor, a lifting of the sum and product
bifunctors, or the composition of polynomial functors. A regular functor
can also be built from type functors. This guarantees that, for example,
all the above data types are well defined.

Nat = µ(FNat) List A = µ(FList)

4.2 Hylomorphisms

Given a functor F , a function g : F B → B, and a function h : A → F A,
a hylomorphism is defined as the following recursive function, using the

fixpoint operator µ.

[[g, h]]µF : A → B
[[g, h]]µF = µ(λf.g ◦ Ff ◦ h)

The main advantage of expressing recursive functions as hylomor-
phisms is that they have several interesting laws appropriate for program
calculation and transformation. For example, by unfolding the fixpoint
operator we immediately get the following cancellation law.

[[g, h]]µF = g ◦ F [[g, h]]µF ◦ h Hylo-Cancel

From this law, it is clear that the recursion pattern of the hylomorphism
is characterized by the functor F . For example, if this functor is 1 +̂ Id
then the resulting definition is necessarily linear recursive. To define a
birecursive function a second degree polynomial functor, such as 1 +̂ Id ×̂
Id, must be used. In fact, the recursion tree of a function defined as a
hylomorphism is modeled by µF .

Function h is responsible for all computations prior to recursion,
namely, to compute the values passed to the recursive calls. Function
g combines the results of the recursive calls in order to compute the final
result. Notice that some values can be passed intact from h to g. This
will be the case when a functor modeling a data type that stores some
information in the nodes is used, like 1 +̂ A ×̂ Id for the case of lists.

Most of the fundamental laws about hylomorphisms follow directly
from similar laws about fixpoints, or can be proved by fixpoint induction.
That is the case of the following fusion law.

g ◦ [[h, i]]µF ◦ j = [[k, l]]µF

⇐
g strict ∧ g ◦ h = k ◦ F g ∧ i ◦ j = F j ◦ l

Hylo-Fusion

Another important law about this recursion pattern is the shifting
law, that can be used to change the shape of recursion.

[[g ◦ η, h]]µF = [[g, η ◦ h]]µG ⇐ η : F
.→ G Hylo-Shift

The side condition η : F
.→ G requires that η is a natural transformation

between F and G. That is the case if η is a function that assigns to each
type A an arrow ηA : F A → G A such that, for any function f : A → B
the following naturality condition holds.

G f ◦ ηA = ηB ◦ F f

A classic example of hylomorphism is the factorial function. It can be
defined using a list of naturals as recursion tree. one = succ ◦ zero and
mult : Nat× Nat → Nat implements multiplication.

fact : Nat → Nat
fact = [[one Omult, (id + succ M id) ◦ outNat]]List Nat

This definition can be manipulated as follows.26666666666664

fact = [[one Omult, (id + succ M id) ◦ out]]List Nat

⇔ {Hylo-Cancel }
fact = (one Omult) ◦ (id + id× fact) ◦ (id + succ M id) ◦ out

⇔ { out ◦ in = id }
fact ◦ in = (one Omult) ◦ (id + id× fact) ◦ (id + succ M id)

⇔ { inNat = zero O succ, Sum-Absor }
fact ◦ (zero O succ) = one Omult ◦ (id× fact) ◦ (succ M id)

⇔ {Sum-Fusion, fact strict, Prod-Absor }
fact ◦ zero O fact ◦ succ = one Omult ◦ (succ M fact)

This calculation means that the above definition satisfies the following
equations.

fact ◦ zero = one ∧ fact ◦ succ = mult ◦ (succ M fact)

By applying the definitions of composition and split in order to re-
cover variables, we can see that it corresponds to the expected Haskell
definition.

fact :: Nat -> Nat

fact Zero = Succ Zero

fact (Succ n) = mult (Succ n, fact n)

As said above, hylomorphisms are expressive enough to implement all
the remaining typical recursion patterns. One of the fundamental patterns
of recursion is iteration, where recursive data types are “consumed” by
replacing their constructors by arbitrary functions. This recursion pattern
is usually called fold or catamorphism. In Haskell this pattern is predefined
for lists as the function foldr. Given a function of type g : F A → A, the
catamorphism operator which implements iteration over the data type
µF can be generically defined as follows.

(|g|)µF : µF → A
(|g|)µF = [[g, outF]]µF

A well-know example of a catamorphism is the length function over
lists.

length : List A → Nat
length = (|inNat ◦ (id + snd)|)List A

A more advanced recursion pattern is the paramorphism [22]. It en-
codes primitive recursion, which means that both the recursive call on
a substructure of the input and the substructure itself can be used to
compute the result. The definition of a paramorphism as a hylomorphism
is known at least since [23]. Unlike the definition of catamorphism, the
intermediate data type will no longer be equal to the data type being
consumed. Given an input of type µF , the functor that generates the
intermediate data structure is F ◦ (Id ×̂ µF): every recursive occurrence
of the original type is replaced by a new recursive occurrence and a copy
of the older one that will be left intact when recursing. For example, a
paramorphism over naturals will have as intermediate data structure an
element of type µ(1 +̂ Id ×̂Nat), which is isomorphic to a list of naturals.

Given a function g : F (A×µF) → A, a paramorphism parameterized
by g can be generically defined using a hylomorphism as follows. Notice
the use of the doubling combinator (idM id) to replicate the substructures
of the input value.

〈|g|〉µF : µF → A
〈|g|〉µF = [[g, F (id M id) ◦ outµF]]µ(F◦(Id×̂µF))

The most classic example of a paramorphism is the factorial function:
for a nonzero parameter n, it uses both the recursive result fact (n − 1)
and the parameter n itself to compute the result.

fact : Nat → Nat
fact = 〈|one Omult ◦ (id× succ)|〉Nat

5 Pointless Haskell

At least since [24], it has been known how to implement generic versions
of the recursion patterns in Haskell by defining data types explicitly as
fixed points of functors. The implementation follows directly from the
theoretical concepts presented in Section 4.1. This style of programming
was used to implement generic recursion patterns by several authors [28,
11], and is also followed, with some improvements, in our library.

The explicit fixpoint operator can be defined at the type level using
newtype.

newtype Functor f => Mu f = Mu {unMu :: f (Mu f)}

The context of the definition restricts the application of Mu to members
of the Functor class. The use of newtype guarantees the strictness of Mu,

and thus enforces the isomorphism between Mu f and f (Mu f). inn and
out can be defined as aliases to the constructor and the destructor of Mu.
Using Mu the data type of naturals can be defined in Haskell as follows.

newtype FNat x = FNat {unFNat :: Either One x}

instance Functor FNat

where fmap f = FNat . (id -|- f) . unFNat

type Nat = Mu FNat

zero = inn . FNat . inl

succ = inn . FNat . inr

For parameterized data types, like lists, the base functor is obtained
from a binary type constructor by treating the first type variable as a
constant.

newtype FList a x = FList {unFList :: Either () (a,x)}

instance Functor (FList a)

where fmap f = FList . (id -|- id >< f) . unFList

type List a = Mu (FList a)

Using this style of programming polytypism comes for free, since the
fundamental recursion operators given in Section 4.2 can be generically
defined as follows.

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b

hylo g h = g . fmap (hylo g h) . h

cata :: Functor f => (f a -> a) -> Mu f -> a

cata g = hylo g out

Given these operators, the length and factorial functions can be de-
fined in a straightforward way.

len :: List a -> Nat

len = cata g

where g = inn . FNat . (id -|- snd) . unFList

fact :: Nat -> Nat

fact = hylo g h

where h = FList . (id -|- succ /\ id) . unFNat . out

g = (succ . zero \/ mult) . unFList

In order to define paramorphisms as hylomorphisms, the concept of
functor transformer can be used. A functor transformer is a type con-
structor with kind (? → ?) → (? → ?), that given a functor returns
another functor, and will be used to capture the functor change that
occurs in that definition. It has been used in a similar context in [28]. Re-
call the definition of paramorphisms: for a data type µF , the functor that

captures the shape of recursion in the hylomorphism that implements it
is F ◦ (Id ×̂ µF). This specific functor change can be captured by the
following transformer, defined in the pointwise style as a new data type.

newtype FPara f x = FPara {unFPara :: f (x, Mu f)}

instance Functor f => Functor (FPara f)

where fmap f = FPara . fmap (f >< id) . unFPara

If the base functor of the input of a paramorphism is f, then the in-
termediate data structure of the hylomorphism that implements it is
Mu (FPara f). Using this transformer, paramorphisms can be defined
according to the above definition.

para :: Functor f => (f (a, Mu f) -> a) -> Mu f -> a

para g = hylo (g . unFPara) h

where h = FPara . fmap (id /\ id) . out

This approach has some disadvantages. First, since Haskell does not
have structural type equivalence, coercing constructors and destructors
are used often. Sometimes, this makes it difficult to translate a point-free
definition to Haskell. To overcome this problem, one could define tailored
instances of the recursion operators for each data type, as proposed in [11].
However, this would preclude polytypism, one of the main advantages of
this approach. Second, it is impossible to use the recursion operators
with the standard Haskell types, such as lists or integers. Finally, the
Functor instances must be defined explicitly for every data type, when
it is well known that the map function can be easily defined generically
by induction on the structure of the type.

5.1 The PolyP Approach

Our solution to these problems is based on the generic programming
library PolyP [25]. This library also views data types as fixed points
of functors, but instead of using an explicit fixpoint operator, a multi-
parameter type class [15] with a functional dependency [13] is used to
relate a data type d with its base functor f. We remark that this is a
non-standard Haskell feature provided as an extension. This class can be
defined as follows.

class (Functor f) => FunctorOf f d | d -> f

where inn’ :: f d -> d out’ :: d -> f d

The dependency means that different data types can have the same
base functor, but one data type can have at most one base functor. The

main advantage of using FunctorOf is that predefined Haskell types can
also be viewed as fixed points of functors. The use of the primes will be
justified later.

We would like to stress that PolyP is not directly used in the imple-
mentation of Pointless Haskell. Some of its design choices would prevent
the use of a syntax similar to the one described in the first section. As
such, the relevant subset of PolyP was reimplemented according to our
own design principles. For example, the FunctorOf class was simplified
by restricting base functors to monofunctors (a parameterized type can
still be defined using the left-sectioning of a bifunctor). The methods were
reduced to the essential in and out functions.

Obviously, it is still possible to work with data types declared explic-
itly as fixed points of functors. For these, the instance of the FunctorOf
class can be defined once and for all.

instance (Functor f) => FunctorOf f (Mu f)

where inn’ = Mu

out’ = unMu

To avoid the explicit definition of the map functions, functors are
described using a fixed set of combinators instead of arbitrary data types.
The combinators follow directly from the definition of regular functors:
these include the identity and constant functors, the lifting of the sum
and product bifunctors, and also the application of a functor to another
functor. Infix constructors are used for these.

newtype Id x = Id {unId :: x}

newtype Const t x = Const {unConst :: t}

data (g :+: h) x = Inl (g x) | Inr (h x)

data (g :*: h) x = g x :*: h x

newtype (g :@: h) x = Comp {unComp :: g (h x)}

The Functor instances for these combinators are trivial and omitted
here. Given this set of basic functors and functor combinators, there is no
need to declare new functor data types to capture the recursive structure
of a data type. Instead, they are declared using this basic set. For example,
it is now possible to view the standard Haskell types for integers and lists
as fixed points of functors.

instance FunctorOf (Const One :+: Id) Int

where inn’ (Inl (Const _)) = 0

inn’ (Inr (Id n)) = n+1

out’ 0 = Inl (Const _L)

out’ (n+1) = Inr (Id n)

instance FunctorOf (Const One :+: (Const a :*: Id)) [a]

where inn’ (Inl (Const _)) = []

inn’ (Inr (Const x :*: Id xs)) = x:xs

out’ [] = Inl (Const _L)

out’ (x:xs) = Inr (Const x :*: Id xs)

Unfortunately, this technique per se is not useful. The price to pay
for not having to define the Functor instances is an enormous growth in
the use of coercing constructors, rendering point-free programming almost
impossible. That is the reason why the above instances are now defined in
the pointwise style. This problem is solved by implementing a mechanism
to perform implicit coercion between structurally equivalent data types,
as described in the next section.

5.2 Implicit Coercion

To implement implicit coercion a multi-parameter type class is used.
class Rep a b | a -> b

where to :: a -> b

from :: b -> a

The first parameter should be a type declared using the basic set of func-
tor combinators, and the second is the type that results after evaluating
those combinators. The functional dependency imposes a unique result to
evaluation. Unfortunately, a functional dependency from b to a does not
exist because, for example, a type A can be the result of evaluating both
Id A and A B. The instances of Rep are also rather trivial. For example
the identity and constant functors can be evaluated as follows.
instance Rep (Id a) a

where to (Id x) = x

from x = Id x

instance Rep (Const a b) a

where to (Const x) = x

from x = Const x

Given a bifunctor ?, the type that implements (G ?̂ H) A is (G A) ?
(H A). This means that, for the case of products and sums, the types
that implement G A and H A should be computed prior to the resulting
type. This evaluation order is guaranteed by using class constraints. The
implementation for products is as follows.
instance (Rep (g a) b, Rep (h a) c)

=> Rep ((g :*: h) a) (b, c)

where to (x :*: y) = (to x, to y)

from (x, y) = from x :*: from y

To ensure that context reduction terminates, standard Haskell requires
that the context of an instance declaration must be composed of simple
type variables. In this example, although that condition is not verified,
reduction necessarily terminates because contexts always get smaller. In
order to force the compiler to accept these declarations, a non-standard
type system extension must be activated with the option

-fallow-undecidable-instances

The implementations for the remaining functor combinators are similar.
A possible interaction with a Haskell interpreter could now be

> to (Id ’a’ :*: Const ’b’)

(’a’,’b’)

> from (’a’,’b’) :: (Id :*: Const Char) Char

Id ’a’ :*: Const ’b’

Since the same standard Haskell type can represent different functor com-
binations, the expected result of the from function must be explicitly
annotated. For example, another possible interaction could be

> from (’a’,’b’) :: (Id :*: Id) Char

Id ’a’ :*: Id ’b’

Since this type-checking problem would occur frequently, it was de-
cided to annotate most of the polytypic functions with the functor to
which they should be specialized. Types cannot be passed as arguments to
functions, and so this is achieved indirectly through the use of a “dummy”
argument and another non-standard Haskell feature, namely scoped type
variables [16]. Since in Haskell only values of a concrete type (that is, of
kind ?) can be passed as arguments, it is not possible to state directly the
functor to which a function should be specialized. However, by using the
type class FunctorOf, together with its functional dependency, it suffices
to pass as argument a value of a data type that is the fixed point of the
desired functor. Since recursive data types can still be defined explicitly
using Mu, there is always a convenient choice for this parameter.

To start with, a polytypic map function is defined as follows.

pmap :: (FunctorOf f d, Rep (f a) fa, Rep (f b) fb) =>

d -> (a -> b) -> (fa -> fb)

pmap (_::d) (f::a->b) =

to . (fmap f :: FunctorOf f d => f a -> f b) . from

It is also useful to have the isomorphisms in and out with implicit
coercion. In fact, this was the reason why the primes were used in the
declaration of the FunctorOf class.

out :: (FunctorOf f d, Rep (f d) fd) => d -> fd

out = to . out’

inn :: (FunctorOf f d, Rep (f d) fd) => fd -> d

inn = inn’ . from

A polytypic hylomorphism can be defined using pmap. Notice the use
of bottom as the “dummy” argument to indicate the specific type to which
a polytypic function should be instantiated.

hylo :: (FunctorOf f d, Rep (f b) fb, Rep (f a) fa) =>

d -> (fb -> b) -> (a -> fa) -> a -> b

hylo mu g h = g . pmap mu (hylo mu g h) . h

This type annotation is essentially the same that was stated using a sub-
script in the theoretical notation. It is now possible to program with
hylomorphisms in a truly point-free style. For example, the definition of
factorial can now be transcribed directly to Haskell.

fact :: Int -> Int

fact = hylo (_L :: [Int]) f g

where g = (id -|- succ /\ id) . out

f = one \/ mult

The same applies to derived recursion patterns. Due to the ability
to explicitly declare the intermediate data type as the fixed point of a
functor it is no longer needed to define the functor transformers.

cata (_::d) f = hylo (_L::d) f out

para (_::d) f =

hylo (_L::FunctorOf f d => Mu (f :@: (Id :*: Const d)))

f (pmap (_L::d) (id /\ id) . out)

6 Translation of Recursive Definitions

We will now extend our λ-calculus with fixed points and show how they
can be replaced by hylomorphisms. We assume that data types are defined
using explicit fixed points of functors, as described in Section 4.1. The
grammar is extended as expected.

M ::= . . . | in M | out M | µ M

For example, the length function can be defined as follows.

length : List A → Nat
length = µ(λf.λl.case (out l) of x → in (inl ?);

y → in (inr (f (snd y))))

The translation of the constructors and destructors to point-free is
trivial.

Φ(Γ ` in M) = in ◦ Φ(Γ ` M)
Φ(Γ ` out M) = out ◦ Φ(Γ ` M)

6.1 Direct Translation of Fixpoints

The first method for translating recursive definitions into hylomorphisms
uses the encoding of the fixpoint operator a an hylomorphism, first pro-
posed in [24]. The insight to this result is to notice that µ f is determined
by the infinite application f (f (f . . .)), whose recursion tree is a stream
of functions f , subsequently consumed by application. Streams can be
defined as

Stream A = µ(A ×̂ Id)

with a single constructor to insert an element at the head.

in : A× Stream A → Stream A

Given a function f , the following hylomorphism encodes the fixpoint
operator. It builds the recursion tree in (f, in (f, in (f, . . .))), and then
just replaces in by ap.

fix : AA → A
fix = [[ap, id M id]]Stream AA

Using the Pointless library we get the following Haskell definition.

fix :: (a -> a) -> a

fix = hylo (_L::Mu(Const (a->a) :*: Id)) app (id /\ id)

Given this point-free definition, the translation of the fixpoint operator
is now trivial.

Φ(Γ ` µM) = fix ◦ Φ(Γ ` M)

We now give a simple example of translating a recursive function
defined over a recursive data type. Consider the function that given an
element generates an infinite stream with copies of that value. In pointwise
it can be defined as follows.

repeat : A → Stream A
repeat = λx.µ(λy.in 〈x, y〉)

By applying the translation rules to this definition we get the follow-
ing point-free expression. In this case, the intermediate data structure

of the hylomorphism that encodes fix is a stream of functions of type
Stream A → Stream A.

fix ◦ in ◦ (snd ◦ fst M snd) : 1 → (Stream A)A

It can be shown by calculation (details omitted here) that this expression
is equivalent to the expected point-free hylomorphism.24 ap ◦ (fix ◦ in ◦ (snd ◦ fst M snd) ◦ bang M id)

= {Calculations }
[[in, id M id]]Stream A

6.2 Deriving Hylomorphisms

This last example was very contrived in order to make possible the calcu-
lation that shows its equivalence to the expected hylomorphism. However,
with normal recursive definitions such calculations can be quite difficult.
This is largely due to the fact that hylomorphisms are introduced only to
encode the fixpoint operator, yielding definitions very different from those
one would get if making the implementation ourselves. Ideally, one would
like the resulting hylomorphisms to be more informative about the origi-
nal function definition, in the sense that the intermediate data structure
should model its recursion tree.

Hu, Iwasaki, and Takeichi have defined an algorithm that derives such
hylomorphisms from explicitly recursive definitions [12]. This algorithm
was developed to be used in the fusion system HYLO [26], and although
it has several limitations (in particular it can not handle mutual or nested
recursion), it covers most of the useful function definitions. In the present
context, the idea is to use this algorithm in a stage prior to the point-
free translation defined in Section 3. First, a pointwise hylomorphism is
derived, and then the translation is applied to the functions that param-
eterize it. The main difference between the presentation given in [12] and
the one given here lies in the underlying λ-calculus. While the original
formulation allowed for user-defined types a la Haskell and general pat-
tern matching, in our λ-calculus data types are declared as fixed points,
and pattern matching is restricted to sums.

The hylomorphism derivation can be summarized as follows. Given a
single-parameter recursive function defined using fixpoint

fix(λf.λx.L) : A → B

three transformations are defined: one to derive the functor that generates
the recursion tree of the hylomorphism (F), a second one to derive the

function that is invoked after recursion (A), and another one for the
function that is invoked prior to recursion (C). The above function will
be translated into the following hylomorphism.

[[λx.A(L), λx.C(L)]]µ(F(L)) : A → B

Some restrictions must be imposed on the syntax used to define recur-
sive functions. The first is that the definition must be a closed expression,
that is FV(L) = {f, x}. This restriction guarantees that the parameters
of the hylomorphism are also closed. If that was not the case, it would
be necessary to propagate the typing context inside the hylomorphism.
This can only be achieved by changing the intermediate data structure,
and the translation would produce hylomorphisms as unmanageable as
the ones obtained by directly encoding the fixpoint operator. The sec-
ond restriction is that the body of the function to be translated must be
defined as a kind of decision tree, implemented by case analysis on the
input, whose leaves are the different possible outputs. The main syntactic
restrictions are the absence of abstractions, which prevents the definition
of some higher-order functions like accumulations, and the obligation that
f always appears applied. For example the definition of repeat presented
in the previous section is not covered by this algorithm. However, the fol-
lowing more natural definition of the same function or the length function
defined above are examples of functions to which this algorithm can be
applied.

repeat : A → Stream A
repeat = fix(λf.λx.in 〈x, f x〉)

The formal definition of the three transformations are presented in
[6] and omitted here. Transformation F yields a summand for each path
along the decision tree. Each summand signals the presence of a recur-
sive invocation using the identity functor. It also has place-holders for
the input-dependent information that should not be affected by recur-
sion: since abstractions are not allowed, it suffices to introduce a constant
functor of appropriate type for every variable outside a recursive invoca-
tion. Transformation C modifies the function body in order to put all vari-
ables and parameters of recursive calls in the appropriate place-holders.
Finally, transformation A just replaces these by the appropriate paths to
the recursion tree of the hylomorphism.

For example, using this algorithm the function repeat can be trans-
formed into the point-wise hylomorphism

repeat = [[λx.in 〈fst x, snd x〉, λx.〈x, x〉]]µ(A×̂Id)

2666666664

[[ap ◦ (in ◦ (fst ◦ snd M snd ◦ snd) ◦ bang M id), ap ◦ (snd M snd ◦ bang M id)]]
= {Prod-Absor, Exp-Cancel }

[[in ◦ (fst ◦ snd M snd ◦ snd) ◦ (bang M id), (snd M snd) ◦ (bang M id)]]
= {Prod-Fusion, Prod-Cancel }

[[in ◦ (fst M snd), id M id]]
= {Prod-Reflex }

[[in, id M id]]

Fig. 2. repeat as a point-free hylomorphism

and length into the hylomorphism

length = [[λz.case z of x → in (inl ?); y → in (inr y),
λl.case (out l) of x → inl ?; y → inr (snd y)]]µ(1+̂Id)

The result of translating repeat into the point-free style, and the proof
that it correspond to the expected definition, are presented in Figure 2.

7 Pattern Matching

Although the λ-calculus defined so far can be used to define most typ-
ical recursive functions, it is still much less convenient than the usual
style in which Haskell functions are defined. In this section we briefly
overview how to accommodate a limited form of pattern matching, over
user-defined data types.

Concerning data types, it is well-known how to implement an algo-
rithm for defining FunctorOf instances for almost any user-defined data
type [25]. This means that it is possible to replace constructors by their
equivalent fixpoint definitions, and thus it suffices to have pattern match-
ing over the generic constructor in, sums, pairs, and the constant ?. We
will introduce a new construct that implements such a mechanism, but
with some limitations: there can be no repeated variables in the patterns,
no overlapping, and the patterns must be exhaustive. It matches an ex-
pression against a set of patterns, binds all the variables in the matching
one, and returns the respective right-hand side.

M,N ::= . . . | match M with {P → N ; . . . ;P → N}

The syntax of patterns is determined by the following grammar.

P ::= ? | x | 〈P, P 〉 | in P | inl P | inr P

Using this construct, it is now possible to define functions using a
syntax more similar to that of Haskell. For example, the swap and distr
functions can be defined as follows.

swap : A×B → B ×A
swap = λx.match x with {〈y, z〉 → 〈z, y〉}

distr : A× (B + C) → (A×B) + (A× C)
distr = λx.match x with {〈y, inl z〉→ inl 〈y, z〉;

〈y, inr z〉→ inr 〈y, z〉}

Given the standard Haskell definition of length, it is now possible
to have a almost direct translation into our λ-calculus by replacing []
and (:) by their fixpoint equivalent: in (inl ?) and λxy.in (inr 〈x, y〉),
respectively.

length : List A → Nat
length = fix(λf.λl.match l {in (inl ?) → in (inl ?);

in (inr 〈h, t〉) → in (inr (f t))})

Instead of directly translating this new construct to point-free, a
rewriting system is defined that eliminates generalized pattern-matching,
and simplifies expressions back into the core λ-calculus previously de-
fined. The rewriting system is presented in Figure 3. Matching over ?
succeeds trivially. Matching over a variable binds the variable and trig-
gers a substitution in the right-hand side. In both cases there can only be
one pattern in the set due to the non-overlapping constraint. For pairs,
components are matched in turns. The chosen order is irrelevant, but af-
ter matching one projection with a specific pattern, the other one must
only be matched against the pairing patterns. Some care must be taken
in renaming variables in patterns in order to avoid variable capture. To
match over a sum type case analysis is used. Due to the exhaustiveness
requirement, the set of patterns can be partitioned into two disjoint sets,
containing terms whose outermost constructor is inl and inr, respectively.
Finally, when matching a value of a recursive type, the out function is
used in order to expose its top level structure. Notice that this rewrite re-
lation is guaranteed to terminate because the patterns always get smaller.
Using this technique all the above examples are translated back into the
respective definitions in the core λ-calculus.

Since Haskell does not have true products, this rewrite relation can
sometimes produce expressions whose semantic behavior is different from
the original. Consider the Haskell function \(x,y) -> 0 that distinguishes

match M with {? → N} N
match M with {x → N} N [M/x]
match M with {inl P1,1 → N1,1;

. . .
inl P1,i → N1,i;
inr P2,1 → N2,1;
. . .
inr P2,j → N2,j}

case M ofẋ → match x with{ P1,1 → N1,1;
. . .
P1,i → N1,i};

ẏ → match y with {P2,1 → N2,1;
. . .
P2,j → N2,j}

match M with {in P1 → N1;
. . .
in Pi → Ni}

match (out M) with {P1 → N1;

. . .
Pi → Ni}

match M with {〈P1, Q1,1〉 → N1,1;
. . .
〈P1, Q1,j〉 → N1,j ;
. . .
〈Pi, Qi,1〉 → Ni,1;
. . .
〈Pi, Qi,k〉 → Ni,k}

match (fst M) with {P1 → match (snd M)
with {Q1,1 → N1,1;

. . .
Q1,j → N1,j};

. . .
Pi → match (snd M)

with {Qi,1 → Ni,1;
. . .
Qi,k → Ni,k}}

Fig. 3. Pattern matching elimination

_L from (_L,_L). This function can be directly encoded using match and
translated into the core λ-calculus using the following rewrite sequence.

λz.match z with {〈x, y〉 → in (inl ?)}

λz.match (fst z) with {x → match (snd z)

with {y → in (inl ?)}}
 λz.match (fst z) with {x → in (inl ?)}
 λz.in (inl ?)

Since it no longer has pattern matching, the resulting function is different
from the original since it no longer distinguishes a bottom from a pair of
bottoms. Apart from this problem, with this pattern matching construct
it is now possible to translate into the point-free style many typical Haskell
functions, such as the ones presented in Appendix A.

8 Conclusions and Future Work

In this paper we have presented a mechanism to translate a function
defined in a core functional programming language into the point-free
programming style. Although none of its components is completely new,

we believe it is the first time they are put together in order to build a
complete translation. Starting from the standard translation of the simply
typed λ-calculus into cartesian closed categories, we have shown how to
enrich it with case analysis over sums, and generalized recursion. We have
also shown how to adapt the hylomorphism derivation algorithm first
presented in [12] to our λ-calculus. This algorithm enables the derivation
of more tractable hylomorphisms, provided that the functions are defined
with a special restricted syntax. When combined with pattern matching,
this syntax corresponds to the one typically used to define most recursive
functions in languages like Haskell.

We have also presented the Pointless Haskell library in which the
resulting expressions can be directly executed. The implementation of
polytypic abilities is similar to that used in the PolyP library. To en-
able a truly point-free style, we defined an implicit coercion mechanism
that encodes a limited form of structural equivalence between types. The
implementation required some extensions to the standard Haskell type
system. If used without care, these extensions can make type-checking
undecidable. By introducing type annotations similar to the ones used
in the theoretical notation this problem was avoided. The main disad-
vantage of using this library is that, due to the heavy use of extensions,
the error messages displayed by the compiler are of limited help for the
programmer.

Although the resulting expressions are quite verbose, and sometimes
quite intricate, they can be simplified by calculation. In fact, we have al-
ready implemented a prototype rewriting system that can automate some
of these calculations, and that can automatically simplify the expressions
resulting from the translation [6]. In the future we intend to integrate this
system in the point-free derivation mechanism.

References

1. John Backus. Can programming be liberated from the von Neumann style? a func-
tional style and its algebra of programs. Communications of the ACM, 21(8):613–
641, 1978.

2. Richard Bird. The promotion and accumulation strategies in transformational pro-
gramming. ACM Transactions on Programming Languages and Systems, 6(4):487–
504, October 1984.

3. Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.
4. R. M. Burstall and John Darlington. A transformation system for developing

recursive programs. Journal of the ACM, 24(1):44–76, January 1977.
5. Roy Crole. Categories for Types. Cambridge University Press, 1993.
6. Alcino Cunha. Point-free Program Calculation. PhD thesis, Departamento de

Informática, Universidade do Minho, 2005. To appear.

7. Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Func-
tional Programming. Birkhäuser, 2nd edition, 1993.

8. Nils Anders Danielsson and Patrik Jansson. Chasing bottoms, a case study in
program verification in the presence of partial and infinite values. In Dexter Kozen,
editor, Proceedings of the 7th International Conference on Mathematics of Program
Construction (MPC’04), volume 3125 of LNCS. Springer-Verlag, 2004.

9. Nicolaas de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem.
Indagationes Mathematicae, 34:381–392, 1972.

10. Maarten Fokkinga and Erik Meijer. Program calculation properties of continuous
algebras. Technical Report CS-R9104, CWI, Amsterdam, January 1991.

11. Jeremy Gibbons. Calculating functional programs. In R. Backhouse, R. Crole,
and J. Gibbons, editors, Algebraic and Coalgebraic Methods in the Mathematics of
Program Construction, volume 2297 of LNCS, chapter 5, pages 148–203. Springer-
Verlag, 2002.

12. Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylomor-
phisms from recursive definitions. In Proceedings of the ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’96), pages 73–82. ACM
Press, 1996.

13. Mark Jones. Type classes with functional dependencies. In Proceedings of the 9th
European Symposium on Programming, volume 1782 of LNCS. Springer-Verlag,
2000.

14. Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The Revised
Report. Cambridge University Press, 2003.

15. Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: exploring the
design space. In Proceedings of the Haskell Workshop, 1997.

16. Simon Peyton Jones and Mark Shields. Lexically-scoped type variables. To be
submitted to The Journal of Functional Programming, March 2002.

17. Graham Klyne. Re: [haskell-cafe] point-free style (was: Things to avoid). Message
sent to the Haskell-Cafe mailing list, February 2005.

18. Joachim Lambek. From lambda calculus to cartesian closed categories. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
pages 375–402. Academic Press, 1980.

19. Joachim Lambek and Philip Scott. Introduction to Higher Order Categorical Logic,
volume 7 of Cambridge Series in Advanced Mathematics. Cambridge University
Press, 1986.

20. Alfio Martini. Category theory and the simply-typed lambda calculus. Technical
Report 7, Technische Universitaet Berlin, Informatik, 1996.

21. Colin McLarty. Elementary Categories, Elementary Toposes, volume 21 of Oxford
Logic Guides. Oxford University Press, 1995.

22. Lambert Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–424,
1992.

23. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings of
the 5th ACM Conference on Functional Programming Languages and Computer
Architecture (FPCA’91), volume 523 of LNCS. Springer-Verlag, 1991.

24. Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold to
exponential types. In Proceedings of the 7th ACM Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA’95). ACM Press, 1995.

25. Ulf Norell and Patrik Jansson. Polytypic programming in haskell. In Draft pro-
ceedings of the 15th International Workshop on the Implementation of Functional
Languages (IFL’03), 2003.

26. Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. A calcula-
tional fusion system HYLO. In Proceedings of the IFIP TC 2 Working Conference
on Algorithmic Languages and Calculi, pages 76–106. Chapman & Hall, 1997.

27. J.C. Reynolds. Semantics of the domain of flow diagrams. Journal of the ACM,
24(3):484–503, July 1977.

28. Tarmo Uustalu, Varmo Vene, and Alberto Pardo. Recursion schemes from comon-
ads. Nordic Journal of Computing, 8(3):366–390, 2001.

A Examples of Translating Haskell to Point-free

We now present some examples of Haskell functions that can be translated
into the point-free style using the prototype tool that implements the
mechanism described in this paper. Both the Pointless library and a tool
that translates a (very limited) subset of Haskell into the point-free style
can be found in the first author’s web page. The resulting Pointless Haskell
code is presented in Figure 4. Notice that the FunctorOf instance for lists
is predefined in the library.

swap :: (a,b) -> (b,a)

swap (x,y) = (y,x)

distr :: (a,Either b c) -> Either (a,b) (a,c)

distr (z, Left y) = Left (z, y)

distr (z, Right w) = Right (z, w)

data Nat = Zero | Succ Nat

plus :: (Nat,Nat) -> Nat

plus (Zero, y) = y

plus (Succ x, y) = Succ (plus (x,y))

len :: [a] -> Nat

len [] = Zero

len (h:t) = Succ (len t)

fib :: Nat -> Nat

fib Zero = Succ Zero

fib (Succ Zero) = Succ Zero

fib (Succ (Succ x)) = plus (fib x, fib (Succ x))

s
w
a
p

:
:

(
a
,

b
)

-
>

(
b
,

a
)

s
w
a
p

=
(
a
p
p

.
(
(
(
c
u
r
r
y

(
(
s
n
d

.
s
n
d
)

/
\

(
f
s
t

.
s
n
d
)
)
)

.
b
a
n
g
)

/
\

i
d
)
)

d
i
s
t
r

:
:

(
a
,

E
i
t
h
e
r

b
c
)

-
>

E
i
t
h
e
r

(
a
,

b
)

(
a
,

c
)

d
i
s
t
r

=
(
a
p
p

.
(
(
(
c
u
r
r
y

(
a
p
p

.
(
(
e
i
t
h
r

.
(
(
c
u
r
r
y

(
i
n
l

.
(
(
f
s
t

.
(
s
n
d

.
f
s
t
)
)

/
\

s
n
d
)
)
)

/
\

(
c
u
r
r
y

(
i
n
r

.
(
(
f
s
t

.
(
s
n
d

.
f
s
t
)
)

/
\

s
n
d
)
)
)
)
)

/
\

(
s
n
d

.
s
n
d
)
)
)
)

.
b
a
n
g
)

/
\

i
d
)
)

d
a
t
a

N
a
t

=
Z
e
r
o

|
S
u
c
c

N
a
t

i
n
s
t
a
n
c
e

F
u
n
c
t
o
r
O
f

(
C
o
n
s
t

O
n
e

:
+
:

I
d
)

N
a
t

w
h
e
r
e

i
n
n
’

(
I
n
l

(
C
o
n
s
t

_
L
)
)

=
Z
e
r
o

i
n
n
’

(
I
n
r

(
I
d

n
)
)

=
S
u
c
c

n

o
u
t
’

Z
e
r
o

=
I
n
l

(
C
o
n
s
t

_
L
)

o
u
t
’

(
S
u
c
c

n
)

=
I
n
r

(
I
d

n
)

p
l
u
s

:
:

(
N
a
t
,

N
a
t
)

-
>

N
a
t

p
l
u
s

=
h
y
l
o

(
_
L

:
:

M
u

(
C
o
n
s
t

a
0

:
+
:

I
d
)
)

(
a
p
p

.
(
(
(
c
u
r
r
y

(
a
p
p

.
(
(
e
i
t
h
r

.
(
(
c
u
r
r
y

(
s
n
d

.
s
n
d
)
)

/
\

(
c
u
r
r
y

(
i
n
n

.
(
i
n
r

.
s
n
d
)
)
)
)
)

/
\

s
n
d
)
)
)

.
b
a
n
g
)

/
\

i
d
)
)

(
a
p
p

.
(
(
(
c
u
r
r
y

(
a
p
p

.
(
(
e
i
t
h
r

.
(
(
c
u
r
r
y

(
i
n
l

.
(
s
n
d

.
f
s
t
)
)
)

/
\

(
c
u
r
r
y

(
i
n
r

.
(
s
n
d

/
\

(
s
n
d

.
(
s
n
d

.
f
s
t
)
)
)
)
)
)
)

/
\

(
o
u
t

.
(
f
s
t

.
s
n
d
)
)
)
)
)

.
b
a
n
g
)

/
\

i
d
)
)

l
e
n

:
:

[
a
]

-
>

N
a
t

l
e
n

=
h
y
l
o

(
_
L

:
:

M
u

(
C
o
n
s
t

O
n
e

:
+
:

I
d
)
)

(
a
p
p

.
(
(
(
c
u
r
r
y

(
a
p
p

.
(
(
e
i
t
h
r

.
(
(
c
u
r
r
y

(
i
n
n

.
(
i
n
l

.
b
a
n
g
)
)
)

/
\

(
c
u
r
r
y

(
i
n
n

.
(
i
n
r

.
s
n
d
)
)
)
)
)

/
\

s
n
d
)
)
)

.
b
a
n
g
)

/
\

i
d
)
)

(
a
p
p

.
(
(
(
c
u
r
r
y

(
a
p
p

.
(
(
e
i
t
h
r

.
(
(
c
u
r
r
y

(
i
n
l

.
b
a
n
g
)
)

/
\

(
c
u
r
r
y

(
i
n
r

.
(
s
n
d

.
s
n
d
)
)
)
)
)

/
\

(
o
u
t

.
s
n
d
)
)
)
)

.
b
a
n
g
)

/
\

i
d
)
)

f
i
b

:
:

N
a
t

-
>

N
a
t

f
i
b

=
h
y
l
o

(
_
L

:
:

M
u

(
C
o
n
s
t

O
n
e

:
+
:

(
C
o
n
s
t

O
n
e

:
+
:

(
I
d

:
*
:

I
d
)
)
)
)

(
a
p
p

.
(
(
(
c
u
r
r
y

(
a
p
p

.
(
(
e
i
t
h
r

.
(
(
c
u
r
r
y

(
i
n
n

.
(
i
n
r

.
(
i
n
n

.
(
i
n
l

.
b
a
n
g
)
)
)
)
)

/
\

(
c
u
r
r
y

(
a
p
p

.
(
(
e
i
t
h
r

.
(
(
c
u
r
r
y

(
i
n
n

.
(
i
n
r

.
(
i
n
n

.
(
i
n
l

.
b
a
n
g
)
)
)
)
)

/
\

(
c
u
r
r
y

(
a
p
p

.
(
(
(
(
(
p
n
t

p
l
u
s
)

.
f
s
t
)

.
f
s
t
)

.
f
s
t
)

/
\

(
(
f
s
t

.
s
n
d
)

/
\

(
s
n
d

.
s
n
d
)
)
)
)
)
)
)

/
\

s
n
d
)
)
)
)
)

/
\

s
n
d
)
)
)

.
b
a
n
g
)

/
\

i
d
)
)

(
a
p
p

.
(
(
(
c
u
r
r
y

(
a
p
p

.
(
(
e
i
t
h
r

.
(
(
c
u
r
r
y

(
i
n
l

.
b
a
n
g
)
)

/
\

(
c
u
r
r
y

(
i
n
r

.
(
a
p
p

.
(
(
e
i
t
h
r

.
(
(
c
u
r
r
y

(
i
n
l

.
b
a
n
g
)
)

/
\

(
c
u
r
r
y

(
i
n
r

.
(
s
n
d

/
\

(
i
n
n

.
(
i
n
r

.
s
n
d
)
)
)
)
)
)
)

/
\

(
o
u
t

.
s
n
d
)
)
)
)
)
)
)

/
\

(
o
u
t

.
s
n
d
)
)
)
)

.
b
a
n
g
)

/
\

i
d
)
)

F
ig

.
4
.
P
o
in

tl
es

s
H

a
sk

el
l
E

x
a
m

p
le

s

