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This work deals with averaging methods for dynamics of attitude stabilization systems. The operation of passive gravity-gradient
attitude stabilization systems involving hysteresis rods is described by discontinuous differential equations. We apply recently
developed averaging techniques for discontinuous system in order to simplify its analysis and to perform parameter optimization.
The results obtained using this analytic method are compared with those of numerical optimization.

1. Introduction

Dampers that use magnetic hysteresis rods to dissipate
the energy of undesired angular motions occurred during
deployment or caused by perturbations are used in attitude
control systems of small satellites since 1960s [1]. Mathemat-
ical modeling of such systems is quite a difficult task since
themajority of existent hysteresis models result in differential
equations with discontinuous right-hand side.

Analysis of dynamics for attitude control systems with
magnetic hysteresis dampers and optimization of their para-
meters have been done in [2, 3], and the results of these stud-
ies have been implemented in real missions [4, 5]. However,
these studies lack an accurate theoretical basis for applica-
tion of averaging methods to such problems.

Recently, an adequate mathematical approach has been
developed by the authors in [6]. Now we can address a com-
plete mathematical theory for attitude stabilization systems
with hysteresis.

Consider a differential equation

𝑥̇ = 𝜖𝑓 (𝑡, 𝑥, 𝑢) , 𝑥 ∈ 𝑅

𝑛

, 𝑡 ≥ 0 (1)

describing a mechanical system with stabilizer. Here 𝑢 ∈ 𝑈 ⊂

𝑅

𝑘 is a parameter. It is assumed that 0 ≈ 𝑓(𝑡, 0, 𝑢) for all
𝑡 ≥ 0 and 𝑢 ∈ 𝑈; that is, the velocity of the system near

the origin is small. Here we do not assume that zero is an
equilibrium position of system (1). The parameter 𝑢 should
be chosen to optimize, in some sense, the behavior of the
trajectories. The choice of this parameter can be based on
various criteria. Obviously, it is impossible to construct a sta-
bilizer optimal in all aspects. Consider, for example, a linear
controllable system.The pole assignment theorem guarantees
the existence of a linear feedback yielding a linear differential
equation with any given set of eigenvalues, so one can choose
a stabilizer with a very high damping speed. However, such a
stabilizer is practically useless because of the so-called peak
effect (see [7, 8]). Namely, there exists a large deviation of the
solutions from the equilibrium position at the beginning of
the stabilization process, whenever the module of the eigen-
values is big.

The aim of this paper is to develop effective analytical and
numerical tools oriented to optimization of stabilizer para-
meters for passive attitude stabilization systemwith hysteresis
rods.

Throughout this paper, we denote the set of real numbers
by 𝑅 and the usual 𝑛-dimensional space of vectors with
components in 𝑅 by 𝑅

𝑛. We denote by ⟨𝑎, 𝑏⟩ the usual scalar
product in 𝑅

𝑛 and by | ⋅ | a norm. By 𝐵 we denote the closed
unit ball, that is, the set of vectors 𝑥 ∈ 𝑅

𝑛 satisfying |𝑥| ≤ 1.
The transpose of a matrix 𝐴 is denoted by 𝐴

∗. The set of
positively definite symmetric 𝑛 × 𝑛-matrices is denoted by
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𝑀(𝑛). If 𝑃 and 𝑄 are two subsets in 𝑅

𝑛 and 𝜆 ∈ 𝑅, we use
the following notations: 𝜆𝑃 = {𝜆𝑝 | 𝑝 ∈ 𝑃}, 𝑃 + 𝑄 =

{𝑝 + 𝑞 | 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄}. The convex hull and the closure of a
subset 𝑆 ⊂ R𝑛 are denoted by co 𝑆 and cl 𝑆, respectively.The
Hausdorff distance between two sets 𝐴

1
, 𝐴

2
⊂ 𝑅

𝑛 is defined
as

ℎ (𝐴

1
, 𝐴

2
) = min {ℎ ≥ 0 | 𝐴

1
⊂ 𝐴

2
+ ℎ𝐵, 𝐴

2
⊂ 𝐴

1
+ ℎ𝐵} .

(2)

We denote by S
[0,𝑇]

(𝐹, 𝑥

0
) the set of solutions to the Cauchy

problem 𝑥̇ ∈ 𝐹(𝑡, 𝑥), 𝑡 ∈ [0, 𝑇], 𝑥(0) = 𝑥

0
, and by

R
[0,𝑇]

(𝐹, 𝑥

0
) = {𝑥(𝑇) | 𝑥(⋅) ∈ S

[0,𝑇]
(𝐹, 𝑥

0
)} the reach-

ability set. We use also the notations S
[0,𝑇]

(𝐹, 𝐶) =

∪

𝑥0∈𝐶
S
[0,𝑇]

(𝐹, 𝑥

0
) and S

[0,𝑇]
(𝐹) = S

[0,𝑇]
(𝐹, 𝑅

𝑛

). The closed
unit ball in the space of continuous functions𝑓 : [0, 𝑇] → 𝑅

𝑛

with the uniform norm, 𝐶([0, 𝑇], 𝑅

𝑛

), is denoted by B. The
set of locally integrable functions 𝑓 : [0,∞[→ 𝑅

𝑛 is denoted
by 𝐿

loc
1

([0,∞[, 𝑅

𝑛

). The upper limit of a set-valued map 𝐹 :

𝑅

𝑛

→ 𝑅

𝑚 is given by

lim sup
𝑥
󸀠
→𝑥

𝐹 (𝑥

󸀠

) = {V = lim
𝑛→∞

V
𝑘
| (𝑥

𝑘
, V
𝑘
) ∈ gr𝐹, 𝑥

𝑘
󳨀→ 𝑥} ,

(3)

where gr𝐹 stands for the graph of the set valued map 𝐹.

2. Statement of the Problem

Consider dynamics of a satellite in a circular geocentric
orbit.The satellite is equippedwith a gravity-gradient attitude
control system that includes a number of magnetic hysteresis
rods as a damper.The spacecraft’s equations ofmotion [2] can
be represented in the normalized form. Denote by 𝑥(𝑡, 𝑥

0
, 𝑢)

the solution to the respective Cauchy problem

𝑥̇ = 𝜖𝑓 (𝑡, 𝑥, 𝑢) , 𝑥 ∈ 𝑅

𝑛

, 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = 𝑥

0
,

(4)

where 𝑢 is a parameter from a compact set 𝑈 ⊂ 𝑅

𝑘. Define
the functions

𝜑

𝑖
(𝑢) = max

𝑡∈Δ 𝑖

max
𝑥0∈𝐵𝑖

󵄨

󵄨

󵄨

󵄨

𝑥 (𝑡, 𝑥

0
, 𝑢)

󵄨

󵄨

󵄨

󵄨𝑖
, 𝑖 = 0,𝑚. (5)

Here Δ

𝑖
⊆ [0, 𝑇] are compact sets, | ⋅ |

𝑖
are norms in 𝑅

𝑛, and
𝐵

𝑖
= {𝑥 ∈ 𝑅

𝑛

| |𝑥|

𝑖
≤ 𝑏

𝑖
}. Consider the following mathemat-

ical programming problem:

𝜑

0
(𝑢) 󳨀→ min,

𝜑

𝑖
(𝑢) ≤ 𝜑

𝑖
, 𝑖 = 1,𝑚,

𝑢 ∈ 𝑈.

(6)

Many problems of stabilization systems’ parameters opti-
mization can be written in this form (see [9]). For example,
the minimization of the final deviation can be formalized as
follows:

max
𝑥0∈𝐵

󵄨

󵄨

󵄨

󵄨

𝑥 (𝑇, 𝑥

0
, 𝑢)

󵄨

󵄨

󵄨

󵄨

󳨀→ min,

𝑢 ∈ 𝑈,

(7)

and theminimization of themaximal deviation of trajectories
satisfying certain restrictions at the final moment of time has
the form:

max
𝑡∈ [0,𝑇]

max
|𝑥0|=1

󵄨

󵄨

󵄨

󵄨

𝑥 (𝑡, 𝑥

0
, 𝑢)

󵄨

󵄨

󵄨

󵄨

󳨀→ min,

max
|𝑥0|=1

󵄨

󵄨

󵄨

󵄨

𝑥 (𝑇, 𝑥

0
, 𝑢)

󵄨

󵄨

󵄨

󵄨

≤ 𝛿,

𝑢 ∈ 𝑈.

(8)

3. Averaging for Discontinuous Systems

The averaging method is one of the most used methods to
analyze differential equations of the form

𝑥̇ = 𝜖𝑓 (𝑡, 𝑥) , (9)

appearing in the study of nonlinear problems. The idea
behind the averaging method is to replace the original
equation by the averaged one:

𝑥̇ = 𝜖𝑓 (𝑥) = 𝜖 lim
𝑇→∞

1

𝑇

∫

𝑇

0

𝑓 (𝑡, 𝑥) 𝑑𝑡.
(10)

This equation is simpler and has solutions close to the
solutions of the original equation. A rigorous justification of
themethod is given by Bogolyubov’s first theorem containing
an estimate for the distance between the solutions of the
exact and averaged systems on large time intervals [10].
The Samoilenko-Stanzhitskii theorem [11, Theorem 2] which
is a generalization of Bogolyubov’s second theorem shows
that asymptotic stability of the zero equilibrium position of
averaged (10) implies that the solutions to original (9) are
close to zero on the infinite time interval.

For several models of systems with hysteresis, includ-
ing the passive attitude stabilization systems, the function
𝑓(𝑡, ⋅) appearing in (9) is discontinuous (see, e.g., [3]), and
the classical notion of solution and the classical averaging
method cannot be used. For such systems Filippov proposed
a generalized concept of solution, rewriting problem (9) as a
differential inclusion

𝑥̇ ∈ 𝜖𝐹 (𝑡, 𝑥) , 𝑥 (0) = 𝑥

0
, (11)

where 𝑥 → 𝐹(⋅, 𝑥) is an upper semicontinuous set-valued
map obtained from 𝑓(𝑡, ⋅) by Filippov regularization [12, 13].
The use of this concept of solution makes it necessary to gen-
eralize the averaging method to differential inclusions. Many
results extending Bogolyubov’s first theorem to differential
inclusions have been obtained (see, e.g., [14, 15]). In the case
of Lipschitzian differential inclusions, the problem has been
completely solved by Plotnikov [14]. Averaging results for
inclusions with upper semicontinuous right-hand side have
been obtained by Plotnikov [15] under conditions of Lipschitz
continuity of the averaged inclusion and for inclusions with
a piecewise Lipschitzian right-hand side. Recently [6], an
averaged differential inclusion has been introduced allowing
one to prove extensions of Bogolyubov’s first theorem and
of the Samoilenko-Stanzhitskii theorem for upper semi-
continuous differential inclusions and, as a consequence, for
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discontinuous dynamical systems. Here we outline the main
results from [6].

Let 𝐹 : 𝑅 × 𝑅

𝑛

→ 𝑅

𝑛 be a set-valued map. Set

𝐼 (𝑡

1
, 𝑡

2
, 𝑥, 𝛿) = {∫

𝑡2

𝑡1

V (𝑡) 𝑑𝑡 | V (⋅) ∈ 𝐿

loc
1

([0,∞[ , 𝑅

𝑛

) ,

V (𝑡) ∈ 𝐹 (𝑡, 𝑥 + 𝛿𝐵) } .

(12)

We denote by 𝐹

𝛿

(𝑥) the convex hull of the map

Φ

𝛿

(𝑥) = lim sup
𝜃↑1

lim sup
𝑇→∞

1

(1 − 𝜃) 𝑇

𝐼 (𝜃𝑇, 𝑇, 𝑥, 𝛿) (13)

and define the averaged differential inclusion as

𝑥̇ ∈ 𝐹 (𝑥) = ⋂

𝛿>0

𝐹

𝛿

(𝑥) . (14)

Note that under Lipschitz condition this map coincides with

𝐹 = lim
𝑇→∞

1

𝑇

∫

𝑇

0

𝐹 (𝑡, 𝑥) 𝑑𝑡,
(15)

if the limit exists in the sense of Hausdorff distance (see [6]).
Assume that the following conditions are satisfied:

(C1) cl co𝐹(𝑡, 𝑥) = 𝐹(𝑡, 𝑥), for all (𝑡, 𝑥) ∈ 𝑅 × 𝑅

𝑛;
(C2) the set-valued map 𝐹(𝑡, ⋅) is upper semi-continuous;
(C3) for any 𝑥 there exists measurable selection of 𝐹(𝑡, 𝑥),

that is, there exists 𝑓(𝑡, 𝑥) ∈ 𝐹(𝑡, 𝑥) such that 𝑡 →

𝑓(𝑡, 𝑥) is measurable for all 𝑥;
(C4) there exists a nonnegative 𝑏(⋅) ∈ 𝐿

loc
1

([0,∞[, 𝑅) such
that 𝐹(𝑡, 𝑥) ⊂ 𝑏(𝑡)𝐵 for all (𝑡, 𝑥) ∈ [0, +∞[×𝑅

𝑛;
(C5) there exists the limit

𝑏 = lim
𝑇→∞

1

𝑇

∫

𝑇

0

𝑏 (𝑡) 𝑑𝑡.
(16)

Under these conditions, the following version of Bogolyu-
bov’s first theorem is true.

Theorem 1. Let𝑇 > 0 and let𝐹 : 𝑅×𝑅

𝑛

→ 𝑅

𝑛 be a set-valued
map satisfying conditions (C1)–(C5). Let 𝐶 ∈ 𝑅

𝑛 be a compact
set. Then for any 𝜂 > 0 there exists 𝜖

0
> 0 such that for any

𝜖 ∈]0, 𝜖

0
[ and any solution 𝑥(⋅) ∈ S

[0,𝑇/𝜖]
(𝜖𝐹, 𝐶), there exists a

solution 𝑥(⋅) ∈ S
[0,𝑇/𝜖]

(𝜖𝐹, 𝐶) satisfying

|𝑥 (𝑡) − 𝑥 (𝑡)| < 𝜂, 𝑡 ∈ [0,

𝑇

𝜖

] . (17)

Set

𝐺

𝜖
(𝜏, 𝑦) = 𝐹(

𝜏

𝜖

, 𝑦) , 𝐺

0
(𝑦) = 𝐹 (𝑦) . (18)

Next theorem is an extension of the Samoilenko-Stanzhitskii
theorem.

Theorem 2. Let 𝐹 : 𝑅 × 𝑅

𝑛

→ 𝑅

𝑛 be a set-valued map satis-
fying conditions (C1)–(C5). Assume that 𝑦 = 0 is an asympto-
tically stable equilibrium position of the differential inclusion
̇𝑦 ∈ 𝐺

0
(𝑦). Then for any 𝜂 > 0, there exist 𝜖

0
> 0 and 𝛿 > 0

such that S
[0,∞[

(𝐺

𝜖
, 𝛿𝐵) ⊂ 𝜂B, whenever 𝜖 ∈]0, 𝜖

0
[.

The last theorem shows that if the averaged inclusion
has zero as its asymptotically stable equilibrium position, the
trajectories of the original inclusion stay in the vicinity of the
origin provided 𝜖 > 0 and |𝑥

0
| are sufficiently small.

If the averaged inclusion has a special form, we can go
further and make some conclusion on the detailed behaviour
of the trajectories of the original system. Assume that the
averaged inclusion has the form

̇

𝑥 ∈ 𝜖 (𝐴 (𝑢) 𝑥 + 𝑃 (𝑥, 𝑢)) , (19)

where 𝑃(𝑥, 𝑢) ⊂ 𝑐|𝑥|

2

𝐵, 𝑐 > 0, the real parts of the matrix
𝐴(𝑢) eigenvalues are negative for all 𝑢 ∈ 𝑈, and the function
𝑢 → 𝐴(𝑢) is continuous for all 𝑢 ∈ 𝑈. If 𝛾

0
> 0 is sufficiently

small, then the set of solutions to the Lyapunov inequality (see
[16]) for the matrix 𝐴(𝑢),

L (𝑢) = {(𝛾, 𝑉) 𝛾 ≥ 𝛾

0
, 𝑉 ∈ 𝑀 (𝑛) , 𝐴𝑉 + 𝐴

∗

𝑉 ≤ −2𝛾𝑉} ,

(20)

is nonempty and compact for all 𝑢 ∈ 𝑈. Let (𝛾, 𝑉) ∈

L(𝑈). Denote by |𝑥|

𝑉
the Euclidean norm defined by |𝑥|

𝑉
=

√
⟨𝑥, 𝑉𝑥⟩. There exist positive constants 𝑐

1
and 𝑐

2
satisfying

𝑐

1
|𝑥| ≤ |𝑥|

𝑉
≤ 𝑐

2
|𝑥| , (21)

whenever (𝛾, 𝑉) ∈ L(𝑈) for some 𝛾.

Theorem 3. Let 𝛿 > 0, 𝑢 ∈ 𝑈, and (𝛾, 𝑉) ∈ L(𝑈). There
exists 𝜖

0
(𝛿) such that for all 𝜖 ∈]0, 𝜖

0
(𝛿)[ the condition |𝑥

0
|

𝑉
<

𝛿 < 𝑐

2

1
𝛾/𝑐 implies the inequality |𝑥(𝑡, 𝑥

0
, 𝑢)|

𝑉
< 3𝛿/2.

This theorem shows that the behavior of the trajectory
𝑥(𝑡, 𝑥

0
, 𝑢) can be characterized in terms of the pair (𝛾, 𝑉).

The parameter 𝛾 is responsible for the damping speed of the
process, while the form of the ellipsoid {𝑥 | ⟨𝑥, 𝑉𝑥⟩ ≤ 1}

describes the amplitude of the deviation of the trajectory from
the origin.The aim of parameter choosing can be formulated
as follows: maximal value of 𝛾 and maximal sphericity of the
ellipsoid {𝑥 | ⟨𝑥, 𝑉𝑥⟩ ≤ 1}. The latter property guarantees
minimal overshooting of the damping process and, as a
consequence, the largest region of applicability of the approx-
imation obtained via averaging.

4. Choosing Passive Magnetic
Stabilizer Parameters

The in-plane oscillations of a satellite moving along a polar
circular orbit and equipped with a passive gravity-gradient
attitude stabilization system with one hysteresis rod are
described by the equation

𝛼̈ + 𝜔

2

𝛼 = 𝜖𝑓, (22)
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where 𝛼 is the pitch angle of spacecraft, 𝜖 is small parameter
proportional to the rod’s volume, and the force 𝑓 is given by

𝑓 = 𝑊(𝐻

𝜏
) (𝐻

1
𝑒

3
− 𝐻

3
𝑒

1
− 𝛼 (𝐻

1
𝑒

1
+ 𝐻

3
𝑒

3
)) . (23)

Here

𝐻

𝜏
= 𝐻

1
𝑒

1
+ 𝐻

3
𝑒

3
+ 𝛼 (𝐻

1
𝑒

3
− 𝐻

3
𝑒

1
) (24)

describes the projection of the geomagnetic field on the rod
axis,

𝑊(𝐻

𝜏
) = 𝐻

𝜏
−

𝜅

2

sign ̇

𝐻

𝜏
(25)

is the hysteresis function, 𝜅 corresponds to the coercive force,

𝐻

1
= cos 𝑡, 𝐻

3
= −2 sin 𝑡, (26)

and 𝑡 is the argument of latitude of the current point of the
orbit [2]. The vector

(𝑒

1
, 𝑒

3
) = (cos 𝜃, sin 𝜃) , 𝜃 ∈ [0, 𝜋] , (27)

describes the orientation of the hysteresis rod in the satellite
body. Equation (22) is equivalent to the system

𝛼̇ = 𝛽,

̇

𝛽 = −𝜔

2

𝛼 + 𝜖𝑓.

(28)

After the change of variables

𝛼 = 𝑎 cos𝜔𝑡 + 𝑏 sin𝜔𝑡, (29)

𝛽 = −𝑎𝜔 sin𝜔𝑡 + 𝑏𝜔 cos𝜔𝑡, (30)

one arrives at the system

̇𝑎 = −

𝜖

𝜔

𝑓 sin𝜔𝑡,

̇

𝑏 =

𝜖

𝜔

𝑓 cos𝜔𝑡.

(31)

Theorem 4. Assume that 𝜔 is an irrational number. Then the
averaged system for (31) is

̇

𝑎 = −

𝜖

2𝜔

(𝑝𝑎 + 𝑞𝑏) + 𝑟

𝑎
(𝑎, 𝑏, 𝜃) ,

̇

𝑏 =

𝜖

2𝜔

(𝑞𝑎 − 𝑝𝑏) + 𝑟

𝑏
(𝑎, 𝑏, 𝜃) ,

(32)

where

𝑝 =

9𝜅𝜔𝑒

2

1
𝑒

2

3

𝜋(1 + 3𝑒

2

3
)

3/2

,

𝑞 =

3

2

(𝑒

2

1
− 𝑒

2

3
) +

6𝜅𝑒

1
𝑒

3

𝜋(1 + 3𝑒

2

3
)

3/2

,

(33)

|𝑟

𝑎
| = 𝑂(𝑎

2

+ 𝑏

2

), and |𝑟

𝑏
| = 𝑂(𝑎

2

+ 𝑏

2

).

Obviously we have

(

1 0

0 1

)(

−𝑝 −𝑞

𝑞 −𝑝

) + (

−𝑝 𝑞

−𝑞 −𝑝

)(

1 0

0 1

) = −2𝑝(

1 0

0 1

) .

(34)

Therefore, we see that the linearization of the averaged system
always has a Lyapunov function𝑉 = 𝑎

2

+𝑏

2

, and the damping
speed is determined by the value of 𝑝. This means that the
peak effect does not take place for the linearization of the
averaged system.

To maximize the damping, one has to increase the total
volume of the hysteresis material on board. However, it is
wellknown that the efficiency of a damping rod is increased
with the increase of the ratio between the rod’s length and its
cross-section dimension. Therefore, instead of one massive
bar, the attitude control system should use several rather
thin rods of the maximum length allowed by the spacecraft
geometrical and system restrictions. On the other hand, to
minimize the perturbation of the spacecraft angular motion
caused by the damping system itself, the direction of total
magnetic field in the rods should deviate as little as possible
from the direction of the geomagnetic field at the current
point of the orbit. Thus, in general case, one should use a
system of three equal orthogonal hysteresis rods or a number
of such systems. Here we consider in-plane satellite dynamics
on a polar orbit, and for such purpose it suffices to analyze a
pair of equal orthogonal rods.

Orientation of this pair of equal orthogonal rods can be
defined as (𝑒

1
, 𝑒

3
), (−𝑒

3
, 𝑒

1
), where 𝑒

1
= cos 𝜃 and 𝑒

3
= sin 𝜃,

and due to the system symmetry it is enough to study the
interval 𝜃 ∈ [0, 𝜋/2]. If the satellite is equipped with several
identical hysteresis rods, the corresponding nonlinear system
is

̇𝑎 = −

𝜖

𝜔

(𝑓

1
+ 𝑓

2
+ ⋅ ⋅ ⋅ ) sin𝜔𝑡,

̇

𝑏 =

𝜖

𝜔

(𝑓

1
+ 𝑓

2
+ ⋅ ⋅ ⋅ ) cos𝜔𝑡.

(35)

Here the terms 𝑓

1
, 𝑓

2
, . . ., describe the interaction of the res-

pective rod with the geomagnetic field. For a couple of equal
orthogonal rods and for small deviation from the origin, the
forces 𝑓

1
and 𝑓

2
are given by

𝑓

1
= 𝑊(𝐻

𝜏,1
) (𝐻

1
𝑒

3
− 𝐻

3
𝑒

1
− 𝛼 (𝐻

1
𝑒

1
+ 𝐻

3
𝑒

3
)) ,

𝑓

2
= 𝑊(𝐻

𝜏,2
) (𝐻

1
𝑒

1
+ 𝐻

3
𝑒

3
− 𝛼 (−𝐻

1
𝑒

3
+ 𝐻

3
𝑒

1
)) ,

(36)

respectively. Here

𝐻

𝜏,1
= 𝐻

1
𝑒

1
+ 𝐻

3
𝑒

3
+ 𝛼 (𝐻

1
𝑒

3
− 𝐻

3
𝑒

1
) ,

𝐻

𝜏,2
= −𝐻

1
𝑒

3
+ 𝐻

3
𝑒

1
+ 𝛼 (𝐻

1
𝑒

1
+ 𝐻

3
𝑒

3
) ,

𝑊 (𝐻

𝜏,𝑗
) = 𝐻

𝜏,𝑗
−

𝜅

2

sign ̇

𝐻

𝜏,𝑗
, 𝑗 = 1, 2.

(37)
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For this case, the first approximation of the averaged sys-
tem takes the form

̇

𝑎 = −

𝜖

2𝜔

𝑃𝑎,

̇

𝑏 = −

𝜖

2𝜔

𝑃𝑏,

(38)

where

𝑃 =

9𝜅𝜔𝑒

2

1
𝑒

2

3

𝜋

(

1

(1 + 3𝑒

2

3
)

3/2

+

1

(1 + 3𝑒

2

1
)

3/2

) . (39)

An easy calculation shows that the optimal value of 𝜃 is 𝜋/4,
so 𝑒

1
= 𝑒

3
=

√
2/2. In the next sectionwe numerically analyze

the validity of the previous analytical study.

5. Numerical Simulations

We approximate problem (6) by the following problem:

𝜑

0
󳨀→ min,

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥(𝑡

𝑖

𝑘
, 𝑥

𝑖

𝑗
, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨𝑖

≤ 𝜑

𝑖
+ 𝜀, 𝑖 = 0,𝑚,

𝑢 ∈ 𝑈,

(40)

where 𝑡

𝑖

0
= 0, 𝑡𝑖

𝑘
∈ Δ

𝑖
, 𝑥𝑖
𝑗
∈ 𝐵

𝑖
, 𝑗 = 1, 𝐽, and

𝑥 (𝑡

𝑖

𝑘+1
, 𝑥

𝑖

𝑗
, 𝑢) = 𝑥 (𝑡

𝑖

𝑘
, 𝑥

𝑖

𝑗
, 𝑢) + 𝜏𝑓 (𝑡

𝑘
, 𝑥 (𝑡

𝑖

𝑘
, 𝑥

𝑖

𝑗
, 𝑢) , 𝑢) ,

𝜏 = 𝑡

𝑖

𝑘+1
− 𝑡

𝑖

𝑘
, 𝑘 = 0,𝑁,

(41)

is the Euler approximation for the solution 𝑥(⋅, 𝑥

𝑖

𝑗
, 𝑢). Note

that this is a hard problem because of the discontinuity of
the system. It is necessary to consider very fine partition of
the time interval in order to get a good approximation of
the solutions to the discontinuous differential equation. For
smooth right-hand sides the number of points in the mesh
can be significantly reduced (see [9]).

Let 𝜖𝜅 > 0 be small enough. We consider a satellite with
two equal orthogonal hysteresis rods. A typical trajectory of
the system is shown in Figure 1.

Note that the oscillations of the trajectory do not allow
one to characterize its damping speed using the norm at the
final moment of time. For this reason, we numerically solve
the following problem:

max
𝑥0∈𝛿0𝐵

max
𝑡∈[𝑇−𝑇𝑝,𝑇]

󵄨

󵄨

󵄨

󵄨

𝑥 (𝑡, 𝑥

0
, 𝑢)

󵄨

󵄨

󵄨

󵄨

󳨀→ min,

𝑢 ∈ 𝑈,

(42)

where 𝑇

𝑝
≪ 𝑇 is an interval corresponding to the period

of oscillation of solutions. The minimization is done using
multistart Nelder-Mead method. For 𝜖 = 0.25, 𝜅 = 0.1,
𝜔 = 0.949, 𝛿

0
= 1, 𝑇 = 300𝜋, and 𝑇

𝑝
= 20𝜋, the fastest
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(b) Time evolution of amplitude√𝑎2 + 𝑏2 of pitch oscillations (29)

Figure 1: A typical trajectory for 𝜖 = 0.25, 𝜅 = 0.1, 𝜔 = 0.949.

damping speed is observed for values of 𝜃 very close to 𝜋/4,
that is, to the expected value. Next we consider the problem

max
𝑥0∈𝛿0𝐵

max
𝑡∈ [0,𝑇]

󵄨

󵄨

󵄨

󵄨

𝑥 (𝑡, 𝑥

0
, 𝑢)

󵄨

󵄨

󵄨

󵄨

󳨀→ min,

max
𝑥0∈𝛿0𝐵

max
𝑡∈[𝑇−𝑇𝑝 ,𝑇]

󵄨

󵄨

󵄨

󵄨

𝑥 (𝑡, 𝑥

0
, 𝑢)

󵄨

󵄨

󵄨

󵄨

≤ 𝛿

1
,

𝑢 ∈ 𝑈.

(43)

The results of minimization for 𝜖 = 0.25, 𝜅 = 0.1, 𝜔 = 0.949,
𝛿

0
= 1, 𝛿

1
= 0.1, 𝑇 = 300𝜋, and 𝑇

𝑝
= 20𝜋 show that the

problem has many local minima but with the values of the
functional very close to 1; that is, the nonlinear system with
two orthogonal hysteresis rods has no overshooting for all
values of 𝜃.This allows one to conclude that the value 𝜃 = 𝜋/4

is the best one. It guarantees high damping speed anddoes not
cause peaking.

6. Conclusions

Thispaper is dedicated to the problemof parameter optimiza-
tion for a gravitationally stabilized satellite with magnetic
hysteresis damper. Its motion is described by differential
equations with discontinuous right-hand side. The disconti-
nuity is the principal obstacle in the application of the aver-
aging method. Our recently obtained results on averaging of
discontinuous systems are applied now to rigorously justify
the use of this method for a satellite with hysteresis rods.
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We consider here the simplest case of in-plane oscillations
on a polar circular orbit. Theorem 3 shows that the behavior
of the system can be characterized in terms of Lyapunov
function which can be chosen in order to guarantee the best
properties of damping process. Further study is performed
numerically, and the simulations are in excellent agreement
with the analytical results, confirming also previous studies
on hysteresis damping of satellite pitch oscillation in gravity-
gradient mode.

Our results can also be applied to rigorously justify the
use of averaging techniques in analysis of other engineering
problems involving differential equations with discontinuous
right-hand side.

Appendix

This appendix contains the proofs of Theorems 3 and 4.

Proof of Theorem 3. Set 𝑇 = 2 ln 2/𝛾. Then, using (21), from
the Lyapunov inequality we get |𝑥(𝑇, 𝑥

0
, 𝑢)|

𝑉
≤ |𝑥

0
|

𝑉
/2,

whenever |𝑥

0
|

𝑉
≤ 𝑐

1
𝛾/𝑐. There exists 𝜖

0
(𝛿) such that

sup
𝑡∈[0,𝑇]

|𝑥(𝑡, 𝑥

0
, 𝑢) − 𝑥(𝑡, 𝑥

0
, 𝑢)| < 𝛿/2. Therefore, we have

|𝑥(𝑇, 𝑥

0
, 𝑢)| < 𝛿 and |𝑥(𝑡, 𝑥

0
, 𝑢)| ≤ |𝑥(𝑡, 𝑥

0
, 𝑢)| + |𝑥(𝑡, 𝑥

0
, 𝑢) −

𝑥(𝑡, 𝑥

0
, 𝑢)| < 3𝛿/2. This ends the proof.

Proof of Theorem 4. Consider the function

𝑓 = 𝑊(𝐻

𝜏
) (𝐻

1
𝑒

3
− 𝐻

3
𝑒

1
− 𝛼 (𝐻

1
𝑒

1
+ 𝐻

3
𝑒

3
)) , (A.1)

where

𝐻

𝜏
= 𝐻

1
𝑒

1
+ 𝐻

3
𝑒

3
+ 𝛼 (𝐻

1
𝑒

3
− 𝐻

3
𝑒

1
) ,

𝑊 (𝐻

𝜏
) = 𝐻

𝜏
−

𝜅

2

sign ̇

𝐻

𝜏
,

𝐻

1
= cos 𝑡, 𝐻

3
= −2 sin 𝑡,

(𝑒

1
, 𝑒

3
) = (cos 𝜃, sin 𝜃) , 𝜃 ∈ [0,

𝜋

2

] .

(A.2)

First, note that for any fixed pair (𝑎, 𝑏) the function 𝑡 →

𝐻

𝜏
(𝑡, 𝑎, 𝑏) is analytic. Therefore the integral 𝐼(𝑡

1
, 𝑡

2
, 𝑥, 𝛿) (see

Section 2) is a point. This implies that the averaged operator
defined in (14) coincides with

lim
𝑇→∞

1

𝑇

∫

𝑇

0

𝑓 (𝑡, 𝑎, 𝑏) (

− sin𝜔𝑡

cos𝜔𝑡

) 𝑑𝑡,
(A.3)

if the limit exists. Since 𝜔 is irrational number and 𝑓 can be
considered as a 2𝜋-periodic function 𝑔 = 𝑔(𝑡,

̃

𝑡, 𝑎, 𝑏) of the
arguments 𝑡 and ̃

𝑡 = 𝜔𝑡, we see that limit (A.3) does exist,
and we have

lim
𝑇→∞

1

𝑇

∫

𝑇

0

𝑓 (𝑡, 𝑎, 𝑏) (

− sin𝜔𝑡

cos𝜔𝑡

) 𝑑𝑡

=

1

(2𝜋)

2
∬

2𝜋

0

𝑔 (𝑡,

̃

𝑡, 𝑎, 𝑏)

× (

− siñ

𝑡

cos̃𝑡 ) 𝑑𝑡 𝑑

̃

𝑡.

(A.4)

To evaluate this integral, we represent the derivative ̇

𝐻

𝜏
in the

form
̇

𝐻

𝜏
= −𝑒

1
sin 𝑡 − 2𝑒

3
cos 𝑡 + (−𝑎𝜔 sin𝜔𝑡 + 𝑏𝜔 cos𝜔𝑡)

× (𝑒

3
cos 𝑡 + 2𝑒

1
sin 𝑡) + (𝑎 cos𝜔𝑡 + 𝑏 sin𝜔𝑡)

× (−𝑒

3
sin 𝑡 + 2𝑒

1
cos 𝑡)

= Ψ sin (𝑡

󸀠

− 𝑡) ,

(A.5)

where

Ψ =

√

(−2𝑒

3
+ 𝛽𝑒

3
+ 2𝛼𝑒

1
)

2

+ (𝑒

1
+ 𝛼𝑒

3
− 2𝛽𝑒

1
)

2

,

sin 𝑡

󸀠

=

−2𝑒

3
+ 𝛽𝑒

3
+ 2𝛼𝑒

1

Ψ

,

cos 𝑡󸀠 =
𝑒

1
+ 𝛼𝑒

3
− 2𝛽𝑒

1

Ψ

.

(A.6)

Thus, we have

sign ̇

𝐻

𝜏
= sign sin (𝑡

󸀠

− 𝑡) = −

4

𝜋

∞

∑

𝑛=0

sin (2𝑛 + 1) (𝑡 − 𝑡

󸀠

)

2𝑛 + 1

= −

4

𝜋

∞

∑

𝑛=0

(sin (2𝑛 + 1) 𝑡 cos (2𝑛 + 1) 𝑡

󸀠

− sin (2𝑛 + 1)

󸀠 cos (2𝑛 + 1) 𝑡)

× (2𝑛 + 1)

−1

.

(A.7)

Observe that

sin 𝑡

󸀠

=
√

1 + 3𝑒

2

3
(−2𝑒

3
+

𝑒

1
(2𝛼 − 3𝑒

1
𝑒

3
𝛽)

1 + 3𝑒

2

3

)

+ 𝑂(𝛼

2

+ 𝛽

2

) ,

(A.8)

cos 𝑡󸀠 = √
1 + 3𝑒

2

3
(𝑒

1
+

2𝑒

3
(2𝛼 − 3𝑒

1
𝑒

3
𝛽)

1 + 3𝑒

2

3

)

+ 𝑂(𝛼

2

+ 𝛽

2

) .

(A.9)

Substituting (A.7) into (A.4) and integrating in order of 𝑡 and
then in order of ̃

𝑡, we obtain the result.
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