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Abstract  

An intermittent feeding strategy was applied to the anaerobic treatment of raw olive mill 

wastewater (OMW). Two reactors were operated under influent concentrations of 5 to 50 g COD 

L
-1

. Two and one batch (feed-less) periods were applied to reactor R1 and R2, respectively, 

operating in continuous thenceforth. It was demonstrated that the intermittent feeding of OMW 

improved the mineralization of accumulated Long Chain Fatty Acids (LCFA) inside the reactor. 

Nevertheless, LCFA accumulated again when the organic loading rate was increased from 2 to 3 

and 5 kg COD m
-3

 d
-1

. The profiles of LCFA, obtained with OMW digestion, were different from 

previous studies with synthetic effluents. At the beginning of reactors operation, oleate was the 

main LCFA compound (~50%) followed by palmitate. Afterwards, a shift in the LCFA pattern 

accumulation was noticed for both reactors. At periods with higher OMW concentrations (30-50 g 

COD L
-1

, 3-5 kg COD m
-3 

d
-1

) palmitate was the main LCFA accumulated with 69% at R1 and 

54% at R2. For real oily wastewaters, a periodically batch period could be a practical solution to 

maintain low values of LCFA inside the reactor. The addition of a nitrogen source was essential to 

enhance the methane yield. 
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INTRODUCTION 

Microbial oxidation of long-chain fatty acids (LCFA) has been intensively studied in the recent 

years (Pereira et al. 2002; Kim et al., 2004; Cirne et al., 2007). The operational problems caused by 

LCFA, led researchers to find new strategies to treat oily wastewaters (Pereira et al., 2005; 

Cavaleiro et al., 2009) and to study unclear aspects of LCFA degradation (Sousa, 2006). However, 

most of these studies were accomplished with synthetic LCFA/lipidic effluents avoiding the 

interfering presence of other compounds (Cavaleiro et al., 2009). Moreover, less attention has been 

given to the patterns of individual LCFA oxidation during the operation of reactors treating 

real/industrial complex oily wastewaters (Jeganathan et al., 2006).  

 

Olive mill wastewater (OMW) is a complex effluent with a high and variable content of lipidic 

compounds (4 - 25 g L
-1

) (Hamdi, 1992; Angelidaki et al., 2002). Different types of phenolic 

compounds ranging from highly toxic to recalcitrant are also present (Field and Lettinga 1987, 

Beccari et al., 1999). The characteristic problems of LCFA degradation such as microbial 

communities inhibition, sludge flotation and biomass washout were identified during the anaerobic 

treatment of OMW (Boari et al., 1984; Zouari et al., 1996). Until now, wastewaters with high lipids 

content are not effectively treated by high-rate anaerobic wastewater treatment technology (Alves et 

al., 2009). The new concepts to enhance lipids degradation based on reactors operation and feeding 

strategies are promising to real oily effluents depuration. 

 

In this work, an intermittent feeding strategy was applied to the treatment of olive oil mill effluent. 

The degradation of individual LCFA was monitored along the reactors operation.  
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METHODS 

 

Inoculum and Substrate 

Two different inocula - sludge acclimated to oleate (S1) and sludge non-acclimated (S2) - were 

used for the batch experiments and reactors operation. The sludge acclimated to oleate was obtained 

as described elsewhere (Cavaleiro et al., 2009). The sludge non-acclimated was obtained from a 

domestic wastewater treatment plant. OMW was obtained from a three-phase continuous olive oil 

extraction process (Amarante, Portugal). The substrate was stored at -20ºC until being used. The 

effluent was characterized as described in the analytical methods section and the values obtained are 

summarized in Table 1.  
 

Table 1. OMW Characterization 

Parameter Average Error* 

pH 4.7 0.1 

CODt (g L
-1

) 130.1 7.4 

Nt (mg L
-1

) 460.0 53.2 

TP (gallic acid, g L
-1

) 4.3 0.4 

oil and grease (g L
-1

) 13.6 1.5 

LCFA (g L
-1

) 2.1 1.1 

% oleic  acid 78.0 8.8 
* 95% confidence interval

Specific methanogenic activity and toxicity tests 

Anaerobic batch experiments were performed as previously described (Gonçalves et al., 2010). 

Both inocula (S1 and S2) were characterized in terms of SMA using acetate (30 mM) and H2/CO2 

(80/20 v/v, 1 bar) as substrates. In the toxicity tests, the OMW concentration ranged from 1 to 10 g 

COD L
-1

. Acetate was added as co-substrate (30 mM) in order to evaluate the influence of OMW 

concentration on the specific acetoclastic activity. All batch tests were incubated at 37ºC and 150 

rpm. Methane production was corrected for standard temperature and pressure (STP) conditions. No 

nutrients were added. 

 

Analytical methods 

Total and soluble chemical oxygen demand (CODt and CODs) and total nitrogen (Nt) were 

determined using test kits (Hach Lange, Germany). Volatile solids (VS) were determined according 

to Standard Methods (1998). Total phenols (TP) were evaluated by a modified Folin-Ciocalteau 

method (Singleton and Rossi, 1965). LCFA in the solid and liquid phases of the reactors content 

were analysed according to Neves et al. (2009). Methane produced in batch experiments was 

analysed in a gas chromatograph (Chrompack 9000) equipped with a FID detector and a 2 m x 1/8’’ 

Chromosorb 101 (80-120 mesh) column. Nitrogen was used as carrier gas (30 mL min
-1

). The 

column, injector, and detector temperatures were 35, 110, and 220 ºC, respectively. Methane 

produced in the reactors was analysed in a Micro Gas Chromatograph (CP-4900, Varian), equipped 

with a TCD column. Helium was used as carrier gas (150kPa) and the temperatures of the column 

and injector were 80 and 110 ºC, respectively.  

 

Reactors: experimental set-up and operation mode 

Two up-flow anaerobic reactors of 2.5 dm
3
 (useful volume) were used. They consisted in an 

anaerobic chamber and an external jacket which kept the temperature at 37 ºC. A solid-gas liquid 

separator was connected at the middle of the reactor to avoid washout and to promote the 

degradation of the accumulated substrate onto the biomass. The reactors R1 and R2 were inoculated 



with S1 and S2, respectively. The initial biomass concentration in both reactors was approximately 

10 g VS L
-1

. OMW was diluted with tap water. Sodium bicarbonate (5 g L
-1

) was added to provide 

neutral pH inside the reactor. The reactors operation was performed in two phases and the 

conditions are presented in Table 2. The first phase, from period I to III, was characterized by the 

intermittent feeding of the reactors and no nitrogen addition (COD:N of 230–270:1). Two batch 

periods were applied (B1 and B2) in reactor R1 and one batch period in reactor R2. In the second 

phase (from period IV to VII), both reactors were operated in a continuous mode. In this phase the 

organic loading rates (OLR) were increased by varying the COD influent from 10 to 50 g COD L
-1

 

and the hydraulic retention time (HRT) from 10 to 6 days. After day 212, an additional nitrogen 

source (NH4Cl) was added to provide an influent with a COD:N ratio of 100:1. Biogas was 

measured daily by a gas meter (Milligascounter, Ritter, Germany) and the effluents were analysed 

twice a week.  

 
Table 2. OLR, Organic loading rate and HRT, hydraulic retention time applied to the reactors R1 (a) and R2 (b).  

 
R1 R2 

Period Days 
HRT 
(d) 

OLR applied 
(kg m

-3
 d

-1
)  

Period Days 
HRT 
(d) 

OLR applied 
(kg m

-3
 d

-1
) 

1
st
 phase 

 
intermittent 

feeding 

I 0 - 50 10 0.48 ± 0.03 I 0 - 50 10 0.48 ± 0.03 

IIa 51 – 66 5 0.97 ± 0.21  

II 
 

51 – 129 
 

5 0.93 ± 0.05 B1-Batch 67 – 92 - 0 

IIb 92 – 129 5 0.91 ± 0.06  

B2-Batch 130 – 168 - 0 B1 - Batch 130 – 175 - 0 

III 169 – 211 10 0.98 ± 0.08 III 176 – 211 10 0.98 ± 0.08 

 
2

nd
 phase 

 
continuous 

feeding 

IV 212 – 254 
 

0.99 ± 0.04 IV 212 – 254 
 

0.99 ± 0.04 

V 255 – 287  1.93 ± 0.22 V 255 – 287  1.93 ± 0.22 

VI 288 – 318  3.06 ± 0.21 VI 288 – 318  3.06 ± 0.21 

VII 319 – 347  4.75 ± 0.50 VII 319 – 347 6 4.49 ± 0.36 

 

 

RESULTS AND DISCUSSION  

 

Toxicity tests 

The OMW toxicity towards the two different inocula was investigated. In the toxicity experiments 

carried out with sludge acclimated to oleate (S1) no inhibition occurred for all the concentrations 

tested.
 
The initial rates of methane production in the presence of OMW were similar to the control 

assay (Figure 1a). Regarding to the toxicity batch experiments performed with sludge non-

acclimated (S2) it was impossible to determine the intrinsic inhibition of the acetoclastic bacteria 

since the control assay presented a high lag-phase, induced by the lack in specific acetoclastic 

activity of the biomass (Table 3). However, analysing the cumulative methane production curves 

along the test period (Figure 1b) it is possible to detect a general inhibition of the sludge caused by 

the highest concentrations of OMW tested (5 and 10 g COD L
-1

).  

 



  
Figure 1. Cumulative methane production in the toxicity batch experiments for sludge S1 (a) and sludge S2 (b) at 

different OMW concentrations. □ - Blank, ■ - Control, ▲ - 1 g COD L
-1

, ● - 2.5 g COD L
-1

, ♦ - 5 g COD L
-1

, * - 10 g 

COD L
-1

. 

 
Table 3. SMA (gCOD-CH4 (STP) gVSS

-1
 d

-1
) of inocula 

Substrate S1 S2 

Acetate
 

0.43 ± 0.05
 

<0.05
 

H2/CO2
 

1.43 ± 0.03
 

0.26 ± 0.01
 

 

 

Reactors operation: Intermittent feeding 

The reactors start-up was performed at a HRT of 10 days and an influent with 5g COD L
-1

 along 50 

days (Figure 2- Period I). In this period, both reactors showed high COD removals, good biogas 

quality (> 60% of CH4) and methane production of 0.24 - 0.27 kg COD m
-3

 d
-1

. The higher stability 

of R1 performance can be attributed to the use of an adapted inoculum to oleate as evidenced in the 

toxicity tests.  

 

When the OLR was increased twofold by changing the HRT from 10 to 5 days, a suddenly decrease 

of methane production was verified in R1 (Period II-a), which after 15 days almost stopped. 

Furthermore, the removal efficiencies decreased, being the soluble COD removal more noteworthy 

attaining 50% (Figure 2-c). Consequently, the reactor feeding was stopped. During the batch period 

B1 the accumulated substrate was degraded and the corresponding biogas production was noticed. 

When the biogas production stopped, the feeding period was restarted at the same conditions 

(Period II-b). A recovery of biogas quality and methane production was achieved. However, the 

overall methane yield remained low, therefore, a new batch period was applied (B2). In reactor R2, 

the OLR variation provided a slower decay of the reactor performance in terms of methane 

production and, consequently, only one batch period was applied when the reactor was almost 

failing. The methane corresponding to the accumulated substrate was produced when the feed was 

interrupted.  
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Figure 2. Reactors performance data of the 1

st
 phase of operation. Methane production (♦) and percentage of methane in 

the biogas () for reactor R1(a) and R2(b). Determination of removal efficiencies of total (♦) and soluble (*) COD at 

influent concentration of OMW (●) for reactor R1(c) and R2 (d). 

 

After the batch period the HRT was changed to 10 days, and the OMW concentration was increased 

to 10 g COD L
-1

 to maintain de OLR of the previous period. In period III both reactors showed a 

recovery of the system performance since CH4 increased until values of 60% and the COD removal 

efficiencies increased till values around 80%, suggesting that a HRT of 5 days was too small to 

achieve OMW treatment at these conditions. However the overall methane yields of the reactors 

remained low and the system did not achieve the values of the initial period (Figure 3) indicating a 

COD accumulation inside the reactors. At this point, additional nitrogen was added at a COD:N 

ratio of 100:1 to assess if nutrient limitation was occurring by the lack of nitrogen. Effectively, the 

addition of a nitrogen source rapidly enhanced the overall methane yield (Figure 3 - Period IV). The 

required COD:N:P ratio depends on the extent of loading rate and the reasonable ratio for highly 

loaded processes (0.8-1.2 kg COD kgVSS
-1

 d
-1

) is 250:5:1 (Droste, 1997). However, recently it has 

been suggested that nutrients requirements for wastewater treatment is less than previously reported 

since the COD removal efficiencies and biomass yield are not considered (Ammary 2004, 2005; 

Hussain et al., 2008). Ammary (2005) reported that the OMW with a COD:N ratio of 911:5 had the 

sufficient nutrients to have an efficient treatment. Furthermore, Hussain et al. (2008) concluded that 

the variation of COD:N from 30:1 to 300:1 did not influenced the conversion of phenol COD to 

methane COD. The option of studying, in a first phase, the degradation of OMW without nitrogen 

addition was based in those studies, since the OMW COD/N ratio ranged from 230:1 to 270:1 

(Period I to III).  When the COD:N ratio was changed to 100:1 a quickly response and recovery of 

the system performance was obtained showing that, in this case differing from the previous reports, 

nitrogen addition was essential to have an efficient conversion of OMW to methane. Indeed, at this 

nitrogen ratio (100:1), the increase in OLR (Period V to VII) did not significantly affect the 

methane yield that was around 60-90% and 50-75% in R1 and R2 respectively. Although nitrogen 

was partially limiting the methane production (Period II and III) it was verified that the intermittent 

feeding promoted the degradation of the accumulated substrate inside of the reactors.  
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Figure 3. Overall methane yield for reactor R1 (a) and R2 (b).  

 

Long chain fatty acids oxidation 

Free LCFA in the liquid and solid phases of the reactors content were determined along the 

operation (Figure 4). For reactor R1 it was observed accumulation of LCFA during the periods II-a 

and II-b achieving a maximum value of 818 and 507 mg LCFA L
-1

, respectively. Afterwards, 

accumulated LCFA were degraded during the batch periods B1 and B2. For reactor R2, the 

maximum value of 1869 mg L
-1

 of LCFA that was accumulated, was partially degraded during the 

batch period. The high accumulation of LCFA in R2 was likely due the poor inoculum quality of R2 

as denoted by the batch assays of activity and toxicity of OMW. This fact supports the hypothesis 

that by using an acclimated sludge to oleate the reactor performance and stability are favoured 

(Gonçalves et al., 2010). 

 

Sequencing cycles of continuous feeding and batch degradation of accumulated LCFA was 

suggested by Pereira et al., (2002) as a possible strategy for the treatment of effluents with high 

lipid content. Moreover, Cavaleiro et al., (2009) demonstrated that sequencing feeding and 

degradation of a synthetic effluent containing 50% of COD as oleic acid was only necessary in the 

start-up period for the biomass acclimation. In our work, the batch degradation periods allowed the 

oxidation of the accumulated LCFA. However, LCFA started to accumulate again when the OLR 

was increased to 3 and 5 kg COD m
-3

 d
-1

 (Periods VI-VII). At this point, a new batch period could 

be useful to maintain low values of LCFA inside the reactor and prevent reactor failure. At the end 

of operation period the reactors showed similar amounts of total LCFA as well as similar individual 

concentrations of LCFA. 
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Figure 4. Long-chain fatty acids for reactor R1(a) and R2(b). (■) oleate, () palmitate, (▲) stearate, (♦) linoleate (×) 

palmitoleate.  
 

Interestingly, in the first periods of reactors operation, oleate (C18:1) was the main LCFA 

compound that was accumulating with 40-51% and 48-54% for R1 and R2 respectively, followed 

by palmitate (C16:0) and stearate (C18:0). Afterwards, a shift in the LCFA pattern accumulation 

was noticed. In the final periods of the reactors operation, palmitate started to accumulate inside the 



reactors with higher concentrations than oleate (Periods VI and VII).  

 

Under anaerobic conditions, hydrolysis of fats and oils to glycerol and LCFA proceeds with less 

inhibition than free fatty acids resulting in the accumulation of LCFA in the wastewater (Angelidaki 

and Ahring, 1992). Oleic acid is the main LCFA released by the hydrolysis of vegetable oils present 

in olive mill wastewaters. Besides the quantity of oil and grease present in the wastewater used in 

this study (14 g L
-1

), oleic acid was identified as the main free LCFA compound (78%) (Table 1). 

Oleate accumulation was observed as well by Cirne et al. in the treatment of a lipid-rich (triolein) 

model waste in batch tests. Although palmitate was the most abundant LCFA in all tests, 

accumulation of oleate was observed initially in batch tests with higher concentration of lipids 

(Cirne et al., 2007).  Nevertheless, when oleate based synthetic effluents are anaerobically digested 

palmitic acid has been described as the main LCFA that accumulates onto the sludge (Pereira et al., 

2002, 2005; Cavaleiro et al., 2009). Jeganathan et al. (2006) investigated the treatability of a real 

oily wastewater from a food industry and reported that 61-87% of total LCFA accumulation was 

attributed to palmitic acid. It should be noted that in our study, the real oily effluent is a complex 

and high strength wastewater that is composed by other toxic and recalcitrant compound as phenolic 

that can interfere in the anaerobic process providing different reaction rates.  

 

In this study, stearate increased slightly in both reactors but was always low, suggesting that the 

conversion step of stearate to palmitate was not limiting. This fact is similar to other studies (Cirne 

et al., 2007; Jeganathan et al., 2006). Pamitoleate (C16:1) was not detected during all the 

experimental operation. The hydrogenation of the double bond of oleate to generate stearate and 

then palmitate by a step of ß-oxidation is more likely to occur than the direct ß-oxidation of oleate 

to palmitoleate (Sousa, 2006). 

 

 

CONCLUSIONS 

Alternating periods of continuous OMW feed and batch operation, improved the mineralization of 

LCFA inside the reactor and prevented its excessive accumulation. The use of an acclimated sludge 

was only relevant at the reactor start-up. The intermittent feeding has been revealed as the key 

strategy for a long-term operation, even in the absence of adapted sludge. Nitrogen is an important 

factor for an efficient digestion of this type of effluent since its addition boosted the reactors 

methane yield. The profiles of LCFA accumulation obtained with OMW were different from studies 

performed with oleate-based synthetic effluents. It was revealed that oleate can be an intermediate 

that accumulates inside the reactor when the substrate is olive oil mill effluent.  
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