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Abstract
Mathematical Programs with Complementarity Constraints (MPCC) finds many applications in

areas such engineering design, economic equilibrium and mathematical theory itself. In this work we
consider a queuing system model resulting from a single signalized traffic intersection regulated by
pre-timed control in an urban traffic network. The model is formulated as an MPCC problem and
may be used to ascertain the optimal cycle and the green split allocation. This MPCC problem is
also formulated as its NLP equivalent reformulation. The goal of this work is to solve the problem,
using both MPCC and NLP formulations, minimizing two objective functions: the average queue
length over all queues and the average waiting time over the worst queue. The problem was codified
in AMPL and solved using some optimization software packages.
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1 Introduction
Mathematical Programs with Complementarity Constraints (MPCC) is a subclass of more general Ma-
thematical Programs with Equilibrium Constraints (MPEC). These kind of constraints may come as a
game, a variational inequality or as stationary conditions of an optimization problem. The main appli-
cations areas are Engineering and Economics [1, 2, 3]. They are so widespread in these areas because
the concept of complementarity is synonymous with the notion of system equilibrium. They are very
difficult to solve as the usual constraint qualifications necessary to guarantee the algorithms convergence
fail in all feasible points [4]. This complexity is caused by the disjunctive nature of the complementarity
constraints.
Some nonlinear approaches to solve MPCC have been proposed, starting with the smoothing scheme
[5, 6], the regularization scheme [7, 8], the interior point methods [9], the penalty approaches [10, 11, 12]
and the "elastic mode" for nonlinear programming in conjunction with a sequential quadratic program-
ming (SQP) algorithm [13]. In Fletcher et al. [14] the quadratic convergence of SQP is guaranteed, near
a stationary point, under relatively mild conditions.
As the number of vehicles and the need for transportation grow, traffic light control can be used to control
the flow of the traffic in urban environments. Schutter and Moor [15] study the optimal traffic control
problem of a two two-way streets intersection. These authors derive an approximate model that describes
the evolution of the queues lengths as a continuous function of time.
Starting from this model it is possible to compute the traffic light switching scheme that minimizes a
criterion such as average queue length over all queues, the average waiting time over the worst queue or
average waiting time.
A single signalized intersection regulated by pre-timed control problem with four traffic streams is con-
sidered. This problem is formulated as an MPCC and also as its NLP equivalent reformulation. Some
computational experiments using the FilterMPEC, the KNITRO and the MATLAB optimization toolbox
are performed.
This paper is organized as follows. Next section defines the MPCC problem and its NLP reformulation.
Some optimal issues are presented in Section 3. The traffic model formulation using two objective func-
tions is described in Section 4. In Section 5, the optimization solvers main characteristics are presented.
Numerical experiments using the solvers are reported in Section 6. Some conclusions and future work are
carried out in Section 7.
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2 Problem Definition
We consider Mathematical Program with Complementarity Constraints (MPCC):

min f(x)
s.t. ci(x) = 0, i ∈ E,

ci(x) ≥ 0, i ∈ I,
0 ≤ x1 ⊥ x2 ≥ 0,

(MPCC)

where f and c are the nonlinear objective function and the constraint functions, respectively, assumed
to be twice continuously differentiable. E and I are two disjoined finite index sets with cardinality p
and m, respectively. A decomposition x = (x0, x1, x2) of the variables is used where x0 ∈ Rn (control
variables) and (x1, x2) ∈ R2q (state variables). The expressions 0 ≤ x1 ⊥ x2 ≥ 0 : R2q → Rq are the q
complementarity constraints. Q is a finite index set with cardinality q.
One attractive way of solving (MPCC) is to replace the complementarity constraints by a set of nonlinear
inequalities, such as x1j x2j ≤ 0, j ∈ Q, and then solve the equivalent nonlinear program (NLP):

min f(x)
s.t. ci(x) = 0, i ∈ E,

ci(x) ≥ 0, i ∈ I,
x1jx2j ≤ 0, j ∈ Q,
x1 ≥ 0, x2 ≥ 0.

(MPCC-NLP)

3 Optimal Issues
The NLP formulation has no feasible point that strictly satisfies the inequalities. This fact implies
that the Mangasarian-Fromovitz constraint qualification (MFCQ) is violated at every feasible point [16].
This failure has consequences: the multiplier set is unbounded, the central path fail to exist, the active
constraints normals are linearly dependent and linearizations of the NLP formulation can be inconsistent
arbitrarily close to the solution. Recent developments show that there is a relationship between strong
stationarity defined by Scheel and Scholtes and the Karush-Kuhn-Tucker (KKT) points. This relationship
established convergence of SQP methods for MPCC formulated as NLP. Some optimality concepts used
in this work are based on the study of Fletcher et al.[14].

4 Traffic Model Formulation
On this section we briefly describe the traffic model and present the MPCC formulation - further details
could be consulted in the work of Ribeiro and Simões [17]. The traffic model considers an intersection
with four traffic streams, S1, S2, S3 and S4 which are controlled by a traffic signal, T1, T2, T3 and T4
respectively. A set S = {1, 2, 3, 4} is considered. The intersection presented in Figure 1 is controlled by

Figure 1: Intersection.

two phases (A and B). During the Phase A, the traffic signals T1 and T3 have green light and the same
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occurs in Phase B for T2 and T4. In both phases, the cycle has 3 stages: green, yellow and red. The
arrival rate of vehicles in traffic stream Si at instant time t is λi(t) for i ∈ S. When the traffic signal
Ti is green, the departure rate in traffic stream Si at instant time t is µi(t) and in the case of the traffic
being yellow, the departure rate in traffic stream Si at instant t is κi(t) for i ∈ S. Let t0, t1, . . ., be the
time instants when a change in the traffic signal occurs.
The duration of the yellow time and clearance time is fixed and set equal to dY and dC respectively. The
time instants when traffic signals T1 and T3 initiate a green period and T2 and T4 begin a red period are
t0, t2, t4, . . .. The time instants when traffic signals T1 and T3 initiate a red period and T2 and T4 begin
a green period are t1, t3, t5, . . .. Thus, t2k+1 − t2k = yG + dY + dC and t2k+2 − t2k+1 = yR + dY + dC ,
k ∈ N0.
Therefore, yG represents the green time in traffic signals T1 and T3 and yR represents the red time at T1
and T3 and a cycle length is equal to yG + yR + 2dy + 2dC .
The traffic problem has the following MPCC formulation:

min

4∑
i=1

(
1

2N
(x0)i +

N−1∑
k=1

1

N
(xk)i +

1

2N
(xN )i

)

s.t. 0 ≤ xk ≤ xmax,
ymin ≤ yR ≤ ymax,
ymin ≤ yG ≤ ymax,
x2k+1 ≥ x2k + b1yG + b3 ⊥ x2k+1 ≥ b5,
x2k+2 ≥ x2k+1 + b2yR + b4 ⊥ x2k+2 ≥ b6,

(TP1)

where, the objective function represents the average queue length over all queues. Since short cycles
imply more stops and long cycles causes long delays, maximum and minimum durations for the red and
green time (yR and yG) are considered as a simple bound constraints. The number of vehicles in traffic
stream i at time instant k is represented by (xk)i. The maximum queue length in each traffic stream is
xmax and N is the time periods considered.

Another situation was considered and has the following formulation:

min max
i

(
1

λ̄i

(
1

2N
(x0)i +

N−1∑
k=1

1

N
(xk)i +

1

2N
(xN )i

))

s.t. 0 ≤ xk ≤ xmax,
ymin ≤ yR ≤ ymax,
ymin ≤ yG ≤ ymax,
x2k+1 ≥ x2k + b1yG + b3 ⊥ x2k+1 ≥ b5,
x2k+2 ≥ x2k+1 + b2yR + b4 ⊥ x2k+2 ≥ b6.

(TP2)

In this case, the goal is to minimize the average waiting time over the worst queue and the constraints
are the same as the traffic problem (TP1).

In addition, the following vectors are defined:

xk = [L1(tk), L2(tk), L3(tk), L4(tk)]T , k ∈ N0,
b1 = [λ̄1 − µ̄1, λ̄2, λ̄3 − µ̄3, λ̄4]T ,
b2 = [λ̄1, λ̄2 − µ̄2, λ̄3, λ̄4 − µ̄4]T ,
b3 = [(λ̄1 − κ̄1)dY + λ̄1dC , λ̄2(dC + dY ), (λ̄3 − κ̄3)dY + λ̄3dC , λ̄4(dC + dY )]T ,
b4 = [λ̄1(dC + dY ), (λ̄2 − κ̄2)dY + λ̄2dC , λ̄3(dC + dY ), (λ̄4 − κ̄4)dY + λ̄4dC ]T ,
b5 = [max{(λ̄1 − κ̄1)dY + λ̄1dC , λ̄1dC}, 0, max{(λ̄3 − κ̄3)dY + λ̄3dC , λ̄3dC}, 0]T ,
b6 = [0, max{(λ̄2 − κ̄2)dY + λ̄2dC , λ̄2dC}, 0, max{(λ̄4 − κ̄4)dY + λ̄4dC , λ̄4dC}]T ,

where for each traffic stream, i.e, for i ∈ S:

• λ̄i is the average arrival rate,

• µ̄i is the average departure rate when the traffic signal is green,

• κ̄i is the average departure rate when the traffic signal is yellow,

• Li(tk) is the queue length at time instant k.
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These two MPCC problems, (TP1) and (TP2), are reformulated into their NLP equivalent formulation
(MPCC-NLP). Next section presents three optimization codes used to solve these two traffic situations
in both formulations (MPCC) and (MPCC-NLP).

5 NLP Solvers
In this section we present three solvers, two of them available on the NEOS Server platform [18, 19], the
third one is available on MATLAB software. The NEOS Server is a free internet-based service for solving
optimization problems with several solvers representing the state of the art in optimization software.

5.1 FilterMPEC
FilterMPEC arises from the work of Fletcher and Leyffer [20] to solve mathematical programs with
equilibrium constraints (MPECs) in AMPL format [21]. FilterMPEC is an extension of filterSQP, imple-
menting a SQP solver which is suitable for solving medium scale nonlinearly constrained problems.

5.2 KNITRO
KNITRO was developed for the solution of general nonconvex, nonlinearly constrained optimization prob-
lems in AMPL format [22]. It is also effective for problems with complementarity constraints. KNITRO
provides three algorithms, two of them use the interior point methods, the other is based on an active
set method.

5.3 MATLAB
The fmincon routine from MATLAB optimization toolbox [23] is a gradient-based method to solve
problems with objective and constraint functions twice continuously differentiable. It uses one of four
algorithms: active-set, interior point method, SQP or trust-region-reflective. From these algorithms, we
use the SQP algorithm to solve (MPCC-NLP). To connect the modelling language AMPL [24] to the
fmicon routine, a MATLAB mex function was used.

6 Numerical Experiments
This section summarizes the results of the numerical tests, solving the traffic intersection problem with
two different approaches: the first approach, used by filterMPEC and KNITRO, the traffic problem is
solved using the (MPCC) formulation, the second approach employed by fmincon routine uses (MPCC-
NLP) reformulation. The MATLAB version was 7.11.0 (R2010b) and the computational experiments
were made on a 2.26 GHz Intel Core 2 Duo with 8GB of RAM, MAC OS 10.6.8 operating system. For
all the solvers, the default options were used.
Both traffic situations (TP1) and (TP2) were tested using ten instances of λ̄i, i ∈ S, corresponding to
problems P1-P10 reported in Table 1. Furthermore, N = 61 was considered, which corresponds to a
period of time over thirty cycles. The other parameters used are:

µ̄i = 1800 veh/h κ̄i = 1800 veh/h i ∈ S
x0k = 2%λ̄k x0j = 1%λ̄k for k = 1, 3, j = 2, 4
xmaxi = 25 i ∈ S
dY = 3 s dC = 2 s
ymin = 7 s ymax = 60 s

Table 1: 10 instances
Problem λ̄1 (veh/h) λ̄2 (veh/h) λ̄3 (veh/h) λ̄4 (veh/h)

P1 150 850 250 750
P2 150 800 250 700
P3 500 900 600 800
P4 500 850 600 750
P5 550 900 650 800
P6 650 800 750 700
P7 300 750 400 650
P8 450 600 550 500
P9 700 750 800 650
P10 850 600 850 500
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Table 2 and Table 3 report, the optimization results of traffic problem (TP1) and traffic problem
(TP2), respectively: the red split time (yR), the green split time (yG) and objective function value (obj)
for the three solvers.

Table 2: (TP1) results
FilterMPEC KNITRO fmincon

Problem yR (s) yG (s) obj yR (s) yG (s) obj yR (s) yG (s) obj
P1 26,5 7,0 7,1 11,6 7,0 11,7 26,5 7,0 6,9
P2 23,6 7,0 6,6 13,7 7,0 7,1 23.6 7,0 6.4
P3 31,1 18,7 17,5 20,7 13,8 24,8 31,1 18,7 17,2
P4 28,8 17,7 15,2 17,2 12,2 17,9 28,8 17,7 14,9
P5 37,3 24,8 21,2 34,5 23,2 21,1 37,3 24,8 20,9
P6 32,0 27,9 21,0 20,4 18,0 23,0 32,0 27,9 20,7
P7 16,8 7,1 7,8 13,16 7,0 7,6 16,8 7,1 7,6
P8 13,5 10,6 8,32 10,9 9,8 8,0 13,5 10,6 8,0
P9 29,8 29,7 20,8 25,9 26,8 22,1 29,8 29,7 20,4
P10 21,3 27,9 16,6 21,3 27,9 16,2 21,3 27,9 16,2

Table 3: (TP2) results
FilterMPEC KNITRO fmincon

Problem yR (s) yG (s) obj yR (s) yG (s) obj yR (s) yG (s) obj
P1 18,8 7,0 14,5 13,3 7,0 17,2 18,8 7,0 14,5
P2 17,4 7,0 13,8 17,4 7,0 13,8 17,4 7,0 13,8
P3 28,2 16,4 26,5 19,9 12,4 39,7 39,0 22,7 24,5
P4 30,4 18,4 21,6 15,2 10,1 35,1 32,9 19,6 21,6
P5 36,4 24,0 40,2 20,8 14,0 75,9 41,4 27,0 29,9
P6 31,2 26,7 33,3 25,6 22,5 45,2 39,0 32,6 31,6
P7 15,0 7,2 14,3 14,1 7,0 15,1 16,2 7,9 14,2
P8 11,6 9,5 15,4 11,9 9,6 15,2 15,3 11,6 14,6
P9 31,0 30,0 32,9 20,1 20,3 65,8 35,9 34,0 32,3
P10 22,0 26,7 25,4 20,6 27,4 29,1 24,2 28,5 25,4

Table 4: Number of iterations

Problem

FilterMPEC KNITRO fmincon
it it it

(TP1) (TP2) (TP1) (TP2) (TP1) (TP2)
P1 5 68 58 159 21 30
P2 5 68 18 204 24 25
P3 2 32 26 21 10 47
P4 8 54 41 106 43 58
P5 2 81 53 171 20 77
P6 3 84 34 118 15 61
P7 2 34 19 48 37 38
P8 4 49 15 70 25 59
P9 2 53 29 174 6 41
P10 3 66 45 81 24 99

Table 4 presents the number of iterations (it) achieved by the solvers for both traffic situations (TP1)
and (TP2). Among the analysed solvers, filterMPEC is the one that presents the best performance solving
the traffic situation (TP1). For traffic situation (TP2), KNITRO needs more iterations than the others
solvers.

7 Conclusions and Future Work
A traffic model was studied and codified in AMPL language which could be easily connected to nonlinear
programming solvers. Two approaches were used to solve the traffic problem: the (MPCC) formulation,
solved by FilterMPEC and KNITRO on NEOS Server and the reformulation (MPCC-NLP) solved by
fmicon routine from MATLAB. The model for traffic situations (TP1) and (TP2) was efficiently solved
by these solvers using both approaches (MPCC) and (MPCC-NLP).

As a first stage of future work we intend to introduce a probabilistic distribution in arrival rate instead
of consider it as a constant value. Another idea is to allow that vehicles can turn (right or left) and not
follow just ahead. With minor changes other objective functions can be easily tested: average queue
length over the worst queue, worst case queue length and average waiting time over all queues. Another
goal of this work is to collect real data from a signalized traffic intersection in a city in order to test the
model in a real situation.
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