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Abstract

In this paper we propose to use Interaction Nets as a formalism for Visual Func-

tional Programming. We consider the use of recursion patterns and introduce a
suitable archetype/instantiation mechanism for interaction agents. We also con-
sider program transformation by fusion, a well-known transformation technique,
and show that this extends smoothly to our visual programming framework. Ex-
amples of applying this technique include transformations of two-pass functions
into single-pass ones, and the introduction of accumulations.




1 Introduction

Many attempts [3,4, 7] have been advanced to create a visual notation for func-
tional programs (or even a full-fledged visual functional programming language),
but as far as we know none of these has been successful or widely used in practice.

In this paper we propose to use an existing formalism for the visual repre-
sentation of functional programs. Interaction Nets (INs) are a graph-rewriting
formalism introduced by Lafont [5], inspired by Proof-nets for Multiplicative
Linear Logic. From a programming point of view, interaction nets can be seen
as a visual programming language in themselves; however they have been put
to use more fruitfully as an implementation language, to encode programs (of a
core functional language) in clever ways that allow for the close control of shared
reductions and evaluation strategies.

Our interest here is on a totally different connection between INs and func-
tional programming: we are interested in using nets as a tool for visual functional
programming. We show how INs can be used:

— to simply represent functional programs visually and to animate the execu-
tion of such programs by graph-rewriting;

— to reason about functional programs and to perform wvisual program trans-
formation, using the standard fusion technique of Functional Programming,
here transposed to the visual setting.

It is important to stress that although many standard examples of INs are
functional by nature, which is the aspect developed in this paper, many other
applications involve nets that do not have a functional interpretation.

Structure of the Paper. Section 2 reviews the basic concepts of Interaction Nets;
in section 3 some principles are informally introduced showing how visual func-
tional programs can be defined with INs. Section 4 introduces a new mechanism
for programming with INs, that we call archetypes, and section 5 reviews the
use of folds for functional programming, as well as program transformation by
fusion. Tt is shown how an archetype can be used to capture the behaviour of
a fold agent over a particular regular data type. In section 6 we see that this is
inadequate for capturing the definition of higher-order folds. A suitable general-
ization of fold archetypes is then given. Section 7 presents a visual fusion law for
folds over lists, together with many examples of its application to visual program
transformation. Section 8 concludes the paper and discusses future work.

2 Interaction Nets

An interaction net system [5] is specified by giving a set X' of symbols, and a set
R of interaction rules. Each symbol a € ¥ has an associated (fixed) arity. An
occurrence of a symbol a € X' will be called an agent. If the arity of « is n, then
the agent has n + 1 ports: a distinguished one called the principal port depicted



by an arrow, and n auxiliary ports labeled z1, ..., z, corresponding to the arity
of the symbol.

A net built on X' is a graph (not necessarily connected) with agents at the
vertices. The edges of the graph connect agents together at the ports such that
there is only one edge at every port (edges may connect two ports of the same
agent). The ports of an agent that are not connected to another agent are called
the free ports of the net, and define its interface. There are two special instances
of a net: a wiring (no agents), and the empty net.

A pair of agents («, 5) € X' x X connected together on their principal ports
is called an active pair; the interaction net analog of a redex. An interaction
rule ((o,5) = N) € R replaces an occurrence of the active pair (o, ) by a
net N. Rules must satisfy two conditions: the interfaces of the left-hand side
and right-hand side are equal (this implies that all the free ports are preserved
during reduction), and there is at most one rule for each pair of agents.

If a net does not contain any active pairs then we say that it is in normal form.
We use the notation = for one-step reduction and =—* for its transitive reflex-
ive closure. Additionally, we write N |} N’ if there is a sequence of interaction
steps N =* N’, such that N’ is a net in normal form. The strong constraints
on the definition of an interaction rule imply that reduction is strongly com-
mutative (the one-step diamond property holds), and thus confluence is easily
obtained. Consequently, any normalizing interaction net is strongly normalizing.

As a very simple example of an interaction system, an implementation of
list concatenation can be obtained by X containing {Nil, Cons, app}, with arity
0, 2, 2 respectively, and R consisting of the rules in figure 1. Naturally, this
presupposes that the system contains some base elements from which to build
lists.

;\ / ;@
Fig. 1. IN definition of append

Typing. The type discipline usually considered for INs uses a set of constant
types. Every port is assigned a type positively (for output ports) or negatively
(for input ports). In a well-typed net every edge connects a positive and a neg-
ative occurrence of the same type.



Equivalence of Interaction Nets and Weak Reduction. A mnotion of canonical
form is defined for Interaction Nets; a particular case is a net whose interface
contains principal ports only. An adequate notion of evaluation consists in doing
the minimum amount of work to reach a canonical form (rather than fully re-
ducing nets); in particular, this will never reduce active pairs inside disconnected
components of a net, which roughly corresponds to lazy evaluation in functional
programming.

The adequate notion of equivalence for INs is contextual equivalence: two nets
are equivalent if their canonical forms have the same interface, whatever nets are
connected to them. This is the same as saying that the nets are indistinguishable
in any context. Because reduction does not necessarily terminate, the adequate
technique for proving equivalence is bisimilarity, a method based on comparing
the transition trees containing all possible sequences of observations of both nets
(this is a coinductive method since a notion of greatest bisimulation is used).
See [6] for full details. The following is an example of contextual equivalence:

3 Functional Programming with Interaction Nets

Representing Inductive Types. Consider a datatype T with n constructors C ... C,,
with arities a; ...a, . This can be modeled in a straightforward way by an inter-
action system containing n agents labeled C; with arity a;, i = 1...n ; values of
type T correspond to closed trees built exclusively from these agents (in a tree
all principal ports are oriented in the same direction). A function over such a
type can then be encoded as an agent with appropriate interaction rules for the
constructors of the type. In a constructor agent, auxiliary ports are input ports,
and the principal port is an output port.

An example of this is given by the datatype of lists with constructors Nil
and Cons, as in the example of figure 1. The following is an example of a value
of type List Int, where we consider that integers are represented by an infinite
family of agents (alternatively this can be seen as a single agent carrying a value
of a basic type built into the system).



Pattern-matching, Function Definitions, and Recursion. A fundamental aspect
of interaction nets is that pattern-matching is built-in through the rule selection
mechanism. Consider the Haskell implementation of a list concatenation function

app :: [a] -> [a] -> [a]
app 0 1=1
app (x:xs) 1 = x:(app xs 1)

It is easy to see that the interaction rules given in figure 1 define a behaviour for
the agent app similar to this, where each interaction rule corresponds to a clause
of the function definition; the appropriate clause is selected by matching on the
first argument, which corresponds to the principal port of the agent. Although
we omit typing considerations here, it is immediate to see that input ports (neg-
atively typed) correspond to function arguments, and the unique output port
(positively typed) corresponds to the result.

A visual functional program then consists of a net (containing a single free
port, corresponding to a closed functional expression) to be reduced in the con-
text of an interaction system defining a particular set of functions. For instance
the following net corresponds to the expression app [1,2] [3,4] to be evalu-
ated with the interaction system of figure 1.

Higher-order Programming. Naturally, the above approach is only possible be-
cause in the definition of app only the outermost constructor is matched. Match-
ing deeper constructors, or matching more than one constructor simultaneously,
would be possible in Haskell but not directly in INs. An alternative, more general
approach would be to write programs using a generic ListCase agent of arity 5,
whose behaviour is defined by the two following rules.
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The idea is that two different nets are connected to the ListCase agent. One
is a net to be returned when the argument list is empty, and the other is a net
with three ports, used to combine the head and tail of a non-empty list. Observe
that one of these nets is not used in each rule, and must be erased with ¢ agents.

This approach can be followed for encoding higher-order functions in general.
In fact, the ListCase agent corresponds to the following function definition:

listcase :: [a] -=> b -> (a -> [a] -=> b) -=> b
listcase 0 x_=x
listcase (x:xs) _ f = f x xs

In this example, the two nets connected to ListCase will play the role of £ and x in
the above Haskell version. In general, an argument of type T,, — ... — 17 — Tj
will give rise to n ports in the agent, to which an appropriate net is connected
when the function is applied.

If we now want to encode app using the ListCase agent, we also need a way
of encoding recursion. This is a classic problem in graph-rewriting implemen-
tations, and also in the field of term-graph rewriting. We use a simple solution
here, considering that interaction rules may introduce new active pairs: recursive
definitions are coded by adding explicit rules for a fixpoint agent called rec. In
the present case this yields the following net, where a ¢ agent is used to duplicate
a net:

(=)

Now our program can be encoded as the following net, to be reduced in the
context of the system containing the rules for the agent ListCase and the fixpoint

rule for app.



The following table summarizes our approach to Visual Programming:

l Functional Programming [ Visual Functional Programming ‘
Function Agent
Function Definition Set of Interaction Rules of an Agent
Expression Interaction Net

4 Agent Archetypes

Although no standard programming language exists for Interaction Nets, it is
generally well accepted that any such language should contain some form of
support for modularity and reusability. In particular, a mechanism should exist
to facilitate the definition of interaction rules that follow identical patterns.

Archetype ListCasef

=

Fig. 2.

To illustrate what we mean, consider again the app agent of figure 1. It is
defined by case analysis on the structure of the argument, and in fact any other
agent defined in this way must have two interaction rules with a similar structure
to those in figure 1. We now introduce a concept designed precisely to isolate this
structure, which we designate by archetype. The ListCase archetype is defined in
figure 2 and should be interpreted as follows: any agent f that fits this archetype
interacts with both Nil and Cons, and the right hand sides of the corresponding
rules are any nets, called respectively Ny nii and Ny cons.

To define a new agent following the archetype, an instance is created, by
simply providing the nets in the right-hand side of the interaction rules. This
implicitly includes the expected interaction rules for the new agent in the inter-
action system being defined.

An example is given in figure 3, where the isZero agent is defined as an

instance of the ListCase archetype. In this example, € agents are used to erase
the head and tail of the list, which are not used in the result.



Instance ListCase isZero

NisZero, = NisZero, = @
Nil Cons

Fig. 3.

5 Programming with Folds

A fundamental aspect of Functional Programming is the ability to use a set
of recursion patterns for each datatype. For instance few Haskell programmers
would write a list sum program with explicit recursion as

sum [] =0
sum (x:xs) = x + (sum xs)

Most would define sum = foldr (+) 0, where foldr is a recursion pattern
corresponding to iteration over the elements of the list, encoded by the following
higher-order function:

foldr :: (a ->b ->b) >b ->[a] >b
foldr £ z [] =z
foldr £ z (x:xs) = £ x (foldr £ z xs)

A function like sum is often called a fold, in the sense that its definition is
such that it can be written using foldr. The use of recursion patterns has the
advantage of being appropriate for program transformation and reasoning using
the so-called calculation-based style. A classic example is the following fusion or
promotion law [1], which states how the composition of a function with a fold
over lists can be transformed into a single fold.

f (foldr g e 1) = foldr h ¢
if f is a strict function, f e =¢, and f (g x r) = h x (f r) for all z,r

One of the goals of this paper is to derive a visual version of this law and to give
examples of its use in program transformation.

Interaction Net Programming with Folds. It is straightforward to identify the
rules that characterize an agent corresponding to a fold. If we take the case of
lists, interaction rules must be defined for f to interact with both Nil and Cons:

— interaction with Nil results in an arbitrary net;
— interaction with Cons sends an f agent along the tail of the argument list,
and a net N cons then combines the head of the list with the recursive result.



Following our discussion of programming with higher-order agents in sec-
tion 3, we could now either define a single foldr agent with enough ports to con-
nect nets corresponding to its arguments, or else define an appropriate archetype.
We follow the latter approach, which leads to visually much simpler and more
concise definitions.

Archetype foldr f

‘ G Nf,Cons
Nf Nil

Fig. 4.

Instance foldr sum

Nsum = Nsum =
Nil , Coné

Fig. 5.

The foldr archetype is defined in figure 4. The archetype is recursive in the
sense that the parameterized agent occurs in the right-hand side of one of the
rules. As an example, the definition sum = foldr (+) 0 becomes the instance
given in figure 5.

As a second example of a fold archetype, appendix A contains the definition
of an archetype for folds over Leaf-labelled binary trees.

6 Higher-order Folds.

Our current definition of a fold agent is still not satisfactory, and will now be
generalized. Consider the list append function:



app :: [a]l -> [a] -> [a]
app 0 1=1
app (x:xs) 1 = x:(app xs 1)

This is a higher-order fold, since it iterates over its first argument to produce a
function that takes the second argument:

app = foldr (\x r 1 -> x:(r 1)) id

Archetype foldrf(k

EFis

Fig. 6.

Instance foldr app(1

Napp, aPP,
Nil Cons

Fig. 7.

This fold can be defined with interaction nets as in figure 1, which clearly does
not match our current definition of the fold archetype. Functions of more than
one argument defined as folds over the first argument lead us to the generalization
of the foldr archetype shown in figure 6. This is parameterized by the number of
extra arguments of the fold agent; our previous definition is of course a particular
case of this where k = 0.

The definition of append as an instance of this archetype, for kK = 1, can be
seen in figure 7. The open wire in the net N 5, cons corresponds to the fact that
the second argument of the fold is preserved in the recursive call.




As a slightly more complicated example, take any tail-recursive function that
uses an accumulator argument. For instance the following is an alternative way
of calculating the sum of the elements in a list (invoked with an initial value of
0 for the accumulator):

sum’ :: [Int] -> Int -> Int
sum’ 0y=y
sum’ (x:xs) y = sum’ xs (x+y)

and can also be written as sum’ = foldr (\x r y -> r (x+y)) id.

Instance foldr sum’(1)

sum',

Cons

Fig. 8.

In interaction nets we have the instance of foldr shown in figure 8. There is
again an open wire in the net Nyroq,cons, connecting the result of the fold to the
result of the recursive call, which matches exactly the definition of tail-recursion.

7 Fusion

The goal of this section is to present a program transformation principle for
visual functional programs, written as a fusion law for fold agents. This is the
visual equivalent of the law mentioned in section 5. Although the law presented
here applies to folds over lists, a similar appropriate law can be written for any
regular datatype.

We remark that this transformation principle is stated in the Interaction
Net framework (as an equivalence of nets) and may be proved using exclusively
IN techniques. The law is closely related to the fusion law for functional pro-
grams, however no formal statement on this fact is made, since our encoding of
functional programs is informal.

Proposition 1. Let g, f, f' be agents of arity k+1, j+1, j+k+1 respectively,
with f, f’ defined as list fold agents: Instance foldr f(7), Instance foldr f'(j+ k).

Then we have



Jj+k

j 1k

where —* stands for the transitive closure of reduction up to contextual equiv-
alence.

Proof (sketch). Two proofs can be given, using different sets of assumptions. If
one takes into account that the agents Nil and Cons are being used to implement
a datatype defined as a least fixpoint (which is the case for finite lists), then
a simple inductive proof can be given, on the structure of the argument list.
This is the list connected to the leftmost port at the bottom of both nets in the
equivalence. The base case is obtained by connecting a Nil agent; the inductive
case is obtained by connecting the principal port of a Cons agent.

A more general proof uses a coinductive argument, following the principles
mentioned in section 2. This proof works on the interaction system, disregarding
the functional aspect and the structure of the datatype.

This proposition acts as a formal basis for the transformation of visual pro-
grams over lists, and can be used effectively as a transformation scheme. Its
usefulness will now be illustrated by a number of examples.

Ezxample 1. Our first example transforms a two-pass function into a single pass
one. Consider adding the squares of the elements in a list with the composition
of functions sum . sqrs, where sqrs maps the square function on a list. Then
fusion can be used to transform this into a single fold. Visually we aim at the

following transformation:

sum
sqrs




*

—

qurs, = qurs _ @
Nil Cons - a
r

Conditions for fusion:

—>* Nsumsqrs,NiI

Substituting and reducing using definition of sum:

Y

q

Instance foldr sqrs(0)
s,
ons

Ns
C

OO
|

This yields:

Instance foldr sumsqrs(0)

Nsumsqrs, = Nsumsqrs, _ ‘
Nil Cons a

Fig. 9.



Figure 9 shows the definition of sqrs (where sq calculates the square of a
number); the conditions for application of the fusion law (proposition 1) with
j =k = 0; and the final definition obtained for sumsqrs. The transformation is
straightforward and yields as result the expected agent definition.

Ezxample 2. Our second example consists of deriving an accumulator-based op-
timization of the list-reversal function. To do this we depart from a specification.
Let us call the single-argument reverse function rev, and the two-argument op-
timized version rev’. Their types are

rev :: [a] -> [a]
rev’ :: [a]l -> [a] -> [a]

where the second argument of rev’ is an accumulator. Our specification is written
as app (rev l) y =rev’' [ y. Visually:

which states how the two versions are related.

Figure 10 shows the initial quadratic-time definition of rev; the conditions
for application of fusion (proposition 1) with j = 0 and k¥ = 1; and the final
linear-time definition obtained for rev’, which redrawn here in a clearer way:

This corresponds to the Haskell definition

rev’ [] y =
rev’ (x:xs) y = rev’ xs (x:y)

We thus obtained a higher-order fold resulting from the fusion of a higher-
order function with a first-order fold. Our next example produces a higher-order
fold from the fusion of a first-order function with a higher-order fold.

Ezxample 3. Consider the ordered insertion of an element in a sorted list. This is
defined as a fold in figure 12, top, with the behaviour of sort2 agent that sorts two
elements specified in figure 11. Note that this specification does not commit us
to any specific implementation of the elements being compared or of comparison



Instance foldr rev(0)

Nrev,NiI Nrev,Cons @

Conditions for fusion:

rev',Cons

N

rev,Nil

rev,

Cons

Substituting and reducing using definition of app and the equivalence of section 2:

S @ S
-

Instance foldr rev’(1)

- Nrev',Cons |

Fig. 10.

This yields:




b
OJRO NN

Fig. 11.

itself. One can imagine that elements belong to some basic type built into the
system, and comparison is performed by a low-level call.

The definition of insert compares the head of the list with the element to be
inserted. The smallest of these elements will be the head of the returned list.
The tail is obtained by inserting the other element in the tail of the original list,
which corresponds to a fold definition. Note that other definitions are possible;
this example illustrates that some agents that would not immediately be defined
as folds can be so defined, making possible the application of fusion.

Now consider taking the head of the list resulting from such an insertion.
This will give as result the minimum element among those in the list and the
element inserted. This can be transformed into a single fold agent:

Figure 12 also shows the conditions for application of the fusion law (propo-
sition 1) with 7 = 1 and k& = 0, and the final definition obtained for h. We
remark that the definition of hd on an empty net may be treated by introducing
a special agent | , which gets erased by e as any other agent (this applies to
any partial function). This allows us to prove that a net consisting simply of an
€ is contextually equivalent to an ¢ connected to a hd agent, which in turn can
be used in order to identify an occurrence of hd connected to Ny cons-

8 Future Work

We are currently working on the implementation of a tool for visual functional
programming based on these ideas. The tool will incorporate an interaction
engine and an archetype definition and instantiation mechanism, and will al-
low the user to (visually) define functional programs (including new inductive
datatypes); animate the execution of visual programs; and perform program
transformations by fusion.



Instance foldr insert(1)

_ @ Ninsert, _ .
- M Cons - H

Conditions for fusion:

Nh,Cons
—" Nh,NiI >
Ninsert, @

Substituting and reducing using definition of hd (returns head of list and sends an ¢
agent along the tail) and contextual equivalence:

Ol Ol
9 g‘

This yields:

Fig.12.



On the theoretical side, it is straightforward to derive visual fusion laws for
folds over any regular type; it remains to study in this context the dual no-
tion of an unfold archetype, together with the corresponding fusion law. Unfolds
produce values of datatypes defined as greatest fixpoints; fusion is here not sim-
ply a systematization of structural induction, but an alternative proof-method
to the more sophisticated fixpoint induction technique. In the IN framework,
coinduction will certainly have to be used.

It should be mentioned that the use of fusion laws is largely used in the
field of Datatype-generic Programming (see [2] for an introduction). The use of
algebraic machinery allows for a unique definition of a fold (or unfold), with the
datatype as parameter. Fusion laws are also generic in this sense, and can be
instantiated for particular data-types. It remains to see how this generic aspect
can be brought to the present visual framework. It would be useful to be able to
derive fusion laws automatically for each new datatype from a generic scheme,
and to incorporate this ability in the visual programming tool.

The notion of hylomorphism (the composition of a fold with an unfold in
a language where least and greatest fixpoints coincide) clearly deserves to be
studied in this framework, since a number of specific program transformations
have been proposed for these functions.
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A Folds over Leaf-labeled Trees

Figure 13 contains the definition of an archetype for folds over binary trees with
labeled leaves. This would be defined in Haskell by

data LTree a = Lf a | Nd (Ltree a) (LTree a)



The figure also shows a simple example of such a fold: the agent that traverses
a tree from left to right, producing a list.

Archetype foldLTree f

e Nf,Nd
— Nf,Lf —

Instance foldLTree trav

@ N
Ntrav, Lf = trav, =
m -

PO

Fig. 13.



