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Abstract Multilocal programming aims to identify all local minimizers of uncon-
strained or constrained nonlinear optimization problems.The multilocal program-
ming theory relies on global optimization strategies combined with simple ideas
that are inspired in deflection or stretching techniques to avoid convergence to the
already detected local minimizers. The most used methods tosolve this type of pro-
blems are based on stochastic procedures and a population ofsolutions. In general,
population-based methods are computationally expensive but rather reliable in iden-
tifying all local solutions. In this chapter, a review on recent techniques for multilo-
cal programming is presented. Some real-world multilocal programming problems
based on chemical engineering process design applicationsare described.

1 Introduction

The purpose of this chapter is to present recent techniques for solving constrained
Multilocal Programming Problems (MPP for short) of the following form
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max f (x)
s.t.g j(x)≤ 0, j = 1, . . . ,m

li ≤ xi ≤ ui, i = 1, . . . ,n
(1)

where at least one of the functionsf , g j : Rn→ R is nonlinear, andF = {x ∈ R
n :

li ≤ xi ≤ ui, i = 1, . . . ,n, g j(x) ≤ 0, j = 1, . . . ,m} is the feasible region. Problems
with equality constraints,h(x) = 0, can be reformulated into the above form by
converting into a couple of inequality constraintsh(x)−υ ≤ 0 and−h(x)−υ ≤ 0,
whereυ is a small positive relaxation parameter. Since concavity is not assumed,f
may possess many global and local (non-global) maxima inF . In MPP, the aim is
to find all pointsx∗ ∈F such thatf (x∗)≥ f (x) for all x∈Vε(x∗)∩F , whereVε(x∗)
represents the neighborhood ofx∗ with radiusε > 0. It is also assumed that problem
(1) has a finite number of isolated global and local maximizers. The existence of
local maximizers other than global ones makes this problem agreat challenge. Here,
we use the following notation:N is the number of solutions of the problem (1) and
X∗ = {x∗1,x∗2, . . . ,x∗N} is the set that contains those solutions. The algorithms herein
presented for MPP aim at finding all the maximizersx∗1,x

∗
2, ...,x

∗
r ∈F such that

| fmax− f (x∗s )| ≤ δ0 for all s = 1, ...,r (r ≤ N) (2)

whereδ0 is a small positive constant andfmax= max{ f (x∗1), . . . , f (x∗r )}.
The MPP can be considered as defining a class of global optimization problems

and are frequently encountered in engineering applications (e.g. [8, 15, 32]). Some
algorithms for solving this type of problem require substantial gradient information
and aim to improve the solution in a neighborhood of a given initial approximation.
When the problem has global as well as local solutions, classical local optimization
techniques can be trapped in any local (non-global) solution. A global optimization
strategy is indeed the most appropriate to solve multilocalprogramming problems.
When the objective function is multimodal, the probability of convergence to an
already detected local solution is very high and depends very closely on the provided
initial approximation. Methods that avoid converging to already identified solutions
have been developed and integrated into a variety of classical global methods.

This study is focused on the analysis of the practical behavior of stochastic and
deterministic methods for the computation of multiple solutions of the problem in
the form (1). A penalty technique is chosen to tackle the constraints of the problem.
Furthermore, challenging problems in the chemical engineering area, such as those
that aim to evaluate if a multicomponent liquid mixture is globally stable regarding
the separation in two or more liquid phases, by minimizing the tangent plane dis-
tance function for the Gibbs free energy of mixing, are fullydescribed and solved.

The remainder of this paper is organized as follows. Section2 provides a review
on two particular classes of global optimization methods that can be extended to
solve bound constrained MPP, presents the corresponding algorithms and illustrates
their performance using three examples. In Section 3, the penalty function-based
technique is addressed and various penalty functions are presented, tested and com-
pared using a selected set of problems. Section 4 illustrates the use of numerical
methods to solve very demanding real problems in the chemical engineering area.
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2 Bound Constrained Multilocal Programming

In this section, we address a simpler problem known as bound constrained multilocal
programming problem. The problem is presented in the following form

max f (x)
s.t. li ≤ xi ≤ ui, i = 1, . . . ,n

(3)

where the feasible region is just defined byF = {x ∈ R
n : li ≤ xi ≤ ui, i =

1, . . . ,n}. The two main classes of methods for solving the multilocal programming
problem (3) are the stochastic and the deterministic, whichare presented below
[16, 20, 28, 39, 44, 45].

2.1 Stochastic methods

A stochastic method available in the literature to solve unconstrained and bound
constrained global optimization problems will be described. In general, each run of
a stochastic global method finds just one global solution. A survey on stochastic
methods is presented in the textbook [62]. To be able to compute multiple solutions
in just one run, where each of them is found only once, specialtechniques have to be
incorporated into the global methods. These techniques aimat avoiding repetitive
identification of the same solutions. Well-known examples are the clustering me-
thods [50, 51, 52]. Other techniques that aim to escape from previously computed
solutions, in general local solutions, are based on constructing auxiliary functions
via a current local solution of the original problem [55, 63,64]. Deflecting function
and function stretching techniques can also be applied to prevent convergence to an
already detected local solution [38, 39, 40, 53].

Clustering techniques rely on the multistart algorithm. The multistart is a stochas-
tic algorithm where in a repetitive manner a local search is applied to a point that
is randomly selected from the feasible region. Since the same local solution may
be selected over and over again, the clustering technique aims to avoid the loca-
tion of already detected solutions. A cluster contains a setof points, defining the
so-called region of attraction, that terminate in a particular solution after applying a
local search procedure. In this way only one local search is required to locate that
solution. This process is able to limit the number of local search applications [50].
Another use of region of attractions based on a multistart algorithm is the therein
called Ideal Multistart [52]. This method applies a local search procedure to an ini-
tial randomly generated point to reach the first solution,x∗1, and the corresponding
region of attraction is then defined,A1. Then points are successively randomly gen-
erated from the feasible region until a point that does not belong toA1 is found. The
local search is then applied to obtain the second solutionx∗2 and then the region of
attractionA2 is defined. After this, points are randomly generated and a local search
is applied to the first point that does not belong toA1∪A2 to obtainx∗3 (and thenA3),
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and so on. The definition of the so-called critical distance to construct the cluster is
an important issue in clustering-based multistart methods. In some cases, the second
derivative information of the objective function is required. In others, like [3], the
critical distance becomes adaptive and does not require anyspecial property of the
objective function. The therein proposal is embedded within a simulated annealing
(SA) algorithm to obtain a global algorithm that converges faster than the SA itself.

Deflection and stretching techniques rely on the concept of transforming the ob-
jective function in such a way that the previously detected solution is incorporated
into the form of the objective function of the new problem. These techniques were
mainly developed to provide a way to escape from local solutions and to drive the
search to a global one. For example, in [53], a deflecting function technique was pro-
posed in a simulated annealing context. The transformationof the objective function
f (x) works as follows. The deflecting function of the originalf at a computed ma-
ximizer x∗, herein denoted asfd , is defined by

fd = f (x∗)−0.5[sign( f (x∗)− f (x))−1]( f (x)− f (x∗)). (4)

All the maximizers which are located belowf (x∗) disappear although the max-
imizers with function values higher thanf (x∗) are left unchanged. An example is
provided to show the defected effect.

Example 1. Consider the one-dimensional problem where the objective function is

f (x) =−xsin(x), for x ∈ [−8,8],

which has 3 maxima in the set[−8,8].

Figure 1 shows the plot off (x) using a solid line. Letx∗ =−4.9132 be the first com-
puted maximizer, wheref (x∗) = 4.8145. The plot of the deflecting function,fd(x),
at x∗ = −4.9132 is shown with a dashed line in the left plot, where all thevalues
with f (x) < f (x∗) are deflected. All the maximizers are alleviated and the func-
tion becomes a line when the deflecting function technique isapplied on a global
maximizer. In the right plot, the deflecting technique is applied to f at the local
maximizerx∗ = 0, with f (x∗) = 0 and as can be seenfd(x), represented by a dashed
line, keeps thef values of points that havef (x)≥ f (x∗).

On the other hand, the function stretching technique consists of a two-phase
transformation [38, 39, 40]. The first transformation stretches the objective function
downwards in a way that all the maxima with smaller values than the previously
detected maximum are eliminated. Then the second phase transforms the detected
maximum into a minimum. All the other maxima (with larger values than the de-
tected maximum) are unaltered. Ifx∗ is an already detected maximum off , then the
first transformation is defined by

f1(x) = f (x)− δ1

2
‖x− x∗‖[sign( f (x∗)− f (x))+1] (5)

and the second by
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Fig. 1 Plot of f and fd at x∗ =−4.9132 (left plot) and atx∗ = 0 (right plot).

f2(x) = f1(x)−
δ2[sign( f (x∗)− f (x))+1]
2tanh(κ( f1(x∗)− f1(x)))

(6)

whereδ1, δ2 andκ are positive constants. To illustrate the effects of these trans-
formations as the parameters vary, we use Example 1. Figure 2shows the plot of
f (x) using a solid line. Based on the computed local maximizerx∗ = 0 and applying
the transformation (5) withδ1 = 1.5, we get the functionf1(x) which is plotted in
the figure with a dotted line, and applying (6), withδ2 = 0.5 we get the function
f2(x), displayed in both plots of the figure with a dashed line. The plot on the left
corresponds toκ = 0.1 and the one on the right corresponds toκ = 0.05. Function
f1(x) comes out after the first transformation (5) and the bigger the δ1 the greater
the stretch is. See the plots on the right of Figs. 2 and 3. Parameterδ2 defines the
range of the effect (see the plots on the left of Figs. 2 and 3) and the parameterκ
defines the magnitude of the decrease onf at x∗ (see both plots of Fig. 2).
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Fig. 2 Plot of f , f1, f2 with δ1 = 1.5,δ2 = 0.5, κ = 0.1 (on the left) andκ = 0.05 (on the right).

In a multilocal programming context, global as well as local(non-global) solu-
tions need to be computed. Implementing the function stretching technique locally
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Fig. 3 Plot of f , f1, f2 with δ1 = 1.5,δ2 = 1.5,κ = 0.1 (on the left) andδ1 = 3,δ2 = 0.5,κ = 0.05
(on the right).

aims at stretching downwards the objective functionf only in a neighborhood of
an already detected maximizer, leaving all the other maximaunchanged. The suc-
cessive application of this technique prevents the convergence to the solutions com-
puted thus far. Therefore, this local stretching techniquecan be used when both
global and local solutions are required since the strategy alleviates only the detected
solutions. We now accept that the following assumption holds.

Assumption 1 All optimal solutions of problem (3) are isolated points.

Here we aim at presenting a proposal that applies locally thefunction stretching
technique and uses a simulated annealing algorithm. The method is able to detect se-
quentially the global and local solutions instead of rambling over the feasible region
attracted by previously identified solutions. After the computation of a solution, the
objective function of the current problem is transformed using the function stretch-
ing technique. A sequence of global optimization problems with stretched objective
functions is iteratively defined and solved by the SA algorithm [44, 45].

The SA is a point-to-point stochastic algorithm that does not require derivative in-
formation and is able to guarantee convergence to a global solution with probability
one [22]. In fact, the practical implementation of the herein presented Stretched
Simulated Annealing (SSA) method makes use of one of the mosteffective variants
of SA known as Adaptive Simulated Annealing (ASA) algorithm[24].

The main steps of the ASA algorithm are resumed in Algorithm 1below. For
details on the algorithm convergence analysis, see [23, 24]. The ASA method can
be easily described using five phases: the generation of a trial point, the ‘acceptance
criterion’, the redefinition of the control parameters, thereduction of the control
parameters and the stopping condition.

The generation of a trial point is one of its crucial phases and it should provide
a good exploration of the search region as well as a feasible point. The parameter
Nk

c in the Algorithm 1 aims at adapting the method to the problem.The ‘acceptance
criterion’ allows the ASA algorithm to avoid getting stuck in local solutions when
searching for a global one. For that matter, the process accepts points whenever an
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Algorithm 1 ASA algorithm
1: Given: x0, N0

c and the initial control parameter values. Setk = 0 and j = 0
2: While the stopping condition is not verifieddo

2.1 Based onxk, randomly generate a trial pointy ∈ [l,u] and j = j+1
2.2 Verify the ‘acceptance criterion’
2.3 If j < Nk

c then j = j+1 and go to 2.2
else updateNk

c and j = 0
2.4 Update control parameters
2.5 Setk = k+1

increase of the objective function is verified

xk+1 =

{
y if ξ ≤ Axk,y(c

k
A)

xk otherwise

wherexk is the current approximation to the global maximum,y is the trial point,
ξ is a random number drawn fromU(0,1) andAxk,y(c

k
A) is the acceptance function.

This function represents the probability of accepting the point y whenxk is the cur-
rent point, and it depends on a positive control parameterck

A. An usual acceptance
function is

Axk,y(c
k
A) = min

{
1,e
− f (xk)− f (y)

ck
A

}
,

known as Metropolis criterion. This criterion accepts all points with objective func-
tion values equal or greater thanf (xk). However, if f (y)< f (xk), the pointy might
be accepted with some probability. During the iterative process, the probability of
descent movements decreases slowly to zero. Different acceptance criteria are pro-
posed in [24]. The control parameterck

A, also known as temperature or cooling
schedule, must be updated in order to define a positive decreasing sequence. To
speed up the search, the ASA algorithm considers the reannealing of the process,
meaning that the control parameters are redefined during theiterative process (see
details in [24]). In general, the stopping condition for theASA method is based on
the idea that the algorithm should terminate when no furtherchanges occur. Another
stopping criterion limits the number of function evaluations, or defines a lower limit
for the value of the control parameter.

We now describe the details concerning the SSA algorithm. The local application
of the function stretching technique aims to prevent the convergence of the ASA al-
gorithm to previously detected solutions. Letx∗1 be the first detected solution. Func-
tion stretching technique is then applied only locally, in order to transformf (x) in
a neighborhood ofx∗1, Vε1(x

∗
1), with radiusε1 > 0. Thus,f (x) is reduced only inside

the regionVε1(x
∗
1) leaving all the other maxima unchanged. The maximumf (x∗1)

disappears but all the others remain unchanged. Each globaloptimization problem
of the sequence is solved by ASA. The multilocal procedure terminates when for a
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predefined set of consecutive iterations no more solutions are detected [42, 44]. To
illustrate this SSA procedure the following problem is considered.

Example 2. Consider the function

f (x) =−cos2(x1)−sin2(x2) wherex ∈ [−5,5]2,

which has 12 global maxima in the set[−5,5]2. In Fig. 4, the objective function
of Example 2 and the functionf2 that comes out after applying transformations
(5) and (6) to the previously computed global maximizerx∗1 = (π

2 ,0) are displayed.
Transformations (5) and (6) stretch the neighborhood ofx∗1, with radiusε1, down-
wards assigning smaller function values to those points to prevent convergence to
that previously computed solution [44]. As can be observed,the other maxima are
left unchanged (see Fig. 4).
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Fig. 4 Plot of f (x) (left) and f2(x) (right) in Example 2.

Thus, the SSA method, at each iteration, solves a global programming problem
using the ASA algorithm, where the objective function of theproblem resulted from
a local application of the function stretching technique that aims to eliminate the pre-
viously detected maximizer leaving the other maximizers unchanged. This process
is repeated until no other solution is encountered. The mathematical formulation of
the j+1-order problem in the sequence of problems is the following:

max
l≤x≤u

f j+1(x)≡
{

f j
2(x) if x ∈Vε j(x

∗
j),

f j(x) otherwise
(7)

wherex∗j is the solution detected in thej-order problem, and the following notation

is used:f j
2 is the stretched function obtained fromf j after transformations (5) and

(6), for any j, where f 1 = f , and f 1
2 = f2.

Algorithm 2 below presents, in summary, the strategy SSA forMPP (3). As pre-
viously stated the algorithm terminates when no more solutions are detected during
a predefined number of consecutive iterations,Kiter, or a maximum number of func-
tion evaluations is reached,n fmax. The conditions for the inner cycle (in Step 2.2)



Multilocal Programming and Applications 9

aim at defining an adequate radius (ε j) for the neighborhood of each solution com-
puted in Step 2.1, in a way to adjust for eachx∗j the convenient neighborhood. In the
final stage of the algorithm, a local search procedure is applied to each computed
solution to improve accuracy.

Algorithm 2 SSA algorithm
1: Given: δ0, ε0, εmax. Set fmax= f 1(l), j = 1 andp = 0
2: While the stopping conditions are not metdo

2.1 Computex∗j = argmaxl≤x≤u f j(x) using Algorithm 1

2.2While
∣∣∣ f j(x∗j)− fmax

∣∣∣≤ δ0 or ∆ > εmax do

Setp = p+1 and∆ = pε0
Randomly generatẽxi ∈V∆ (x∗j), i = 1, . . . ,2n

Find fmax= maxi=1,...,2n{ f j(x̃i)}
2.3 Update the optimal setX∗ and setε j = ∆
2.4 Setj = j+1 andp = 0

3: Apply a local search procedure to the optimal setX∗

Example 3. Consider the classical optimization problem known as Branin prob-
lem [20].

max f (x)≡−
(

x2−
5.1
4π2 x2

1+
5
π

x1−6

)2

−10

(
1− 1

8π

)
cos(x1)−10,

where the feasible region is defined asF =
{

x ∈ R
2 :−5≤ x1≤ 10∧ 0≤ x2≤ 15

}
.

This problem has three global maximizersx∗1 =(−π,12.2750)T , x∗2 =(π,2.2750)T

andx∗3 = (9.4248,2.475)T with a maximum value of−0.39789.

The SSA algorithm solves this problem in 0.45 seconds, needs 2442 function
evaluations and detects the following maximizers(−3.1416E +00,1.2275E +01),
(9.4248E+00,2.4750E+00) and(3.1416E+00,2.2750E+00), with global value
−3.9789E − 01. Since the SSA algorithm is a stochastic technique, the problem
was solved thirty times. In this case all the solutions were identified in all runs. The
results were obtained using a Inter Core 2 Duo, T8300, 2.4 GHzwith 4 GB of RAM.
The parameters of the algorithm are set as follows:δ0 = 5.0, ε0 = 0.1, εmax= 1.0,
Kiter = 5 andn fmax= 100 000.

2.2 Deterministic methods

Deterministic methods for global optimization are able to solve a problem with a re-
quired accuracy in a finite number of steps. Unlike stochastic methods, the outcome
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of the algorithm does not depend on pseudo random variables.In general, they pro-
vide a theoretical guarantee of convergence to a global optimum. When compared
with stochastic methods they may rely on structural information about the prob-
lem and in some cases they require some assumptions on the objective function,
for example, they may require Lipschitz continuity off over the feasible region
[14, 20, 21, 31].

There are deterministic methods that combine the branch-and-bound method
with successive refinement of convex relaxations of the initial problem [15], others
use a non-differentiable technique based on the method of optimal set partitioning
[27], and in [28] partitioning ideas are combined with some derivative information.
An important subclass of methods for locating the solutions(maximizers and mini-
mizers) of a continuous function inside bound constraints,like problem (3), consist
of two phases: first, a partition of the feasible set is made and a set of finite points are
generated and evaluated in order to detect good approximations to solution points;
then, a local search method is applied in order to improve theaccuracy of the ap-
proximations found in the first phase (e.g. [10, 11, 48, 51]).

DIRECT is a deterministic method that has been designed to find the global so-
lution of bound constrained and non-smooth problems where no derivative informa-
tion is needed [14, 25, 26]. DIRECT is an acronym for DIvidingRECTangles and is
designed to completely explore the search space, even afterone or more local solu-
tion have been identified. The algorithm begins by scaling the domain into the unit
hypercube and the objective function is evaluated at the center of the domain, where
an upper bound is constructed. DIRECT computes the objective function at points
that are the centers of hyperrectangles. At each iteration,new hyperrectangles are
formed by dividing those that are more promising, in the sense that they potentially
contain a required global solution, and the objective function is evaluated at the cen-
ters of those hyperrectangles. Based on those objective function values, the method
is able to detect new promising hyperrectangles.

Another interesting subclass of deterministic methods forglobal optimization
is based on the idea of branch and bound. Methods based on interval analysis
[2, 19, 61] fall in this subclass. Interval analysis arises from the natural extension
of real arithmetical operations to interval operations. Its use for global optimization
was presented in 1992 [19]. Using interval operations, the interval algorithm splits
successively the initial feasible region[l,u] into small subintervals. The subintervals
that do not contain the global solution are discarded and theothers are further sub-
divided and analyzed. This process terminates when the width of the subintervals
are below a predefined accuracy or no interval remains to be subdivided. Interval
methods require high computational costs since the complexity rises exponentially
with the dimension of the problem [19, 20].

The most known and used deterministic method is the branch-and-bound (BB)
method. It has been mainly used in discrete optimization. The main idea in a BB
method is the recursive decomposition of the original problem into smaller disjoint
subproblems until the required solution is detected. In this context, smaller means
either a strict smaller problem dimension or a strict smaller feasible region. The
partition of the feasible region is the most used branching rule in continuous pro-
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gramming. This decomposition should guarantee that the global solution is at least
in one of the generated subproblems. The method compares thelower and upper
bounds for fathoming each subregion. The subregion that contains the optimal so-
lution is found by eliminating subregions that are proved not to contain the optimal
solution.

BB-type methods are characterized by four natural rules: branching, selection,
bounding and elimination. Branching is concerned with further refinement of the
partition. The selection rule is also very important, greatly affects the performance
of the algorithm and aims at deciding which subregion shouldbe explored next.

The method starts with a setI0 that contains the feasible region assumed to be a
compact set. An algorithm should be provided to compute an upper bound value,fU ,
such thatfU ≥ f (x) for all x∈ [l,u] that will be improved as subproblems are solved.
At each iteration, the method has a listL of subsetsIk of I0. An upper boundf k

U
of the maximum objective function value onIk is computed for every subset inL .
A global lower boundfL of the maximum function value over the feasible region is
defined by thef value of the best feasible solution found.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

 

 

f3
U

f1
U

f2
U

f2
L

I1 I3

I0 =[−8,8]

I2

f1
L

f3
L

Fig. 5 Branching applied to the continuous Example 1.

Figure 5 illustrates a branching rule applied to the function in Example 1. The
set I0 = [−8,8] was partitioned intoI1, I2 and I3. f (x) is represented by a solid
line. The lower bounds,f k

L , are the higher function values at the boundaries of the
subintervals and are represented by dashed lines. The upperbounds,f k

U , represented
in the figure by dotted lines, are computed using a simple procedure. In this case,
all the subintervals should be explored and subdivided again by the branching rule,
since no upper bound is lower than any lower bound.

A subregionIk can be removed from the listL if:

i) it cannot contain any feasible solution;
ii) it cannot contain the optimal solution sincef k

U < fL;
iii)there is no use in splittingIk since the size of the set is smaller than a predefined

toleranceδ .
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A crucial parameter of the BB method is the positiveδ -precision. This tole-
rance is used in the stopping criteria in a way that a solutionwithin a δ -precision is
obtained. The algorithm also stops when the listL is empty. When solving discrete
problems, the parameterδ can be set to zero and the BB algorithm is finite. However,
in continuous optimization, the bounding operation is required to be consistent, i.e.,
any infinitely decreasing sequence of successive refined partitions Ik on I0 satisfies

lim
k→∞

( f k
L − f k

U ) = 0 (8)

where f k
L and f k

U are the lower and upper bounds, respectively, of the problemwith
feasible regionIk. This consistency condition implies that the requiredδ -precision
solution is achieved after a finite number of steps and the BB algorithm is therefore
finite.

In the multilocal programming context, to compute the solutions of (3), the BB
method is combined with strategies that keep the solutions that are successively
identified during the process. The method also avoids visiting those subproblems
which are known not to contain a solution [20, 21]. The main step of the proposed
multilocal BB method is to solve a sequence of subproblems described as

max f (x) for x ∈ Ii, j and i = 1, . . . ,n j (9)

whereIi, j = [li, j
1 ,ui, j

1 ]×·· ·× [li, j
n ,ui, j

n ], and the subsetsIi, j, for i = 1, . . . ,n j, belong
to a list, herein denoted byL j, that can have a local solution that satisfies condition
(2). The method starts with the listL 0, with the setI1,0 = [l,u], as the first element
and stops at iterationj when the listL j+1 is empty. The generic scheme of the
multilocal BB algorithm can be formally described as shown in Algorithm 3. Fur-
thermore, the algorithm will always converge due to the finalcheck on the width of
the subintervalIi, j (see the stopping conditions in Step 3 of the algorithm). A fixed
value,δ > 0, is provided in order to guarantee aδ -precision solution.

Algorithm 3 Multilocal BB algorithm
1: Given: δ0 > 0, δ > 0
2: Considerf 0 the solution of problem (9), forI1,0 = [l,u], set j = 0 andn0 = 1
3: While L j+1 6= /0 and maxi

{∣∣∣∣ui, j− li, j
∣∣∣∣}≥ δ do

3.1 Split each setIi, j into intervals, fori = 1, . . . ,n j; setL j+1 =
{

I1, j+1, . . . , In j+1, j+1
}

3.2 Solve problem (9), for all subsets inL j+1. Set f 1, . . . , f n j+1 to the obtained maxima values
3.3 Setf 0 = maxi

{
f i
}

for i = 0, . . . ,n j+1. Select the subsetsIi, j+1 that satisfy the condition:

∣∣ f 0− f i
∣∣< δ0

3.4 Reorganize the listL j+1; updaten j+1
3.5 Setj = j+1
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To illustrate the practical behavior of the Algorithm 3, theproblem presented in
Example 3 is used. The multilocal BB algorithm solves this problem in 37.1 sec-
onds, needs 9331 function evaluations and finds the following maximizers(3.1416E+
00,2.2750E +00), (−3.1416E +00,1.2275E +01) and(9.4248E +00,2.4750E +
00) with global value−3.9789E−01. As it was expected, the multilocal BB algo-
rithm is computationally more demanding than the SSA algorithm.

2.3 Numerical experiments

This part of the section aims to report the results of applying the Algorithm 2 to
solve bound constrained MPP. The Algorithm 3 was not used dueto its high time
consuming. First, an experiment with a varied dimensional problem is analyzed for
five different values ofn. Then a large dimensional problem is solved by the SSA
algorithm. The problems were solved using a Inter Core 2 Duo,T8300, 2.4 GHz
with 4 GB of RAM. The parameters in the algorithm are set as follows: δ0 = 20.0,
ε0 = 0.1, εmax= 1.0, Kiter = 5 andn fmax= 100 000.

2.3.1 Experiment with a varied dimensional problem

Example 4. Consider the classical optimization problem known asn-dimensional
Test (n-dT) [12]:

max f (x) ≡−1
2

n

∑
i=1

(x4
i −16x2

i +5xi)+ϖ
n

∑
i=1

(xi−2.90353)2

s.t.−5≤ xi ≤ 5, i = 1, . . . ,n

for ϖ = 0 (classical problem) andϖ = 0.3 (modified). This problem has 2n local
maxima in the set[−5,5]n and the global is located at(−2.9035, . . . ,−2.9035). The
2-dT function for the classical problem andn = 2 is plotted in Fig. 6. The global
maximizer is(−2.9035,−2.9035) with a value off = 78.332 and the local maxima
are located at(−2.9036,2.7468) (with f = 64.196),(2.7468,−2.9035) (with f =
64.196) and(2.7468,2.7468) (with f = 50.059).

Results regarding the classical problem in Example 4 forn = 2,4,6,8,10 are shown
in Table 1. The table depicts a summary of the results obtained by SSA algorithm.
The average value of the solutions found for the global maximum, in all the runs,
f ∗avg, the average number of function evaluations (obtained in all 30 runs, when
computing the global),n f eval

avg , the average (over all runs) of the CPU time required
to converge to all the solutions identified by the algorithm (in seconds), CPU(s),
the best solution found for the global maximum during the 30 runs, f ∗, and the
average number of solutions identified by the algorithm,nsol, are displayed. Table 2
reports the same results for the modified problem (ϖ = 0.3) in Example 4. The SSA
algorithm was able to identify several maximizers during the process, in both tested
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Fig. 6 Plot of the classical 2-dT problem

problems (classical and modified), although not all maximizers are detected in all
runs. We may conclude that the efficiency of the algorithm is not greatly affected by
the dimension of the problem.

Table 1 Results of the SSA algorithm for Example 4, consideringϖ = 0.

Problem f ∗avg n f eval
avg CPU(s) f ∗ nsol

2-dT 7.8332E+01 1067 0.17 7.8332E+01 2
4-dT 1.5667E+02 3159 0.29 1.5667E+02 2
6-dT 2.3500E+02 10900 0.75 2.3500E+02 2
8-dT 3.1333E+02 36326 2.28 3.1333E+02 1
10-dT 3.9166E+02 58838 3.71 3.9166E+02 1

Table 2 Results of the SSA algorithm for Example 4, consideringϖ = 0.3.

Problem f ∗avg n f eval
avg CPU(s) f ∗ nsol

2-dT 9.8911E+01 1386 0.34 9.8911E+01 2
4-dT 1.9782E+02 2796 0.25 1.9782E+02 2
6-dT 2.9673E+02 10110 0.69 2.9673E+02 1
8-dT 1.2471E+03 30641 1.95 1.2471E+03 1
10-dT 1.5588E+03 56604 3.58 1.5588E+03 1
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2.3.2 Experiment with a large dimensional problem

Here we aim at analyzing the performance of the SSA algorithmwhen solving a
large dimensional MPP.

Example 5. Consider the following optimization problem with a multimodal objec-
tive function [30]:

max f (x) ≡−
n

∑
i=1

sin(xi)+sin(
2xi

3
)

s.t. 3≤ xi ≤ 13, i = 1, . . . ,n

which has an analytical global optimum of 1.216n. Figure 7 contains the plot of
f (x) whenn = 2. The global maximizer is located at(5.3622,5.3622). The other
maximizers in[3,13]2 are: (10.454,5.3622) (with f = 1.4393), (5.3622,10.454)
(with f = 1.4393) and(10.454,10.454) (with f = 0.4467). The other optimum is
a minimum with f =−0.4467 at(8.3961,8.3961). Table 3 contains the results ob-
tained by the SSA algorithm for two different values ofn: 50 and 100. Clearly, the
SSA algorithm is able to solve large-dimensional problems,detecting some solu-
tions, in a reasonable time. The number of function evaluations and the CPU time
are smaller in the case ofn = 100. We remark that these results were obtained with
n fmax= 1 000 000.
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Fig. 7 Plot of f (x) of Example 5 forn = 2.

Table 3 Results of the SSA algorithm for Example 5.

n f ∗avg n f eval
avg CPU(s) f ∗ nsol

50 6.0799E+01 944761 287 6.0799E+01 4
100 1.2160E+02 383038 104 1.2160E+02 6
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2.4 Synopsis

Approaches aiming at computing multiple solutions of boundconstrained MPP are
addressed. The first proposal is a stochastic method based ona function stretching
technique and the simulated annealing algorithm. A deterministic method is also
proposed. It relies on a branch-and-bound-type method thatis able to keep the so-
lutions found so far. The results reported with a varied dimensional problem show
that the performance of the SSA algorithm is not greatly affected by problem’s di-
mension. The computational cost of implementing the multilocal BB algorithm is
much higher than that of the SSA algorithm. The ability of theSSA algorithm to
tackle large dimensional problems was investigated using aclassical example with
various dimensions.

3 Constrained Multilocal Programming

In general, constrained optimization problems are more difficult to solve than un-
constrained or bound constrained problems, specially whenthe feasible region is not
convex and is very small when compared with the whole search space. There is a
metricρ given by the ratio between the feasible region and the searchspace that can
be used to measure the difficulty of solving a problem. With a stochastic method,
ρ can be estimated by the ratio between the number of feasible solutions and the
total number of solutions randomly generated [29]. Feasible regions made of dis-
jointed regions are also difficult to handle, in particular by gradient-based methods.
Stochastic methods are in general well succeeded when solving this type of difficult
problems. Different constrained search spaces have motivated the development of
a variety of constraint-handling techniques. The three main classes of methods to
handle constraints are:

• methods that use penalty functions;
• methods based on biasing feasible over infeasible solutions;
• methods that rely on multi-objective optimization concepts.

We refer the reader to [34, 54] and to the references therein.There are also other
techniques that aim at repairing infeasible solutions. In [60], a method that uses
derivative information from the constraint set to repair infeasible points is proposed
in a hybrid particle swarm optimization context.

Penalty function-based methods are the most well-known class of methods to
handle constraints in nonlinear optimization problems. These techniques transform
the constrained problem into a sequence of unconstrained subproblems by penal-
izing the objective functionf whenever constraints are violated. Then, the goal is
to force constraint violation to zero – adding a positive penalization in minimiza-
tion problems, or subtracting a positive penalization in maximization problems. The
penalty method relies on a penalty function as the objectivefunction of the problem
which depends onf , on a penalty term and a (at least one) positive penalty parame-
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ter. This is an iterative process where the solutions of the unconstrained subproblems
are approximations to the solution of the constrained problem.

To solve the constrained MPP in the form presented in (1), some theory and
practice of penalty methods is addressed in the remaining part of this section.

3.1 The penalty function method

A variety of sophisticated penalties exist in the class of penalty function meth-
ods [20, 36, 57]. They are developed to address efficiently the issue related with
constraint-handling in problems with different structures and types of constraints.
Additive penalties define a penalty function of the form

φ(x; µ) = f (x)−P(g(x),µ) (10)

where f (x) is the objective function in problem (1) andP, known as the penalty
term, depends on the constraint functionsg(x) and a positive penalty parameterµ .
The penalty term should be zero when the point is feasible andthenφ(x; µ) = f (x),
and is positive when the point is infeasible. The penalty term aims at penalizing
constraint violation directing the search towards the feasible region and at the same
time looking upwards for a point with the largestf . On the other hand, multiplicative
penalties have the form

φ(x; µ) = f (x)Pmult(g(x),µ)

wherePmult(g(x),µ) is a function that should take the value one when the point is
feasible and smaller than one for infeasible points. There is no special rule to design
a penalty function. Experiments show that penalties that depend on the distance
from feasibility are better than those that rely on the number of violated constraints
alone.

Different penalty terms have been devised including the death, static, dynamic,
annealing and adaptive penalties. Death and adaptive penalties are appropriate for
population-based stochastic algorithms. Death penalty does not require any penalty
parameter although can be computationally expensive trying to find feasible points
when the problem is highly constrained. Static penalties donot depend on the cur-
rent iteration number and a constant value is set to all infeasible points. With a dy-
namic penalty, the penalty parameter increases with the iteration number and with
the distance to feasibility. Most of the time, the dynamic penalty term also relies on
other parameters that depend on the problem at hand, and it isnot an easy task to
determine the best values for those parameters. Well succeeded applications of dy-
namic penalties within particle swarm optimization algorithms appear in [30, 41].
Annealing penalties depend on a parameter known as temperature that approaches
zero as iterations proceed. In methods based on adaptive penalties, the penalty pa-
rameters are updated every iteration according to information gathered from the
whole population of points. Adaptive penalties are proposed in [5] in conjunction



18 A. I. Pereira, O. Ferreira, S. P. Pinho and E. M. G. P. Fernandes

with a genetic algorithm. A penalty adapting algorithm usedwith an ant colony op-
timization aiming at eliminating the need for trial-and-error penalty parameter de-
termination is proposed in [1]. We refer to [9] for details concerning these penalties,
advantages and drawbacks during implementation.

Another common classification of penalty functions in classical optimization is
based on interior and exterior penalty functions [6, 7]. Exterior penalties are used
more often than interior penalties since an exterior penalty function does not require
an initial feasible point to start the iterative process. Furthermore, algorithms based
on interior penalty functions are more complex since all generated points should
be maintained inside the feasible region throughout the whole iterative process. A
well-known interior penalty is the logarithmic barrier function and works only with
inequality constraints.

Here, we are specially interested in exterior penalty functions of the additive
type. Three different penalty functions are described and tested with a benchmark
set of problems. Although setting the initial value for the penalty parameter as well
as its updating scheme are usually critical in algorithm’s performance, they are not
yet well-defined issues. Nevertheless these issues are addressed since convergence
to the solution is to be promoted and accelerated. Thus, details concerning the most
appropriate strategies for updating the penalty and other related parameters are pre-
sented.

Our implementation of the penalty framework aims to penalize only the inequal-
ity constraints. Each subproblem of the sequence that is solved for a fixed value of
the penaltyµ is the bound constrained multilocal optimization problem

max φ(x; µ)
s.t. li ≤ xi ≤ ui, i = 1, ...,n

(11)

To illustrate the effect on the penalty functionφ as the penalty parameterµ in-
creases, a one-dimensional example is used.

Example 6. Consider the problem

max f (x)≡ ex− x2 s.t. x≤ 1 andx ∈ [−5,5].

Figure 8 shows on the left plot the penalty functionφ1 that depends on the penalty
term P(x,µ) = µ max{0,x− 1} and on the right plot theφ2 that depends on the
penalty termP(x,µ) = µ(max{0,x−1})2, for the three values ofµ = 1,10,100.
As it can be seen, in the feasible region[−5,1], the penalty function coincides with
f (x), the functionφ2 is smoother atx = 1 (the solution of the problem) thanφ1, and
the larger theµ the more difficult the problem is.

L1/2 penalty function. A variant of a dynamic nonstationary penalty function is
herein used to solve constrained MPP [30, 41]. In these papers, particle swarm op-
timization algorithms are implemented in conjunction withthe penalty technique.
The penalty term of the herein simplified variant, denoted byl1/2 penalty function,
is defined as
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Fig. 8 Plot of f (x) andφ1 (on the left) andφ2 (on the right) relative to Example 6.

P1/2(x,µ) = µ
m

∑
j=1

(
max

{
0,g j(x)

})γ(g j(x)) (12)

where the power of the constraint violation,γ(.), may be a violation dependent con-
stant. The simplest approach setsγ(z) = 1 if z≤ 0.1, andγ(z) = 2, otherwise. This is
a nonsmooth function and derivative-free methods should beapplied when solving
problem (11). Unlike the suggestions in [30] and [41], the penalty parameter in (12)
will not be changing dynamically with the iteration number.To define an appropriate
updating scheme forµ one has to consider a safeguarded scheme to prevent the sub-
problems (11) from becoming ill-conditioned as the penaltyparameter increases [7].
An upper boundµmax is then defined and the update is as follows:

µk+1 = min
{

τµk,µmax

}
, for τ > 1 andµmax>> 1, (13)

given an initial valueµ0 > 0, wherek represents the iteration counter. Thus, the
sequence of solutions{x∗(µk)}, from (11), will converge to the solutionx∗ of (1)
andφ(x∗(µk); µk)→ f (x∗) ask→ ∞.

L2-exponential penalty function. We now extend the use of a continuous l2-
exponential penalty function to the constrained multilocal optimization problem.
This penalty function was previously incorporated into a reduction-type method for
solving semi-infinite programming problems [43]. The penalty term depends on the
positive penalty parameterµ and other two fixed positive parametersν1,ν2:

P
exp
2 (x,ν1,ν2,µ) =

ν1

µ

(
eµθ(x)−1

)
+

ν2

2

(
eµθ(x)−1

)2
, (14)

whereθ(x)=maxj=1,...,m[g j(x)]+ and the[g j(x)]+ represents max{0,g j(x)}. Clearly
θ(x) is the infinity norm of the constraint violation. The tuning of the penalty pa-
rameter previously described in (13) also applies to this penalty function.
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Hyperbolic penalty function. Another proposal uses the 2-parameter hyperbolic
penalty function [56]. This is a continuously differentiable function that depends on
two positive penalty parameters, in general different for each constraint,µ1, j and
µ2, j, j = 1, . . . ,m,

P
hyp(x,µ1,µ2) =

m

∑
j=1

µ1, jg j(x)+
√

µ2
1, j[g j(x)]2+µ2

2, j. (15)

This penalty is made to work as follows. In the initial phase of the process,µ1 in-
creases, causing a significant increase of the penalty at infeasible points, while a
reduction in penalty is observed for points inside the feasible region. This way the
search is directed to the feasible region since the goal is tominimize the penalty.
From the moment that a feasible point is obtained, the penalty parameterµ2 de-
creases. Thus, the parametersµ1, j and µ2, j are updated, for eachj = 1, . . . ,m, as
follows:

{
µk+1

1, j = τ1 µk
1, j andµk+1

2, j = µk
2, j, if max{0,g j(xk)}> 0

µk+1
2, j = τ2 µk

2, j andµk+1
1, j = µk

1, j, otherwise

for eachj = 1, . . . ,m, whereτ1 > 1 andτ2 < 1.

Multilocal penalty algorithm. The multilocal penalty (MP) algorithm can be im-
plemented using the stretched simulated annealing algorithm when solving subprob-
lem (11), or the multilocal BB, both previously described inSubsections 2.1 and 2.2
respectively. Details of the main steps of the algorithm areshown in Algorithm 4.
The algorithm is described for the simpler penalty function, see (12). Adjustments
have to be made when the penalty functions (14) and (15) are used.

Algorithm 4 MP algorithm

1: Given: µ0, µmax, τ, δ0, ε0, εmax. Setk = 0

2: While the stopping conditions are not metdo
3: SetLk = 0 and j = 0
4: While inner stopping conditions are not metdo

4.1 Setp = 0 and j = j+1
4.2 Computex∗j(µk) = argmaxl≤x≤u φ j(x; µk) using Algorithm 2 or Algorithm 3

4.3While
∣∣∣φ j

(
x∗j(µk),µk

)
− φ̃max

∣∣∣≤ δ0 or ∆ > εmax do

Setp = p+1 and∆ = pε0
Randomly generatẽxi ∈V∆ (x∗j), i = 1, . . . ,2n

Find φ̃max= maxi=1,...,2n{φ j(x̃i,µk)}
4.4 SetLk = Lk +1 andε j = ∆

5: µk+1 = min{τµk,µmax}
6: SetX∗ ← X∗(µk) andk = k+1
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3.2 Numerical experiments

Here, we aim to compare the effectiveness of the SSA algorithm when coupled with
a penalty function method to compute multiple solutions. The above listed penalty
functions, l1/2 penalty, l2-exponential penalty and the hyperbolic penalty are tested.

Stopping conditions. The stopping conditions for the multilocal penalty algorithm
are: ∥∥∥X∗(µk)−X∗(µk−1)

∥∥∥≤ εx or k > kmax (16)

and the inner iterative process (in Step 2 of Algorithm 4) terminates ifLk does not
change for a specified number of iterations,Kiter, or a maximum number of function
evaluations is reached,n fmax.

Setting parameters. In this study the selected values for the parameters resulted
from an exhaustive set of experiments. Here is the list:εx = 10−3, kmax= 1000 and
the parameters for the l1/2 penalty function areµ0 = 10,µmax= 103 andτ = 10. The
parameters used in the l2-exponential penalty function areν1 = 100 andν2 = 100.
The parameters used in the Hyperbolic penalty function areµ0

1, j = µ0
2, j = 10 for

j = 1, . . . ,m, τ1 =
√

10 andτ2 = 0.1. The parameters of the SSA algorithm are
set as follows:δ0 = 5.0, ε0 = 0.1, εmax= 1.0, Kiter = 5 andn fmax= 100 000. The
problems were solved in a Inter Core 2 Duo, T8300, 2.4 GHz with4 GB of RAM.

Experiments. For the first part of our comparative study, we use a well-known
problem described in Example 7.

Example 7. Consider the camelback objective function

f (x) =−(4−2.1x2
1+ x4

1/3)x2
1− x1x2+4(1− x2

2)x
2
2

which has four local maxima and two minima in the set−2≤ xi ≤ 2, i = 1,2. The
two global maxima are located at (0.089482, -0.712656) and (-0.089482, 0.712656).
Here, we define the constrained problem:

max f (x)
s.t. g(x)≡ x2

1+(x2−1)2−4≤ 0,
−2≤ xi ≤ 2, i = 1,2

(17)

and illustrate the behavior of the MPA when using SSA algorithm to solve the bound
constrained subproblems. Figure 9 shows the 3D plot and contour lines of f (x) as
well as ofg(x)≤ 0. This nonconvex problem has three maxima in the interior ofthe
feasible region.

The problem in (17) was solved using the MP algorithm combined with the hyper-
bolic penalty function. The method identified two global solutionsx∗1 =(−8.9842E−
02,7.1266E−01)T andx∗2 =(8.9842E−02,−7.1266E−01)T with the global value
1.0316E + 00. The local maximizerx∗3 = (−1.7036E + 00,7.9608E − 01)T with
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Fig. 9 Plot of f (x) andg(x)≤ 0 in Example 7.

value f (x∗3) = 2.1546E −01 was also detected. To solve this problem, the MP al-
gorithm needed 2.14 seconds of CPU time and 10535 functions evaluations, both
average number in 30 runs.

To further analyze the performance of the multilocal penalty algorithm when
coupled with SSA, a set of six benchmark problems, describedin full detail in [29],
is used. In this study, small dimensional problems (n ≤ 10 andm ≤ 13) with a
nonlinear objective function, simple bounds and inequality constraints were tested.
They are known in the literature as g04, g06, g08, g09, g12 andg18. Details of the
selected problems are displayed in Table 4, where ‘Problem’refers to the problem
number, ‘type off (x)’ describes the type of objective function, ‘fopt-global’ is the
known global solution (all are minimization problems),n is the number of variables
andm is the number of inequality constraints.

Table 4 Details of the constrained problems selected from [29].

Problem type off (x) fopt-global n m

g04 quadratic −3.0665E +04 5 6
g06 cubic −6.9618E +03 2 2
g08 general −9.5825E−02 2 2
g09 general 6.8063E +02 7 4
g12 quadratic 1.0000E +00 3 1
g18 quadratic −8.6603E−01 9 13

Table 5 contains the results obtained with the penaltiesP1/2, P
exp
2 andPhyp,

when combined with the SSA algorithm. Thef ∗ is the best solution found for the
global minimum during all the 30 runs,n f eval

avg indicates the average number of func-
tion evaluations required to obtain the global minimum (over the 30 runs) andnsol

represents the number of solutions identified by the algorithm.
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Table 5 Results for the MP algorithm, combined with SSA.

P1/2 P
exp
2 Phyp

f ∗ n f eval
avg nsol f ∗ n f eval

avg nsol f ∗ n f eval
avg nsol

g04 −3.067+04 156154 12 −3.067+04 62337 1 −3.067+04 18352 1
g06 −6.962E +03 27550 1 −6.962E +03 6472 1 −6.962E +03 15766 1
g08 −9.583E−02 79771 5 −9.583E−02 67753 5 −9.583E−02 8624 1
g09 6.787E +02 309719 1 6.787E +02 183806 1 6.787E +02 117638 1
g12 1.000E +00 202219 1 1.000E +00 302134 1 1.000E +00 313211 1
g18 −8.660E−01 945000 2 −8.660E−01 845375 4 −8.660E−01 339213 4

3.3 Synopsis

We have described some important issues related with the implementation of penalty
function methods in classical optimization. A proposal focused on a penalty frame-
work is shown when multiple solutions of constrained optimization problems are
required. Three penalty functions have been presented and discussed. The numeri-
cal results obtained when the penalty function method is used to solve constrained
MPP are reported. A comparison between the three penalty functions is included.
The subproblems that emerge from the multilocal penalty strategy are bound con-
strained MPP and they may be solved by the two proposed strategies, either the
stretched simulated annealing algorithm or the multilocalBB algorithm. However,
the numerical experiments reported in this section use the MP algorithm which re-
lies on the stretched simulating annealing, since this is byfar the most efficient ver-
sion. Last, we have shown that the penalty function method iseffective in solving
constrained MPP, in particular when some penalty functionsare used.

4 Engineering Applications

In the last part of the chapter, a real-world application of multilocal programming
in the engineering field is presented. Phase stability studies are multilocal program-
ming problems frequently found in the chemical engineeringarea with special in-
terest in process design and optimization. These studies, still a current subject for
scientists and engineers, are specially difficult, since the feasible region is very small
and not convex. In this section the mathematical formulation of the problem is ini-
tially given as well as a very brief summary of the strategiesand optimization tech-
niques used so far. Following, some numerical results are presented and discussed,
and the main findings outlined.
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4.1 Phase stability

Separation processes are fundamental and ubiquitous operations in the chemical
based industries. However, to design and optimize such separation operations, ther-
modynamic equilibrium conditions must be known. A severe problem causing enor-
mous difficulties in this regard is that the number and identity of phases present
at equilibrium are generally not known [46], which makes phase stability analysis
obligatory. At a fixed temperature, pressure and global composition the problem is,
therefore, to evaluate if the system is globally stable regarding the separation in two
or more liquid phases.

The phase stability criteria based on the Gibbs free energy of mixing, or derived
properties, are multiple, but the minimization of the tangent plane distant function
(T PDF), firstly proposed by Baker et al. [4], and first implemented by Michelsen
[35], is usually applied, and accepted to be a reliable and potent methodology for
stability studies. Considering the Gibbs free energy of mixing (∆G) of a multi-
component mixture, at a given temperature (T ) and pressure (P), to be described
as∆g(x) = ∆G

RT = f (T,P,x), wherex is the vector ofn mole fraction compositions
characterizing that mixture andR is the ideal gas constant. For an initial feed com-
position,z, at a fixed system pressure and temperature, the tangent plane equation
(∆gt p) at that point is:

∆gt p(x) = ∆g(z)+
n

∑
i=1

(
∂∆g
∂xi

)∣∣∣∣
x=z

(xi− zi).

In this way the tangent plane distance function (T PDF) is calculated by:

T PDF(x) = ∆g(x)−∆gt p(x).

Among the several thermodynamic models possible to apply, NRTL model [47] is
one of the most successful in the representation of equilibrium properties of mul-
ticomponent liquid mixtures, and is frequently found in commercial software for
process simulation and design. Therefore, NRTL model is here applied for which:

∆g =
n

∑
i=1

xiln(xi)+
n

∑
i=1

xi




n

∑
j=1

τ jiG jix j

n

∑
l=1

Glixl




whereτ ji andG ji are interaction parameters between componentsj andi, calculated
by G ji = exp(−α jiτ ji), beingα the non-randomness parameter. They are all readily
available in the open literature.

To evaluate if a mixture of a given global composition shows phase instability
the following nonlinear multilocal optimization problem must be solved:
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min T PDF(x)

s.t.
n

∑
i=1

(xi)−1= 0

0≤ xi ≤ 1 and i = 1, . . . ,n.

The necessary and sufficient condition for stability is thatat the global minimum the
T PDF(x) function is nonnegative. Phase instability will be observed otherwise. In
that event the following step is to find the number of phases inequilibrium as well
as the composition of each phase.

Due to the mathematical complexity of the thermodynamic models, the mini-
mization of theT PDF and location of all the stationary points are demanding tasks,
requiring robust numerical methods, since these functionsare multivariable, non-
convex, and highly nonlinear [8]. Strictly speaking, to check phase stability only
the global minimum is needed. However, the identification ofall stationary points is
very important because the local minima inT PDF are good initial guesses for the
equilibrium calculations [13, 49].

Floudas and Gounaris [16] have very recently reviewed different strategies and
optimization techniques for phase stability and phase equilibrium calculations.
Thus, only aspects of relevance for the optimization methods and examples explored
in this section are briefly mentioned. In fact, the vast majority of the researchers
state that many techniques are initialization dependent, and may fail by converg-
ing to trivial solutions or be trapped in local minima [8, 13,16, 33, 49], features
which are under attention in the numerical examples given inthe following pages.
Hence, the performance analysis of new numerical techniques is still of enormous
importance concerning phase stability and equilibria studies.

Particularly, several variants of the simulated annealingmethod have been widely
applied, and importantly studies have been performed concerning the so-called
‘cooling schedule’, by fixing the control parameters to the best values [13, 46, 58,
66]. Naturally, a compromise must be made between efficiencyand reliability, an-
alyzing the probability of obtaining the global minimum within a reasonable com-
putational effort. On the other hand, a branch and bound algorithm has been used
with several thermodynamic models [59, 65]. These authors claim that it can solve
effectively the global stability problem, but only a few studies have been carried out.

Due to space limitations only two relevant examples are now presented using
SSA.

Example 8. Consider the binary system water (1) + butyl glycol (2) at 5oC. It might
seem a simple example, but this is a canonical example, wheremultiple stationary
points and local solutions can be found. Additionally, for some compositions, in [37]
it was concluded that the stationary points found in [17], using the interval Newton
method, are not true roots as shown by the simulated annealing method.

The NRTL parameters used in the calculations are given in Table 6, while Table 7
compiles the results obtained at four different global compositionsz.

Confirming the results from [37], at the first two compositions only one stationary
point was found, giving the indication that only one liquid phase will be formed. On
the contrary, the other two compositions present a negativevalue of theT PDF at
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Table 6 NRTL parameters in Example 8 [17].

Components i j τi j τ ji αi j = α ji

water/butyl glycol 1 2 1.2005955 1.4859846 0.121345

Table 7 Numerical results for the binary system water + butyl glycol.

z CPU(s) f ∗ x∗

(5.00E-02, 9.50E-01) 0.22 0.0000E+00 (5.00E-02, 9.50E-01)
(1.00E-01, 9.00E-01) 0.27 0.0000E+00 (1.00E-01, 9.00E-01)
(2.50E-01, 7.50E-01) 0.30 -9.2025E-02 (8.79E-01, 1.21E-01)

0.0000E+00 (2.50E-01, 7.50E-01)
8.4999E-05 (2.96E-01, 7.04E-01)

(5.00E-01, 5.00E-01) 0.20 -3.4091E-02 (1.43E-01, 8.57E-01)
-2.7355E-02 (8.36E-01, 1.64E-01)
0.0000E+00 (5.00E-01, 5.00E-01)

the global minimum, suggesting phase instability. At the global composition (0.25,
0.75) it must be noted the closeness of two stationary points, which can introduce
difficulties when applying the stretched technique as well as the small magnitude of
the function at the stationary point. The performance of theSSA can be assessed by
verifying that all the 30 runs converge to the function value( f ∗) at the stationary
point (x∗). It also must be stressed that the average time is much uniform when
comparing with the results in [37] and [17].

Example 9. Consider now the ternary system n-propanol (1) + n-butanol (2) + wa-
ter (3) at 25oC. The NRTL parameters needed are compiled in Table 8.

Table 8 NRTL parameters in Example 9 [66].

Components i j τi j τ ji αi j = α ji

propanol/butanol 1 2 -0.61259 0.71640 0.30
propanol/water 1 3 -0.07149 2.74250 0.30
butanol/water 2 3 0.90047 3.51307 0.48

This is also a reference system in the study of phase stability, presenting, like in
the previous example, multiple stationary points. Table 9 presents a complete list of
the results found for two global compositions. In both casestheT PDF function is
negative indicating phase splitting. It must again be stressed the closeness of some
stationary points and the very small magnitude of the function. The average time
although longer than in the previous example is still very uniform.
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Table 9 Numerical results for the ternary system n-propanol + n-butanol+ water.

z CPU(s) f ∗ x∗

(1.20E-01, 8.00E-02, 8.00E-01) 2.42 -7.4818E-04 (5.97E-02, 2.82E-02, 9.12E-01)
-3.0693E-06 (1.30E-01, 8.91E-02, 7.81E-01)
0.0000E+00 (1.20E-01, 8.00E-02, 8.00E-01)

(1.30E-01, 7.00E-02, 8.00E-01) 2.34 -3.2762E-04 (7.38E-02, 3.03E-02, 8.96E-01)
-8.6268E-07 (1.38E-01, 7.56E-02, 7.87E-01)
0.0000E+00 (1.30E-01, 7.00E-02, 8.00E-01)

4.2 Synopsis

The phase stability of two mixtures was studied at differentglobal compositions
using the SSA algorithm. It proved to be very reliable and robust even in the cases
where the stationary points are very close. Additionally, it was possible to find short
CPU times for all the seven conditions investigated. The results found so far will
soon be checked and extended to compositions near to the plait point and to systems
containing three liquid phases, hardly even considered [18], or to quaternary systems
with multiple stationary points.
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