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Entomopathogenic fungi associated to Prays oleae: isolation, characterization and 

selection for biological control 

Abstract  

Entomopathogenic fungi (EF) are nowadays considered one of the most promising alternatives to 

chemical pesticides. The use of fungal species or strains recovered from and adapted to a 

specific environment and host will increase the chances of success of biocontrol measures. In 

this work, we focused on one of the major pests affecting the olive culture, the lepidopteran Prays 

oleae Bern. A revision of available knowledge on entomopathogenic fungi is presented, focusing 

on their ecology and environmental factors that affected their occurrence, abundance and 

diversity. The infection mechanism is also addressed, as well as the enzymes and toxins related 

to both insect infection and death. The review on the compatibility of EF with chemical pesticides 

and other biological methods of pest control shows that different outcomes of those interactions 

are to be expected. Finally we address the current data about the use of EF for the control of olive 

pests.  

 The first step was to ascertain which fungal entomopathogenic species were associated 

to P. oleae in an olive ecosystem. The undertaken survey, on larvae and pupae of the three 

annual generations (phyllophagous, antophagous and carpophagous) of P. oleae resulted in the 

identification of 43 species from 24 genera. Besides species best described as phytopathogenic, 

a large number of possible biocontrol agents, including antagonistic and entomopathogenic 

fungal species were found. Beauveria bassiana was the one found in higher abundance, 

especially in the phyllophagous generation.  

 The internal transcribed spacer (ITS) region has been adopted as a barcode region for 

fungi, although many doubts still persist about the reliability of this marker. This work intends to 

evaluate and compare the efficiency of different molecular barcode markers (ITS, β-tubulin and 

RPB2), by amplifying these regions of fungal isolates retrieved from mycosed larvae and pupae of 

P. oleae. Although results showed higher performance of the ITS region, use of multiple barcode 

regions for fungal identification should be considered, as the use of β-tubulin and RBP2 

increased the number of identified sequences. This multi-locus approach allowed the 

identification of fungal species associated with the death of larvae and pupae of P. oleae that 

present distinct roles in the ecosystem. 

 The pathogenicity of four isolates of the major fungal taxa identified, B. bassiana, was 

evaluated on a lepidopteran pest of chestnut, Cydia splendana. The use of six concentrations of 
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each fungal isolates showed a time- and concentration-dependent mortality of larvae, with 

mortalities ranging from 40 to 100%. Variations of virulence parameters were detected between 

isolates, both for median lethal concentration (LC50) and median lethal time (LT50). The results 

showed a high susceptibility of C. splendana to B. bassiana, indicating that EF can be useful to 

control this pest. 

 After having determined the presence of EF in olive orchards, and their ability to infect 

insect pests, we decided to study some factors that can be responsible for the detected variation 

on their diversity and abundance in olive orchards. One of the studied factors was the impact that 

soil tillage has on EF. Larvae and pupae were sampled from olive orchards with or without soil 

tillage, and EF species associated to P. oleae were identified. A total of 120 isolates belonging to 

8 EF species were found, being B. bassiana the most abundant one. Although no significant 

differences were observed between no-till and tilled orchards, higher occurrence, diversity and 

abundance was found in the former type of soil management. Four species were found 

exclusively on no-till orchards, indicating that the presence of natural vegetation creates more 

suitable conditions to EF, in olive orchards.   

 The effect of the olive plant organs (leaves, flowers and fruits) on the manipulation of the 

entomopathogens B. bassiana and Paecilomyces formosa was studied under in vitro conditions. 

Both fungi are influenced by olive tree organs, but in different ways: Beauveria bassiana was 

more negatively affected by olives, while P. formosa was more negatively affected by leaves. Both 

volatile and diffusible compounds, as well as their interaction, are responsible for the observed 

effects. These results suggested that olive plant organ may be involved in the recruitment or 

maintain of specific fungal species which could partly explained the differences on fungal 

occurrence between P. oleae generations.  

 Overall results showed that a pool of EF, for use as biocontrol agents, can be found in 

olive orchard, namely found in association to P. oleae, in high diversity and abundance. The most 

abundant species, B. bassiana, besides being isolated from P. oleae, also showed to be 

pathogenic to another lepidopteran pest, C. splendana. Of the factors that can interact with EF, 

different plant organs showed to have considerable influence on fungal behaviour. By other hand, 

different soil management practices didn‟t result in significant differences, although the presence 

of natural vegetation appears to be more suitable for EF. Combined information should give a 

significant thrust forward on research on EF for olive pest control, as more knowledge is needed, 

for the understanding of the interaction EF- P. oleae- olive tree.  



vii 
 

Fungos entomopatogénicos associados a Prays oleae: isolamento, caracterização e 

selecção para controlo biológico 

Resumo  

Os fungos entomopatogénicos (FE) são, hoje em dia, uma das mais promissoras alternativas aos 

pesticidas químicos. O uso de espécies ou estirpes fúngicas isoladas e adaptadas a um 

determinado ecossistema e hospedeiro resultará num aumento das probabilidades de sucesso 

de métodos de luta biológica. Este trabalho focou-se numa das principais pragas que afecta a 

cultura da oliveira, o lepidóptero Prays oleae Bern. É apresentada uma revisão sobre o 

conhecimento disponível sobre os FE, incidindo sobre a sua ecologia, e factores que afectam a 

sua ocorrência, abundância e diversidade. O mecanismo de infecção destes fungos é também 

abordado, assim como enzimas e toxinas responsáveis pela infecção e morte do hospedeiro. A 

compatibilidade de EF com meios de controlo de pragas, quer químicos, quer de luta biológica é 

também apresentada. Finalmente, apresentam-se os dados disponíveis sobre o uso de FE contra 

pragas da oliveira.  

 O primeiro passo foi verificar as espécies de FE encontradas associadas a P. oleae no 

ecossistema olival. A pesquisa efectuada, em larvas e pupas das três gerações anuais (filófaga, 

antófaga e carpófaga) de P. oleae resultou na identificação de 43 espécies. Para além de 

espécies descritas como fitopatogénicas, foi encontrado um grande número de possíveis agentes 

de luta biológica, incluindo espécies de fungos antagonistas e entomopatogénicas. Beauveria 

bassiana foi a espécie encontrada em maior abundância, principalmente na geração filófaga. 

 A região espaçadora interna transcrita (internal transcribed spacer - ITS) foi 

recentemente definida como a região padrão -barcode- para os fungos, apesar de ainda 

subsistirem dúvidas sobre a sua confiabilidade. Este trabalho teve como objectivo avaliar e 

comparar a eficiência de diferentes regiões barcode (ITS, β-tubulin e RPB2), amplificando-os de 

isolados fúngicos obtidos de larvas e pupas de P. oleae. Apesar de os resultados mostrarem 

maior eficiência da região ITS, o uso de múltiplas regiões deve ser considerado, uma vez que 

aumenta o número de sequências identificadas. Esta abordagem multi-regiões permitiu a 

identificação de fungos associados a P. oleae, com distintas funções no ecossistema. 

 A patogenicidade de quatro isolados da principal espécie identificada, B. bassiana, foi 

avaliada em Cydia splendana, um lepidóptero praga da cultura da castanha. A utilização de seis 

concentrações de cada isolado mostrou uma mortalidade de larvas dependente do tempo e da 

concentração, com valores compreendidos entre 40 a 100% de mortalidade. Variações nos 
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parâmetros de virulência foram detectados entre isolados, quer na concentração letal média 

(LC50), quer no tempo letal médio (LT50). Os resultados mostraram uma alta susceptibilidade de 

C. splendana à infecção por B. bassiana, indicando que os FE podem ser úteis para o controlo 

desta praga. 

 Após ter sido determinada a presença de FE em olivais, e a sua capacidade de infectar 

insectos, foram estudados alguns factores que poderão influenciar a sua diversidade e 

abundância nos olivais. Um desses factores estudados foi o impacto da mobilização do solo nos 

FE. Foram recolhidas larvas e pupas da praga em olivais com e sem mobilização de solo, 

identificando-se as espécies isoladas. No total, 120 isolados, pertencentes a 8 espécies de FE 

foram identificados, sendo B. bassiana a mais abundante. Apesar de não terem sido detectadas 

diferenças significativas entre olivais com e sem mobilização solo, foi observada maior 

ocorrência, diversidade e abundância em solos sem mobilização. Quatro espécies de FE foram 

encontradas exclusivamente em olivais sem mobilização, indicando que a vegetação natural 

pode criar condições mais favoráveis aos FE.  

 O efeito dos órgãos de oliveira (folhas, flores e frutos) nos FE B. bassiana e Paecilomyces 

formosa foi estudado em condições in vitro. Ambas as espécies foram influenciadas pelos órgãos 

da oliveira, ainda que de forma distinta. Beauveria bassiana foi negativamente mais afectada 

pelos frutos, sendo que P. formosa foi negativamente mais afectada pelas folhas. Compostos 

voláteis, difusíveis, e a sua interacção são responsáveis pelos efeitos observados. Estes 

resultados sugerem que os órgãos da oliveira podem estar envolvidos no recrutamento ou 

manutenção de FE específicos, o que pode explicar, parcialmente, as diferenças na ocorrência 

de FE entre gerações de P. oleae.   

 Os resultados globais revelaram a existência de um conjunto de FE no olival, em 

associação com P. oleae e em grande abundância e diversidade, que podem ser explorados 

como agentes de luta biológica. A espécie mais abundante, B. bassiana, além de isolada de P. 

oleae, também se mostrou patogénica em outra praga, C. splendana. Entre os factores que 

podem interagir com FE, os diferentes órgãos da planta mostraram ter uma influência 

considerável sobre o comportamento dos fungos. Por outro lado, os diferentes sistemas de 

maneio do solo não causaram diferenças significativas, embora a presença de vegetação natural 

pareça beneficiar os FE. A informação resultante deste trabalho deverá dar um impulso 

significativo à pesquisa sobre FE para a luta contra pragas de oliveira, uma vez que mais 

informação é necessária, para a compreensão da interacção FE- P. oleae- oliveira. 
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Abstract 

Entomopathogenic fungi have been extensively studied and their use as biocontrol agents is now 

a reality. They have no adverse effects on human and the environment, and are able to infect 

their hosts by direct contact only, without the need to be ingested. Secondary metabolites of 

entomopathogenic fungi can also be used as control agents against several pests. The studies 

regarding their ecology show that they are mainly found in soil, but are also present in the 

phylloplane and as endophytes of several plant species. Identification of entomopathogenic fungi 

is possible using different methodologies, including molecular ones, and using several markers. 

Also, a number of factors are known to affect their abundance and diversity, such as soil-related 

and climatic-related factors. Their compatibility with other pest control agents has already been 

evaluated. In this review, all these different topics will be address, in order to elucidate 

entomopathogenic fungal characteristics, as well their applicability against olive pests, like 

Bactrocera oleae, Prays oleae and Saissetia oleae.  

Keywords: Entomopathogenic fungi; Ecology; Secondary metabolites; Biocontrol; Olive pests   

  



4 
 

Entomopathogenic fungi are able to regulate the natural population of pests, like insects, ticks 

and mites (Butt et al., 2001). They comprise a large group of fungal pathogens that includes 

approximately 700 species from almost 85 genera (Charnley and Collins, 2007). Due to their 

large host range, entomopathogenic fungi could be potentially useful as control agents against 

different insect orders. The use of entomopathogenic fungi to control insect pests was proposed 

more than 130 years ago, by Metchnikoff (Lord, 2005). From that point on, research on that 

possibility increased dramatically. In those early years, the initial mass production and several 

field trials were implemented. However, with the discovery and widespread application of 

chemical agents, the use of entomopathogenic fungi as a biocontrol agent was set aside. Even 

more, an erroneous comparison standard was created, when fungi-based insecticides are 

compared to chemical insecticides, generating expectations of chemical-like efficacies (Vega et 

al., 2009).   

 In the last few years, the situation has been changing, as research and development of 

new mycoinsecticides are considerably increasing (Faria and Wright, 2007). This is mainly due to 

an increased pressure by the public, demanding healthier products, to the requirements imposed 

by importing countries concerning chemical residues levels, and also to the awareness of farmers 

and industrial corporations about the long term environmental damage caused by chemicals. 

Furthermore, the resistance that some insect pests have acquired to chemical products, and 

increasing restrictive laws regarding the application of those chemicals, have given an significant 

thrust towards the research, production and commercialization of biocontrol agents. Up to 2007, 

at least 171 fungal products have been developed for the control of insects and pests (Faria and 

Wright, 2007) (Table 1). Of those, 129 were commercialized, at the date of the study. Two fungal 

species represented the major part of the available mycoinsecticides, Beauveria bassiana and 

Metarhizium anisopliae, each one representing 33.9% of the total available products. These 

fungal-based products are applied for controlling a large variety of pests, which include species 

belonging to several insect orders and families (Faria and Wright, 2007). Accordingly, the insect 

pests controlled by entomopathogenic fungi have been described to comprise whiteflies, 

cockroaches, corn and coffee-berry borers, grasshoppers and locusts, among others (Butt et al., 

2001). 

Although some disadvantages can be pointed out to fungal-based insecticides (speed of kill and 

cost) in comparison to conventional insecticides (Lacey et al., 2001), they also present 

considerable advantages. The possible infection of beneficial insects may be overcome by using 
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entomopathogens. Indeed, the fungal isolates retrieved from a given insect species tend to be 

more virulent to that species and could present a narrower host range (Goettel, 1995). 

 
Table 1 Entomopathogenic fungal species used for mycoinsecticides development (adapted from Faria and Wright, 

2007). 
 

Fungal species Number of products 

Aschersonia aleyrodis Webber 1 (0.6%) 

Beauveria bassiana (Bals.) Vuill. 58 (33.9%) 

Beauveria brongniartii (Sacc.) Petch 7 (4.1%) 

Hirsutella thompsonii F.E.Fisher 3 (1.8%) 

Isaria fumosorosea Wize 10 (5.8%) 

Isaria sp. 1 (0.6%) 

Lecanicillium longisporum (Petch) R.Zare & W.Gams 2 (1.2%) 

L. muscarium (Petch) R.Zare & W.Gams 3 (1.8%) 

Lecanicillium sp. 11 (6.4%) 

Metarhizium anisopliae (Metschn.) Sorokın 58 (33.9%) 

M. anisopliae var. acridum Driver & Milner 3 (1.8%) 

Nomuraea rileyi (Farl.) Samson 1 (0.6%) 

Sporothrix insectorum de Hoog & H.C.Evans 3 (1.8%) 

Conidiobolus thromboides Drechsler 2 (1.2%) 

Lagenidium giganteum Couch 1 (0.6%) 

Mix of two or more species 7 (4.1%) 

Total 171 (100%) 

 

 

Further advantages include the lack of detrimental effect on mammals, high persistence in the 

environment, as well as the possibility to modify, through biotechnological research, production of 

enzymes and toxins responsible for infection and mortality (Wan, 2003). In addition, no reports of 

resistance acquisition by insect pests to the entomopathogenic fungi infection have been reported 

(Shelton et al., 2007). Contrary to other insect control agents, the use of entomopathogenic fungi 

does not rely on ingestion by the insects to cause mycosis. The entomopathogenic fungi are able 

to infect insects by penetrating the insect cuticle. Their proliferation will then lead to the insect‟s 

death. However, according to Lacey et al. (2001), the use of entomopathogens should even be 
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enhanced by performing some improvements on their performance, production efficiency, 

formulation and virulence. Their environmental advantages should be also confirmed for 

increasing the growers and general public acceptance for these biological control agents.  

 

Ecology of entomopathogenic fungi 

Entomopathogenic fungi present a cosmopolitan distribution (Bidochka et al., 1998). They have 

been isolated from almost all regions of the world and belong to several genera of Ascomycota 

and Zygomycota divisions (Roy et al., 2006) (Table 2). The ecology of this kind of fungi has 

already been thoroughly reviewed (e.g. Vega et al., 2009; Roy et al., 2010) and will be only briefly 

addressed.  

 

Table 2 – Classification of the most common entomopathogenic fungi (Roy et al., 2006). 

 
Division Class Order Family Genus 

Ascomycota Sordariomycetes Hypocreales Clavicipitaceae Beauveria 

    Cordyceps 

    Cordycepioideus 

    Lecanicillium 

    Metarhizium 

    Nomuraea 

Zygomycota Sordariomycetes Entomophthorales Entomophthoraceae Entomophaga 

    Entomophthora 

    Erynia 

    Eryniopsis 

    Furia 

    Massospora 

    Strongwellsea 

    Pandora 

    Tarichium 

    Zoophthora 

   Neozygitaceae Neozygites 
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The presence of entomopathogenic fungi in all habitats proves their successful evolution, 

and the ability to take advantage from the interaction with plants, insects and other nutritional 

sources (Cory and Ericsson, 2010), and their life cycle is complex (Figure 1). However, the soil is 

considered the natural reservoir of entomopathogens. The resting stages of entomopathogenic 

fungi are commonly found in soil of several field crops, orchards (Sun et al., 2008) and forests 

(Bidochka et al., 1998). The fungal entomopathogens most recurrently found in soil belong to 

Beauveria, Isaria and Metarhizium genera (Meyling and Eilenberg, 2007). 

Life in the soil presents some opportunities for fungal entomopathogens. The soil 

provides a protective effect from U.V. radiation, as well as from extreme temperatures, and also 

offers an optimal humidity level (Inglis et al., 2001). In addition, a wide diversity of insects is 

present in the soil that may be potential hosts for the entomopathogenic fungi (Vega et al., 

2009). Indeed, the continuous proximity between hosts and pathogens has been described as an 

important factor for the evolution of fungal entomopathogenecity (Humber, 2008). However, the 

competition caused by the presence of other microorganisms in the soil, as well as the presence 

of their antimicrobial metabolites, may have a negative effect on the ability of entomopathogens 

to infect their insect hosts (Vega et al., 2009). In addition, even after insect infection, the 

entomopathogenic fungi could have their nutritional resources, namely dead insects, infected by 

opportunistic microorganisms. To overcome this competition, the production of secondary 

metabolites by entomopathogens belonging to the Hypocreales order has already been described 

(Strasser et al. 2000a). These metabolites apparently have the function to increase the ability of 

the fungus to outcompete those opportunistic organisms. However, the possibility of retrieving 

other nutritional sources should not be discarded. Some fungi appear to be able to retrieve 

nutrients from plants, after depleting those offered by the insect host (Vega et al., 2009). 

 Entomopathogenic fungi can also become associated with plants, being found as 

endophytes in a large variety of plant species (Meyling and Eilenberg, 2007). At least twelve 

species of entomopathogenic fungi have been reported as endophytes in several plant species, in 

which they naturally occurred or were introduced using different techniques (Vega, 2008). For 

instance, B. bassiana has been found as an endophyte in several plant species, including cocoa 

seedlings and coffee (Posada and Vega, 2005), corn (Bing and Lewis, 1993), poppy (Quesada-

Moraga et al., 2006a), potato (Reddy et al., 2009), Carpinus caroliniana (Bills and Polishook, 

1990), Phoenix dactylifera (Gómez-Vidal et al., 2006), among several other species (Vega, 2008). 

The presence of endophytic entomopathogenic fungi is believed to work as a plant adaptation for 
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the defence against herbivorous insects (Elliot et al., 2000; White et al., 2002). Indeed, plants 

appear to be able to “control” endophytic entomopathogens proliferation by adjusting their 

abundance, germination or contact rates (Elliot et al., 2000). Besides the described endophytic 

activity of entomopathogenic fungi, their presence in the phylloplane of several plant species has 

already been described (Meyling and Eilenberg, 2006; Asensio et al., 2007, Talwar, 2005). Most 

probably the fungal entomopathogens were deposited on the leaf surface by the action of the 

wind or rain. However, the endophytic behaviour of such fungi should not be neglected (Meyling 

and Eilenberg, 2006).  

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1 Suggestion of entomopathogenic fungi lifecycle, based on the current knowledge. Arrows represent the 
dispersal pathways; dotted arrow indicates a possible infection pathway. Dark grey area indicates soil environment, 
and white background indicates aboveground environment (adapted from Meyling and Eilenberg, 2007).  

 
 
Molecular identification of entomopathogenic fungi 

As occurring for other fungal species, the identification of entomopathogenic fungi was first 

determined by morphological traits. The advent of molecular studies led to the identification of 

previous cryptic entomopathogenic species, corresponding to those species classified as a single 

nominal species because they were morphologically indistinguishable (Bickford et al., 2006). 

Examples of such cryptic fungi include B. bassiana (Rehner and Buckley, 2005; Rehner et al., 
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2006), Metarhizium (Bidochka et al., 2001, 2005), Paecilomyces lilacinus (Inglis and Tigano, 

2005), Nomuraea rileyi (Neelapu et al., 2009) and Ophiocordyceps unilateralis (Kobmoo et al., 

2012). Furthermore, the use of molecular tools for identification of entomopathogenic fungi has 

recently resulted in the description of new six species belonging to Beauveria genus (Rehner et 

al., 2011). 

Different molecular markers have been described for the molecular identification of 

entomopathogens and for the phylogenetic studies of these fungi, as well as for the molecular 

characterization of fungal isolates. The number of works dealing with the molecular identification 

and characterization of B. bassiana population is a good example of such molecular markers 

diversity. Several loci are now currently used in such studies, like the internal transcribed spacer 

(ITS) (Rehner and Buckley, 2005; Ghikas et al., 2010; Sevim et al., 2010; Rehner et al., 2011; 

Johny et al., 2012; Meyling et al., 2012; Wang and Zheng, 2012), the elongation factor 1-alpha 

(EF1-α) (Rehner and Buckley, 2005; Sevim et al., 2010; Garrido-Jurado et al., 2011; Rehner et 

al., 2011; Meyling et al., 2012; Wang and Zheng, 2012; Johny et al., 2012), the RNA 

polymerase II largest subunit (RPB1) (Rehner et al., 2011) and the RNA polymerase II second 

largest subunit (RPB2) (Rehner et al., 2011). In the particular case of B. bassiana, specific 

primers have been also designed for the nuclear intergenic region Bloc (Rehner et al., 2006), 

which exhibits more variability than the ITS region (Meyling, 2008). Due to its informative 

potential, this locus has already been used in several studies that confirmed the ability of this 

marker to further resolve species within the genus (Rehner et al., 2011; Johny et al., 2012; 

Meyling et al., 2012). Other entomopathogenic fungi have also been subject to phylogenetic 

studies using distinct molecular markers, such as M. anisopliae (Bischoff et al., 2009; Freed et 

al., 2011), Cordyceps sinensis (Chen et al., 2004), Nomuraea rileyi (Han et al., 2002), 

Paecilomyces fumosoroseus (Tigano-Milani et al., 1995), among others. Multilocus analysis has 

also led to the report of new species of Metarhizium, including the type species, M. anisopliae, 

previously composed of four varieties (Bischoff et al, 2009). 

The use of a standard DNA region, a DNA barcode, has been established for a given 

taxonomic group identification. Examples of DNA barcodes include, the portion of the 

mitochondrial gene COI for animals (Hebert et al., 2003) and regions of the plastid genes matK 

and rbcL for land plants (CBOL Plant Working Group, 2009). The most consensual DNA barcode 

for fungi has been the ITS region (Seifert, 2009, Begerow et al., 2010). However, the size of this 

region has been pointed out as a major limitation. Indeed, the amplification of a sequence of less 
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than 500 bp, in some taxonomic groups, could result in insufficient variation and lead to an 

ambiguous species identification (Seifert, 2009). Furthermore, intraspecific and even intra-

individual variability of this region has been reported for entomopathogenic fungi (Kårén et al., 

1997; Smith et al., 2007). The ITS region exhibited lower species resolution that elongation 

factor 1-alpha (EF1-a) region, for Beauveria isolates (Rehner and Buckley, 2005). As referred 

before, for this genus, the nuclear intergenic Bloc region (Rehner et al., 2006) presents more 

information than the ITS region (Meyling, 2008).  

Species identification, especially of those fungi presenting cryptic species or small variations 

between species, should be carefully evaluated. Whenever possible more than a single locus 

should be studied. The use of reliable barcode databases (http://www.boldsystems.org; 

www.fungalbarcoding.org) will allow the comparison the obtained sequences with barcode 

sequences and provide the rapid identification of fungal species. Currently, these databases rely 

on a reduced number of available deposited sequences.  

 

Environmental factors affecting entomopathogenic fungi 

Fungal entomopathogens are affected by several factors that influence their abundance, diversity, 

viability and infection efficiency in a given ecosystem. Fungal entomopathogens are particularly 

affected by abiotic factors, like temperature, relative humidity and solar radiation (Inglis et al., 

2001; Vidal and Fargues, 2007). The impact of these factors, regarding some of the most 

important entomopathogenic species, has been intensively reviewed (Zimmermann, 2007a, b; 

Zimmermann, 2008; Jaronski, 2010).  

Temperature is one of the key factors affecting entomopathogen germination, growth, 

sporulation and survival. The influence of temperature is also noticed during host-pathogen 

interactions (Blanford and Thomas, 2000). Optimal germination and growth temperatures for 

entomopathogens range from 23ºC to 28ºC, decreasing with temperatures above 30ºC, and 

being arrested for temperatures over 34ºC (Jaronski, 2010). However, these values could 

present some variations. B. bassiana, for instance, has an optimal growth temperature of about 

23-28ºC, presenting a minimum of 5-10ºC, but a maximum of 30-38ºC (Zimmermann, 2007a). 

Indeed, this fungal species has been described as being able to adapt to different temperature 

regimes. Isolates of B. bassiana collected in Africa presents a reduced growth below 15ºC and 

over 35ºC, ranging the optimal temperature between 20 and 30ºC (Tefera and Pringle, 2003) or 
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25 and 30ºC (Ekesi et al. 1999). Isolates from sub-antarctic soils germinated at temperatures as 

low as 5ºC (Roddam and Rath 1997).  

When placed at different temperatures, variations on germination rates and mycelia 

growth have also been recorded for different isolates (Devi et al., 2005). For example, the 

important entomopathogenic fungus, M. anisopliae, presents an optimal germination 

temperature of 25-30ºC (Zimmermann, 2007b), but different isolates can germinate at 35ºC or 

even at 15ºC (Dimbi et al., 2004). For this species, the germination of conidia at 40ºC was also 

recorded, as well as at 45ºC (Rangel et al. 2005).  

Other entomopathogenic fungi appear to have a higher optimal growth temperature than 

B. bassiana or M. anisopliae. For example, Isaria sp. presented an improved growth at 30º, 

compared to the average 25ºC optimal temperature for other fungi (Cabanillas and Jones, 2009). 

Also, P. fumosoroseus presents similar germination at 25ºC and 35ºC, decreasing slightly at 

40ºC and more remarkably at 45ºC (Smits et al., 1996).  

As temperature affects spore germination and growth of entomopathogenic fungi, the 

fungal virulence will be subsequently affected by this environmental factor. Indeed, several 

studies have described the influence of temperature on the infection of numerous pests. When 

the green peach aphid, Myzus persicae, was treated with different strains of entomopathogenic 

fungi, the median lethal time (LT50) keeping constant the relative humidity, varied greatly, e.g. 

from 4.4 days at 20ºC to 1.55 days at 30ºC (Vu et al., 2007). When the malaria vector mosquito, 

Anopheles arabiensis, was infected with B. bassiana under two different temperatures, a 

difference in fungus-induced mortality rates was detected between temperature treatments, 

increasing considerably when temperature was changed from 21º to 25ºC (Kikankie et al., 

2010). B. bassiana also presented similar virulence to the red spider mite, Tetranychus urticae, 

at different temperatures (Bugeme et al., 2009). High mortality rates were also described by 

Vandenberg et al. (1998), when the diamondback moth (Plutella xylostella) was exposed to B. 

bassiana at temperatures of 25ºC. In addition, the time required for causing mortality of infected 

pests, evaluated as the median lethal time (LT50), depends on the temperature (Vestergaard et al., 

1995). When analyzing the pathogenicity of M. anisopliae to thrips, LT50 values of about 4 days at 

temperatures of 18º and 20°C, were decreased to 3 days, at temperatures of 23º and 26ºC 

(Vestergaard et al., 1995). The time needed to cause mortality of Aphis fabae and Myzus 

persicae, when infected by B. bassiana, P. fumosoroseus and Verticillium lecanii also illustrates 

the influence that temperature has on the ability of entomopathogenic fungi to infect and kill (Yeo 
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et al., 2003). For example, for a B. bassiana strain infecting M. persicae, the LT50 values 

decreased from 20.88 days, at 10ºC, to 4.59 days, at 23ºC. Also, when applied to the mite 

Tetranychus evansi, at different temperatures, the fungus Neozygites floridana requires high 

temperatures (29ºC) to achieve low LT50 values (around 3 days) (Wekesa et al., 2010).  

The relative humidity is another abiotic factor known to strongly influence the 

entomopathogenic fungi (Jaronski, 2010). Indeed, the relative humidity may be considered the 

decisive factor for the appearance of epizootic outbreaks, being required for germination, 

infection and sporulation of entomopathogenic fungal species (Hesketh et al., 2010). Most of the 

fungal species require at least 90% of relative humidity for germination (Inglis et al., 2001). For B. 

bassiana, reduction of germination was recorded at 99% of RH, and it is delayed at 94%, as 

growth is at 92% (Zimmermann, 2007a). A high humidity level is necessary for germination of M. 

anisopliae spores (Zimmerman 2007b). Luz and Fargues (1997) also reported that a minimum 

of 95.5% of relative humidity is required for germination of B. bassiana spores, at 25ºC, below 

which no germination was detected.  

The importance of humidity conditions on the infection ability of entomopathogenic fungi 

as been extensively reported. A higher humidity level than 96% is required for the effective 

infection of Rhodnius prolixus by B. bassiana (Luz and Fargues, 1999). The importance of 

humidity is also evident in this system by the LT50 values that significantly increased when relative 

humidity was changed cyclically to lower values (Fargues and Luz, 1999, 2000). Mortality of 

Triatoma infestans caused by B. bassiana and M. anisopliae was also significantly decreased with 

the reduction of relative humidity (Lazzarini et al., 2006). Relative humidity of 98%, promoted 

almost 100% of mortality, while humidity levels of 75% or 43% only promoted 23.7% of mortality 

or even lower. The humidity requirements could be even more extreme for other fungal species, 

like Hirsutella thompsonii and Lecanicillium spp. The germination of their spores requires a 

relative humidity of 80% to 95%, on the leaf surface, for several days (Jaronski, 2010).  

Depending on the host-fungus system the humidity conditions could be more or less 

important. For example, B. bassiana is able to cause 98% mortality of the spruce bark beetle, Ips 

typographus, at relative humidity of 40%. Furthermore, experimental results with B. bassiana- and 

Lecanicillium lecanii-based formulations showed that environmental relative humidity may be a 

secondary factor affecting infection, in contrast to the target-insect habitat, such as leaf surface 

(Fargues et al., 2003) 
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The sunlight, particularly UV-B (290-330 nm) and UV-A (330-400nm) radiation, is 

another major factor affecting entomopathogenic fungi (Zimmermann, 2007a). Conidia are 

relatively short lived on leaves at the top of the canopy, compared to the ones deposited in the 

middle of the canopy (Inglis et al, 1993). Indeed, sunlight is considered the most important 

parameter, when considering the survival of conidia on epigeal habitats (Daoust and Pereira, 

1986; Inglis et al., 1993). However, attention must be paid to inter- and intra- specific variation of 

resistance to sunlight. These variations were clearly showed by the work of Fargues et al. (1996). 

Their results showed an overall higher resistance of conidia from Metarhizium flavoviride to 

simulated sunlight, followed by B. bassiana and M. anisopliae. Conidia from P. fumosoroseus 

were the most susceptible, but presented intra-specific variations. These intra-specific variations 

were also detected for M. anisopliae (Braga et al., 2001; Rangel et al., 2004; Rangel et al., 2005) 

and B. bassiana (Leland, 2005; Fernandes et al., 2007; Huang and Feng, 2009) spores.  

The radiation also affects the fungal infection ability. When exposed to increasing doses 

of UV-B radiation, a strong decline of mortality rates of aphid Myzus persicae were observed for 

B. bassiana and M. anisopliae (Yao et al., 2010). These results confirmed previous data, which 

showed that radiation affects the virulence of entomopathogenic fungi (Inglis et al., 1997; Rangel 

et al., 2008).  

In agricultural ecosystems, the production systems and agricultural practices, as well as 

the soil management, could also affect the natural enemies of pests (Altieri, 1999; Hummel et al. 

2002a, b). The effect of soil properties on the presence of entomopathogens has been reported 

(Ali-Shtayeh et al., 2002; Shapiro-Ilan et al., 2003; Quesada-Moraga et al., 2007; Oddsdottir et 

al., 2010; Imoulan et al., 2011; Medo and Cagáň, 2011), as well as the influence of the habitat 

type (Vänninen, 1995; Chandler et al., 1997; Bidochka et al., 1998; Meyling and Eilenberg, 

2006; Sookar et al., 2008; Sun et al., 2008; Goble et al., 2010; Medo and Cagáň, 2011; 

Schneider et al., 2012; Wakil et al., 2013). In addition the soil management system, such as the 

tillage practice, may also influence the entomopathogenic fungi, as previously described (Sosa-

Gómez et al., 2001; Hummel et al. 2002b; Jabbour and Barbercheck, 2009). However, distinct 

fungal species exhibit different responses to this particular soil management practice, depending 

also on the plant culture field. For example, while B. bassiana was equally found in no-tilled and 

conventionally tilled soils of soybean cultures (Sosa-Gómez et al., 2001), tillage increased the soil 

CFU number of B. bassiana in corn fields (Bing and Lewis, 1993). In contrast, Metarhizium and 

Isaria species were found to be more prevalent in no-tilled soils than in conventionally tilled soils 
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(Sosa-Gómez et al., 2001). Other factors linked to soil management, like weed density, crop 

residues and abundance and diversity of insect pest can also influence the levels of 

entomopathogenic fungi (Jabbour and Barbercheck, 2009). Although differences can be found in 

soils with different management practices, these variations may not be detected when analysing 

fungal abundance and diversity at the canopy level (Meyling et al., 2011; Sosa-Gómez et al., 

2001; Oliveira et al., accepted publication).  

The abundance, diversity and persistence of entomopathogenic fungi in a given 

ecosystem, could be also affected by factors occurring at the phylloplane, such as the leaf 

surface chemistry, the microflora, and the presence of pesticides residues (Jaronski, 2010). 

Furthermore, the plant species is known to exert considerable influence on entomopathogenic 

fungi, through chemical cues that have an effect on pest attraction, infection, fungal sporulation 

and viability (reviewed by Cory and Ericsson, 2010). Plant secondary compounds are responsible 

for direct effects on entomophagous fungi. The most studied secondary compounds of plants that 

are able to influence entomopathogens are volatile compounds. Other compounds produced by 

plants, like alkaloids and glycoalkaloids, phenolics, terpenoids, isothiocyanates or exudates, are 

also able to affect conidia of entomopathogenic fungi (Lopez-Llorca and Olivares-Bernabéu, 1997; 

Vega et al., 1997; Lacey and Mercadier, 1998; Inyang et al., 1999; Poprawski et al., 2000; 

Poprawski and Jones, 2000; Klingen et al., 2002; Jaronski, 2007; Cory and Ericsson, 2010). 

 

Infection mechanism of entomopathogenic fungi  

Entomopathogenic fungi are able to infect their hosts, either penetrating through the insect 

cuticle or through body openings (Tanada and Kaya, 1993), being able to deplete nutrients, and, 

afterwards, re-emerge from host, as hyphae (Fig. 2). This kind of fungi evolved in such manner 

that they present mechanisms to overcome the insect defences. The first defence relies on the 

insect physical barrier of the cuticle, formed by the epicuticle, the procuticle and the epidermis, 

from the exterior to the interior (Pedrini et al., 2007). The epicuticle is very thin (0.1 – 3 µm) but 

multi-layered. The first layer - lipid layer – is resistant to enzymatic degradation (Hadley, 1981) 

and, unless physically disrupted, can prevent the passage of cuticle degrading fungal enzymes 

(Pedrini et al., 2007).  

Spores and conidia are the structures responsible for the infection, which begins with the 

adhesion of these structures to the insect cuticle. The adhesion process occurs in three distinct 

stages: adsorption of fungal propagules to the cuticle, adhesion or consolidation of the interface 
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between pre-germinant propagules and epicuticle, and fungal germination and development in 

the cuticle surface (Fargues, 1984). The adhesion of the spores is believed to be possible due to 

the existence of non-specific hydrophobic forces. Although some fungal species (for instance, V. 

lecanii and Hirsutella thompsonii) present mucilaginous coatings that facilitate the adhesion to 

the insect, B. bassiana spores rely on a layer of rodlets fascicles that exert those kinds of forces 

(Boucias et al., 1988). Other single-cell propagules of B. bassiana (blastospores and submerged 

conidia) also present different physical and chemical properties, which differ from each other and 

from aerial conidia (Holder et al., 2007).  

At the end of the adhesion process, the appressorium will be developed to start the 

penetration stage. If the ideal conditions are present (nutrients, water activity, temperature and 

pH), and in the absence of possible antifungal compounds produced by the host, the germination 

of spores and formation of the infective structures – appressorium – will occur (Samson et al., 

1988). The formation of this structure is dependent on several signals, like the presence of polar 

cuticle fraction from an appropriate host, the adequate nutrient levels or the presence of a 

hydrophobic surface (Wang and St. Leger, 2005). In addition, secondary intracellular 

messengers, like Ca2+ and cyclic AMP, are also involved (St Leger et al., 1991). Once the infective 

structures are formed, the fungus initiates the penetration in the insect cuticle. In order to do so, 

the entomopathogenic fungi use a combination of mechanical (pressure exerted by 

appressorium) and enzymatic mechanisms. Chitinases, lipases, esterases and, at least, four 

different proteases have been described to be involved in fungal penetration (Wan, 2003).  

After penetration, the fungus will develop inside the insect host. This fungal growth 

happens as yeast-like blastospores, hyphal bodies or protoplasts (Clarkson and Charnley, 1996). 

The death of the host arises as a result of a combination of factors, including nutrient depletion, 

physical obstruction or invasion of organs, and toxinosis (Wraight et al., 2007). After death of the 

host, the entomopathogenic fungus emerges from the cadaver as hyphae, and, in most cases, 

sporulation occurs on the insect surface. However, oomycetes, many species of zygomycetes, 

and some ascomycetous fungi produce spores inside the host cadaver (Wraight et al., 2007). 

Other entomopathogenic fungal species are able to modify the behaviour of hosts, in order to 

ensure an enhanced dispersal of their spores. The best known behavioural change is the so 

called “summit disease”, where the host, in the hours leading to its death, climb to an elevated 

position to die. Other behaviour modifications caused by entomopathogenic infection include the 

host attachment to substrate, either by fungal holdfasts or host structures (Roy et al., 2006). 
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Other entomopathogenic species are also able to produce conidia and resting spores, while the 

host is still alive, without visible changes in its behaviour. The final objective of all these changes 

of behaviour, as well as the sporulation ability while the host is still alive, is to increase the 

probability of transmission of the fungus itself (Roy et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Fungal entomopathogen infection cycle. Starting on the top, and clockwise: spore adhesion to the host 
cuticle; germination and appressorium formation; penetration through host cuticle; fungal growth, mycelium 
proliferation and sporulation outside the host cadaver.  
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Fungal enzymes responsible for infection and pathogenesis 

The insect cuticle consists of a thin outer epicuticle, containing lipid and proteins, and a thick 

procuticle, consisting of chitin and proteins (Fang et al., 2005). As referred, this first barrier 

against pathogens is degraded by the action of a number of extracellular enzymes produced by 

entomopathogenic fungi, which are generally grouped in proteases and peptidases, chitinases 

and lipases. Together, these enzymes are able to degrade the cuticle components, allowing the 

penetration of the formed appressoria into the insect haemolymph (Fan et al., 2007). The first 

enzymes to be produced are proteases and esterases (< 24h), while the activity of chitinases and 

lipases is only detected after 4 to 5 days of contact with the insect (St. Leger et al., 1986). The 

biochemistry behind the fungal degradation process of insect epicuticle has been a matter for a 

review (Pedrini et al., 2007). Thorough reviews about cuticle degrading enzymes and toxins of 

entomopathogenic fungi are also available (Samuels and Paterson, 1995; Khachatourians and 

Qazi, 2008; Schrank and Vainstein, 2010). Besides cuticle degradation, proteolytic enzymes of 

entomopathogenic fungi play other roles in insect pathogenesis, like the activation of the 

prophenol oxidase in the insect haemolymph and virulence (Khachatourians and Qazi, 2008). 

 The Pr1 protease is the main enzyme produced by entomopathogenic fungi during 

infection (St. Leger et al. (1987). This enzyme is known to be directly linked to the fungal 

penetration of the cuticle, since its inhibition delays the penetration but does not affect the 

viability of spores or the formation of appressoria (St. Leger et al. 1987). Pr1 enzyme is thus an 

important virulence determinant, which is induced by the presence of the insect cuticle, 

derepressed in starvation conditions, and repressed in the presence of excess nutrients (Dhar 

and Kaur, 2010). This regulation is consistent with a multiple-control model (Bidochka and 

Khachatourians, 1988). Nitrogen and carbon sources are together implicated in the regulation by 

repressing the Pr1 synthesis, although considerable basal levels are found when carbon or 

nitrogen sources are applied alone (Gupta et al., 1992; Dias et al., 2008; Donatti et al., 2008). In 

addition, distinct carbon and nitrogen sources differentialy affect the production of proteases 

(Bidochka and Khachatourians, 1987; Campos et al., 2005; Donatti et al., 2008). The presence 

of glucose or alanine also represses the expression of Pr1 and supresses the formation of the 

appressorium (Clarkson and Charnley, 1996). When deprived from nutrients, Pr1 protease is up-

regulated in the appressorium leading to the penetration of the insect cuticle (Goettel et al., 

1989; St Leger et al., 1989). These results suggest that nutrient starvation may be one of the 

environmental signals leading to a change in the nutritional mode of fungi, from saprotrophic to 



18 
 

pathogenic (Clarkson and Charnley, 1996). In contrast to exponentially growing mycelia, the 

addition of carbon and nitrogen sources is not relevant during the initial interaction of conidia or 

during pre-germination phase (Qazi and Khachatourians, 2008). This result suggested that 

conidia and active growing mycelia should present different regulatory mechanism for the 

synthesis of Pr1 and Pr2 enzymes. In conidia, the carbon/nitrogen repression is only expected to 

occur in nutrient rich substrates, as could be the case of the insect haemolymph.  

In addition to carbon and nitrogen levels, also the presence of insect cuticle promotes the 

production of proteases. When growing in a culture medium supplemented with insect cuticle, B. 

bassiana overproduces proteases. Indeed, the activity of Pr1 and Pr2 proteases was detected 

after B. bassiana growth in a culture medium containing cuticle of Rhammatocerus 

schistocercoides (Donatti et al., 2008). Both enzymes (Pr1 and Pr2) are thought to be 

complementary in the splitting of the peptidic bonds of the cuticle (Dhar and Kaur, 2010). 

However, their expression in B. bassiana does not seem to be  coordinated, in contrast to results 

achieved using Metarhizium strains (Gillespie et., 1998), where Pr2 is produced earlier that Pr1.   

Besides Pr1 and Pr2 proteases, at least two other proteases have been identified in B. 

bassiana: Bassiasin I (Kim et al., 1999) and B. bassiana protease (BBP) (Urtz and Rice, 2000). 

This later enzyme exhibits a comparable cuticle-degrading activity to Pr1. More recently, new 

proteases have been described in entomopathogenic fungi, as an alkaline protease from 

Beauveria sp. (BAP) (Shankar et al., 2011), and a subtilisin-like protease of Cordyceps militaris 

(Semenova et al., 2011).  

 Chitinases also play an important role in fungal infection. Chitin is the major component 

of insect cuticle, representing 25 to 40% of its mass (Hegedus and Khachatourians, 1995). 

Chemically, chitin is a polymer formed by β-linked N-acetylglucosamine units, embedded in a 

protein matrix (Samuels and Paterson, 1995) Chitinolytic enzymes of B. bassiana include 

chitinases with 33 kDa (Bbchit1, Fang et al., 2005), 45 and 110 kDa (Havukkala et al., 1993), 

chitosanase-like proteins (Bclp with 28 kDa, Fuguet et al., 2004) and chitinolytic proteins with 

55 kDa (Murad et al., 2007). Extracellular chitinases have been considered as virulence 

determinant factors (Khachatourians, 1991, 1996; Charnley 1997). Accordingly, the chitinase 

production by B. bassiana has been linked to the virulence of this entomopathogenic fungus. The 

activity of several B. bassiana enzymes (chymoelastase, chymotrypsin, endochitinase, esterase 

and N-acetyl glucosaminidase) is related with the onset and rate of mortality of Galleria mellonella 

and Trichoplusia ni larvae (Gupta et al., 1994). The endochitinase activity showed an apparent 
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relation to early onset of mortality, whereas N-acetyl glucosaminidase was related to the rate of 

mortality of G. mellonella larvae. In addition, bioassays conducted using overproducing Bbchit1 

B. bassiana transformants, enhanced the virulence of the fungus, when compared to the wild-

type strain (Fang et al., 2005). More recently, Pelizza et al. (2012) also found a direct 

relationship between high chitinolytic activity and virulence of Argentinean fungal strains. The 

regulation of chitinases synthesis occurs through an inducer-repressor mechanism, by soluble 

monomers of chitin, glucosamine, N-acetylglucosamine and chitobiose (Bidochka and 

Khachatourians, 1993; Havukkala et al., 1993; St. Leger et al., 1993).  

 As the epicuticle of insects also contains lipoproteins, fats and waxy layers, the action of 

lipases and lipoxygenases is an important factor in fungal penetration into the host 

(Khachatourians, 1996). Also for other microbial pathogens, lipolytic enzymes have been 

described as virulence factors, presenting different roles in the infection process (Ali et al., 2010). 

In general, lipases are hydrolyzing enzymes that work in aqueous conditions (Zibaee et al., 

2008), and have as natural substrates long-chain triacylglycerols (Gupta et al., 2004). Lipases 

secreted by M. anisopliae have been implicated in the recognition of a susceptible host, as well 

as in the production of the first nutrient molecules to support conidia germination (Silva et al., 

2010). When lipase activity was inhibited by using ebelactone B inhibitor, spore germination was 

arrested in ticks, but not in culture media. This result indicates that, at least for M. anisopliae, 

lipases are an important part of the process of infection and pathogenesis (Silva et al., 2010).  

 Besides supporting spore germination, the adhesion to the host cuticle, due to 

hydrophobic interactions, is also promoted by the lipolytic activity that releases free fatty acids 

(Göttlich et al., 1995). Phospholipases can also lead to a membrane dysfunction and/or physical 

disruption, by hydrolysing membrane phospholipids.  

 In the light of this data, it is possible to conclude that the success of fungal infection is 

directly linked to the amount of secreted enzymes by entomopathogenic fungi (Khachatourians, 

1996). In fact, entomopathogenic fungi present more sequenced genes encoding secreted 

enzymes, namely proteases and lipases, than other fungi (Gao et al., 2011). As referred, this 

large number of enzymes is probably involved in the transition of nutritional mode, from 

saprotroph to insect pathogenicity (Gao et al., 2011). The diversity of enzymes may also serve as 

a way to overcome the insect defences, which include protease inhibitors. In addition, different 

enzymes could play distinct roles in pathogenesis, increase fungal adaptability and host range, or 

even display different functions in survival habitats outside the host (Bagga, et al., 2004). 
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Fungal toxins produced by entomopathogenic fungi 

Fungal toxins are a complement to enzymes, determining the end result of the interaction 

between entomopathogenic fungi and insect hosts (Khachatourians and Qazi, 2008). Several 

toxins of entomopathogenic fungi have been described (Table 3). Based on their structure, toxins 

can be separated into non-peptide and peptide groups.  

 

Table 3 Toxin metabolites produced by entomopathogenic fungi (adapted from Khachatourians and Qazi, 2008) 

 

Fungus Toxin References 

Beauveria bassiana 

Tenellin Khachatourians (1991, 1996) 
Bassianin Caragh-Moore et al. (1998) 

Oxalic acid 
Bidochka and Khachatourians (1993), 
Alverson (2003), Kirkland et al. (2005) 

Beauvericin Khachatourians (1991), Tang et al. (2005) 
10-kDa toxin Khachatourians (1996) 

TF-1 and TF-2 Khachatourians (1996) 
Hirsutellin Liu et al. (1996) 

Bassiacridin Quesada-Moraga and Vey (2004) 
B. brongniartii Oosporin Strasser et al. (2000a) 

B. tenella Oosporin Michelitsch et al. (2004) 
Cordyceps heteropoda Cicapeptins Krasnoff et al. (2005) 

Hirsutella sp. Hirsutide Lang et al. (2005) 

H. thompsonii var. thompsonii 
Toxic metabolite Vey et al. (1993) 

Hirsutellin Liu et al. (1996) 
Fusarium avanacium Enniatin complex Khachatourians (1991) 

F. sambucinum Enniatin complex Khachatourians (1991) 

Metarhizium spp. Destruxins 
Khachatourians (1991), Jegorov et al. (1998), 

Pedras et al. (2002) 
Paecilomyces Leucinostins Krasnoff and Gupta (1991) 
P. tenuipes Paecilomycine Kikuchi et al. (2004) 

P. fumosoroseus Beauvericin Khachatourians (1991), Tang et al. (2005) 
Tolypocladium cylindrosporum Efrapeptins Bandani et al. (2001), Bandani (2004) 

T. geodes 
Efrapeptins Bandani et al. (2001), Bandani (2004) 
Tolypocin Jegorov et al. (1993) 

T. inflatum 
Kojic acid Alverson (2003) 
Tolypin Khachatourians (1991, 1996) 

T. niveum Efrapeptins Krasnoff and Gupta (1991) 
 

 

Among the toxins produced by entomopathogenic fungi, some of the most studied are destruxins 

(DTXs), as reviewed by Schrank and Vainstein (2010) and Liu and Tzeng (2012). These 

compounds have insecticidal, anti-viral, phytotoxic, and are also being studied for their toxicity to 
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cancer cells (Schrank and Vainstein, 2010). Destruxins were first isolated from the fungal 

species, Oospora destructor, from which the toxin name comes from. This species was then 

renamed as M. anisopliae. Currently, it is known that these toxins are the most prevalent 

secondary metabolites from this fungal species (Khachatourians and Qazi, 2008).  

There are as much as 39 destruxins or destruxins analogs, divided into six groups, each 

with an associated letter, from A to F (Pedras et al., 2002). In the last review concerning 

destruxins, four more DTXs are referred: [Phe3, N-MeVal5] destruxin-B, pseudo destruxin-C, [β-

MePro] destruxin-E chlorohydrins and a regioisomer of destruxin-E chlorohydrins (Liu and Tzeng, 

2012). The mechanism of action of destruxins has been reviewed (Pedras et al. 2002). 

Destruxins A and E are the most toxic and have the ability to depolarize lepidopteran muscle 

membrane, by activating calcium channels. They can also inhibit the functions of insect 

hemocytes (Bradfisch, 1990) and block the activity of H+-ATPase (Muroi et al., 1994). The fact 

that these toxins are able to damage the muscular systems, besides reducing the ability of hosts 

to feed, also impedes the insect travel to places with higher temperature (Elliot et al., 2002). As a 

higher temperature inhibits the fungal infection, the reduced mobility caused by destruxins will 

reduce this defensive behaviour.  

 Other relevant toxic compounds are produced by entomopathogenic fungi, such as 

oosporin, efrapeptins, beauvericin, bassianolid, bassiacridin and beauveriolides. Oosporein is a 

red-pigmented dibenzoquinone, included in the group of non-peptide toxic metabolite. The 

properties and relevance of oosporein have been comprehensively reviewed (Strasser et al., 

2000a; Vey et al., 2001; Seger et al., 2005). Besides being produced by species from Beauveria 

genus, this toxin is also produced by a large number of soil inhabiting fungi (Strasser et al., 

2000b; Charnley, 2003; Khachatourians and Qazi, 2008; Molnár et al., 2010). This toxin exhibits 

antifungal, antibiotic and antiviral activities (Love et al., 2009), leading to enzyme malfunction 

due to their reaction with proteins and aminoacids (Wilson, 1971). This toxic metabolite appears 

to be produced only in the insect cuticle, rather than in the haemolymph (Charnley, 2003). 

Probably, due to the antimicrobial activity previously described, the production of this toxin will 

help the suppression of saprophytic microbiota present is the host surface. However, no 

correlation has been established between the virulence of a given isolate and the amount of 

oosporein in the insect cadaver (Charnley, 2003). This suggests that oosporein may not be a 

determinant factor in the pathogenesis. 
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 Efrapeptins are a group of linear peptides, containing 15 aminoacids (Charnley, 2003). 

These toxins were isolated from the entomopathogenic Tolypocladium species (Strasser et al., 

2000b; Charnley, 2003), but also from the non-entomopathogenic Acremonium sp. (Boot et al., 

2006). For the efrapeptin-producing Tolypocladium species, there is inter- and intra-specific 

variation of production (Krasnoff and Gupta, 1992). These toxins have showed insecticidal activity 

against mites, potato beetle, tobacco budworm and diamondback moth, either by injection or 

contact (Matha et al., 1988; Krasnoff et al., 1991). Antifungal and antibacterial activity of these 

compounds was also detected, although limited. Other properties include antifeedant and growth 

inhibition effects (Bandani et al., 2000). These peptides have been described as potent inhibitors 

of ATPase from mitochondria, bacteria, and chloroplasts, disturbing the ion regulation (Gledhill 

and Walker, 2006). Efrapeptin binding to a vacuolar type ATPase, present in the midgut of the 

honeycomb moth (Galleria mellonella), has also been described (Bandani et al., 2001). After 

infection with T. niveum, these peptides were found in haemolymph and bodies of G. mellonella, 

but the amounts found were lower than those required to cause the death of the host (Bandani et 

al., 2000). This result suggests that efrapeptins may work together with other pathogenicity 

determinants.  

 Beauvericin is a hexadepsipeptide toxin, isolated from Beauveria and Paecilomyces 

entomopathogenic species, as well as from the plant-pathogenic Fusarium spp. and Polyporus 

fumosoroseus. Interestingly, the production of this toxin was not found in all isolates of B. 

bassiana (Frappier et al., 1975). Although insecticidal properties have been described for these 

compounds (Suzuki et al., 1977; Kanaoka et al., 1978; Champlin and Grula, 1979; Qadri et al., 

1989; Zizka and Weiser, 1993; Gupta et al., 1995), some insect showed no susceptibility 

(Champlin and Grula, 1979). Beauvericin also exhibits antibiotic activity against several bacteria 

(Ovchinnikov et al., 1971). Two different forms (A and B) of this toxin were described by Gupta et 

al. (1995). These compounds are able to increase membrane permeability, by creating Na+ and 

K+ complexes (Ovchinnikov et al., 1971). As it acts as an ionophore, beauvericin is able to 

increase the cytoplasmic concentration of Ca2+ (Tang et al., 2005), which is followed by the ATP 

depletion and activation of calcium-sensitive cell apoptotic pathways (Jow et al., 2004; Chen et 

al., 2006). Comparative studies, using a B. bassiana strain without the gene encoding for 

beauvericin production revealed that this toxin is not indispensable for the virulence, although 

having a highly significant role (Xu et al., 2008).  
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 Another toxic peptide, bassianolide, has been isolated from B. bassiana and 

Lecanicillium spp. (Xu et al., 2009a). Studies have revealed that bassianolide induces the atony 

of Helicoverpa zea larvae (Champlin and Grula, 1979), being also toxic to silkworm larvae (Suzuki 

et al., 1977). In cadavers of silkworm larvae, killed by B. bassiana infection, bassianolide was 

detected, indicating that this compound is compatible and coincident with the infection. This toxin 

has been described as an ionophore antibiotic (Suzuki et al., 1977), exhibiting anti-mycobacterial 

activity (Jirakkakul et al., 2008). 

 Bassiacridin is a toxic protein isolated from B. bassiana when infecting Dociostaurus 

maroccanus (Quesada-Moraga and Vey, 2004). The virulence potential of this protein was proved 

when nymphs of Locusta migratoria were injected with this toxin, at low dosage, and a mortality 

of near 50% was promoted (Quesada-Moraga and Vey, 2004). Although the mechanisms that are 

involved in these insecticidal effects are still unclear, the fungal production of bassiacridin and its 

involvement in pathogenesis seems to be clear.  

 Beauverolides, also referred to as beauveriolides (Molnár et al., 2010), are peptides with 

a similar structure to beauvericin and bassianolide (Namatame et al. 1999, 2004). Moderate 

insecticidal activity was observed against Spodoptera litura and Callosobruchus chinensis 

(Mochizuki et al., 1993). However, these compounds have an apparent high potential in human 

medicine, as they showed antiartherosclerotic effects (Namatame et al., 2004). Indeed, 

beauverolides are now considered as leader compounds for antiartherosclerotic agents. Another 

study has also revealed their potential for Alzheimer‟s disease treatment by reducing the 

formation of senile plaques in the brain (Witter et al., 2009).  

This large amount of data shows that entomopathogenic fungi are able to produce a wide array of 

toxins that, together with fungal enzymes are responsible for virulence and pathogenicity. 

Furthermore, as these compounds can be over-expressed in modified strains of 

entomopathogenic fungi, an increase the performance can be achieved.  

 

Compatibility between entomopathogenic fungi and chemical pesticides 

As the unfavourable environmental conditions may affect the efficacy of entomopathogenic fungi 

under field conditions, one way to overcome this fact for the control of pests is to add low 

dosages of chemical pesticides. The combined application of mycoinsecticides and chemical 

pesticides may have synergistical effects, allowing the use of lower concentrations of chemicals 

and decreasing the likelihood of resistance to either agent (Boman, 1980). In recent years, some 

http://www.sciencedirect.com/science/article/pii/S1049964402001238#BIB8


24 
 

research is being performed in the compatibility of different entomopathogenic fungi and 

insecticides. Different outcomes of the interaction with chemical pesticides have been observed. 

For instance, the combination of benzoylphenyl ureas with B. bassiana resulted in a reduced 

infectivity, up to 50% (Olson and Oetting, 1999; Irigaray et al., 2003). Other works recorded 

additive effects between B. bassiana and triflumuron (Anderson et al., 1989), diflubenzuron-B 

(Delgado et al., 1999) and azadirachtin (Hernández et al., 2012). Synergistic effects with this 

entomopathogenic fungus were also recorded when using diflubenzuron (Reuter et al., 1995) and 

flufenoxuron (Hernández et al., 2012). A study conducted to evaluate interactions between 

exposure of the longhorned beetle Anoplophora glabripennis to imidacloprid and Metarhizium 

brunneum also showed synergistic effect of the dual treatment (Russell et al., 2010). The 

association between deltamethrin and M. anisopliae, to control Boophilus microplus tick, resulted 

in higher larvae mortality rates than those obtained with non-associated formulations (Bahiense 

et al., 2006). In contrast, no synergistic effect was recorded when evaluating the effect of two 

insecticides (thiamethoxam and imidacloprid) with M. anisopliae in the second-instar larvae of F. 

occidentalis (Niassy et al., 2012). However, the combination of thiamethoxam and M. anisopliae 

conidia resulted in a shorter LT50 (6 days) than the single treatments of thiamethoxam (13 days) 

or M. anisopliae conidia (11 days) (Niassy et al., 2012).  

These conflicting results could be due to the effect of insecticides on mycelial growth, 

sporulation, conidial germination and cuticle-degrading enzyme production of entomopathogenic 

fungi. A wide range of pesticides (11 active ingredients) caused a significant inhibition of mycelial 

growth and spore production of M. anisopliae (Akbar et al. 2012). Although conidial germination 

was also found to be affect, two active ingredients (spinosad and indoxicarb) were significantly 

compatible and considered to be safe to conidial germination and fungal growth (Akbar et al. 

2012). The compatibility of this same fungus (M. anisopliae) with other agrochemicals was also 

studied (Niassy et al., 2012). The effect of insecticides (thiamethoxam, L-cyhalothrin, 

imidacloprid, chlorpyrifos, diazinon), acaricides (abamectin, spiromesifen) and fungicides 

(carbendazim, copper hydroxide, probineb) was accessed by evaluating the vegetative fungal 

growth, mycelial mass and conidial production, as well as the fungal ability to infect the second-

instar larva of Frankliniella occidentalis. While some compounds (abamectin and imidacloprid) 

were highly compatible with the use of M.anisopliae, others negatively affected the fungal 

vegetative growth and sporulation (azadirachtin and L-cyahalothrin). The same occurred with the 

acaricides, being abamectin highly compatible and spiromesifen moderately toxic to the fungus. 
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As expected, all three fungicides showed to be very toxic to the M. anisopliae. Anhalt et al. (2010) 

also tested the compatibility of M. anisopliae with chemical insecticides. While a compatibility 

with tebufenozide was detected, three other compounds (chlorpyrifos-ethyl, methidathion and 

fenitrotion) showed to be highly toxic to M. anisopliae. The in vitro effects of different 

concentrations of fipronil, permethrin, imidacloprid, NeemAzal and amitraz were also investigated 

in M. anisopliae (Schumacher and Poehling, 2012). All pesticides were compatible with the two 

tested strains, but higher concentrations were able to cause inhibition of conidial germination, 

colony size and sporulation.  

Similar results were obtained with other entomopathogenic species, in which a variation 

of effects was detected from product to product. Lecanicillium muscarium showed to have its 

germination reduced by Majestik, Spray Oil, Agri-50E, Savona, Oberon, buprofezin, teflubenzuron, 

nicotine and imidacloprid chemical insecticides, all of them used for the control of Bemisia tabaci 

on poinsettia (Cuthbertson et al., 2009), tomato and verbena plant (Cuthbertson et al., 2005). 

Interestingly, the infection rates of L. muscarium on foliage, which still presents dry residues of 

the insecticides, were similar to rates on residue-free leaves. Isaria fumosorosea conidial 

germination, radial growth and sporulation are also significantly affected by chemical insecticides 

(chlorfenapyr, chloranthraniliprole, indoxacarb, hubendamide + avermectin, chlorpyrifos, 

imidacloprid) (Ali et al., 2012). Furthermore, the production of cuticle-degrading enzymes 

(chitinases, subtilisin-like activity (Pr1), trypsin activity (Pr2) and lipase) was also affected by all 

these chemical insecticides.  

All these results reveal a great variability of entomopathogenic fungi tolerance to 

chemical pesticides. This variability is linked to each particular fungal strain, as well as to the 

type of chemical and concentration. To use entomopathogenic fungi simultaneously with 

chemical pesticides, sequential applications of insecticides and entomopathogenic fungi should 

be preferred, instead of combined applications.  

 

Compatibility between entomopathogenic fungi and other biological control agents 

For using entomopathogenic fungi to control pests in agroecosystems, the impact that these 

fungi may have on beneficial insects, like predators and parasitoids, should be taken in 

consideration. Intraguild interactions commonly occur when using biological control agents, likely 

affecting the outcomes of the biological control measures (Polis and Holt, 1992; Rosenheim et 

al., 1995). Different results from these relations could be expected, from deleterious effects to 
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synergism. Therefore, the study of such interactions is of major importance and essential to 

devise biocontrol programs without the detrimental effects on beneficial organisms. Some 

reviews about the most studied entomopathogenic fungal species (Beauveria species, M. 

anisopliae and Isaria species, formerly named as Paecilomyces, address this subject 

(Zimmermann, 2007a, b; Zimmermann, 2008).  

Regarding Beauveria, the available data indicate that these species can be used without 

disadvantageous effects on non-target organisms (Zimmermann, 2007a). Accordingly, beneficial 

insects were not significantly affected by the entomopathogenic Beauveria fungi. The B. bassiana-

based product BotaniGard® was found to be compatible with Dicyphus hesperus, a predator of 

the greenhouse whitefly Trialeurodes vaporariorum (Labbé et al., 2009). Also, the B. bassiana-

based mycopesticide, Naturalis-L, had no detrimental effect on Amblyseius cucumeris, a 

predatory mite of western flower thrips, Frankliniella occidentalis (Jacobson et al., 2001). Similar 

results were observed for a strain of B. bassiana applied to control Frankliniella occidentalis, 

which presented a minor risk to the predator Orius sauteri nymphs and adults (Gao et al., 2012). 

B. bassiana also proved to be compatible with other predators, like Chrysoperla externa, only 

affecting the third instar larvae when applied at high concentrations (Pessoa et al., 2005). 

Compatibility between B. bassiana and predators was also recorded for Harmonia axyridis and 

Chrysoperla carnea (Zhu and Kim, 2012), Podisus nigrispinus (França et al., 2006), Euborellia 

annulipes (Oliveira et al., 2011). However, harmful effects of B. bassiana have been also 

described for a number of predators. This entomopathogenic fungus adversely affected the 

longevity and fecundity of the predatory mite Phytoseiulus persimilis (Pozzebon and Duso, 2009; 

Seiedy et al., 2012), Teretriosoma nigrescens and the predator of Prostephanus truncates 

(Bourassa et al., 2001). Regarding parasitoids, the available studies describe different effects of 

B. bassiana. While this species has been described to have no harmful effects in parasitoids 

(Rashki et al., 2009; Dean et al., 2012), other studies reveal a negative impact of B. bassiana on 

parasitism (Furlong, 2004; Castillo et al., 2009).  

The available information about M. anisopliae interactions with parasitoids and predators 

is also contradictory. Some results indicate that this entomopathogenic fungi is safe to 

parasitoids and predators (Husberg and Hokkanen, 2001; Stolz et al., 2002; Tounou et al., 

2003; Ekesi et al., 2005; Nielsen et al., 2005; Polanczyk et al., 2010; Oliveira et al., 2011). 

However, reports of a negative effect of this fungus on those natural enemies are also available 

(Bourassa et al., 2001; Broglio-Micheletti et al., 2006; França et al., 2006; Potrich et al., 2009). 
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The variation of entomopathogens effects on beneficial insects is also noticed for Isaria (formerly 

Paecilomyces) species. Compatibility was detected between Isaria species and predators and 

parasitoids (Mesquita and Lacey, 2001; Tounou et al., 2003; Avery et al., 2008; Zhou et al., 

2010; Hamdi et al., 2011; Pick et al., 2012), but Isaria species are also described as possessing 

harmful effects on other biological control agents (Pell and Vandenberg, 2002). In contrast, other 

fungal species have been described as safe to parasitoids and predators, like Verticillium lecanii, 

Pandora neoaphidis, Lecanicillium spp. or Zoophthora radicans (Furlong and Pell, 1996; Kim et 

al., 2005; Fatiha et al., 2008; Baverstock et al., 2009; Xu et al., 2009b; Aiuchi et al., 2012). 

The safety of entomopathogenic fungi to beneficial insects in a given ecosystem should 

be carefully evaluated. The effects of entomopathogenic fungi are known to be linked to the 

physiological (range of insect species that can be infected in the laboratory) and ecological host 

range (insects can be infected in nature or under field conditions) (Zimmermann, 2007), and 

beneficial insects infected under laboratory assays, may not necessarily be infected in field 

conditions. As previously referred, their effects are also dependent on fungal persistence, 

dispersion and production of metabolites (Vestergaard et al., 2003). Although not presenting a 

direct negative effect on predators and parasitoids, the fungal entomopathogens could still be 

considered as harmful, by reduction of the host population, which will affect predators and 

parasitoids that rely on such host (Goettel and Hajek, 2001). Laboratory results are not useful 

when predicting risks under field conditions (Jaronski et al, 2003). In addition, the effects of 

entomopathogenic fungi on beneficial insects should take into account the host plant, the 

application on soil or canopy, field or glasshouses conditions.   

Other interesting results show that some predators are able to detect and avoid fungal 

entomopathogens (Meyling and Pell, 2006). This fact reveals that insects are able to prevent 

detrimental effects caused by entomopathogenic fungi. Therefore, the adverse effects of these 

fungi on predators and parasitoids may be reduced, not due to the lack of infection ability by the 

fungi, but by the referred avoidance of contact by the insect.   

 

Entomopathogenic fungi in olive pests 

The key olive tree pests in the Mediterranean region include olive fruit fly (Bactrocera oleae 

Gmelin), olive moth (Prays oleae Bern.) and olive black scale (Saissetia oleae Bern.) (Haniotakis, 

2003). Few studies are available, on the presence of entomopathogenic fungi in olive orchards, 

as well as their ability to control these pests. Their presence in olive orchards has already been 



28 
 

described by Marannino et al. (2006), Quesada-Moraga et al. (2006b) and Oliveira et al. (2012). 

However, the application of entomopathogenic fungi against olive pests is scarce, and only a few 

publications address this subject.  

The susceptibility of B. oleae to entomopathogenic fungi has already been described. 

Konstantopoulou and Mazomenos (2005) tested two species of Beauveria, B. bassiana (isolated 

from pupae of B. oleae) and B. brongniartii (isolated from Melolontha sp.), against adults of olive 

fruit fly. After 21 days of fungal contact, a mortality percentage of 66.8% and 38.6% were 

obtained for B. bassiana and B. brongniartii, respectively. Similar results were obtained when 

insects were fed with a diet containing fungal spores. After 21 days, the insect mortality attained 

62.2% and 36.5% for B. bassiana and B. brongniartii, respectively. The median lethal time (LT50) 

corresponded to 17 days for the oral bioassay and less than 14 days for contact bioassays. When 

a product based on B. bassiana was tested in B. oleae, a higher virulence was found in oral 

bioassays (80%) than in contact bioassays (60.8%), after 20 days (Mahmoud, 2009a). The time-

mortality response was also different for contact and oral bioassays. While a LT50 of 14.7 days 

was found for oral bioassays, in contact assays a value of 16.6 days was detected. In addition, 

combinations of B. bassiana and two other entomopathogenic fungi, Metarhizum anisopilae and 

Lecanicillium lecanii, were also tested for controlling B. oleae (Mahmoud, 2009a). The 

combination of B. bassiana and M. anisopilae provided a synergistic response, increasing 

mortality to 100%. In contrast, the combination of B. bassiana and L. lecanii gave an antagonistic 

response, reducing the mortality of B. oleae to 72%. Altogether, these studies gave an indication 

of the susceptibility B. oleae to entomopathogenic fungi, namely B. bassiana, which should then 

be further studied as an alternative to chemical insecticides.  

Besides B. bassiana, other entomapathogens could control B. oleae. The insecticidal 

activity of metabolites from a strain of Mucor hiemalis presents a strong toxic effect against B. 

oleae adults (Konstantopoulou et al., 2006). The toxicity symptoms included lethargy after 1-2 

hours after treatment, with 82 to 97% death arising in 24 hours.  

In addition to B. oleae, several Bactrocera species are similarly susceptible to 

entomopathogenic fungi. Indeed, five entomopathogenic fungal species (B. bassiana, Isaria 

tenuipes, Metarhizium flavoviride, M. anisopliae and Paecilomyces lilacinus) are effective against 

Bactrocera spp. pupa (Mar and Lumyong, 2012); the soil inoculation with M. anisopliae was 

reported to suppress Bactrocera invadens (Ekesi et al., 2011); Bactrocera zonata was described 

to be susceptible to B. bassiana, M. anisopliae and Lecanicillium muscarium (Mahmoud, 
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2009b); and M. anisopliae, B. bassiana and P. fumosoroseus exhibit pathogenicity towards 

Bactrocera zonata and Bactrocera  cucurbitae adults (Sookar et al., 2008) 

 There are no available studies on the use of entomopathogenic fungi to control the other 

two major pests in olive orchards, Prays oleae (from Lepidoptera order) and Saissetia oleae (from 

Hemiptera order). However, promising results obtained with insects belonging to the same 

taxonomical groups may indicate the possibility of biocontrol using entomopathogens. The 

susceptibility of different species of lepidopterans to B. bassiana has been demonstrated by 

Wraight et al., 2010. Several species of lepidopterans, including Plutella xylostella, Ostrinia 

nubilalis, Helicoverpa zea, Spodoptera frugiperda, Agrotis ípsilon, Pieris rapae and Trichoplusia 

ni, were susceptible to 43 different isolates of B. bassiana. In most cases, this fungus caused 

high mortality rates that attained up to 98%. Other reports also describe B. bassiana susceptibility 

of different several lepidopteran species, including Argyresthia conjugella (Vänninen and 

Hokkanen, 1997), Ostrinia nubilalis (Safavi et al., 2010), Chilo partellus (Tefera and Pringle, 

2003), Diatraea saccharalis (Alves et al., 2002), Strymon megarus (Inclán et al., 2008) and 

Busseola fusca (Maniania et al., 2011). There is also one study that is focused on the capacity of 

B. bassiana to infect insect species from the same family as the olive moth, Yponomeutidae, 

namely Plutella xylostella (Godonou et al., 2009). This work tested six different isolates of B. 

bassiana, which presented different results. All isolates where able to infect, kill and grow 

externally on larvae of Plutella xylostella, after 3 days of treatment, but with differences in the 

percentage of cumulative dead larvae. Only one of the isolates reached a value of 94% mortality. 

Interestingly, when using this B. bassiana isolate to manage the pest in cabbage plots, the yields 

of production were approximately three-fold higher than in plots treated with insecticide or in 

untreated plots.  

 For scale insects, as Saissetia oleae, data regarding infection by B. bassiana is almost 

inexistent. Only one study is available that evaluates the virulence of B. bassiana on Saissetia 

coffeae (Nahla et al., 2008). In laboratory assays, B. bassiana was able to infect nymphs and 

adults of Saissetia coffeae, with higher pathogenicity to nymphs than to adults. In field trials, 

where B. bassiana was applied to Cycas revoluta plants infected with Saissetia coffeae, the 

population of nymphs and adults was reduced in 74.1% and 69.7%, respectively, after 30 days 

from treatment. The efficacy of entomopathogenic fungi, other than B. bassiana, to control scale 

insects has been reported. When analysing the role of parasitoids and entomopathogenic fungi in 

the mortality of two scale insects (Ceroplastes destructor and C. sinensis), two fungal species 
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(Verticillium lecanii and Fusarium spp) were identified as the main death promoters of these 

scale insects (Lo and Chapman, 1998). Alternaria infectoria is also able to infect Ceroplastes 

rusci, causing disease on a large percentage of eggs (91%), 74.5% of which will die and 

decreasing by 39.6% the hatching of the remaining eggs (Shabana and Ragab, 1997). 

 The combined information, regarding lepidopterans and scale insects, suggests the 

likelihood of the application of entomopathogenic fungi, including B. bassiana, to control these 

two major pests in olive orchards, the olive moth and the olive black scale.  
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Objectives and outline of the thesis 

 
Biological control of insect pest, using beneficial organisms, has been increasing, to minimize the 

harmful effect known to chemical pesticides. One of the approaches to control insect pests is the 

use of entomopathogenic fungi (EF). These fungi, studied for their natural occurrence in several 

habitats, characteristics of infection, production of secondary metabolites, have already been 

tested as biocontrol agents against insect pests, and commercial products are already available 

on the market. However, different factors, both host-related and environmental-related are known 

to influence the pathogenicity and virulence of EF. Several works point out the fact that a fungal 

strain, retrieved from a given ecosystem, and found infecting a particular host, will have 

increased pathogenicity and virulence for that host, while minimizing possible effect on non-target 

organisms.  

 One of the most important cultures in Portugal is the olive tree, grown in large part of the 

country. Several pests affect this culture, being one of them Prays oleae Bern., responsible for 

high losses of production. This pest is mainly controlled using chemical insecticides. The 

detrimental effects caused by this type of compounds have resulted in an increase of the search 

for alternative measures to control insect pest, which should include entomopathogenic fungi.  

 Thus, the main objectives of this work were to evaluate the diversity of fungal 

entomopathogens associated to one of the key pests of olive, Prays oleae, assessing their 

pathogenicity and virulence, as well as appraising the effect of selected factors in fungal 

behaviour and occurrence. The fungal diversity associated to the three annual generations of P. 

oleae was studied, in an olive ecosystem (Chapter 2). The applicability of different molecular 

markers (ITS, β tubulin and RPB2) in the identification of the fungal isolates obtained was further 

analysed (Chapter 3). The evaluation of fungal pathogenicity and virulence of the native fungal 

strains is one of the key steps of the design of a pest control program based on EF. These 

important fungal traits were determined on the most abundant EF isolated, Beauveria bassiana, 

against a lepidopteran pest, Cydia splendana (Chapter 4). The biological control efficiency of 

entomopathogenic fungi depends greatly of several biotic and abiotic factors, including 

agricultural ones. One of those is soil tillage, performed recurrently in olive orchards. The impact 

that soil management practices, with or without soil tillage, on EF fungi was also studied in this 

work (Chapter 5). Plants can also affect fungal entomopathogens. As P. oleae attacks different 

olive tree organs (leaves, flowers and fruits), in each of its annual generations (phyllophagous, 
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antophagous and carpophagous), the effect of these different plant organs on two native fungal 

entomopathogens was evaluated (Chapter 6).  

 Altogether, the results of this work are expected to provide an insight of the 

entomopathogenic fungal community associated to P. oleae, and their characteristics, in order, to 

ultimately, help the creation of a biocontrol program using EF against P. oleae.  
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Chapter 2 

Fungal diversity associated to the olive moth, Prays oleae Bernard: a survey for potential 
entomopathogenic fungi 
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ABSTRACT 

Olive production is one of the main agricultural activities in Portugal. In the region of Trás-os-

Montes this crop has been considerably affected by Prays oleae. In order to evaluate the diversity 

of fungi on P. oleae population of Trás-os-Montes olive orchards, larvae and pupae of the three 

annual generations (phyllophagous, antophagous and carpophagous) were collected and 

evaluated for fungal growth on their surface. From the 3828 larvae and pupae, a high percentage 

of individuals exhibited growth of a fungal agent (40.6%), particularly those from the 

phyllophagous generation. From all the moth generations, a total of 43 species from 24 genera 

were identified, but the diversity and abundance of fungal species differed between the three 

generations. Higher diversity was found in the carpophagous generation, followed by the 

antophagous and phyllophagous generations. The presence of fungi displaying entomopathogenic 

features was highest in the phyllophagous larvae and pupae, being B. bassiana the most 

abundant taxa. The first report of B. bassiana presence on P. oleae could open new strategies for 

the biocontrol of this major pest in olive groves, since the use of an already adapted species 

increases the guarantee of success of a biocontrol approach. The identification of antagonistic 

fungi able to control agents that cause major olive diseases, such as Verticillium dahliae, will 

benefit future biological control approaches for limiting this increasingly spreading pathogen. 

 

Keywords: Olive tree; Prays oleae; Fungal diversity; Moth life cycle generation   
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INTRODUCTION 

The olive tree is an important crop for Mediterranean basin countries including Portugal. 

Extensive areas occupied by olive groves in Trás-os-Montes region (Northeast of Portugal), not 

only have a significant economic impact, but also exhibit a social, environmental and landscape 

significance. The olive moth, Prays oleae Bern., is one of the major pests on these olive orchards, 

being responsible for high losses in the olive yield as much as 40% (Ramos et al., 1998). This 

lepidopteran presents three generations per year that damage the olive tree in different organs. 

The antophagous generation, occurring from April to June, causes damages to the olive tree 

flowers; the carpophagous generation, which usually appears from July to September, attacks the 

fruits leading to their premature fall; and the phyllophagous generation, present from October to 

March of the following year, damages the leaves (Ramos et al., 1998).  

 Due to the growing awareness of detrimental effects of pesticides to the ecosystems 

(Cuthbertson and Walters, 2005) agricultural practices in these orchards have been changing to 

biological agriculture. Therefore, the search for methods to control pests and diseases has 

acquired a new motivation. One of the promising methods to control pests can be the use of 

entomopathogenic fungi, which are known by their ability to infect and kill several insect species 

(Meyling and Eilenberg, 2007). 

 Entomopathogenic fungi comprise a large group of pathogens that includes 

approximately 700 species in almost 85 genera (Charnley and Collins, 2007). Due to their large 

host range, entomopathogenic fungi could be potentially useful as control agents against different 

insect orders. When compared to conventional chemical pesticides, the use of insect pathogens 

presents many advantages, such as the safety for humans and other non-target organisms, 

environmental reduction of pesticides residues and a smaller effect on the natural biodiversity 

(Lacey et al., 2001). However, pest management using entomopathogenic fungi has been 

difficult to achieve. The ecological and environmental variations within agro-ecosystems turn the 

formulation and application of this kind of biocontrol agent difficult to manage (Vega et al., 2009). 

The isolation of native fungi could provide a collection of isolates, for the development of potential 

control agents already adapted and suited to a particular habitat. In this work, the fungal diversity 

encountered on P. oleae population was evaluated in olive groves from Trás-os-Montes and will 

be discussed taking into account the olive moth generation where it appears. From this survey, 

potential entomopathogenic fungi for future biocontrol strategies will be selected.  
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METHODS 

Study area 

Larvae (mostly in the fourth and fifth instars of development) and pupae of Prays oleae were 

collected in six olive groves located in Mirandela – Bragança region, Northeast of Portugal (GPS 

coordinates: 41º34‟03.77‟‟N; 7º05‟39.21‟‟W; 41º33‟53.29N, 7º05‟40.23‟‟W; 41º33‟52.51‟‟N, 

7º05‟30.59W; 41º33‟33.11N, 7º05‟35.62W; 41º33‟08.02‟‟N, 7º07‟24.87‟‟W; 41º32‟35.20‟‟N, 

7º07‟26.27‟‟W). This region comprises an olive tree growing area around 65.000 ha, 

corresponding to 22% of the olive tree covered area in Portugal. It contains 20% of Portuguese 

olive trees, which altogether are responsible for 39% of national olive oil production (Pereira et al., 

2004). The topography of this region is mountainous, with altitudes ranging between 300 and 

500 m. The prevailing climate is Mediterranean, with cold and rainy winters and long, hot and 

dry summers. The average annual rainfall ranged from 600 to 800 mm, occurring mainly 

between October and February, and the annual mean temperature ranged from 9 to 20ºC. For 

this study, the selected orchards have been managed through organic (European Union, 207) or 

integrated production guidelines (Malavolta et al., 2002) and display high levels of olive moth 

infestations, as observed by delta traps baited with pheromone. Although two different 

management systems are referred, the studied olive groves are very similar, with low-external 

inputs. The groves area ranged from 0.4 to 1.5 ha. Trees are of medium size with a planting 

density of 7 x 7 m. Pruning was made every 2-3 years. No irrigation was done, and only copper 

based products were used in the beginning of autumn for fungal diseases control and no other 

pesticides were used in the last five years. The differences between the two management 

systems are related with the products allowed in soil fertilization. The most important cultivars 

were Cobrançosa and Verdeal Transmontana.  

 

Experimental design and collection of plant material 

The collection of larvae and pupae was performed in 15 randomly chosen trees in each of the 

selected orchards for the three annual generations of P. oleae. Sampling dates were variable 

according to the life stages of the pest. For the phyllophagous generation the collection was 

conducted between 17th and 27th March of 2009, for the antophagous generation between 24 th 

May and 5th June and for the carpophagous generation between 1st and 3rd of September of the 

same year. For the first two generations, sampling of leaves (phyllophagous generation) and 

flower clusters (antophagous generation), in which larvae and pupae were present, was 
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performed. For the carpophagous generation, the collection of whole fruits was randomly 

performed, due to the presence of larvae and pupae within olives. The plant material (leaves and 

flower clusters) and olives were collected individually to sterile bags, and processed within a few 

hours after sampling. 

 

Isolation of fungi from mycosed larvae and pupae of P. oleae 

In the laboratory, the plant material was further examined for the presence of olive moth larvae 

and pupae. Since carpophagous larvae develop inside the olive stone, the stone was smoothly 

broken to expose larvae. Whenever present, the larvae and pupae were individually placed into 

sterile tubes containing a food source (leaves for the phyllophagous generation, flower buds for 

the antophagous generation, and olive stones for the carpophagous generation). The tubes were 

sealed and maintained at 25  2ºC, under 16/8 hours light/dark regime, for an average period 

of 10 days. Larvae and pupae were daily observed, in order to detect their death or evaluate the 

insect emergence. Each time a fungal agent was growing on the surface of dead larvae or pupae, 

the fungal specimen was isolated by inoculating Potato Dextrose Agar (PDA) medium, 

supplemented with 0.01% (w/v) chloramphenicol (Oxoid). Pure cultures of each isolate were 

deposited in the culture collection of the Polytechnic Institute of Bragança (School of Agriculture). 

 

Extraction of fungal DNA 

Fungal isolates were inoculated onto PDA medium and maintained at 25  2ºC in the dark for 1-

2 weeks. The colony morphology, spore size and shape were used for the first identification and 

to group strains. Spores were collected from each isolate and used for DNA extraction. Isolation 

of genomic DNA was performed by transferring spores into a microtube containing 500µL of 

Lysis buffer (200 mM Tris-HCl pH 8.0, 250 mM NaCl, 25 mM EDTA pH 8.0 and 0.5% SDS) and 

sterile glass spheres. Tubes were vortexed for 5 minutes to disrupt cells. After addition of 250 L 

of cold 3M NaOAc pH 5.5, the mixture was gently homogenized by inversion and incubated for 

10 minutes at -20ºC. Following centrifugation at 10.500 rpm (4ºC) for 10 minutes, the 

supernatant was collected to another microtube and one volume of isopropanol (-20ºC) was 

added. This mixture was slowly homogenized and incubated at -20ºC for one hour. The DNA 

precipitate was collected by centrifugation at 10.500 rpm (4ºC) for 10 minutes and the pellet 

washed with cold 70% ethanol. The DNA pellet was air-dried for 20 min at room temperature and 

re-suspended in 50 L of ultra pure water. DNA was stored at -20ºC until use. 
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Molecular identification of fungal isolates 

Molecular identification was achieved by amplification of the internal transcribed spacer region 

(ITS), using the universal primers ITS1 and ITS4 (White et al., 1990). PCR reactions (50 µl) 

comprised 50 ng of genomic DNA, 0.2 µM of each primer (ITS1 and ITS4), 1x GoTaq Flexi 

buffer (Promega), 2 mM MgCl2 (Promega), 0.2 µM dNTP Mix (Fermentas) and 1 U GoTaq DNA 

polymerase (Promega). Amplifications were carried out in the thermocycler Biometra UNO II 

(Thermoblock, Biotron) using a temperature gradient protocol as follows: initial denaturation at 

94ºC for 3 min, followed by 35 cycles of 0.5 min at 94ºC, 0.5 min at 55ºC, 1 min at 72ºC, and a 

final 10 min extension at 72ºC. PCR amplification products were analysed by electrophoresis and 

those reactions that amplified a single PCR product were selected for purification using the 

JETquick PCR product purification kit (Genomed). Amplified fragments were sequenced using 

both ITS1 and ITS4 primers at the sequencing services of STAB Vida (Oeiras, Portugal). DNA 

sequences were analysed with DNASTAR v.2.58 software, and fungal identification was 

performed using the NCBI database (http://www.ncbi.nlm.nih.gov) and BLAST algorithm. 

The ecological classification of identified species was only based on the impact they can have on 

olive orchards regarding their potential role on pests and diseases control. Even though many of 

the identified fungi are also considered general saprophytes, they were only classified into three 

ecological roles: phytopathogenic, antagonistic and entomopathogenic. The classification given to 

each fungal species was based on previously described characteristics.  

 

Data Analysis 

For each P. oleae generation, the species richness, Simpson (D) and Shannon-Wiener (H) 

diversity indexes, total and relative abundances were estimated. Calculations of Simpson and 

Shannon-Wiener diversity indexes were done using the software Species Diversity and Richness 

(v. 3.0). Total abundance (N) was estimated as the number of isolates per fungal taxa, whereas 

the proportion of isolates from each fungal taxa in relation to the total number of fungal isolates 

was considered as the relative abundance of a certain taxa. Principal component analysis (PCA) 

was applied to access the relationship between fungal taxa and the three P. oleae generations. 

PCA was performed using the SPSS software, version 17.0 (SPSS, Inc.). It was applied as an 

unsupervised approach for reducing the number of variables (43, corresponding to the number of 

identified fungal species) to a smaller number of new derived variables (principal component or 

factors) that adequately summarize the original information. This analysis will define which fungal 
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species are correlated with each olive moth generation. PCA analysis also allowed the recognition 

of patterns in the data by plotting them in a multidimensional space, using the new derived 

variables as dimensions (factor scores). The aim of the PCA is to produce components suitable to 

be used as predictors or response variables in subsequent analysis. The number of factors to 

keep in data treatment was evaluated by the Scree plot, taking into account the eigenvalues and 

the internal consistency by means of αCronbach‟s value (Maroco, 2003; Rencher, 1995). 
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RESULTS 

Diversity and abundance of fungi encountered in P. oleae 

From the 3828 larvae and pupae (2552 larvae and 1276 pupae), collected in all generations of 

P. oleae, an insect emergence percentage of 38.6% was observed (Table 1). 

 

Table 1 Larvae and pupae collected from each generation of P. oleae. The insect emergence percentage was 
determined for each moth generation. The percentage of cadavers exhibiting fungal growth on their surface was 
determined in relation to the total of dead larvae and pupae.  
 

Generation 
Nº of collected 

larvae and pupae 

Insect 

emergence 

Cadavers presenting 

surface fungal growth 

Phyllophagous 1246 30.1% 61.5% 

Antophagous 1745 53.9% 32.7% 

Carpophagous 837 19.5% 23.0% 

Total 3828 38.6% 40.6% 

 

 

Of the total number of dead larvae and pupae (1477), 40.6% (599) exhibited the growth of a 

fungal agent on their surface (Table 1). From those, the isolation of fungi allowed the 

identification of 43 species, belonging to 24 genera and 14 families (Table 2). The families 

comprising more diversity were Pleosporaceae and Quambalariaceae (8 species each) and 

Mucoraceae and Nectriaceae (5 species each). These families accounted for as much as 62% of 

the total identified species. The greatest number of taxa belonged to the genera Penicillium (7), 

Arthrinium, Mucor, Fusarium and Alternaria (all with 4 taxa). Concerning abundance, 166 

different isolates were obtained in this work (Table 2). The most common taxa were Beauveria 

bassiana (N=50) and Fusarium oxysporum (N=25), representing together 45.2% of the total 

identified isolates. The number of fungal taxa identified in the present study varied between the 

three generations of P. oleae (Table 2).  

 In the phyllophagous generation, where a total of 70 fungal isolates were obtained, 16 

different species were identified, belonging to 13 genera and 9 families. The most representative 

family was Quambalariaceae, comprising 25% of the identified species in this generation, being 

the genus Penicillium the most represented (3 species). 
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Table 2 Total abundance (N) and relative percentage (%) of each fungal taxa isolated from dead P. oleae larvae and pupae in relation to the total number of identified fungi. Values are 
presented for all the three moth generations. The ecological role (ER) of each fungus is also presented (P – phytopathogenic, A – antagonistic, E – entomopathogenic). 
 

Family, genera and species ER 
Phyllophagous  Antophagous  Carpophagous  Total 

N %  N %  N %  N % 

Amphisphaeriaceae             

Truncatella             

T. angustata (Pers.) S. Hughes P 0 0.0  0 0.0  1 2.3  1 0.6 

Apiosporaceae             

Arthrinium             

A. phaeospermum (Corda) M.B. Ellis A 1 1.4  0 0.0  0 0.0  1 0.6 

Arthrinium sp1 A 0 0.0  1 1.9  0 0.0  1 0.6 

Arthrinium sp2 A 0 0.0  1 1.9  0 0.0  1 0.6 

Arthrinium sp3 A 0 0.0  1 1.9  0 0.0  1 0.6 

Bionectriaceae             

Bionectria             

B.ochroleuca (Schwein.) Schroers & Samuels P, A 2 2.9  0 0.0  0 0.0  2 1.2 

Botryosphaeriaceae             

Botryosphaeria             

B. dothidea (Moug.) Ces. & De Not. P 0 0.0  1 1.9  0 0.0  1 0.6 
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Microdiplodia             

M. hawaiiensis Crous P, A 0 0.0  0 0.0  1 2.3  1 0.6 

Chaetomiaceae             

Chaetomium             

C. funicola Cooke P, A 0 0.0  0 0.0  1 2.3  1 0.6 

Cordycipitaceae             

Beauveria             

B. bassiana (Bals.-Criv.) Vuill A, E 49 70.0  0 0.0  1 2.3  50 30.1 

Cordyceps             

C. sinensis (Berk.) Sacc. E 1 1.4  0 0.0  0 0.0  1 0.6 

Davidiellaceae             

Cladosporium             

C. cladosporioides (Fresen.) G.A. de Vries P, A, E 1 1.4  0 0.0  1 2.3  2 1.2 

Hypocreaceae             

Trichoderma              

T. gamsii Samuels & Druzhin. A 0 0.0  8 15.4  0 0.0  8 4.8 

Incertae sedis             

Septogloeum             

S. mori (Lév.) Briosi & Cavara P 0 0.0  0 0.0  1 2.3  1 0.6 
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Trichothecium              

T. roseum (Pers.) Link A 1 1.4  2 3.8  0 0.0  3 1.8 

Mucoraceae             

Lichtheimia             

L. ramosa (Zopf) Vuill. - 0 0.0  0 0.0  1 2.3  1 0.6 

Mucor             

M. circinelloides Tiegh. P, A, E 0 0.0  0 0.0  3 6.8  3 1.8 

M. fragilis Bainier P 1 1.4  0 0.0  0 0.0  1 0.6 

M. hiemalis Wehmer P, E 0 0.0  1 1.9  0 0.0  1 0.6 

M. racemosus Bull. P 1 1.4  0 0.0  0 0.0  1 0.6 

Nectriaceae             

Fusarium             

F. equiseti (Corda) Sacc. P, A,  0 0.0  8 15.4  0 0.0  8 4.8 

F. oxysporum Schltdl. P, A, E 2 2.9  23 44.2  0 0.0  25 15.1 

F. solani (Mart.) Sacc. P, E 0 0.0  1 1.9  0 0.0  1 0.6 

Fusarium sp. 1 P, A, E 0 0.0  1 1.9  0 0.0  1 0.6 

Gibberella             

Gibberella sp. 1 P 1 1.4  0 0.0  0 0.0  1 0.6 

Pleosporaceae             
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Alternaria             

Alternaria arborescens E. G. Simmons P 0 0.0  0 0.0  1 2.3  1 0.6 

Alternaria sp.1  P, A 3 4.3  3 5.8  6 13.6  12 7.2 

Alternaria sp.2 P, A 0 0.0  0 0.0  2 4.5  2 1.2 

Alternaria tenuissima (Kunze) Wiltshire P  0 0.0  0 0.0  5 11.4  5 3.0 

Embellisia             

Embellisia sp. P  0 0.0  0 0.0  1 2.3  1 0.6 

Epicoccum             

E. nigrum Link P, A 1 1.4  0 0.0  0 0.0  1 0.6 

Stemphylium             

S. solani G. F. Weber P 0 0.0  0 0.0  1 2.3  1 0.6 

S. vesicarium (Wallr.) E.G. Simmons P 0 0.0  0 0.0  1 2.3  1 0.6 

Quambalariaceae             

Quambalaria             

Q. cyanescens (de Hoog & G.A. de Vries) Z.W. Beer, Begerow & R. 

Bauer 
P 3 4.3  0 0.0  0 0.0  3 1.8 

Penicillium             

P. biourgeianum K.M. Zalessky P 1 1.4  0 0.0  0 0.0  1 0.6 

P. commune Thom P 1 1.4  0 0.0  0 0.0  1 0.6 
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P. echinulatum Fassat. P 1 1.4  0 0.0  0 0.0  1 0.6 

P. italicum Wehmer P  0 0.0  0 0.0  1 2.3  1 0.6 

P. pinophilum Thom A  0 0.0  1 1.9  7 15.9  8 4.8 

Penicillium sp. 1 P, A, E 0 0.0  0 0.0  1 2.3  1 0.6 

Penicillium sp. 2 P, A, E 0 0.0  0 0.0  1 2.3  1 0.6 

Trichocomaceae             

Aspergillus             

A. ustus (Bainier) Thom & Church P, A, E 0 0.0  0 0.0  6 13.6  6 3.6 

Talaromyces             

T. flavus (Klöcker) Stolk & Samson A 0 0.0  0 0.0  1 2.3  1 0.6 

Total  70 100.0  52 100.0  44 100.0  166 100.0 
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 In the antophagous generation, 52 isolates were obtained belonging to 13 species, 8 

genera and 8 families. The families Nectriaceae and Apiosporaceae include the majority of the 

identified taxa (54%). The genus that included more taxa (4) was Fusarium (Nectriaceae), which 

contained 31% of the fungal species surveyed in this generation. Concerning the carpophagous 

generation, 44 fungal isolates were obtained being identified 21 species, belonging to 14 genera 

and 10 families. Pleosporaceae was the family representing more species (33%), and the genera 

Alternaria (Pleosporaceae) and Penicillium (Quambalariaceae), both with 4 species each, 

comprised 38% of the total fungal taxa found in this generation of P. oleae. 

 The most abundant species also differed between generations. For the phyllophagous 

generation, the most abundant one was B. bassiana (N=49), which represented 70% of the 

relative abundance in this generation. For the antophagous generation, F. oxysporum was the 

most abundant (N=23), corresponding to a relative abundance of 44.2%. In the carpophagous 

generation, several taxa presented comparable relative abundances, being P. pinophilum the 

most frequent (N=7, corresponding to a relative abundance of 15.9%), followed by Alternaria sp.1 

and A. ustus, both with N=6 corresponding to 13.6% of relative abundance.  

 In order to provide more information about fungal community composition in each 

P. oleae generation, the Simpson (D) and Shannon-Wiener (H) diversity indexes were determined 

(Table 3). In the present work, both diversity indexes differed between the three P. oleae 

generations. As verified for species richness, the highest fungal diversity was verified in the 

carpophagous generation (D=0.09 and H=2.70). In fact, when using larvae or pupae from this 

generation, the highest number of unique species (17) was obtained.  

 

Table 3 Simpson (D) and Shannon-Wiener (H) diversity indexes of fungal taxa identified in the three generations of 
P. oleae.  
 

Generation 
Diversity indexes 

D H 

Phyllophagous 0.50 1.39 

Antophagous 0.25 1.68 

Carpophagous 0.09 2.70 
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The number of exclusive species identified from phyllophagous and antophagous generations was 

only 11 and 9, respectively. The lowest value of species diversity (D=0.5 and H=1.39) was 

detected in the phyllophagous generation.When performing a principal component analysis (PCA) 

using the total fungal taxa, according to the moth generation from which they were isolated, it 

was possible to separate the samples in eight groups (Fig 1). The phyllophagous generation is 

clearly related to groups 4 and 7, the antophagous generation is linked to groups 3 and 6, and 

the carpophagous generation is associated to groups 1 and 2. The two remaining groups (5 and 

8) do not appear associated to a specific generation. Group 5 is mainly correlated to the 

antophagous generation, although presenting some relation to the phyllophagous generation. 

Group 8 is equally correlated to both phyllophagous and carpophagous generations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Principal component analysis (PCA) of the identified fungal taxa, according to the moth generation from 
which they were isolated (represented as closed circles; AG - antophagous generation; PG - phyllophagous 
generation; CG - carpophagous generation). Each number corresponds to a fungal group defined by the coordinates 
generated by SPSS. Fungal groups are defined as follows: 1 - C. funicola, S. solani, P. italicum, S. vesicarium, A. 
tenuissima, T. flavus, Alternaria sp.1, Penicillium sp.1, M. hawaiiensis, A. ustus, Embellisia sp., A. arborescens, S. 
mori, M. circinelloides, T. angustata, L. ramosa, Penicillium sp.2, Alternaria sp.2; 2 - P. pinophilum. 3 - Arthrinium 
sp.1, Fusarium sp.1, T. gamsii, F. solani, Arthrinium sp2, M. hiemalis, B. dothidea, F. equiseti, Arthrinium. sp3; 4 - 
M. racemosus, P. biourgeianum, A. phaeospermum, P. commune, P. echinulatum, Gibberella sp., E. nigrum, C. 
sinensis, B. ochroleuca, Q. cyanescens, M. fragilis; 5 - T. roseum; 6 - F. oxysporum; 7 - B. bassiana. 8 - C. 
cladosporioides. 
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Fungal ecological roles 

Taking into account the potential use for the biological control of pests and diseases, 45% of the 

isolates found in this work have been described in the literature as presenting the useful features 

of antagonism and/or entomopathogenecity (Fig 2A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Percentage of fungal isolates (a) and fungal species (b) presenting different ecological roles. Isolates were 
obtained from dead larvae and pupae of the three generations of P. oleae (PG – phyllophagous generation; AG – 
antophagous generation; CG – carpophagous generation). After molecular identification, fungi were grouped 
according to their described ecological role (A – antagonistic, E – entomopathogenic, P – phytopathogenic, U – 
unknown). 
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The remaining 55% of the isolates presented phytopathogenic features, displaying also in large 

extent (41%) antagonistic and/or entomopathogenic characteristics. When comparing the number 

of identified species, the majority (75%) has been described as phytopathogenic fungi (Fig 2B). 

While the mentioned attribute was present alone in 28% of the identified species, the remaining 

47% also displayed antagonistic and/or entomopathogenic characteristics. From those species 

described as non-phytopathogenic (23%), the majority are defined as antagonistic (17%).  

The ecological roles of the identified fungi differed between generations. In the phyllophagous 

generation, the majority (87%) of the fungal isolates have been described as antagonistic and 

entomopathogenic (Fig 2A). Included in the phytopathogenic fungi (23%), 13% of fungal isolates 

also display antagonistic and/or entomopathogenic characteristics. This relation is reversed when 

considering the number of identified fungal species. The number of phytopathogenic taxa was 

higher (77%) than those displaying only antagonistic and/or entomopathogenic features (23%) 

(Fig 2B).  

 In the antophagous generation, a large fraction of isolates (73%) has been described as 

displaying phytopathogenic characteristics, of which 71% also displays antagonistic and/or 

entomopathogenic features (Fig 2A). The remaining 27% has been described as antagonistic 

fungi. Concerning the carpophagous generation, the higher fraction of fungal isolates displays 

phytopathogenic characteristics (77%) (Fig 2A). Included in these, 50% of fungal isolates also 

exhibits antagonistic and/or entomopathogenic features. Fungal isolates displaying only 

antagonistic and/or entomopathogenic features were also found but in a lower proportion (20%). 

When considering the number of identified fungal taxa, the same trend was observed for the 

antophagous and carpophagous generations. In both, the phytopathogenic fungi comprised the 

majority of identified taxa, but most of them also present antagonistic and/or entomopathogenic 

features. It was in the carpophagous generation that the lowest amount of non-phytopathogenic 

species with antagonistic and/or entomopathogenic properties were found (12%). This was the 

only generation where a fungal taxa (Lichtheimia ramosa) with no described ecological role was 

isolated.
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DISCUSSION 

In the present work, the diversity of fungi isolated from dead larvae and pupae of a major olive 

pest (P. oleae) was evaluated for the first time. Following molecular identification, it was possible 

to identify 43 fungal species, belonging to 24 genera and 14 families. The identification of such a 

high number of fungal taxa described as presenting antagonistic, entomopathogenic or 

phytopathogenic features was only possible because the studied olive groves were maintained 

under organic or integrated production guidelines. If sampling had been performed on a 

conventional orchard the expected fungal diversity would have been lower. Organic and 

integrated production management creates a healthier and safer environment with higher 

biological diversity (Mander et al., 1999). Similar diversity levels (46 fungal species and 27 

genera) were obtained when studying insect-associated fungi isolated from soil samples of 

different field crops (wheat/maize, corn and soybean) and orchards (peach and apple) (Sun et 

al., 2008). 

 

Fungal diversity and abundance 

Concerning genera diversity, three main patterns were detected: (i) species-rich and highly 

abundant genera, e.g. Fusarium, Alternaria and Penicillium (about 35% of the taxonomic diversity 

and 42% of the total of isolates), (ii) species-rich genera, but displaying low abundance, e.g. 

Mucor and Arthrinium (about 19% of the taxonomic diversity and 5% of the total of isolates); and 

(iii) species-poor but highly abundant genera, e.g. Beauveria and Trichoderma (about 5% of the 

taxonomic diversity and 35% of the total of isolates). Among the 43 species recorded during the 

present study, the genera Alternaria, Arthrinium, Fusarium, Mucor and Penicillium were the most 

represented in terms of taxa number. These genera include some of the most ubiquitous fungal 

species in nature, which have been found in soils, plants and agricultural communities. The wide 

presence of such microorganisms has been related to the broad ecological roles they play, either 

as saprophyts, phytopathogens or biocontrol agents (De Lucca, 2007).  

 The genera that contributed most to species diversity depended on which P. oleae 

generation was used for fungal isolation. While in phyllophagous generation Penicillium 

represented the genus with highest taxonomic diversity (18%), in antophagous generation that 

genus was Fusarium (31%) and in carpophagous generation were Alternaria and Penicillium 

(representing together 39%). The composition of fungal community was also inferred by the 

Simpson (D) and Shannon-Wiener (H) diversity indexes, which offer valuable information about 
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rarity and frequency of species in a community. Both indexes provide more information than 

simply species richness, since they also take the relative abundances of different species into 

account. While the carpophagous generation presented the highest fungal diversity (displaying 

the lowest D and highest H values), the phyllophagous generation displayed the lowest diversity 

(presenting the highest D and lowest H values). This difference between moth generations could 

be related to two main factors: climatic conditions during larvae and pupae collection and the 

moth life cycle.  

Climate conditions, in particular relative humidity and temperature, are known to affect both 

conidia dispersion and germination (Topbaş et al., 2006). The collection of larvae and pupae 

from phyllophagous generation (March) matched with the time of year where the temperature is 

low, decreasing the ability of spore germination and thus reducing fungal diversity. Furthermore, 

the moth life cycle also seems to strongly affect the fungal diversity observed in this generation, 

as a large part of phyllophagous moth development occurs in the leaves as miner larvae. 

Therefore, the reduced fungal diversity observed in this generation can be associated to the low 

chances of larvae contact with fungal spores. The high occurrence of the entomopathogenic B. 

bassiana in the phyllophagous generation (70% of the isolates) could be related with an epizootic 

outbreak that might have occurred during the time of larvae and pupae sampling. These 

epizootics are described as being dependent on host population dynamics, the number and 

viability of infective stages in the pathogen population, infection efficiency and development, in 

addition to a complex set of environmental factors and timing (Ordentlich and Nachmias, 1990). 

Although dispersal of B. bassiana conidia by larvae could have been limited, due to their small 

displacement in trees, the wind and rain may have caused the spread of those infectious 

structures. Also, the high number of infected P. oleae individuals could have functioned as 

sources of infective conidia, thus contributing for the abundance of B. bassiana in this 

generation. 

 In antophagous and carpophagous generations, the most abundant taxa were Fusarium 

oxysporum (44% of the total isolates) and Penicillium pinophilum (15.9% of the total isolates), 

respectively. As referred, these two taxa are very frequent in nature, being present in almost all 

environments. Furthermore, the amount of spores of Fusarium species is known to increase from 

April to July (Topbaş et al., 2006) and those from Penicillium species rise between August and 

October (Medrela-Kuder, 2010). These periods are coincident with the sampling dates of larvae 

and pupae from antophagous (May-June) and carpophagous (September) generations, explaining 
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in some degree the high abundance of Fusarium and Penicillium genera in antophagous and 

carpophagous generations, respectively.  

 The association of climate and life cycle negatively affect the fungal diversity when using 

antophagous larvae and pupae. In the region where the study was conducted, temperature 

rapidly increases during May and June, leading to an extremely fast larvae development. 

Therefore, larvae and pupae stay a short period exposed to the surrounding environment, 

reducing the possibility of fungal infection. In contrast, carpophagous larvae are exposed to 

fungal spores for a longer period. After ecloding from the egg, larvae must travel from the 

oviposition site in the fruits to the petiole and bore down into the stone, where they usually feed 

for several weeks. After completing their development, larvae re-emerge from the fruit. The 

chance of infection is still enhanced by the extension of carpophagous generation which, together 

with the favourable climatic conditions, allows the development of more fungal taxa. Accordingly, 

it was in this moth generation that higher species diversity was found.  

 

Fungal ecological roles 

The relation between the amount of dead larvae and pupae displaying fungal growth and the 

ecological role of the identified fungal taxa provides interesting data. The higher amount of 

infected dead larvae and pupae was observed in the phyllophagous generation (61.5%). It was 

also from this generation that the most isolates exhibiting entomopathogenic features (76%) were 

obtained. As the presence of fungal growth on dead larvae and pupae decreases (from 61.5% to 

32.7% and finally 23.0%, in the phyllophagous, antophagous and carpophagous generations, 

respectively), the abundance of fungi exhibiting entomopathogenic characteristics also decreases 

(76%, 50% and 30%, respectively). These results seem to suggest that the infection with 

entomopathogenic fungi could have led to larvae and pupae death. Most of the fungal isolates 

(86%) and species (70%) identified in this work has been described as antagonistic and/or 

entomopathogenic, although some of them have also been considered as displaying 

phytopathogenic features. Because only the non-phytopathogenic fungi displaying antagonistic 

and/or entomopathogenic features could be explored for limiting fungal diseases and/or pests, 

the percentage of identified fungal species that might have a future application as biocontrol 

agents is reduced to 23%.  

 From identified taxa in this work, B. bassiana seems to be the most conspicuous among 

the entomopathogenic/antagonistic species. The natural occurrence of this fungus in over 700 
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insect hosts from almost all taxonomic orders is well documented (Meyling and Eilenberg, 2007). 

However, there are still some reservations about the host range of this fungus. Some authors 

claim that B. bassiana is a “species complex”, referring that different isolates have a restricted 

host, while others point out that this fungus has no host specificity (Pathan et al., 2007). 

Accordingly, several pests are susceptible to the entomopathogenic aptitude of this fungus, like 

Alphitobius diaperinus (Santoro et al., 2008), whiteflies Bemisia tabaci and Trialeurodes 

vaporariorum (Quesada-Moraga et al., 2006), Capnodis tenebrionis (Marannino et al., 2006), 

Lutzomyia longipalpis (Amóra et al., 2009), Callosobruchus maculates (Murad et al., 2007), and 

Tetranychus urticae (Eken and Hayat, 2009). Some studies also indicate the presence of this 

fungus associated to several lepidopterans (Maurer et al., 1997; Fuguet and Vey, 2004; Aquino 

de Muro et al., 2005; Dalzoto et al., 2006; Quesada-Moraga et al., 2006; Santoro et al., 2008; 

Amóra et al., 2009). In addition, natural occurrence of mycoses caused by B. bassiana is 

reported in lepidopteran pests such as Helicoverpa armigera (Hübner) and Spodoptera litura 

(Fab.) (Devi et al., 2005), Argyresthia conjugella (Vänninen and Hokkanen, 1997) and Plutella 

xylostella (Silva et al., 2003). As far as we know this is the first report of B. bassiana related to P. 

oleae, where a large amount of isolates were obtained from larvae and pupae of the 

phyllophagous generation. The presence of this fungus in olive grove soils has already been 

reported (Marannino et al., 2006; Quesada-Moraga et al., 2006), as well as its ability to control 

pests in this crop, such as Bactrocera oleae (Konstantopoulou and Mazomenos, 2005; 

Mahmoud, 2009). All these evidences may suggest that this fungus could be effective in 

controlling P. oleae in olive orchards, although experiments to evaluate its infecting ability 

towards P. oleae have to be performed. The natural occurrence of this species in the studied 

olive groves guarantees an already adapted and suited strain to be used as a control agent in this 

particular ecosystem.  

 Another potential entomopathogen identified in the present study that could be able to 

control P. oleae larvae is Cordyceps sinensis. Although no literature is available for its ability to 

infect P. oleae, the capacity of infecting other lepidopterans larvae was already described, such 

as those of Hepialus armoricanus (Paterson, 2008). Nevertheless, these fungal taxa described as 

entomopathogenic cannot be definitely linked to the cause of death of P. oleae larvae and pupae. 

Assays confirming the infection ability and virulence of such fungi must be performed, in order to 

confirm their entomopathogenic potential.  
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The identification of fungi that could limit the growth of other infectious fungi by their antagonistic 

properties may also be important for designing future biocontrol strategies for restricting fungal 

diseases in olive groves. The most abundant taxa with antagonistic characteristics identified in 

the present study were Penicillium pinophilum and Trichoderma gamsii. P. pinophilum is one of 

the most important antagonists of Rhizoctonia solani, a fungal pathogen of tobacco 

(Alagesaboopathi, 1994). Although scarce information is available about T. gamsii, antagonistic 

properties of Trichoderma species against a great number of fungal species have already been 

described, including Verticillium dahliae that causes one of the most severe diseases affecting 

olive (Verticillium wilt) (Ordentlich and Nachmias, 1990; Verma et al., 2007). The identification of 

several isolates with antagonistic features (44%), some of them against fungi that cause olive 

diseases, opens up the possibility of further research on those antagonistic species for limiting 

the occurrence of such phytopathogenic fungi in olive orchards.  

 In this work, besides the identification of potential biocontrol agents for limiting pests and 

fungal diseases in olive groves, many other fungi were identified that could play a role in olive 

grove ecosystems. One of the most common genus found in this work was Alternaria that 

comprises species that have already been reported to cause spoilage of olives (Roussos et al., 

2006) and cause a disease on olive shoots grown under greenhouse conditions (Bourbos et al., 

1999). The most frequent Alternaria species isolated in the present work was A. tenuissima, 

which has been associated to late blight of pistachio and black point of small-grain cereals 

(Logrieco et al., 2003), among other crops. One of the most abundant fungal taxa identified in 

this study was Fusarium oxysporum that exhibits antagonistic, entomopathogenic and 

phytopathogenic properties. This species has been mainly described as phytopathogenic, causing 

vascular wilts or rot and crown rots in a large number of crops, including tree crops (Fravel et al., 

2002). This species also presents antagonistic features against Colletotrichum gloeosporioides 

and Pestalotia psidii (Pandey et al., 1993), and most important, against Verticillium dahliae 

(Mercado-Blanco et al., 2004). Furthermore, F. oxysporum has also been described as an 

opportunistic insect-pathogen (Sun et al., 2008). Accordingly, it has been isolated from several 

insect hosts, such as those from Homoptera and Coleoptera orders, being able to parasite the 

greenhouse whitefly, Trialeurodes vaporariorum (Torres-Barragán et al., 2004).  

 However, the identification of entomopathogenic fungi from dead P. oleae larvae and 

pupae cannot be unequivocally associated to their ability to infect this lepidopteran, since dead 

larvae and pupae could just become increasingly susceptible to fungi. 
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CONCLUSION 

As far as we know, the present work describes for the first time the assessment of fungal 

diversity directly obtained from mycosed dead P. oleae larvae and pupae.  

The strategy used for obtaining fungal isolates (collection of larvae and pupae from the field and 

isolation of fungi from cadavers) allowed the identification of 43 fungal species, displaying several 

ecological roles. The diversity and abundance of fungal species differed when using larvae or 

pupae from different moth generation. Higher fungal diversity was found in the carpophagous 

generation, followed by antophagous and phyllophagous generations. Although the identified taxa 

could not be unequivocally associated with the cause of moth death, almost 37% of identified 

taxa presented entomopathogenic properties.  

 The identification of entomopathogenic and antagonist fungi in olive orchards provided a 

pool of biocontrol agents that could be used in the future for controlling pests and fungal 

diseases. The first report of Beauveria bassiana presence on P. oleae could open new strategies 

for the biocontrol of this major pest in olive groves. This fungus was isolated with high incidence 

from phyllophagous generation larvae and pupae. Future studies will be directed to screening the 

entomopathogens isolates for virulence to adult P. oleae. As the environmental conditions 

influence the performance of a given strain of fungus, the use of already adapted species to a 

particular ecosystem increases the guarantee of success of a biocontrol approach. The 

occurrence of antagonistic fungi able to control one of the major fungus attacking olive tree 

(Verticillium dahliae) may as well be investigated, in order to control this pathogen that is 

spreading throughout olive orchards.  
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Use of different barcoding regions to identify fungi associated to Prays oleae 
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ABSTRACT 

Species identification using molecular barcodes is now definitely established for animals and for 

plants. Although the internal transcribed spacer (ITS) region has been adopted as a barcode 

region for fungi, many doubts still persist about the reliability of this marker. For identifying the 

fungal community associated to Prays oleae, this work intends to evaluate and compare the 

efficiency of different molecular barcode markers (ITS, β-tubulin and RPB2). For this purpose, 

fungal isolates retrieved from mycosed larvae and pupae of P. oleae were amplified using 

universal primers for these regions. The genomic DNA from the 43 obtained isolates was 

amplified using the ITS primers (100% of DNA samples), β-tubulin primers (62.8%) and RPB2 

primers (83.7%). A total of 30 fungal isolates were identified. The ITS barcode marker allowed the 

identification of 22 isolates, β-tubulin identified 8 isolates and RPB2 identified the genera/species 

of 16 isolates. Most identifications (19) relied in only one region, specially ITS (13 identifications). 

The results of this work show that the use of multiple barcode regions for fungal identification 

should be considered. Although the characteristics of the ITS region turns this barcode region the 

most reliable to perform fungal identification, the use of β-tubulin and RBP2 increased the 

number of identified sequences. This multi-locus approach allowed the identification of fungal 

species associated with the death of larvae and pupae of P. oleae that present distinct roles in 

the ecosystem. 

 

Keywords: DNA barcoding; ITS; β-tubulin; RPB2; Fungi  
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INTRODUCTION 

The molecular identification of fungal species is essential for many research efforts on fungal 

ecology and is giving new insights into the diversity and ecology of scarcely known fungal species. 

The use of molecular techniques has been largely applied for the identification of fungal species 

(Bruns et al., 1991), but the benefits of a DNA barcoding in the context of taxa identification was 

only recently recognized (Hollingsworth, 2007). The main difference between molecular 

identification tools and the “DNA barcode” approach is that the latter involves the use of a 

standard DNA region, specific for a taxonomic group. For animals and plants, those regions have 

already been established, corresponding to a segment of the mitochondrial DNA cytochrome c 

oxidase gene (COI) for animals (Hebert et al., 2003) and regions of the plastid genes matK and 

rbcL for land plants (CBOL Plant Working Group, 2009). In contrast, the definition of an 

appropriate fungal DNA barcoding is still a matter of debate. 

 The first step for barcoding fungi, even though without this purpose, began with the work 

of White et al. (1990). This work described universal primers used for amplifying three main 

components of the fungal ribosomal operon: the large subunit (LSU), the small subunit (SSU) and 

the internal transcribed spacer (ITS) region. The described primers have been largely used by the 

scientific community, as they are very robust and able to function in the large majority of fungi 

(Seifert, 2009). The ITS region comprises two sections (ITS1 and ITS2) that flank the conserved 

5.8S region. This region has been considered as the preferred DNA barcoding marker region for 

fungi, either for the identification of single taxa (e.g. Kelly et al., 2011) or to mixed environmental 

samples (e.g. Buée et al., 2009). Accordingly, the ITS region was recognized as the barcode 

needed for fungal identification by the official website for barcode (http://www.boldsystems.org) 

(Ratnasingham and Hebert, 2007). The recognition of ITS as a fungal barcode is largely due to 

the fact that this sequence is the most sequenced region of fungi, being routinely used for 

systematic, phylogeny and identification (Begerow et al., 2010). However, this advantage is to 

some extent hampered by misidentifications or sequencing errors that have been deposited in 

public DNA repositories (Nilsson et al., 2006). In addition, some taxonomic groups present an 

ITS region with less than 500 pb (Seifert, 2009). In order to provide a sufficient amount of 

variability within this region that allows unmistakable identification of species, a ITS length of 

500 pb was established as the optimal lower limit for an effective DNA barcode (Seifert, 2009). 

Also, the intraspecific variation detected in this sequence could compromise the use of ITS as a 

barcode. Intraspecific and even intra-individual variability of this region has been described 
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(Kårén et al., 1997; Smith et al., 2007). A thorough study of ITS sequences in the International 

Nucleotide Sequence Database revealed that this region is not equally variable in all groups of 

fungi (Nilsson et al., 2008). Some genera have been described as being difficult to be classified 

using ITS barcode. Some of these include Alternaria, Embelisia (Seifert, 2009; Pryor and 

Michailides (2002), Cladosporium (Schubert et al. 2007), Penicillium (Skouboe et al. 1999) and 

Fusarium (O‟Donnell & Cigelnik, 1997).  

 The problems associated with using ITS as the unique DNA barcode marker, as well as 

the recent approaches of selecting a small number of markers for botanical molecular 

identification (CBOL Plant Working Group, 2009), have led to the application of a multilocus DNA 

barcoding strategy to fungi (Dupuis et al., 2012). Several works have used this multi-locus 

approach for fungal identification, with the recurrent use of ITS, β-tubulin, EF-1α and RPB2 

genes, such as those regarding Neonectria (Zhao et al., 2011a), an, in addition to those markers, 

also including actin, calmodulin and LSU genes, for genus Mycosphaerella (Quaedvlieg et al., 

2012), and RPB1 and mitochondrial ATP6, for Cordyceps genus (Sung et al., 2007) However, 

the need of a second barcoding region could be only required in the case of specific studies, 

depending if a general survey or a more particular group identification is pretended (Schoch et 

al., 2012). Secondary markers should be used to accurately report genetic diversity in those taxa 

that present low ITS interspecific variability (Gazis et al., 2011). Besides ribosomal regions, 

various gene sequences have been used for the identification of fungi, such as partial β-tubulin 

(Samson et al., 2004), partial elongation factor 1-alpha (EF-1α) (Geiser et al., 2004), COI (Seifert 

et al., 2001) and the second largest subunit of RNA polymerase II (RPB2) gene sequences (Liu et 

al., 1999; Froslev, 2005). However, the use of these sequences as barcode markers could be 

associated with potential problems, such as the difficulty with amplification, the presence of 

multiple/mobile introns of differing lengths, the presence of multiple gene copies and poor 

resolution in some taxa.  

 In this study, the efficacy of three molecular markers (ITS, RPB2 and β-tubulin) was 

evaluated for the identification of those fungal species associated to pupae and larvae of Prays 

oleae. The fungal community associated to P. oleae, one of the major pests on olive orchards, 

have been described to play several roles in the ecosystem. Studies of the fungal community 

associated with olive moth have been performed in order to develop potential control agents 

(Oliveira et al., 2012). The use of a reliable method and barcode regions for fungi identification is 

required to speed up the characterization and survey of this fungal community. 



 

92 
 

METHODS 

Fungal isolates 

Fungal isolates were obtained from mycosed larvae and pupae of Prays oleae Bern. Larvae were 

collected from randomly chosen trees in selected orchards, managed through organic or 

integrated production guidelines. Sampling of larvae and pupae was performed in the three 

annual generations of P. oleae (phyllophagous, antophagous and carpophagous). Larvae and 

pupae were placed in sterile tubes, sealed and maintained at 25  2ºC, under 16/8 hours 

light/dark regime, for an average period of 10 days. Larvae and pupae were daily observed, in 

order to detect fungal growth. When present, fungi were isolated by inoculating Potato Dextrose 

Agar (PDA) medium, supplemented with 0.01% (w/v) chloramphenicol (Oxoid). Pure cultures of 

each isolate were deposited in the culture collection of the Polytechnic Institute of Bragança 

(School of Agriculture). 

 

Molecular methods 

Genomic DNA of each isolate was extracted from fungal spores, which were obtained by 

incubating the fungus in PDA medium, at 25  2ºC in the dark, during an average of 15 days. 

Spores were collected with a sterile scalpel, placed in a sterile microtube and then broken with 

the help of sterile glass spheres. DNA purification proceeded by performing a DNA precipitation 

with isopropanol (Oliveira et al., 2012).  

Three different gene regions of each fungal isolate were amplified: the non-coding ITS 

(comprising ITS1 + 5.8S + ITS2 sequences), partial β-tubulin gene sequence (from exon 1 to 

exon 4, including 3 introns), and partial RPB2 gene sequence (spanning the conserved regions 6 

and 7 and including a single intron). The primers used to amplify the described regions are listed 

in Table 1. 
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         Table 1 Primers and PCR conditions used for amplifying each DNA barcode marker. 

 

Marker Direction Sequence (5’-3’) References Amplification conditions 

ITS    
 94ºC - 3 min 

35 x 
94ºC – 30 s 
55ºC – 30 s 

ITS1 Forward TCCGTAGGTGAACCTGCGG White et al., 1990 72ºC – 1 min 
ITS4 Reverse TCCTCCGCTTATTGATATGC White et al., 1990  72ºC - 10 min 

β Tubulin    
 95ºC - 5 min 

35 x 
95ºC – 45 s 

T1 Forward AACATGCGTGAGATTGTAAGT O‟Donnell and Cigelnik 1997 
52ºC – 1.5 min 
72ºC – 1.5 min 

Bt2b Reverse ACCCTCAGTGTAGTGACCCTTGGC Glass and Donaldson 1995  72ºC - 10 min 

RPB2    
 95ºC - 1 min 

35 x 
95ºC – 45 s 
52ºC – 40 s 

RPB2-980F Forward TGYCCIGCIGARACICCHGARGG Reeb et al., 2004 
72ºC – 2 min 

15 x 
95ºC – 45 s 
52ºC – 40 s 

fRPB2-7Cr Reverse CCCATRGCTTGYTTRCCCAT Liu et al., 1999 
72ºC – 2 min 

 72ºC – 10 min 
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Amplification reactions (50 µL) were prepared using 50 ng of genomic DNA, 0.2 µM of 

each primer, 1x GoTaq Flexi buffer (Promega), 0.2 µM dNTP Mix (Fermentas) and 1 U 

GoTaq DNA polymerase (Promega). For ITS amplification a concentration of 2 mM MgCl2 

(Promega) was used, but for β-tubulin and RPB2 amplifications a higher concentration (2.5 mM) 

was employed. All amplifications were carried out in a MyCycler (BioRad) thermocycler, using the 

conditions detailed in Table 1.  

PCR amplification products were analysed by electrophoresis, in a 1.2% agarose (Fluka) 

gel containing 0.5 µL GelRed™ (Biotium) nucleic acid gel stain. Following electrophoresis (in 1x 

TAE buffer), gel was analyzed under UV light using EagleEye II image capture system 

(Stratagene). Those reactions that amplified a single PCR product were selected for purification 

using the JETquick PCR product purification kit (Genomed). Amplified products were sequenced 

at the STABVida sequencing services (Oeiras, Portugal), using both forward and reverse primers 

for amplification.   

 

Data analysis 

The obtained DNA sequences were assembled in contigs using SeqMan software 

(DNASTAR Lasergene). Initial assessment of sequence identity was performed via BLASTN 

searches (Altschul et al., 1997) of GenBank (Benson et al., 2010). Those top-hit species (and 

closely related species) were retrieved for further analysis. Sequence aligments were performed 

using ClustalW method in MegAlign software (DNASTAR Lasergene). Before submitting 

sequences for further fungal identification, the trimming of low quality data at the start and end of 

sequences was performed for obtaining highly similar anchor regions, as close to the primer 

binding sites as possible. A successful identification was considered when the maximal identity 

(Max Ident) reached 90% (with 99–100% of coverage). The three top-hits obtained were taken 

into consideration for determining the probable correct identification.  
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RESULTS AND DISCUSSION  

The precise identification of unknown fungal species should and must be the foundation of any 

given biodiversity assessment study. Misidentifications could have a major impact in such 

biodiversity surveys and ecological studies, leading to erroneous management decisions 

(Bortolus, 2008). Aiming the evaluation of fungal biodiversity associated with the death of Prays 

oleae, we collected larvae and pupae from the field and maintained them under aseptic 

conditions. For the precise identification of fungi that infected larvae and pupae, three different 

DNA barcode markers were selected (ITS, β-tubulin and RPB2).  

The amplification success was different for each DNA barcode marker (Table 2). The ITS primers 

(ITS1 and ITS4) allowed the amplification of all tested samples, the primers T1 and Bt2b (β-

tubulin) only amplified 62.8% of DNA samples, while RPB2-980F and fRPB2-7Cr primers (RPB2) 

resulted in 83.7% of successful amplifications.  

 

Table 2 Results obtained after using ITS, β-tubulin and RPB2 as barcode markers. Success of amplification and 

positive identifications are presented, as well as amplicon length.  
 

 
ITS β-tubulin RPB2 

% of successful amplification 100 (43/43) 62.8 (27/43) 83.7 (36/43) 

Amplicon length (range) 500-653 495-793 657-834 

% of successful amplification, identification 
(Max Ident98%; Query Cov99%)* 

20.9 (9/43) 11.1 (3/27) 5.6 (2/36) 

% of successful amplification, identification 
(Max Ident98%; Query Cov90%)* 

62.8 (27/43) 29.6 (8/27) 44.4 (16/36) 

* Results for percentage of successful amplification and probable correct identification were calculated using BLAST hits with more than 98% of 
maximum identity (Max Ident) and query coverage higher than 99%. In these results, samples obtaining BLAST hits of “uncultured fungus”,“ 
fungal sp.” or “No significant similarity found” are also included. 
 

 

 

 The amplification success using ITS primers was already recognized (Zhao et al., 2011b; 

Quaedvlieg et al., 2012; Schoch et al., 2012) and has been attributed to the multi-copy nature of 

this marker that facilitates its amplification from low quantity or moderate quality DNA (Gardes 

and Bruns, 1993; Nilsson et al., 2006; Nilsson et al., 2008). In a wide-scale study, in which 

distinct laboratories used different routine methods for ITS amplification, there were not major 

differences on ITS performance (Schoch et al., 2012). Most experiments (80%) did not report any 
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problems with PCR or sequencing, and most of the times (90%) the PCR product presented high-

quality. The higher performance of ITS primers in relation to RPB2 and β-tubulin markers has 

also been reported in other studies (Pino-Bodas et al., 2013; Quaedvlieg et al., 2012). Low 

values of PCR success using either universal or specific primers of RPB2 was reported for lichen-

forming fungal genus Cladonia (Pino-Bodas et al., 2013). As this protein-coding gene is single 

copy (Liu and Hall, 2004) more efforts would be expected for its amplification. In spite of being a 

multiple copy gene, β-tubulin has been also described as being difficult to amplify (Kobmoo et al., 

2012). Indeed, although the protein-encoding markers have been described as presenting more 

resolving power at species level (Schoch et al., 2012), the PCR and sequencing problems 

jeopardize their use as an all-fungi barcode region (Schoch et al., 2012).  

 Taking into consideration the used primer pairs, the amplicon length of the three tested 

markers was as expected (Table 2). With exception of a single β-tubulin amplified product, all 

amplicons exhibited more than 500 bp, which has been considered as the minimum limit for a 

DNA barcode (Seifert, 2009). The median length of ITS amplicons was 546 bp, with only two 

outliers above the 1.5-fold of the upper quantile (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Amplicon length of each DNA barcode region. Primers for each barcode marker (ITS, β-tubulin and RPB2) 

were used for amplification of 43 fungal DNA samples. Only successful amplifications were considered (43 for ITS; 
27 for β-tubulin; 36 for RPB2). A box-and-whisker plot is shown for each DNA barcode marker. Median is 

represented by a bold line; lower/upper quantiles are represented by a box; outliers that lie more than 1.5-fold of the 
interquartile range (the difference between upper and lower quantiles) are indicated by x.  
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While β-tubulin amplifications resulted in amplicons with a proximate median size (614 bp), 

RPB2 amplifications yielded amplicons with a higher median size (762 bp). The higher variation 

on the amplicon size between isolates was observed for gene-coding sequences. When using the 

partial β-tubulin gene as barcode marker, a difference of 298 bp was detected between the 

largest and smallest amplicon. As the amplified sequence spans three introns, the variation of 

their size would largely affect the amplicon size. Variation of β-tubulin introns length has already 

been reported for fungi (Schroeder et al., 2002; Msiska and Morton, 2009). RPB2 amplicons, 

which exhibits a variation of 177 bp, comprises a single intron that could also present length 

variations, as already referred for some fungal taxa (Malkus et al., 2006). The ITS amplicons 

exhibited the slightest variation between samples (153 bp difference).  

 For comparing the barcoding efficiency of the three markers, all the amplicons were 

aligned and trimmed to obtain similar regions. The trimmed sequences were then used for 

BLASTN searches (Altschul et al., 1997). The three top-hits for each fungal DNA sample, using 

the three barcode markers, will be considered (Supplementary Table 1). In a first analysis, only 

those sequences that presented more than 98% of maximum identity (with query coverage of 

more than 99%) were considered as probable correct identifications (PCI99). Using these 

conditions, only few fungal isolates were positively identified (Supplementary Table, dark gray 

hits). About 21% of the ITS amplicons successfully identified the fungal isolates, but the 

identification using β-tubulin and RPB2 barcode markers was less than 12% and 6% of the 

amplified sequences, respectively (Table 2). As the query coverage is strongly dependent on 

sequence length variation, the same analysis was performed considering as probable correct 

identifications those sequences that still present more than 98% of maximum identity, but 

present a query coverage of more than 90% (PCI90). Taking these criteria into consideration, the 

number of positively identified fungal isolates increased for all the three barcode markers. 

However, a higher rise was obtained in the case of RPB2 (8-fold more) than with β-tubulin (2.7-

fold more) or ITS (3-fold more) markers. These results are related with the size differences 

between the amplicons and reference samples, as evaluated by the query coverage value. The 

majority of queries using β-tubulin resulted in low query coverage (13 samples), in which the 

query sequence was larger than the reference sequence. Indeed, the widely used primers for β-

tubulin are Bt2a and Bt2b (Hubka and Kolarik, 2012) that result in an amplicon smaller than 

500 bp (e.g. Aghayeva et al., 2004; Slippers et al., 2005; Visagie et al., 2009; Lu et al., 2009). 

When considering just this region for analysis, higher values of query coverage would have been 
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obtained and would eventually lead to new identifications. In contrast to β-tubulin, the obtained 

RPB2 amplicon (spanning the conserved regions 6 and 7 and including a single intron) was 

smaller than the reference samples. The most widely used primers for RPB2 amplify the regions 

5 to 7 of the gene (Houbraken and Samson, 2011), leading to a much larger amplicon (Matheny 

et al., 2007; Reeb et al., 2004), being more difficult to amplify (about 1100 bp product). 

However, the region 6-7 has been suggested as phylogenetically useful for discriminating 

between closely related taxa (Liu et al., 1999). 

 A total of 32 fungal isolates (out of 43) were highly similar (PCI90) to sequences already 

deposited in public DNA repositories (Table 3). However, the taxa identification was not always 

possible, since frequently the most similar sequences were annotated as “uncultured organism” 

or “Ascomycota sp.” 

 Indeed, five ITS amplicons were highly similar to deposited sequences, but as they were 

not annotated to specific taxa, their identification was not possible. At the end, ITS barcode 

marker allowed the identification of 22 isolates (51.2% of total fungal isolates), β-tubulin identified 

8 isolates (18.6%) and RPB2 identified the genera/species of 16 isolates (31.3%). The high 

number of positive identifications when using the ITS barcode marker is related to the number of 

reference sequences deposited on the public DNA repertories. The higher is the number of 

reference amplicons available for each barcode region, the higher are the chances of a positive 

identification. When compared to ITS sequences, the number of β-tubulin and RPB2 sequences 

is comparatively low in NCBI database. A quick search on this database (performed at April 

2013) retrieved 32,224 nucleotide sequences for β-tubulin, 14,672 sequences for RPB2 and 

288,640 ITS sequences. The disparity in the number of available sequences had already been 

recognized by Begerow et al. (2010). 
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Table 3 Probable correct identification of the studied fungal isolates by BLAST analysis, using as criteria ≥ 98% of 
maximum identity and ≥ 90% of query coverage. The species presenting the highest scores are presented. In 
brackets, the numbers refer to maximum identity/query coverage. Sequences annotated as “uncultured organism” 
or “Ascomycota sp.” are presented in italics. NA – no amplified product, NI – no successful identification (maximum 
identity less than 98% and/or query coverage less than 90%, as well as no significant similarity found). 

 

Sample ID ITS β-tubulin RPB2 

A1GC09 NI NA NA 

A7_10GC10 NI NI NI 

A11GF10 NI NA NI 

A19GF10 
Penicillium spinulosum (99/99) 

Penicillium glabrum (99/99) 
NI 

Penicillium glabrum 
(98/97) 

A35GC09 NI NI NI 

A39GF09 NI NI Beauveria sp. (98/99) 

A49GC09 NI NA NI 

A65GC09 
Acremonium cellulolyticus (99/99) 

Penicillium pinophilum (99/99) 
NI NI 

A69GC09 Alternaria sp. (99/97) NI Lewia eureka (99/100) 

A108GF09 Fusarium oxysporum (98/99) NI NI 

A181GC09 Uncultured organism (99/93) NI NI 

AC1_8GC10 Penicillium sp. (99/99) NI NI 

AC9_2GC10 Aspergillus niger (99/96) NI NI 

AC95GF09 NI 
Arthrinium phaeospermum (99/100) 

Arthrinium serenense (99/100) 
NI 

AC112GF10 
Penicillium spinulosum (99/98) 

Penicillium thomii (99/98) 
NI NI 

AC173GF10 NI NA NI 

AC187GF10 NI Passalora fulva (98/99) NI 

AL5GC09 Mucor circinelloides (99/98) NA NI 

AL8_4GC10 NI NI NA 

AL11GC09 Mucor circinelloides (100/98) NA NI 

AL23GC09 Uncultured Alternaria (100/98) NA 

Alternaria tenuissima 
(99/93) 

Alternaria alternata 
(98/94) 

AL31GF10 Valsaria ceratoniae (99/90) NI NI 
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AL49GF10 NI NI NI 

AL83GC Uncultured organism (99/98) NA 
Alternaria tenuissima 

(100/94) 

AL83GF10 Cladosporium sp. (99/92)  NA NA 

AL97GF NI NA 
Alternaria arborescens 

(99/95) 

LC9_4GA10 Lecanicillium psalliotae (99/98) NA NA 

LC10_10GC10 Cladosporium sp. (99/99) NI NI 

LC25GA09 
Fusarium chlamydosporum (99/95) 

Fusarium oxysporum (99/95) 

Fusarium sp. (99/99) 
Fusarium equiseti (98/98) 

Fusarium incarnatum (98/98) 

Fusarium equiseti 
(98/97) 

LC25GC 
Alternaria arborescens (99/95) 

Alternaria brassicae (99/95) 
Alternaria arborescens (100/93) 

Alternaria tenuissima (99/93) 
Alternaria arborescens 

(100/93) 

LC53GC Uncultured organism (100/99) NA 

Alternaria tenuissima 
(99/93) 

Alternaria alternata 
(99/93) 

LC58GF NI 
Fusarium sp. (100/95) 

Fusarium subglutinans (99/95) 
Fusarium subglutinans 

(99/90) 

LC61GF NI 
Cylindrocarpon destructans (99/97) 

Fusarium solani (98/94) 
Fusarium sp. (99/94) 

LC83GC Lewia infectoria (98/98) NA NI 

PA19GF NI NI 
Fusarium oxysporum 

(99/95) 

PA167GF Penicillium glabrum (99/99) NI 
Penicillium glabrum 

(98/98) 

PNM4GF Alternaria sp. (99/99) NI 

Alternaria tenuissima 
(99/93) 

Alternaria alternata 
(99/95) 

PNM19GF Alternaria sp. (100/97) Alternaria tenuissima (100/97) 

Alternaria tenuissima 
(100/94) 

Alternaria alternata 
(100/94) 

PNM31GC NI NA NI 

PNM37GF Ascomycota sp. (99/99) NI NI 

PNM47GF 
Alternaria arborescens (100/92) 
Alternaria brassicae (100/92) 

Alternaria arborescens (99/97) 
Alternaria tenuissima (99/97) 

Alternaria arborescens 
(100/95) 

PNM53GF Ulocladium chartarum (99/92) NA NA 

PNM75GF10 Uncultured organism (99/97) NA NA 
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Using all the barcode markers, 30 fungal isolates (70%) were successfully identified. Although 

using different barcode markers, most fungal identifications (19 out of 30) were achieved using 

only a single barcode. Most of these were possible by using ITS barcode (13), but β-tubulin and 

RPB2 marker also resulted in exclusive identifications (2 and 4, respectively). In contrast, four 

fungal isolates (LC25GA09, LC25GC, PNM19GF and PNM47GF) were identified by the three 

barcode markers as species from Alternaria (3 isolates) or Fusarium (1 isolate) genus. The 

remaining fungal isolates were identified by ITS and RPB2 (5 isolates) or by β-tubulin and RPB2 

(2 isolates). Most of these identifications resulted in species from the same genus: Penicillium (2 

isolates), Alternaria (2 isolates) and Fusarium (1 isolate). However, different results were 

obtained for isolate A69GC09 (using ITS and RPB2 barcodes) and isolate LC61GF (using β-

tubulin and RPB2). This divergence could be a result of reduced representation of specific 

barcode sequences in public DNA databases that lead to the identification of phylogenetically 

related species. However, in most of the cases, the discrepancy is due to the presence of 

erroneous identifications deposited on databases. According to this, only 62.7% of fungal isolates 

presented the same identification result in the three top hits (Supplementary Table). In addition, 

different genera were equally identified for the same fungal isolate (A65GC09), using the same 

barcode marker (ITS). A considerable amount of misidentified sequences in public DNA 

repositories like NCBI have been detected, which can represent over 20% of the database (Bridge 

et al., 2003; Nilsson et al., 2006). Due to these database inconsistencies, several species had 

been previously wrongly identified (Bruns and Shefferson 2004; Clapp et al., 2002; Schüßler et 

al., 2003; Deckert et al., 2002). This fact is of major concern, as identification errors will 

propagate, and some recommendation to reduce those inaccuracies was already suggested 

(Crous, 2002). Although some attempts to reduce such errors have been made, the results were 

described as unsuccessful (Pennisi, 2008). Curated fungal sequence databases already exist, but 

they are usually devoted to a single genus, like Fusarium, Phaeoacremonium or Trichoderma, as 

well as to mycorrhizal fungi (Balajee et al., 2009). These curated databases have the 

inconvenience of the limited number of available sequences, often overlooking the most 

significant species (Balajee et al., 2009).   

 The discrimination between different species from the same genus was difficult to be 

achieved when using ITS as barcode marker (isolates from Alternaria (2), Penicillium (2) and 

Fusarium (1) genera), β-tubulin (isolates from Alternaria (2), Fusarium (2) and Arthrinium (1) or 

RPB2 (isolates from Alternaria (4) genera). The lack of resolution within Alternaria (Seifert, 2009; 
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Pryor and Michailides (2002), Penicillium (Skouboe et al. 1999) and Fusarium (O‟Donnell & 

Cigelnik, 1997) genera was already reported when using the ITS barcode regions. However, the 

use of protein-encoding markers has been describing as presenting more resolving power than 

ITS, at least at species level (Schoch et al., 2012). Indeed, a smaller region of β-tubulin amplicon 

(only comprising the third exon) was described to discriminate between fungal samples from 

cheese (Panelli et al., 2012).  

 The use of ITS region as a barcode region has been considered as presenting some 

limitations: much of the deposited sequences lack the formal barcode standards (Nilsson et al., 

2006), the lack of resolution at species level is often recognized, the length of ITS region is less 

than the lower limit of a barcode for some taxonomic groups (Seifert, 2009) and intraspecific and 

intra-individual variability have been reported (Smith et al., 2007; Simon and Weiß, 2008). 

However, this barcode region is still the most reliable region for fungal identification. Although 

lacking some barcode criterion, the large number of available sequences still allows a large basis 

for sequence comparison of obtained sequences. Therefore, a careful analysis of query results 

could give a strong indication of its identification. Indeed, the thorough work of Schoch et al. 

(2012) has suggested that fungal ITS barcode region has a similar probability of correct species 

identification than the two-marker plant barcode system based on plastid matK and rbcL genes. 

 The fact that ITS lacks resolution for some genera like Alternaria, Embelisia (Seifert, 

2009; Pryor and Michailides (2002), Cladosporium (Schubert et al. 2007), Penicillium (Skouboe 

et al. 1999) and Fusarium (O‟Donnell & Cigelnik, 1997), was the hint to create a two-marker 

barcode, as in plants. However, Schoch et al. (2012) showed that the increase on the probability 

of correct identification using only ITS or the combination of this region with other markers is 

small, and that such more-than-one marker approach should be dependent on the type of study.  

In the present work, the use of β-tubulin and RBP2 (in addition to ITS barcode sequence) 

increased the number of identified sequences. However, due to the less amplification efforts and 

number of probable identifications achieved, the ITS region was the most successful barcode 

region tested. Therefore, the ITS region is still the most reliable barcode region to perform fungal 

identification, especially when the identity of samples is completely unknown. The use of 

additional barcode markers could be advantageous for overcoming the fail in identification with 

ITS. Using the multi-locus approach presented in this work the identification of fungal species 

associated with the death of larvae and pupae of P. oleae that present distinct roles in the 

ecosystem was possible. This multi-locus approach should be taken in consideration whenever 
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possible for this kind of fungal surveys, although the ITS region proved to be the most efficient 

barcode. The additional use of other markers could help in the identification efforts.  
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Supplementary Table 1 Amplicon size and BLAST top hits of query sequence, size, accession number and identification of deposited sequence  
 

 
ITS β-Tubulin RPB2 

Sample ID 
Amplicon 
size (pb) 

Most similar accessions 
Size 
(pb) 

Max ident 
(%)/ Query 
coverage 

E 
value 

Amplicon 
size (pb) 

Most similar accessions Size (pb) 
Max ident 
(%)/ Query 
coverage 

E 
value 

Amplicon 
size (pb) 

Most similar accessions 
Size 
(pb) 

Max ident (%)/ 
Query 

coverage ) 

E 
value 

A1GC09 568 
HE653031.1 

Aspergillus sp. 
1093 98/85 0.0  N.A.     N.A.    

 
 

HE653030.1 
Aspergillus sp.  

1093 98/85 0.0           

 
 

HE615091.1 
Aspergillus insuetus 

1085 98/85 0.0           

A7_10GC10 564 
JQ272372.1 

Penicillium spinulosum 
614 97/99 0.0 643 

AB566106.1 
Penicillium adametzii 

473 94/73 0.0 752 
JN406535.1 

Penicillium crocicola 
912 97/86 0.0 

 
 

GU566252.1 
Penicillium spinulosum 

615 97/99 0.0  
EU128574.1 

Penicillium glabrum 
469 93/72 0.0  

FJ004469.1 
Penicillium glabrum 

808 91/98 0.0 

 
 

GU566248.1 
Penicillium spinulosum 

615 97/99 0.0  
GQ367517.1 

Penicillium thomii 
421 96/65 0.0  

FJ004468.1 
Penicillium glabrum 

808 91/98 0.0 

A11GF10 526 
KC119203.1 

Fusarium oxysporum 
1641 100/87 0.0  N.A.    829 

EF470149.1 
Gibberella intermedia 

1806 99/85 0.0 

 
 

KC119197.1 
Fusarium sp. 

1646 100/87 0.0       
FR870306.1 

Fusarium lactis  
1945 96/95 0.0 

 
 

JN624910.1 
Gibberella moniliformes 

1072 100/87 0.0       
FR870303.1 

Fusarium lactis  
1944 96/95 0.0 

A19GF10 524 
HQ680956.1 

Penicillium spinulosum 
580 99/99 0.0 640 

AB566106.1 
Penicillium adametzii 

473 98/74 0.0 759 
FJ004469.1 

Penicillium glabrum 
808 98/97 0.0 

 
 

HQ680955.1 
Penicillium glabrum 

541 99/99 0.0  
FJ004410.1 

Penicillium glabrum 
452 98/71 0.0  

FJ004468.1 
Penicillium glabrum 

808 98/97 0.0 

 
 

HM469402.1 
Penicillium glabrum 

1131 99/99 0.0  
FJ004409.1 

Penicillium glabrum 
452 98/71 0.0  

EF198601.1 
Penicillium glabrum 

1011 99/87 0.0 

A35GC09 507 
JN098084.1 
Fungal sp. 

522 97/96 0.0 699 
AY753379.1 

Penicillium pinophilum 
465 97/65 0.0 749 

EU021620.1 
Talaromyces flavus 

1138 94/86 0.0 

http://www.ncbi.nlm.nih.gov/nucleotide/222093113?report=genbank&log$=nucltop&blast_rank=2&RID=B9ZGVY0V014
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JN098097.1 
Fungal sp. 

520 97/96 0.0  
AY753373.1 

Talaromyces macrosporus 
465 93/64 0.0  

XM_002153105.1 
Penicillium marneffei 

4153 91/88 0.0 

 
 

JN098086.1 
Fungal sp. 

521 97/96 0.0  
AY766252.1 

Talaromyces flavus 
457 92/65 0.0  

JF417426.1 
Talaromyces flavus 

976 94/74 0.0 

A39GF09 585 
GQ302680.1 

Beauveria bassiana 
569 99/79 0.0 638 

EU604131.1 
Isaria tenuipes 

338 98/6 7e-10 801 
HQ880941.1 
Beauveria sp. 

2163 98/99 0.0 

 
 

HQ115700.1 
Cordyceps bassiana 

569 99/79 0.0  
EU604141.1 

Cordyceps militaris cf. Var. 
sphaerochephala 

334 98/6 3e-9  
HQ880943.1 
Beauveria sp. 

2163 98/99 0.0 

 
 

GU109336.1  
Beauveria bassiana 

569 99/79 0.0  
EU604139.1 

Isaria tenuipes 
332 98/6 3e-9  

HQ880940.1 
Beauveria sp. 

2163 98/99 0.0 

A49GC09 571 
AY373874.1  

Aspergillus ustus 
594 97/97 0.0  N.A.    586 

No significant similarity 
found 

   

 
 

FN397275.1  
Uncultured fungus. 

608 97/97 0.0           

 
 

FJ878628.1  
Aspergillus insuetus 

594 97/97 0.0           

A65GC09 535 
AB474749.2 
Acremonium 
cellulolyticus 

637 99/99 0.0 666 
JF910279.1 

Penicillium pinophilum 
433 99/65 0.0 749 

EU021620.1 
Talaromyces flavus 

1138 92/89 0.0 

 
 

JN624915.1 
Penicillium pinophilum 

538 99/99 0.0  
AY525431.1 

Talaromyces flavus var. 
flavus 

489 95/71 0.0  
FJ004498.1 

Penicillium verruculosum 
808 91/92 0.0 

 
 

JQ776546.1 
Penicillium pinophilum 

789 99/99 0.0  
AY525426.1 

Talaromyces flavus var. 
flavus 

484 95/71 0.0  
XM_002153105.1 

Penicillium marneffei 
4153 91/89 0.0 

A69GC09 585 
FN868462.1 
Alternaria sp. 

611 99/97 0.0 514 
JQ672054.1 

Alternaria calendulae 
347 93/66 1e-140 724 

DQ677938.1 
Lewia eureka 

1509 99/100 0.0 

 
 

FR799468.1 
Alternaria sp. 

532 99/91 0.0  
JQ671958.1 

Crivellia papaveracea 
347 93/66 1e-140  

JF331615.1 
Alternaria vanuatuensis 

733 93/95 0.0 

 
 

AF212307.1 
Embellisia sp. 

571 97/97 0.0  
JQ672055.1 

Alternaria ricini 
347 93/66 6e-139  

JF331614.1 
Alternaria vanuatuensis 

733 93/95 0.0 

A108GF09 524 
JF776163.1 

Fusarium oxysporum 
545 98/99 0.0 511 

EF101456.1 
Cladosporium velox  

552 94/83 0.0 750 
GU371782.1 

Mycosphaerella zeae-maydis 
1153 82/96 7e-175 

 
 

JF429684.1 
Fusarium sp. 

543 98/99 0.0  
JN712647.1 

Coniothyrium nitidae  
536 90/95 7e-178  

EU874849.1 
Phoma koolunga 

994 82/99 4e-172 
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EF495230.1 
Fusarium oxysporum 

547 99/79 0.0  
FJ427107.1 

Epicoccum nigrum  
343 99/67 1e-176  

EU874850.1 
Didymella exigua 

995 81/99 5e-171 

A181GC09 519 
JN660485.1 

Uncultured organism. 
553 99/93 0.0 566 

EF101455.1 
Cladosporium oxysporum 

489 94/86 0.0 762 
DQ677971.1 

Davidiella tassiana 
904 83/94 2e-179 

 
 

JN660484.1 
Uncultured organism. 

553 99/93 0.0  
EF101454.1 

Cladosporium oxysporum  
478 93/84 0.0  

DQ677945.1 
Cladosporium sp.  

1505 88/41 1e-98 

 
 

KC33977.1.1 
Cladosporium sp. 

547 99/93 0.0  
JQ217373.1 

Cladosporium sp. 
380 93/66 1e-156  

AF107799.1 
Aureobasidium pullulans 

2808 74/84 8e-60 

AC1_8GC10 540 
EU330619.1 

Penicillium sp. 
577 99/99 0.0 600 

JQ973898.1 
Penicillium sp.  

459 98/74 0.0 750 
JX965298.1 

Talaromyces amestolkiae 
1038 99/89 0.0 

 
 

JQ912017.1 
Penicillium sp. 

604 99/99 0.0  
JQ973897.1 

Penicillium sp.  
459 98/74 0.0  

JX965292.1 
Talaromyces amestolkiae 

1038 99/89 0.0 

 
 

JQ912016.1 
Penicillium sp. 

604 99/99 0.0  
FM991734.1 
Penicillium sp.  

506 95/84 0.0  
JX965291.1 

Talaromyces amestolkiae 
1038 99/89 0.0 

AC9_2GC10 569 
AJ280010.1 

Aspergillus sp.  
604 99/95 0.0 783 

FR775312.1 
Aspergillus brasiliensis 

1996 97/91 0.0 758 
EU021641.1 

Aspergillus brasiliensis 
1014 93/82 0.0 

 
 

JQ316521.1 
Aspergillus brasiliensis 

599 99/94 0.0  
AM270161.1 

Aspergillus niger 
348198 93/97 0.0  

EF661064.1 
Aspergillus brasiliensis 

1014 93/82 0.0 

 
 

Kc119204.1 
Aspergillus niger 

1279 99/96 0.0  
FR775313.1 

Arpergillus tubingensis 
790 93/88 0.0  

EF661063.1 
Aspergillus brasiliensis 

1014 93/82 0.0 

AC95GF09 673 
KC139506.1 
Arthrinium sp. 

604 99/73 0.0 657 
AB220314.1 

Arthrinium 
phaeospermum 

1633 99/100 0.0 779 
DQ368650.1 

Apiospora setosa 
1062 91/88 0.0 

 
 

GU055649.1 
Uncultured Arthrinium 

1193 98/73 0.0  
AB220297.1 

Arthrinium serenense 
1633 99/100 0.0  

DQ810234.1 
Apiospora setosa 

1034 91/88 0.0 

 
 

AJ279456.1 
Arthrinium phaeospermum 

640 98/73 0.0  
AB220287.1 

Arthrinium serenense 
1633 99/100 0.0  

DQ368656.1 
Seiridium eucalypti 

1067 77/88 6e-106 

AC112GF10 547 
FR670336.1 

Penicillium spinulosum 
576 99/98 0.0 619 

AB566106.1 
Penicillium adametzii  

473 91/76 3e-178 761 
JN406535.1 

Penicillium crocicola 
912 92/84 0.0 

 
 

DQ132828.1 
Penicillium spinulosum 

565 99/98 0.0  
EU128574.1 

Penicillium glabrum 
469 91/76 3e-177  

JN406621.1 
Penicillium subericola 

912 89/84 0.0 

 
 

DQ132826.1 
Penicillium thomii 

566 99/98 0.0  
FJ491776.1 

Penicillium glabrum 
479 91/74 9e-173  

JN406593.1 
Penicillium patens 

912 88/85 0.0 

http://www.ncbi.nlm.nih.gov/nucleotide/354720382?report=genbank&log$=nucltop&blast_rank=3&RID=B78HPWK0014
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AC173GF10 651 
DQ118998.1 

Amylomyces rouxii 
638 97/98 0.0  N. A.    657 

JN993501.1 
Mucor circinelloides f. 

lusitanicus 
2796 85/95 0.0 

 
 

DQ118987.1 
Mucor circinelloides 

639 97/98 0.0       
EF014398.1 

Mucor hiemalis 
2652 83/91 1e-146 

 
 

JN561250.1 
Mucor circinelloides 

641 97/98 0.0       
HM488820.1 

Lepiota roseolivida 
689 92/12 2e-21 

AC187GF10 549 
JX241671.1 

Trichothecium roseum 
590 100/82 0.0 614 

EF432762.1 
Passalora fulva 

1676 98/99 0.0 811 
DQ676599.1 

Trichothecium roseum 
654 100/80 0.0 

 
 

JX217818.1 
Trichothecium roseum 

589 100/82 0.0  
JQ434527.1 

Trichothecium roseum 
357 100/57 0.0  

DQ676586.1 
Trichothecium roseum 

654 100/80 0.0 

 
 

JQ434580.1 
Trichothecium roseum 

639 100/82 0.0  
JQ434526.1 

Trichothecium roseum 
357 100/57 0.0  

DQ676583.1 
Stachybotrys kampalensisi 

640 78/32 2e-36 

AL5GC09 653 
DQ118990.1 

Mucor circinelloides 
638 99/98 0.0  N. A.    673 

JN993501.1 
Mucor circinelloides f. 

lusitanicus 
2796 88/99 0.0 

 
 

AM745433.1 
Mucor circinelloides  

643 99/98 0.0       
EF014398.1 

Mucor hiemalis 
2652 86/98 0.0 

 
 

DQ118989.1 
Mucor circinelloides  

638 99/98 0.0       
DQ302787.1 

Umbelopsis ramanniana 
2317 76/94 2e-89 

AL8_4GC10 569 
GU973744.1 
Penicillium sp. 

564 97/96 0.0 642 
JF910277.1  

Penicillium minioluteum 
433 92/68 3e-168  N.A.    

 
 

GU973797.1 
Penicillium sp.  

558 96/96 0.0  
EU597716.1 

Penicillium pinophilum 
359 91/56 2e-134      

 
 

GU566240.1 
Penicillium minioluteum 

634 94/99 0.0  
AY753371.1 
Talaromyces 

trachyspermus 
479 84/72 1e-116      

AL11GC09 580 
JX241658.1 

Mucor circinelloides  
615 100/98 0.0  N. A.     695 

JN993501.1 
Mucor circinelloides f. 

lusitanicus 
2796 87/93 0.0 

 
 

JQ683248.1 
Mucor circinelloides f. 

circinelloides 
634 100/98 0.0       

EF014398.1 
Mucor hiemalis 

2652 85/94 0.0 

 
 

JQ085484.1 
Mucor circinelloides f. 

circinelloides 
634 100/98 0.0       

JN993687.1 
Leucoagaricus orientiflavus 

722 76/30 3e-19 
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AL23GC09 576 
JN660464.1 

Uncultured organism 
572 100/98 0.0  N.A.    785 

JQ811955.1 
Alternaria tenuissima 

733 99/93 0.0 

 
 

JN660443.1 
Uncultured organism  

569 100/98 0.0       
DQ677980.1 

Alternaria alternata 
1822 98/94 0.0 

 
 

KC206496.1 
Uncultured Alternaria 

620 100/98 0.0       
JQ811961.1 

Alternaria tenuissima 
733 98/93 0.0 

AL31GF10 505 
EU040213.1 

Valsaria ceratoniae  
1923 99/90 0.0 673 

JX241677.1 
Gibberella intermedia 

850 89/25 5e-51 873 
GU456353.1 

Valsaria insitiva 
923 87/62 8e-175 

 
 

JQ694114.1 
Valsaria insitiva  

604 99/88 0.0  
JQ412112.1 

Gibberella intermedia 
1294 89/25 5e-51  

FN868688.1 
Hypomyces odoratus 

1609 95/9 1e-24 

 
 

AB454268.1 
Guignardia bidwellii 

1211 85/77 2e-98  
AB725614.1 

Gibberella intermedia 
870 89/25 5e-51  

FN868689.1 
Hypomyces odoratus 

1609 95/9 1e-24 

AL49GF10 557 
AF310978.1 

Fusarium lateritium  
1456 97/97 0.0 666 

FJ427160.1 
Phoma pimprina 

343 84/19 2e-25 834 
HQ728166.1 

Fusarium heterosporum 
939 92/79 0.0 

 
 

AF310979.1 
Fusarium lateritium  

1456 97/97 0.0  
EU541422.1 

Phoma exigua var. exigua 
308 75/41 2e-25  

JX171594.1 
Fusarium heterosporum 

1862 92/77 0.0 

 
 

EU520062.1 
Fusarium oxysporum 

562 95/97 0.0  
EU541423.1 

Phoma exígua var. linicola 
307 75/41 7e-25  

JX171593.1 
Fusarium heterosporum 

1862 92/77 0.0 

AL83GC 586 
JN660559.1 

Uncultured organism 
568 99/98 0.0  N.A.    762 

JQ811956.1 
Alternaria tenuissima 

733 100/94 0.0 

 
 

JN660550.1 
Uncultured organism 

583 99/98 0.0       
JQ811954.1 

Alternaria tenuissima 
733 100/94 0.0 

 
 

JN660460.1 
Uncultured organism 

586 99/98 0.0       
JQ811953.1 

Alternaria alternata 
733 100/94 0.0 

AL83GF10 514 
GU395509.1 

Cladosporium sp.  
525 99/92 0.0  N.A.     N.A.    

 
 

KC007185.1 
Cladosporium sp 

1055 99/92 0.0           

 
 

AB746922.1 
Cladosporium sp 

1063 99/92 0.0           

AL97GF 530 
KC145172.1 
Alternaria sp.  

569 99/85 0.0  N.A.    637 
JQ811964.1 

Alternaria arborescens 
733 99/95 0.0 
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JX159646.1 
Uncultured Alternaria clone 

607 99/85 0.0       
JQ811963.1 

Alternaria arborescens 
733 99/95 0.0 

 
 

JX159633.1 
Uncultured Alternaria clone 

607 99/85 0.0       
JQ811962.1 

Alternaria arborescens 
733 99/95 0.0 

LC9_4GA10 587 
AB083034.1 

Lecanicillium psalliotae 
2295 99/98 0.0  N.A.     N.A.    

 
 

AB160994.1 
Lecanicillium psalliotae 

2299 98/98 0.0           

 
 

AF455489.1 
Aphanocladium aranearum 

612 98/97 0.0           

LC10_10GC10 537 
KC339770.1 

Cladosporium sp. 
545 99/99 0.0 793 

FR775312.1 
Aspergillus brasiliensis 

1996 97/89 0.0 768 
EU021641.1 

Aspergillus brasiliensis 
1014 97/85 0.0 

 
 

FR799495.1 
Cladosporium sp 

557 99/99 0.0  
AM270165.1 

Aspergillus niger 
348198 93/89 0.0  

EF661064.1 
Aspergillus brasiliensis 

1014 97/85 0.0 

 
 

HE977532.1 
Uncultured Cladosporium 

574 99/99 0.0  
FR775313.1 

Aspergillus tubingensis 
790 93/86 0.0  

EF661063.1 
Aspergillus brasiliensis 

1014 97/85 0.0 

LC25GA09 514 
JX914477.11 
Fusarium sp. 

572 99/95 0.0 574 
GQ915447.1 
Fusarium sp. 

1308 99/99 0.0 830 
GQ915491.1 

Fusarium equiseti 
2028 98/97 0.0 

 
 

JX867235.1 
Fusarium 

chlamydosporum 
513 99/95 0.0  

JX241676.1 
Fusarium equiseti 

850 98/98 0.0  
GQ915497.1 
Fusarium sp. 

2028 98/97 0.0 

 
 

JN400714.1 
Fusarium oxysporum 

546 99/95 0.0  
GQ915444.1 

Fusarium incarnatum 
1309 98/98 0.0  

GU250674.1 
Fusarium sp. 

882 100/89 0.0 

LC25GC 516 
KC415806.1 

Alternaria arborescens 
518 99/95 0.0 500 

JQ811950.1 
Alternaria arborescens 

544 100/93 0.0 775 
JQ811964.1 

Alternaria arborescens 
733 100/93 0.0 

 
 

JX857165.1 
Alternaria brassicae 

571 99/95 0.0  
JQ811948.1 

Alternaria arborescens 
544 100/93 0.0  

JQ811963.1 
Alternaria arborescens 

733 100/93 0.0 

 
 

JX564139.1 
Uncultured Alternaria  

571 99/95 0.0  
JQ811946.1 

Alternaria tenuissima 
544 99/93 0.0  

JQ811962.1 
Alternaria arborescens 

733 99/93 0.0 

LC53GC 576 
JN660559.1 

Uncultured organism 
586 100/99 0.0  N.A.    775 

JQ811956.1 
Alternaria tenuissima 

733 99/93 0.0 

 
 

JN660550.1 
Uncultured organism  

583 100/99 0.0       
JQ811954.1 

Alternaria tenuissima 
733 99/93 0.0 
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JN660460.1 
Uncultured organism 

586 100/99 0.0       
JQ811953.1 

Alternaria alternata 
733 99/93 0.0 

LC58GF 542 
JX511973.1 

Gibberella moniliformis  
524 98/88 0.0 553 

AF160317.1 
Fusarium sp. 

569 100/95 0.0 814 
JX171599.1 

Fusarium subglutinans 
1862 99/90 0.0 

 
 

JF499676.1 
Gibberella moniliformis  

548 98/88 0.0  
U34417.1 

Fusarium subglutinans 
537 99/95 0.0  

HM347216.1 
Fusarium subglutinans 

1839 99/90 0.0 

 
 

GU982311.1 
Gibberella moniliformis 

550 98/88 0.0  
GU737302.1 
Fusarium sp. 

530 99/95 0.0  
JX171618.1 

Fusarium quttiforme 
1862 97/90 0.0 

LC61GF 748 
FM177683.1 

Uncultured compost fungus 
1071 97/99 0.0 505 

AM419086.1 
Cylindrocarpon 
destructans var. 

destructans 

550 99/97 0.0 793 
GU170588.1 
Fusarium sp. 

938 99/94 0.0 

 
 

HQ285687.1 
Lichtheimia ramosa  

859 97/99 0.0  
JX241678.1 

Fusarium solani  
949 96/99 0.0  

GU170591.1 
Fusarium sp.  

938 99/94 0.0 

 
 

FJ174686.1 
Mycocladus corymbiferus  

855 97/99 0.0  
GQ121902.1 

Fusarium solani  
481 98/94 0.0  

GU170589.1 
Fusarium sp.  

929 99/93 0.0 

LC83GC 537 
KC254057.1 

Lewia infectoria 
599 98/98 0.0  N.A.    768 

DQ677938.1 
Lewia infectoria 

1509 91/97 0.0 

 
 

JF449874.1 
Uncultured Lewia 

1155 98/98 0.0       
DQ677980.1 

Alternaria alternata 
1822 89/97 0.0 

 
 

GQ999401.1 
Uncultured fungus  

620 98/98 0.0       
JF331616.1 

Alternaria ascaloniae 
733 91/88 0.0 

PA19GF 649 
JQ316442.1 

Fungal endophyte  
912 93/100 0.0 540 

No significant similarity 
found. 

   814 
JX885464.1 

Fusarium oxysporum 
1152 99/95 0.0 

 
 

JQ316438.1 
Fungal endophyte  

877 94/100 0.0       
DQ790583.1 

Fusarium oxysporum 
1920 99/93 0.0 

 
 

JQ316434.1 
Fungal endophyte  

870 94/99 0.0       
DQ790581.1 

Fusarium oxysporum 
1920 99/93 0.0 

PA167GF 549 
JX421718.1 

Penicillium glabrum  
560 99/99 0.0 634 

AB566106.1 
Penicillium adametzii 

473 94/72 0.0 754 
FJ004468.1 

Penicillium glabrum 
808 98/98 0.0 

 
 

JX421729.1 
Penicillium glabrum  

564 99/99 0.0  
EU128561.1 

Penicillium glabrum  
449 94/70 0.0  

FJ004469.1 
Penicillium glabrum 

808 98/98 0.0 

 
 

JX421727.1 
Penicillium glabrum  

576 99/99 0.0  
EU128585.1 

Penicillium glabrum 
461 93/72 0.0  

EF198601.1 
Penicillium glabrum 

1011 99/87 0.0 
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PNM4GF 523 
KC139510.1 
Alternaria sp.  

568 99/99 0.0 534 
JQ811947.1 

Alternaria tenuissima 
544 93/66 6e-144 778 

JQ811955.1 
Alternaria tenuissima 

733 99/93 0.0 

 
 

KC139505.1 
Alternaria sp.  

557 99/99 0.0  
JQ811941.1 

Alternaria tenuissima 
544 93/66 6e-144  

DQ677980.1 
Alternaria alternata 

1822 99/95 0.0 

 
 

KC139494.1 
Alternaria sp.  

560 99/99 0.0  
JQ811950.1 

Alternaria arborescens 
544 93/66 3e-144  

JQ811961.1 
Alternaria tenuissima 

733 99/93 0.0 

PNM19GF 546 
JQ346879.1 

Uncultured Alternaria  
940 100/97 0.0 495 

JQ811947.1 
Alternaria tenuissima 

544 100/97 0.0 762 
JQ811956.1 

Alternaria tenuissima 
733 100/94 0.0 

 
 

KC145172.1 
Alternaria sp.  

569 99/90 0.0  
JQ811941.1 

Alternaria tenuissima 
544 100/97 0.0  

JQ811945.1 
Alternaria tenuíssima 

733 100/94 0.0 

 
 

JX159646.1 
Uncultured Alternaria  

607 100/97 0.0  
JQ811946.1 

Alternaria tenuissima 
544 99/97 0.0  

JQ811953.1 
Alternaria alternata 

733 100/94 0.0 

PNM31GC 523 
GU934566.1 

Stemphylium globuliferum 
580 95/92 

 
0.0 

 N.A.    723 
AF107804.1 

Pleospora herbarum 
2826 95/100 0.0 

 
 

EU859960.1 
Stemphylium globuliferum 

506 95/92 0.0       
DQ247794.1 

Pleospoara herbarum 
1574 94/100 0.0 

 
 

EF104157.1 
Stemphylium solani 

522 95/91 0.0       
DQ470924.1 

Dendryphiella arenaria 
1796 94/100 0.0 

PNM37GF 528 
GU566233.1 

Ascomycota sp. 
607 99/99 0.0 591 

AB539436.1 
Corynespora smithii 

953 80/76 1e-81 612 
No significant similarity 

found 
   

 
 

GQ153104.1 
Dothideomycetes sp.  

1098 99/86 0.0  
AB539201.1 

Corynespora cassiicola 
954 79/76 2e-79      

 
 

GQ153158.1 
Dothideomycetes sp  

512 99/96 0.0  
AB539171.1 

Corynespora cassiicola 
954 79/76 2e-79      

PNM47GF 510 
KC415806.1 

Alternaria arborescens 
518 100/92 0.0 516 

JQ811950.1 
Alternaria arborescens 

544 99/97 0.0 752 
JQ811964.1 

Alternaria arborescens 
733 100/95 0.0 

 
 

JX857165.11 
Alternaria brassicae 

571 100/92 0.0  
JQ811948.1 

Alternaria arborescens 
544 99/97 0.0  

JQ811963.1 
Alternaria arborescens 

733 100/95 0.0 

 
 

JX564139.1 
Uncultured Alternaria 

571 100/92 0.0  
JQ811946.1 

Alternaria tenuissima 
544 99/97 0.0  

JQ811962.1 
Alternaria arborescens 

733 99/95 0.0 

PNM53GF 522 
JQ565884.1 

Ulocladium chartarum 
531 99/92 0.0  N.A.     N.A.    
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JQ585683.1 
Ulocladium chartarum 

531 99/92 0.0           

 
 

HQ829119.1 
Ulocladium sp. 

573 99/92 0.0           

PNM75GF10 500 
JN660485.1 

Uncultured organism 
553 99/97 0.0  N.A.     N.A.    

 
 

JN660484.1 
Uncultured organism 

553 99/97 0.0           

 
 

KC339771.1 
Cladosporium sp.  

547 99/97 0.0           
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ABSTRACT 

Four native strains of Beauveria bassiana isolated from Lepidoptera were tested against the 

chestnut tortrix, Cydia splendana (Hübner) under laboratorial conditions. Conidial suspensions of 

B. bassiana isolates were applied to C. splendana larvae, at six different concentrations (from 105 

to 108 conidia/mL). All isolates showed high pathogenicity against C. splendana, with mortality 

ranging from 40 to 100%. Concentration and time-dependent mortalities were also observed in all 

assays. A marked variation of virulence between the tested isolates was observed. Among the 

isolates tested, three gave rise to an earlier onset of disease (< 5 days) and mortality (over 70%) 

when applied at low concentrations (LC50 ranging from < 105 to 1.43 x 105). Results showed that 

C. splendana is susceptible to this entomopathogenic fungus, which open up the possibility of its 

use as biocontrol agent of this pest.    

 

Keywords: Beauveria bassiana, Cydia splendana, Biological control, Bioassay, Virulence 
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INTRODUCTION 

Chestnut fruit (Castanea sativa Mill.) is one of the oldest edible fruits cultivated in Portugal 

(Ferreira-Cardoso et al., 1999). This crop is affected by several pests, being the most important 

the chestnut tortrix, Cydia splendana Hübner (Lepidoprera: Torticidae) (Bento et al., 2007). The 

damages caused by this lepidopteran are the consumption of the fruit, creating small tunnels, 

leaving behind excrements. Cydia splendana it able to cause several economic losses, as infested 

fruits lose all commercial value, and infestation can reach as much as 80% of potential 

production (Bento et al., 2007). Control of this pest is not easy neither effective, and involves 

cultural and biotechnical measures, in alternative to the only chemical product approved in 

Portugal, for such purpose (Aguin-Pombo et al., 2009). All of these control measures presenting 

important drawbacks, leading to the need of an alternative, feasible and effective method to 

reduce this pest. One of the alternatives that should arise is the use of entomopathogenic fungi. 

 Although no data is available about the presence of this kind of fungi associated to C. 

splendana, previous works indicate that insects of the same family (Tortricidae) are susceptible to 

fungal entomopathogens (Anhalt et al., 2010; Goble et al., 2010; Goble et al., 2011; Ihara et al., 

2009). One the most studied entomopathogenic fungal species is Beauveria bassiana (Bals.-

Criv.) Vuill.. This entomopathogen has been isolated from several insect species, tested as 

biocontrol agent of numerous pests and commercially exploited as microbial pesticide (Shah and 

Pell, 2003; Faria and Wright, 2007; Zimmermann, 2007). Beauveria bassiana has been already 

described has caused of disease in a large number of lepidopteran species (Alves et al., 2002; 

Inclán et al., 2008; Maniania et al., 2011; Tefera and Pringle, 2003; Safavi et al., 2010; 

Vänninen and Hokkanen, 1997; Wraight et al., 2010). 

 Hence, the aims of this work were: i) to access the ability of B. bassiana to act as a 

pathogen of C. splendana and ii) to compare the pathogenicity of four native B. bassiana isolates 

obtained from naturally infected Prays oleae Bern. (Lepidoptera, Plutellidae) against C. 

splendana. 
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METHODS 

Insects 

Cydia splendana larvae were hand-picked from a local chestnut processing factory. All larvae 

were collected at the fourth larval stage. Larvae were placed in sterile plastic bags, immediately 

taken to the laboratory, and used in the bioassays within a few hours.  

 

Fungal isolates and preparation of conidial suspension 

Four isolates of B. bassiana (A67GF09; A39GF09; PA95GF10 and LC39GF10) were retrieved 

from the culture collection of the School of Agriculture of the Polytechnic Institute of Bragança. 

These isolates were obtained in a previous work (Oliveira et al., 2012), from infected larvae and 

pupae of Prays oleae Bern, and were identified by amplification and sequencing of the Internal 

Transcribed Spacer (ITS) region. These isolates were maintained in an aqueous glycerol solution 

(30%, v/v) at -80ºC. 

An aliquot of spore suspension was taken from the culture collection, placed in Potato Dextrose 

Agar (PDA) medium, and incubated in the dark at 25ºC for 10-15 days for spore production. 

Fungal conidia were then collected by scrapping the surface of 10-15 days-old cultures with a 

sterile scalpel blade and suspended in 10 mL of 0.02% (v/v) Tween 80 sterile solution. The 

number of conidia per mL was counted in a Thoma counting chamber, followed by serial dilution 

in sterile aqueous Tween 80 (0.02%, v/v) and further used as inoculum in the bioassays. 

 

Bioassay procedure 

Cydia splendana larvae were randomly assigned to one of the different assays. The treatments 

consisted on six conidia concentrations (1 x 105; 1 x 106; 5 x 106; 1 x 107; 5 x 107; 1 x 108 

conidia/mL), and control was performed with sterile 0.02% (v/v) Tween 80 solution. A sterile 

filter paper (Whatman nº 4) was placed in round plastic containers (8 cm of diameter and 5 cm 

of height), and one mL of conidia suspension was evenly placed over the paper, by carefully 

pipetting using sterile micropipette tips. Ten larvae were placed on top of the filter paper, and the 

plastic containers were placed in a room at 24±2 ºC, 55-65% relative humidity and photoperiod 

16:8 (light:dark). Each treatment consisted in five replicates, with a total of 50 larvae per conidial 

concentration. Mortality of the larvae was monitored daily, for 25 days, and dead larvae were 

collected and further used to indicate fungus-induced mortality. For this, dead larvae were 

surface sterilized by sequential immersion in 70% (v/v) aqueous ethanol for 1 min, 3-5% (v/v) 
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sodium hypochlorite for 3 min, re-immersed in 70% (v/v) aqueous ethanol for 1 min, followed by 

three consecutive washes of 1 min in sterile distillate water. After removing the excess of water 

with a sterile filter paper, the larvae‟s was transferred to Petri dishes (9 cm diameter) containing 

PDA medium and incubated in the dark at 25ºC to facilitate fungal development. Fungal infection 

was further confirmed and the identity of the fungus was determined by morphological 

characteristics. 

 

Data analysis 

The cumulative mortality data was recorded every five days. In order to achieve the virulence of 

B. bassiana strains both LC50 and LT50 were calculated. The LC50 (expressed as conidia/mL) is the 

estimated concentration required to kill 50% of the test larvae whereas the LT50 is the estimated 

time to kill 50% of the larvae‟s, in days. The LC50 was calculated by probit analysis using SPSS 

(Statistical Package for Social Sciences) software, version 19.0 (IBM Corporation, New York, 

U.S.A.). To calculate LT50 values, probit mortality was regressed against the number of days after 

treatment. 
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RESULTS  

Results show that the tested isolates of B. bassiana are able to infect and kill larvae of C. 

splendana, at all tested conidia concentrations. Mortality of larvae in the control assays was 

recorded only after 25 days of exposure to sterile aqueous Tween 80 solution. A concentration-

dependent mortality of larvae was observed, although with variations between the tested isolates. 

In fact, one of the isolates (LC39GF10) proved high pathogenicity to C. splendana larvae even at 

the low concentrations tested (Fig. 1A). For this isolate, recorded mortality using the two low 

concentrations of conidia (1 x 105; 1 x 106 conidia/mL) stabilized after 15 days of exposure, at 

levels of 50% and 90% of dead larvae. At high conidial concentrations (5 x 106; 1 x 107; 5 x 107; 1 

x 108 conidia/mL) this isolate caused the mortality of 100% of the larvae, at five days post-

inoculation. For the isolate PA95GF10 (Fig. 1B), 100% of mortality was recorded when using the 

concentrations of 1 x 107, 5 x 107; 1 x 108 conidia/mL, after 10 days of exposure.  

 The other two isolates (A67GF09 and A39GF09) tested against C. splendana larvae 

showed a completely different behaviour. Stabilization of the recorded mortality of larvae didn´t 

occur (isolate A39GF09; Fig. 1D) or only took place at conidial concentrations higher than 5 x 

107conidia/mL (isolate A67GF09; Fig. 1C). Isolate A67GF09 provided 100% mortality of larvae, at 

the highest concentration tested (1 x 108 conidia/mL) after 10 days of exposure (Fig. 1C), while 

isolate A39GF10 achieved a mortality of 100%, in the two high concentration tested, only after 25 

days post-inoculation.  
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Figure 1 Cumulative mortality (%) of larvae of C. splendana (n = 50) in assays with strains of B. bassiana (A – LC39GF10; B – PA95GF10; C – A67GF09; D – A39GF09) at different 
concentrations (conidia/mL) 
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 The determination of LC50 values showed similarly considerable differences between B. 

bassiana isolates (Table 1). Low values were observed for isolate LC39GF10 (< 1 x 105 

conidia/mL, 5.76 x 104 as calculated by probit), followed by the isolates PA95GF10 (1.28 x 105 

conidia/mL) and A67GF09 (1.43 x 105 conidia/mL). Isolate A39GF09 presented the poorer 

results, with the high LC50 value (2.13 x 105), which is almost four times higher than the value 

recorded with LC39GF10 isolate.  

  

Table 1 Virulence of B. bassiana isolates to Cydia splendana larvae and LT50 values (days) of B. bassiana infecting 
the chestnut tortrix. Values between parentheses indicate minimum and maximum values, with 95% fiducial limits 
 

B. bassiana 

isolates 
LC50 (conidia/ml) 

LT50 

(105 conidia/mL) 

LT50 

(108 conidia/mL) 

A39GF09 2.13 x 105 (8.23 x 104 - 4.13 x 105) > 25  10.2 (9.2 – 11.2) 

A67GF09 1.43 x 105 (5.31 x 104 – 2.81 x 105) > 25 < 5 

LC39GF10 < 1 x 105 (1.67 x 104 – 1.21 x 105) 12.6 (8.4 – 17.9) < 5 

PA95GF10 1.28 x 105 (5.25 x 104 – 2.36 x 105) 20.5 (12.4 – 28.3) < 5 

 

 

 The median lethal time (LT50) values of the four B. bassiana isolates were also 

determined, for the low and high concentrations of conidia applied to C. splendana larvae (Table 

1). Results confirm the higher pathogenicity of LC39GF10 isolate in comparison to the other 

isolates. At the low concentration (1 x 105 conidia/mL), LC39GF10 showed a LT50 of 12.6 days. 

Highest LT50 was found for PA95GF10 isolate (20.5 days) and both isolates A67GF09 and 

A39GF09 didn‟t cause 50% of mortality of C. splendana larvae, during the duration of the assay 

(25 days). At the high concentration (1 x 108 conidia/ml), three of the B. bassiana isolates 

tested (A67GF09, PA95GF10 and LC39GF10) presented LT50 values lower than 5 days. Only the 

A39GF09 isolate presented LT50 higher than 5 days (10.2 days).  
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DISCUSSION 

Laboratory experiments were conducted to evaluate the infectivity of B. bassiana 

entomopathogenic fungi in larvae of C. splendana. All the isolates of B. bassiana tested were 

pathogenic to C. splendana larvae, although with variations between isolates. Although all isolates 

caused 100% of larvae cumulative mortality, LC39GF10 and PA95GF10 isolates at the highest 

concentration killed 100% at 5 days post-inoculation, whereas the others isolates cause a similar 

percentage of mortality after 10 (isolate A67GF09) and 25 (isolate A39GF09) days of inoculation.  

 These pathogenicity differences between entomopathogenic fungal isolates have already 

been reported for numerous insect hosts, including lepidopterans (Goble et al., 2011; Godonou 

et al., 2009; Safavi et al., 2010; Wraight et al., 2010). Furthermore, variations have already been 

described for members of Tortricidae family, which showed different susceptibility to B. bassiana 

(between 21% to 93% of mycoses on pupae of Thaumatotibia leucotreta) depending on the tested 

isolate (Goble et al., 2011), fact than emphasises the need of strain selection and host-

susceptibility tests. These variations may be due to different levels of enzyme production of the 

isolates of B. bassiana, has already been reported (Kaur and Padmaja, 2009; Dhar and Kaur, 

2010; Murad et al., 2009), as well as relationships between enzyme production and virulence 

(Bidochka and Khachatourians, 1990; Fang et al., 2005; Gupta et al., 1994; Kaur and Padmaja, 

2009; Montesinos-Matías et al., 2011). Other possible explanation for pathogenicity differences 

between B. bassiana isolates could be related with variability‟s in conidial size. Some studies 

have found positive correlation between infectivity of entomopathogenic fungi and the length of 

their conidia (Altre et al. 1999; Liu et al. 2003) or, by contrast, a negative correlation between 

conidia size and virulence (Samuels et al., 1989).  

 Even so, previous works regarding the virulence of B. bassiana against Tortricidae insects 

presented similar values of LC50 to the ones observed in the present work. Ihara et al. (2009) 

reported a value of LC50 of 3.5 x 105 conidia/mL for B. bassiana infecting Cydia kurokoi (Amsel) 

(Lepidoptera: Tortricidae), similar to the results observed for three of the tested isolates 

(A39GF09, A67GF09 and PA95GF10), with LC50 values, ranging from 1.28 to 2.13 x 105 

conidia/mL. However, one of the tested isolates (LC39GF10) presented a considerable lower 

value of LC50 (< 1 x 105 conidia/mL). Other works with lepidopterans showed the susceptibility of 

these insects to B. bassiana, also detecting differences on the virulence of entomopathogenic 

strains (Cherry et al., 2004; Devi et al., 2001; Er et al., 2007; Talaei-Hassanloui et al., 2006; 

Safavi et al., 2010). Even though previous reports on B. bassiana infection of lepidopterans are 
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available, comparison of results should always keep in mind that each insect species have 

different susceptibilities to fungal entomopathogens. In fact, susceptibility of insects, even of the 

same taxonomic group, to the same fungal strain is a known reality, as detected by Wraight et al. 

(2010), when evaluating the ability of B. bassiana to infect several lepitopterans. We also 

detected variation of the LT50 between isolates. Related to these variations, besides the 

pathogenicity of each isolates, can also be the speed of germination. This specific parameters, 

while not evaluated in the present work, has been correlated to virulence (Altre et al, 1999; Yeo 

et al., 2003), and leads to faster infection of the host (Varela and Morales, 1996), resulting in low 

LT50.  

 To date, no previous report of the presence of B. bassiana in chestnut orchards or 

associated to C. splendana are available, but the present work shows that this entomopathogenic 

species may be useful in the control of this pest. Although the isolates used in this work were not 

retrieved from infected C. splendana individuals, low values of LC50 and LT50 were observed. The 

fact that isolates retrieved from a given insect species tend to be more virulent to that species 

(Goettel, 1995), may indicate that lower LC50 and LT50 are to be expected.  
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Chapter 5 

Effect of soil tillage on natural occurrence of fungal entomopathogens associated to Prays oleae 
Bern. 
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ABSTRACT 

The olive tree is one of the most important crops in Portugal, where tillage is still a normal 

practice performed by the growers. This work intends to evaluate the effect of tillage practices on 

the diversity and abundance of entomopathogenic fungi associated to Prays oleae Bern. 

population in the olive grove ecosystem. In order to achieve this, three tilled and three non-tilled 

groves were sampled for P. oleae larvae and pupae, during two consecutive years. The fungi 

were isolated from diseased larvae and pupae and identified by rDNA sequencing. 120 isolates of 

fungi described as entomopathogenic were found, belonging to 8 different species. The most 

abundant species were Beauveria bassiana (60%), Cladosporium cladosporioides (18%) and 

Cladosporium oxysporum (14%). Olive groves under no-till system showed higher occurrence 

(2.7%), diversity (7 species) and abundance (65 isolates) of entomopathogenic fungi than tilled 

system (2.3%, 4 species and 55 isolates). Although these differences were found to be not 

significant, the results suggested that no-tilled olive groves with natural vegetation presented the 

most suitable conditions to increase the probability of P. oleae infection by entomopathogenic 

fungi. The highest number of exclusively species found in non-tilled groves (4 species) when 

compared to tilled ones (1 species) also reinforce this fact and indicated that vegetation cover 

may act as a reservoir for fungal species. 

 

Keywords: Olive tree, Prays oleae, Entomopathogenic fungi, Tillage, Diversity.  
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INTRODUCTION 

The natural biological control of insect pests is a safe phenomenon that can reduce the use of 

chemical insecticides. The entomopathogenic fungi (EF) are, among the natural enemies of 

insects‟ pests, considered as one of the most important groups in many cropping systems (Roy 

and Cottrell, 2008). The most common include Beauveria bassiana (Bals.) Vuill., B. brongniartii 

(Sacc.) Petch, Metarhizium anisopliae (Metschn.) Sorokin, Isaria farinosa Holms. Fr. and I. 

fumosorosea Wize (Zimmermann, 2008), all of which have a wide range of insect hosts (Toledo 

et al., 2008; Zimmermann, 2008). These fungi are especially common in the soils, where they 

often cause epizootics of disease in their hosts (Quesada-Moraga et al., 2007; Sun et al., 2008), 

and also occur as endophytes in a variety of host plants, including both agronomic and weedy 

species (Vega, 2008).  

 Consequences of agricultural practices on the occurrence and distribution of 

entomopathogenic fungi have been reported (Hummel et al., 2002; Quesada-Moraga et al., 

2007; Jabbour and Barbercheck, 2009). Some works regarding the effects of tillage practices on 

the entomopathogenic fungal community showed contradictory results. Conventional tillage has 

been shown to increase the abundance and diversity of entomopathogens in soils (Jabbour and 

Barbercheck, 2009). However, no-tillage practice was found to increase the number of colony 

forming units (CFU) of soil entomopathogens when compared to tilled soils (Sosa-Gómez et al., 

2001). Nevertheless, in other cases, no differences were observed (Sosa-Gómez et al., 2001; 

Jabbour and Barbercheck, 2009). Although these studies revealed an impact of tillage on soil 

fungal entomopathogens, they did not reflect the effect of this agriculture practice on the efficacy 

of entomopathogenic fungi under natural biotic and abiotic conditions. Only Bing and Lewis 

(1993) have reported that the number of infections caused by B. bassiana on Ostrinia nubilalis 

was the same between no-tilled and plow-tilled soils, but was twice in both soil managements 

that in chisel-plow soils.  

 In a given ecosystem, fungal entomopathogens establish a complex range of interactions 

with insects, plants and other microorganisms, which have important implications on the 

dissemination of entomopathogenic fungi, and their efficacy as a biocontrol agent (Baverstock et 

al., 2009; Meyling and Hajek, 2010). These interactions, as referred by Baverstock et al. (2010), 

are often overlooked on the large majority of laboratory bioassays that exclude biotic and abiotic 

conditions present in the natural habitat. Thus, in a biological control perspective, the 

assessment of the direct effect of tillage on the mortality of pests caused by entomopathogenic 
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fungi under natural habitats will provide a better understanding of this agricultural practice on the 

natural occurrence, infectivity and population dynamics of entomopathogenic fungi. This 

knowledge will also be very useful in improving the efficacy of these fungi as biological control 

agents, as well as in implementing conservation biological strategies. 

 The olive tree is one of the most important crops in the north-eastern Portuguese region 

of Trás-os-Montes (Pereira et al., 2004). Tillage is a traditional agricultural practice performed by 

a large number of the olive growers of this region. In this context, this work intends to evaluate 

the effect of tillage practices on the entomopathogenic fungal community present in the insect 

population of Prays oleae Bern. in the olive agroecosystem, during two consecutive years. This 

lepidopteran is a major pest of the olive trees in the region, able to cause up to 80% of losses of 

the potential production (Bento et al., 2001), and the natural occurrence of entomopathogenic 

fungi associated to this pest has been recently observed (Oliveira et al., 2012). 
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METHODS 

Site description 

This study was conducted in six olive groves 15 to 60 years old, located in Mirandela - Bragança 

region (41º28‟51.85‟‟N; 7º10‟43.01‟‟W). All the groves areas ranged from 0.4 to 1.5 ha and 

they present similar ecological conditions (exposition, slope and type of vegetation). Olive trees 

were of medium size with a planting density of 7x7 m, mainly comprising three different cultivars: 

Cobrançosa, Verdeal Transmontana and Madural. Pruning was made every two-three years and 

no irrigation was done. The olive groves were managed through the integrated production 

guidelines (Malavolta and Perdikis, 2012). Only copper based products were used in the 

beginning of autumn for fungal diseases control and no other pesticides were used in the last five 

years. Three olive groves are in a system using conventional tillage (using a disk plow) and the 

remaining three are no-tilled. Tillage was performed three times per year, the first at the end of 

March, the second three months later and the third at the end of September. The no-tilled olive 

groves have been kept under no-till management for, at least, three years. In these groves the 

vegetation was mainly dominated by Andryala integrifolia L., Crepis vesicaria L., Anthemis 

arvensis L., Coleostephus myconis (L.) Rchb.f. grasses. These weeds were cut using a chipper, 

usually in the beginning of summer, being the plant residues left in the grove.  

The prevailing climate of this region is Mediterranean, with cold and rainy winters and long, hot 

and dry summers. The average annual rainfall varies from 600 to 800 mm, occurring mainly 

from October to February. The annual rainfall in the years of study was 800 mm in 2009, and 

1400 mm in 2010. The annual mean temperature ranged from 9 to 20ºC. Climatic data was 

retrieved using a field meteorological station. The predominant soils are dystric regosols 

(European Soil Bureau Network European Commission, 2005). These soils are characterized for 

being weakly developed, deep, well-drained, medium textured mineral soils, with limited horizons 

formed, with the exception of an ochric horizon (FAO, 2001).  

 

Plant sampling 

Fifteen olive trees were randomly chosen in each grove for collection of leaves, flower clusters 

and fruits to assess the presence of olive moth (Prays oleae) larvae and pupae. This moth 

develops three generations per year, attacking successively the leaves (phyllophagous), flower 

clusters (antophagous) and the fruits (carpophagous). The plant material collections were 

conducted in two consecutive years, 2009 and 2010, being the sampling dates dependent on 
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the life stages of the pest, which were monitored by regular field observations. Therefore, in 2009 

the samplings were performed in March, May and September; and, in 2010 the samplings 

occurred in April, June and September according to the insect generations (phyllophagous, 

antophagous and carpophagous). After collection, the plant material was individually placed into 

sterile bags, and processed within a few hours after sampling. 

 

Fungal isolation 

The plant material was thoroughly examined for the presence of olive moth larvae and pupae. 

Whenever present, the larvae and pupae were placed individually in sterile glass tubes (25 mL) 

containing specific food sources. For larvae and pupae collected in March and April, leaves were 

placed in the tubes. Flower clusters served as food for larvae sampled in May and June, and olive 

stones were placed as food for larvae collected in September. Tubes were sealed with parafilm 

and kept under controlled temperature (25  2ºC), with a 16-8 hours light-dark regime, during an 

average of 10 days. Larvae and pupae were daily observed until the development of mycosis. The 

fungal agent growing on the surface of dead larvae or pupae was isolated in Potato Dextrose Agar 

(PDA), supplemented with 0.01% (w/v) chloramphenicol (Oxoid Ltd, Basingstoke, Hampshire, 

UK). Sub-culturing the initial mycelium in PDA medium allowed the establishment of pure 

cultures. Preliminary identification of the isolates was conducted by analysis of hyphal and spore 

morphology. The obtained fungal strains are currently maintained in the culture collection of the 

School of Agriculture of the Polytechnic Institute of Bragança (Oliveira et al., 2012). 

 

Molecular identification of fungal isolates 

The obtained fungal isolates were identified by sequencing the internal transcribed spacer (ITS) 

region of the ribosomal DNA (rDNA). The DNA of each isolate was extracted from spores, which 

were obtained by incubating the fungus in PDA medium, at 25  2ºC in the dark, during an 

average of 15 days. Spores were collected with a sterile scalpel, placed in a sterile microtube and 

DNA was extracted as previously described (Oliveira et al., 2012). ITS region amplification was 

carried out using the universal ITS1 and ITS4 primers (White et al., 1990) in a PCR protocol 

formerly described (Oliveira et al., 2012). Amplified products were sequenced using the 

STABVida services (Oeiras, Portugal). The obtained DNA sequences were analysed with 

DNASTAR v.2.58 software, and fungal identification was performed using the NCBI database 
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(http://www.ncbi.nlm.nih.gov) and the BLAST algorithm. All identified species are previously 

described as possessing entomopathogenic features.  

 

Data Analysis 

The fungal species richness, Simpson (D) and Shannon-Wiener (H) diversity indexes, total 

abundance (N) and relative abundance of each identified fungal species were estimated. 

Calculations of Simpson and Shannon-Wiener diversity indexes were done using the software 

Species Diversity and Richness (v. 3.0). Total abundance was estimated as the number of 

isolates per fungal species; and the relative abundance is the proportion of isolates from each 

fungal species in relation to the total number of fungal isolates. The frequency of occurrence (FO) 

is given as the proportion of the number of isolates to the total number of sampled larvae and 

pupae, for each soil management. Similarity index (SI, %) between treatments (tillage vs. non-

tillage) were calculated as described by Sørensen (1948) using the formula: SI = 2C/(A+B), 

where A is the total number of species in sample A, B is the total species number in sample B 

and C is the total number of species common to both samples (A and B). The effect of soil 

management (tillage and no-tillage) on entomopathogenic fungi diversity and abundance were 

evaluated by ANOVA. Once significant effects with a potency value of one were established, 

significant differences among groups were assessed using the Tukey test at p0.05. 
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RESULTS 

Fungal species richness, abundance and occurrence 

During the course of this study, a total of 120 isolates, belonging to 8 fungal species, described 

as entomopathogenic, were recovered from larvae and pupae of P. oleae (Table 1). These 120 

isolates were retrieved from a total of 4793 larvae and pupae of P. oleae, correspond to a 

frequency of occurrence of 2.5%.  

 

Table 1 Total abundance (N) and frequency of occurrence (FO) of entomopathogenic fungal species collected 
during all the surveyed period and in each soil management systems, tillage and no-tillage.  
 

  

Soil management Total 

Tillage No tillage 
Abundance 

Relative 
abundance (%) 

FO (%) 
Species N FO (%) N FO (%) 

Beauveria bassiana 35 1.47 37 1.54 72 60 1.5 

Cladosporium cladosporioides 9 0.38 13 0.54 22 18 0.46 

Cladosporium oxysporum 10 0.42 7 0.29 17 14 0.35 

Cladosporium sp. 0 0 5 0.21 5 4 0.1 

Isaria farinosa 1 0.04 0 0 1 1 0.02 

Lecanicillium psalliotae 0 0 1 0.04 1 1 0.02 

Lecanicillium muscarium 0 0 1 0.04 1 1 0.02 

Paecilomyces formosus 0 0 1 0.04 1 1 0.02 

Total 55 2.3 65 2.7 120 100 2.5 

 

 

Over the two-year study, the fungal species that were most frequently found were Beauveria 

bassiana (72 isolates), Cladosporium cladosporioides (22 isolates) and C. oxysporum (17 

isolates), with relative abundances of 60%, 18% and 14%, respectively. These species were found 

in 1.50% (B. bassiana), 0.46% (C. cladosporioides) and 0.35% (C. oxysporum) of the total 

sampled larvae and pupae. Four fungal species (Isaria farinosa, Lecanicillium psalliotae, 

Lecanicillium muscarium, and Paecilomyces formosus) were only detected once, which 

corresponds to a frequency of occurrence of 0.02 for each species.  

Fungal species richness and abundance differed between years. The higher number of species 

(eight species) and fungal isolates (79 isolates) were found during 2010 whereas in 2009 only 

two species and 41 isolates were obtained. The occurrence of entomopathogenic fungi in the 

agroecosystem studied showed a bimodal pattern each year, with a peak in March - April (spring 

season) and another in September (autumn season) (Figure 1).  
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Figure 1 Number of species, abundance and frequency of occurrence of the entomopathogenic fungal species 
collected from tilled and non-tilled olive groves. Arrows indicate dates when tillage was performed.  
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The number of fungal isolates and species retrieved in March-April were higher than in 

September during the entire study period, but especially in 2010. The occurrence of the most 

abundant species also varied within and between years. The B. bassiana (Figure 2A) and C. 

cladosporioides (Figure 2B) were isolated from larvae and pupae collected in both spring and 

autumn seasons, being the highest number of isolates obtained in the first one. Note, however, 

that this last species was not always occurred in both spring and autumn of the same year. By 

contrast, the C. oxysporum (Figure 2C) was only occurred during the spring season and in a 

single year (2010). 
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Figure 2 Effect of soil management practices on the total abundance and frequency of occurrence (FO) of the entomopathogenic fungal species: Beauveria bassiana (A), Cladosporium 
cladosporioides (B) and C. oxysporum (C). Arrows indicate dates when tillage was performed. 
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Effect of soil tillage on fungal community 

Tillage practice was observed to be a factor that had slight influence on entomopathogenic fungal 

diversity and abundance. Although in the no tillage groves, the total number of entomopathogenic 

fungi species (7 species) and isolates (65) were higher than in tillage groves (4 species and 55 

isolates) (Table 1), the differences were not statistically significant (F1,5=6.25, P = 0.066; 

F1,5=0.116, P = 0.750, respectively for the number of species and abundance). This result was 

corroborated by the no significantly different Simpson and Shannon-Wiener diversity indexes 

found between tilled and no-tilled groves (Table 2). 

 

Table 2 Simpson (D) and Shannon-Wiener (H) diversity indexes of fungal species collected per soil management 
system. Results are presented as mean ± SD, with n=3. Different superscripts indicate significant differences, p < 
0.05.  
 

 Soil management 

Diversity index Tillage No tillage 

Simpson (D) 0.40 ± 0.04a 0.36 ± 0.15a 

Shannon-Wiener (H) 1.09 ± 0.13a 1.26 ± 0.35a 

 

 

The species that had occurred exclusively in no-tilled groves were Cladosporium sp., L. psalliotae, 

L. muscarium and P. formosus, whereas in tilled ones only one exclusive species was found (I. 

farinosa) (Table 1). The species with occurrence in both groves types were B. bassiana, C. 

cladosporioides and C. oxysporum. The presence of only 3 common fungal species between the 

different types of soil management was also confirmed by the low Sørensen similarity index 

(0.54). 

Although the frequency of occurrence of entomopathogenic fungi was slightly higher in no-tilled 

groves (2.7%) compared to tilled ones (2.3%) (Table 1), the differences was not statistically 

different (F1,5=0.083, P = 0.775). B. bassiana was the most frequent fungus in both differently 

managed groves with an occurrence of 1.47% (of 2388 larvae and pupae collected) and 1.54% 

(of 2405 larvae and pupae), in tilled and no-tilled groves, respectively. Cladosporium 

cladosporioides was the second most frequent fungus found in no tilled groves, whereas C. 

oxysporum was the second most detected in tilled ones.  

The frequency of occurrence, and the number of species and fungal isolates obtained during the 

surveyed period, both in tilled and no-tilled groves, is shown in Figure 1. In the spring sampling 
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dates (March, April and June), no variations on the occurrence of entomopathogenic fungal was 

found between tilled and no-tilled groves. The abundance as well as the number of species found 

in both tilled and no-tilled groves was very similar. By contrast, in the samplings performed in 

September some differences between the two types of soils management were observed. In 

2009, the occurrence of entomopathogens was only noticed in tilled groves, while, in contrast, in 

2010 they were only retrieved from no-tilled ones. However, for each of these sampling dates no 

significant differences were found on fungal abundance (F1,5=2.286, P = 0.205) and richness 

(F1,5=0.800, P = 0.422), between tilled and no-tilled groves. 

A comparison of the frequency of occurrence of the most abundant entomopathogenic fungi 

species between tilled and no-tilled olive groves, for all the years of the study, showed different 

results according to the fungal species (Figure 2). The occurrence of B. bassiana in tilled and no-

tilled olive groves was found to be very similar throughout of the study (Figure 2A). However, in 

the samplings performed in September was verified that this fungus had occurred only in tilled 

groves and in a single year (2009). By contrast, the frequency of occurrence of C. 

cladosporioides was higher in the no-tilled groves (Figure 2B), whereas of C. oxysporum was in 

the tilled ones (Figure 2C). However, these differences were not statistically different (F1,5=0.325, 

P = 0.599, for C. cladosporioides and F1,5=0.237, P = 0.652, for C. oxysporum) for both species. 

It is also important to note that the species C. cladosporioides was found, in one sampling date 

(September of 2009), exclusively in tilled groves 
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DISCUSSION 

The present study constituted the first systematically monitoring of entomopathogenic fungi 

present in the natural P. oleae population in the olive grove agroecosystem. A total of eight 

entomopathogenic fungi species were identified from 120 isolates, retrieved from naturally 

infected P. oleae larvae and pupae. The species most frequently found were B. bassiana (60% of 

the total isolates), followed by species belonging to the Cladosporium genus (37% of the total 

isolates). Single occurrences of I. farinosa, L. psalliotae, L. muscarium and P. formosus were 

also observed during this study. Previously works have similarly found that B. bassiana was the 

most abundant entomopathogenic fungi in soils of olive groves (Quesada-Moraga et al., 2007). 

Curiously, in that study the second most abundant species was Metarhizium anisopliae; however 

its presence on P. oleae has not detected over the course of our work. Furthermore, and as far 

as we know, all the other species, excluding B. bassiana, are described in this work for the first 

time as being present in the olive grove agroecosystem.  

 The presence of entomopathogenic fungi in natural population of P. oleae was 

specifically noticed in three periods: March or April, June and September. It was in the first 

period that we have found the greatest number of species and isolates, followed by September 

and June. These differences on fungal occurrence, diversity and abundance throughout the year 

can be justified by two factors: the moth‟s life cycle and the climatic conditions. This particular 

lepidopteran feeds and develops in the leaves of the olive tree (during March and April), in the 

flower clusters (during May and June) and within the olive fruit (in September). It is known that 

fungal entomopathogens spend a fraction of their cycle as resting structures in different parts of 

plants, including in the leaf surface (Pell et al., 2010). Therefore, the number of isolates of 

entomopathogens is more likely to be higher in March-April, rather than in the other months 

(May, June and September), where P. oleae develops in the flower clusters and in the fruits. The 

insect development during the antophagous generation occurs very quickly which could explain 

the reduce infection of larvae and pupae by entomopathogenic fungi. On the other hand, during 

the development of the carpophagous generation, the larval stages of the insect develops inside 

of the fruits and therefore larvae are not so exposed to the surrounding environment, reducing 

the possibility of fungal infection. Climatic conditions, as temperature and humidity, are also 

known to affect entomopathogenic fungi (Jaronski, 2010). In the region where sampling was 

performed, the rainfall was considerable higher in March-April (30 mm in 2009; 150 mm in 

2010) than in May-June (25 mm in 2009; 60 mm in 2010) or September (0 mm in 2009; 
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30 mm in 2010). Since the relative humidity has been shown to affect the efficiency of 

entomopathogenic fungi (Luz and Fargues, 1999; Luz et al., 2004), an increase of natural 

control by fungi during March-April would be expected. However, in these two months not only 

the high humidity was prevalent during prolonged periods, but also the mild temperatures were 

more favourable for fungal germination and growth. Although the average temperatures during 

March-April were 10ºC (2009) and 12ºC (2010), the average of maximum temperatures were 

19ºC (2009) and 22ºC (2010). These conditions were more suitable for entomopathogenic 

fungal germination and growth than temperatures above 30ºC (Jaronski, 2010). Thus, the 

combination of these two factors (humidity and temperature) could have resulted in the retrieval 

of more isolates in the March-April months. 

 The results obtained also indicated that among the total entomopathogenic fungi 

isolated, B. bassiana is the unique species that had occurred in all the three periods (March-April, 

June and September). Cladosporium cladosporioides and C. oxysporum have only occurred in 

two periods, in April and September, and in April and June, respectively. As mentioned 

previously, these differences on fungal species occurrence can be linked to climatic conditions 

which are known to affect entomopathogenic fungal activity, fitness and persistence, within and 

outside host (Hussein et al., 2010; Jaronski, 2010).  

 The tillage of olive groves soils shown to have minor influence on the diversity and 

abundance of entomopathogenic fungi associated to P. oleae. In fact, although the total number 

of entomopathogenic species and isolates were higher in no-tilled groves than in tilled ones the 

differences were not statistically significant. Also, according to Simpson and Shannon-Wiener 

diversity indexes, no significant difference was found between entomopathogens retrieved from 

groves with or without tillage practice. It is known that tillage disturbs the fungal propagules of 

entomopathogenic fungi present in the soil (Pell et al., 2010), and this action can have beneficial 

or detrimental effects. The disturbance of soil may positively affect fungal infection, by moving the 

propagules closer to the host, or by facilitating conidia dispersal by wind (Shimazu et al., 2002) 

or rain (Bruck and Lewis, 2002). Nevertheless, the same action may hinder the contact between 

fungi and insect, or expose conidia to adverse environmental conditions (UV light, temperature, 

humidity), that may reduce the ability of the fungi to survive (Pell et al., 2010). By contrast, on 

untilled soils the vegetation cover can increase the population of insects (Reeleder et al., 2006; 

Rodríguez et al., 2006), hence providing alternative hosts for certain fungal entomopathogens 

and contributing for their enhanced dispersion. Furthermore, some entomopathogenic fungi can 
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live inside of plant tissues (including of weedy species) as endophytes (Vega et al., 2008), which 

could provide a delivery system for the biological control of insects pests.  

 The lack of significant differences on entomopathogenic fungi diversity and abundance 

found between tilled and no-tilled olive groves may be attributed to the fact that the isolation of 

fungi was performed from infected larvae and pupae of P. oleae collected at the canopy level. In 

this habitat, the conditions for fungal growth are likely to be very similar between the different soil 

management practices (tillage and no-tillage). Therefore, even if tillage caused variations of the 

abundance and diversity of entomopathogenic fungi at the soil level (Bing and Lewis, 1993; Sosa-

Gómez and Moscardi, 1994; Sosa-Gómez et al., 2001, Hummel et al., 2002, Wang et al., 2010), 

in the canopy these variations weren‟t noticeable. Similarly, Sosa-Gómez et al. (2001) have not 

found differences on entomopathogenic fungal density on leaves of soybean between the no-

tillage and tillage systems. These authors suggested that the aerial part of the plants have similar 

microclimatic conditions that would be responsible for the lack of fungal community differences 

between the no-till and tillage systems. The factors that affect entomopathogenic fungi present in 

the canopy include sunlight, rainfall, temperature and humidity (Jaronski, 2010). However, some 

works have been showed that tillage doesn‟t cause significant variations of those factors at the 

canopy level (Cantonwine et al., 2007; Gucci et al., 2012). In such way, the variations in 

environmental conditions caused by tillage at the soil level (which may cause differences in the 

abundance and diversity of entomopathogenic fungi) are not reflected in the canopy of trees. 

Similarly, in our study was found that the practice of tillage in olive groves did not have an effect 

on the abundance and diversity of entomopathogenic fungi associated to P. oleae collected in 

olive tree canopy. 

 From the total of the identified entomopathogenic fungal species only B. bassiana, C. 

cladosporioides and C. oxysporum, have occurred in both tilled and no-tilled olive groves and 

were the most abundant. This result suggested that, these species seemed to have more 

capacity to infect P. oleae present in the olive tree canopy and that this capacity is not affected by 

the type of soil management (tillage and no-tillage). By contrast, four species (Cladosporium sp., 

L. psalliotae, L. muscarium and P. formosus) have occurred exclusively in no-tilled, and in tilled 

groves only one exclusive species was found (I. farinosa). The presence of exclusive species on 

no-tilled groves is an indication that vegetation cover could be a reservoir for certain fungus, more 

appropriated to growth and produce spores on soil environmental conditions. The increased 

population of insects that a vegetation cover provides (Reeleder et al., 2006; Rodríguez et al., 
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2006) may serve as hosts for these fungal species, such as Lecanicillium and Paecilomyces, 

known to have a wide host range (Goettel et al., 2008; Sandhu et al., 2012). As infected insects, 

as well as their predators, are able to disperse infective inoculum (Meyling et al., 2006) of 

entomopathogenic fungi, this fact may account for the detection of those species in no-tilled 

groves. Furthermore, the presence of fungal entomopathogens with endophytic capacity may also 

account for the presence of those species in the no-tilled groves. Indeed, some species belonging 

to the genera Lecanicillium (Gómez-Vidal et al., 2006), Paecilomyces (Cao et al., 2002; Tian et 

al., 2004) and Cladosporium (Ananda and Sridhar, 2002; Vega et al., 2008) are described as 

being endophytic to several plants. Although their presence as endophytic fungi in the plants 

present in the vegetable cover of olive groves as not yet been studied, it cannot be ruled out. The 

presence of fungal entomopathogens with endophytic capacity increases their ability to infect 

suitable hosts, therefore making their detection more likely to occur.  
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CONCLUSIONS 

This work is the first report concerning the tillage effect on diversity and abundance of 

entomopathogenic fungi associated to P. oleae. The results obtained shown a minor effect of soil 

tillage on diversity and abundance of entomopathogens retrieved from P. oleae collected in the 

canopy of olive trees. Therefore, the probabilities of phylloplane inhabiting P. oleae insects 

becoming infected by entomopathogenic fungi seems to be the same, regardless of the tillage 

system. However, the exclusive occurrence of four entomopathogenic fungal species in no-tilled 

olive groves, suggested that the vegetable cover may serve as reservoir of entomopathogenic 

fungi, either by providing alternative hosts, or by providing a different way of prevalence in the 

environment. Although no significant differences were observed between the two soil 

management practices, the fact that a higher number of species, four of them exclusively to no-

tilled groves, as well as a higher abundance, suggests that this type of soil management presents 

the most suitable condition to increase the probability of infection toward P. oleae. Seasonal 

climatic variations, namely of temperature and humidity, have been also shown to interfere with 

the fungal spores‟ dispersion, their germination, fungal growth and insect infection process. As 

fungal entomopathogens are engaged in a complex and yet fully undetermined array of 

interactions, with both plants and hosts, these results provide new insights about the population 

dynamics of entomopathogenic fungi in olive groves, and their relation with environment and 

agricultural factors. The findings described in this work will be important for devising cultural 

practices (specifically of tillage practices) aimed at augmenting the natural occurrence of 

entomopathogenic fungi on P. oleae population and, consequently, increasing the contribution of 

natural pest mortality in olive agroecosystems. 
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Chapter 6 

Plant-mediated effects on entomopathogenic fungi: how the olive tree influences fungal enemies 
of Prays oleae 
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ABSTRACT 

Studies focusing the community of entomopathogenic fungi associated to one of a major pest of 

olive tree, Prays oleae Bern, revealed species-specificity to one of the three generations of this 

insect. For instance, the entomopathogens Beauveria bassiana and Paecilomyces formosa 

occurred almost exclusively in the phyllophagous (leaf) and carpophagous (fruit) generations, 

respectively. The main aim of this work was to evaluate the potential of plant-mediate effects on 

these entomopathogens, with an attempt to explain these differences on fungal occurrence. The 

nature (volatile or diffusible) of the compounds responsible for the detected effects was also 

assessed. For this, both fungi were challenged in divided or undivided Petri dishes by olive tree 

leaves, flowers or fruits and the outcome of interaction were assessed. Volatile composition of 

leaves and olives was evaluated and the major compounds were tested for their effects on both 

fungi. All the plant organs had a significant influence on both fungi. Olives were the most 

inhibitory to B. bassiana by reducing the germination (80%), growth (82%) and sporulation (88%), 

while for the P. formosa the most inhibitory effect was exert by leaves (reducing sporulation and 

viability in 172 and 37%, respectively). The olive effects were mostly result from the release of 

both volatile and diffusible compounds, whereas leaves effects were mainly caused by volatile 

compounds. The two volatiles produced by leaves and olives, (Z)-3-hexen-1-ol and (Z)-3-hexenyl 

acetate, were showed to affect both fungi being, however, the results no correlated with leaves 

and olives assays. This suggested that other compounds, together with those tested, may 

account for the observed effect. These results show an intricate relationship between plant organ, 

the compounds released by them and the entomopathogenic fungal species, broadening the 

available knowledge about fungal-plant interactions. 

 

Keywords: Fungal entomopathogens, Olive, Fungal behaviour, Plant-mediated effects, Volatiles, 

Diffusible compounds 
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INTRODUCTION 

It is known that plants can affect performance of natural enemies of herbivore insects, either 

positively or negatively, by modifying their features such as chemistry (volatiles, secondary 

compounds), resources (nectar, pollen) and/or morphology (trichomes, domatia) (Tkaczuk et al., 

2007). However, the majority of the work focusing this issue has been mainly devoted to the 

study of the interactions between plants and predators/parasitoids of insect pests (Baverstock et 

al., 2005). By contrast, there has been little work done on the interactions between plants and 

other groups of insect natural enemies, such as entomopathogenic fungi. Cory and Ericsson 

(2010) provide an excellent background of plant-mediated effects on fungal entomopathogens 

and exhort researchers to examine the intricate interactions between entomopathogenic fungi, 

plants and insects. The understanding of such tritrophic interactions as well as of their effects 

may improve the efficacy of entomopathogenic fungi as biological control agents. According to 

the same authors, the plants could affect fungal entomopathogens either directly, by affecting 

conidia performance, contact rates or conidia persistence to the host insect, or indirectly, by 

altering insect condition and facilitating infection and contact rate with entomopathogenic fungi. 

 Good examples of direct effects are the allelochemicals compounds emitted by plant that 

exert some influence on entomophagous fungi. Some of the most studied are volatile compounds 

that have been shown to exert contradictory effects on fungal entomopathogens. For example, 

green leaf volatiles released from tobacco plants and volatiles released as a result of infestation 

with the tobacco aphid Myzus nicotianae have shown to inhibited conidial germination of the 

entomopathogen Pandora neoaphidis (Brown et al., 1995). By contrast, in a different system was 

verified that herbivore-induced plant volatiles increase conidiation of the entomopathogenic fungi 

Neozygites tanajoae (Hountondji et al., 2005). Other studies have reported no effects of plant 

volatile compounds either on the conidiation or on the P. neoaphidis fungus growth (Baverstock 

et al., 2005). 

 Other plant secondary metabolites can also affect germination, growth or infectivity of 

entomopathogenic fungi (Vega et al., 1997). Some compounds, most notably alkaloids (Lacey 

and Mercadier, 1998), phenolics (Lopez-Llorca and Olivares-Bernabéu, 1997; Lacey and 

Mercadier, 1998), glycoalkaloids (Poprawski et al., 2000), terpenoids (Poprawski and Jones, 

2000) or isothiocyanates (Inyang et al., 1999a; Klingen et al., 2002) have shown generally to 

reduced spore germination, fungal growth, adhesion to host, and of their mortality and speed of 

kill. Other factors besides allelochemicals have been described as behaviour-modifiers of 
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entomopathogenic fungi. These include leaf surface topography or roughness (Inyang et al., 

1998; Meekes et al., 2000), the degree and type of epicutilar wax formation (Inyang et al., 1998; 

Inyang et al., 1999b; Duetting et al., 2003), and the presence and type of exudates release by 

plants (Vega et al., 1997; Jaronski, 2007; Cory and Ericsson, 2010). These factors could directly 

affect spore retention, their survival and germination, or indirectly alter insect behaviour, which in 

turn will change rates of fungal acquisition (Inyang et al., 1998). 

 When studying the diversity of entomopathogenic fungi associated to one of a major pest 

of olive orchards, Prays oleae Bern, we have noticed that the entomopathogens Beauveria 

bassiana (Bals.-Criv.) Vuill. and Paecilomyces formosa Sakag., May. Inoue & Tada ex Houbraken 

& Samson occurred almost exclusively in one of the three generations of this insect (Oliveira et 

al., 2012; Oliveira et al., accepted for publication). The first species occurred almost exclusively 

in the phyllophagous or leaf generation of P. oleae (1º flight), whereas the second one had 

occurred mainly in the carpophagous or fruit generation (3º flight). This lepidopteran presents an 

additional generation, the antophagous or bud and blooming generation (2º flight) that damage 

the olive tree flowers. One possible explanation to the exclusively occurrence of these 

entomopathogenic fungal species in a particular P. oleae generation could be related with the 

allelochemicals compounds produced by olive plant organs especially that of the leaves, flowers 

and fruits. Indeed, plants are thought to influence the behaviour of entomopathogens and use 

them as bodyguards against herbivores (Elliot et al., 2000). Such an interaction between the 

plant and the entomopathogenic fungus could either be numerical (altered population size of the 

fungus) or functional (enhanced efficacy of the fungus) (Elliot et al., 2000).  

 Therefore, the present work intends to evaluate the direct effect of olive plant organs 

(leaves, flowers and fruits) on B. bassiana and P. formosa growth, conidial germination (potential 

functional interaction) and sporulation (numerical interaction), and elucidate the nature of the 

plant organ compound (volatile and/or diffusible) that affects the behaviour of these 

entomopathogenic fungal species. 
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METHODS 

Plant material 

Olive plant organs (leaf, flower cluster, olive) were sampled from an orchard located in Mirandela, 

Bragança region (41º32‟35.72‟‟N; 7º07‟27.17‟‟W). The olives were about 50 years old, with a 

planting density of 7x7 m, of the Cobrançosa cultivar. Pruning was made every two-three years 

and no irrigation was done. The olive groves were managed through the integrated production 

guidelines (Malavolta and Perdikis, 2012). Leaves were hand-picked from the olive tree, and 

inspected for signs of disease or herbivore-caused damaged. Only fully healthy leaves were used 

for the assays. Olive flower buds were hand-picked when the first flowers where appearing - Code 

60: First flowers open, of the BBCH (Biologische Bundesanstalt, Bundessortenamt, Chemische 

Industrie) phenological scale (Sanz-Cortés et al., 2002). As for leaves, only completely healthy 

flower buds were selected for subsequent assays. Olives were collected from trees at a maturity 

index between 1 and 2, as defined by the method described by Hermoso et al. (1991).  

 

Fungal cultures 

Fungal strains of Beauveria bassiana (A39GF09) and Paecilomyces formosa (LC4.3GC10) used 

in this work were retrieved from the culture collection of the School of Agriculture of the 

Polytechnic Institute of Bragança (Oliveira et al., 2012).  

Working cultures of fungi were prepared from frozen stock by transferring spores, with a 

bacteriological loop, from the aqueous glycerol solution previously thawed onto Petri dishes with 

Potato Dextrose Agar (PDA) medium. The dishes were incubated in the dark at 25ºC for at least 

7 days until colonies with multiple spores were produced. Spores were then collected by flooding 

fungal cultures with 2 mL of 0.02% (v/v) Tween 80 sterile solution. The number of spore per mL 

in the obtained spore suspension was counted in a Thoma counting chamber and further used as 

inoculum in the present study. 

 

Experimental design 

In order to assess the influence of the olive plant organ on B. bassiana and P. formosa, 5 µL of a 

spore suspension (106 spores per mL) of the tested fungus was placed on the surface of Petri 

dish (9 cm diameter) containing PDA medium. Three centimetres apart from the inoculum was 

placed the plant organ in question previously sterilized. The plant material was processed in the 

same day of its collection. After thoroughly washed in distillate water, the leaves, flowers and 
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fruits were surface sterilized throw sequential immersion in 70% (v/v) ethanol during 2 min, in 3-

5% (v/v) sodium hypochlorite during 3 min, in 70% (v/v) ethanol during 1 min and three 

consecutive washes of 1 min in sterile distillate water. After removing the excess water, an 

incision in each plant organ was performed by using a scalpel, to mimic the damage caused by 

larvae of P. oleae. The plant material was then immediately transferred to Petri dishes. Controls 

were performed without the presence of the plant organ. In order to evaluate the chemical nature 

of the compounds (volatile or diffusible) involved in the interaction plant organ-fungus, the assay 

was performed in Petri dishes both undivided and divided into two sections. In this last case, the 

plant organ was placed in one section of the Petri dishes and the fungus in the other section. The 

in vitro effect of specific volatile compounds on B. bassiana and P. formosa was assess using a 

similar procedure, by using undivided plates. The volatiles tested were (Z)-3-hexen-1-ol and (Z)-3-

hexenyl acetate, because of their high presence on the olive leaves. Both chemicals, (Z)-3-hexen-

1-ol (>98%) and (Z)-3-hexenyl acetate (>98%), were purchased from Sigma-Aldrich Chemical Co. 

(St. Louis, MO). Standards were diluted in polyethylene glycol (PEG) at two different 

concentrations: 1x10-3 (v/v) and 1ppm (v/v). Controls were performed with PEG. 5µL of both 

standards and PEG were directly placed onto the surface of the culture medium. Ten replicate of 

each combination (plant organ – fungi or volatile compound – fungi) were performed. The Petri 

dishes were sealed with parafilm and incubated at 25 ± 1ºC in the dark. During interaction the 

germination, growth, sporulation and viability of both fungi were assessed. 

 

Evaluated parameters 

Germination – Spore germination was quantified 12 hours after inoculation of the PDA medium 

with the spore suspension (106 spores per mL). The percentage of germination was evaluated 

microscopically by counting the number of germinated and non-germinated spores, from a total 

of 300 spores per Petri dish. Only the spores with germ tubes longer than their width were 

considered to have germinated. 

Radial Growth – Fungus growth assessment was achieved by measuring the four radial distances 

between the centre and the border of the colony, after 20 days of incubation.  

Sporulation - The spores produced by each fungal strain, in each assay, was evaluated after 20 

days of incubation. For this, a spore suspension was retrieved from fungus culture to 1 mL of an 

aqueous solution of Tween 80 (0.02%, v/v). The number of conidia was counted in a Thoma 

counting chamber. Results were expressed in spore per ml. 
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Spore viability – Twenty days after incubation, the viability of the spores produced by fungal 

strains in each assay was measured by quantifying the percentage of germination. For that 

purpose, 5µl of a spore suspension (106 spores per mL) retrieved from the spore suspension 

used to quantified sporulation was spread in a Petri dish, containing agar medium (15 g/L agar-

agar). Five replicates of each assay were performed. After incubation, at 25±1°C in the dark for 

12 h, the percentage of germination was evaluated by counting the number of germinated and 

non-germinated spores, from a total of 300 spores per Petri dish. 

 

Volatile characterization of olives and leaves 

Headspace-solid phase microextraction (HS-SPME) - For the characterization of volatile 

compounds, leaves and olive fruits were inspected for any possible cuts and wounds. Only 

complete healthy leaves and fruits were characterized. Samples were processed, at the most, 48 

hours after being retrieved. They were stored at 4ºC during transport and until processing. The 

HS-SPME was performed using a fiber coated with divinylbenzene/ 

carbonex/polydimethylsiloxane (DVB/CAR/PDMS), 50/30 µm, in 50 mL vials sealed with a 

polypropylene cap with PTFE/silicon septum. Volatiles from leaves (5 per analysis; n = 4) and 

fruits (1 fruit per analysis; n = 4) were exhaled by a ultrasound treatment at 40 ºC (30 min and 1 

h, for leaves and fruits respectively), followed by 1h of fiber adsorption at 40 ºC. 

Gas chromatography-mass spectrometry (GC-MS) conditions - Chromatographic analysis was 

performed using an Agilent 6890 series GC (Agilent, Avondale, PA, USA) coupled to a MS 

detector (Agilent 5973). Volatiles were separated using a 5% phenyl-methyl silicone (HP-5) 

bounded phase fused-silica capillary column (Hewlett-Packard, Pablo Alto, CA, USA, 33 m x 250 

µm i.d., film thickness 0.25 µm), operating at 80 kPa column heads pressure, resulting in a flow 

of 1 mL min-1 at 40 ºC. The oven temperature program was isothermal for 5 min at 40 ºC, raised 

to 220 ºC at a rate of 3 ºC min-1 and maintained at 220 ºC for 2 min. The transfer line to the 

mass spectrometer was maintained at 250 ºC. Mass spectra were obtained by electronic impact 

at 70 eV, with a multiplier voltage of 2056 V, collecting data at a rate of 1 scan s -1 over the range 

30 – 500. The constituents were identified by comparing the experimental spectra with spectra 

from NIST 98 data bank (NIST/EPA/NISH Mass Spectral Library, version 1.6, U.S.A.), and also 

by comparison of their GC Kovats index. For quantification purposes, the chromatographic peak 

areas were determined by a reconstructed full-scan chromatogram in the Single Ion Monitoring 

(SIM) using for each compound the correspondent base ion (m/z 100% intensity). The injection 
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port was in the splitless mode at 280 ºC. Each identified compound is presented as peak areas 

and results expressed as relative abundance. 

 

Data Analysis 

All the data regarding radial growth, spore germination, number of spores and of their viability 

are express as percentage of variation against the control assay, and are present as the mean of 

ten independent experiments displaying the respective SE bars. The effect of each organ on 

fungal behaviour was evaluated by ANOVA. Once significant effects with a potency value of one 

were established, significant differences among groups were assessed using the Tukey test at 

p0.05.  
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RESULTS  

Interaction between plant - Beauveria bassiana 

The results obtained showed that all the plant organs tested had a significant influence on B. 

bassiana (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1 Variation relative to controls of conidial germination, radial growth, sporulation and viability of Beauveria 
bassiana, in the presence of different olive plant organs. Each value is expressed as mean  SE (n=10). Asterisks 
indicates values that differ significantly from controls at * p < 0.05; ** p < 0.01; *** p < 0.001. n.s. – not significant.  

 

 

 The fruits showed to exert a greater influence comparatively to the other plant organs by 

inhibiting significantly the germination (80.4%), growth (82.0%) and sporulation (88.1%) of B. 

bassiana, when compared to the control. These percentages of inhibition were found 

substantially higher in undivided plates than in divided plates (Fig. 2C) which suggested that the 

association of both types of compounds (volatile and diffusible) is probably more responsible for 

this effect than volatiles compounds alone. The viability of spores on the presence of olives was, 

by contrast, significantly higher (32.9%) than in control (Fig. 1). This response was probably 

resulted from the combined effects of both volatile and diffusible compounds produced by olives, 

since the highest value of fungus viability was found in undivided plates (Fig. 2C).  
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Figure 2 Variation of the evaluated parameters of B. bassiana, in medium in the presence of leaves (A), flowers (B) 
and olives (C) when inoculated in divided or undivided plates. Each value is expressed as mean  SE (n=10). 
Asterisks indicates values that differ significantly from controls at * p < 0.05; ** p < 0.01; *** p < 0.001. n.s. – not 
significant. 
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 The flowers inhibited significantly the sporulation (32.2%) and the viability of B. bassiana 

(2.3%) when compared to control (Fig. 1). These inhibitory effects are related to the diffusible 

compounds as indicated by the lowest values of fungus sporulation and viability of undivided 

plate assays (Fig. 2B). Regarding germination, there was a significant increase (7.7%) in relation 

to control (Fig. 1), caused by the release of volatiles from flowers, as it was in divided plates that 

a higher increase (11.6%) of this parameter occurred (Fig 2B). Although radial growth was not 

significantly influenced by flowers (Fig. 1), the detected decrease was likely caused by diffusible 

compounds (8.9%) (Fig. 2B).   

 Leaves only inhibited significantly the sporulation (21.4%) and the viability of fungi (4.6%) 

when compared to control (Fig. 1). In both cases, leaves appeared to suppress the sporulation 

and viability of fungus mainly via the volatile compounds (Fig. 2A), that caused 39.4% and 13.4% 

of reduction, for each parameter, respectively. Germination of B. bassiana was not significantly 

influenced by leaves (Fig. 1), but the slight increase (0.7%) detected in relation to control was 

caused by volatile compounds (5.7% of increase), while the combination with diffusible 

compounds inhibited this parameter (4.3%) (Fig. 2A).   

 Taken together the results indicate that the combination of volatile and diffusible 

metabolites have shown bigger reducing effect than volatile compounds alone, in the olives and 

flowers, whereas in the leaves it was the volatile compounds with the greatest inhibitory effect.  
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Interaction between plant - Paecilomyces formosa 

The results of the interaction between P. formosa and plant showed that all organs are able to 

influence P. formosa (Fig. 3). Leaves exerted considerable more influence than flowers and 

olives, causing significant decrease of sporulation (172.0%) and of fungus viability (36.9%) when 

compared to control. 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 3 Variation relative to controls of conidial germination, radial growth, sporulation and viability of P. formosa, 
in the presence of different olive plant organs. Each value is expressed as mean  SE (n=10). Asterisks indicates 
values that differ significantly from controls at * p < 0.05; ** p < 0.01; *** p < 0.001. n.s. – not significant. 

 

 

The reduction in sporulation by leaves is mainly due to the release of diffusible compounds. In 

fact, only in undivided plates the leaves were showed to significantly inhibit fungus sporulation 

(347.9%) when compared to control (Fig. 4A). The viability of spores was affected by leaves 

differently, being volatiles compounds (divided plates) able to cause higher decrease (59.8%) 

than diffusible compounds (undivided plates) (14.1%), leading to the assumption that they are 

able to counteract, partially the inhibitory effects of volatiles. Leaves also caused an increase of 

germination (7.6 %) and radial growth (0.4 %) when compared to control, although variations 

were not significant (Fig. 3). Those variations were probably mainly caused by the combination of 

volatile and diffusible compounds, as increase of germination and radial growth was higher on 

undivided (14.9%) than on divided (0.2%) plates (Fig. 4A).   
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Figure 4 Variation of the evaluated parameters of P. formosa, in medium in the presence of leaves (A), flowers (B) 
and olives (C) when inoculated in divided or undivided plates. Each value is expressed as mean  SE (n=10). 
Asterisks indicates values that differ significantly from controls at * p < 0.05; ** p < 0.01; *** p < 0.001. n.s. – not 
significant. 
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 Olives led to significant variations in sporulation and viability, with a decrease of both 

parameters in 132.3% and 24.7%, respectively, when compared to control (Fig. 3). The reduction 

of the sporulation in the presence of olives was probably caused by the interaction of both 

volatiles and diffusible compounds, as similar inhibitory values were observed in divided (123.1%) 

and undivided (141.6%) plates (Fig. 4C). The decrease of fungus viability by olives seemed to be 

more influenced by volatile compounds (divided plates), which caused a more significant 

decrease of this parameter (37.4%) than diffusible compounds (undivided plates) (17.9%), that 

appear to partially neutralize the inhibitory effects of volatiles (Fig. 4C). No significant differences 

in radial growth and germination of P. formosa were observed between plates with olives and 

control (Fig. 3). However, the slightly differences found on those parameters were noticed to be 

higher on undivided than divided plates suggesting a greater involvement of diffusible compounds 

than volatile compounds in the response of fungi to olives (Fig. 4C). 

 The flowers showed to exert less influence on P. formosa than leaves and olives. The 

flowers were only found to influence significantly the germination, by increasing it in 11.4% when 

compared to control (Fig. 3). The stimulatory compounds released by flowers were most likely 

volatile than diffusible as indicated by the higher increase of germination (12.7%) in divided than 

in undivided plates (10.0%) (Fig. 4B). The presence of flowers also resulted in an increase of 

radial growth (0.9%) and in a decrease of sporulation (17.4%) and viability (1.2%) of P. formosa 

when compared to control (Fig. 3). Although the differences are not statistically significant, these 

effects were probably caused by the release of volatile but mostly due to the interaction of those 

compounds with diffusible compounds from flowers. In fact, variations of these fungal 

parameters in relation to the control were observed to be higher in undivided than in divided 

plates (Fig. 4B).  

 

Volatile composition of leaves and olives 

The results from in vitro studies indicated that volatiles compounds of leaves and olives were 

inhibitory to B. bassiana and P. formosa. In order to identify which volatile compound was 

probably responsible for this effect, the volatile composition of both leaves and olives of the 

Cobrançosa cultivar was analysed. The volatile profile from the leaves and olives revealed high 

variability both in the qualitative and quantitative fractions. The leaves were showed greater 

amounts (53 times more) and variability (in total 22 compounds) on volatile compounds than 

fruits, where only 12 compounds were detected. In total, five classes of chemical compounds 



 

174 
 

0.5%

94.5%

4.8%

0.2%

3-methyl-1-butanol

(Z)-3-hexen-1-ol

1-Hexanol

1-Octanol

3.9% 3.4%

0.9%

2.8%

18.9%

1.6%

65.9%

1.8% 0.8%
Butanoic acid methyl ester

3-methyl butanoic acid methyl 
ester

2-methyl butanoic acid methyl 
ester

Hexanoic acid methyl ester

(Z)-3-hexenoic acid methyl ester

(E)-2-hexenoic acid methyl ester

(Z)-3-hexenyl acetate

Acetic acid hexyl ester

Benzoic acid methyl ester

A

B

were detected, being the most important ones esters and alcohols, in leaves, and aldehydes and 

terpenes in olives. Sesquiterpenes were also detected in both plant organs. 

 In leaves, and regarding alcohols, four different compounds were detected (Fig. 5A), 

being (Z)-3-hexen-1-ol the most important (94.5%), and in lower amounts 3-methyl-1-butanol, 1-

hexanol and 1-octanol. Regarding esters (Fig. 5B), nine compounds were detected, with (Z)-3-

hexenyl acetate representing the major part of this class of compounds (65.9%). Other important 

compounds included (Z)-3-hexenoic acid methyl ester (18.9%), butanoic acid methyl ester (3.9%) 

and 3 methyl butanoic acid methyl ester (3.4%).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Alcohols (A) and esters (B) identified in leaves of Cv. Cobrançosa. Values are presented as relative 

abundance.  
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In fruits, major compounds detected were aldehydes, namely nonanal (36.8%) and octanal 

(20.0%) (Fig. 6A); and terpenes, especially limonene (78.2%) (Fig. 6B). Furthermore, the alcohol 

(Z)-3-hexen-1-ol was also present is considerable amounts (4.7% of the total). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Aldehydes (A) and terpenes (B) identified in leaves of Cv. Cobrançosa. Values are presented as relative 

abundance.  
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Effect of selected volatiles on fungal behaviour 

As we detected, in the assessment of volatile composition of leaves and fruits, that the former 

produced much higher amount of these compounds, being the most representative (Z)-3-hexen-1-

ol and (Z)-3-hexenyl acetate, we used standards of both compounds to evaluate their influence on 

B. bassiana and P. formosa.  

 Overall results showed that the volatile compounds tested influence significantly both 

fungal species, regarding fungus sporulation (F2,59 27.347; p< 0.001), viability (F2,59 4.315; p<0.05) 

and radial growth (F2,59 4.310; p< 0.05). By contrast, the interaction between volatile compounds 

and its concentration, didn‟t result in significant influence on entomopathogenic fungal behaviour 

(p>0.05).  

 Regarding B. bassiana, a significant effect of the compound used was detected on radial 

growth (F2,29 3.496; p< 0.05), sporulation (F2,29 19.031; p< 0.001) and viability (F2,29 50.805; p< 

0.001), while no significant effect was detected on germination (p> 0.05). The concentration 

factor alone didn‟t result in significant differences, and the interaction between compound and 

concentration only showed significant influence on radial growth (F2,29 3.914; p< 0.05). The overall 

results also indicated that the effect of both volatiles on B. bassiana was not directly proportional 

to the concentration used of these compounds. Both (Z)-3-hexen-1-ol and (Z)-3-hexenyl acetate 

used alone reduce significantly fungus growth (in average 5.1% and 5.9%, respectively; Fig. 7B), 

and increase significantly germination (in average 13.9% and 24.6%, respectively; Fig. 7A) and 

viability (in average 11.45 and 10.3%, respectively; Fig. 7D) in relation to the control, at any of 

the concentrations tested. When used alone, both volatiles compounds were also showed to 

reduce B. bassiana sporulation when compared to control, but without significant differences 

(Fig. 7C). The combined used of volatile compounds produced significant increases on B. 

bassiana germination (17.0%, Fig. 7A) and growth (2.9%; Fig. 7B) relative to controls only at the 

lowest concentration tested. By contrast, spore‟s viability was increase significantly compared to 

controls in the presence of both volatile compounds at any of the concentrations tested (29.5% 

for 1 x 10-3 and 22.8% for 1ppm; Fig. 7D).  
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Figure 7 Variation relative to controls of conidial germination (A), radial growth (B), sporulation (C) and viability (D) of B. bassiana and P. formosa, in the presence of (Z)-3-hexen-1-ol and (Z)-3-19 
hexenyl acetate either alone or in combination. Each value is expressed as mean  SE (n=10). Asterisks indicates values that differ significantly from controls at * p < 0.05; ** p < 0.01; *** p < 20 
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 Regarding P. formosa, a significant effect of the compound used was detected on all 

evaluated parameters, namely germination (F2,29 10.941, p< 0.001), radial growth (F2,29 65.172, p< 

0.001), sporulation( F2,29 71.705, p< 0.001) and viability (F2,29 5.583, p< 0.05). The concentration 

factor alone resulted in significant effect at sporulation level (F2,29 5.004, p< 0.05), and the 

interaction between compound and concentration showed to have significant influence on 

germination (F2,29 14.916, p< 0.001) and radial growth (F2,29 12.224, p< 0.001). The overall results 

also indicated that the effect of both volatile compounds on P. formosa was not concentration 

dependent. The (Z)-3-hexen-1-ol and (Z)-3-hexenyl used alone or combined reduced the viability 

(in average, 4.5%, 20.2% and 23.1%, respectively) when compared to control in either of the 

tested concentrations (Fig. 7D). Germination and radial growth of P. formosa were affected in 

different ways, by each of the compounds. (Z)-3-hexen-1-ol, at the lowest concentration, caused a 

decrease of both parameters (10.6% and 5.2%, respectively), and at higher concentration 

increase both parameters (11.6% and 8.1%, respectively) in comparison to control (Figs. 7A and 

7B). (Z)-3-hexenyl increase significantly P. formosa germination (in average 3.3%, Fig. 7A) and 

growth (in average 25.1 %; Fig. 7B) in relation to control at any of the concentrations tested, with 

the exception of germination in the presence of 1ppm of (Z)-3-hexenyl, that resulted in a 

significant decrease (8.7%) (Fig. 7A). The combined used of (Z)-3-hexen-1-ol and (Z)-3-hexenyl 

resulted in a significant increase of P. formosa germination (in average 11.1 %; Fig. 7A) and 

radial growth (in average 4.9 %; Fig. 7B) in relation to control at any of the concentrations tested, 

being however the highest concentrations presenting smaller values than lowest concentration. 

The sporulation of P. formosa colonies (Fig. 7C) was effected differently by (Z)-3-hexen-1-ol and 

(Z)-3-hexenyl. When compared to control, the former caused a reduction of sporulation in either 

concentration tested (5.3% and 33.3%, respectively for 1ppm and 1x10 -3), while the latter caused 

an increase of 8.1%, at the highest concentration. When used in combination, the volatile 

compounds increased significantly the sporulation of P. formosa, in either concentration (56.9% 

and 46.3%, respectively for 1ppm and 1x10 -3, in relation to control).  
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DISCUSSION 

The olive moth, P. oleae, is one of the most serious pests of olives in the Mediterranean basin 

(Ramos et al., 1998). This species has three generations per year, attacking different organs in 

the olive trees, namely leaves (first generation), flower buds (second generation) and olives (third 

generation). Previous studies undertaken by us under field conditions have been shown that P. 

oleae larvae and pupae of the second (carpophagous) and third (phyllophagous) generations 

were most exclusively infected by the entomopathogenic fungi P. formosa and B. bassiana, 

respectively (Oliveira et al., 2012; Oliveira et al., accepted for publication). The present study 

intends to assess if these variations on entomopathogenic fungi occurrence through P. oleae 

generations may somehow be mediated by compounds (volatile or diffusible) released by the 

different olive plant organs (olives, flowers and fruits). Therefore, P. formosa and B. bassiana 

were challenged in divided and undivided Petri dishes by leaves, flowers or fruits of olive tree and 

during interaction the germination, growth, sporulation and viability of fungi were assessed. 

 

Effect of leaves on fungi 

The presence of leaves showed to reduce significantly sporulation and viability of B. bassiana and 

P. formosa in relation to control. By contrast, germination and growth of both fungi in the 

presence of leaves were not statistically different from control. Loss of conidia viability has 

already been reported for B. bassiana exposed to different extracts of neem (Azadirachta indica) 

(Depieri et al., 2005). These authors showed significant inhibition caused by emulsible oil and 

aqueous extracts of neem leaves, on the viability of B. bassiana. Results also showed that P. 

formosa was more negatively affected by leaves than B. bassiana. In fact, the reduction on 

sporulation and viability by leaves in comparison to control were, in average, 172% and 37%, 

respectively for P. formosa and only 21% and 5%, respectively, for B. bassiana. Therefore, 

although there was statistically negative effects of leaves on sporulation and viability of B. 

bassiana, this result indicate that the release of compounds from leaves allow a greater 

development of this fungus species in detriment of others species like P. formosa. This could 

partially explain the high occurrence of B. bassiana in the phyllophagous generation observed in 

our previous study (Oliveira et al., 2012).  

 The results from the divided and undivided plates indicate that reduction of P. formosa 

sporulation and viability by leaves was mainly via the release of diffusible and volatiles 

compounds, respectively; whereas in B. bassiana the reduction on both parameters were mainly 
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via the release of volatile compounds from leaves. Previous studies have also revealed the ability 

of plant volatiles compounds to inhibit entomopathogenic fungi sporulation (Hountondji et al. 

2005). However, some of these studies reported contradictory effects by showing either inhibitory 

or no effect of plant volatiles on fungal sporulation. The effect of plant volatiles was showed to be 

isolate-dependent which could in part explain these contradictory results (Hountondji et al., 2005; 

2006). For instances, the production of conidia of an isolate of the entomopathogenic fungus 

Neozygites tanajoae was found to be consistently higher (37%) when exposed to methyl salicylate 

than when not exposed to it, while, in another isolate of the same species, no significant 

differences were observed, between the presence or absence of methyl salicylate (Hountondji et 

al., 2006). In a different study, Baverstock et al. (2005) verified that in vivo sporulation of 

Pandora neoaphidis on Acyrthosiphon pisum was not affected by volatiles emitted by damaged 

plant of Vicia faba, when compared with volatiles of undamaged plants.  

 The volatile composition of the olive tree leaves reveals high amounts of esters and 

alcohols, which could account for the observed inhibition of fungal sporulation and viability. We 

detected high levels of six-carbon alcohols [(Z)-3-hexen-1-ol and 1-hexanol] and six carbon esters 

[e.g. (Z)-3-hexenyl acetate and (Z)-3-hexenoic acid methyl ester], that are known to be green leaf 

volatiles (GLVs) (Matsui et al., 2012). These compounds are described to interact with fungi 

(Brown et al., 1995; Arimura et al., 2001, Hountondji et al., 2009) and have already been linked 

to a decrease of fungal sporulation (Hountondji et al. (2005). These authors demonstrated that a 

range of C6 compounds alcohols present in high levels in clean cassava plants, were responsible 

for reduction in sporulation of Neozygites tanajoae.  

 The in vitro assays using the volatile standards (Z)-3-hexen-1-ol and (Z)-3-hexenyl acetate, 

the key volatiles component of olive tree leaves identified in the present study, revealed 

contradictory results from those obtained in the in vitro assays using leaves. The comparison of 

both assays indicated that only radial growth and sporulation of B. bassiana, and viability of P. 

formosa present a similar trend. In both assays these fungal parameters were reduced in relation 

to the respective controls. This suggests that (Z)-3-hexen-1-ol and (Z)-3-hexenyl acetate were not 

the main cause of the leaves effects on B. bassiana and P. formosa. Although the tested volatiles 

are the one found in higher abundance in leaves, it appears to be other compounds that, 

together with those tested, result in the observed effect from leaves. In fact, we detected 22 

different volatiles in olives from Cv. Cobrançosa, and some of them should also be involved in 

this interaction. That could be the case of terpenes, which were found in low quantity (0.2%), but 
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that are showed to have activity as plant-signalling compounds (Halitschke et al. 2008) and, 

some of them, antifungal properties (Shai et al., 2008). Furthermore, the presence of several 

compounds emitted by leaves can result in several effects, as synergistic (Tasin et al., 2007), 

redundant or antagonistic (Linn et al., 2005). This is corroborate by our results since 

contradictory effects of (Z)-3-hexen-1-ol and (Z)-3-hexenyl acetate on B. bassiana and P. formosa 

were observed when these volatiles were used alone or combined. For instances, both (Z)-3-

hexen-1-ol and (Z)-3-hexenyl acetate used alone have showed to reduce significantly B. bassiana 

growth, but their combined used increase significantly it, in relation to control. The absence of 

correlation between assays using volatile standards and leaves may have been a result of either 

the volatile concentration of the compounds tested not being the same as occurs naturally in the 

leaves. Another noteworthy fact is that the response of the fungus was not concentration 

dependent. Although it could be expected an increase of inhibition with increasing concentration, 

previous works also present similar results. Individual volatiles, tested at different concentrations, 

presented similar effects on the growth of Aspergillus parasiticus, when tested at high or low 

concentrations (Zeringue and Bhatnagar, 1994).  

 The inhibition of P. formosa sporulation caused by the release of diffusible compounds 

from leaves may be related to their composition on phenolics and fatty acids. Chemical analysis 

of olive leaves from Cv. Cobrançosa revealed high amounts on total phenolic compounds (about 

36051 mg/kg of olive leaf lyophilized extract) (Pereira et al., 2007) and the presence of fatty 

acids as already been described (Bianchi et al., 1992a). Both compounds have already been 

described as possessing the ability to reduce the production of fungal spores (Russo and 

Pappelis, 1993; Boguś et al., 2012; Dambolena et al., 2012). 

Cuticular waxes of leaves may additionally take part on the reduction of P. formosa sporulation. 

The main components of epicuticular waxes of olive leaves are triterpenic acids (oleanoic and 

betulinic), as well as sitosterol (Bianchi et al., 1992a). Oleanoic acid has already been described 

as having antifungal activity, when isolated from Calendula officinalis (Favel et al., 1994). 

Betulinic acid has been already tested as an antifungal compound, with results showing low 

minimum inhibitory concentration (< 47 µg/mL) against several fungi (Chaudhuri et al., 2004; 

Kuiate et al., 2007; Shai et al., 2008).  
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Effect of flowers on fungi 

The presence of flowers significantly inhibited both sporulation and viability of B. bassiana, and 

increase significantly P. formosa germination, when compared to the respective control. The 

results from the divided plate‟s assays indicated that the effects observed on B. bassiana are 

most probably caused by diffusible compounds released by flowers. Although chemical 

composition of olive flowers is not available, other reports, regarding plants of the same family 

(Oleaceae), show that it includes phenolic compounds (Kunhachan et al., 2012). One of the 

phenolic compounds present in olive flowers is oleuropein (Malik and Bradford, 2006) which had 

shown antifungal activity (Korukluoglu et al., 2008). The significant increase of P. formosa 

germination was most likely caused by volatiles released from flowers. Although, and as referred 

before, volatiles are known to inhibit germination, an increase of germination of 

entomopathogenic fungal species exposed to volatiles has already been reported (Baverstock et 

al., 2005). Furthermore, germination of Beauveria bassiana increased slightly after exposure to 

Impatiens wallerana leaf disks, although significant differences were not detected (Ugine et al., 

2007).  

 

Effect of olives on fungi 

Significant inhibitory effects of olives were detected on germination, growth and sporulation of B. 

bassiana, and on sporulation and viability of P. formosa, when compared to control. The olives 

have showed a greater inhibitory effect against B. bassiana than to P. formosa. This result may in 

part explain the lower abundance of B. bassiana on the carpophagous generation of P. oleae, 

which feeds on olives, detected in a previous study (Oliveira et al., 2012).  

 The results of the undivided and divided plates assays suggested that this inhibitory 

response was probably resulted from the combined effects of both volatile and diffusible 

compounds produced by olives. An exception was the decrease of P. formosa viability by olives 

which seemed to be more influenced by volatile compounds. Although producing considerable 

less volatile compounds than leaves, the major components of volatile fraction of fruits are 

aldehydes. These compounds, especially short-chain aldehydes, are used by plant as defence 

towards infection of plant-pathogenic fungi (Vaughn and Gardener, 1993; Shukla et al., 2009), 

which can in part explain the reduction of germination detected in divided plates with olives. 

Other works showed similarly inhibition of germination (Vega et al., 1997; Brown et al., 1995; 
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Inyang et al., 1999a; Klingen et al., 2002) and sporulation (Hountondji et al. 2005) by volatile 

compounds in several entomopathogenic fungi.  

 The inhibitory effects of olives against both B. bassiana and P. formosa could also be 

caused by diffusible compounds release by those organs. Phenolic could be one of those 

compounds. Present in olives (Vinha et al., 2005), phenolic compounds have been referred as 

inhibitors of entomopathogenic fungal germination (Vega et al., 1997), sporulation (Russo & 

Pappelis, 1993; Dambolena et al., 2012) and growth (Lopez-Llorca & Olivares-Bernabéu, 1997; 

Lacey and Mercadier; 1998). For instance, tannic acid was showed to reduced germination of 

Isaria fumosorosea (= Paecilomyces fumosoroseus) blastospores to 46% and 7%, at 

concentrations of 500 ppm and 1000 ppm, respectively (Vega et al., 1997). The inhibitory effect 

of this phenolic compound was further confirmed by Lacey and Mercadier (1998) that recorded a 

decrease of about 50% of the germination of aerial conidia and blastospores of I. fumosorosea. 

Catechol is another phenolic compound present in olive oils (Brenes et al., 2004), and therefore 

in olives, that has been described as a potent inhibitor of germination of I. fumosorosea 

blastospores (reduced the germination to 55% at 500 ppm, and to 7% of germinated blastospores 

at 1000 ppm) (Vega et al., 1997). Other phenolics present in olive have been described as 

inhibitors of conidial germination of several fungi, especially plant-pathogenic species. Quercetin 

3-methyl ether and its glucosides (4‟-O-glucoside and 7-O-glucoside) were able to completely 

reduce the germination of Neurospora crassa (Parvez et al., 2004). Gallic acid reduced the 

germination of the phytopathogenic fungi Magnaporthe grisea, from 97.3% to 67%, and, in a 

more considerable way, the formation of appressoria to 5.3% (Ahn et al., 2005).  

 Cuticular waxes of olives may also be responsible for the inhibition of the germination of 

both B. bassiana and P. formosa. The major components of olive fruit surface wax are oleanoic 

acid and triacylglycerols (Bianchi et al., 1992b). The first compound is described to be inhibitory 

to fungal growth (Favel et al., 1994). Although nothing is reported about the antifungal activity of 

triacylglcerols, the individual fatty acids that compose them have been described to displayed 

antifungal characteristics (Pohl et al., 2011). In fact, short chain fatty acids are able to prevent 

conidia germination by blocking the uptake of phosphate and thiamine (Kerwin, 1987). Some 

fatty acids with proved ability to reduce germination include caprylic and capric acid (Barnes and 

Moore, 1997) or (Z)-9-heptadecenoic acid (Carballeira, 2008).  

 Another interesting fact was noticed in the assay with olives: higher reduction of 

sporulation was detected in undivided plates, where the detected inhibitory effect of olives on 

http://www.speciesfungorum.org/Names/SynSpecies.asp?RecordID=177413
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viability was less marked. In fact, an increase of viability would be expected from conidia 

collected from low-sporulating colonies, which indeed occurred in undivided plates with olives. 

This is due to the fact that some compounds, known as self-inhibitors, which are produced during 

sporulation (Macko, 1981), have the ability to reduce the germination of fungi, to ensure that 

conidia germinate under favorable conditions (Hegde and Kolattukudy, 1997). Hence, in the 

assays where sporulation was higher, an increased production of those compounds would occur, 

leading to a decrease on the viability of conidia.  

 

CONCLUSION 

As far as we know, this is the first work assessing the effect of olive tree organs on 

entomopathogenic fungi, exploring at the same time the nature of the compounds responsible for 

the detected effects. Results showed that all organs (leaves, flowers and olive) influence fungal 

germination, growth, sporulation and viability in different ways. In addition, both volatile 

compounds, as well as diffusible compounds are responsible for the detected effects on 

entomopathogenic fungi making these chemicals unlike to be involved in the recruitment or 

maintain of specific fungal species. The findings reported in this work show that 

entomopathogenic fungi are strongly influenced by the host plant, and, in particular, by different 

plant organs. Overall results indicated that olives were the more inhibitory to B. bassiana and for 

the P. formosa the same effect was noticed in the presence of leaves. This fact is helpful to 

explain occurrence of entomopathogenic fungi in the olive orchard ecosystems, increasing the 

knowledge of fungal-plant interaction. The understanding of such plant-mediated interactions 

would be very helpful when planning or assessing a biocontrol program.  
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Chapter 7 
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FINAL REMARKS AND FUTURE PERSPECTIVES 

 

The increasing pressure of the public, demanding healthier products, the awareness of both 

farmers and industry about deleterious effects of chemical pesticides, combined with restrictive 

laws about application of such products, some of them causers of insect resistance, led to a rise 

on research alternative control measures, namely entomopathogenic fungi. Although research 

has provided a large amount of data about this type of fungi, much is still unknown. Fungal 

behaviour is affected by numerous factors, both biotic and abiotic, and their presence, 

abundance and performance in a given ecosystem should be evaluated, before any control 

measures based in this type of fungi is taken. Furthermore, as fungal virulence characteristics 

are strain-specific, a large number of isolates should be characterized, in order to achieve 

maximum performance against pests. With all this into account, this work intended to identify 

fungal entomopathogens associated to one of the key pest of olive, Prays oleae Bern., evaluating 

the effect of selected factors on their abundance and behaviour. Furthermore, the virulence of 

four of the isolates was screened against another lepidopteran, Cydia splendana Hübner.  

 The first known survey of fungi associated to P. oleae, in larvae collected in the three 

generations that this lepidopteran presents throughout a year, showed a great number of species 

associated to this pest. As much as 43 fungal species, belonging to 24 genera were identified, 

showing that the methodology used for the collection of fungal isolates is appropriate. The same 

can be said about the use of the ITS region for fungal identification. The use of multi-locus 

approach for fungal identification should be taken in consideration whenever possible for this 

type of surveys. However, due to reduced amplification efforts and number of probable 

identifications achieved, the ITS region is still the most reliable barcode region to perform fungal 

identification, especially when the samples are completely unknown.  

 The identification of fungal species showed different values of abundance and diversity, 

depending on which generation the sampling of larvae and pupae was performed. Two main 

factors may be responsible for these results: i) the climatic conditions, known to affect fungi; and 

ii) the moth life cycle, attacking different olive tree organs in each of the generations, that leads to 

different exposure to fungal propagules and to different types of compounds emitted by those 

plant organs. Although the majority of the identified species have been described as 

phytopathogenic, this is the first report of entomopathogenic fungi associated to P. oleae, with 

special relevance to Beauveria bassiana. 
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 As the most abundant EF found was B. bassiana, preliminarily tests were performed to 

evaluate their virulence to another lepidopteran, Cydia splendana. This first report of the infection 

of this chestnut pest by entomopathogenic fungi allowed two major observations: by one hand, C. 

splendana showed to be very susceptible to this entomopathogenic fungus; by other hand, 

although concentration-dependent mortalities were observed in four tested strains, results 

showed variation of virulence between the tested isolates. The good results achieved with these 

fungal isolates show that they possess considerable virulence towards lepidopteran species. 

Furthermore, in order to achieve improved results when using entomopathogenic fungi, the 

detected variations of virulence suggest that several strains should be tested, in order to select 

the most suitable one.  

 Since several environmental factors affect the occurrence and distribution of insect 

pathogenic fungi, the effect of soil management (tillage or no-tillage) was evaluated and 

correlated with the occurrence and distribution of entomopathogenic fungi associated to P. oleae 

in an olive grove ecosystem. Tillage is still a normal practice performed by the olive growers, 

which is known to affect entomopathogenic fungi. However, the majority of the studies focusing 

this issue reported only the effect of tillage practice on the entomopathogenic fungal community 

of the soil. The evaluation of the effect of soil tillage on entomopathogenic fungi, at canopy level, 

will provide a more accurate measurement of how this cultural practice influences fungal 

infection of host insects. The observed results showed that, although differences were observed 

between tillage and no-tillage, no significant differences were observed. Therefore, insects 

inhabiting olive tree canopy of tilled and no-tilled orchards will have the same probability to be 

infected by entomopathogenic fungi. However, results showed that some entomopathogenic 

species were only present in orchards where soil was kept undisturbed. This could be either due 

to the presence of alternative hosts in the vegetable cover or by providing a different way of 

prevalence in the environment. Furthermore, climatic condition could have also influenced the 

results, as it is known that they are able to influence fungal spores‟ dispersion, their germination, 

fungal growth and insect infection process 

 Increasing evidence suggests that plant-mediate effects can also have impact on the 

entomopathogenic fungal community. In the present study, the observed variations on 

entomopathogenic fungal diversity and occurrence throughout the three P. oleae generations 

suggested that these fungi can be manipulated by the olive tree. In fact, the entomopathogens B. 

bassiana and Paecilomyces formosa were occurred almost exclusively in the phyllophagous (leaf) 
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and carpophagous (fruit) generations of P. oleae, respectively. Therefore, in order to evaluate how 

the different olive tree organs (leaves, flowers and fruits) affect entomopathogenic fungi, both B. 

bassiana and P. formosa were grown in the presence of leaves, flowers or olives, in either divided 

or undivided Petri dishes. All plant organs have shown to influence both fungal species. 

Beauveria bassiana was more inhibited by olives while P. formosa was more inhibited by leaves. 

These inhibitory effects were mostly resulted from the release of both volatile and diffusible 

compounds from leaves and fruits, being however found a more significative effect of volatiles in 

the case of the leaves. These results showed that olive organs influence fungal 

entomopathogens, in a complex way, which depends on the organ, fungal species ant type of 

compounds emitted by the organ. The fact that fungal entomopathogens are affected in such 

dissimilar ways by olive organs may help explaining the variation detected on the abundance and 

diversity of these fungi, in the different sampled generations of P. oleae.  

 The overall results achieved in this work showed that entomopathogenic fungi are 

present, in high abundance and diversity in olive orchards, associated to one of the key pests, P. 

oleae Bern. The isolates retrieved showed high pathogenicity to a lepidopteran pest, although 

showing variations between the tested isolates. Some factors were found to influence fungal 

entomopathogens: the olive organs (leaves, flowers and fruits) and their volatile and non-volatile 

compounds, as well as soil tillage, that, although not influencing abundance or mycosis 

detection, appears to influence entomopathogenic fungal community in olive orchards.  

 An intricate web of relations was found, that should be the leading course on future 

research on this field. The continuous monitoring of the influence of biotic and abiotic factors on 

entomopathogens, in field context, should be pursued, allowing a better understanding of their 

dynamics, which is of vital importance for future control programs that rely on these fungi. 

Interactions with olive trees, aiming to the determination of cultivar influence, for instance, or how 

other agricultural practices, like fertilization, impact on entomopathogens are key aspects to be 

studied. Another important aspect that should be studied is the effect of entomopathogens on 

beneficial insects of the olive culture. Although most works show that entomopathogens are safe 

to beneficial insects, and that fungi are isolated from one species, they are more virulent to 

insects of that species, this evaluation has to be done, regarding the specific ecosystem where 

entomopathogens are to be used. More importantly, the virulence of all the isolates obtained has 

to be confirmed against olive pests, namely P. oleae, as well as their characterization, regarding 

the production of secondary metabolites of interest. This virulence screening will allow the 
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selection of the most suitable isolates, which will be used for field trials, which should provide 

data for the creation of biological control programs using entomopathogenic fungi. Ultimately, the 

goal must be the formulation of a commercial product based on the isolated fungal strains in this 

work.  
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