Multilocal Programming and Applications

A. . Pereira, O. Ferreira, S. P. Pinho and Edite M. G. P. Fataa

Abstract Multilocal programming aims to identify all local minimize of uncon-

strained or constrained nonlinear optimization problefige multilocal program-
ming theory relies on global optimization strategies cameli with simple ideas
that are inspired in deflection or stretching techniquesstodaconvergence to the
already detected local minimizers. The most used methosisite this type of pro-
blems are based on stochastic procedures and a populaofutibns. In general,
population-based methods are computationally expensivather reliable in iden-
tifying all local solutions. In this chapter, a review on eat techniques for multilo-
cal programming is presented. Some real-world multilocagpamming problems
based on chemical engineering process design applicatierdescribed.

1 Introduction

The purpose of this chapter is to present recent technigquesofving constrained
Multilocal Programming Problems (MPP for short) of the éoling form
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max f(x)
s.tgj(x)<0,j=1,....m @)
li<x<u,i=1...n

where at least one of the functiofisg; : R" — R is nonlinear, and# = {x € R":

i <x <u,i=1,..,n0;Xx) <0,j=1,...,m} is the feasible region. Problems
with equality constraintsh(x) = 0, can be reformulated into the above form by
converting into a couple of inequality constraihfx) — v < 0 and—h(x) —u <0,
whereu is a small positive relaxation parameter. Since concasityot assumed,
may possess many global and local (non-global) maxim# iin MPP, the aim is
to find all pointsx* € .# such thatf (x*) > f(x) for all x € ¥¢(x*) N.%#, where¥g (X*)
represents the neighborhood®fwith radiuse > 0. It is also assumed that problem
(1) has a finite number of isolated global and local maxinsiz&he existence of
local maximizers other than global ones makes this problgreat challenge. Here,
we use the following notatioriNl is the number of solutions of the problem (1) and
X* ={X],%,..., Xy} is the set that contains those solutions. The algorithmsimer
presented for MPP aim at finding all the maximizgjs, ..., x5 € .# such that

[fmax— FOG)| < & foralls=1,...,r (r <N) 2)

wheredy is a small positive constant arfghax = max{f(x3),..., f(x)}.

The MPP can be considered as defining a class of global optiimzproblems
and are frequently encountered in engineering applicatjery. [8, 15, 32]). Some
algorithms for solving this type of problem require substdmradient information
and aim to improve the solution in a neighborhood of a givétieimpproximation.
When the problem has global as well as local solutions, daklsical optimization
techniques can be trapped in any local (non-global) saluioglobal optimization
strategy is indeed the most appropriate to solve multilpcajramming problems.
When the objective function is multimodal, the probabilitiyomnvergence to an
already detected local solution is very high and dependsoclesely on the provided
initial approximation. Methods that avoid converging teeaddy identified solutions
have been developed and integrated into a variety of cilggimbal methods.

This study is focused on the analysis of the practical bemanfi stochastic and
deterministic methods for the computation of multiple siolos of the problem in
the form (1). A penalty technique is chosen to tackle the ttaimgs of the problem.
Furthermore, challenging problems in the chemical engingarea, such as those
that aim to evaluate if a multicomponent liquid mixture islgglly stable regarding
the separation in two or more liquid phases, by minimizing tdingent plane dis-
tance function for the Gibbs free energy of mixing, are fulscribed and solved.

The remainder of this paper is organized as follows. Se&iprovides a review
on two particular classes of global optimization methodst ttan be extended to
solve bound constrained MPP, presents the correspondjogtains and illustrates
their performance using three examples. In Section 3, timalfefunction-based
technique is addressed and various penalty functions esepted, tested and com-
pared using a selected set of problems. Section 4 illustthi use of numerical
methods to solve very demanding real problems in the chéencaneering area.
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2 Bound Constrained Multilocal Programming

In this section, we address a simpler problem known as boomsti@ined multilocal
programming problem. The problem is presented in the fatigviorm

max f(x)
sthi<x<u,i=1,....,n (3)
where the feasible region is just defined 5 = {x e R": |; < x < u;, i =
1,...,n}. The two main classes of methods for solving the multilocabpamming
problem (3) are the stochastic and the deterministic, whighpresented below
[16, 20, 28, 39, 44, 45].

2.1 Stochastic methods

A stochastic method available in the literature to solveamstrained and bound
constrained global optimization problems will be desalide general, each run of
a stochastic global method finds just one global solutionuAvesy on stochastic
methods is presented in the textbook [62]. To be able to ceenmpultiple solutions
in just one run, where each of them is found only once, sptsiahiques have to be
incorporated into the global methods. These techniquesaaiavoiding repetitive
identification of the same solutions. Well-known examples tae clustering me-
thods [50, 51, 52]. Other techniques that aim to escape fr@vigusly computed
solutions, in general local solutions, are based on coctatigiauxiliary functions
via a current local solution of the original problem [55, 63). Deflecting function
and function stretching techniques can also be appliedeteepit convergence to an
already detected local solution [38, 39, 40, 53].

Clustering techniques rely on the multistart algorithme Tultistart is a stochas-
tic algorithm where in a repetitive manner a local searclpjsiad to a point that
is randomly selected from the feasible region. Since theesimeal solution may
be selected over and over again, the clustering techniqus & avoid the loca-
tion of already detected solutions. A cluster contains aoéemints, defining the
so-called region of attraction, that terminate in a paléicgolution after applying a
local search procedure. In this way only one local searchdsired to locate that
solution. This process is able to limit the number of locarsk applications [50].
Another use of region of attractions based on a multistgiarithm is the therein
called Ideal Multistart [52]. This method applies a locadisd procedure to an ini-
tial randomly generated point to reach the first solutignand the corresponding
region of attraction is then define8;. Then points are successively randomly gen-
erated from the feasible region until a point that does nlmrgeto A is found. The
local search is then applied to obtain the second solugjaand then the region of
attractionA; is defined. After this, points are randomly generated andal kearch
is applied to the first point that does not belong\ia A, to obtainx; (and themg),
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and so on. The definition of the so-called critical distarmcednstruct the cluster is
an important issue in clustering-based multistart methiodsome cases, the second
derivative information of the objective function is reqedr In others, like [3], the
critical distance becomes adaptive and does not requirs@awsial property of the
objective function. The therein proposal is embedded withsimulated annealing
(SA) algorithm to obtain a global algorithm that convergastér than the SA itself.

Deflection and stretching techniques rely on the conceptotforming the ob-
jective function in such a way that the previously deteci@dt#on is incorporated
into the form of the objective function of the new problem 8k techniques were
mainly developed to provide a way to escape from local smhstiand to drive the
search to a global one. For example, in [53], a deflectingtfan¢echnique was pro-
posed in a simulated annealing context. The transformafitire objective function
f(x) works as follows. The deflecting function of the origirfaht a computed ma-
ximizer x*, herein denoted af,, is defined by

fa = F(x") — O5[sign(f () — £(x)) — 1 (f () — F(x")). @)

All the maximizers which are located belofyx*) disappear although the max-
imizers with function values higher thai{(x*) are left unchanged. An example is
provided to show the defected effect.

Example 1. Consider the one-dimensional problem where the objedtretion is
f(x) = —xsin(x), for x € [-8,8],
which has 3 maxima in the sgt8, §].

Figure 1 shows the plot df(x) using a solid line. Lex* = —4.9132 be the first com-
puted maximizer, wheré(x*) = 4.8145. The plot of the deflecting functiofy(x),
atx* = —4.9132 is shown with a dashed line in the left plot, where all\hries
with f(x) < f(x*) are deflected. All the maximizers are alleviated and the-func
tion becomes a line when the deflecting function techniguappdied on a global
maximizer. In the right plot, the deflecting technique is laapto f at the local
maximizerx* = 0, with f (x*) = 0 and as can be sedg(x), represented by a dashed
line, keeps the values of points that have(x) > f(x*).

On the other hand, the function stretching technique ctmsita two-phase
transformation [38, 39, 40]. The first transformation sthets the objective function
downwards in a way that all the maxima with smaller valuesttiee previously
detected maximum are eliminated. Then the second phasé#drars the detected
maximum into a minimum. All the other maxima (with larger was than the de-
tected maximum) are unalteredxifis an already detected maximumfgfthen the
first transformation is defined by

f1(x) = f(X)—%IIX—X*II[Sign(f(X*)— fO9) +1] (5)

and the second by
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Fig. 1 Plot of f and fg atx* = —4.9132 (left plot) and ax* = 0O (right plot).

~ Gfsign(f(x) — f(x) +1]
2tanh(k (f1(x*) — f1(x)))

whered;, & andk are positive constants. To illustrate the effects of thezest
formations as the parameters vary, we use Example 1. Figahe®&s the plot of
f(x) using a solid line. Based on the computed local maximizer 0 and applying
the transformation (5) witld; = 1.5, we get the functiorf1(x) which is plotted in
the figure with a dotted line, and applying (6), widh = 0.5 we get the function
f2(x), displayed in both plots of the figure with a dashed line. Tl n the left
corresponds ta = 0.1 and the one on the right correspondxte- 0.05. Function
f1(X) comes out after the first transformation (5) and the biggedirithe greater
the stretch is. See the plots on the right of Figs. 2 and 3.nRetexd, defines the
range of the effect (see the plots on the left of Figs. 2 anchd@)the parametex
defines the magnitude of the decreasd @ix* (see both plots of Fig. 2).

fa(x) = f1(x) (6)

.........

RS

Fig. 2 Plot of f, f1, fo with 8 = 1.5,8, = 0.5, k = 0.1 (on the left) and = 0.05 (on the right).

In a multilocal programming context, global as well as logain-global) solu-
tions need to be computed. Implementing the function stnegctechnique locally
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Fig. 3 Plotof f, f1, fo with & = 1.5,0, = 1.5,k = 0.1 (on the left) and; = 3,9, = 0.5,k = 0.05
(on the right).

aims at stretching downwards the objective functioonly in a neighborhood of
an already detected maximizer, leaving all the other maxinghanged. The suc-
cessive application of this technique prevents the comrerg to the solutions com-
puted thus far. Therefore, this local stretching technigae be used when both
global and local solutions are required since the stratigyiates only the detected
solutions. We now accept that the following assumption iold

Assumption 1 All optimal solutions of problem (3) are isolated points.

Here we aim at presenting a proposal that applies locallfuhetion stretching
technique and uses a simulated annealing algorithm. Theatiét able to detect se-
quentially the global and local solutions instead of ramdplver the feasible region
attracted by previously identified solutions. After the guitation of a solution, the
objective function of the current problem is transformehgshe function stretch-
ing technique. A sequence of global optimization probleriik stretched objective
functions is iteratively defined and solved by the SA aldonif44, 45].

The SA s a point-to-point stochastic algorithm that doaseguire derivative in-
formation and is able to guarantee convergence to a glohdl@owith probability
one [22]. In fact, the practical implementation of the herpresented Stretched
Simulated Annealing (SSA) method makes use of one of the effesitive variants
of SA known as Adaptive Simulated Annealing (ASA) algoritfd].

The main steps of the ASA algorithm are resumed in Algorithimefiow. For
details on the algorithm convergence analysis, see [23, 724 ASA method can
be easily described using five phases: the generation @l gtint, the ‘acceptance
criterion’, the redefinition of the control parameters, tkduction of the control
parameters and the stopping condition.

The generation of a trial point is one of its crucial phases iashould provide
a good exploration of the search region as well as a feasdiig.prhe parameter
N& in the Algorithm 1 aims at adapting the method to the problehe ‘acceptance
criterion’ allows the ASA algorithm to avoid getting stuaklocal solutions when
searching for a global one. For that matter, the procesptpeints whenever an
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Algorithm 1 ASA algorithm

1: Given: X2, N¢ and the initial control parameter values. et 0 andj = 0
2: While the stopping condition is not verifietb

2.1 Based onX, randomly generate a trial poipte [I,u] andj = j+1
2.2 Verify the ‘acceptance criterion’
23 Ifj<NKthen j=j+landgoto2.2
else updateNX andj = 0
2.4 Update control parameters
25 Setk=k+1

increase of the objective function is verified

et { Y if & < Agy(c)

T 1 X otherwise

wherexX is the current approximation to the global maximunis the trial point,
¢ is a random number drawn frobh(0, 1) andAkay(c',’;) is the acceptance function.
This function represents the probability of accepting thizypy whenxX is the cur-
rent point, and it depends on a positive control paramé{iteAn usual acceptance

function is
_f(xk>;f<y>
Axy(ch)=mindle %A

known as Metropolis criterion. This criterion accepts alims with objective func-
tion values equal or greater thdx*). However, if f (y) < f(x¥), the pointy might
be accepted with some probability. During the iterativecpss, the probability of
descent movements decreases slowly to zero. Differenptartee criteria are pro-
posed in [24]. The control paramete’j, also known as temperature or cooling
schedule, must be updated in order to define a positive dangeaequence. To
speed up the search, the ASA algorithm considers the relamped the process,
meaning that the control parameters are redefined duringettagive process (see
details in [24]). In general, the stopping condition for th®A method is based on
the idea that the algorithm should terminate when no futhanges occur. Another
stopping criterion limits the number of function evaluasoor defines a lower limit
for the value of the control parameter.

We now describe the details concerning the SSA algorithra.létal application
of the function stretching technique aims to prevent theveayence of the ASA al-
gorithm to previously detected solutions. bgtbe the first detected solution. Func-
tion stretching technique is then applied only locally, rder to transformf (x) in
a neighborhood of;, Ve, (X;), with radiuse; > 0. Thus,f(x) is reduced only inside
the regionV, (x;) leaving all the other maxima unchanged. The maximifxy)
disappears but all the others remain unchanged. Each gipliadization problem
of the sequence is solved by ASA. The multilocal procedumaiteates when for a
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predefined set of consecutive iterations no more solutiomsletected [42, 44]. To
illustrate this SSA procedure the following problem is ddesed.

Example 2. Consider the function
f(X) = —co(xy) — sir(x2) wherex € [—5,5]?,

which has 12 global maxima in the set5,5]%. In Fig. 4, the objective function
of Example 2 and the functioff, that comes out after applying transformations
(5) and (6) to the previously computed global maximizee= (5,0) are displayed.
Transformations (5) and (6) stretch the neighborhoos; pvith radiuse;, down-
wards assigning smaller function values to those pointsdéggnt convergence to
that previously computed solution [44]. As can be obsertleel other maxima are
left unchanged (see Fig. 4).

5 5 -5 -5

Fig. 4 Plot of f(x) (left) and f2(x) (right) in Example 2.

Thus, the SSA method, at each iteration, solves a globaranaging problem
using the ASA algorithm, where the objective function of plneblem resulted from
alocal application of the function stretching techniqueg ims to eliminate the pre-
viously detected maximizer leaving the other maximizershamged. This process
is repeated until no other solution is encountered. The emasttical formulation of
the j + 1-order problem in the sequence of problems is the following

~ £1(x) if x € Vg, (x))
I+l =1 2 E\R) )
|rgnxag)fjf ()= { f1(x) otherwise 0

wherex]f is the solution detected in theorder problem, and the following notation

is used:f2J is the stretched function obtained frof after transformations (5) and
(6), for anyj, wheref! = f, andf} = f,.

Algorithm 2 below presents, in summary, the strategy SSABP (3). As pre-
viously stated the algorithm terminates when no more swigtare detected during
a predefined number of consecutive iteratidfyg,, or a maximum number of func-
tion evaluations is reachedfnax. The conditions for the inner cycle (in Step 2.2)
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aim at defining an adequate radiug)(for the neighborhood of each solution com-
puted in Step 2.1, in a way to adjust for eaglthe convenient neighborhood. In the
final stage of the algorithm, a local search procedure isieghpdb each computed
solution to improve accuracy.

Algorithm 2 SSA algorithm

1: Given: &, £, &max Setfmax= f1(l), j=1andp=0
2: While the stopping conditions are not no

2.1 Computexj = arg MaXx<x<u fi(x) using Algorithm 1
2.2While fj(x’j‘) — fmax] <8 Of A > gnaxdo

Setp= p+1andA = pe&
Randomly generatg € Vx (x]*), i=1,...,2n

2.3 Update the optimal sét* and segj = A
24Setj=j+1andp=0

3: Apply a local search procedure to the optimal$ét

Example 3. Consider the classical optimization problem known as Bragsmob-
lem [20].

B 51, 5 2 1
max f(x) = — (xz— 2Rt 6) —10 (1— 87T> cogx1) — 10,

where the feasible region is defined#is= {x € R?: =5 < x; < 10 A 0 < x, < 15}.
This problem has three global maximizets= (—,12.2750 ", x5 = (1,2.2750 "
andxj = (9.42482.475" with a maximum value of-0.39789.

The SSA algorithm solves this problem I8 seconds, needs 2442 function
evaluations and detects the following maximizers$3.141€E + 00,1.227% + 01),
(9.424& +00,2.475CE +00) and(3.141€6 + 00, 2.275CE + 00), with global value
—3.978% — 01. Since the SSA algorithm is a stochastic technique, tbbl@m
was solved thirty times. In this case all the solutions wdemtified in all runs. The
results were obtained using a Inter Core 2 Duo, T8300, 2.4 @ittz4 GB of RAM.
The parameters of the algorithm are set as folladys= 5.0, &g = 0.1, gmax = 1.0,
Kiter = 5 andnfmax = 100 000.

2.2 Deterministic methods

Deterministic methods for global optimization are abledtvs a problem with a re-
quired accuracy in a finite number of steps. Unlike stochas#thods, the outcome
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of the algorithm does not depend on pseudo random varidblgeneral, they pro-
vide a theoretical guarantee of convergence to a globahopti. When compared
with stochastic methods they may rely on structural infdromaabout the prob-
lem and in some cases they require some assumptions on thetiobjfunction,
for example, they may require Lipschitz continuity bfover the feasible region
[14, 20, 21, 31].

There are deterministic methods that combine the brandiannd method
with successive refinement of convex relaxations of théingtroblem [15], others
use a non-differentiable technique based on the methodtwhalpset partitioning
[27], and in [28] partitioning ideas are combined with soneeihtive information.
An important subclass of methods for locating the solutignaximizers and mini-
mizers) of a continuous function inside bound constralikts,problem (3), consist
of two phases: first, a partition of the feasible set is madkeaset of finite points are
generated and evaluated in order to detect good approxingatd solution points;
then, a local search method is applied in order to improveattoeiracy of the ap-
proximations found in the first phase (e.g. [10, 11, 48, 51]).

DIRECT is a deterministic method that has been designed daffie global so-
lution of bound constrained and non-smooth problems whedenivative informa-
tion is needed [14, 25, 26]. DIRECT is an acronym for DIvidRgCTangles and is
designed to completely explore the search space, everoaftesr more local solu-
tion have been identified. The algorithm begins by scaliggdbmain into the unit
hypercube and the objective function is evaluated at theecefithe domain, where
an upper bound is constructed. DIRECT computes the obgefitivction at points
that are the centers of hyperrectangles. At each iteratiew, hyperrectangles are
formed by dividing those that are more promising, in the sdhat they potentially
contain a required global solution, and the objective fiomcis evaluated at the cen-
ters of those hyperrectangles. Based on those objectiatidmrvalues, the method
is able to detect new promising hyperrectangles.

Another interesting subclass of deterministic methodsgiobal optimization
is based on the idea of branch and bound. Methods based aomaintmalysis
[2, 19, 61] fall in this subclass. Interval analysis arisesf the natural extension
of real arithmetical operations to interval operations uise for global optimization
was presented in 1992 [19]. Using interval operations, ttiterval algorithm splits
successively the initial feasible regifinu] into small subintervals. The subintervals
that do not contain the global solution are discarded andtthers are further sub-
divided and analyzed. This process terminates when théhwitithe subintervals
are below a predefined accuracy or no interval remains to béisded. Interval
methods require high computational costs since the coritpleses exponentially
with the dimension of the problem [19, 20].

The most known and used deterministic method is the brandkkaund (BB)
method. It has been mainly used in discrete optimizatiore fiain idea in a BB
method is the recursive decomposition of the original probinto smaller disjoint
subproblems until the required solution is detected. Ia tmintext, smaller means
either a strict smaller problem dimension or a strict smdkasible region. The
partition of the feasible region is the most used branchirlg in continuous pro-
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gramming. This decomposition should guarantee that thieagolution is at least
in one of the generated subproblems. The method compardevike and upper
bounds for fathoming each subregion. The subregion thaagomthe optimal so-
lution is found by eliminating subregions that are provetitoa@ontain the optimal
solution.

BB-type methods are characterized by four natural rulesndiring, selection,
bounding and elimination. Branching is concerned withHartrefinement of the
partition. The selection rule is also very important, gseaffects the performance
of the algorithm and aims at deciding which subregion shbeléxplored next.

The method starts with a sétthat contains the feasible region assumed to be a
compact set. An algorithm should be provided to compute @euipound valuefy,
such thatfy > f(x) for all x € [I, u] that will be improved as subproblems are solved.
At each iteration, the method has a ligt of subsets® of 1°. An upper boundf§
of the maximum objective function value dfis computed for every subset i#f.

A global lower boundf, of the maximum function value over the feasible region is
defined by thef value of the best feasible solution found.

-8 -6 -4 -2 0 2 4 6 8
1° =[-8,8]

Fig. 5 Branching applied to the continuous Example 1.

Figure 5 illustrates a branching rule applied to the funciio Example 1. The
set!9 = [-8,8] was partitioned intd!,12 andI3. f(x) is represented by a solid
line. The lower boundstk, are the higher function values at the boundaries of the
subintervals and are represented by dashed lines. The hmmds,fl'j, represented
in the figure by dotted lines, are computed using a simplequhoe. In this case,
all the subintervals should be explored and subdividedrdggathe branching rule,
since no upper bound is lower than any lower bound.

A subregion X can be removed from the lis¥ if:

i) it cannot contain any feasible solution;

ii) it cannot contain the optimal solution sin(fé < fi;

iii)there is no use in splitting since the size of the set is smaller than a predefined
toleranced.
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A crucial parameter of the BB method is the positidyerecision. This tole-
rance is used in the stopping criteria in a way that a soluwiithin a -precision is
obtained. The algorithm also stops when the#5ts empty. When solving discrete
problems, the parametércan be set to zero and the BB algorithm is finite. However,
in continuous optimization, the bounding operation is regpito be consistent, i.e.,
any infinitely decreasing sequence of successive refineitigas | on 1° satisfies

lim (f¥—f5)=0 (8)
k—>co
where f,‘_( and fL'j are the lower and upper bounds, respectively, of the proklgm
feasible regiorik. This consistency condition implies that the requidegdrecision
solution is achieved after a finite number of steps and the IB&ithm is therefore
finite.

In the multilocal programming context, to compute the doha of (3), the BB
method is combined with strategies that keep the solutibas dre successively
identified during the process. The method also avoids migithose subproblems
which are known not to contain a solution [20, 21]. The maapsitf the proposed
multilocal BB method is to solve a sequence of subproblerssriteed as

maxf(x) for xe I andi=1,...,n; 9)

wherel'] = [I7Y,up’] x - x [I5’,uj’], and the subset$], fori =1,...,n;, belong

to a list, herein denoted h¥’!, that can have a local solution that satisfies condition
(2). The method starts with the list’®, with the set 1% = I, u], as the first element
and stops at iteratiof when the listZ/+1 is empty. The generic scheme of the
multilocal BB algorithm can be formally described as showrAlgorithm 3. Fur-
thermore, the algorithm will always converge due to the fateck on the width of
the subinterval™ (see the stopping conditions in Step 3 of the algorithm). Adix
value,d > 0, is provided in order to guarante@gprecision solution.

Algorithm 3 Multilocal BB algorithm
1: Given: 3 >0,0>0

2: Considerf? the solution of problem (9), far:? = [I,u], setj = 0 andng = 1
3: While 21+ £ 0 and max{||u"] —1"1[|} > & do
3.1Split each sdf'J into intervals, fori = 1,...,nj; set. 1+t = {|Li+L  njsad+1]

3.2 Solve problem (9), for all subsetsifti*1, Setfl, ..., fNi+1 to the obtained maxima values
3.3SetfO=max {f'} fori =0,...,nj;1. Select the subsets/*! that satisfy the condition:

10— 1| < &

3.4 Reorganize the lisZit?; updaten; 1
35Setj=j+1
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To illustrate the practical behavior of the Algorithm 3, {rblem presented in
Example 3 is used. The multilocal BB algorithm solves thishbpem in 371 sec-
onds, needs 9331 function evaluations and finds the follpwiaximizerg3.141€E +
00,2.275( + 00), (—3.1416 +00,1.227% + 01) and(9.424& + 00,2.475C +
00) with global value—3.978% — 01. As it was expected, the multilocal BB algo-
rithm is computationally more demanding than the SSA athori

2.3 Numerical experiments

This part of the section aims to report the results of apglyhe Algorithm 2 to
solve bound constrained MPP. The Algorithm 3 was not useddaits high time
consuming. First, an experiment with a varied dimensionablem is analyzed for
five different values oh. Then a large dimensional problem is solved by the SSA
algorithm. The problems were solved using a Inter Core 2 O&300, 2.4 GHz
with 4 GB of RAM. The parameters in the algorithm are set a®¥: & = 20.0,

& = 0.1, gmax= 1.0, Kiter = 5 andnfax = 100 000.

2.3.1 Experiment with a varied dimensional problem

Example 4. Consider the classical optimization problem knownnadimensional
Test (-dT) [12]:

n

n

maxf(x) = —1 zloq“— 16¢% +5%) + wzl(xi —2.90353?

i= i=
st.-5<x<5/i=1...,n

for w = 0 (classical problem) andr = 0.3 (modified). This problem has'2ocal
maxima in the seft-5, 5]" and the global is located &+2.9035..., —2.9035. The
2-dT function for the classical problem and= 2 is plotted in Fig. 6. The global
maximizer is(—2.9035 —2.9035) with a value off = 78.332 and the local maxima
are located at—2.90362.7468 (with f = 64.196), (2.7468 —2.9035 (with f =
64.196) and(2.7468 2.7468 (with f = 50.059).

Results regarding the classical problem in Example 4fer2, 4,6, 8,10 are shown
in Table 1. The table depicts a summary of the results oldaiyeSSA algorithm.
The average value of the solutions found for the global marinin all the runs,
favg the average number of function evaluations (obtained li8@Iruns, when
computing the global)nfae\‘,’g', the average (over all runs) of the CPU time required
to converge to all the solutions identified by the algoritimgeconds), CPU(s),
the best solution found for the global maximum during the @0sf f*, and the
average number of solutions identified by the algorithgg, are displayed. Table 2
reports the same results for the modified problem=0.3) in Example 4. The SSA
algorithm was able to identify several maximizers during pinocess, in both tested
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Fig. 6 Plot of the classical 2-dT problem

problems (classical and modified), although not all maxarszare detected in all

runs. We may conclude that the efficiency of the algorithnoisgneatly affected by
the dimension of the problem.

Table 1 Results of the SSA algorithm for Example 4, considemmg: O.

Problem f2 nfe  CPU(s) f*

avg avg

2-dT  7.8332E+01 1067 0.17 7.8332E+01
4-dT  1.5667E+02 3159 0.29 1.5667E+02
6-dT  2.3500E+02 10900 0.75  2.3500E+02
8-dT  3.1333E+02 36326 2.28  3.1333E+02
10-dT  3.9166E+02 58838 3.71  3.9166E+02

Nsol

RPN NN

Table 2 Results of the SSA algorithm for Example 4, considemng: 0.3.

Problem favg nf&d  CPU(s) f* Nsol

2-dT  9.8911E+01 1386 0.34 9.8911E+01
4-dT  1.9782E+02 2796 0.25 1.9782E+02
6-dT  2.9673E+02 10110 0.69 2.9673E+02
8-dT  1.2471E+03 30641 1.95 1.2471E+03
10-dT 1.5588E+03 56604 3.58 1.5588E+03

PR R NN
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2.3.2 Experiment with a large dimensional problem

Here we aim at analyzing the performance of the SSA algorithran solving a
large dimensional MPP.

Example 5. Consider the following optimization problem with a multiced objec-

tive function [30]:
n

maxf (x) = —'Zsin(xi) +sin(%)

st.3<x<13i=1,...,n

which has an analytical global optimum of216n. Figure 7 contains the plot of
f(x) whenn = 2. The global maximizer is located é8.36225.3622). The other
maximizers in[3,13? are: (10.454,5.3622 (with f = 1.4393), (5.362210.454)
(with f = 1.4393) and(10.454,10.454) (with f = 0.4467). The other optimum is

a minimum withf = —0.4467 at(8.3961 8.3961). Table 3 contains the results ob-
tained by the SSA algorithm for two different valuesrof0 and 100. Clearly, the
SSA algorithm is able to solve large-dimensional probledetecting some solu-
tions, in a reasonable time. The number of function evadnatand the CPU time
are smaller in the case af= 100. We remark that these results were obtained with
Nnfmax =1 000 000.

~(sin(x)+sin(x) +sin(2 x/3)+sin(2 ¥/3))
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Fig. 7 Plot of f(x) of Example 5 fom = 2.

Table 3 Results of the SSA algorithm for Example 5.

n favg nfaal  CPU(s) f* Nsol

50 6.0799E+01 944761 287 6.0799E+01 4
100 1.2160E+02 383038 104 1.2160E+02 6
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2.4 Synopsis

Approaches aiming at computing multiple solutions of booadstrained MPP are
addressed. The first proposal is a stochastic method basadumetion stretching
technique and the simulated annealing algorithm. A det@stic method is also
proposed. It relies on a branch-and-bound-type methodgtedile to keep the so-
lutions found so far. The results reported with a varied disienal problem show
that the performance of the SSA algorithm is not greatlyciéfe by problem’s di-

mension. The computational cost of implementing the nodél BB algorithm is

much higher than that of the SSA algorithm. The ability of @A algorithm to

tackle large dimensional problems was investigated usiclgssical example with
various dimensions.

3 Constrained Multilocal Programming

In general, constrained optimization problems are morfcdlf to solve than un-
constrained or bound constrained problems, specially whesfeasible region is not
convex and is very small when compared with the whole segrahes There is a
metricp given by the ratio between the feasible region and the seq@te that can
be used to measure the difficulty of solving a problem. Withioglsastic method,
p can be estimated by the ratio between the number of feasihiéians and the
total number of solutions randomly generated [29]. Feasibions made of dis-
jointed regions are also difficult to handle, in particulgrgradient-based methods.
Stochastic methods are in general well succeeded whemgdhis type of difficult
problems. Different constrained search spaces have nedithe development of
a variety of constraint-handling techniques. The threennctasses of methods to
handle constraints are:

e methods that use penalty functions;
e methods based on biasing feasible over infeasible sokjtion
e methods that rely on multi-objective optimization concept

We refer the reader to [34, 54] and to the references theféiere are also other
techniques that aim at repairing infeasible solutions.6@],[a method that uses
derivative information from the constraint set to repafeasible points is proposed
in a hybrid particle swarm optimization context.

Penalty function-based methods are the most well-knowssotd methods to
handle constraints in nonlinear optimization problemseskntechniques transform
the constrained problem into a sequence of unconstrainggrabiems by penal-
izing the objective functiorf whenever constraints are violated. Then, the goal is
to force constraint violation to zero — adding a positive gization in minimiza-
tion problems, or subtracting a positive penalization irximézation problems. The
penalty method relies on a penalty function as the objeétinetion of the problem
which depends offi, on a penalty term and a (at least one) positive penalty param
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ter. This is an iterative process where the solutions of tieenstrained subproblems
are approximations to the solution of the constrained gmbl

To solve the constrained MPP in the form presented in (1),estimeory and
practice of penalty methods is addressed in the remainirigopthis section.

3.1 The penalty function method

A variety of sophisticated penalties exist in the class afighy function meth-

ods [20, 36, 57]. They are developed to address efficiendlyighue related with
constraint-handling in problems with different structignd types of constraints.
Additive penalties define a penalty function of the form

PO H) = F(x) =2 (9(x), 1) (10)

where f(x) is the objective function in problem (1) an@¥, known as the penalty
term, depends on the constraint functigiig) and a positive penalty parameter
The penalty term should be zero when the point is feasiblattp(x; 1) = f(x),
and is positive when the point is infeasible. The penaltynteims at penalizing
constraint violation directing the search towards theifdasegion and at the same
time looking upwards for a point with the largefstOn the other hand, multiplicative
penalties have the form

o6 1) = T(X) Pmur(9(X), 1)

where Znuit(9(x), 1) is a function that should take the value one when the point is
feasible and smaller than one for infeasible points. Tremispecial rule to design

a penalty function. Experiments show that penalties thaedd on the distance
from feasibility are better than those that rely on the nundb&iolated constraints
alone.

Different penalty terms have been devised including thehdesiatic, dynamic,
annealing and adaptive penalties. Death and adaptivetjg=nate appropriate for
population-based stochastic algorithms. Death penaltg dot require any penalty
parameter although can be computationally expensivegnyiriind feasible points
when the problem is highly constrained. Static penaltieaataddepend on the cur-
rent iteration number and a constant value is set to all gifid& points. With a dy-
namic penalty, the penalty parameter increases with thatibe number and with
the distance to feasibility. Most of the time, the dynamiogléy term also relies on
other parameters that depend on the problem at hand, andat &n easy task to
determine the best values for those parameters. Well stdedegpplications of dy-
namic penalties within particle swarm optimization al¢fums appear in [30, 41].
Annealing penalties depend on a parameter known as terapetaat approaches
zero as iterations proceed. In methods based on adaptiadtipsnthe penalty pa-
rameters are updated every iteration according to infaomajathered from the
whole population of points. Adaptive penalties are propase[5] in conjunction
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with a genetic algorithm. A penalty adapting algorithm ug&ith an ant colony op-
timization aiming at eliminating the need for trial-anderpenalty parameter de-
termination is proposed in [1]. We refer to [9] for detailsicerning these penalties,
advantages and drawbacks during implementation.

Another common classification of penalty functions in diesisoptimization is
based on interior and exterior penalty functions [6, 7].€xtr penalties are used
more often than interior penalties since an exterior pgiiatiction does not require
an initial feasible point to start the iterative processitkermore, algorithms based
on interior penalty functions are more complex since allegated points should
be maintained inside the feasible region throughout theleviterative process. A
well-known interior penalty is the logarithmic barrier fttion and works only with
inequality constraints.

Here, we are specially interested in exterior penalty fiomst of the additive
type. Three different penalty functions are described astet with a benchmark
set of problems. Although setting the initial value for ttenplty parameter as well
as its updating scheme are usually critical in algorithnedgrmance, they are not
yet well-defined issues. Nevertheless these issues aressgdr since convergence
to the solution is to be promoted and accelerated. Thusigletacerning the most
appropriate strategies for updating the penalty and otiatad parameters are pre-
sented.

Our implementation of the penalty framework aims to pemadialy the inequal-
ity constraints. Each subproblem of the sequence thatveddor a fixed value of
the penaltyu is the bound constrained multilocal optimization problem

max @(x; 1)
sthi<x<u,i=1,..,n (11)

To illustrate the effect on the penalty functignas the penalty parameter in-
creases, a one-dimensional example is used.

Example 6. Consider the problem
maxf(x) = e —x* s.t. x< 1andx e [-5,5].

Figure 8 shows on the left plot the penalty functignthat depends on the penalty
term Z2(x, u) = pmax{0,x — 1} and on the right plot they that depends on the
penalty term? (x, 4) = u(max{0,x— 1})?, for the three values gf = 1,10,100.
As it can be seen, in the feasible regiorb, 1], the penalty function coincides with
f(x), the functiong is smoother ax = 1 (the solution of the problem) thagm, and
the larger theu the more difficult the problem is.

L1/> penalty function. A variant of a dynamic nonstationary penalty function is
herein used to solve constrained MPP [30, 41]. In these paparticle swarm op-
timization algorithms are implemented in conjunction witie penalty technique.
The penalty term of the herein simplified variant, denotedibypenalty function,

is defined as
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Fig. 8 Plot of f(x) and¢ (on the left) andp, (on the right) relative to Example 6.

(max{O, 9i (X)})V(QJ (x)) (12)

Mz

Prjp(xH) =
1

J

where the power of the constraint violatigr, ), may be a violation dependent con-
stant. The simplest approach sgfs) = 1 if z< 0.1, andy(z) = 2, otherwise. This is

a nonsmooth function and derivative-free methods shoulaippdied when solving
problem (11). Unlike the suggestions in [30] and [41], thaglty parameter in (12)

will not be changing dynamically with the iteration numbBs.define an appropriate
updating scheme fqt one has to consider a safeguarded scheme to prevent the sub-
problems (11) from becoming ill-conditioned as the penpitgameter increases [7].

An upper boundinax is then defined and the update is as follows:

pktl = min{ruk, umax} , for T > 1 andpmax >> 1, (13)

given an initial valueu® > 0, wherek represents the iteration counter. Thus, the
sequence of solutionsc*(1X)}, from (11), will converge to the solutiox® of (1)
and@(x*(u*); uk) — f(x*) ask — oo,

Lo-exponential penalty function. We now extend the use of a continuoys |
exponential penalty function to the constrained multilamatimization problem.

This penalty function was previously incorporated into duation-type method for
solving semi-infinite programming problems [43]. The pén&drm depends on the
positive penalty parametgr and other two fixed positive parametexs v,:

exp _ VA (o0 1) o V2 (o0 _ 1)
P5P(x,v1, V2, 1) m (e“ 1>+ > (e“ 1) , (14)

wheref(x) = maxj—1,...m[gj (X)]+ and theg; (x)] - represents mgX, gj(x) }. Clearly

6(x) is the infinity norm of the constraint violation. The tuninftbe penalty pa-
rameter previously described in (13) also applies to thisfig function.
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Hyperbolic penalty function. Another proposal uses the 2-parameter hyperbolic
penalty function [56]. This is a continuously differentiafiunction that depends on
two positive penalty parameters, in general different facheconstraintpy j and

p2j, j=1,...,m

@hypxul,uz Zﬂljgj JF\/IJ“ [9j(x +U22’j~ (15)

This penalty is made to work as follows. In the initial pha$¢he processy in-
creases, causing a significant increase of the penalty eddiifle points, while a
reduction in penalty is observed for points inside the fdasiegion. This way the
search is directed to the feasible region since the goal msibdmize the penalty.
From the moment that a feasible point is obtained, the pempatametens, de-
creases. Thus, the parametgiis and . ; are updated, for each=1,...,m, as
follows:

k+1 k+1

ptt = Tl“l, andustt = uzj, if max{0,g;(x)} >0
Poj™ = T2 “21 andpyj” = ulj, otherwise

foreachj=1,...,m, wherer; > 1 andt, < 1.

Multilocal penalty algorithm. The multilocal penalty (MP) algorithm can be im-
plemented using the stretched simulated annealing ahgorithen solving subprob-
lem (11), or the multilocal BB, both previously describedimbsections 2.1 and 2.2
respectively. Details of the main steps of the algorithmsira@wn in Algorithm 4.
The algorithm is described for the simpler penalty functisee (12). Adjustments
have to be made when the penalty functions (14) and (15) &k us

Algorithm 4 MP algorithm

Given: U°, tmax T, %, £0, Emax. Setk =0
While the stopping conditions are not no
Setlk =0 andj =

Whileinner stopping conditions are not na

AN R

4.1Setp=0andj=j+1 _
4.2 Computeq-“(uk) = arg max<y<y @ (x; 1¥) using Algorithm 2 or Algorithm 3
4.3While ‘(pj (x]*(uk)#k) — Gnax| < & OT A > gmax do

Setp= p+1andA = pg

Randomly generatg € Vi (X ) i=1...,2n

Find (pmaxfmax 1., Zn{(P](Xl H )}
4.4Set k=14 1andg =

5: p*¢t = min{ Tk, tmax}
6: SetX* « X*(u¥)andk=k+1
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3.2 Numerical experiments

Here, we aim to compare the effectiveness of the SSA algonithen coupled with
a penalty function method to compute multiple solutionse @bove listed penalty
functions, | , penalty, b-exponential penalty and the hyperbolic penalty are tested

Stopping conditions. The stopping conditions for the multilocal penalty algionit
are:
Hx*(uk) _x*(ukfl)H < & or k> Kmax (16)

and the inner iterative process (in Step 2 of Algorithm 4jnieates ifLX does not
change for a specified number of iteratiokg,, or a maximum number of function
evaluations is reachedfmax.

Setting parameters. In this study the selected values for the parameters rekulte
from an exhaustive set of experiments. Here is thedjst: 102, kmax= 1000 and
the parameters for the b penalty function ar@l® =10, tmax= 10° andt = 10. The
parameters used in thg-éxponential penalty function arg = 100 andv, = 100.
The parameters used in the Hyperbolic penalty functionpé’yje: ugj =10 for

j=1,....m 11 = V10 andt, = 0.1. The parameters of the SSA algorithm are
set as followsdy = 5.0, &g = 0.1, &max = 1.0, Kjter = 5 andnfpnax = 100 000. The
problems were solved in a Inter Core 2 Duo, T8300, 2.4 GHz wiBB of RAM.

Experiments. For the first part of our comparative study, we use a well-kmow
problem described in Example 7.

Example 7. Consider the camelback objective function
f(X) = —(4—2.2¢ +x7/3)%5 — xpxo + 4(1— x3)%5

which has four local maxima and two minima in the s&@ < x; < 2,i =1,2. The
two global maxima are located at (0.089482, -0.712656) ah@i§9482, 0.712656).
Here, we define the constrained problem:

max f(x)
SLY(X) =X+ (xp—1)2-4<0, (17)
—2<x<2i=172

and illustrate the behavior of the MPA when using SSA alganito solve the bound
constrained subproblems. Figure 9 shows the 3D plot anduotihes of f (x) as
well as ofg(x) < 0. This nonconvex problem has three maxima in the interithef
feasible region.

The problem in (17) was solved using the MP algorithm comiiwéh the hyper-
bolic penalty function. The method identified two globakga@nsx; = (—8.984E —
02,7.1266E —01)T andx; = (8.984E — 02, —7.1266E —01) " with the global value
1.031€ + 00. The local maximizer = (—1.703€E + 00,7.960& — 01)T with
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Fig. 9 Plot of f(x) andg(x) < 0 in Example 7.

value f(x3) = 2.154& — 01 was also detected. To solve this problem, the MP al-
gorithm needed 24 seconds of CPU time and 10535 functions evaluations, both
average number in 30 runs.

To further analyze the performance of the multilocal pgnalgorithm when
coupled with SSA, a set of six benchmark problems, desciib&dl detail in [29],
is used. In this study, small dimensional problems<(10 andm < 13) with a
nonlinear objective function, simple bounds and inequaliinstraints were tested.
They are known in the literature as g04, g06, g08, g09, g12yd8d Details of the
selected problems are displayed in Table 4, where ‘Probiefers to the problem
number, ‘type off (x)’ describes the type of objective functiorfyp-global’ is the
known global solution (all are minimization problems)s the number of variables
andmis the number of inequality constraints.

Table 4 Details of the constrained problems selected from [29].

Problem type off (x) fopt-global n m
go4 quadratic —3.066FE+04 5 6
g06 cubic —6.961&+03 2 2
g08 general —9582F-02 2 2
g09 general BO6E+02 7 4
gl2 quadratic DOOE+00 3 1
gls quadratic —8.660F—-01 9 13

Table 5 contains the results obtained with the penaltigs,, 225" ° and 2P,
when combined with the SSA algorithm. THé is the best solution found for the
global minimum during all the 30 runefae\‘,’g' indicates the average number of func-
tion evaluations required to obtain the global minimum ¢ave 30 runs) andg
represents the number of solutions identified by the algorit



Multilocal Programming and Applications 23

Table5 Results for the MP algorithm, combined with SSA.

P 75 a0

f* n fg\\,lgl Nsol f* n fg\\,/gal Nsol f* n fae\\,lgl Nsol

g04 -—-3.067+04 156154 12 -3.067+04 62337 1 —-3.067+04 18352 1
g06 —6.962E4+03 27550 1 —6.96E 403 6472 1 —696XE+403 15766
g08 —9.58E —-02 79771 5 -958%FE-02 67753 5 —9.58%FE -02 8624
g09 G787E+02 309719 1 &87E+02 183806 1 &87E+02 117638
gl2 1000E+00 202219 1 DOCE+00 302134 1 DOCE+00 313211
g18 —8.660E—-01 945000 2 —8.660E—-01 845375 4 —8.660E—-01 339213

N L

3.3 Synopsis

We have described some important issues related with thHefmgmtation of penalty
function methods in classical optimization. A proposalueed on a penalty frame-
work is shown when multiple solutions of constrained optiaion problems are
required. Three penalty functions have been presentediaodsded. The numeri-
cal results obtained when the penalty function method ig tg&olve constrained
MPP are reported. A comparison between the three penalttifuns is included.
The subproblems that emerge from the multilocal penalBtetyy are bound con-
strained MPP and they may be solved by the two proposed giateeither the
stretched simulated annealing algorithm or the multil&Rlalgorithm. However,
the numerical experiments reported in this section use tRealgdorithm which re-
lies on the stretched simulating annealing, since this i&bthe most efficient ver-
sion. Last, we have shown that the penalty function methadfféxtive in solving
constrained MPP, in particular when some penalty functareaised.

4 Engineering Applications

In the last part of the chapter, a real-world application aefitiftocal programming
in the engineering field is presented. Phase stability stugiie multilocal program-
ming problems frequently found in the chemical engineedren with special in-
terest in process design and optimization. These studitts surrent subject for
scientists and engineers, are specially difficult, sinedeasible region is very small
and not convex. In this section the mathematical formutatibthe problem is ini-
tially given as well as a very brief summary of the strategied optimization tech-
nigues used so far. Following, some numerical results asemted and discussed,
and the main findings outlined.
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4.1 Phase stability

Separation processes are fundamental and ubiquitoustigpesrén the chemical

based industries. However, to design and optimize suchapaoperations, ther-
modynamic equilibrium conditions must be known. A sevebpgm causing enor-
mous difficulties in this regard is that the number and idgraf phases present
at equilibrium are generally not known [46], which makes sghatability analysis

obligatory. At a fixed temperature, pressure and global asitipn the problem is,

therefore, to evaluate if the system is globally stablendigg the separation in two
or more liquid phases.

The phase stability criteria based on the Gibbs free endrgwang, or derived
properties, are multiple, but the minimization of the tamgglane distant function
(TPDF), firstly proposed by Baker et al. [4], and first implementgdMiichelsen
[35], is usually applied, and accepted to be a reliable andrpanethodology for
stability studies. Considering the Gibbs free energy ofingxAG) of a multi-
component mixture, at a given temperatuf§ &and pressureR), to be described
asAg(x) = % = f(T,Px), wherex is the vector o mole fraction compositions
characterizing that mixture ariRlis the ideal gas constant. For an initial feed com-
position,z, at a fixed system pressure and temperature, the tangeet @ipmmtion
(Agp) at that point is:

Agip(x) = Ag(2) +i (00‘;?)

In this way the tangent plane distance functid®?DF) is calculated by:

(X —z).

X=z

TPDF (x) = Ag(X) — AGip(X).

Among the several thermodynamic models possible to appif,INmodel [47] is
one of the most successful in the representation of equilibproperties of mul-
ticomponent liquid mixtures, and is frequently found in goarcial software for
process simulation and design. Therefore, NRTL model ie bpplied for which:

n
N ZTjiGjin

Ag= iixim(xi)-i-iZXi ,=1n7

> Giix
]

wheret;; andGj; are interaction parameters between compongaisli, calculated
by Gji = exp(—ai;iT;i), beinga the non-randomness parameter. They are all readily
available in the open literature.

To evaluate if a mixture of a given global composition showage instability
the following nonlinear multilocal optimization problemust be solved:
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min TPDF (x)
s.t. i(x;) -1=0
I():gxi <1 and i=1,...,n

The necessary and sufficient condition for stability is #itahe global minimum the
TPDF(x) function is nonnegative. Phase instability will be obsdre¢herwise. In

that event the following step is to find the number of phasesjinilibrium as well

as the composition of each phase.

Due to the mathematical complexity of the thermodynamic et&dthe mini-
mization of theT PDF and location of all the stationary points are demandingstask
requiring robust numerical methods, since these functiwesmultivariable, non-
convex, and highly nonlinear [8]. Strictly speaking, to ckhehase stability only
the global minimum is needed. However, the identificatioalb$tationary points is
very important because the local minimaliPDF are good initial guesses for the
equilibrium calculations [13, 49].

Floudas and Gounaris [16] have very recently reviewed wdiffestrategies and
optimization techniques for phase stability and phase libguim calculations.
Thus, only aspects of relevance for the optimization metfzodi examples explored
in this section are briefly mentioned. In fact, the vast mgjosf the researchers
state that many techniques are initialization dependemnt,naay fail by converg-
ing to trivial solutions or be trapped in local minima [8, 11, 33, 49], features
which are under attention in the numerical examples givehérfollowing pages.
Hence, the performance analysis of new numerical techsigustill of enormous
importance concerning phase stability and equilibriaistid

Particularly, several variants of the simulated anneatieghod have been widely
applied, and importantly studies have been performed coimge the so-called
‘cooling schedule’, by fixing the control parameters to tlestbsalues [13, 46, 58,
66]. Naturally, a compromise must be made between efficiancyreliability, an-
alyzing the probability of obtaining the global minimum it a reasonable com-
putational effort. On the other hand, a branch and boundristhgo has been used
with several thermodynamic models [59, 65]. These authaimahat it can solve
effectively the global stability problem, but only a few dieis have been carried out.

Due to space limitations only two relevant examples are noeggnted using
SSA.

Example 8. Consider the binary system water (1) + butyl glycol (2) 8€5 It might
seem a simple example, but this is a canonical example, wheltgple stationary
points and local solutions can be found. Additionally, fome compositions, in [37]
it was concluded that the stationary points found in [17jngshe interval Newton
method, are not true roots as shown by the simulated angeakthod.

The NRTL parameters used in the calculations are given ite®lwhile Table 7
compiles the results obtained at four different global cosifonsz.

Confirming the results from [37], at the first two compositg@mly one stationary
point was found, giving the indication that only one liquitlgse will be formed. On
the contrary, the other two compositions present a negatiltee of theTPDF at
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Table6 NRTL parameters in Example 8 [17].

Components i ] Tij Tji aij = aji

water/butyl glycol 1 2 1.2005955 1.4859846 0.121345

Table 7 Numerical results for the binary system water + butyl glycol.

z CPU(s) f* X"

(5.00E-02, 9.50E-01) 0.22  0.0000E+00 (5.00E-02, 9.50E-01
(1.00E-01, 9.00E-01) 0.27  0.0000E+00 (1.00E-01, 9.00E-01
(2.50E-01, 7.50E-01) 0.30  -9.2025E-02 (8.79E-01, 1.21F-0
0.0000E+00 (2.50E-01, 7.50E-01)
8.4999E-05 (2.96E-01, 7.04E-01)
(5.00E-01, 5.00E-01) 0.20  -3.4091E-02 (1.43E-01, 8.5TF-0
-2.7355E-02 (8.36E-01, 1.64E-01)
0.0000E+00  (5.00E-01, 5.00E-01)

the global minimum, suggesting phase instability. At thabgl composition (0.25,
0.75) it must be noted the closeness of two stationary poiiigch can introduce
difficulties when applying the stretched technique as wetha small magnitude of
the function at the stationary point. The performance of3B8& can be assessed by
verifying that all the 30 runs converge to the function va(fi&) at the stationary
point (x*). It also must be stressed that the average time is muchromifchen
comparing with the results in [37] and [17].

Example 9. Consider now the ternary system n-propanol (1) + n-buta2jot (wa-
ter (3) at 25°C. The NRTL parameters needed are compiled in Table 8.

Table8 NRTL parameters in Example 9 [66].

Components i j Tij Tji aij = ajj

propanol/butanol 1 2 -0.61259 0.71640 0.30
propanol/water 1 3 -0.07149 2.74250 0.30
butanol/water 2 3 0.90047 3.51307 0.48

This is also a reference system in the study of phase stalpitiesenting, like in
the previous example, multiple stationary points. Tableesents a complete list of
the results found for two global compositions. In both cakes PDF function is
negative indicating phase splitting. It must again be strdshe closeness of some
stationary points and the very small magnitude of the famctirhe average time
although longer than in the previous example is still verijarm.
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Table9 Numerical results for the ternary system n-propanol + n-butanedter.

z CPU(s) f* X"

(1.20E-01, 8.00E-02, 8.00E-01) 2.42 -7.4818E-04 (5.92ZF2B2E-02,9.12E-01)
-3.0693E-06 (1.30E-01, 8.91E-02, 7.81E-01)
0.0000E+00 (1.20E-01, 8.00E-02, 8.00E-01)

(1.30E-01, 7.00E-02, 8.00E-01) 2.34 -3.2762E-04 (7.38E3M3E-02, 8.96E-01)
-8.6268E-07 (1.38E-01, 7.56E-02, 7.87E-01)
0.0000E+00 (1.30E-01, 7.00E-02, 8.00E-01)

4.2 Synopsis

The phase stability of two mixtures was studied at differglobal compositions
using the SSA algorithm. It proved to be very reliable andustleven in the cases
where the stationary points are very close. Additionallyas possible to find short
CPU times for all the seven conditions investigated. Theltegound so far will
soon be checked and extended to compositions near to thegiai and to systems
containing three liquid phases, hardly even considereld §t8 quaternary systems
with multiple stationary points.

References

1. Afshar, M.H.: Penalty adapting ant algorithm: applicatiompipe network optimization. Eng.
Optim. 40, 969-987 (2008)

2. Alefeld, G., Mayer, G.: Interval analysis: theory and agggiions. J. Comput. Appl. Math. 121,
421-464 (2000)

3. Ali, M.M., Gabere, M.N.: A simulated annealing driven mudtart algorithm for bound con-
strained global optimization. J. Comput. Appl. Math. 233, 28674 (2010)

4. Baker, L.E., Pierce, A.C., Luks, K.D.: Gibbs energy analydiphase equilibria. Soc. Petrol.
Eng. J. 22, 731-742 (1982)

5. Barbosa, H.J.C., Lemonge, A.C.C.: An adaptive penalty metbodenetic algorithms in
constrained optimization problems. In: Iba H. (ed.) FrontiefSvolutionary Robotics, I-Tech
Education Publ., Austria (2008)

6. Bertsekas, D.P.: Constrained Optimization and Lagrangeipliait Methods. Academic
Press, New York (1982)

7. Bertsekas, D.P.: Nonlinear Programming, 2nd edition. Atigmentific, Belmont (1999)

8. Bonilla-Petriciolet, A., \Asquez-Roian, R., Iglesias-Silva, G.A., Hall, K.R.: Performance of
stochastic global optimization methods in the calculation afsghanalyses for nonreactive
and reactive mixtures. Ind. Eng. Chem. Res. 45, 4764-4772 (2006)

9. Coello, C.A.C.: Theoretical and numerical constraintetiaug techniques used with evolu-
tionary algorithms: a survey of the state of the art. TechnicpldR€48 pages), CINVESTAV-
IPN, Mexico (2002)

10. Coope, I.D., Watson, G.A.: A projected Lagrangian atgamifor semi-infinite programming.
Math. Program. 32, 337-356 (1985)

11. Csendes, T.,&, L., Sendh, J.0.H., Banga, J.R.: The GLOBAL optimization method revis-
ited. Optim. Lett. 2, 445-454 (2008)



28

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A. . Pereira, O. Ferreira, S. P. Pinho and E. M. G. P. Fetean

Fanelli, S.: A new algorithm for box-constrained globgafimization. J. Optim. Theory Appl.
149, 175-196 (2011)

Ferrari, J.C., Nagatani, G., Corazza, F.C., Oliveira,, Oérazza, M.L.: Application of
stochastic algorithms for parameter estimation in the liquidiigphase equilibrium mod-
eling. Fluid Phase Equilib. 280, 110-119 (2009)

Finkel, D.E., Kelley, C.T.: Convergence analysis of thREECT algorithm. Optim. Online 14,
1-10 (2004)

Floudas, C.A.: Recent advances in global optimizatiopfocess synthesis, design and con-
trol: enclosure all solutions. Comput. Chem. Eng. 23, S963-S8939)

Floudas, C.A., Gounaris, C.E.: A review of recent advategobal optimization. J. Glob.
Optim. 45, 3-38 (2009)

Gecegormez, H., Demirel, Y.: Phase stability analysis usitegvial Newton method with
NRTL model. Fluid Phase Equilib. 237, 48-58 (2005)

Guo, M., Wang, S., Repke, J.U., Wozny, G.: A simultaneous oadthr two- and three-liquid-
phase stability determination, AIChE J. 50, 2571-2582 (2004)

Hansen, E.R., Walster, G.W.: Global Optimization UsingrirgeAnalysis. 2nd edition, Mar-
cel Dekker, Inc., New York (2004)

Hendrix, E.M.T., G.-6th, B.: Introduction to Nonlinear and Global Optimizati@pringer,
New York (2010)

Horst, R., Tuy, H.: Global Optimization: Deterministic Appches, 3rd edition. Springer,
Berlin (1996)

Ingber, L.: Very fast simulated re-annealing. Math. Comblatdel. 12, 967-973 (1989)
Ingber, L.: Simulated annealing: practice versus thedgth. Comput. Model. 18, 29-57
(1993)

Ingber, L.: Adaptive simulated annealing (ASA): lessongnled. Control Cybern. 25, 33-54
(1996)

Jones, D.R., Perttunen, C.C., Stuckman, B.E.: Lipschitgéimization without the Lipschitz
constant. J. Optim. Theory Appl. 79, 157-181 (1993)

Jones, D.R.: Direct global optimization algorithm. In: Fles, C.A., Pardalos, P.M. (eds.)
Encyclopedia of Optimization, pp. 725-735. Springer (2009)

Kiseleva, E., Stepanchuk, T.: On the efficiency of a glotmai-differentiable optimization
algorithm based on the method of optimal set partitioning. J. Gdgitim. 25, 209-235 (2003)
Ledn, T., Sanmatias, S., Vercher, E.: A multilocal optimizatiagoaithm. TOP 6, 1-18 (1998)
Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, Wathan, P.N., Coello, C.A.C.,
Deb, K.: Problem definitions and evaluation criteria for @&C2006 special session on con-
strained real-parameter optimization. Technical Report§p00

Liu, J.L., Lin, J.H.: Evolutionary computation of uncongted and constrained problems
using a novel momentum-type particle swarm optimization. Engin®®9, 287-305 (2007)
Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-baseglobal optimization algorithm. J. Glob.
Optim. 48, 113-128 (2010)

McDonald, C.M., Floudas, C.A.: Global optimization foetbhase stability problem. AIChE
J. 41, 1798-1814 (1994)

McDonald, C.M., Floudas, C.A.: Global optimization foetphase and chemical equilibrium
problem: application to the NRTL equation. Comput. Chem. EAg1111-1139 (1995)
Michalewicz, Z.: A survey of constraint handling techrégun evolutionary computation
methods. Proceedings of the 4th Annual Conference on EvolryoProgramming pp. 135-
155 (1995)

Michelsen, M.L.: The isothermal flash problem. Part |. Stgbifluid Phase Equilib. 9, 1-19
(1982)

Mieltinen, K., Makeh, M.M., Toivanen, J.: Numerical comparison of some penalty-based
constraint handling techniques in genetic algorithms. J. Gbim. 27, 427-446 (2003)
Nagatani, G., Ferrari, J., Cardozo Filho, L., Rossi, C.&€.,Rsuirardello, R., Oliveira, J.V.,
Corazza, M.L.: Phase stability analysis of liquid-liquid didmium with stochastic methods.
Braz. J. Chem. Eng. 25, 571-583 (2008)



Multilocal Programming and Applications 29

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Parsopoulos, K.E., Plagianakos, V., Magoulas, G., Vrahatis,: Objective function stretch-
ing to alleviate convergence to local minima. Nonlinear AAdl. 3419-3424 (2001)
Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches dbagloptimization problems
through particle swarm optimization. Nat. Comput. 1, 235-308)@)

Parsopoulos, K.E., Vrahatis, M.N.: On the computation aflalbal minimizers through par-
ticle swarm optimization. IEEE Transaction on Evolutionaryn@utation 8, 211-224 (2004)
Petalas, Y.G., Parsopoulos, K.E., Vrahatis, M.N.: Memetitigd@a swarm optimization. Ann.
Oper. Res. 156, 99-127 (2007)

Pereira, A.l.LP.N., Fernandes, E.M.G.P.: On a reductiendearch filter method for nonlin-
ear semi-infinite programming problems. In: Sakalauskas, L., Web®V,, Zavadskas, E.K.
(eds.) Euro Mini Conference Continuous Optimization and Kiedge-Based Technologies,
pp. 174-179 (2008)

Pereira, A.l.LP.N., Fernandes, E.M.G.P.: Numerical expmits with a continuous J-
exponential merit function for semi-infinite programming. Imm®s, T.E., Psihoyios, G. (eds.)
International Electronic Conference on Computer Sciende,\l. 1060(1), pp. 1354-1357,
Springer-Verlag (2008)

Pereira, A.l.LP.N., Fernandes, E.M.G.P.: A reduction otfhr semi-infinite programming by
means of a global stochastic approach. Optim. 58, 713-726 (2009)

Pereira, A.l.LP.N., Fernandes, E.M.G.P.: Constrainedgiolbal optimization using a penalty
stretched simulated annealing framework. In: Simos, T.E., PiBp@., Tsitouras, Ch. (eds.)
Numerical Analysis and Applied Mathematics, AIP Vol. 1168, pp54-1357, Springer-
Verlag (2009)

Rangaiah, G.P.: Evaluation of genetic algorithms and sitedlannealing for phase equilib-
rium and stability problems. Fluid Phase Equilib. 187-188, 83-2001)

Renon, H., Prausnitz, J.M.: Local compositions in thermoayoaxcess functions for liquid
mixtures. AIChE J. 14, 135-144 (1968)

Sepulveda, A.E., Epstein, L.: The repulsion algorithm, & naultistart method for global
optimization. Struct. Multidiscip. Optim. 11, 145-152 (1996)

Tessier, S.R., Brennecke, J.F., Stadtherr, M.A.: Relipbbese stability analysis for excess
Gibbs energy models. Chem. Eng. Sci. 55, 1785-1796 (2000)

Tsoulos, L.G., Lagaris, |.E.: MinFinder: locating all toedl minima of a function. Comput.
Phys. Commun. 174, 166-179 (2006)

Tu, W., Mayne, R.W.: Studies of multi-start clustering feotzal optimization. Int. J. Numer.
Methods Eng. 53, 2239-2252 (2002)

Voglis, C., Lagaris, |.E.: Towards "Ideal Multistart”. A stwastic approach for locating the
minima of a continuous function inside a bounded domain. ApplthiM&omput. 213, 216-
229 (2009)

Wang, Y.J.: Derivative-free simulated annealing and defigdunction technique for global
optimization. J. Appl. Math. Comput. 1-2, 49-66 (2008)

Wang, Y., Cai, Z., Zhou, Y., Fan, Z.: Constrained optimi@abased on hybrid evolutionary
algorithm and adaptive constraint-handling techniqueisctMultidiscip. Optim. 37, 395-413
(2008)

Wu, 2.Y., Bai, F.S., Lee, HW.J., Yang, Y.J.: A filled furariimethod for constrained global
optimization. J. Glob. Optim. 39, 495-507 (2007)

Xavier, A.: Hyperbolic penalty: a new method for nonlinpeogramming with inequalities.
Int. Trans. Oper. Res. 8, 659-671 (2001)

Yeniay,O.: Penalty function methods for constrained optimizatiorhvgienetic algorithms.
Math. Comput. Appl. 10, 45-56 (2005)

Yushan, Z., Zhihong, X.: A reliable method for liquid-liguphase equilibrium calculation
and global stability analysis. Chem. Eng. Commun. 176, 113-1689(19

Yushan, Z., Zhihong, X.: Calculation of liquid-liquid @tjorium based on the global stability
analysis for ternary mixtures by using a novel branch and bolgatithm: application to
UNIQUAC Equation. Ind. Eng. Chem. Res. 38, 3549-3556 (1999)

Zahara, E., Hu, C.H.: Solving constrained optimizatiasbpgms with hybrid particle swarm
optimization. Eng. Optim. 40, 1031-1049 (2008)



30

61.

62.

63.

64.

65.

66.

A. . Pereira, O. Ferreira, S. P. Pinho and E. M. G. P. Fetean

Zhang, X., Liu, S.: Interval algorithm for global numetioptimization. Eng. Optim. 40, 849-
868 (2008)

Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimipat Optimization and Its Applica-
tions, Springer (2007)

Zhu, W.: A class of filled functions for box constrained @oabus global optimization. Appl.
Math. Comput. 169, 129-145 (2005)

Zhu, W., Ali, M.M.: Solving nonlinearly constrained glaloptimization problem via an aux-
iliary function method. J. Comput. Appl. Math. 230, 491-5030q2p

Zhu, Y., Inoue, K.: Calculation of chemical and phase dgpiuim based on stability analysis
by QBB algorithm: application to NRTL equation. Chem. Eng.. 56i, 6915-6931 (2001)
Zhu, Y., Xu, Z.: A reliable prediction of the global phasatslity for liquid-liquid equilibrium
through the simulated annealing algorithm: application to NRfd UNIQUAC equations.
Fluid Phase Equilib. 154, 55-69 (1999)



