
Server to Mobile Device Communication: A
Case Study

Ricardo Anacleto, Lino Figueiredo, Ana Almeida and Paulo Novais

Abstract When we want to implement a client-server applications we must con-
sider the mobile devices limitations. So, in this paper we discuss what can be the
more reliable way to exchange information between a server and an Android mobile
application, since it is important for users to have an application that really works
in a responsive way and preferably without any errors. In this discussion two data
transfer protocols (Socket and HTTP) and to serialize data three different data struc-
ture formats (XML, JSON and Protocol Buffers) were tested using some metrics to
evaluate which is the most practical and fast to use.

Key words: Client-Server Communication, Mobile Applications, Protocol Buffers,
Performance

1 Introduction

It’s clear that mobile devices still have several limitations (network traffic and bat-
tery consumption) compared to traditional computers that must be considered when
developing a mobile application. It was based on these limitations that led us to the
question: Which is the best way to exchange information between a server and a
mobile client in order to minimize these limitations?

This question started to appear when we were developing a mobile application
PSiS (Personalized Sightseeing Planning System) Mobile to support a tourist when
he is on vacations - more information about PSiS Mobile can be seen in section 2.

Ricardo Anacleto, Lino Figueiredo and Ana Almeida
GECAD, Knowledge Engineering and Decision Support Research Center, at School of Engineer-
ing of the Polytechnic Institute of Porto, Porto, Portugal, e-mail: {rmsao,lbf,amn}@isep.ipp.pt

Paulo Novais
CCTC - Computer Science and Technology Center, at University of Minho, Braga, Portugal e-mail:
pjon@di.uminho.pt

1



2 Ricardo Anacleto, Lino Figueiredo, Ana Almeida and Paulo Novais

In order to work this mobile application needs tourist data (profile and recommen-
dations) stored in the server application.

To answer this question, in section 3, we present the performed case study. This
case study involves the transfer of points of interest from the server’s database into
the mobile device database using different technologies and based in some metrics
to evaluate the results and understand what is the more appropriate to use. Section 4
presents an analysis and discussion about the obtained results. Finally, in section 5
we present some conclusions about the case study results

2 Case Study Context

The necessity to discover which is the best transfer protocol and data serialization
format to transfer information between a server and a mobile application came when
we were developing PSiS Mobile. This mobile application appears on the context
of PSiS, which is a web application that aims to define and adapt a visit plan com-
bining, in a tour, the most adequate tourism products (interesting places to visit,
attractions, restaurants and accommodations) according to the tourists specific pro-
file (which includes interests, personal values, wishes, constraints and disabilities)
and available transportation system between different locations [1].

PSiS Mobile is composed by three pieces (see figure 1), the server-side, the mid-
dleware and the mobile client. In the server we have a complete database with all
the information about points of interest in a certain city/region and a complete user’s
portfolio. The middleware was implemented to enable the communication between
the server side and the mobile application.

The mobile client is a very important piece in this system, because it is the bridge
between the central services and the user visits. With a mobile device, the user can
see the generated planning and information about the nearby sights to visit, which
are recommended according to his profile and current context. Trip planning can be
re-arranged according to current context.

Since PSiS Mobile is an occasionally connected application, a temporary database
is used on the mobile device to enable the access to parts of the data without being

Fig. 1 PSiS Architecture Overview.



Server to Mobile Device Communication: A Case Study 3

constantly consuming network traffic, allowing the application to work without an
internet connection (with some limitations, like no access to new points of interest).

After requesting a recommendation for a trip, all the necessary data is transferred
from the server and stored on the mobile device. We find this to be necessary, be-
cause of the mobile Internet low speed rates and its possible unavailability. When we
say necessary data, we mean, the information about all the points of interest present
on the planning schedule, and other points of interest nearby the first ones.

What we pretend to do in this case study is to test the data transfer performance
between the PSiS server application and the mobile one. To do this we have trans-
ferred points of interest data between the two sides. Each point of interest is rep-
resented by 13 data fields where each one is formatted as a string field. The field
which contains more data is the description, which in some cases can have more
than 1000 characters. Each point of interest has about 600 Bytes of data.

Since we were developing the application to be used by an Android mobile de-
vice, we run the client application in a Google Nexus S with Android 4.1 and a
normal notebook PC was used as server. Both were connected to the same IEEE
802.11g network. To determine what is the best technique to perform the data ex-
change, five metrics were used:

• Process Duration, includes server request, data transfer, deserialization and data
record on local database. Important to realize which is the fastest technique;

• Average CPU load, important to see which system resources are being used;
• Average used Memory, the same as the previous one;
• Total bytes sent, this is very important because of the expensive data costs that

carriers charge, less data consumption means less money spent;
• Total bytes received, has the same importance as the previous one.

3 Inter-Process Communication Flow

As is commonly known there are several ways to exchange information between a
server and a client, but in this case we choose to study two of the most used, the
Java Socket API [5] and the HTTP (Hypertext Transfer Protocol) REST (REpresen-
tational State Transfer Web Services) [3]. The SOAP Web Services were left behind
because of the bigger headers compared to the REST architecture, which increases
the amount of network traffic and process power [7].

After data transfer protocols selection, we have defined the structure to serialize
the information. This is important in order to the two parties (server and client) “un-
derstand” each other, in this case we choose the XML, JSON and Protocol Buffers
data structure formats.

Raw socket was the first tested approach since normally they are used to quickly
exchange information [6]. First of all, a raw socket client and server modules were
implemented. For each established connection, the server creates two threads: one
to send data and another to receive data. Since there are two different threads the
exchange can be performed asynchronously, avoiding waiting states on the client



4 Ricardo Anacleto, Lino Figueiredo, Ana Almeida and Paulo Novais

application. To test this protocol the data was serialized by a SAX Parser using a
XML structure. With this protocol, message sizes were more compact since there
aren’t any headers (e.g., HTTP or SOAP headers).

However, this system poses several problems in sockets management. Besides
the need to specify a hard-coded and very inflexible communication protocol, raw
sockets also need further implementation for error detection and transaction control.

The other protocol that we test was HTTP, which is one of today’s most popular
client-server communication protocols. HTTP is a mature approach and a widely
used protocol that already handle errors, simplifying its use and implementation.
The only downside, comparing to the raw socket communication protocol, is the
size of the sent/received data frames. This mainly happens because of the HTTP
header, which is added to the sent/received data.

The header size along with the sent and received ACK (Acknowledgement) pack-
ages, to validate the transaction, varies between 6% and 10% of the size of the trans-
ferred data. For example, for a XML file with a size of 1.875 Mb, the client receives
a total of 2.048 Mb (9% more than the original file size).

Since both protocols support the transfer of different file types, we choose to
test three data structure formats. The first one is the XML, since it is one of the
most popular data structure formats used to store information. To have a better un-
derstanding of the XML performance, we have used three different XML parsers:
DOM (Document Object Model), SAX (Simple API for XML) and Pull. DOM was
chosen since it is the World Wide Web Consortium (W3C) standard and the other
two because they claim to be the fastest XML files parsers.

Second one is JSON (JavaScript Object Notation) [2], which has a structure iden-
tical to the XML, but tries to be a low-overhead format. Finally we have the Protocol
Buffers [4], which is a serialization format developed by Google Inc. with the pur-
pose to be simpler and faster than XML.

4 Empirical Analysis

In this section the results for each of the previously described exchange data tech-
niques will be presented. To ensure more accurate results, we have performed four
different tests regarding the size of the exchanged information. We have run each
test five times, and the presented results are the average of the five attempts. The file
sizes, for each test and data serialization format are described on table 1.

Table 1 File sizes (in kB) for each test and data serialization format
Serialization format First Second Third Fourth

XML 1 253 375 1875

JSON 0.779 227 313 1564

ProtocolBuffers 0.665 195 256 1276



Server to Mobile Device Communication: A Case Study 5

Table 2 First test results
Protocol Duration (ms) CPU (%) Memory (MB) Data Received (kB) Data Sent (kB)

HTTP XML SAX 595 - - 1.5 0.5

HTTP XML DOM 773 - - 1.5 0.5

HTTP XML Pulll 555 - - 1.5 0.5

HTTP JSON 511 - - 1.2 0.5

HTTP PROBUF 506 - - 1.1 0.5

SOCKET 1893 - - 1.0 0.5

In the first test, we have used only the data of one point of interest. This was
valuable to get a first look of the mobile devices behavior when few data bytes are
exchanged over network compared to big files.

Analyzing table 2, it appears that the fastest architecture is HTTP using Proto-
col Buffers, followed by HTTP using JSON. The raw socket protocol was slower
mainly because of the connection initialization, which is a time consuming process,
especially when we try to detect and control communication errors.

However, as expected, it was the raw socket with XML architecture that had
fewer bytes transferred between server and client followed by the HTTP protocol
with Protocol Buffers. Finally, HTTP with XML is the heaviest of them all.

In this case weren’t provided data for the CPU load and memory metrics because
the process is completed so quickly that we can’t obtain significant values (the read-
ings are made per second).

In the second test we transferred the information about 250 points of interest.
One of the most relevant findings is that the XML parsing algorithms have signifi-
cant performance differences. The DOM, one more time, was the slowest and SAX
proved to be the fastest, surpassing Protocol Buffers that only in this test wasn’t the
best.

Looking at table 3, we can see that socket method consumes less system re-
sources (CPU and memory) than the others because it doesn’t have so many parsing
routines. However, the whole process still takes a long time to execute. Protocol

Table 3 Second test results
Protocol Duration (ms) CPU (%) Memory (MB) Data Received (kB) Data Sent (kB)

HTTP XML SAX 2023 46.5 4.59 270.0 5.8

HTTP XML DOM 14947 90.1 6.02 270.2 5.5

HTTP XML Pulll 4940 76.4 5.43 270.0 7.1

HTTP JSON 3784 78.9 5.26 241.2 6.4

HTTP PROBUF 2036 55.8 5.03 206.9 5.3

SOCKET 7485 22.7 4.27 262.9 4.7



6 Ricardo Anacleto, Lino Figueiredo, Ana Almeida and Paulo Novais

Table 4 Third test results
Protocol Duration (ms) CPU (%) Memory (MB) Data Received (kB) Data Sent (kB)

HTTP XML SAX 2797 70.4 5.65 398.9 8.6

HTTP XML DOM 26985 93.3 5.95 399.4 8.5

HTTP XML Pulll 5331 81.6 5.44 398.9 8.4

HTTP JSON 4876 79.7 5.16 332.6 8.6

HTTP PROBUF 2316 51.0 5.14 271.5 7.4

SOCKET 7949 48.0 4.99 384.7 7.0

Buffers was the one that had transferred less bytes, since it includes some data com-
pression.

In the third test, it was transferred the information about 461 points of interest.
The results follow the same pattern of the previous tests, where Protocol Buffers
was the fastest, though only for a little margin (table 4).

JSON behaved as expected, its serialization turns the file lighter than XML, but
it has a weak decoder (we have used the Android platform native JSON parser) and
becomes slower when compared with the, also Android native, SAX Parser.

Analyzing the CPU utilization data, we can observe that the worst is HTTP with
DOM parser, since it uses an average of 93% during 26 seconds, which can represent
a lot of battery spent. Another important analysis is that the socket method only has
used 48% of CPU but it has an overall duration of almost 8 seconds. Comparing it
with HTTP using Protocol Buffers, we can see that Socket isn’t so good, because
HTTP with Protocol Buffers uses 51% but only during 2 seconds. Considering the
memory usage, socket method uses less memory than the others protocols.

Finally, we have the fourth test, where it was decided to perform a more thorough
test to denote additional differences on the obtained results. In this test we have used
the information about 1884 points of interest (four times all the points of interest
stored on the database).

Comparing the third with the fourth test, we can observe that the processing time
has been 5 times greater and the amount of data transferred is only 4 times the
transferred data on the third test. This is mainly explained because of the limited
mobile device memory. The operating system is always trying to get more and more
memory and it slows down the entire process.

Notice that only results for two techniques are provided. This happened because
all the others gave an “Out of Memory” error due to the mobile device lack of
memory. This happens because Android heap memory is limited to 16MB per ap-
plication on the most available devices, and only the high-end ones have a limit of
24MB. These two techniques were also the ones that have produced better results in
the other tests (HTTP with SAX Parser and HTTP with Protocol Buffers). As can
be seen on table 5 both used almost the same system resources.

In this test we can observe a great difference in performance between Protocol
Buffers and SAX, especially in the transferred data size. Protocol Buffers transmit-



Server to Mobile Device Communication: A Case Study 7

Table 5 Fourth test results
Protocol Duration (ms) CPU (%) Memory (MB) Data Received (kB) Data Sent (kB)

HTTP XML SAX 12171 70.0 6.59 2048 37.3

HTTP PROBUF 10060 72.3 5.89 1400 28.5

ted about 600 kB less data (since the serialized file is that much smaller) and in
lesser two seconds than the SAX parser.

5 Conclusions

The purpose of this study was to discover which technology/technique is more re-
liable and faster to use in a server-Android mobile application environment. There-
fore, in this chapter we present our conclusions about the obtained results and what
technique we choose to use. Also, we present some considerations that we have
learned and validate during these tests.

In theory, socket approach seems to be the right choice. In practice, we found
some important disadvantages compared to the other approaches, since it proved to
be error prone and slower. Considering the analysis of cost over benefit between
this approach and HTTP, it was concluded that the socket gains on the transferred
kBs between the two sides, don’t outweigh the associated disadvantages. The socket
results can be explained by a poor optimization of the Android Socket API.

Sockets were left behind due to the few advantages that they actually bring, com-
pared to the HTTP protocol. Also, raw sockets are much more complex and hard
to work with. It’s like reinventing the wheel when it already exists. On the other
hand, HTTP is reliable and is able to perform natively error handling. HTTP was
the chosen protocol for the PSiS Mobile implementation. With these tests we attest,
that the time spent in the implementation of sockets is not worth the supposed su-
periority of performance, which in this case there isn’t any of it besides the smaller
data messages.

After choose the transfer protocol we inspect the most commonly used data seri-
alization formats to encapsulate our data to be sent over that protocol. Starting with
XML, the case study revealed that after all it isn’t so slow to parse, but instead it
depends highly on the used parser. Regarding file size it is only slightly behind the
others, because of the inclusion of multiple tags and for no data compression imple-
mentation. Another issue that we have to consider is to not rely only in the theory,
but try to understand it and put it into practice in order to confirm its results for our
case.

Considering the XML parsers, it is noteworthy that DOM is definitely the slowest
and the most complex to work. The SAX ends up having a similar performance to
Protocol Buffers, which proved to be the lightest and the fastest in almost all the
tests. These two are, according to our tests, the best approaches. SAX is overtaken by



8 Ricardo Anacleto, Lino Figueiredo, Ana Almeida and Paulo Novais

the Protocol Buffers when it comes to speed and the file sizes, thus can be concluded
that Protocol Buffers is the fastest and lightest serialization format. Then and as
expected, since it is one of its claims, JSON files are smaller. However, the Android
native JSON parser proved to be slower than the best XML parser.

According to the previous statements, the HTTP protocol in conjunction with
Protocol Buffers was the mechanism that we choose to exchange information be-
tween our server and mobile application, since it spent less system resources (there-
fore less battery) and less network data consumption. Thus, we minimize some of
the limitations of mobile devices.

Another lesson that we have learned is that there is no advantage in sending fewer
or huge information at once, but something in between them. If we send few infor-
mation at once we have a great waste of time in the initialization of the communica-
tion, comparing the second and third tests, where we send twice the information and
it takes just a little more time to process it. However, if we send a lot of information
at once, as done in the fourth test, we can experience some memory problems and
thereby slow down the whole process. The best thing to do is to choose something
in the middle, i.e., medium-sized files.

Finally, we have learned that it is worth investing some time in these small tests,
because with them we can improve, a lot, the user experience. These tests don’t
take so long to implement and have resulted in a good knowledge for the team.
Has can be seen, for Android platform the HTTP protocol and Protocol Buffers are
well implemented that it is worth to give a try, getting a fast and reliable solution to
transfer information between a server and an Android mobile device.

Acknowledgements The authors would like to acknowledge FCT, FEDER, POCTI, POSI, POCI
and POSC for their support to GECAD unit, to the project PSIS (PTDC/TRA/72152/2006) and for
the PhD grant (SFRH/BD/70248/2010).

References

1. Anacleto, R., Luz, N., Figueiredo, L.: Personalized sightseeing tours support using mobile de-
vices. In: Human-Computer Interaction (eds. Forbrig, P., Paterno, F. and Mark, A.), IFIP Ad-
vances in Information and Communication Technology, Springer Boston, vol. 332, pp. 301 –
304. Brisbane, Australia (2010)

2. Crockford, D.: JSON: the fat-free alternative to XML. In: Proc. of XML, vol. 2006 (2006)
3. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Transac-

tions on Internet Technology (TOIT) 2(2), 115150 (2002)
4. Google: Protocol buffer (2012). URL http://code.google.com/apis/protocolbuffers/docs/overview.html
5. Harold, R., Loukides, M.: Java network programming. O’Reilly & Associates, Inc. Sebastopol,

CA, USA (2000)
6. Pakin, S., Karamcheti, V., Chien, A.A.: Fast messages: Efficient, portable communication for

workstation clusters and MPPs. Concurrency, IEEE 5(2), 6072 (1997)
7. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big’web services: making

the right architectural decision. In: Proceeding of the 17th international conference on World
Wide Web, p. 805814 (2008)


