
On the reconfiguration of software connectors ∗

Nuno Oliveira
†

HASLab / INESC TEC
Universidade do Minho

Braga, Portugal
nunooliveira@di.uminho.pt

Luís S. Barbosa
HASLab / INESC TEC
Universidade do Minho

Braga, Portugal
lsb@di.uminho.pt

ABSTRACT
Software connectors encapsulate interaction patterns between
services in complex, distributed service-oriented applications.
Such patterns evolve over time, in response to faults, changes
in the expected QoS levels, emergent requirements or the re-
assessment of contextual conditions. This paper builds up
on a model for connector reconfiguration to introduce no-
tions of reconfiguration equivalence and refinement allowing
for reasoning about them. This paves the way towards a
(still missing) calculus of connector reconfigurations.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Architectural reconfiguration

Keywords
Software architecture, Software connectors, Reconfiguration

1. INTRODUCTION
Complex distributed service-oriented systems require re-

liable and yet flexible architectures. A clear separation be-
tween services/components and the protocols that manage
their interaction seems to be a step in the right direction to-
wards compositional design, analysis and verification. Exo-
genous coordination models, based on software connectors,

∗This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme (op-
erational programme for competitiveness) and by National
Funds through the FCT (Portuguese Foundation for Science
and Technology) within project FCOMP-01-0124-FEDER-
010047.
†This author is supported by an Individual Doctoral Grant
from FCT, with reference SFRH/BD/71475/2010.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

such as Reo [1], offer powerful “glue-code” to express such
interaction protocols, while maintaining the envisaged se-
paration of concerns.

These systems are subject to constant evolution, entailing
the need for some kind of dynamic reconfiguration of their
interaction protocols [12]. Such needs may be due to changes
in either requirements or in runtime contextual conditions
which often degrades expected QoS values to unacceptable
levels.

Conventionally an architectural reconfiguration mainly tar-
gets the manipulation of components [13, 21]. Alternatively
to this high-level stand point, a reconfiguration may tar-
get the interaction protocols, i.e., the connector’s structure.
Such reconfigurations substitute, add or remove communica-
tion channels, move communication interfaces between com-
ponents, and may even restructure a complex interaction
policy. Connector reconfiguration mechanisms play, in this
setting, a major role to express change and adaptation in
interaction protocols.

Reference [20] introduced a model for such mechanisms in
which connectors are ‘syntactically’ represented by a graph
of communication channels, whose nodes stand for inter-
action points and edges are labelled with channel identifiers
and types defining their behaviour. Such graphs are referred
to as coordination patterns. The model defines a number of
elementary reconfiguration primitives, which, on their turn,
are combined to yield ‘big-step’ reconfiguration patterns to
manipulate significative parts of an architecture.

The present paper builds on this model to discuss criteria
of assessing and comparing reconfigurations. In particular,
two classes of criteria are proposed. One is structural and in-
dependent of the actual semantics of coordination patterns.
It is used, for example, to require that along a reconfigura-
tion a specific type of channel remains attached to a given
end or set of ends. Such properties are specified in a proposi-
tional hybrid logic interpreted over the coordination pattern.
The second criterium, on the other hand, resorts to the spe-
cific semantics chosen for the coordination patterns. It may
be used, for example, to require that a reconfiguration pre-
serves the overall interaction behaviour or, at least, part of
it. Comparing reconfigurations along these different criteria
constitutes the main contribution of this paper. Coordina-
tion patterns considered in this paper are framed into the
Reo coordination model. The proposed criteria, however, are
still valid in other coordination models, as long as they can
be ‘syntactically’ represented by a graph (of communicating
devices).

Outline. Section 2 sums up the proposed framework for

reconfiguration of software connectors, based on a number
of elementary operations which are combined to yield ‘big-
step’ reconfiguration patterns. The two following sections
introduce mechanisms for assessing and comparing recon-
figurations from two orthogonal perspectives: behavioural
(section 3), resorting to whichever semantic model is chosen
for the underlying coordination model, and structural (sec-
tion 4), in which properties of channel interconnection are
expressed in a variant of propositional hybrid logic. Sec-
tion 6 concludes the paper after a review of related work in
Section 5.

2. RECONFIGURATION MECHANISMS
This section provides a primer on the underlying recon-

figuration framework, as a background for what follows. A
comprehensive discussion can be found in [20].

2.1 Coordination Patterns
Software connectors, in the context of this research, corres-

pond to coordination patterns encoding reusable solutions
for architectural problems in distributed, loosely-coupled sys-
tems. Formally, a coordination pattern is given as a graph of
channels whose nodes represent interaction points and edges
are labelled with channel identifiers and types. To provide a
concrete illustration of this approach, the Reo framework [3,
1] is adopted.

Henceforth a channel is considered as in Reo: a point-to-
point (abstract) communication device with a unique iden-
tifier, a behaviour (or coordination protocol) and two ends.
It allows for data flow by accepting it on its source end and
dispensing from the sink end. Each channel has exactly two
ends and are, normally, directed (with a source and a sink
end) but Reo also accepts undirected channels (i.e., channels
with two ends of the same sort). Figure 1 recalls the basic
types of channels in Reo.

sync lossy drain fifoe

•
fifof

Figure 1: Primitive Reo channels.

The sync channel transmits data from one end to another
whenever there is a request at both ends synchronously,
otherwise one request shall wait for the other. The lossy
channel behaves likewise, but data may be lost whenever a
request at the source end is not corresponded by another
at the sink end. Differently, a fifo channel has a buffer-
ing capacity of one memory position, therefore allowing for
asynchronous occurrence of I/O requests. Qualifier e or f
refers to the channel internal state (either empty or full, re-
spectively). Finally, the synchronous drain channel accepts
data synchronously at both ends, losing it.

Channel ends form nodes which can be connected to as-
sembly more complex connectors. Nodes may be of three
distinct types: (i) source node, if it connects only source
channel ends; (ii) sink node, if it connects only sink chan-
nel ends and (iii) mixed node, if it connects both source and
sink nodes. Source and sink nodes are also referred to as the
boundary nodes of a connector. As an example of channel
composition, Figure 2 depicts a sequencer connector which
results from the composition of several channels.

a b

o1 o2

j1 j2x

Figure 2: The sequencer. A composition of five sync
channels and one fifoe channel. Graphically, white
circles mean both source and sink nodes used to
link the connector to services, while black ones mean
mixed (internal) nodes.

Let N∪{⊥} and I denote, respectively, a set of nodes and
a set of channel identifiers. ⊥ is used to represent a node
which is neither a source nor a sink node. Moreover, let T
stand for the set of primitive channel types in Reo. The con-
nector’s assembly structure is represented by a coordination
pattern defined as follows.

Definition 1 (Coordination pattern). A coordina-
tion pattern, ρ, is a graph on connector ends whose edges are
labelled with instances of primitive channels, represented by
a channel identifier, id ∈ I, and a type t ∈ T , formally
defined as

ρ
def
= R ⊆ N × I × T ×N

Operations I(ρ) and O(ρ) are used to retrieve, respec-
tively, the set of source and sink nodes from coordination
pattern ρ. Optionally, sets I and O for source and sink
nodes, respectively, may be added to the pattern structure
for clarity (as shown in the two examples below). The set
of all coordination patterns is denoted by P.

Clearly, every channel instance gives rise to a coordination
pattern. For example

〈{a}, {b}, {〈a, sc, sync, b〉}〉

corresponds to a single sync channel, identified by sc, linking
an input port a to an output port b. Similarly, plugging to
its output port a drain channel yields a dummy synchroniser
which allows data to be written on a, if there exist pending
requests at c

〈{a, c}, ∅, {〈a, sc, sync, b〉, 〈b, dr, drain,⊥〉, 〈c, dr, drain,⊥〉}〉.

A drain has two source ends. Therefore, a pattern formed
by an instance of a drain channel resorts to the special end
⊥, which intuitively represents a hole where data is lost,
meaning absence of data flow.

In the sequel, the visual Reo-like representation of coordi-
nation patterns (as in Figure 2) is used as an abbreviation
of the formal model.

2.2 Reconfigurations
A reconfiguration is defined as a non-empty sequence of

elementary operations that manipulate the internals of a

coordination pattern. Set O def
= {par, join, split, remove}

is the set of such elementary operations, which are described
below. The application of a reconfiguration r to ρ ∈ P yields
a new coordination pattern and is denoted by ρ • r.

par: ρ • par(ρ′) sets ρ, ρ′ ∈ P in parallel without creating
any connection between them. The par operation assumes,
without loss of generality, that both the nodes and channel
identifiers in the patterns to be joined are disjoint.

join: ρ • join(P, j) creates a new node j ∈ N that super-
poses all nodes in a given set P ⊆ N . The join operation
has two pre-conditions. Clearly, j must be a fresh name in
ρ ∈ P, unless it is in P . Additionally, every node in P shall
exist as a node of ρ.

split: ρ • split(p) is dual to join. It takes a node p ∈ N in
ρ ∈ P and breaks connections, separating all channel ends
coincident in p. Technically this is achieved by renaming
every occurrence of node p in ρ to a fresh name.

remove: ρ • remove(id) removes a channel, identified by
id ∈ I, from ρ ∈ P, if it exists.

One may ask whether the application of these operations
upon a coordination pattern, can leave isolated nodes. How-
ever, it can be proved (by induction on the expression rep-
resenting the reconfiguration script) this never occurs. For
space limitations, the formal specifications of the reconfig-
uration operations and their properties are omitted. The
interested reader is referred to [20], for a detailed account
on the omitted semantics.

2.3 Reconfiguration patterns
The focus of traditional reconfiguration in software ar-

chitecture [21] is the replacement of individual components,
rather than the transformation of the underlying interaction
protocols. The present approach goes in the other direc-
tion. However, still at this level, the interest is in defining
‘big step’ reconfigurations, referred to as reconfiguration pat-
terns, regarding them as sequences of elementary reconfigu-
rations, which affect significant parts of a connector (rather
than just a point or a channel), and are generic and reusable.
Figure 3 shows a (not closed) set of reconfiguration patterns
that are useful in practice. The following paragraphs de-
scribe briefly the purpose of each of them.

overlapP insertP replaceP

removeP implodeP

Figure 3: Reconfiguration patterns.

removeP : ρ • removeP(C) takes a set C ⊆ I of channel
identifiers and removes them from ρ ∈ P, by successive ap-
plication of elementary remove operations.

overlapP : ρ • overlapP(ρr, T) connects a new pattern ρr ∈
P to ρ ∈ P by joining specific nodes in T ⊆ N × N × N .
Each triple in T indicates which pairs of nodes from ρ and
ρr are to be joined (overlapped) and which name is given to
the result.

insertP : ρ• insertP(ρr, n,mi,mo, ji, jo) puts ρ, ρr ∈ P side
by side and splits n ∈ N of ρ to make room for the new
coordination pattern to be added. Connections are then
re-built as follows: all the output ports produced by the
split operation are joined with mi ∈ N producing a new
node ji ∈ N . Dually, the input ports produced by the split
operation are joined with mo ∈ N resulting in a new node
jo ∈ N .

Example. Consider the sequencer coordination pattern in
Figure 2. Suppose that a company uses this protocol to

coordinate the sequential execution of two services coupled
to ports o1 and o2. For some reason, there was a need to
restrict the second service to execute only after the first
one finishes. A possible solution is to let the first service to
acknowledge its termination and the protocol to memorise it.
If ρs is the sequencer coordination pattern one may propose
the following reconfiguration

rproactive = ρs • insertP(

i1

i2 o

y , j2, i2, o, k1, k2)

which yields the proactive waiting sequencer coordination
pattern presented in Figure 4.

replaceP : ρ • replaceP(ρr, T, C) replaces a sub-structure
of ρ ∈ P by removing the old structure composed of the
channels in C ⊆ I and overlapping ρr via information in set
T ⊆ N ×N ×N .

Example. Consider again the sequencer coordination pat-
tern. Imagine now that the services coupled to ports o1

and o2 may fail for long periods of time. A deadlock prob-
lem could arise if this happens. A possible solution for such
problem is not to enforce the services to answer when off.
Replacing the sync channels that provide ports o1 and o2 by
lossy channels could solves the problem. Reconfiguration

rweak = ρs • 〈replaceP(
i1 o1

, {(j1, i1, k1), (o1, o1, o1)}),

replaceP(
i2 o2

, {(j2, i2, k2), (o2, o2, o2)})〉

would transform the sequencer coordination pattern to a
configuration which avoids deadlock, cf., the weak sequencer
coordination pattern in Figure 4.

implodeP : ρ • implodeP(X,C, j) collapses a sub-structure
of ρ ∈ P delimited by the nodes in set X ⊆ N and composed
of the channels in C ⊆ I. The resulting ends are joined
together into a new node j ∈ N .

a b

i1o1 o2

j1 k1 k2

x y

The pro-active waiting
sequencer

a b

o1 o2

k1 k2
x

The weak sequencer

Figure 4: Reconfigurations of the sequencer pattern.

A formal account of these reconfiguration patterns is given
in [20].

3. REASONING ABOUT RECONFIGURA-
TIONS: BEHAVIOUR

The remainder of this paper investigates criteria to or-
der reconfigurations and enable the working software archi-
tect to choose among them. The objective is to endow the
architect with means to rule out configurations that, e.g.,
fail to preserve the overall interconnection behaviour or in-
troduce channels which are, for some reason, not immedi-
ately available. This section introduces a behaviour-based
criterium for reasoning about reconfigurations. The discus-
sion on a complementary structural criterium is left for Sec-
tion 4. The behavioural point of view requires a concrete
semantic model for the coordination pattern. For illustra-
tion purposes, models of Reo—constraint automata (CA) [6,
5] and reo automata (RA) [9]—are adopted. The reader is
referred to Appendix A, where the definitions of these au-
tomata are reproduced. It shall be made clear, however,
that the same principle would apply to different semantic
models as long as they are amenable to be expressed by a
graph of communicating devices.

3.1 Comparing reconfigurations
At this level reconfigurations are compared with respect

to the underlying semantic model. In particular, standard
notions of similarity and bisimilarity in such models [5, 9]
can be used to compare the behaviour of the coordination
pattern before and after the application of a reconfiguration.
Alternatively, they are used to compare the effect of applying
different reconfigurations to the same pattern.

Let [[ρ]]M stand for the meaning of the coordination pat-
tern represented by ρ in model M; ∼ and � are, respectively,
the bisimilarity and similarity relations in M. Reference to
M can be omitted when the model is clear from the context.

Therefore,

Definition 2. Let ρ ∈ P, r1, r2 be reconfigurations and
M a semantic model. Then,

r1 $M r2 iff ∀ρ∈P . [[ρ • r1]]M ∼ [[ρ • r2]]M

r1 4M r2 iff ∀ρ∈P . [[ρ • r1]]M � [[ρ • r2]]M

In practice, however, reconfigurations are better compared
with respect to their application to a specific coordination
pattern, which leads to the following definition,

Definition 3. Let ρ ∈ P, r1, r2 be reconfigurations and
M a semantic model. Then,

(r1 $M r2)ρ iff [[ρ • r1]]M ∼ [[ρ • r2]]M

(r1 4M r2)ρ iff [[ρ • r1]]M � [[ρ • r2]]M

Example. Consider again the sequencer coordination pat-
tern. Suppose that a new requirement forces a strict de-
pendence between services in a row. In practice, suppose
the second service (coupled to port o2) is launched with the
output of the first service and such an output is memorised
whenever the second service is not ready to consume it. Re-
configuration

rdependent = insertP(

i1

i2 o
k

y , j2, i2, o, k1, k2)

which is akin to rproactive, meets the envisaged requirement.
Figure 5 presents the resulting pattern, which will be re-
ferred to as the pro-active dependent sequencer. Its RA se-

a b

i1o1 o2

j1 k1 k k2

x y

ee fxe

fxfyefy

ao1|ao1

ao2b|o2b
o1o2b|o2b

o2ao1|ao1

bao1|ao1

i1bo2|bo2

i1
|i1

a,
o1
, b
, o

2
|a,
o1
, b
, o

2

Figure 5: The pro-active dependent sequencer coor-
dination pattern and its RA semantics.

mantics is exactly the same of the coordination pattern pro-
duced by the rproactive reconfiguration. So, although both
patterns are slightly different, they exhibit a bisimilar be-
haviour, expressed in the RA model. Therefore,

(rproactive $RA rdependent)ρs

Note this would not be the case if CA was chosen as a se-
mantic model.

3.2 Refinements and classification
A complete ontology of reconfigurations has to consider

fine grained variants of both $ and 4. For $, for example,
one may consider whether [[ρ]]M ∼ [[ρ • r1]]M ∼ [[ρ • r2]]M,
or [[ρ]]M � [[ρ • r1]]M ∼ [[ρ • r2]]M, or else [[ρ • r1]]M ∼ [[ρ •
r2]]M � [[ρ]]M. For the inequality case, the alternatives are
even more: for example, [[ρ]]M � [[ρ • r1]]M � [[ρ • r2]]M or
[[ρ • r1]]M � [[ρ]]M � [[ρ • r2]]M, among others.

Example. Consider again the sequencer coordination
pattern. Suppose that the results delivered by the second
service are a complement to those offered by the first. There-
fore, whenever it fails, the system may proceed normally
through port b, disregarding port o2. This requirement is
met by applying the following reconfiguration:

rQweak = ρs • replaceP(i o2 , {(j1, i, k1), (o2, o2, o2)})

which is actually part of the reconfiguration rweak discussed
before. The resulting coordination pattern (referred to as
the quasi-weak sequencer) is a variant of the weak sequencer.
Figure 6 presents its structure along with the semantic mod-
els of both coordination patterns.

Clearly, for M ∈ {CA,RA}, [[quasi weak sequencer]]M �
[[weak sequencer]]M. Therefore, (rquasiweak 4 rweak)ρs . But
one may be more concrete here: both patterns simulate the
sequencer, leading to

[[ρs]]M � [[ρs • rquasiweak]]M � [[ρs • rweak]]M

These relations suggest a possible classification of recon-
figurations w.r.t. a coordination pattern and a semantic
model as follows

Definition 4. Let ρ ∈ P, r a reconfiguration, and M a
semantic model. Then,

a b

o1 o2

k1 k2
x

The quasi weak sequencer

e fx

{a, o1} do1 = da ∧ dx = da

{b} db = dx
{b, o2} do2 = dx ∧ db = dx

[[quasi weak sequencer]]CA

e fx

ao1|ao1

bo2|bo2

bo2|b

[[quasi weak sequencer]]RA

e fx

{a} dx = da
{a, o1} do1 = da ∧ dx = da

{b} db = dx
{b, o2} do2 = dx ∧ db = dx

[[weak sequencer]]CA

e fx

ao1|ao1

ao1|a

bo2|bo2

bo2|b

[[weak sequencer]]RA

Figure 6: The quasi weak and the weak sequencer
semantics.

• r is unobtrusive iff [[ρ]]M ∼ [[ρ • r]]M, i.e., if the origi-
nal behaviour is preserved.

• r is expansive iff [[ρ]]M � [[ρ • r]]M, i.e., if new be-
haviour is added still preserving the original.

• r is contractive iff [[ρ • r]]M � [[ρ]]M, i.e., if part of the
original behaviour is removed.

• r is disruptive otherwise.

Example. It is now possible to classify all the reconfig-
urations of the sequencer pattern mentioned above w.r.t.
either the CA or RA semantic models. The rproactive and
the rdependent reconfigurations are disruptive while the rweak
and the rQweak are expansive. To complete the examples,
Figure 7 presents unobtrusive and contractive reconfigura-
tions. Notice that the second one is classified w.r.t. the weak
sequencer coordination pattern, and not to the sequencer.

ρs • 〈removeP(x), overlapP(

i

o

x
, {(i, a, a), (o, j2, k2)})〉

ρweak • implodeP(i o
x

, {(i, a, a), (o, j2, k2)})

Figure 7: Unobtrusive (top) and Contractive (bot-
tom) reconfigurations.

Support. In practice, to compare reconfigurations from a
behavioural perspective should resort to the tools available
for the semantic model of interest. For CA this can be done
in Vereofy [5], which will be made accessible from a recon-
figuration framework through a plug-in currently under de-
velopment.

4. REASONING ABOUT RECONFIGURA-
TIONS: STRUCTURE

As discussed in the previous section, connectors exhibit
behaviour, determined by the underlying semantic model,
and therefore the effect of a reconfiguration can be ‘mea-
sured’ by whatever behavioural changes are entailed by its
application. For example, in certain cases, it may be nec-
essary to rule out reconfigurations leading to non bisimilar
behaviours.

There is, however, another perspective whose focus is placed
on the interconnection structure, with no reference to the
emerging behaviour. Examples of structural, or ‘syntactic’
properties are, typically,

i) every FIFO1 channel is connected to at least a lossy
channel or

ii) node i is a connector’s output node.

One may then require that a reconfiguration preserves such
properties. This will lead to a different family of relations to
compare reconfigurations. What should be remarked is the
fact that such relations are independent of the underlying
semantic model and, in a broader sense, not committed to
the use of a specific coordination modelling language.

4.1 A Hybrid Logic
Modal logic provides the standard way of expressing prop-

erties over the graph-like structure of coordination patterns.
Often, however, structural properties are to be formulated
relative to a particular node in the pattern. An example is
given by property ii) above. In general, one may require,
for instance, that all the channels incident in a specific node
and their interconnections remain unchanged under a recon-
figuration. This justifies the choice of a (hybrid) logic [8] to
express such properties.

Hybrid logic is a modal logic with specific mechanisms to
explicitly refer to nodes in the coordination pattern. This
is achieved through a set of special symbols called nomi-
nals through which nodes can be referred, for example to
establish equalities between them or to express accessibility
relationships. This is possible since each nominal is true at
exactly one node in the coordination pattern. Therefore,
one asserts that node n is named by (the nominal) i if i is
true at n.

Besides nominals, hybrid logic introduces the @ operator,
which, for a nominal i and a formula φ, yields a new for-
mula @iφ evaluating to true whenever φ is true in the node
referred by i.

4.1.1 Syntax
Structural properties of coordination patterns will be ex-

pressed in a variant of hybrid propositional logic, where
modalities are indexed by channel types, or, more generally,
by sets of channel types. Its syntax is given by

φ ::= i | true | false | ¬φ | φ1 ∧ φ2 | φ1→ φ2 |
〈K〉φ | [K]φ | 〈〈K〉〉φ | [[K]]φ | @iφ

where i ∈ Nom and K ⊆ T , for Nom a set of nominals.
Disjunction (∨) and equivalence (↔) are defined by abbre-
viation. For simplicity, in modalities ‘−’ stands for the whole
set of channel types, i.e., T , and [−c], with c ∈ T , stands
for T \{c}.

Modality 〈K〉 quantifies existentially over the edges (of
the graph representing the coordination pattern) labelled

by channel types in K; its dual [K]
def
= ¬〈K〉¬ provides a

universal quantification. Modalities 〈K〉 and [K] express
properties of outgoing connections from the node in which
they are evaluated, in a coordination pattern ρ. On the
other hand, modalities 〈〈K〉〉 and [[K]] express properties of
incoming connections to that node. Finally, the @ operator
redirects the formula evaluation to the context of a specific
node, globally in the coordination pattern structure.

Examples. Property (i) is expressed as [FIFO1]〈lossy〉true.
Property ii) is written @i[−]false. Notice the use of [−]false
to state that the formula requires the absence of outgoing
channels from the node referred by the nominal i.

The introduction of nominals to name channel ends, i.e.,
nodes in a coordination pattern, makes possible to express
local proprieties. The simplest example is to express equality
between a node referred by i and another one referred by j
with @ij.

More complex examples encompass the expression of the
property where all outgoing channels from a particular node
referred by i are lossy. Formally,

@i(〈−〉true ∧ [−lossy]false)

As another example, consider formula

i→¬〈sync〉〈lossy〉i

which states the absence of a loop formed by a sync followed
by a lossy channel at node referred by i. Notice that the
absence of loops, and in general, irreflexivity of a binary
relation is not expressible in classical modal logic.

Finally, the formula below requires that all output nodes
are accessible through a sync channel but never through a
FIFO channel:

[−]false → (〈〈sync〉〉 true ∧ [[FIFO]]false)

4.1.2 Semantics
A model, M, for this language is a pair 〈ρ, σ〉, where

ρ = 〈I,O,R〉 ∈ P, and σ : Nom −→ N is a naming scheme,
i.e., a function which assigns each nominal to a node in the
coordination pattern. The satisfaction relation, of a formula
by a model M in a node n is defined below. Notice, in par-
ticular, how nominals and the nominal satisfaction operator
are handled.

M, n |= true

M, n 6|= false

M, n |= ¬φ iff M, n 6|= φ

M, n |= φ1 ∧ φ2 iff M, n |= φ1 and M, n |= φ2

M, n |= φ1→ φ2 iff M, n 6|= φ1 or M, n |= φ2

M, n |= i iff σM(i) = n

M, n |= @iφ iff M, σM(i) |= φ

M, n |= 〈K〉φ iff ∃m∈{p|〈n,−,c,p〉 ∈ ρ.R ∧ c∈K} .
M,m |= φ

M, n |= [K]φ iff ∀m∈{p|〈n,−,c,p〉 ∈ ρ.R ∧ c∈K} .
M,m |= φ

To capture properties relative to incoming connections to
a node, modalities, 〈〈K〉〉 , [[K]], based on the converse of re-
lation R of ρ are considered. Formally,

M, n |= 〈〈K〉〉φ iff ∃m∈{p|〈p,−,c,n〉 ∈ ρ.R ∧ c∈K} .
M,m |= φ

M, n |= [[K]]φ iff ∀m∈{p|〈p,−,c,n〉 ∈ ρ.R ∧ c∈K} .
M,m |= φ

The satisfaction relation |= lifts, as usual, to a notion of
satisfiability by quantifying over all the nodes in the coordi-
nation pattern. I.e., φ is globally satisfied in M (M |= φ) if
it is satisfied at all nodes in 〈ρ, node〉.

4.2 Reconfiguration comparison
Equipped with a language to express structural properties

of coordination patterns, we can define a new criterium for
comparing reconfigurations. We start by defining a notion
of invariance:

Definition 5. A structural property φ is invariant for a
reconfiguration r iff it is preserved by r, with ρ ∈ P. For-
mally,

〈ρ, σ〉 |= φ ⇒ 〈ρ • r, σ〉 |= φ

Then,

Definition 6. Given a model M = 〈ρ, σ〉, with ρ ∈ P,
and σ a naming scheme for nodes, reconfigurations r, r1 and
r2 and a set of formulas Φ, one says

1. reconfiguration r preserves Φ iff every φ ∈ Φ is invari-
ant for r in model M;

2. reconfigurations r1 and r2 are structurally equivalent
with respect to Φ, written r1 ≡Φ r2, iff

〈ρ • r1, σ〉 |= φ ⇔ 〈ρ • r2, σ〉 |= φ

for every φ ∈ Φ.

In practice, however, after a reconfiguration most struc-
tural relationships one may want to preserve, are displaced,
in the sense that they remain valid but at a different node.
A typical situation is illustrated in the following example.

Example. Consider the coordination pattern whose evo-
lution is depicted in Figure 8.a. Assume, for convenience,
that nodes are referred to by their own identifiers. Clearly,
at node c it is true that following a connection through a sync
channel, all connections are established by lossy channels, ie

@c 〈sync〉(〈−〉true ∧ [−lossy]false).

Consider now that an insertP reconfiguration pattern is ap-
plied at node c. In a first step, node c is split because of
the application of the split elementary reconfiguration (Fig-
ure 8.b). Then a new structure is linked to the nodes resul-
ting from this operation (Figure 8.c). In both steps, how-
ever, the property is still valid for nodes cd and mo, respec-
tively. With respect to the example in Figure 8.c), this is
expressed as

@mo 〈sync〉(〈−〉true ∧ [−lossy]false).

This example motivates the following generalisation of defi-
nition 5.

(a)
a

b
c d

e

f

(b)
a

b

ac

bc

cd
d

e

f

a

b

mi mo
d

e

f

(c)

Figure 8: Example of a displaced invariant.

Definition 7. Let τ be a surjection on nominals. A struc-
tural property φ is invariant for a reconfiguration r, up to a
name translation τ iff

〈ρ, σ〉 |= φ ⇒ 〈ρ • r, σ〉 |= φ[τ]

where φ[τ] stands for φ with all occurrences of a nominal i
replaced by τ(i).

Back to the example, if 〈ρ, σ〉 |= ψ, then 〈ρ • r, σ〉 |= ψ[c 7→
mo] for r the relevant insertP reconfiguration. Notation [c 7→
mo] denotes a function which maps c to mo and behaves as
the identity in all other cases. Naturally, equivalence ≡Φ

can be tailored to this more general notion of invariant.

Support. Properties expressed in the hybrid logic described
in this section can be verified, after a translation to classical
propositional hybrid logic in the HyloRes [4] system. The
translation involves a restriction of propositional symbols to
nominals and an encoding of the backward modalities 〈〈K〉〉
and [[K]].

5. RELATED WORK
This work is in debt to previous research on the reconfig-

uration of Reo connectors, in particular references [10, 11].
The latter introduces a basic modal logic to reason about the
constraint automata representation of Reo connectors. The
former provides an axiomatisation of connector construc-
tions, which is similar to our reconfiguration operations, to
discuss connector equivalence. What distinguishes our ap-
proach is the separation between behavioural and structural
concerns in a way which is, as much as possible, independent
of the underlying semantic models.

Work reported in [22] resorts to category theory to model
software architectures as labelled graphs of components and
connectors. Reconfigurations are expressed through alge-
braic graph rewriting rules. In [14, 15], a similar approach
is adopted, but in the context of Reo. The authors relay
on high-level replacement systems, more precisely on typed
hypergraphs, to describe Reo connectors (and architectures,
in general). In this perspective, vertices are the nodes and
(typed hyper-) edges are communication channels and com-
ponents (which is quite similar to our approach). Reconfi-
guration rules are specified as graph productions for pattern
matching. This approach performs atomic complex recon-
figurations, rather than a sequence of basic modifications,
which is stated as an advantage for maintaining system con-
sistency. Nevertheless, the model may become too complex
even when a simple primitive operation needs to be applied.
Also in [15] Reo is encoded into mCRL2 for verification of
properties of connectors expressed in the modal µ-calculus

extended with data-dependent processes and regular formu-
las. No results are known concerning comparison and clas-
sification of reconfigurations in these approaches.

In a different setting, the DISCO framework for classifica-
tion and selection of software connectors’ [16] meets similar
objectives in what concerns connectors key characteristics
and users’ needs expressed as data distributions.

6. CONCLUSIONS
The paper introduces a framework for reasoning about

reconfiguration of coordination patterns. Such patterns are
described as graphs of primitive channels and their recon-
figurations defined through composition of a set of elemen-
tary operations: join, split, par and remove. Reconfigurations
are assessed and compared according to two orthogonal per-
spectives: behavioural, which resorts to evaluating the re-
configured pattern with respect to the underlying semantic
model (this paper resorted to Reo semantic models for il-
lustration purposes), and structutral, in which properties of
the interconnection graph are formulated in a variant of hy-
brid propositional logic. This approach provides the basis
to a systematic classification of reconfiguration strategies for
service-based applications, which are expected to lead to ef-
fective derivation of semi-automatic monitoring tools in the
near future.

A lot of work remains, however, to be done. Providing tool
support for the two reasoning perspectives is in order as well
as classifying and organising reconfigurations in a suitable
ontology. Moreover, it makes sense to continue working on
the hybrid logic presented here by extending it to deal with
properties of paths within a coordination pattern and incor-
porating quantitative measures to express QoS constraints.
We are currently working on this topic taking into account,
on a reconfiguration, suitable measures of QoS levels at-
tached to coordination patterns [2] and to their deployment
context. Relevant related work includes research on Stochas-
tic Reo [18] and on a generic QoS algebra [7, 19, 17].

7. REFERENCES
[1] F. Arbab. Reo: a channel-based coordination model

for component composition. Mathematical. Structures
in Comp. Sci., 14(3):329–366, June 2004.

[2] F. Arbab, T. Chothia, R. van der Mei, S. Meng,
Y. Moon, and C. Verhoef. From coordination to
stochastic models of QoS. In J. Field and
V. Vasconcelos, editors, Coordination Models and
Languages, volume 5521 of Lecture Notes in Computer
Science, chapter 14, pages 268–287. Springer
Berlin/Heidelberg, Berlin, Heidelberg, 2009.

[3] F. Arbab and F. Mavaddat. Coordination through
channel composition. In F. Arbab and C. Talcott,
editors, Coordination Models and Languages,
chapter 6, pages 275–297. Springer Lect. Notes Comp.
Sci. (2315), Berlin, Heidelberg, Mar. 2002.

[4] C. Areces and J. Heguiabehere. Hylores: A hybrid
logic prover based on direct resolution. In Proc. 8th
Int. Conf. on Automated Deduction (CADE-18).
Springer Lect Notes Comp Sci. (2392), 2002.

[5] C. Baier, T. Blechmann, J. Klein, and S. Klüppelholz.
A uniform framework for modeling and verifying
components and connectors. In Proc. 11th Int. Conf

on Coordination Models and Languages, pages
247–267. Springer Lect Notes Comp Sci. (5521), 2009.

[6] C. Baier, M. Sirjani, F. Arbab, and J. J. M. M.
Rutten. Modeling component connectors in reo by
constraint automata. Sci. Comput. Program.,
61(2):75–113, 2006.

[7] S. Bistarelli, U. Montanari, and F. Rossi.
Semiring-based constraint satisfaction and
optimization. J. ACM, 44(2):201–236, 1997.

[8] P. Blackburn. Representation, reasoning, and
relational structures: a hybrid logic manifesto. Logic
Journal of IGPL, 8(3):339–365, 2000.

[9] M. Bonsangue, D. Clarke, and A. Silva. Automata for
Context-Dependent connectors. In Proceedings of the
11th International Conference on Coordination Models
and Languages, COORDINATION ’09, pages 184–203,
Berlin, Heidelberg, 2009. Springer-Verlag.

[10] D. Clarke. Reasoning about connector reconfiguration
I: Equivalence of constructions. Technical report,
CWI-Centrum voor Wiskunde en Informatique,
Amsterdam, Feb. 2005.

[11] D. Clarke. A basic logic for reasoning about connector
reconfiguration. Fundam. Inf., 82:361–390, Feb. 2008.

[12] H. Gomaa and M. Hussein. Software reconfiguration
patterns for dynamic evolution of software
architectures. In 4th IEEE/IFIP Conf. on Software
Architecture (WICSA 2004), pages 79–88. IEEE, 2004.

[13] P. Hnětynka and F. Plášil. Dynamic reconfiguration
and access to services in hierarchical component
models Component-Based software engineering. In
I. Gorton, G. T. Heineman, I. Crnković, H. W.
Schmidt, J. A. Stafford, C. Szyperski, and K. Wallnau,
editors, Component-Based Software Engineering,
chapter 27, pages 352–359. Springer Lect. Notes in
Comp Sci. (4063), 2006.

[14] C. Krause. Reconfigurable Component Connectors.
PhD thesis, Leiden University, Amsterdam, The
Netherlands, 2011.

[15] C. Krause, Z. Maraikar, A. Lazovik, and F. Arbab.
Modeling dynamic reconfigurations in Reo using
high-level replacement systems. Science of Computer
Programming, 76(1):23–36, 2011.

[16] C. A. Mattmann, D. Woollard, Nenad, and
R. Mahjourian. Software connector classification and
selection for Data-Intensive systems. In Second
International Workshop on Incorporating COTS
Software into Software Systems: Tools and Techniques
(IWICSS ’07), page 4. IEEE, May 2007.

[17] S. Meng and L. S. Barbosa. Towards the introduction
of qos information in a component model. In S. Y.
Shin, S. Ossowski, M. Schumacher, M. J. Palakal, and
C.-C. Hung, editors, Proceedings of the 2010 ACM
Symposium on Applied Computing (SAC), Sierre,
Switzerland, March 22-26, 2010, pages 2045–2046.
ACM, 2010.

[18] Y.-J. Moon, A. Silva, C. Krause, and F. Arbab. A
compositional semantics for stochastic reo connectors.
In Proceedings Ninth International Workshop on the
Foundations of Coordination Languages and Software
Architectures, volume 30 of EPTCS, pages 93–107,
2010.

[19] d. Nicola, G. L. Ferrari, U. Montanari, R. Pugliese,

and E. Tuosto. A process calculus for QoS-aware
applications. In J. M. Jacquet and G. P. Picco,
editors, Proc. of the 7th International Conference on
Coordination Models and Languages, 7th International
Conference (COORDINATION 2005), Namur,
Belgium, April 20-23, 2005, volume 3454 of LNCS,
pages 33–48. Springer-Verlag, 2005.

[20] N. Oliviera and L. S. Barbosa. Reconfiguration
mechanisms for service coordination. In
Pre-Proceedings of the 9th international workshop on
Web Services and Formal Methods, pages 96–112,
2012. To appear in a Springer LNCS volume.

[21] A. J. Ramirez and B. H. C. Cheng. Design patterns
for developing dynamically adaptive systems. In
Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
SEAMS ’10, pages 49–58, New York, NY, USA, 2010.
ACM.

[22] M. Wermelinger and J. L. Fiadeiro. Algebraic software
architecture reconfiguration. In Proceedings of the 7th
European software engineering conference held jointly
with the 7th ACM SIGSOFT international symposium
on Foundations of software engineering, ESEC/FSE-7,
pages 393–409, London, UK, 1999. Springer-Verlag.

APPENDIX
A. CONSTRAINT AND REO AUTOMATA

This appendix recalls the definitions of constraint automata
and Reo automata for the reader’s convenience.

Constraint Automaton. A constraint automaton A is a tu-
ple (Q,Names,−→, Q0), where Q is a set of states, Q0 ⊆ Q,
is the set of initial states of A, Names is a (finite) set
of names (of boundary nodes of channels or connectors),
−→ ⊆ Q×2Names×DC×Q, is the transition relation of A,
with DC being a data constraint defined by the grammar
g ::= true | dA = d | g1 ∨ g2 | ¬g

Reo Automaton. A Reo automatonAReo is a tuple (Σ, Q, δ),
where Σ is the set of ports of a Reo connector, Q is the set of
states and δ ⊆ Q×BΣ×2Σ×Q obeys the reactivity and uni-
formity properties. Intuitively, reactivity means that data
flows through ports with pending requests, and uniformity
means that the firing set of ports is smaller or equal to the
request set. BΣ is the Boolean Algebra over Σ defined by:

g ::= σ ∈ Σ | > | ⊥ | g ∨ g | g ∧ g | g

