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Abstract 

 

 

New heterocyclic bioactive fluorescent compounds: spectroscopic studies of DNA 

interactions and encapsulation in nanoliposomes 

 

Spectroscopic studies (absorption and steady-state fluorescence) of potential 

antitumoral heteroaryl and heteroannulated indoles, benzothienopyran-1-ones, 

methyl 3-amino-6-heteroarylthieno[3,2-b]pyridine-2-carboxylates, tetracyclic 

thieno[3,2-b]pyridine derivatives and benzothienoquinolines, synthesized in our 

research group, were performed in solvent of different polarities. Generally, all the 

compounds presented a solvent sensitive emission with significant red-shifts in polar 

solvents, pointing out for their potential use as solvatochromic probes.  

The antitumoral potential of some of the compounds was evaluated by the growth 

inhibition of human tumor cell lines in collaboration with the Faculty of Pharmacy of 

the University of Porto. 

The spectroscopic properties of the compounds were also evaluated when 

incorporated in liposomes of neat lipids and lipid mixtures of different formulations, 

including, Egg-PC (egg yolk phosphatidylcholine), DPPC (dipalmitoyl 

phosphatidylcholine), DPPG (dipalmitoyl phosphatidylglycerol), DMPG (dimyristoyl 

phosphatidylglycerol), DOPE (dioleoyl phosphatidylethanolamine), DSPE-PEG 

(Distearoyl phosphatidylethanolamine-polyethylene glycol), DODAB 

(Dioctadecyldimethylammonium bromide) and cholesterol.  

Fluorescence steady-state anisotropy measurements allowed monitoring the location 

and behaviour of the compounds in the liposomes. In most cases, they showed to be 

located mainly in the hydrophobic region of the lipid bilayers, experiencing differences 

in fluidity between the rigid gel and the liquid-crystalline phases. These studies of the 

antitumoral compounds encapsulation were made having in mind future drug delivery 

applications. 

The mean size, size-distribution and zeta-potential of the liposomes incorporating the 

most promising antitumoral compounds, were determined by DLS (Dynamic Light 
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Scattering). Almost all the liposomes with the incorporated compounds have shown  

diameters under 165nm and, with some formulations like DPPC:DMPG:DSPE-PEG 

(1:1:0.1), small diameters (below 100nm), low polydispersity and reasonable negative 

zeta-potential values were obtained for two of the methyl 3-amino-6-

heteroarylthieno[3,2-b]pyridine-2-carboxylates studied. 

In order to evaluate the interaction with nucleic acids, the binding modes of the 

tetracyclic planar fluorescent thieno[3,2-b]pyridine derivatives and of the 

benzothienoquinolines to salmon sperm DNA and/or to synthetic double-stranded (ds) 

heteropolynucleotides  were studied using spectroscopic methods which allowed the 

determination of intrinsic binding constants (Ki) and binding site sizes (n). Fluorescence 

quenching experiments with iodide ion were also performed in order to distinguish 

between the different binding modes of the compounds to the nucleic acids studied, 

since intercalated molecules are less accessible to anionic quenchers due to 

electrostatic repulsion with negatively charged nucleic acids. All the compounds 

interact with DNA and polynucleotides either by intercalation or groove binding. The 

latter seems to be the main type of interaction of these compounds with nucleic acids.   
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Resumo 

 

 

Novos compostos heterocíclicos bioativos fluorescentes: estudos espetroscópicos de 

interação com DNA e incorporação em nanolipossomas. 

 

Foram realizados estudos espetroscópicos (absorção e fluorescência em estado 

estacionário) de heteroarilindoles e indoles heteroanelados, benzotienopiran-1-onas, 

3-amino-6-heteroariltieno[3,2-b]piridina-2-carboxilatos de metilo, derivados 

tetracíclicos de tieno[3,2-b]piridinas e benzotienoquinolinas com potencial 

antitumoral, sintetizados no nosso grupo de investigação, em solventes de diferentes 

polaridades. 

De um modo geral, todos os compostos apresentaram uma emissão sensível ao 

solvente com significativos desvios para vermelho em meios polares, indicando a sua 

potencial utilização como sondas solvatocrómicas. 

O potencial antitumoral de alguns dos compostos foi avaliado através da inibição do 

crescimento de linhas celulares tumorais humanas em colaboração com a Faculdade 

de Farmácia da Universidade do Porto. 

As propriedades espetroscópicas foram também avaliadas para os compostos 

incorporados em lipossomas de lípidos puros e misturas lipídicas de diferentes 

formulações, incluindo, Egg-PC (fosfatidilcolina do ovo), DPPC 

(dipalmitoilfosfatidilcolina), DPPG (dipalmitoilfosfatidilglicerol), DMPG 

(dimiristoilfosfatidilglicerol), DOPE (dioleoilfosfatidiletanolamina), DSPE-PEG (Distearoil 

fosfatidiletanolamina-polietilenoglicol), DODAB (Brometo de 

dioctadecildimetilamónio) e colesterol.  

Medidas de anisotropia de fluorescência em estado estacionário permitiram 

monitorizar a localização dos compostos nos lipossomas. Na maioria dos casos, os 

compostos mostraram estar localizados maioritariamente na região hidrofóbica da 

bicamada lipídica, sentindo diferenças de fluidez entre a fase-gel e a fase líquido-

cristalina dos lípidos. Estes estudos de encapsulação dos compostos antitumorais 

foram realizados tendo em vista aplicações futuras de libertação de fármacos. 
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O tamanho médio, distribuição de tamanhos e potencial-zeta dos lipossomas 

incorporando os compostos antitumorais mais promissores foram avaliados através de 

medidas de DLS (Difusão de Luz Dinâmica). A maioria dos lipossomas mostrou possuir 

diâmetros menores que 165nm e, algumas formulações como DPPC:DMPG:DSPE-PEG 

(1:1:0.1), exibiram tamanhos menores que 100nm e baixa polidispersividade. Valores 

de potencial-zeta razoavelmente negativos foram obtidos para dois dos 3-amino-6-

heteroariltieno[3,2-b]piridina-2-carboxilatos de metilo estudados. 

Para avaliar a interação com os ácidos nucleicos, os modos de ligação dos derivados 

tetracíclicos fluorescentes planares  de tieno[3,2-b]piridinas e de benzotienoquinolinas  

ao DNA de esperma de salmão e heteropolinucleótidos sintéticos de cadeia dupla, 

foram estudados usando métodos espetroscópicos que permitiram a determinação 

das constantes de ligação (Ki) e tamanho dos sítios de ligação (n). 

Medidas de inibição de fluorescência pelo ião iodeto foram também realizadas para 

distinguir entre os diferentes modos de ligação dos compostos aos ácidos nucleicos 

estudados, uma vez que as moléculas intercaladas estão menos acessíveis a inibidores 

aniónicos devido às repulsões eletrostáticas com os ácidos nucleicos carregados 

negativamente. Todos os compostos interatuam com o DNA e polinucleótidos ou por 

intercalação, ou por ligação nos sulcos (grooves). Este modo de ligação parece ser o 

tipo de interação predominante dos compostos com os ácidos nucleicos. 
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Chapters 1, 2, 3 and 4 represent an introduction to the work presented. In 

chapter 1, the synthesis of the compounds studied is presented and discussed. In 

chapters 2 and 3 are based on a literature review of recent years, in the areas of the 

interaction with DNA and encapsulation in nanoliposomes of biologically active 

compounds. Chapter 4 is dedicated to theoretical concepts of molecular fluorescence 

spectroscopy. The organization of these four chapters is as follows:  
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 Chapter 3 - Compounds encapsulation in nanoliposomes 

 
 Chapter 4 - Molecular Fluorescence Spectroscopy 
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1. Introduction 

The therapy of tumors is being currently achieved by surgical intervention, radiation 

treatment and chemotherapy. The drawbacks of this latter are mainly due to the 

toxicity of the drugs, which is usually not limited to the cancer cells, and to the 

acquired resistance of the cancer cells to some of the most widely used drugs, which 

reduces the long-term efficacy of the therapy. For these reasons, there is a strongly 

need in the oncology field for new compounds endowed with antitumour activity. 

Thus, the chemistry and biological study of heterocyclic and/or heteroaromatic 

compounds has been an interesting field for a long time in medicinal chemistry, 

namely in anti-cancer chemistry1,2. One way to avoid the toxicity and to decrease the 

therapeutic dose of the antitumoral compounds is to encapsulate them in 

liposomes3,4. The study of the antitumoral mechanism of action of the compounds is 

also an important issue for cancer treatment. 

For some years now, our research group has been interested in the synthesis of 

heterocyclic antitumoral compounds, using several synthetic methodologies and 

different starting materials. 

In this work, several classes of compounds synthesized in our research group were 

studied due to their fluorescence properties and their potential antitumoral activity: 

heteroaryl and heteroannulated indoles, benzothienopyranones, heteroaryl and 

tetracyclic thienopyridine derivatives and benzothienoquinolines. These compounds 

were shown to be fluorescent in several solvents with different polarity and this 

important feature allowed us to study their location when encapsulated in liposomes 

of different lipid composition, and DNA interactions of some of them (including 

intercalation and groove binding) using natural double-stranded (ds) salmon sperm 

DNA and/or synthetic ds-polynucleotides. 
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2. Heteroaryl and heteroannulated indoles 

A number of heterocyclic derivatives containing nitrogen atom serve as a unique and 

versatile scaffolds for experimental drug design. Indole along with their several 

derivatives finds a prominent place in synthetic organic chemistry, as they found to be 

potent pharmacophores. Indole derivatives have displayed versatile pharmacological 

properties such as anti-inflammatory, anticancer, antidiabetic, antimalarial, 

antibacterial, antifungal, anticonvulsant and cardiovascular activities. Notably, the 

indolic amino acid tryptophan is the precursor of the neurotransmitter serotonin (5-

hydroxytriptamine) (Figure 1.1.). In addition, the indole ring is present in various 

marine or terrestrial natural compounds, which have useful biological properties. The 

name indole is deriving from the words indigo and oleum, since indole was first 

isolated by treatment of the indigo dye with oleum. Indole is an aromatic heterocyclic 

organic compound, having a bicyclic structure, consisting of a six-membered benzene 

ring fused to a five-membered nitrogen containing pyrrole ring, i.e., indole is a 

benzopyrrole (Figure 1.1)5. 

 
Figure 1.1. Indole, L-Tryptophan and Serotonin structures. 

 

Several recent reviews6-8 represent some synthesized indole derivatives and their 

pharmacological profiles, namely anticancer, which may contribute in future to 

synthesize various analogs and to develop new pharmacologically less toxic medicines.  

Furthermore, many planar heteroaromatic derivatives have shown anti-proliferative 

activity in vitro and some of them are important anticancer drugs2. 

Keeping these observations in mind and the interest of our research group in the 

synthesis of new biologically active heterocycles, namelly antitumoral compounds, it 

was planned to synthesize several fluorescent planar indole derivatives including 

heteroannulated ones. 

http://en.wikipedia.org/wiki/Aromatic
http://en.wikipedia.org/wiki/Heterocyclic_compound
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Benzene
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Pyrrole
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Thus, in an earlier work9,10, ,-diaryldehydroamino acids 1 and 2 were obtained by 

palladium-catalyzed Suzuki (C-C) cross-couplings11 of the methyl ester of N-(t-

butoxycarbonyl)-,-dibromodehydroalanine with dibenzothien-4-yl and dibenzofur-4-

yl boronic acids and were cyclized to new tetracyclic heteroaromatic compounds, the 

methyl 1-(dibenzothien-4-yl)-3H-benzothieno[2,3-e]indole-2-carboxylate 3, and the 

methyl 1-(dibenzofuro-4-yl)-3H-benzofuro[2,3-e]indole-2-carboxylate 4 in high yields, 

by a novel metal assisted (palladium (II) and copper) C-N intramolecular cyclization 

developped by us12-15 (Scheme 1.1).  

 
 
Scheme 1.1. Synthesis of the bis-Suzuki coupling products 1 and 2, and their intramolecular C-N 

cyclization
9,10

 to the tetracyclic compounds 3 and 4. 

 

The general catalytic cycle for the Suzuki (C-C) cross coupling involves three steps: 

oxidative addition, transmetallation and reductive elimination (Scheme 1.2)11. 
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Scheme 1.2. General catalytic cycle of the Suzuki cross-coupling reaction for formation of Ar-Ar’. 

 

The first step is the oxidative addition of an organic (aryl, heteroaryl or vinyl) halide to 

the Pd(0), occurring the formation of an organopalladium (II) halide. Then, the halide 

ion of the palladium (II) complex can be removed by the metal of the base, yielding an 

organopalladium alkoxide or hydroxide (more reactive than the organopalladium 

halide as the Pd-O bond is more polar than the Pd-X bond). In the electrophilic 

transmetallation step, the boron organometallic compound reacts with the palladium 

complex (Ar-Pd(II)-Y), giving rise to the diorganometallic complex (Ar-Pd(II)-Ar’). For 

that, the boronic acid must be activated by the base converting in a boron tetravalent 

compound. Finally, the reductive elimination of Pd(0) occurs and the C-C bond (Ar-Ar’) 

is formed.  

The mechanism for the intramolecular C–N cyclization of the Suzuki cross-coupling 

products proposed by our research group involves the formation of a palladacycle. 

After extrusion of Pd(0), the pyrrole ring is formed, and  it is thought that Cu(OAc)2 

reoxidizes it to Pd(II), avoiding the use of a stoichiometric  amount of Pd(OAc)2. As 

acetic acid is formed, the Boc group is removed12 (Scheme 1.3).  
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Scheme 1.3. Intramolecular C–N cyclization of the Suzuki cross-coupling products 1 and 2, to the 
compounds 3 and 4 (adapted from ref.12). 

 

Compounds 3 and 4 were prepared as potential new DNA targets and their absorption 

and fluorescence properties in different solvents and in the presence of natural 

double-stranded (ds) salmon sperm DNA were studied. The results in several solvents 

showed that either compound 3 or compound 4 can be used as fluorescence solvent 

sensitive probes. Spectroscopic studies of the interaction of both compounds with 

dsDNA allowed the determination of the binding constant (Ki) values and binding site 

sizes (n). Fluorescence quenching experiments using iodide ion allowed the 

determination of the accessibilities to the quencher, showing that intercalation is the 

preferred mode of binding of these molecules to DNA, compound 3 being the most 

intercalative showing also the highest affinity to DNA.  

Following the same strategy in a posterior work1, we synthesized the -

heteroaryldehydrophenylalanines 5 and 6 (E and Z) by Suzuki (C-C) cross-couplings of 

the methyl ester of N-(t-butoxycarbonyl)-(E or Z)--bromodehydrophenylalanine16 with 

dibenzothien-4-yl and dibenzofur-4-yl boronic acids, in excellent yields maintaining the 

stereochemistry of the starting material.  The intramolecular metal-assisted (Pd/Cu) C-

N cyclization of the Suzuki coupling products 5-E, 5-Z, 6-E and 6-Z gave, in all cases,  

two new heterocyclic compounds, the 3-(dibenzothien-4-yl)indole 7 and the 
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phenylbenzothienoindole 8 or the 3-(dibenzofur-4-yl)indole 9 and the 

phenylbenzofuroindole 10 in different ratios depending on the starting stereoisomer. 

These compounds result either from direct cyclisation or cyclization after isomerization 

of the Suzuki coupling products and were separated by column cromatography 

(Scheme 1.4, Table 1.1).  

 

Scheme 1.4. Synthesis of heteroaryl and heteroannulated indoles 7-10 from the pure stereoisomers 
Suzuki cross-coupling products1 5-E, 5-Z, 6-E and 6-Z. 
 
 

Table 1.1. Heteroaryl and heteroannulated indoles 7-10 prepared via scheme 1.4. 

Starting material Cyclized products 

 (ratios, yields) 

Time and temperature 

5-E 7/8  (3:1, 41%/14%) 3h30min, 130ºC + 3h30min, 160ºC 

5-E 7/8  (1.5:1, 37%/26%) 5h, 130ºC + 2h, 160ºC 

5-Z 7/8  (2:1, 20%/10%) 12h, 160ºC 

6-E 9/10  (6:1, 30%/5%) 5h, 160ºC 

6-Z 9/10  (5:1, 49%/10%) 3h, 160ºC 

 

Compounds 7, 8 and 9 were evaluated in colaboration with other research group of 

the Faculty of Pharmacy of the University of Porto, for their capacity to inhibit the in 

vitro growth of three human tumor cell lines, MCF-7 (breast adenocarcinoma, 1.5105 

cells/mL), NCI-H460 (non-small cell lung cancer, 0.75105 cells/mL), and SF-268 (CNS 
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cancer, 1.5105 cells/mL) after a continuous exposure of 48h. Compound 7 showed to 

be the most potent presenting GI50 (50% of cell growth inhibition) values of 11, 13 and 

17 μM, respectively, whereas compound 9 exhibited only a low inhibitory effect 

against the tumor cell lines tested with GI50 values of 27, 18 and 35 μM, respectively. 

Compound 8 presented a weak growth inhibitory effect (GI50 values of 73, 40 and 50 

μM, respectively). Comparing the activities of the heteroarylindoles 7 and 9, the 

oxygen isostere 9 presented a weaker growth inhibitory effect, although the results in 

NCI-H460 cell line are comparable1.  

Due to these results, the fluorescence properties in several solvents and in lipid 

membranes of these three indole derivatives were studied in the present work 

(Chapter 5.1). 
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3. Benzothienopyranones 

In the last years, several lactones have shown to be potent anticancer agents17-20. 

Additionally, promising pharmacological activities of 3-substituted isocoumarins21-23 

and 4-alkynyl substituted 2-pyrones24 (Figure 1.2) and the fact that thiophene moiety is 

common in manybioactive agents and drugs25 lead our research group to synthesize 

new potential antitumoral benzothienopyranones26.  

 

Figure 1.2. General structures of 2-pyrones and isocoumarins. 

 

Thus, several 3-arylbenzothieno[2,3-c]pyran-1-ones, including compounds 11a and 11b 

were prepared  in our research group, through a tandem one-pot procedure of 

Sonogashira coupling followed by a regioselective 6-endo-dig intramolecular 

lactonization from the commercial 3-bromobenzo[b]thiophene-2-carboxylic acid and 

different arylacetylenes (Scheme 1.5)26. 

As the product yields of the one-pot procedure were not high, Sonogashira couplings27 

of the methyl 3-bromobenzo[b]thiophene-2-carboxylate28 with several arylacetylenes 

were performed. The Sonogashira coupling products were obtained in good yield, 

using conditions similar to those of the one-pot procedure, but 1.5 equiv. of the 

arylacetylene were needed to completely consume the brominated compound. Several 

compounds, including compound 11d were obtained by a 6-endo-dig cyclization of  

methyl 3-(arylethynyl)benzo[b]thiophene-2-carboxylates, using TFA (trifluoroacetic 

acid) as a Brönsted acid at room temperature (Scheme 1.5).  
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Scheme 1.5. Synthesis of the 3-arylbenzothieno[2,3-c]pyran-1-ones 11a–d. 

 

The copper-cocatalyzed Sonogashira reaction is believed to take place through two 

independent catalytic cycles (Pd-cycle and Cu-cycle) as shown in Scheme 1.6, where a 

tertiary amine is represented as base. The generally accepted catalytic cycle for the 

palladium catalysis (the Pd-cycle) is based on a usually fast oxidative addition of R1-X 

(R1 = aryl, heteroaryl, vinyl; X = I, Br, Cl, OTf) to the real catalyst generated from the 

initial palladium complex. The next step in the Pd-cycle would connect with the cycle 

of the copper cocatalyst (the Cu-cycle). Thus, a usually rate-determining 

transmetallation from the copper acetylide formed in the Cu-cycle would generate a 

R1Pd(-CCR2)L2 species, which gives the final coupled alkyne after reductive 

elimination with regeneration of the catalyst. In the Cu-cycle, the base is supposed to 

abstract the acetylenic proton of the terminal alkyne, thus forming a copper acetylide 

in the presence of the copper(I) salt. It should be pointed out that the generally 

employed amines are usually not basic enough to deprotonate the alkyne in order to 

generate the anionic nucleophile that should form the copper acetylide. Therefore, a 

-alkyne-Cu complex as shown in Scheme 1.6 could be involved in the cycle, thus 

making the alkyne proton more acidic for easier abstraction. These copper acetylides 

could also be involved in the formation of the initial Pd(0)L2 catalytic species by 

reaction with the starting palladium(II) complexes, thus forming Pd-(-CCR2)2L2, which 



Chapter 1 – New potential antitumoral fluorescent heterocyclic compounds 
__________________________________________________________________________________________________________  

 

14 

 

after reductive elimination would afford active Pd(0)L2 and some amounts of a 

diacetylene byproduct. 

 

Scheme 1.6. General catalytic cycle of the copper-cocatalyzed Sonogashira reaction
27

. 

 

A plausible mechanism for the intramolecular cyclization of the Sonogashira products 

using TFA is polarization of the triple bond of the 3-(arylethynyl)benzo[b]thiophene-2-

carboxylates with H+ enhancing the electrophilicity of the alkyne (Scheme 1.7). 

 

Scheme 1.7. Proposed intramolecular cyclization of the Sonogashira products using TFA. 
 

The effect of the cyclized products (tricyclic lactones) on the in vitro growth of three 

tumor cell lines, namely MCF-7 (1.5105 cells/mL), SF-268 (1.5105 cells/mL) and NCI-

H460 (0.75105 cells/mL), was evaluated after exposure of 48h. The compounds have 

shown ability to inhibit the growth of all the cell lines tested, with GI50 values in the 

M range, and it was possible to establish some structure–activity relationships, 

namely related to the presence and position of substituents (OMe or F) in the phenyl 
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ring, compound 11a (ortho-fluorinated compound) showing clearly the best results, 

with quite low GI50 values (19, 12 and 15 M, respectively) for the three tumor cell 

lines mentioned above26. 

As the lactone compound with an ortho-fluorinated phenyl ring relative to the C–C 

bond showed the highest antitumoral activity, it was decided in this work, to perform 

fluorescence studies in solution and in liposomes of compounds with a fluor atom (11a 

and 11d) and with a methoxy group in the same positions, for comparison (11b and 

11c). The latter was synthesized in the present work by the same methodology used 

for the synthesis of compounds 11a-b (scheme 1.5). Fluorescence (steady-state) 

anisotropy measurements were also performed in order to obtain further information 

about the location of these compounds in liposomes (Chapter 5.2).  
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4. Thienopyridines 

Among pyridine derivatives, its fused analogs, namely thienopyridines, are often of 

much greater interest from the standpoint of biological activity than the corresponding 

constituent monocyclic compounds29. Six isomeric thienopyridine structures 

characterized by different annelation modes are known (Figure 1.3): thieno[2,3-

b]pyridine (A), thieno[3,2-b]pyridine (B), thieno[2,3-c]pyridine (C), thieno[3,2-

c]pyridine (D), thieno[3,4-b]pyridine (E), and thieno[3,4-c]pyridine (F). 

 

 

Figure 1.3. Isomeric thienopyridine structures
29

. 

 

The diversity of biological activities of the thieno[3,2-b]pyridine system lead our 

research group to synthesize several methyl 3-amino-6-(hetero)arylthieno[3,2-

b]pyridine-2-carboxylates30 by Suzuki-Miyaura cross-coupling of the methyl 3-amino-6-

bromothieno[3,2-b]pyridine-2-carboxylate31 with several (hetero)arylboronated 

pinacolboranes32 (for example, in the synthesis of 12b and 12c) or potassium 

trifluoroborates33 (for example in the synthesis of 12a), in high yields. These boron 

compounds are easier to handle than the boronic acids due to their insensitivity to air 

and moisture. Furthermore the corresponding boronic acids did not react with the 

methyl 3-amino-6-bromothieno[3,2-b]pyridine-2-carboxylate under the conditions 

used. Some of the compounds prepared are presented in scheme 1.8. 

 
 
Scheme 1.8. Some of the methyl 3-amino-6-heteroarylthieno[3,2-b]pyridine-2-carboxylates synthesized 

by our research group by Suzuki-Miyaura cross-coupling
30

.  
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According to the fact that neither the 2-thienyl pinacolborane ester nor the 

corresponding potassium trifluoroborate salt are commercially available, the  methyl 

6-(thiophen-2-yl)thieno[3,2-b]pyridine-2-carboxylate 12d was synthesized by a one-pot 

palladium-catalyzed two steps, borylation with pinacolborane followed by Suzuki 

coupling (BSC) with the methyl 3-amino-6-bromothieno[3,2-b]pyridine-2-carboxylate 

(Scheme 1.9). Due to the electron-rich character of the thiophene ring, compound 12d 

was only obtained using tri-t-butylphosphonium tetrafluoroborate34 as the ligand, in 

70% yield. To our knowledge it was the first time that this ligand was used in a BSC 

reaction. 

 
 

Scheme 1.9. Synthesis of compound 12d by a BSC reaction
30

. 
 

The C-B catalytic cycle begins with the (Het)Ar-X oxidative addition to the Pd(0) 

catalyst,  yielding an arylpalladium(II) species [(Het)Ar-Pd(II)-X]. Then the X atom of the 

[(Het)Ar-Pd(II)-X] complex is removed by the boron anion, forming the intermediate  

[(Het)Ar-Pd(II)-B(OR)2]. A reductive elimination of Pd(0) regenerates the catalyst and 

originates the heteroarylboronated compound. The use of Et3N in the coupling is very 

effective, preventing the formation of Ar-H, and facilitating the formation of the C-B 

bond (Scheme 1.10)35. 
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Scheme 1.10. Catalytic cycle proposed for the boronation C-B using pinacolborane and Et3N
35

. 

 

The advantages of these BSC sequencies are the use of two halogenated reagents and 

to perform an in situ borylation, yielding a C-B bond, without isolating the boronated 

intermediate, followed by a Suzuki-Miyaura cross-coupling (C-C) when the other halide 

reagent and the other base are added. 

The growth inhibitory effect of the coupling products was evaluated against three 

human tumor cell lines MCF-7(1.5105 cells/mL), A375-C5 (melanoma, 0.75105 

cells/mL), and NCI-H460 (0.75105 cells/mL), after 48 h of continuous exposure. From 

the results it was possible to establish some structure-activity relationships. The most 

active compound was 12c (the 2,2’-bithiophene derivative) with selectivity against 

MCF-7 and NCI-H460 cell lines presenting very low GI50 values (1 and 0.7 M, 

respectively). For this reason, compound 12c was selected to be further studied 

regarding its influence on the cell cycle distribution of the NCI-H460 cells and it was 

shown that this compound induce a cell cycle arrest in the G0/G1 phases. 

Due to these results, the spectroscopic properties in solvents of different polarity and 

in nanoliposomes  of compound 12c, as well as of the other thiophene derivatives 12a 
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and 12d and of the furan derivative 12b for comparison (although for the latter, the 

results in the cell lines were not good), were studied in the present work (Chapter 5.4).  

Our research group has also synthesized fused thienopyridines with pyrimidones. Thus, 

the tetracyclic compound 13a and 13b were synthesized by a tandem C–N coupling of 

the methyl 3-amino-thieno[3,2-b]pyridine-2-carboxylate or of the methyl 3-amino-6-

[2-(4-methoxyphenyl)ethynyl]thieno[3,2-b]pyridine-2-carboxylate with 2-

bromopyridine followed by intramolecular cyclization involving the nucleophilic attack 

of the pyridine nitrogen on the carbonyl of the ester group with loss of MeOH31 

(Scheme 1.11). This type of reaction was already performed by us in the 

benzo[b]thiophene series36. 

 

Scheme 1.11. Synthesis
31

 of the tetracyclic thienopyrimidine derivatives 13. 

 

The methyl 3-amino-6-[2-(4-methoxyphenyl)ethynyl]thieno[3,2-b]pyridine-2-

carboxylate was prepared by a Sonogashira coupling of the methyl 3-amino-6-

bromothieno[3,2-b]pyridine with the 4-methoxyphenylacetylene31,36. 

The interactions with DNA and nanosized liposomes of the fluorescent planar 

tetracyclic compounds 13a and 13b as potential new antitumorals were studied in the 

present work (Chapter 5.3). 
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5. Benzothienoquinolines 

Benzothieno[3,2-b]quinoline 1437 and benzothieno[2,3-c]quinoline 1538 are known for 

their anti-plasmodic and anti-infectious activities, acting mainly through intercalation 

between DNA base pairs when used in their salt form. These compounds were earlier 

synthesized by separated reactions and in several steps37,38, but our research group 

recently was able to obtain the two compounds in a one pot procedure. Thus, the 

reaction of the commercial available 3-bromobenzo[b]thiophene-2-carbaldehyde with 

2-aminophenylpinacolborane under Suzuki coupling conditions using a 

stereochemically hindered ligand, 2-(cyclohexylphosphane)biphenyl39, gave 

compounds 14 and 15 which were separated by column chromatography (Scheme 

1.12). 

 

Scheme 1.12. One pot synthesis of benzothieno[3,2-b]quinoline 14 and benzothieno[2,3-c]quinoline 15. 

 

The obtainment of the benzothieno[3,2-b]quinoline 14 was unexpected using these 

reaction conditions. It seems that it is the result of a Pd-catalyzed C-N coupling 

followed by an intramolecular cyclization that may perhaps occur by nucleophilic 

attack of the activated ortho position of the diarylamine intermediate on the carbonyl 

of the aldehyde, after deboronation. In the synthesis of the expected compound 15 a 
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Suzuki cross-coupling and a nucleophilic attack of the amino group on the aldehyde 

occurred.  

Despite these compounds have already been synthesized by others in several steps we 

were able to prepare them in a one pot procedure which is very advantageous to 

economize reagents and time. 

In this work, the interaction of the synthesized benzothienoquinolines 14 and 15 with 

natural double-stranded salmon sperm DNA and with synthetic ds-

polyheteronucleotides was investigated by fluorescence emission measurements. 

These studies are important due to the biological relevance of both compounds as 

potential antitumorals (Chapter 5.5).  
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1. Deoxyribonucleic acid (DNA) 

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all 

other organisms. DNA contains the instructions needed for an organism to develop, 

survive and reproduce. To carry out these functions, DNA sequences must be 

converted into messages that can be used to produce proteins, which are the complex 

molecules that do most of the work in our bodies. 

Most of the DNA is found inside a special area of the cell called the nucleus (nuclear 

DNA). Because the cell is very small, and because organisms have many DNA molecules 

per cell, each DNA molecule must be tightly packaged. This packaged form of the DNA 

is called a chromosome. Each DNA sequence that contains instructions to make a 

protein is known as a gene. The size of a gene may vary greatly, ranging from about 

1,000 bases to 1 million bases in humans. The complete set of nuclear DNA, or 

genome, for a human contains about 3 billion bases and about 20,000 genes on 23 

pairs of chromosomes1.  

The DNA sequences from everyone in the world are more than 99% identical. That 

means that only 1% of our DNA sequence is unique. Single nucleotide polymorphisms 

(SNPs) represent the 1% where we differ from each other. These differences influence 

why some people have a greater risk for cancer, or respond poorly to a particular 

medication2. 

The German biochemist Frederich Miescher first observed DNA in the late 1800s3. But 

the importance of DNA became clear only in 1953 due to the work of James Watson, 

Francis Crick, Maurice Wilkins and Rosalind Franklin. By studying X-ray diffraction 

patterns and building models, the scientists figured out the double helix structure of 

DNA4. The term double helix is used to describe DNA's winding, double-stranded 

chemical structure. This shape - which looks much like a twisted ladder - gives DNA the 

power to pass along biological instructions with great precision (Figure 2.1).  
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Figure 2.1. Double-helix DNA structure (computer model, one strand illustrated with green color and the 
other strand illustrated with red color; the weak colors represent nucleobases).  
 

DNA is a polymer. The monomer units of DNA are nucleotides, and the polymer is 

known as a "polynucleotide". Each nucleotide consists of a 5-carbon (pentose) sugar 

(2-deoxyribose, Figure 2.2), a nitrogen containing base-covalently bonded to the 1’- 

carbon of the deoxyribose (nucleobase or base), and a phosphate group5.  

     

 

 

 

 

 

 

Figure 2.2. 2-Deoxyribose molecule (a) and 2-Deoxyribose residue in DNA (b). 
 

The sugars are joined together by phosphate groups that form phosphodiester bonds. 

The two polynucleotide chains are held together by weak thermodynamic forces 

(hydrogen bonds between the bases), to form a DNA molecule (Figure 2.3)6. 
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Figure 2.3. DNA structure (adapted from ref. 6). 

 

There are two types of nitrogen bases found in nucleotides (Figure 2.4): 

- purines: adenine (A) or guanine (G)  

- pyrimidines: cytosine (C) or thymine (T) 

Figure 2.4. Structure of DNA nucleobases, purines and pyrimidines. 

 

The order, or sequence, of these bases determines what biological instructions are 

contained in a strand of DNA. For example, the sequence ATCGTT might instruct for 

blue eyes, while ATCGCT might instruct for brown.  

In a DNA double helix, each type of nucleobase on a strand binds with just one type of 

nucleobase on the other strand. This is called complementary base pairing. Here, 

purines form hydrogen bonds to pyrimidines, with adenine bonding only to thymine in 
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two hydrogen bonds, and cytosine bonding only to guanine in three hydrogen bonds. 

This arrangement of two nucleotides binding together across the double helix is called 

a base pair (Figure 2.5)7.  

 

Figure 2.5. Complementary base pairing in DNA
7
. 

 

In the double helix, the direction of the nucleotides in one strand is opposite to their 

direction in the other strand because the phosphodiester bonds occur between the 

third and fifth carbon atoms of adjacent sugar rings. Thus, these asymmetric bonds 

mean that a strand of DNA has a direction and we say that the strands are antiparallel. 

The asymmetric ends of DNA strands are called the 5′ (five prime) and 3′ (three prime) 

ends, with the 5′ end having a terminal phosphate group and the 3′ end a terminal 

hydroxyl group (Figure 2.6)8. 

 

 

 

 

 

 

 

 

 

 
Figure 2.6. Three views of DNA structure: schematic representation (a), atomic model (b), computer 
model (c) (adapted from ref. 8). 
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As hydrogen bonds are not covalent, they can be broken and rejoined relatively easily. 

The two strands of DNA in a double helix can therefore be pulled apart like a zipper, 

either by a mechanical force or high temperature9. As a result of this complementarity, 

all the information in the double-stranded sequence of a DNA helix is duplicated on 

each strand, which is vital in DNA replication. Indeed, this reversible and specific 

interaction between complementary base pairs is critical for all the functions of DNA in 

living organisms10.  
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2. DNA binding modes 

Many small molecules that bind to DNA are effective pharmaceutical agents, especially 

in cancer chemotherapy. Understanding the DNA binding of such drugs is essential for 

understanding their mode of action and for the development of design principles to 

guide the synthesis of new, improved compounds with enhanced or more selective 

activity11. 

The interaction of the anticancer drugs with DNA occurs mainly by three different 

ways12, 13, 14 (Figure 2.7). The first one is through control of transcription factors and 

polymerases in which drug interacts with proteins that bind to DNA, namely 

topoisomerases15,16. The second is through RNA (Ribonucleic Acid) binding either to the 

DNA double helix to form nucleic acid triple helix structures or to exposed DNA single 

strand forming DNA–RNA hybrids that may interfere with transcriptional activity. The 

third type of interaction involves the covalent/cross-linking or non-covalent binding of 

small aromatic ligand molecules to DNA double helical structures17. 

 
Figure 2.7. Summary of mechanism of action of anticancer drugs

17
. 
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The non-covalent interaction between small molecules and DNA generally follows 

three models12 (Figure 2.8): 

(i) Outside-edge binding: This involves ligand binding (e.g. Na+, Mg2+ or polyamines, 

Section 2.2.1.) to the outside of the helix through non-specific, primarily electrostatic 

interactions with the sugar–phosphate backbone. 

(ii) Intercalation/Bisintercalation: A planar (or near planar) aromatic ring system 

inserts in between two adjacent base pairs, perpendicular to the helical axis (section 

2.2.2). 

(iii) Groove binding: A bound ligand makes direct molecular contacts with functional 

groups on the edges of the bases that protrude into either the major or minor grooves 

(section 2.2.3.). 

Compounds that have the potential to be clinically useful are normally either 

intercalators or groove binders. However, outside-edge, electrostatic interactions are 

also important, not least because the association of positively charged counterions 

with the DNA polyanion has a large effect on DNA conformation and stability12. Thus, 

some antitumoral compounds have shown to be minor groove binders but, although 

they are toxic, nonselective, and sometimes expensive, at the present time DNA 

intercalators are among the most important drugs for treating cancer16.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Drug-DNA non-covalent interactions a) schematic representation b) computer model. 
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2.1. Outside-edge binding 

It is an electrostatic interaction with the negatively charged nucleic acid sugar-

phosphate structure (which is generally non-specific)17. The archetypal outside-edge 

binding drugs are the polyamines, spermine and spermidine which play an analogous 

role to histones, in that they may neutralize some of the negative charges on the DNA 

backbone and hence promote DNA packaging (Figure 2.9)12. 

 
Figure 2.9. Structures of two outside-edge electrostatic DNA binding ligands, spermine and spermidine. 

 

2.2. Intercalation/bisintercalation  

Planar organic molecules containing several aromatic condensed rings often bind to 

DNA in an intercalative mode between base pairs18,19. Ligand intercalation is 

associated with favourable enthalpic contributions to free energy arising from the 

formation of noncovalent interactions between the drug and base pairs. These 

noncovalent interactions involve several different forces, such as the hydrophobic 

effect, reduction of coulombic repulsion, Van der Waals interactions, -stacking, and 

hydrogen bonding12. Several acridines (e.g. C-1311), alkaloids (e.g. diplamine), 

anthracyclines (e.g. doxorubicin), anthracenediones (e.g. mitoxantrone), 

arylaminoalcohols (elinafide), coumarins (e.g. 9-methyl-2,3-

dihydrocyclopenta[c]furo[3,2-g]chromen-4(1H)-one), phenanthridines (e.g. ethidium 

bromide), quinolines (e.g. fascaplysin), indoles (e.g. AT2433-B1), and quinoxalines (e.g. 

Triostin A) have shown to be intercalating antitumoral drugs16 (Figure 2.10).  
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Figure 2.10. Several DNA-intercalators which act as antitumoral drugs
16

. 

 

Bisintercalators (e.g. bisacridine, Figure 2.11) are bifunctional molecules that possess 

two planar intercalating aromatic ring systems covalently linked by chains of varying 

length. A good reason for designing and synthesising a bisintercalator is that it should 

have a significantly higher affinity and much slower dissociation kinetics than the 

monointercalator equivalents. The binding constant for a bisintercalator should be 

approximately the square of the monomer binding constant. Since the biological 

activity is often closely correlated with binding affinity, bisintercalators should also 

have enhanced medical application12. 
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Figure 2.11. A flexibly linked bisintercalator formed from two dimethylaminoethylacridine-4-

carboxamide moieties
12

. 

 

The spatial arrangement of DNA before, during, and after replication is essential to a 

high-quality cell-division process. In this way, DNA topology is governed by 

Topoisomerases (Topos)20. Topos can be classified in two main classes: Topo I, which 

breaks only one strand of the DNA21, although both strands are involved in the 

interaction with the enzyme22, and Topo II23, which breaks both strands of the 

duplex24,25. A DNA intercalator has cytotoxic activity when it poisons the Topo by 

stabilizing the ternary, DNA–intercalator–Topo complex in such a way that the 

enzymatic process cannot continue forward or backward. Once the enzyme–DNA 

complexes are poisoned by intercalators, the ternary complex is detected by the cell as 

a damaged portion, which triggers a series of events; one of the more important 

events involves p53 protein, which induces cell apoptosis (programmed cell death) 

(Figure 2.12)26-28.   

 

Figure 2.12. Schematic representation of the mechanism of cytotoxicity of a DNA-Intercalator
16

. 
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Since Topos are ubiquitous in eukaryotic cells, both healthy and damaged cells can be 

affected during treatment with this class of poisons29, although cells that are 

constantly and frequently replicating (i.e., tumor cells) will be affected more than 

healthy cells16. 

 

2.3. Minor and major DNA grooves binding interaction 

The drugs which bind to DNA minor or major grooves are typically composed of several 

aromatic rings such as pyrrole, furan, or benzene that are connected by bonds 

possessing torsional freedom19. Minor groove binding makes intimate contacts with 

the walls of the groove, and as a result of this interaction numerous hydrogen binding 

and electrostatic interactions occur between anticancer drugs and DNA (DNA bases 

and the phosphate backbone).  Major groove binding occurs via the hydrogen bonding 

to the DNA and can form a DNA triple helix.  

A large number of functional groups of the DNA bases are accessible in the wide major 

groove compared to the narrow minor groove. However, many small molecules 

interact with DNA in the minor groove. The major and minor grooves differ in 

electrostatic potential, hydrogen-bonding characteristics, steric effects, and hydration. 

In general, small groove-binding molecules exhibit a preference for the minor groove, 

not least because this site of interaction provides better Van der Waals contacts. 

Distamycin A and mithramycin A are antitumoral compounds which bind to DNA in the 

minor grooves (Figure 2.13)17. 

   

        Distamycin A                 Mithramycin A 

Figure 2.13. Distamycin A and Mithramycin A structures. 
 

Different modes of binding can occur simultaneously with the same antitumoral 

compound30.  For example, mitomycin is a groove binder but also a cross-linker and 

http://www.topferment.com/english/showPro.asp?id=18
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daunomycin is able to bind to the minor groove and intercalate between the DNA base 

pairs (Figure 2.14). Note that many minor groove-binding ligands prefer A-T sites 

compared to intercalators, which generally exhibit a G-C preference12. 

 
Figure 2.14. (a) Atomistic structure of daunomycin. Constructed and equilibrated structures of (b) the 
intercalated state and (c) the minor groove-bound state. In both figures, DNA is shown in a 
semitransparent surface representation including ball and stick atom models and residue-based color 
(yellow for C, green for G, red for A and blue for T), whereas daunomycin is represented via a ball and 

stick model with element-based CPK color
30

. 

 

2.4. Thermodynamics of drug-DNA interactions 

A classical equation for the determination of binding parameters (more specifically, 

the association constant) for the non-cooperative binding is the modified form of 

Scatchard plot, proposed by McGhee and von Hippel12: 

 

  
         

      

        
 

   

                                                

 

where r is the binding ratio (defined as the ratio of the concentration of bound drug  

(Cb) over the total concentration of DNA binding sites (S), Cf the concentration of free 

drug, K the equilibrium binding constant for all sites, i.e. any sequence dependence for 

drug binding is ignored, and n the binding site size, i.e. the number of base pairs 

occupied by a bound drug. Cb and Cf can be calculated by 
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where      is the fluorescence intensity of the free compound and      the fluorescence 

intensity of the bound compound at total binding. 

When a complex between DNA and drug is formed, changes in the thermodynamic 

stability and the functional properties of DNA occur17.  Although there is a significant 

free energy cost for the establishment of the intercalation cavity (approximately 4 kcal 

mol-1), favorable contributions (hydrophobic, ionic, hydrogen bonding, and Van der 

Waals) result in association constants of 105 to 1011 M-1. Groove binders are stabilized 

by intermolecular interactions and typically have larger association constants than 

intercalators (approximately 1011 M-1), since a cost in free energy is not required for 

creation of the binding site15. 

 

2.5. Methods to determine the DNA-drug binding modes 

Determination of DNA binding modes of small molecules is crucial for revealing their 

potential genotoxicity. Drug–DNA binding may result in changes in gene expression 

and influence cell proliferation31,32. Thus, understanding drug–DNA binding 

mechanisms is crucial for predicting the consequences of these interactions in the 

human body33. Groove binding typically results in only subtle changes in structure, and 

the DNA remains in the same form. In contrast, intercalation, in which a planar ligand 

moiety is inserted between adjacent base pairs, results in a substantial change in DNA 

structure, and causes lengthening, stiffening, and unwinding of the helix. These 

changes result in a pronounced alteration of the hydrodynamic properties of DNA for 

intercalation, but not for groove binding. Furthermore, for intercalation, the planar 

chromophore is in close contact with the DNA base pairs, and is oriented roughly 

perpendicular to the DNA helix axis. Thus, techniques that can evaluate the orientation 

of the ligand chromophore and its proximity to the DNA bases, can potentially 

distinguish intercalation from groove binding34. 

Many techniques have been applied for investigation of the interaction of DNA with 

small molecules including X-ray diffraction, Nuclear Magnetic Resonance, Mass 

Spectrometry, Footprinting, UV-Visible Spectroscopy, Circular Dichroism Spectroscopy, 

Calorimetry, Gel electrophoresis, Dynamic Viscosity, Single Molecule Force 

Spectroscopy, Docking Studies, FT-IR and Raman Spectroscopy, Molecular Modeling 

Techniques, Equilibrium Dialysis, Electric Linear Dichroism, Surface Plasmon Resonance 
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and Electrochemical Techniques15,16,17,18,33,34. Standard fluorescence methods, such as 

intensity measurements, polarization, and solute quenching studies have also been 

applied. Indeed, many molecules exhibit a large fluorescence enhancement15,33 and an 

increased polarization value34 on binding to DNA. Fluorescence quenching assays allow 

distinguishing between DNA binding modes35 since intercalators are less accessible to 

anionic quenchers than groove binders, due to electrostatic repulsion with the 

negatively charged sugar-phosphate DNA backbone36. 
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1. Nanocarriers for drug delivery 

The last years have seen an explosion of interest for the area of science and 

technology known as “nanotechnology”. Nanotechnologies are defined as 

technologies which include components that have at least one dimension between 1-

100 nm, and display unique characteristics due to being at this scale. Unlike previous 

high-technology waves, nanotechnology covers a diverse field of sciences and 

engineering, crosses boundaries between them and aims to utilize the very 

fundamental characteristics of matter by manipulation and control at the nanoscale in 

order to create new material and devices with functional characteristics different from 

the common materials1. 

Bionanotechnology is one of the most promising areas of nanotechnology and in the 

present it is directly related with the use of biological systems, like cells and cellular 

components, to create functional nanodevices made of organic and inorganic materials 

for biological activity. This is an area in permanent expansion and a lot of studies about 

new fabrication methods and characterization techniques arise constantly. 

Bionanotechnology includes many important areas such as nanomedicine, diagnosis 

and therapy with the development of new drugs. One of the most promising research 

areas of bionanotechnology is the development of systems for controlled drug delivery 

by nanoencapsulation of drugs, to solve several limitations of conventional drug 

delivery systems, such as nonspecific biodistribution and targeting, lack of water 

solubility, poor oral bioavailability, and low therapeutic indices, namely due to 

resistance of the cancer cells2.  

The use of nanocarriers as systems for drug delivery has many advantages when 

compared with other conventional methods, since they can potentially overcome 

solubility, pharmacokinetics, in vivo stability and toxicity problems3-5, more precisely: 

o The biodistribution of cancer drugs is improved as nanoparticles have optimal 

size and surface characteristics which increase their circulation time in the 

bloodstream; 

o The nature and the composition of the vehicles protect and prevent the 

decomposition of the drug; 

o Nanocarriers allow a secure administration of the drug without local 

inflammatory reactions; 
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o More effective therapy and decrease of the number of the doses due to the 

gradual and controlled release of the drug; 

o Nanocarriers can enhance the intracellular concentration of drugs in cancer 

cells while avoiding toxicity in normal cells, by using both passive targeting 

strategies (such as the acidic environment of tumor cells or the enhanced 

permeability and retention effects of tumors due to their leaky vasculature 

and their lack of an effective lymphatic drainage system) and active targeting 

strategies (using ligands or antibodies directed against selected tumor 

targets)2,6,7. 

o When nanocarriers bind to specific receptors and then enter the cell, they are 

usually enveloped by endosomes via receptor-mediated endocytosis, thereby 

bypassing the recognition of P-glycoprotein, one of the main drug resistance 

mechanisms8. 

There are many different submicron-sized (3-200nm) devices being used for drug 

delivery, namely devices made of polymers (polymeric nanoparticles, micelles, or 

dendrimers), viruses (viral nanoparticles), organometallic compounds (carbon 

nanotubes) or lipids (liposomes). Each of these systems has specific peculiarities that 

should be considered in the choice of the delivery system2 (Table 3.1). 
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Table 1. Types of nanocarriers for drug delivery (adapted from ref. 2). 

System Structure Characteristics 

Polymeric nanoparticles 
(polymer-drug conjugates) 

 

Drugs are encapsulated in a 
polymer or conjugated to the 
side chain of a linear polymer 
with a linker (cleavable bond). 

a) Water-soluble, nontoxic, 
biodegradable; 
b) Surface modification 
(pegylation); 
c) Selective accumulation and 
retention in tumor tissue (EPR 
effect); 
d) Specific targeting of cancer 
cells while sparing normal cells-
receptor mediated targeting 
with a ligand. 

Polymeric micelles 

 

Amphiphilic block copolymers 
assemble and form a micelle 
with a hydrophobic core 
(reservoir for hydrophobic 
drugs) and hydrophilic shell 
which stabilizes the core and 
renders the polymer to be 
water-soluble. 

a) Suitable carrier for water-
insoluble drug; 
b) Biocompatible, self-
assembling, biodegradable; 
c) Ease of functional 
modification; 
d) Targeting potential. 

Dendrimers 

 

Radially-emerging 
hyperbranched synthetic 
polymer with regular pattern 
and repeated units. 

a) Biodistribution and pK can 
be tuned; 
b) High structural and 
chemical homogeneity; 
c) Ease of functionalization, 
high ligand density; 
d) Controlled degradation; 
e) Multifunctionality. 

Viral nanoparticles 

 

Protein cages, which are 
multivalent, self-assembled 
structures. 

a) Surface modification by 
mutagenesis or bioconjugation 
– multivalency; 
b) Specific tumor targeting, 
multifunctionality; 

c) Defined geometry and 
remarkable uniformity; 
d) Biological compatibility and 
inert nature. 

Carbon nanotubes 

 

Carbon cylinders composed of 
carbon atoms in a hexagonal 
arrangement. 

a) Water-soluble and 
biocompatible through chemical 
modification (organic 
functionalization); 
b) Multifunctionality. 

Liposomes 

 

Self-assembling closed colloidal 
structures composed of lipid 
bilayers in which an aqueous 
volume is entirely enclosed by a 
membranous lipid bilayer. 

a) Amphiphilic, biocompatible; 
b) Ease of modification; 
c) Targeting potential. 
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However, although nanoparticles offer many advantages as drug carrier systems, there 

are still many limitations to be solved such as poor oral bioavailability, instability in 

circulation, inadequate tissue distribution, and toxicity2. 
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2.  Liposomes  

2.1. Lipids as structural components of liposomes 

Lipids constitute a group of naturally occurring molecules that include fats, waxes, 

sterols (such as cholesterol), fat-soluble vitamins (such as vitamins A, D, E, and K), 

monoglycerides, diglycerides, triglycerides, phospholipids, and others. The main 

biological functions of lipids include energy storage, signaling, and acting as structural 

components of cell membranes9,10. Lipids have found applications in cosmetic and 

food industries, as well as in nanotechnology, e.g. acting as structural components of 

liposomes11.  

Phospholipids play a central role in the biochemistry of all living cells. These molecules 

constitute the lipid bilayer defining the outer confines of a cell, but also serve as the 

structural entities which confine subcellular components12. Furthermore, 

phospholipids are the widely used structural components of liposomes.  A 

phospholipid is composed of two fatty acid chains, a glycerol unit, a phosphate group 

and a polar molecule (e.g. choline, glycerol, etc). Phospholipids are 

amphipathic/amphiphilic compounds in a way that the phosphate group and polar 

head region of the molecule is hydrophilic, while the fatty acid tail region is 

hydrophobic (Figure 3.1).   

 

Figure 3.1. Typical structure of a phospholipid. 

 

Lipids are characterized by the phase transition temperature (or melting temperature), 

Tm, which is defined as the temperature required to induce a change in the lipid 

physical state from the ordered gel phase, where the hydrocarbon chains are fully 

http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Fat
http://en.wikipedia.org/wiki/Wax
http://en.wikipedia.org/wiki/Sterol
http://en.wikipedia.org/wiki/Vitamin
http://en.wikipedia.org/wiki/Monoglyceride
http://en.wikipedia.org/wiki/Diglyceride
http://en.wikipedia.org/wiki/Triglyceride
http://en.wikipedia.org/wiki/Phospholipids
http://en.wikipedia.org/wiki/Lipid_signaling
http://en.wikipedia.org/wiki/Cell_membrane
http://www.biology-online.org/dictionary/Amphipathic
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extended and closely packed, to the disordered liquid crystalline phase, where the 

hydrocarbon chains are randomly oriented and fluid. There are several factors which 

directly affect the phase transition temperature including hydrocarbon length, 

unsaturation, charge, and headgroup species. As the hydrocarbon length is increased, 

van der Waals interactions become stronger requiring more energy to disrupt the 

ordered packing, thus the phase transition temperature increases. Likewise, 

introducing a cis double bond into the acyl group puts a kink in the chain which 

requires much lower temperatures to induce an ordered packing arrangement. 

Relatively to the electric charge, lipids can be ionic (cationic or anionic) molecules, 

neutral molecules or zwitterionic molecules (both positive and negative charge, in 

different atoms). Table 3.2 shows some lipids structures, as well as their electric charge 

and phase transition temperature. 

 
Table 3.2. Structure, electric charge and phase transition temperature, Tm, of some lipids. 

Structure 
Electric 

charge 
Tm /ºC 

 
Egg-PC 

1,2-diacyl-sn-glycero-3-phosphocholine from egg yolk 

 

Zwitterionic 
Very 

low 

 
DPPC 

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine 

 

Zwitterionic 
41 

(Ref. 13) 

 
DPPG 

1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) 

 

Anionic 
40 

(Ref. 14) 
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DMPG 

1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) 

 

Anionic 
23 

(Ref. 15) 

 
DOPE 

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine 

 
 

zwitterionic 
Very 

low 

 
DSPE-PEG 

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene 
glycol)-2000] (ammonium salt) 

 

 

Anionic 12.8  

 
DODAB 

dioctadecyldimethylammonium bromide 

 

Cationic 
45 

(Ref. 16) 

 
Cholesterol 

 

Neutral 
Very 

low 

 

2.2. Molecular Self-assembly 

Molecular self-assembly is the process by which molecules adopt a defined 

arrangement without guidance or management from an outside source. When 

phospholipids are suspended in water they tend to self-orient in order to avoid any 

http://en.wikipedia.org/wiki/Molecule
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contact between the non-polar tails and water (energetically unfavorable) and to 

maintain the contact between water and the polar head of the molecules. In this way, 

amphiphilic molecules can form a variety of structures, such as bilayers, micelles or 

liposomes, due to hydrophilic/hydrophobic interactions but also electrostatic and Van 

der Waals interactions (Figure 3.2). 

 

Figure 3.2. Different self-organized structures. 

 

2.3. Different types of liposomes 

Liposomes were discovered in 1965 by Bangham, who found that when phospholipids 

were dispersed in water, vesicular structures of hydrated bilayers with an aqueous 

cavity are form spontaneously17. 

Liposomes are vesicles composed of one or more lipid bilayer membranes. The unique 

ability of liposomes to entrap drugs both in an aqueous and a lipid phase make such 

delivery systems attractive for hydrophilic and hydrophobic drugs18. Because lipids are 

amphipathic in aqueous media, their thermodynamic phase properties and self- 

assembling characteristics evoke entropically driven sequestration of their 

hydrophobic regions into spherical bilayers. Those layers are referred to as lamellae19 

(Figure 3.3). Liposomes can be unilamellar (with only one bilayer surrounding the 

aqueous core) or multilamellar (with several bilayers oriented concentrically around an 

aqueous core)20. 

 

Figure 3.3. Unilamellar liposome structure. 
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According to size and number of lamellae, liposomes are divided into different 

subcategories (table 3.3 and figure 3.4). 

 

Table 3.3. Liposome classification based on structural parameters
20

. 

 

 

 

 

 

 

 
 

Figure 3.4. Schematic representation of different liposomes
21

. 

 

2.4. Liposomes preparation 

In contrast to other surfactant aggregates such as micelles, liposomes do not form 

spontaneously in aqueous media and are therefore not thermodynamically stable 

structures22. Formation of liposomes requires energy. Depending on which type of 

liposome is produced, the required energy input can greatly vary. MLVs form readily 

when bilayer-forming polar lipids are dispersed in aqueous media under mild agitation. 

In order to produce LUVs and SUVs, substantial energy inputs are required that are 

sufficient to disrupt MLV and MVV structures and force the generation of unimodal 

vesicles23. Generally, liposomes are only stable for a defined period of time; i.e. they 

are said to be “kinetically stable” similar to emulsions. Because of this, many of the 

principles of emulsion formation also apply to the formation of liposomes and the 

techniques used to produce emulsions may often be used to produce liposomes24. 
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Liposomes can be obtained by means of several different methods (Scheme 3.1). 

Normally, the entrapped agents are loaded before or during the manufacturing 

procedure (passive loading). However, certain type of compounds with ionizable 

groups, and those which display both lipid and water solubility, can be introduced into 

the liposomes after the formation of intact vesicles (active loading)25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.1. Different methods for liposomes preparation
25

. 

 

The adequate choice of liposome preparation method depends on the following 

parameters26,27:  

1) the physicochemical characteristics of the material to be entrapped and those of the 

liposomal ingredients; 

2) the nature of the medium in which the lipid vesicles are dispersed;  

3) the effective concentration of the entrapped substance and its potential toxicity;  

4) additional processes involved during application/delivery of the vesicles;  

5) optimum size, polydispersity and shelf-life of the vesicles for the intended 

application and  

6) batch-to-batch reproducibility and possibility of large-scale production of safe and 

efficient liposomal products. 

 

Methods of Liposomes preparation 

Passive loading 
techniques 

Active loading 
techniques 

Mechanical dispersion 
methods 

Detergent removal 
methods 

Solvente dispersion 
methods 

 
 Lipid film hydration by 

hand shaking, non-hand 
shaking or freeze drying. 

 Micro-emulsification 

 Sonication 

 French pressure cell 

 Membrane extrusion 

 Dried reconstituted 
vesicles 

 Freeze-thawed liposomes 

 

 Ethanol injection 

 Ether injection 

 Double emulsion 

 Reverse phase 
evaporation vesicles 

 Stable pluri lamellas 
vesicles 

 

 Detergent (Chocolate, 
alkylglycoside, Triton 
X-100) removal from 
mixed micelles by: 

- Dialysis 

- Column 
chromatography 

- Dilution 

- Reconstituted sendai 
virus enveloped 
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3. Liposomes as drug delivery systems 

Liposomes were suggested as drug carriers in cancer chemotherapy by Gregoriadis et 

al.28 in 1974. Since then, liposomes have been extensively used as carriers for 

pharmaceutical, diagnostic and cosmetic agents, with already a few commercially 

available products29,30. As an example, Doxil® is a liposomal formulation of the 

anthracycline drug doxorubicin used to treat cancer in AIDS-related Kaposi sarcoma 

and multiple myeloma. Its advantages over free doxorubicin are greater efficacy and 

lower cardiotoxicity31. Nevertheless, liposomes still have not attained their full 

potential, and improvements must be made in terms of design, functionality and 

stability to allow the drugs to reach and to be transferred to the target site20 and to 

combat the increasing problem of multidrug resistance (MDR) acquired by cancers31.  

To reach the target site, the liposomes must remain time enough in the circulatory 

system without being disintegrated by high-density lipoproteins (HDLs) in the plasma 

(which were found to remove phospholipid molecules rapidly from the bilayers of 

vesicles) or without being intercepted by the fixed macrophages of the 

reticuloendothelial system (RES)32.  

The selective delivery of drugs into disease sites is generally achieved by extravasation 

into the interstitial space from the bloodstream31 (Figure 3.5). This can be achieved by 

either passive or active targeting3,29. Active targeting requires some kind of ligand to 

bind the liposome surface to the pathological cells and passive targeting uses the 

physical properties of the liposomes together with the microanatomy and the 

microenvironment of the target tissue to obtain selective localization20. For example, 

liposomes can be designed to release their entrapped contents under certain 

controlled pH or temperature conditions18. In solid tumors, the extracellular pH tends 

to be significantly more acidic (6.5) than the pH of the blood at 37 C, which is (7.5); so, 

it is possible to engineer vehicles for drugs with the adequate composition so that the 

delivery occurs in these specific sites. On the other hand, temperature can also be 

exploited, using a delivery system that releases the drug at temperatures above 37 C 

(e.g. using lipids with Tm > 37 C in the liposomes preparation)20. 
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Figure 3.5. Active and passive targeting of cells for drug targeting using liposomes. At sites of pathology, 
where the endothelium layer is inflamed, mediators such as bradykinin, vascular endothelium growth 
factor, and prostaglandins increase the endothelial permeability. Underlying pathology includes cancer, 
rheumatoid arthritis and infection. Liposomes extravasate through the gaps between cells and enter the 
interstitial fluid. Active targeting is achieved by conjugating ligands to the liposome that bind to a 
specific target cell receptor, leading to internalization or release of the drug. Passive targeting can be 

mediated by internalization or local high-concentration release of the drug
31

.  

 

To effectively deliver drug to the targeted tumor tissue, liposomes must have the 

ability to remain in the bloodstream for a considerable time without being eliminated. 

Conventional liposomes are usually caught in the circulation by the reticuloendothelial 

system, such as the liver and the spleen, depending on their size and 

composition/surface characteristics33. 

 
Size 

The size of nanoliposomes used in a drug delivery system should be large enough to 

prevent their rapid leakage into blood capillaries but small enough to escape capture 

by fixed macrophages that are lodged in the reticuloendothelial system, such as the 

liver and spleen. The size of the sinusoid in the spleen and fenestra of the Kuffer cells 

in the liver varies from 150 to 200 nm34 and the size of gap junction between 

endothelial cells of the leaky tumor vasculature may vary from 100 to 600 nm35. 

Consequently, the size of nanoliposomes should be up to 100 nm to reach tumor 

tissues by passing through these two particular vascular structures2.  
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Composition/surface characteristics 

The phospholipid DMPG have shown to provide the formation of perforations (pores) 

across the lipid membrane in the intermediate phase (between the turbid gel and fluid 

membrane phases). This behavior might be a characteristic of charged membranes in 

general: they could exhibit a ‘‘melting regime’’ (temperature interval where the 

melting process evolves) instead of a unique melting transition. Thus, a high local 

concentration of charged lipids could help the formation/stabilization of transient 

pores across the membrane, which would enable a controlled material transport 

across biological membranes36. Furthermore, the opening of pores across the 

membrane tuned by ionic strength, temperature, and pH, is likely to have biological 

relevance and could be used in applications for controlled release from 

nanocompartments37. 

The addition of cholesterol to the liposomes composition will prevent substance 

release as it will decrease liposome permeability and improve their chemical stability 

(higher membrane rigidity)38,39. Egg-PC (egg yolk phosphatidylcholine) liposomes with 

cholesterol, in (7:3) proportion, are commonly used as models of cell membranes40,41. 

Nanoliposomes should ideally have a hydrophilic surface to escape macrophage 

capture and enhance their life span in the circulatory system42. This can be achieved by 

coating the liposome with the synthetic polymer polyethyleneglycol (PEG)18,43-45. The 

pegylated liposomes are long circulating in blood due to a highly hydrated and 

protected liposome surface, constituted by the hydrophilic polymers that inhibit 

protein adsorption and opsonization of the liposomes. PEG provides the liposomes 

with up to 72 hours half-life in blood20. 

Grafting specific ligands to the liposome surface facilitates the fusion of the liposome 

with target cells by endocytosis, thus releasing material to be delivered18. This can be 

achieved by coupling liposomes to specific antibodies or coating the liposomes with 

ligands targeting proteins expressed on cancer cell membranes or endothelial cells 

lining the newly generated blood vessels in the tumor20. 

In terms of the liposomes charge, cationic liposomes, unlike their anionic and 

electroneutral counterparts, have been shown to target tumor vessels to a significant 

extent over vessels in normal healthy tissues, targeting approximately 25 and 5% of 

vessel areas respectively46 (electrostatic interactions between positively charged 

http://www.all-acronyms.com/reverse/egg_yolk_phosphatidylcholine
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liposomes and the negatively charged cell membranes facilitate cell uptake). However, 

cationic liposomes can cause cytotoxicity limiting their safety for clinical use.  

Consequently, interest for drug delivery has turned to neutral and anionic liposomes 

and the latters have shown to have enhanced macrophage internalisation47. 

Additionally, there is a relationship between surface charge and stability. This 

relationship can be evaluated by zeta-potential measurements: in general, particles 

with zeta potentials more positive than +30mV or more negative than -30mV are 

normally considered stable, with no tendency to aggregate, due to the electrostatic 

repulsion between the particles. 

In conclusion, it can be stated that liposomes are just beginning to make an impact in 

chemotherapy owing to the promising effects in the reduction of toxicity and side 

effects of existing therapies and in the increase efficacy by selective targeting of 

tumors. However, the full potential of these emerging technologies has not yet been 

fully realized. The toxicology of nanomaterials in humans still needs to be fully studied 

and evaluated. The studies already performed have been small and limited to short-

term exposure and should focus on long-term exposure in humans, animals and the 

environment. Further, in vivo studies are needed to determine the efficacy of these 

new drug formulations, and the reproducibility of batches of drug formulations also 

needs to be refined31. 
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4. Determination of the size and zeta-potential of the liposomes with incorporated 

compounds 

The fate of intravenously injected liposomes used as drug delivery systems is 

determined by a number of properties, two of the most important being particle size 

and zeta potential. The size is one of the most important physical properties of lipid 

vesicles with incorporated compounds because this parameter has a direct influence in 

many other properties such as reactivity, stability and efficacy of drug delivery. Unless 

the sample to characterize is perfectly monodisperse, i.e. every single particle has 

exactly the same dimensions, it will consist of a statistical distribution of particles of 

different sizes. It is common practice to represent this distribution in the form of a 

frequency distribution curve, or a cumulative (undersize) distribution curve (size 

distribution)48. 

Zeta-potential is another important parameter that affects the stability of the 

liposomes. It represents a measure of the magnitude of the electrostatic or charge 

repulsion or attraction between particles, and its measurement brings detailed insight 

into the causes of dispersion, aggregation or flocculation, and can be applied to 

improve the liposomes formulation. 

The development of a net charge at the particle surface affects the distribution of ions 

in the surrounding interfacial region, resulting in an increased concentration of counter 

ions, ions of opposite charge to that of the particle, close to the surface. Thus, an 

electrical double layer exists around each particle. The liquid layer surrounding the 

particle exists as two parts; an inner region (Stern layer), where the ions are strongly 

bound, and an outer (diffuse) region where they are less firmly associated. Within the 

diffuse layer, there is a notional boundary inside which the ions and particles form a 

stable entity. When a particle moves (e.g. due to gravity), ions within the boundary 

move with it. Those ions beyond the boundary stay with the bulk dispersant. The 

potential at this boundary (surface of hydrodynamic shear) is the zeta potential (Figure 

3.6)49.  
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Figure 3.6. Schematic representation of zeta-potential
49

. 

 

The magnitude of the zeta potential gives an indication of the potential stability of the 

colloidal system. If all the particles in suspension have a large negative or positive zeta 

potential, then they will tend to repel each other and there will be no tendency for the 

particles to come together. However, if the particles have low zeta potential values, 

then there will be no force to prevent the particles coming together and flocculating. 

The general dividing line between stable and unstable suspensions is generally taken at 

either +30 or -30 mV. Particles with zeta potentials more positive than +30 mV or more 

negative than -30 mV are normally considered stable.  

Particles size, size distribution and zeta-potential of particles, typically in the 

submicron region, suspended in a liquid can be evaluated by DLS (Dynamic Light 

Scattering), a non-invasive and well-established technique with many advantages, such 

as50: 

 Accurate, reliable and repeatable particle size analysis in one or two 

minutes. 



Chapter 3- Compounds encapsulation in nanoliposomes 
__________________________________________________________________________________________________________ 

69 
 

 Measurement in the native environment of the material. 

 Mean size only requires knowledge of the viscosity of the liquid. 

 Simple or no sample preparation, low concentration, turbid samples can be 

measured directly. 

 Simple set up and fully automated measurement. 

 Size measurement of  particles typically in the submicron region down to 

1nm nanometre. 

 Low volume requirement (as little as 2 µL). 

 

The Brownian motion of particles or molecules in suspension causes laser light to be 

scattered at different intensities. Analysis of these intensity fluctuations yields the 

velocity of the Brownian motion (random movement of particles due to the 

bombardment by the solvent molecules that surround them). The larger the particle, 

the slower the Brownian motion will be. Smaller particles are “kicked” further by the 

solvent molecules and move more rapidly (Figure 3.7). 

 

Figure 3.7. Different rates of the Brownian motion of particles according to their size and respective 
size-distribution curves. 

 

 An accurately known temperature is necessary for DLS, because knowledge of the 

viscosity is required (the viscosity of a liquid is related to its temperature). The 

temperature also needs to be stable, otherwise convection currents in the sample will 

cause non-random movements, that will ruin the correct interpretation of size. The 

velocity of the Brownian motion is defined by a property known as the translational 
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diffusion coefficient, D, and the size of the particles is calculated from this coefficient, 

by using the Stokes-Einstein relationship: 

  
  

    
                                                                         

where k is Boltzmann's constant, T is the absolute temperature,   is the solvent 

viscosity, and R is the molecular radius.  

Note that the diameter that is measured in DLS is a value that refers to how a particle 

diffuses within a fluid, so it is referred to as a hydrodynamic diameter. The diameter 

that is obtained by this technique is the diameter of a sphere that has the same 

translational diffusion coefficient as the particle50.  

If the particles are small compared to the wavelength of the laser used (typically, less 

than d =λ/10, or around 60 nm for a He-Ne laser), then the scattering from a particle 

illuminated by a vertically polarised laser will be essentially isotropic, i.e. equal in all 

directions. The Rayleigh approximation tells us that Ι α d6 and also that Ι α 1/λ4, where 

Ι is the intensity of light scattered, d is the particle diameter and λ is the laser 

wavelength. The d6 term tells us that a 50nm particle will scatter one million times as 

much light as a 5nm particle. Hence, there is a danger that the light from the larger 

particles will swamp the scattered light from the smaller ones. This d6 factor also 

means that it is difficult to measure a mixture of 1000 nm and 10 nm particles with 

DLS, because the contribution to the total light scattered by the small particles will be 

extremely small. The inverse relationship to λ4 means that a higher scattering intensity 

is obtained as the wavelength of the laser used decreases50. 

A conventional dynamic light scattering instrument consists of a laser light source, 

which converges to a focus in the sample using a lens. Light is scattered by the 

particles at all angles and a single detector, traditionally placed at 90° to the laser 

beam, collects the scattered light intensity. The intensity fluctuations of the scattered 

light are converted into electrical pulses, which are fed into a digital correlator. This 

generates the autocorrelation function, from which the particle size is calculated48. 
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1. Introduction 

Spectroscopy is basically related with the absorption, emission or scattering of 

electromagnetic radiation by atoms or molecules. Electromagnetic radiation covers a 

wide wavelength range, from radio waves to -rays. As the name implies, it contains 

both an electric and a magnetic component, which are best illustrated by considering 

plane-polarized (also known as linearly polarized) radiation. Figure 4.1 illustrates one 

photon of such radiation travelling along the x-axis. The electric component of the 

radiation is in the form of an oscillating electric field of magnitude E, and the magnetic 

component is in the form of an oscillating magnetic field of magnitude H. These 

oscillating fields are at right angles to each other. The plane of polarization is 

conventionally taken to be the plane containing the direction of E and that of 

propagation; in Figure 4.1 this is the xy-plane. The reason for this choice is that 

interaction of electromagnetic radiation with matter is more commonly through the 

electric component1. 

 
Figure 4.1. Plane-polarized electromagnetic radiation travelling along the x-axis; Ey is the electric 

component; Hz is the magnetic component
1
. 

 

In vacuum, all electromagnetic radiations travel at the same speed, the speed of light c 

(2.99792458x108 ms-1), and may be characterized by its wavelength, , in air or 

vacuum, or by its wavenumber,   , or frequency, , both conventionally in vacuum, 

where  

     
 

 
 
 

  
                                                               

Figure 4.2 illustrates the extent of the electromagnetic spectrum and the processes 

that may occur in an atom or molecule exposed to radiation. Indications of region 

boundaries, which should not be regarded as clear cut, are given in wavelength (mm, 
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m or nm), frequency (GHz) and wavenumber (cm-1). In addition, in the high-energy 

regions the energy is indicated in electron volts (eV) where 

       1 eV = 1.60218   10-19 J                                   (4.2) 

A molecule may undergo rotational, vibrational, electronic or ionization processes, in 

order of increasing energy (typical ranges are indicated in Figure 4.2). A molecule may 

also scatter light in a Raman process, and the light source for such an experiment is 

usually in the visible or near-ultraviolet region. An atom may undergo only an 

electronic transition or ionization since it has no rotational or vibrational degrees of 

freedom. Nuclear magnetic resonance (NMR) and electron spin resonance (ESR) 

processes involve transitions between nuclear spin and electron spin states, 

respectively, but these spectroscopies need the sample to be located between the 

poles of a magnet. 

 
Figure 4.2. Regions of the electromagnetic spectrum

1
. 

 

When an atom or molecule is exposed to a radiation of frequency , it passes from a 

state m to a state n separated by 

           
  

 
                                                           

where h is the Planck constant (h=6.62606876   10-34Js). This can occur by three 

possible processes1: 

 Induced absorption, where the molecule (or atom) M absorbs a quantity of 

radiation and is excited from state m to state n:  

M + h  M* 
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 Spontaneous emission, in which M* (in state n) spontaneously emits a 

quantum of radiation: 

M*  M + h 

 Induced, or stimulated, emission. This is a different type of emission in which a 

quantum of radiation is required to induce, or stimulate, M* to go from state n 

to state m: 

M* + h  M + 2h 

The populations of the states m and n (respectively, Nm and Nn) are related, at 

equilibrium, through the Boltzmann distribution law: 

  

  
 
  
  

      
  
  

                                                           

where gn and gm are the degrees of degeneracy of the states n and m respectively, T is 

the absolute temperature (K) and k is the Boltzmann constant                                            

(k = 1.3806503   10-23 JK-1). 

Molecular Fluorescence is a spontaneous emission after induced absorption involving 

electronic transitions. The energies needed to change the electron distributions of 

molecules are of the order of several electron volts. Consequently, the photons 

emitted or absorbed when such changes occur lie in the visible and ultraviolet regions 

of the spectrum (Figure 4.2, Table 4.1)2. 

 
Table 4.1. Colour, frequency and energy of infrared, visible and ultraviolet light

2
. 

Colour  / nm  / (1014 Hz) E / kJ mol-1 

Infrared >1000 <3.0 <120 

Red  700 4.3 170 

Yellow 580 5.2 210 

Blue 470 6.4 250 

Ultraviolet <300 >10 >400 

 

Molecular Fluorescence has many applications in physical, chemical, material, 

biological and medical sciences. It was first used as an analytical tool to determine the 

concentrations of several species, but is also the best method for the detection of 

analytes with a very high sensitivity (considerably improved due to the progress in 
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instrumentation) and a powerful tool for the investigation of structures and dynamics 

of matter or living systems at a molecular or supramolecular level. Biological 

membranes are examples in which it is possible to determine some parameters such as 

polarity, fluidity, order, molecular mobility and electrical potential by the use of 

fluorescent probes3. 
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2. Fluorescence as a particular case of Luminescence 

According to The Fluorescent Mineral Society, “Light is a form of energy. To create 

light, another form of energy must be supplied”. Luminescence is "cold light" (vs 

incandescence which is “hot light”) that can be emitted at normal and lower 

temperatures. In luminescence, some energy source kicks an electron out of its lowest 

energy "ground" state into a higher energy "excited" state; then, the electron returns 

the energy in the form of light, so it can fall back to its "ground" state. With few 

exceptions, the excitation energy is always larger than the energy (wavelength, color) 

of the emitted light. 

There are several types of luminescence, each named according to the mode of 

excitation4: 

Chemiluminescence is luminescence where the energy is supplied by chemical 

reactions. The glow-in-the-dark plastic tubes sold in amusement parks are examples of 

chemiluminescence. 

Bioluminescence is luminescence caused by chemical reactions in living things; it is a 

form of chemiluminescence. Fireflies glow by bioluminescence. 

Electroluminescence is luminescence caused by electric current. 

Sonoluminescence  is luminescence caused by a micron size gas bubble which is both 

spatially trapped and oscillated by an acoustic field in such a way that, on each 

compression of the bubble, a small burst of light is emitted. 

Cathodoluminescence is electroluminescence caused by electron beams; this is how 

television pictures were formed on a CRT (Cathode Ray Tube). Other examples of 

electroluminescence are neon lights, the auroras, and lightning flashes. This should not 

be confused for what occurs with the ordinary incandescent electric lights, in which 

the electricity is used to produce heat, and it is the heat that in turn produces light. 

Radioluminescence is luminescence caused by nuclear radiation. Older glow-in-the-

dark clock dials often used a paint with a radioactive material (typically a radium 

compound) and a radioluminescent material.  

Triboluminescence is luminescence triggered by mechanical action or 

electroluminescence excited by electricity generated by mechanical action. Some 
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minerals glow when hit or scratched, e.g. by banging two quartz pebbles together in 

the dark.  

Thermoluminescence is luminescence caused by temperatures above a certain 

threshold. This should not be confused with incandescence, which occurs at higher 

temperatures. In thermoluminescence, heat is not the primary source of the energy, 

only the trigger for the release of energy that originally came from another source.  

Photoluminescence is luminescence where the energy is supplied by electromagnetic 

radiation. The mode of excitation is absorption of a photon which brings the absorbing 

species into an excited state and the photoluminescence is the emission of photons 

accompanying de-excitation process. 

Fluorescence, delayed fluorescence and phosphorescence are particular cases of 

photoluminescence. 
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Figure 4.3. Types of luminescence processes and respective ways of molecules excitation (adapted from 
ref. 3). 

 

Phosphorescence is delayed luminescence or "afterglow" (the term phosphorescence 

comes from the Greek:  = light and  = to bear; therefore, phosphor means 

“which bears light”). Many minerals are phosphorescent. The most famous is the 

Bolognian phosphor discovered by a cobbler of Bologna in 1602 during a walk in the 

Monte Paterno: he picked up some strange heavy stones and, after calcination with 
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coal, he observed that the stones glowed in the dark after exposure to light (the stones 

contained barium sulfate, which, upon reduction by coal, led to barium sulfide, a 

phosphorescent compound). Today, many glow-in-the-dark products, especially toys 

for children, involve substances that receive energy from light, and emit the energy 

again as light later.  

Fluorescence is seen in fluorescent lights, amusement parks and movie special effects, 

the redness of rubies in sunlight, "day-glo" or "neon" colors, and in emission nebulae 

seen with telescopes in the night sky. The first reported observation of fluorescence 

was made by a spanish physician, Nicolas Monardes, in 1565: he observed that an 

infusion of a wood called Lignum Nephriticum exhibits a wonderful blue color. In his 

famous paper “On the change of refrangibility of light” (1852), Stokes5 reinvestigated 

this fact and demonstrated that the phenomenon was an emission of light after 

absorption of light. 

A basic distinction between fluorescence and phosphorescence based on experiment 

was made on the nineteenth century: Fluorescence disappears with the end of 

excitation, whereas phosphorescence persists after the end of excitation. Now, we 

know there are  long-lived fluorescence and short-lived fluorescence and Francis Perrin 

was the first who theoretically distinguished fluorescence and phosphorescence, in 

19296: a molecule emit phosphorescence when it pass, between absorption and 

emission, through an intermediate state and it is not able to reach the fundamental 

state without receiving some energy from the medium. 
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3.  Absorption of UV-Visible light 

3.1. Molecular orbitals and electronic transitions 

A molecular orbital is a mathematical function describing the wave-like behavior of an 

electron in a molecule7. It represents regions in a molecule where an electron is likely 

to be found. Molecular orbitals arise from allowed interactions between atomic 

orbitals (which predict the location of an electron in an atom), which are allowed if the 

symmetries are compatible. Efficiency of atomic orbital interactions is determined 

from the overlap (a measure of how well two orbitals constructively interact with one 

another) between two atomic orbitals, which is significant if the atomic orbitals are 

close in energy. When atomic orbitals interact, the resulting molecular orbital can be 

of three types8: bonding ( or  orbitals), antibonding (* or * orbitals), or 

nonbonding (n orbitals): 

 Bonding molecular orbitals: Constructive (in-phase) interactions between 

atomic orbitals lead to bonding molecular orbitals. These molecular orbitals are 

lower in energy than the atomic orbitals that combine to produce them. They 

can be  orbitals or  orbitals:  orbitals are formed either from two s atomic 

orbitals, or from one s and one p atomic orbital, or from two p atomic orbitals 

having a collinear axis of symmetry;  orbitals are formed from two p orbitals 

which overlap laterally. 

 Antibonding molecular orbitals: Destructive (out-of-phase) interactions 

between atomic orbitals lead to antibonding molecular orbitals. They can be * 

or * molecular orbitals and are higher in energy than the atomic orbitals that 

combine to produce them.  

 Nonbonding molecular orbitals (n orbitals): they are the result of no interaction 

between atomic orbitals because of lack of compatible symmetries. Normally, 

these molecular orbitals are located on heteroatoms such as oxygen or 

nitrogen and have the same energy as the atomic orbitals of these atoms in the 

molecule. 

 

 

http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Atomic_orbital
http://en.wikipedia.org/wiki/Atomic_orbital
http://en.wikipedia.org/w/index.php?title=Overlap_integral&action=edit&redlink=1
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A molecule is in an excited state when an electronic transition occurs, i.e. when one 

electron passes from an orbital of the molecule in the ground state to an unoccupied 

orbital by absorption of a photon. Normally,  orbitals are more stable than  orbitals 

and, for molecules with heteroatoms,  orbitals are more stable than n orbitals. The 

lower is the bonding molecular orbital, the higher is the respective antibonding 

molecular orbital. 

 

 

 

 

 

Scheme 4.1. Energy levels of molecular orbitals and possible electronic transitions. 
 

From scheme 4.1, it can be seen that the lowest energy (the longest wavelength) 

transitions are from a non-bonding orbital n to a * antibonding orbital (transition      

n-*). Normally, it corresponds to the near UV and visible region. Hereafter come the 

-* transitions, n-* transitions, -* transitions and finally -* transitions, which 

normally occur below 200nm9: 
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Figure 4.4. Types of bonding and antibonding molecular orbitals. 
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En-* < E-* < En-* < E-* < E-* 

Following both the Pauli exclusion principle and Hund’s rule, electrons fill in orbitals of 

increasing energy. Thus, for molecules with heteroatoms, the HOMO (Highest 

Occupied Molecular Orbital) - LUMO (Lower Unoccupied Molecular Orbital) transition 

is a n-* transition.  

In conjugated systems, overlap of the  orbitals allows the electrons to be delocalized 

over the whole system (resonance effect) and not only between pairs of atoms. As 

there is no overlap between  and  orbitals, the  electron system is independent of 

the  bonds and the higher its extent, the lower the energy of the -* transition (i.e., 

the larger the wavelength of the absorption band)3. 

 

3.2. Selection rules for electronic transitions 

There are two principal rules for electronic transitions: 

 Symmetry rule:  some transitions are forbidden for symmetry reasons. This is 

the case, for example, of n-* transitions. However, a symmetry-forbidden 

transition can become weakly allowed when the molecular vibrations cause 

some departure from perfect symmetry (vibronic coupling). The intensity of a 

band indicates if the respective transition is allowed (high probability to occur) 

or forbidden (low probability to occur). Consequently, we can observe such 

bands although with low intensities, in electronic spectra.  

  S=0: transitions between states of different multiplicity are forbidden2.  

The multiplicity of a term is the 2S+1 value. S is the total spin angular momentum 

quantum number. S is a non-negative integer or a half integer and is obtained by 

coupling the individual spin angular momenta by using the Clebsch-Gordan series: 

S = |s1-s2|, |s1-s2|+ , …, s1+s2                                         (4.5)             

As each electron has s= 
 

 
 , S can be 1 or 0 for two electrons. If there are three 

electrons, the third spin must be coupled to each value of S, which results in S = 
 

 
,
 

 
. 

When S=0 (for a closed shell), the electrons are all paired, 2S+1=1, which gives rise 

to a singlet term S (there is only one possible value for MS, the total spin magnetic 

quantum number: MS=0). When there are two unpaired electrons, S=1, thus 
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2S+1=3, which gives rise to a triplet term T (there are three possible values for MS:               

Ms=-1, 0, 1). 

Note: it is important to distinguish S, the total spin angular momentum quantum 

number from S, which designate a singlet term3. 

The ground state is normally a singlet state (denoted S0) because the total spin angular 

momentum quantum number S is equal to 0 and the multiplicity (2S+1) is equal to 1. 

When one electron is promoted to a molecular orbital of higher energy during a n-* 

transition or a -* transition, etc., its spin is in principle unchanged and the 

corresponding excited states are also singlet states (denoted S1, S2, etc…). In this case, 

the electronic transition is called a “singlet-singlet” transition. If the spin of the 

electron is changed during the transition, the reached state is called triplet state 

because the total spin angular momentum quantum number S is 1 and the  multiplicity 

(2S+1) is equal to 3, which leaves three possible values for the total spin magnetic 

quantum number MS, namely -1, 0, 1 (three states of equal energy). In this case, the 

electronic transition is called a “singlet-triplet” transition and is spin-forbidden ( S0). 

Spin-forbidden transitions can be observed, although with very small molar absorption 

coefficients due to spin-orbit coupling, which is the interaction of the spin magnetic 

moment with the magnetic field arising from the orbital angular momentum of the 

electron. As this coupling increases sharply with atomic number (as Z4), such forbidden 

transitions are favored by the presence of heavy atoms. 

Direct formation of a triplet is a very improbable process, since both the orbit and spin 

of the electron would have to change simultaneously. Normally, triplet states are 

lower in energy than singlet states because the electrons have an electronic and 

magnetic part due to the spin correlation effect. If the spins are in the same direction, 

there is a magnetic repulsion and the electrons are farther. This gives a less electronic 

repulsion, thus a lower energy state (Hund’s rule)2. 
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Scheme 4.2. Energy levels of molecular orbitals and distinction between singlet and triplet state using 
formaldehyde as an example (only higher energy orbitals are shown) (adapted from ref. 3). 
 

3.3. The Franck-Condon principle 

To account for the vibrational structure in electronic spectra of molecules, we apply 

the Franck–Condon principle, which is a consequence of the Born-Oppenheimer 

approximation2: according to this approximation, the nuclei of a molecule, being so 

much heavier than the electrons, move very slowly comparatively with the electrons 

and thus may be treated as stationary. Indeed, promotion of an electron to an 

antibonding orbital after excitation takes about 10-15s, while the characteristic times 

for molecular vibrations are about 10-10 – 10-12 s. Thus, the Franck Condon principle 

states that an electronic transition is most likely to occur without change of nuclear 

positions and momenta. In other words, in a vibronic transition, the nuclei have very 

nearly the same position and velocity before and after the transition. Thus, upon 

excitation, the molecule is assumed to be initially in the Franck-Condon state (F)1,10. 

Figure 4.5a) shows potential curves for the lower state (which is the ground state if we 

are considering an absorption process) and the upper state, as a function of the 

nuclear configuration (internuclear distance in the case of diatomic molecules). The 

curves have been drawn so that     
  >   

  . When the lower state is the ground state, 
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this is very often the case, since the electron promotion involved is often from a 

bonding orbital to an orbital which is less bonding, or even antibonding. Before the 

absorption, at room temperature, most of the molecules are in the lowest vibrational 

level of the ground state (according to the Boltzmann distribution, see equation 4.4).  

In absorption, from point A of the ground state, the transition will be to point B of the 

upper state. The requirement that the nuclei have the same position before and after 

the transition means that the transition is between points which lie on a vertical line in 

the figure: this means that r remains constant and such a transition is often referred to 

as a vertical transition. The second requirement, that the nuclei have the same velocity 

before and after the transition, means that a transition from A, where the nuclei are 

stationary, must go to B, as this is the classical turning point of a vibration, where the 

nuclei are also stationary. A transition from A to C is highly improbable because, 

although the nuclei are stationary at A and C, there is a large change of r. An A to D 

transition is also unlikely because, although r is unchanged, the nuclei are in motion at 

the point D. 

Figure 4.5b) illustrates the case where   
      

  . Here the most probable transition is 

from A to B with no vibrational energy in the upper state. The transition from A to C 

maintains the value of r but the nuclear velocities are increased due to their having 

kinetic energy equivalent to the distance BC. 

 

Figure 4.5. Illustration of the Franck-Condon principle for (a)   
  >   

   and (b)   
      

  . The vibronic 

transition A–B is the most probable (and so the most intense) in both cases
1
. 

  

In addition to the most probable transition, there are several vibronic transitions 

whose intensities depend on the relative position and shape of the potential energy 
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curves. The width of the bands depends is the result of two factors: homogeneous and 

inhomogeneous broadening. Homogeneous broadening is due to the existence of 

continuous set of vibrational sublevels in each electronic state. Inhomogeneous 

broadening results from the fluctuations of the structure of the solvation shell3 (Figure 

4.6). 

 
Figure 4.6. Potential energy diagrams with vertical transitions and respective absorption spectra; the 
vertical broken lines represent the absorption lines that are observed for a vapor, whereas the solid 

lines represent the expected broadening of the spectra in solution
3
.  

 

3.4. Probability of transitions. The Beer-Lambert law 

The absorbance A() and the Transmittance T() represent the efficiency of light 

absorption by a sample, for a given wavelength  and are defined as: 

                    

        
  
 
                                                                    

    

and                       

     
 

  
                                                                            

     

or                                     
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where I0  and I are the light intensities of the beams before and after passing through 

the sample. 

In many cases, namely in the absence of aggregate formation at high concentrations, 

in the absence of other absorbing species or in the absence of instrument deviations, 

as described hereafter, the absorbance of a solution follows the Beer-Lambert law: 

                                                                           

or                                             I = I0 exp(-2.3Cl)                                                  (4.10) 

where () is the molar absorption coefficient (in L mol-1cm-1) (it expresses the ability 

of a molecule to absorb light in a given solvent at a given wavelength); C is the 

concentration of absorbing species (in mol L-1); l is the path length (thickness of the 

cuvette in cm). 

 

 

 

 

 

 

 

 

As referred above, under certain circumstances, the Beer-Lambert relationship breaks 

down and gives a non-linear relationship. These deviations from the Beer-Lambert law 

can be classified into three categories11: 

1. Real Deviations - These are fundamental deviations due to the limitations of 

the law itself: Beer-Lambert law is capable of describing absorption behavior of 

solutions containing relatively low amounts of solutes dissolved in it (< 10-2 M). 

When the concentration of the analyte in the solution is higher, the analyte 

begins to behave differently due to interactions with the solvent and other 

solute molecules and can form aggregates.  

2. Chemical Deviations - These deviations occur due to chemical phenomenon 

involving the analyte molecules due to association, dissociation and interaction 

 

Figure 4.7. Illustration of the Beer-Lambert law
11

. 
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with the solvent (for example, hydrogen bonding interactions) to produce a 

product with different absorption characteristics. 

3. Instrument Deviations - These are deviations which occur due to the way the 

absorbance measurements are made. They can be due to polychromatic 

radiation, to mismatched cells in reference and sample, to the presence of 

scattered radiation (mainly with samples of macromolecules or other large 

aggregates), or to fluorescence of the sample.  

The optical density resulting from scatter is proportional to 1/4 (Rayleigh 

scattering) and may thus be easily recognized as a background absorption 

which increases rapidly with decreasing wavelengths12. 

If the absorbing species is fluorescent, the emitted light can reach the detector 

but, as the fluorescence is omnidirectional whereas the incident light is 

collimated along an axis, this effect can be minimized by keeping the detector 

distant from the sample and thereby by decreasing the efficiency with which 

the fluorescence emission is collected. 

The maximum value of the molar absorption coefficient, εmax, is an indication of the 

intensity of a transition. However, as absorption bands generally spread over a range 

of wavenumbers, quoting the absorption coefficient at a single wavenumber might not 

give a true indication of the intensity of a transition. The integrated absorption 

coefficient,  , is the integral over the entire band (Figure 4.8), and corresponds to the 

area under the plot of the molar absorption coefficient against wavenumber2: 

             
    

                                                                    

 
 

  
 

 

 

 

 

 

 

 
Figure 4.8. Integrated absorption coefficient of a transition

2
. 
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If the absorption is due to an electronic transition, then fnm, the oscillator strength, is 

often used to quantify the intensity and is related to the area under the curve by1 

    
 ε    

     

    
 ε       
      

      

                                                   

where 0 is the vacuum permittivity (0 = 8.854187816 10-12 C2 J1m1), me and e are 

the electron mass and charge, respectively (me = 9.10938188 10-31 kg and                            

e = -1.602176462 10-19C), c is the speed of light (c = 2.99792458 108 ms-1) and NA is 

the Avogadro’s number (NA = 6.02214199 1023 mol-1). 

The quantity fnm is dimensionless and represents the ratio of the strength of the 

transition to that of an electric dipole transition between two states of an electron, 

oscillating in three dimensions in a simple harmonic way, and its maximum value is 

usually 1 (completely allowed transition). 

For n* transitions, the values of  are in the order of a few hundreds or less, and 

those of fnm are no greater than 10-3. For * transitions, the values of  and fnm are 

in principle much higher (except for symmetry-forbidden transitions): fnm is close to 1 

for some compounds, which corresponds to values of  that are of the order3 of 

100000 M-1 cm-1. 

To characterize the displacement of charges during a transition between an initial and 

a final state, a vector quantity called transition moment,    , is introduced (note that 

it is not strictly a dipole moment): in most cases, it can be drawn as a vector in the 

coordinate system defined by the location of the nuclei of the atoms. This concept is 

very important in all experiments carried out with polarized light, because the 

molecules whose absorption transition moments are parallel to the electric vector of a 

linearly polarized incident light are preferentially excited. The probability of excitation 

is proportional to the square of the scalar product of the transition moment and the 

electric vector. This probability is thus maximum when the two vectors are parallel and 

zero when they are perpendicular.  

For * transitions of aromatic hydrocarbons, the absorption transition moments 

are in the plane of the molecule. The direction with respect to the molecular axis 

depends on the electronic state attained on excitation. For example, in naphthalene 
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and anthracene, the transition moment is oriented along the short axis for the S0S1 

transition and along the long axis for the S0S2 transition. 

 

Figure 4.9. Naphthalene and anthracene with their absorption transition moments. 

 

The transition moment can be defined by 

       
                                                                     

for interaction with the electric component of the radiation. The quantity  is the 

electric dipole moment operator,  

                                                                             

 

 

where qi and ri are the charge and position vector of the i-th particle (electron or 

nucleus).  

The transition moment can be thought as the oscillating electric dipole moment due to 

the transition. Figure 4.10 shows the  and * molecular orbitals of ethylene and, if an 

electron is promoted from  to * in an electronic transition, there is a corresponding 

non-zero transition moment. This example illustrates the important point that a 

transition moment may be non-zero even though the permanent electric dipole 

moment is zero in both the states m and n1. 

 

Figure 4.10. A  (a) and a * (b) molecular orbital of ethylene. 

 

The square of the magnitude of     is the transition probability, |   |2. It is related to 

selection rules in spectroscopy: it is zero for a forbidden transition and non-zero for an 

allowed transition. The electric dipole moment operator, , has components along the 

cartesian axes: 
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where qi and xi are, respectively, the charge and x-coordinate of the i-th particle, and 

so on. Similarly, the transition moment can be resolved into three components: 

  
      

               
      

               
      

                      

and the transition probability is related to these by 

|   |2  =     
   2 +    

   2 +    
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4.  De-excitation processes of excited molecules 

When a molecule has been promoted to an excited state, it does not remain there for 

a long time, and has many ways to return to the ground state. We may classify de-

excitation processes to two broad categories9: 

A. Photophysical deactivation processes, e.g. photoluminescence (normal or 

delayed fluorescence and phosphorescence), vibrational/rotational transitions, 

internal conversion (IC), intersystem crossing (ISC) and quenching (Q).  

B. Photochemical deactivation processes, i.e. de-excitation resulting from excited 

state photochemical reactions, implying bond breaking and formation of new bonds, 

so that the ground state of the molecule is not recovered (photodecomposition, 

photoaddition, photosubstitution, etc.). Some of these processes may lead to 

fluorescent species whose emission can be higher than that of the initial one. 

Photochemical deactivation processes, as well as vibrational/rotational transitions, 

internal conversion (IC), intersystem crossing (ISC) and quenching (Q) are radiationless 

processes (heat emission, i.e., the excess energy is transferred into the vibration, 

rotation, and translation of the surrounding molecules), whereas normal or delayed 

fluorescence and phosphorescence are radiant processes (the molecule discards its 

excitation energy as a photon). 

The time that a molecule spends in the excited state is determined by the inverse of 

the sum of the kinetic constants of all de-excitation processes. Fluorescence competes 

with the other de-excitation pathways and can be observed if its rate constant, kF, is 

higher than that sum. 

The Perrin-Jablonski diagram (scheme 4.3) shows the absorption process as well as the 

different possible de-excitation processes. The radiative processes are represented by 

straight arrows. The non-radiative decays are represented by wavy arrows. Vibrational 

levels are represented for each electronic state. Note that fluorescence and 

phosphorescence always occur from the lowest vibrational level of the excited state 

because if the molecule is on a non-zero vibrational level, it is subjected to collisions 

with the surrounding molecules and gives up energy, until arise the zero vibrational 

level by vibrational relaxation, before emitting fluorescence or phosphorescence. 
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Scheme 4.3. Perrin-Jablonski diagram, illustration of the relative positions of absorption, fluorescence 
and phosphorescence spectra and characteristic times for each transition process (adapted from ref. 3). 

 

Absorption of a photon can bring a molecule to one of the vibrational levels of S1, S2,… 

and the subsequent de-excitation processes may be3,9: 
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 Internal Conversion: 

Internal Conversion is a non-radiative transition between two states of the same spin 

multiplicity that occurs with a time-scale of 10-11 – 10-9 s. When a molecule is excited to 

a singlet state higher than S1, internal conversion leads the molecule to the S1 state. 

Internal conversion from S1 to S0 is also possible, but is less efficient than conversion 

from S2 to S1, because of the much larger energy gap between S1 and S0. Furthermore, 

internal conversion from S1 to S0 competes with other de-excitation processes 

(fluorescence, intersystem crossing to the triplet state, etc.). 

 

 Vibrational Relaxation: 

It is a non-radiative transition between two different vibrational levels of the same 

electronic state. When a molecule is on a non-zero vibrational level of the ground state 

or of the excited state, the excess vibrational energy is transferred to the solvent 

during collisions of the molecule with the surrounding solvent molecules. This process 

is called Vibrational Relaxation and occurs with a time-scale of 10-12 – 10-10 s. 

 

 Intersystem Crossing: 

Intersystem Crossing is a non-radiative transition between two isoenergetic vibrational 

levels belonging to electronic states of different multiplicities. When a molecule is in 

the lowest vibrational level of the S1 state, it can move to the isoenergetic vibrational 

level of the Tn state. Then, internal conversion and vibrational relaxation bring it to the 

lowest vibrational level of the T1 state. This process occurs with a time-scale of 10-10 – 

10-8 s. Thus, it is fast enough to compete with other pathways of de-excitation.  

Normally, crossing between states of different multiplicity is forbidden (selection rule 

 S=0, see section 3.2.2.), but spin-orbit coupling may be large enough (especially with 

the presence of heavy atoms) to make it possible. The probability of intersystem 

crossing depends on the singlet and triplet states involved. For example, if the 

transition S0S1 is of n* type (symmetry forbidden transition), intersystem 

crossing is often efficient. 
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 Back Intersystem Crossing: 

Back Intersystem Crossing is a reverse Intersystem Crossing T1S1, that can occur 

when the energy difference between S1 and T1 is small and when the lifetime of T1 is 

long enough. Normally, it is followed by delayed fluorescence (fluorescence emission 

with the same spectral distribution as normal fluorescence, but with a much longer 

decay time constant, because the molecule stay in the triplet state before emitting 

from S1).  

 

 Quenching: 

Quenching is any non-radiative intermolecular process responsible for de-excitation of 

molecules which decrease the fluorescence or phosphorescence intensity: energy 

transfer, electron transfer, proton transfer, complex formation and collisional 

quenching. 

In these cases, the fluorescence and/or phosphorescence characteristics (decay time 

and/or fluorescence/phosphorescence quantum yields) of the molecules are affected 

by the presence of a quencher, as a result of competition between the intrinsic de-

excitation and these intermolecular processes. 

 

 Fluorescence: 

Fluorescence is the emission of photons accompanying the S1S0 relaxation. The 

downward electronic transition is vertical (according to the Franck-Condon principle) 

and the fluorescence spectrum has a vibrational structure characteristic of the lower 

electronic state. 

The absorption spectrum arises from 0–0, 0–1, 0–2,… transitions, that occur at 

progressively higher wavenumbers and with intensities governed by the Franck-

Condon principle. The fluorescence spectrum arises from 0–0, 0–1, 0-2,… downward 

transitions that hence occur with decreasing wavenumbers, i.e., the wavelength of a 

fluorescence emission should always be higher than that of absorption. This was 

empirically observed by Stokes before the knowledge of the Perrin-Jablonski diagram 

and, for that reason, this statement is called “Stokes rule”. The vivid oranges and 

greens of fluorescent dyes are an everyday manifestation of this effect: they absorb in 

the ultraviolet and blue, and fluoresce in the visible. The gap (expressed in 
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wavenumbers) between the maximum of the first absorption band and the maximum 

of fluorescence is called “Stokes shift” (Figure 4.11) and can provide useful information 

on the excited states because it is a result of several dynamic processes. These 

processes include energy losses due to dissipation of vibrational energy, redistribution 

of electrons in the surrounding solvent molecules induced by the generally increased 

dipole moment of the excited fluorophore, reorientation of the solvent molecules 

around the excited state dipole, and specific interactions (like hydrogen bonding and 

formation of charge transfer complexes) between the fluorophore and the solvent. 

 

Figure 4.11. Definition of the Stokes shift
3
. 

 

Despite the Stokes rule, in most cases, the absorption spectrum partly overlaps the 

fluorescence spectrum, i.e., a fraction of light is emitted at shorter wavelengths than 

the absorbed light. It can be explained by the fact that at room temperature, a small 

fraction of molecules is in a vibrational level higher than level 0 in the ground state, as 

well as in the excited state. At low temperature, this departure from the Stokes law 

should disappear. 

Normally, the fluorescence spectrum resembles the first absorption band (“mirror 

image” rule) because the differences between the vibrational levels are similar in the 

ground and excited states. 

The 0-0 transitions are usually the same for absorption and fluorescence, but 

sometimes they are not exactly coincident because the solvent may interact differently 

with the solute in the ground and excited states (for instance, the hydrogen bonding 

pattern might differ). Absorption of light occurs in about 10–15 s, a very short time. For 

that reason, the solvent molecules do not have time to rearrange during the transition. 

Thus, absorption spectra are less sensitive to solvent polarity because the molecule is 
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exposed to the same local environment in the ground and excited states. In contrast, 

the emitting fluorophore is exposed to the relaxed environment, which contains 

solvent molecules oriented around the dipole moment of the excited state (Figure 

4.12). The mechanism also suggests that the intensity of the fluorescence ought to 

depend on the ability of the solvent molecules to accept the electronic and vibrational 

quanta. It is indeed found that a solvent composed of molecules with widely spaced 

vibrational levels (such as water) can in some cases accept the large quantum of 

electronic energy and so extinguish, or quench, the fluorescence.  

 

 

 

 

 

 

 

 

 Delayed Fluorescence: 

Delayed Fluorescence is similar to normal fluorescence but with a longer decay time 

constant, because the molecule is subjected to an intersystem crossing from a singlet 

to a triplet state, stay in the triplet state and is subjected to a back intersystem 

crossing from the triplet to the singlet state, before emitting fluorescence.  

 

 Phosphorescence: 

Phosphorescence is the emission of photons accompanying the T1S0 relaxation after 

an intersystem crossing S1T1. Once a molecule is in a triplet state, it continues to 

deposit energy into the surroundings. However, it is now stepping down the triplet’s 

vibrational ladder, and, at the lowest energy level, it is trapped because the triplet 

state is at a lower energy than the corresponding singlet (that is why the 

phosphorescence spectrum is located at higher wavelengths than the fluorescence 

spectrum). The solvent cannot absorb the final, large quantum of electronic excitation 

energy, and the molecule cannot radiate its energy because return to the ground state 

is spin-forbidden. However, the radiative transition is not totally forbidden because the 

Figure 4.12. Shift to higher wavelengths of the fluorescence spectrum relative to the absorption spectrum 

due to interaction with solvent
13

. 
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spin-orbit coupling, that was responsible for the intersystem crossing, also breaks the 

selection rule. The molecules are therefore able to emit weakly, and the emission may 

continue long after the original excited state was formed.  

Phosphorescence competes with non-radiative de-excitation processes from the triplet 

state. In solution, at room temperature, as the transition T1S0 is spin-forbidden, the 

radiative rate constant is very low (103 s-1 or less), and during such a process, the 

numerous collisions with solvent molecules (or oxygen and impurities) favor non-

radiative processes (intersystem crossing, vibrational relaxation and quenching, with 

radiationless rate constants about 109 s-1). On the contrary, at low temperatures 

and/or in a rigid medium (e.g. polymer), the lifetime of the triplet state may be long 

enough to observe phosphorescence. 
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5.  Characteristics of fluorescence emission 

5.1. Fluorescent probes 

Fluorescence is a powerful investigative tool in the study of the structure and dynamics 

of matter or living systems due to its high sensitivity, its specific characteristics 

according to the microenvironment of the emitting molecules (e.g. polarity, hydrogen 

bonds, pH, pressure, viscosity, temperature, quenchers, electric potential and ions) 

and its ability to provide spatial and temporal information. As a consequence, 

fluorescent molecules are very often used as probes for the investigation of matter 

and living systems3. 

Fluorescent probes (also called fluorophores or simply dyes) have been used for nearly 

a century to study cellular processes, due to their exquisite sensitivity and selectivity. 

Their high sensitivity arises in part because, unless a fluorophore is irreversibly 

destroyed in the excited state by photobleaching, the same fluorophore can be 

repeatedly excited and detected. This allows a single fluorophore to generate many 

thousands of detectable photons. Fluorescent probes have also gained in popularity as 

safety and environmental concerns over the use of radioactive probes have grown14. In 

contrast to radioactive tracers or EPR (Electronic Paramagnetic Resonance) probes, 

which are used in relatively few applications, fluorescent probes can be used in the 

study of innumerous systems like polymers, solid surfaces, surfactant solutions, 

biological membranes, vesicles, proteins, nucleic acids or living cells. They can also be 

used in fluoroimmunoassays3. 

There are two principal classes of fluorescent probes9: 

A. Intrinsic probes: occur naturally in the systems under study such as aromatic 

amino acids, neurotransmitters, porphyrins, and green fluorescent protein. 

B. Extrinsic probes: synthetic fluorescent probes that are added to a species to 

produce fluorescence with specific spectral properties. These probes may be 

covalently attached (markers) or non-covalently attached probes3. 

The advantage of markers versus non-covalently attached probes is that, in the first 

type, we know the location of the probe. However, as the synthesis of covalently- 

bound probes is difficult, most of the experiments are carried out with non-covalently 

attached probes. 
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In the choice of a probe, it is important to consider its sensitivity to a particular 

property of its microenvironment (or not, e.g. in fluorescence polarization or in energy 

transfer experiments). 

The main clause criticism to the use of extrinsic probes is the possible perturbation 

induced by the probe itself; hence, attention must be paid to the size and the shape of 

the probe with respect to the probed region12. 

 

5.2. Lifetimes and quantum yields 

The fluorescence lifetimes and quantum yields of fluorescent molecules are frequently 

measured, because they represent the most important characteristics of a 

fluorophore. The lifetime () determines the time available for the fluorophore to 

interact with or diffuse in its environment, and the quantum yield (F) is the number 

of emitted photons relative to the number of absorbed photons.  

The lifetime  of the excited state is defined by the average time the molecule spends 

in the excited state prior to return to the ground state3: 

  
 

  +    
                                                                   

where kR and kNR are the rate constants for radiative (fluorescence) and non-radiative 

(internal conversion and intersystem crossing) decays, respectively. 

The lifetime of a homogeneous population of fluorophores is very often independent 

of the excitation wavelength, because internal conversion and vibrational relaxation 

are always very fast in solution and emission arises from the lowest vibrational level of 

S1 state. 

The lifetime of the molecule in the absence of non-radiative processes is called the 

intrinsic lifetime or radiative lifetime (0), and is given by3 

   
 

  
                                                                          

The radiative lifetime can be theoretically calculated from the absorption and 

fluorescence spectra, using the Strickler-Berg relation22: 
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where n is the refractive index, c is the speed of light,  is the molar absorption 

coefficient, NA is the Avogadro’s number and               is the fluorescence spectrum, 

defined by  

                                                                             
 

 

 

 
  

Thus, quantum yields (and radiative lifetimes) are usually determined by integration of 

the fluorescence spectrum (and subsequent normalization using a standard of known 

fluorescence quantum yield, in order to get rid of the instrumental factor).  

Attention should be paid to the method of integration; from a theoretical point of 

view,                  is equivalent to             . However, from a practical point 

of view, because all spectrofluorometers are equipped with grating monochromators, 

calculation of the integral must be made with the wavelength form3. 

The Strickler-Berg equation yields values of  that are often in agreement with the 

experimental ones, but it fails in a number of cases, especially when the interactions 

with the solvent cannot be ignored and when there is a change in the excited-state 

geometry. An important consequence of this equation is that the lower the molar 

absorption coefficient, the longer the radiative lifetime, i.e. the lower the rate of the 

radiative process. 

The fluorescence intensity is defined as the amount of photons emitted per unit time 

and per unit volume of solution, according to3 

A*  A + photon 

The fluorescence intensity, iF, at time t, after excitation by a very short pulse of light at 

time 0, is proportional, at any time, to the instantaneous concentration of molecules 

still excited [A*]; the proportionality factor is the rate constant for radiative de-

excitation, kR : 

iF(t) = kR [A*] = kR       exp   
 

 
                                              

kR 
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iF(t), the -pulse response of the system, decreases according to a single exponential. 

In any practical measurement of fluorescence intensity, the measured quantity is 

proportional to iF, the proportionality factor depending on instrumental conditions. 

The “measured” fluorescence intensity will be denoted IF and its numerical value is 

obtained on an arbitrary scale, depending on the experimental settings. 

The fraction of fluorophores which decay through emission, and hence the 

fluorescence quantum yield, F, is given by3 

  
  

  +    
       

 

  
                                                 

The quantum yield can be close to the unity if the radiationless decay of deactivation is 

much smaller than the rate of radiative decay, that is kNR   kR, but it is always less 

than unity because of the Stokes losses. 

It is interesting to note that when the fluorescence quantum yield and the excited 

state lifetime of a fluorophore are measured under the same conditions, the non-

radiative and radiative rate constants can be easily calculated by means of the 

following relations: 

   
 

 
                                                                         

               
 

 
                                                                      

Following an external perturbation, the fluorescence quantum yield can remain 

proportional to the excited state lifetime (e.g. in the case of dynamic quenching:  

section 6.2), variation in temperature, etc.). However, such a proportionality may not 

be valid if de-excitation pathways – different from those described above – result from 

interactions with other molecules. A typical case where the fluorescence quantum 

yield is affected without any change in excited-state lifetime is the formation of a 

ground-state complex that is non-fluorescent (static quenching; section 6.3). 

It is well known that atmospheric oxygen quenches fluorescence (and 

phosphorescence) (section 6.1), but its effect on quantum yields and lifetimes strongly 

depends on the nature of the compound and the medium. Oxygen quenching is a 

collisional process and, therefore, is diffusion-controlled. Consequently, compounds of 

long lifetime, such as naphthalene and pyrene, are particularly sensitive to the 
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A + h’ 

A + h           A* 

A 

kA 

kR 

kNR 
A 

presence of oxygen. Moreover, oxygen quenching is less efficient in media of high 

viscosity.  

Generally, an increase in temperature results in a decrease in the fluorescence 

quantum yield and lifetime, because the non-radiative processes related to thermal 

agitation (collisions with solvent molecules, intramolecular vibrations and rotations, 

etc.) are more efficient at higher temperatures. Experiments are often in good 

agreement with the empirical linear variation of    
 

  
    versus  

 

 
 . 

 

5.3. Emission and excitation spectra 

Emission and excitation spectra are recorded using a spectrofluorometer. The light 

source is a lamp emitting a constant photon flow, i.e. a constant amount of photons 

per unit time, whatever their energy. Let us denote by N0 the constant amount of 

incident photons entering, during a given time, a unit volume of the sample where the 

fluorophore concentration is [A] (N0 and [A] in mol L-1). N0 represents the amount of 

absorbed photons per unit volume involved in the excitation process 

 

 

 

 

Scheme 4.4. Absorption and de-excitation processes and respective rate constants. 

 

The rate constant for absorption, kA, is very large (kA   1015 s-1) comparing with the 

radiative and non-radiative de-excitation rate constants (kR and kNR   107 - 1010 s-1). 

Under continuous illumination, the concentration [A*] remains constant, which means 

that A is in a steady state. Measurements under these conditions are then called 

steady-state measurements. 

The rate of change of [A*] is equal to zero: 

     

  
             +       

                                         

kAN0 represents the amount of absorbed photons per unit volume and per unit time. 

It can be rewritten as I0 where I0 represents the intensity of the incident light (in 

moles of photons per liter and per second). 
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The constant concentration [A*] is thus given by 

     
   

  +    
                                                              

The amount of fluorescence photons emitted per unit time and per unit volume, i.e. 

the steady-state fluorescence intensity, is then given by 

       
      

  
  +    

                                                  

This expression shows that the steady-state fluorescence intensity per absorbed 

photon,  
  

   
 , is the fluorescence quantum yield. 

We saw (equation 4.25) that                  
 

 
, where    is the fluorescence 

quantum yield and         represents the fluorescence spectrum (or emission 

spectrum): it represents the probability of the various transitions from the lowest 

vibrational level of S1 to the various vibrational levels of S0. The emission spectrum is 

characteristic of a given compound and may be used in some cases for the 

identification of species, especially when the spectrum exhibits vibronic bands (e.g. in 

the case of aromatic hydrocarbons), but the spectra of most fluorescent probes (in the 

condensed phase) exhibit broad bands. 

In practice, the steady-state fluorescence intensity, IF(em), measured at wavelength 

em, is proportional to         and to the number of photons absorbed at the 

excitation wavelength ex ,  

IF(exem) = k         IA(ex)= k         (I0(ex)-I(ex)) 

 IF(exem) =k         I0(ex)[1- exp(-2.3(ex)C l)]                     (4.33) 

where k is an instrumental factor, (ex) is the molar absorption coefficient of the 

fluorophore at wavelength ex (in L mol-1 cm-1), C is the concentration in mol L-1, l is 

the optical path in the sample (cm),         is the fluorescence spectrum, and IA(ex) 

is the absorbed intensity, defined as the difference between the intensity of the 

incident light, I0(ex), and the intensity of the transmitted light, I(ex). 

So, measurement of IF as a function of em for a fixed excitation wavelength, ex, 

provides the fluorescence spectrum. As the proportional instrumental factor k is 



Chapter 4 – Molecular Fluorescence Spectroscopy 
__________________________________________________________________________________________________________  

 

114 

 

normally unknown, the measured intensity IF has no meaning and is expressed in 

arbitrary units. 

In the case of low concentrations, the following expansion of [1 - exp(-2.3(ex)C l)] 

can be used: 

1- exp(-2,3(ex)C l) = 2.3(ex)C l - 
 

 
(2.3(ex)C l)2+…                    (4.34) 

As the term of higher order become negligible for highly diluted solutions, we obtain 

IF(ex,em)   k         I0(ex)[2.3(ex)C l)] = 2.3k         I0(ex)A(ex)         (4.35) 

where A(ex) represents the absorbance at wavelength ex (according to the Beer-

Lambert law). 

This relation shows that the fluorescence intensity is proportional to concentration 

only for low absorbances: deviations from a linear variation increase with increasing 

absorbance, Table 4.2. Furthermore, when the concentration is high, inner filter effects 

reduce the fluorescence intensity, depending on the observation conditions. In 

particular, the photons emitted at wavelengths corresponding to the overlap of the 

absorption and emission spectra can be reabsorbed. That is the reason why, in 

practice, the fluorescence spectra are recorded for samples of low absorbances (< 0.1), 

i.e. diluted solutions. 

 
Table 4.2. Deviation from linearity in the relation between fluorescence intensity and absorbance

3
. 

Absorbance Deviation (%) 

10-3 0.1 

10-2 1.1 

0.05 5.5 

0.10 10.6 

0.20 19.9 

 
 

The excitation spectra represent the variations in fluorescence intensity as a function 

of the excitation wavelength, ex, for a fixed observation wavelength, em. If we look to 

the last expression, these variations reflect the evolution of the product I0(E)A(E). 

As the wavelength dependence of the incident light, I0(ex), can be compensate, the 
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only term to be taken in account is A(ex). The corrected excitation spectrum is thus 

identical in shape to the absorption spectrum, unless several species (or a species in 

different forms like aggregates, complexes, etc.) are present in the ground state. 

 

5.4. Effects of molecular structure on fluorescence 

 Extent of -electron system 

Most fluorescent compounds are aromatic. Generally speaking, an increase in the 

extent of the -electron system (high degree of conjugation), leads to a shift of the 

absorption and fluorescence spectra to longer wavelengths (red shift) and to an 

increase in the fluorescence quantum yields. 

The lowest-lying transitions of aromatic hydrocarbons are of * type and are 

characterized by high molar absorption coefficients and fluorescence quantum yields. 

If a heteroatom is involved (for instance, in azo compounds or compounds containing 

carbonyl groups and/or nitrogen heterocycles), the lowest-lying transition may be of 

n* type. Such transitions are characterized by molar absorption coefficients that 

are, at least, 100 times smaller than those of * transitions, because these 

transitions are symmetry-forbidden (see section 3.2.). As a consequence, the radiative 

rate constant is much smaller than the non-radiative rate constant and the 

fluorescence quantum yields are low. 

 
 Substitution effects on aromatic hydrocarbons 

Generally, the presence of internal heavy atoms increase spin-orbit coupling (which 

has a Z4 dependence) and thus the probability of intersystem crossing, unless the 

fluorescence rate constant is much higher, or much smaller, than other de-excitation 

rate constants, or unless there is no triplet state energetically close to the singlet 

emitting state. 

 
 Electron-donating substituents (-OH, -OR, -NH2, -NHR1, -NR2)  

The presence of electron-donating substituents induce an increase in the molar 

absorption coefficient and the fluorescence quantum yield, as well as a bathochromic 

effect (red shift) in both absorption and fluorescence spectra, which become often 

broad and structureless, compared to the parent non-substituted compound15,16. This 
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can be explained by the significant intramolecular charge transfer due to the lone pairs 

of electrons on oxygen and/or nitrogen atoms, which are involved directly in - 

bonding with the aromatic system (that is why the * nature of the parent 

molecule transitions is not affected by the oxygen or nitrogen atom). This 

intramolecular charge transfer decreases the S0S1 energy transition, which explains 

the observed effects. If the aromatic amines or alcohols are planar, the observed 

effects are more intense than if the amino or the alcohol group is twisted out of the 

plane of the aromatic ring for steric reasons, because the degree of conjugation is 

decreased. 

Note that the absorption and fluorescence spectra of aromatic amines and alcohols 

are pH-dependent. 

 
 Electron-withdrawing substituents: carbonyl and nitro compounds 

The lone-pairs of electrons of carbonyl or nitro substituents are not directly involved in 

-bonding with the aromatic system. Thus, many aromatic compounds with carbonyl 

or nitro substituents have a low-lying n* excited state. As these transitions are 

symmetry-forbidden, such compounds are submitted to an efficient intersystem 

crossing process and exhibit low fluorescence quantum yields. 

Normally, the fluorescence of nitroaromatics is not even detectable and they are 

rather phosphorescent. In some cases, as the -NO2 group has a very strong electron-

withdrawing power, such compounds have a considerable charge-transfer character 

and the absence of fluorescence (and phosphorescence) is thus rather due to S1S0 

internal conversion than to S1 T1 intersystem crossing. 

In some cases (if the n* and * states are close in energy), aromatic carbonyl 

compounds can exhibit high fluorescence quantum yields. When the polarity and the 

hydrogen bonding power of the solvent increases, the n* state shifts to higher 

energy, whereas the * state shifts to lower energy. Therefore, intense 

fluorescence can be observed in polar solvents and weak fluorescence in non-polar 

solvents. 

Conformational changes of aromatic molecules with a carboxylic group can lead to 

different absorption and fluorescence spectra for the acidic (-COOH) and the basic       
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(-COO-) forms. Normally, the carboxylate group (-COO-) is almost perpendicular to the 

ring, so that the  aromatic system is only slightly perturbed. On the contrary, the 

carboxylic group is in a position close to the coplanarity of the ring. The resulting 

interaction induces an intramolecular charge-transfer character to the * 

transition, which leads to broad and structureless fluorescence bands. 

 
 Heterocyclic compounds 

Heterocyclic compounds have a heteroatom involved in the -system of electrons. For 

that reason, the low-lying transition is of n* type (symmetry-forbidden transition), 

which explains the low fluorescence quantum yields of such compounds.  

However, in protic solvents such as alcohols, hydrogen bonds can be formed between 

the heteroatoms and the solvent molecules. In this case, the n-orbitals are more 

stabilized than the * orbitals (the electron density on the heteroatom is reduced on 

the excited state) and there is an inversion of the n* and * states: the lowest-

lying transition becomes of * type. As a consequence, the spectra of these 

compounds exhibit a bathochromic effect and the fluorescence quantum yields are 

increased from non-polar to polar solvents. 

If the heteroatom is singly bonded to carbon atoms of the heterocycle, the transitions 

involving the non-bonding electrons have similar properties to those of * 

transitions. In fact, as the non-bonding orbital is perpendicular to the plane of the ring, 

the lone pair of electrons are involved in -bonding of the aromatic system by 

overlapping the -orbitals of the adjacent carbon atoms. 

 

5.5. Solvent and environmental effects on fluorescence emission spectra 

We saw that the principal cause of the Stokes shift is that, after absorption, the excess 

vibrational energy is rapidly lost to the solvent (section 4, scheme 4.3). Solvent polarity 

and the local environment have strong effects on the emission spectral properties of 

fluorophores and are another origin of the Stokes shift. These effects are complex and 

are due to several factors. Typically, more than one effect will simultaneously affect 

the fluorophore and it can be difficult to know which effect is dominant.  

At the simplest level, solvent-dependent emission spectra are interpreted in terms of 

the Lippert-Mataga equation (section 5.5.1.). These general solvent effects occur 
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whenever a fluorophore is dissolved in any solvent, and are independent of the 

chemical properties of the fluorophore and the solvent. However, this theory is often 

inadequate for explaining the detailed behavior of fluorophores in a variety of 

environments. For example, indole displays a structured emission spectrum in 

cyclohexane but, after addition of a small amount of the polar solvent ethanol (1 to 

5%), we note a loss of the structured emission and a spectral shift to higher 

wavelengths. As the amount of ethanol is too small to significantly change the solvent 

polarity, the observed effects are rather due to hydrogen bonding of ethanol to the 

imino nitrogen on the indole ring than to general solvent effects. In addition to such 

general and specific solvent effects (section 5.5.1.), solvent relaxation may be 

accompanied by internal rotation within the fluorophore, leading to a Twisted 

Intramolecular Charge Transfer (TICT), from which emission occurs (section 5.5.2.). 

Additionally, the quantum yield can be altered due to a conformational change in the 

fluorophore or due to a change in the rate of radiative or non-radiative decay (Sections 

5.5.3. and 5.5.4.). Finally, a fluorophore may display a large spectral shift due to 

excimer or exciplex formation (the fluorophore may be fluorescent or non-fluorescent 

in these different states, see section 5.5.5.). In summary, no single theory can be used 

for a quantitative interpretation of the effects of environment on fluorescence3. 

 

5.5.1. Effects of solvent polarity and viscosity 

The fluorescence emission spectra of many fluorophores, especially those containing 

polar substituents on the aromatic rings are sensitive to the polarity of their 

surrounding environment. As the excitation process induces the movement of an 

electron from one orbital to another, it is normally accompanied by an increase in the 

dipole moment of the fluorescent molecule. In other words, the fluorophore has a 

larger dipole moment in the excited state (μ*) than in the ground state (μ). If the 

molecule has both an electron-donating and an electron-withdrawing group, this 

increase can be quite large.  Thus, if the medium is sufficiently fluid, the solvent 

molecules rotate until the solvation shell is in equilibrium with the fluorophore (solvent 

relaxation) and a relaxed intramolecular charge transfer (ICT) state is reached. 

Normally, when we increase solvent polarity, this effect becomes larger and results in 
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Increasing polarity 

shifts (solvatochromic shifts) of the emission spectrum to longer wavelengths (red 

shifts) which are often, but not always, accompanied by decrease in the quantum yield 

of the fluorophore (Figures 4.12, 4.13 and scheme 4.5). As the emission of a 

fluorescence photon is quasi-instantaneous, the solute recovers its ground state dipole 

moment and a new relaxation process leads to the most stable initial configuration of 

the solute–solvent system in the ground state. Note that, if the medium is sufficiently 

fluid, the time required for the reorganization of solvent molecules around the solute 

is short comparatively to the excited-state lifetime and fluorescence will essentially be 

emitted from molecules in equilibrium with their solvation shell. Conversely, if the 

medium is too viscous to allow solvent molecules to reorganize, emission arises from a 

state close to the Franck–Condon state (F) (as in the case of a non-polar medium) and 

no shift of the fluorescence spectrum will be observed17.  

 

Scheme 4.5. Jablonski diagram for fluorescence with solvent relaxation
17

. 
 

 

 

 

 

 

 

 

 
 
 
 

 
Figure 4.13. Solvatochromic effects on fluorescence spectra. 
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One common use of solvent effects is to determine the polarity of the probe binding 

site on a macromolecule. This is accomplished by comparison of the emission spectra 

and/or quantum yields when the fluorophore is bound to the macromolecule or 

dissolved in solvents of different polarity.  

The observed shifts result from both the interactions of the dipole moment of the 

fluorophores with the reactive fields induced in the surrounding solvent (General 

Solvent Effects), and from the specific chemical interactions between the fluorophores 

and one or more solvent molecules (Specific Solvent Effects). General Solvent Effects 

(non-specific dielectric interactions) result from the refractive index (n) and the 

dielectric constant (), i.e. the physical constants which reflect the freedom of 

movement of the electrons in the solvent molecules and the dipole moment of these 

molecules. Specific solvent effects (specific interactions) refer to specific chemical 

interactions between the fluorophores and the solvent molecules, such as hydrogen 

bonding and complexation. General solvent effects are expected to always be present 

whereas specific solvent effects depend upon the chemical structures of the solvent 

and the fluorophore. Normally, general solvent effects lead to higher spectral shifts17.  

 
Polarity and solvatochromism 

Compounds are called solvatochromic when the location of their absorption (and 

emission) spectra depends on solvent polarity. A bathochromic (red) shift and a 

hypsochromic (blue) shift with increasing solvent polarity pertain to positive and 

negative solvatochromism, respectively. Such shifts of appropriate solvatochromic 

compounds in solvents of various polarities were used to construct several empirical 

polarity scales18,19. The * scale of Kamlet and Taft20 deserves special recognition 

because it has been successfully applied to the positions or intensities of maximal 

absorption in IR, NMR, ESR and UV–visible absorption and fluorescence spectra, and 

many other physical or chemical parameters (reaction rate, equilibrium constant, etc.). 

It is remarkable that the * scale has been established from the averaged spectral 

behavior of numerous solutes. It offers the distinct advantage of taking into account 

both non-specific and specific interactions3. 
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Table 4.3. Parameters of the * scale of polarity, where * is a measure of the polarity/polarizability 

effects of the solvent; the  scale is an index of solvent HBD (hydrogen bond donor) acidity and the  

scale is an index of solvent HBA (hydrogen bond acceptor) basicity
3
. 

Solvent *   

Cyclohexane  0.00 0.00 0.00 
n-Hexane, n-heptane -0.08 0.00 0.00 
Benzene  0.59 0.10 0.00 
Toluene  0.54 0.11 0.00 
Dioxane  0.55 0.00 0.37 
Tetrahydrofuran  0.58 0.00 0.55 
Acetone  0.71 0.08 0.48 
Carbon tetrachloride  0.28 0.00 0.00 
1,2-Dichloroethane  0.81 0.00 0.00 
Diethyl ether 0.27 0.00 0.47 
Ethyl acetate  0.55 0.00 0.45 
Dimethylsulfoxide  1.00 0.00 0.76 
N,N-Dimethylformamide  0.88 0.00 0.69 
Acetonitrile  0.75 0.19 0.31 
Ethanol  0.54 0.83 0.77 
Methanol  0.60 0.93 0.62 
n-Butanol  0.47 0.79 0.88 
Trifluoroethanol  0.73 1.51 0.00 
Ethylene glycol  0.92 0.90 0.52 
Water  1.09 1.17 0.18 
 

 

General Solvent Effects on fluorescence spectra: the Lippert-Mataga equation 

A variety of equations have been proposed to describe the effects of the physical 

properties of solvents on emission spectra. In these equations, the solvent is 

considered as a continuum in which the fluorophore is contained. This simplifying 

assumption limits the applicability of the equations since specific fluorophore-solvent 

interactions which can have substantial effects upon the emission spectra are not 

considered. Nevertheless, as the general solvent effects are always present, a 

quantitative prediction of these effects provides a framework within which one can 

analize the experimental data. The most widely used expression was previously 

presented by Lippert and others21-23. As the interactions between the solvent and 

fluorophore molecules affect the energy difference between the ground and the 

excited state, the Lippert-Mataga equation represents this energy difference: 
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where      and      are the wavenumbers of the absorption and emission, respectively 

(thus, the difference          represents the energy difference between the ground 

and the excited state); ε  is the vacuum permittivity; h is the Planck’s constant; c is the 

speed of light; R is the radius of the cavity in which the fluorophore resides 

(considering the fluorophore a point dipole at the center of a spherical cavity 

immersed in the homogeneous solvent); *– is the difference in the dipole moment 

of solute molecule between excited (*) and ground () states. 

The term in brackets is called the orientation polarizability ( f). Then, the Lippert-

Mataga equation can be written3 

           
 

  ε 
 
 

  
             +     s                                         

 f ranges from -0.001 in cyclohexane to 0.320 in water (Table 4.4). 

This equation is only an approximation but there is a reasonable correlation between 

the observed and calculated energy losses in nonprotic solvents (those not having 

hydroxyl groups or other groups capable of hydrogen bonding). In this case, a linear 

behaviour is observed which allows us to determine the increase in dipole moment 

 =*-, provided that a correct estimation of the cavity radius is possible. 

This sensitivity of the Stokes shift to solvent polarity is the reason why fluorescence 

emission spectra are frequently used to estimate the polarity of the environment 

surrounding the fluorophore. 

Table 4.4. Dielectric constant (at 20ºC), refractive index (at 20ºC) and orientational polarizability  f of 

some solvents
3
. 

Solvent       f 

Cyclohexane  2.023 1.4266 -0.001 
Benzene  2.284 1.5011 0.003 
Toluene  2.379 1.4961 0.013 
Dioxan  2.218 1.4224 0.021 
Chloroform  4.806 1.4459 0.149 
Diethyl ether  4.335 1.3526 0.167 
Butyl acetate  5.01 1.3941 0.171 
Dichloromethane  9.08 1.4242 0.219 
Dimethylsulfoxide  48.9 1.4770 0.265 
N,N-Dimethylformamide  37.6 1.4305 0.275 
Acetonitrile  38.8 1.3442 0.306 
Ethanol  25.07 1.3611 0.290 
Methanol  33.62 1.3288 0.309 

Water2 80.10 1.3330 0.320 
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Note that the Lippert-Mataga equation only considers the absolute magnitude of the 

charge transfer dipole moment  =*- and not the angle between the dipoles. 

Bakhshiev argued that the general solvent effects must also depend upon the angle 

between the ground and excited state dipole moments of the fluorophore and have 

presented an alternative expression to the Lippert-Mataga equation24,25. However, as 

other specific interactions between the solvent and the fluorophore result in 

substantial spectral shifts and are not conveniently accounted for within the 

framework of the existing theories, the use of the simplest conceptual model for 

general solvent effects seems justified. This simple theory is useful for interpreting 

experimental data and to evaluate the presence/importance of specific solvent effects. 

As the Lippert-Mataga equation describes the Stokes shift expected for a given 

fluorophore in media of varying polarity, it has two main applications: 

- The sensitivity of a fluorophore to solvent polarity is expected to be 

proportional to (*-)2. Once this term is constant for a given fluorophore, we 

can prepare calibration curves for (         ) versus  f. Then, if the fluorophore 

is placed in an unknown environment, the polarity of this environment can be 

estimated from (        ). An ideal polarity probe based on photoinduced 

charge transfer and solvent relaxation should (i) undergo a large change in dipole 

moment upon excitation but without change in direction; (ii) bear no permanent 

charge in order to avoid contributions from ionic interactions; (iii) be soluble in 

solvents of various polarities, from the apolar solvents to the most polar ones. 

- The sensitivity of the Stokes shift to  f can be used to estimate the change in 

dipole moment which occurs upon excitation. For that, we can trace a Lippert-

Mataga plot, which is a plot of (        ) versus the orientational polarizability, 

 f, and evaluate the change in dipole moment   assuming the molecular radius 

as the cavity radius. Fluorophores which have the largest changes in dipole 

moment upon excitation are more sensitive to solvent polarity. As an example, 

Lippert-Mataga plots for two naphtylamine derivatives are shown in Figure 4.14. 

The N-phenyl-N-methyl derivative is clearly more sensitive to solvent polarity 

than the unsubstituted derivative12. 
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Figure 4.14. Lippert-Mataga plots for N-phenyl-N-methyl-2-aminonaphthalene-6-sulfonate (ο) and 2-

aminonaphthalene-6-sulfonate (). Adapted from ref. 26.  
 

Specific Solvent Effects on fluorescence spectra 

General solvent effects are approximately described by the Lippert-Mataga equation 

and represent the collective influence of the entire set of surrounding solvent 

molecules on the fluorophore. In contrast, specific interactions are produced by one or 

a few neighboring molecules, and are determined by the specific chemical properties 

of both fluorophores and solvent27,28. Specific effects can be due, for example, to 

hydrogen bonding, acid-base equilibrium, or charge transfer interactions and they can 

lead to substantial shifts. 

Specific solvent effects can be identified by examining either emission spectra in a 

variety of solvents, or the Lippert-Mataga plots. When a substantial red shift of the 

emission spectrum of a fluorophore in a non-polar solvent is observed for the addition 

of a small percentage of a polar solvent, it can indicate that the observed shift is due to 

specific solvent effects. For example, the emission spectrum of 2-acetylanthracene (2-

AA) in hexane shifted gradually as the percentage of dioxane was increased to 100%. 

These shifts are probably a result of general solvent effects. In contrast, most of the 

shift expected for methanol, together with a loss of structured emission, was produced 

by only about 1-2% methanol. This amount of alcohol is too small to affect the 

refractive index or dielectric constant of the solvent, and hence this shift is a result of 

specific solvent effects (Figures 4.15 and 4.16)17. 



Chapter 4- Molecular Fluorescence Spectroscopy 
__________________________________________________________________________________________________________ 

125 
 

 

Figure 4.15. Fluorescence spectra of 2-acetylanthracene in methanol–hexane mixtures at 20°C
17

. 
Concentrations of methanol in mol dm–3: (0) 0, (1) 0.03, (2) 0.05, (3) 0.075, (4) 0.12, (5) 0.2, and (6) 0.34.  
1 kK=1000 cm–1. 
 

 

Figure 4.16. Effect of solvent composition on the emission maximum of 2-acetylanthracene (1 kK=1000 

cm
–1

)
17

. 

 

Specific solvent–fluorophore interactions can occur in either the ground state or the 

excited state. If the interaction only occurred in the excited state, then the polar 

additive would not affect the absorption spectra. If the interaction occurs in the 

ground state, then some change in the absorption spectrum is expected.  

In the case of n-* transitions, the electronic density on a heteroatom like nitrogen 

decreases upon excitation and these transitions have a charge transfer character 

illustrated by an increase of the dipole moment with respect to the ground state dipole 

moment. It can be explained by the fact that the electron is removed from the 

heteroatom and goes to an * orbital localized half on the heteroatom, half on a 
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carbon atom. This results in a decrease in the capability of this heteroatom to form 

hydrogen bonds. The resulting effect is a blue-shift of the absorption spectrum (the 

higher the strength of hydrogen bonding, the larger the shift). This criterion is 

convenient for assigning a n-* band and the spectral shift can be used to determine 

the energy of the hydrogen bond. The fluorescence emitted from a n-* singlet state 

will be always less sensitive to the ability of the solvent to form hydrogen bonds than 

absorption because, as n-* excitation of a heterocycle containing nitrogen (e.g. in 

solution in methanol) causes hydrogen bond breaking (e.g. N...HOCH3), the 

fluorescence spectrum will only be slightly affected by the ability of the solvent to form 

hydrogen bonds (emission arises from an n-* state without hydrogen bonds). 

In the case of -* transitions, it is often observed that the heteroatom of a 

heterocycle (e.g. N) is more basic in the excited state than in the ground state. The 

resulting excited molecule can thus be hydrogen bonded more strongly than the 

ground state. -* fluorescence is thus more sensitive to hydrogen bonding than -* 

absorption3. 

Attention must be paid to the emission spectrum of a fluorophore bound to a 

macromolecule. For example, a molecule like 2-acetylanthracene, when bound in a 

hydrophobic site on a protein, may display an emission spectrum comparable to that 

seen in water if only a single water molecule is near the carbonyl group. 

Evidence of specific solvent effects can also be seen in the Lippert-Mataga plots. For 

example, the Stokes shifts observed for methyl 8-(2-anthroyl) octanoate (a 2-AA 

derivative) in hydrogen bonding solvents (water, methanol and ethanol) are much 

larger than that observed in solvents that less readily form hydrogen bonds (Figure 

4.17). 
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Figure 4.17. Stokes shifts of methyl 8-(2-anthroyl) octanoate in organic solvents and water. The solvents 
are benzene (B), n-hexane (H), diethyl ether (DEE), ethyl acetate (EA), acetone (Ac), N,N-
dimethylformamide (DMF), chloroform (Ch), dimethyl sulfoxide (DMSO), ethanol (EA), methanol (Me), 

and water (W)
17

. 

 

The presence of specific solvent effects can be problematic because these effects can 

prevent a quantitative interpretation of the emission spectra in terms of the 

orientation polarizability of the macromolecule. On the other hand, the presence of 

specific solvent effects can be favorable because they could reveal the accessibility of 

the macromolecule-bound probe to the aqueous phase.  

An understanding of specific and general solvent effects can provide a basis for 

interpreting the emission spectra of fluorophores that are bound to macromolecules. 

For instance, the emission spectra of 2-anilinonaphthalene (2-AN) bound to 

membranes composed of dimyristoyl-L--phosphatidylcholine (DMPC) is considerably 

red shifted relative to the emission in cyclohexane, but it is blue shifted relative to 

water (Figure 4.18)17. 
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Figure 4.18. Normalized fluorescence emission spectra of 2-anilinonaphthalene in solvents and bound to 
vesicles of dimyristoyl-L-α-phosphatidylcholine (DMPC). The dashed line indicates the spectrum in 

cyclohexane (CH), which contains 3% ethanol
17

. 

 

As 2-AN is highly sensitive to small concentrations of ethanol, it seems likely that 

cyclohexane containing more than 3% ethanol is the preferable reference solvent for a 

low polarity environment (in this solvent the specific effects are saturated). With this 

adjustment in mind, one may conclude that the environment in which the 2-AN is 

localized is mostly nonpolar, but that this site is accessible to water. Without 

consideration of specific solvent effects one might conclude that the 2-AN is in a more 

polar environment. 

 
Temperature effects (solvent viscosity effects) 

At low temperatures the solvent can become more viscous, and the time for solvent 

reorientation increases. Upon excitation, the fluorophore is assumed to be initially in 

the Franck-Condon state (F). Solvent relaxation proceeds with a rate kS. If this rate is 

much slower than the decay rate (1/), then one expects to observe the emission 

spectrum of the unrelaxed F state. If solvent relaxation is much faster than the 

emission rate (kS >> 1/), then emission from the relaxed state (R) will be observed. 

At intermediate temperatures, where kS   1/, emission and relaxation will occur 

simultaneously. Under these conditions, an intermediate emission spectrum will be 

observed (Scheme 4.6). Frequently, this intermediate spectrum (– – –) is broader on 

the wavelength scale because of contributions from both the F and R states. 
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Scheme 4.6. Jablonski diagram and respective emission spectra for solvent relaxation

17
. 

 

Normally, internal rotations favor non-radiative de-excitation processes. That is the 

reason why rigid compounds are more fluorescent than similar compounds which can 

suffer internal rotations (e.g. phenolphthalein versus fluorescein). For the same 

reasons, when the temperature decreases, the environment become more rigid 

(because the solvent viscosity increases), the fluorophore suffers less internal rotations 

and, consequently, the fluorescence quantum yield increases. 

 

5.5.2. Compounds submitted to photoinduced Intramolecular Charge Transfer 

(ICT) and internal rotation 

Solvent relaxation may be accompanied by internal rotation within the fluorophore, 

leading to a Twisted Intramolecular Charge Transfer (TICT) state. Thus, highly 

conjugated planar molecules can sometimes completely loss the conjugation. In this 

case, there is a total charge separation and two bands can be observed in the 

fluorescence spectrum of the fluorophore in polar non-viscous solvents: one 

corresponding to the emission from the Franck Condon state and one to the emission 

from the TICT state (at higher wavelengths). Attention may be paid to the fact that 

internal rotation accompanying solvent relaxation or not can occur in many 

fluorophores, but dual fluorescence and right angle twist (required for full charge 

separation) are exceptional. Note that intramolecular charge transfer and internal 

rotation can also occur in non-polar and highly symmetric molecules3. 
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5.5.3. Changes in the non-radiative decay rates 

Increases in quantum yield are frequently observed when fluorophores bind to 

biomolecules. These changes are due to solvent or environmental effects, but these 

changes are not explained by the Lippert equation. It seems reasonable to suggest that 

changes in quantum yield are due to changes in the rates of non-radiative decay (kNR). 

One example for such a process is Coumarin-151. Figure 4.19 shows the Stokes shift 

and the quantum yields for Coumarin-151 in several solvents. The Stokes shift 

increases in a stepwise manner upon addition of the polar solvent dioxane, even 

though the value of  f is almost unchanged. The quantum yield is low in nonpolar 

solvents and also increases stepwise when the solvent contains a polar additive. Since 

the excitation coefficient and radiative decay rates are usually not very sensitive to 

solvent polarity, the decrease in quantum yield suggests an increase in kNR in nonpolar 

solvents17.  

 

Figure 4.19. Stokes shifts and quantum yields for Coumarin-151 in various solvents. 2-MP, 2-
methylpentane; M70D30, 70% 2-MP and 30% dioxane (D); M60EA40, 60%, 2-MP and 40% EA, ethyl acetate; 

MeOH, methanol
29

. 
 
 

This fact can be explained by a polarity-induced inversion of n-* and -* states3. A 

change in the ability of a solvent to form hydrogen bonds can affect the nature (n–* 
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vs –*) of the lowest singlet state. Some aromatic carbonyl compounds often have 

low-lying, closely spaced –* and n–* states (see section 5.4.). Inversion of these 

two states can be observed when the polarity and the hydrogen-bonding power of the 

solvent increases, because the n–* state shifts to higher energy whereas the –* 

state shifts to lower energy. This results in an increase in fluorescence quantum yield 

because radiative emission from n–* states is known to be less efficient than from –

* states. The other consequence is a red-shift of the fluorescence spectrum (Scheme 

4.7). 

 

Scheme 4.7. The effects of polarity-induced inversion of n-* and -* states
3
. 

 

 

5.5.4. Changes in the radiative decay rates 

In the previous example, the quantum yield of Coumarin-151 decreases in low polarity 

solvents. A more typical situation is an increase in quantum yield in low-polarity 

solvents. This behavior can be explained by the formation of an ICT state. In low 

polarity solvents, emission arises from the Franck-Condon -* state which is lower in 

energy. In high polarity solvents, the ICT state is stabilized by interaction with the 

solvent and thus becomes the emitting species. Thus, we can observe a redshift and, as 
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hydrogen bonds favor intersystem crossing, the radiative decay rates decrease as well 

as the fluorescence quantum yields, when the solvents polarity increases17. 

 

5.5.5. Probe-probe interactions 

In addition to interacting with solvents, fluorophores can interact with each other. One 

example is excimer formation due to an excited-state complex of two identical 

fluorophores. Excimer formation is a short-range interaction that requires molecular 

contact between the fluorophores. Excimer formation has found some utility in 

biotechnology, to detect, for example, an insertion mutation in DNA30,31: a probe DNA 

with a insertion mutant sequence can prevent a non-fluorescent compound from 

intercalating into the double helix, resulting in the formation of an excimer out of the 

double helix that exhibits fluorescence.  Another use of excimer formation is to follow 

self-assembly processes32 in which, according to the extent of the self-association, the 

fluorescence spectrum suffers spectral shifts. 

 

5.6. Resolution of Fluorescence spectra 

The width of a band in the emission (and/or the absorption) spectrum of a fluorophore 

is the result of two effects: homogeneous and inhomogeneous broadening. 

Homogeneous broadening is due to the existence of a continuous set of vibrational 

levels. Thus, at room temperature, most emission (and absorption) spectra of 

moderately large and rigid fluorophores in solution are almost structureless. 

Inhomogeneous broadening is due to the fluctuations in the structure of the solvation 

shell surrounding the fluorophore. The distribution of solute-solvent configurations 

leads to a distribution of the energies of the electronic transitions. Normally, the 

extent of inhomogeneous broadening is larger than that of homogeneous broadening, 

but there are several ways to reduce these effects like using solid matrices at low 

temperatures, or using laser excitation (whose linewidth is reduced) which allows 

exciting individual compounds in complex mixtures33,34. 
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6.  Quenching of fluorescence 

Fluorescence quenching refers to any process that decreases the fluorescence intensity 

of a sample. A variety of photophysical processes can result in quenching. Most of 

them involve interaction of an excited molecule M* with another molecule Q, as 

shown in Scheme 4.8. kM is the sum of the rate constants of the intrinsic pathways 

(radiative and non-radiative) of de-excitation and is the reciprocal of the excited-state 

lifetime   (equation 4.22); kq represents the observed rate constant for the 

bimolecular process3. 

 

Scheme 4.8. Interaction of an excited molecule M* and another molecule Q and respective rate 

constants
3
. 

 
These intermolecular photophysical processes responsible for de-excitation of 

molecules compete with the intrinsic de-excitation and affect the fluorescence 

characteristics (fluorescence intensity, decay time and/or fluorescence quantum yield) 

of M*: 

(i) After excitation by a light pulse, the excited-state M* population, and consequently 

the fluorescence intensity, decrease more rapidly than in the absence of excited-state 

interaction with Q, because quenching is an additional rate process that depopulates 

the excited state. 

(ii) For the same reasons, in the case of dynamic quenching (section 6.2.) the excited-

state lifetime is decreased. However, in the case of static quenching (see section 6.3.) 

the lifetime is not decreased because only the fluorescent molecules are observed, and 

the uncomplex fluorophores have the unquenched lifetime . 

(iii) The fluorescence quantum yield is decreased because quenching depopulates the 

excited state without fluorescence emission. The loss of fluorescence intensity is called 

fluorescence quenching whatever the nature of the competing intermolecular process 

and even if this process leads to a fluorescent species (the word quenching applies 

only to the initially excited molecule)3. 
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The processes responsible for quenching include electron transfer, energy transfer, 

excimer or exciplex formation (in these cases, we talk about dynamic quenching or 

collisional quenching), and the formation of a non-fluorescent ground-state complex 

(static quenching). Intramolecular excited-state processes (intramolecular charge 

transfer, internal rotation, intramolecular proton transfer, etc.) and photochemical de-

excitation (i.e. de-excitation resulting from organic photochemical reactions implying 

bond breaking and formation of new bonds, so that the ground state of M is not 

recovered) can also affect the fluorescence characteristics (we talked about some of 

these effects in section 5.5.). 

There are numerous applications of quenching measurements. For example, 

quenching measurements can reveal the accessibility of fluorophores to quenchers. An 

example is a fluorophore bound to a protein or in a membrane. If the protein or 

membrane is impermeable to the quencher, and the fluorophore is located in the 

interior of the macromolecule/aggregate, then neither collisional nor static quenching 

can occur. For this reason, quenching studies can be used to reveal the localization of 

fluorophores in proteins and membranes, and their permeabilities to quenchers17. 

 

6.1. Quenchers of fluorescence 

There is a large variety of substances which act as quenchers. One of the best-known 

collisional quenchers is molecular oxygen which quenches almost all known 

fluorophores. The mechanism by which oxygen quenches has been a subject of 

debate35. The most likely mechanism is that the paramagnetic oxygen causes the 

fluorophore to undergo intersystem crossing to the triplet state. Under atmospheric 

pressure, the concentration of oxygen in most solvents is 10-3–10-4 mol L-1. For that 

reason, it is frequently necessary to remove dissolved oxygen by bubbling the solutions 

with nitrogen or argon for example, in order to obtain reliable measurements of the 

fluorescence quantum yields or lifetimes.  

Aromatic and aliphatic amines are also efficient quenchers of most unsubstituted 

aromatic hydrocarbons36. Another type of quenching is due to heavy atoms such as 

iodide and bromide. Quenching by these larger halogens may be a result of 

intersystem crossing to an excited triplet state, promoted by spin–orbit coupling of the 
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excited (singlet) fluorophore and the halogen37. There is a large variety of other 

quenchers and we can identify fluorophore–quencher combinations for a desired 

purpose. It is important to note that not all fluorophores are quenched by all the 

substances identified as “quenchers”. This fact occasionally allows selective quenching 

of a given fluorophore. The occurrence of quenching depends upon the mechanism, 

which in turn depends upon the chemical properties of the individual molecules. An 

overview of some possible quenchers for typical fluorophores can be found in 

reference 17. 

 

6.2. Collisional quenching (dynamic quenching) 

Collisional quenching of fluorescence results from diffusive encounters between the 

fluorophore and quencher during the lifetime of the excited state (diffusion-controlled 

process, scheme 4.9). This is a time-dependent process because the excited 

fluorophores, M*, that are at a short distance from a quencher, Q, at the time of 

excitation react, on average, at shorter times than those that are more distant, 

because mutual approach requires a longer time before reaction occurs. 

 

 

 

 

 

Scheme 4.9. Illustration of dynamic quenching. 

 
As a first approach, the experimental quenching rate constant, kq, is assumed to be 

time-independent. In this case, collisional quenching is described by the Stern-Volmer 

equation17: 

  

 
 
  
 
  +          +                                              

 
where     and   are the fluorescence quantum yields in the absence and presence of 

quencher, respectively; I0 and I are the fluorescence intensities in the absence and 

presence of quencher, respectively; 0 is the lifetime of the fluorophore in the absence 

of quencher; [Q] is the concentration of quencher; KSV = kq0  is the Stern–Volmer 

constant. kq is the bimolecular quenching constant which reflects the efficiency of 

quenching or the accessibility of the fluorophores to the quencher. Diffusion-

M* + Q   M*Q 

M + Q 

 

h 

Non- fluorescent 

h 
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controlled quenching typically results in values of kq near 1010 M–1 s–1. Values of kq 

smaller than the diffusion-controlled value can result from steric shielding of the 

fluorophore or a low quenching efficiency. Apparent values of kq larger than the 

diffusion-controlled limit usually indicate some type of binding interaction. 

The meaning of the bimolecular quenching constant can be understood in terms of the 

collisional frequency between freely diffusing molecules. The collisional frequency (Z) 

of a fluorophore with a quencher is given by  

Z = k0 [Q] 

where k0 is the diffusion-controlled bimolecular rate constant. This constant may be 

calculated using the Smoluchowski equation which describes the diffusive flux of a 

molecule with a diffusion coefficient D through the surface of a sphere of radius R17: 

   
    

    
    

    

    
    +       +                                    

where R is the collision radius (generally, it is assumed to be the sum of the molecular 

radii of the fluorophore Rf and quencher Rq); D is the sum of the diffusion coefficients 

of the fluorophore Df and quencher Dq; NA is Avogadro's number (the term NA/1000 

converts molarity to molecules/cm3).  

The collisional frequency is related to the bimolecular quenching constant by the 

quenching efficiency, fQ: 

kq = fQ k0                                                               (4.40) 

For example, if fQ=0.5, then 50% of the collisional encounters are effective in 

quenching and kq will be half the diffusion-controlled value, k0. Since k0 can be 

estimated with moderate precision, the observed value of kq can be used to judge the 

efficiency of quenching. Quenchers like oxygen, acrylamide, and iodide ion generally 

have efficiencies near unity, but the quenching efficiency of weak quenchers like 

succinimide depends on the solvent and/or viscosity. The efficiency of quenching can 

be calculated from the observed value of kq, if the diffusion coefficients and molecular 

radii are known. The radii can be obtained from molecular models, or from the 

molecular weights and densities of the quencher in question. Diffusion coefficients 

may be obtained from the Stokes-Einstein equation: 
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where k is Boltzmann's constant, T is the absolute temperature,   is the solvent 

viscosity, and R is the molecular radius. Frequently, the Stokes-Einstein equation 

underestimates the diffusion coefficients of small molecules (this equation describes 

the diffusion of molecules that are larger than the solvent molecules). As an alternative 

method, diffusion coefficients can be obtained from nomograms based upon the 

physical properties of the system38. Once the diffusion coefficients are known, the 

bimolecular quenching constant for fQ=1 can be predicted using Smoluchowski 

equation (equation 4.39).  

Generally, the ratio  
  

 
  is plotted against the quencher concentration (Stern–Volmer 

plot). If the variation is found to be linear, the slope gives the Stern–Volmer constant. 

Then, kq can be calculated if the excited-state lifetime in the absence of quencher is 

known. A linear Stern-Volmer plot is generally indicative of a single class of 

fluorophores, all equally accessible to quencher. If two fluorophore populations are 

present, and one class is not accessible to quencher, then the Stern-Volmer plots 

deviate from linearity toward the x-axis. As an example, when we study the interaction 

of a compound with DNA, a fraction of compound molecules can intercalate between 

DNA base pairs. In this case, the Stern-Volmer plot generally exhibits a downward 

curvature because the fraction of intercalated molecules is not accessible to the 

quencher. Then, the modified Stern-Volmer plot allows the determination of the 

fraction of compound molecules accessible to the quencher, 

  
  
   

 

  
 +  

 

        
                                                           

where I0 and I are the fluorescence intensities in the absence and in the presence of 

quencher, respectively;     = I0  I; fa is the fraction of molecules accessible to the 

quencher; KSV is the Stern-Volmer constant; and [Q] is the quencher concentration. 

Attention must be paid to the fact that the observation of a linear Stern-Volmer do not 

necessarily imply that collisional quenching of fluorescence has occurred because 

static quenching also results in linear Stern-Volmer plots17.  
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6.3. Static quenching  

Static quenching occurs as a result of the existence of a sphere of effective quenching 

or as a result of the formation of a non-fluorescent ground-state complex between the 

fluorophore and quencher.  

 
 

 Sphere of effective quenching 

In the case of viscous media or rigid matrices, M* and Q cannot change their positions 

in space relative to one another during the excited-state lifetime of M*. Perrin 

proposed a model for that cases, in which quenching of a fluorophore is assumed to be 

complete if a quencher molecule Q is located inside a sphere (sphere of effective 

quenching, active sphere or quenching sphere) of volume Vq surrounding the 

fluorophore M. If a quencher is outside the quenching sphere, it has no effect on M 

(Figure 4.20)3. 

 

Figure 4.20. Sphere of effective quenching
3
.  

 

Therefore, the fluorescence intensity of the solution is decreased by addition of Q, but 

the fluorescence decay after pulse excitation is unaffected: 

  
 
                                                                   

where I0 and I are the fluorescence intensities in the absence and presence of 

quencher, respectively; Vq is the volume of the quenching sphere;    is the Avogadro’s 

number and [Q] is the concentration of quencher. 

In contrast to the Stern–Volmer equation, the ratio  
  

 
  is not linear and shows an 

upward curvature at high quencher concentrations. At low concentrations, 

              +        , so that the concentration dependence is almost linear 

and a plot of  
  

 
 versus [Q] yields Vq. The values of VqNA are often found to be in the 

range of 1–3 Lmol-1. This corresponds to a quenching sphere radius of about 10Å, 
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which is somewhat larger than the Van der Waals contact distance between M and 

Q17. 

 

 Formation of a ground-state non-fluorescent complex 

Static quenching can also occur from the formation of non-fluorescent ground-state 

complex. When this complex absorbs light it immediately returns to the ground state 

without emission of a photon (Scheme 4.10).  

 

 

 

 

 

Scheme 4.10. Illustration of static quenching by formation of a ground-state non-fluorescent complex. 

 
The association constant for the complex formation is given by: 

   
       

      
                                                                     

where [MQ] is the concentration of the complex, [M] is the concentration of 

uncomplexed fluorophore, and [Q] is the concentration of quencher. 

As the total concentration of fluorophore, [M]0, is given by 

[M]0 = [M] + [MQ]                                                        (4.45) 

substitution into equation 4.44 leads to  

   
        

      
 

    
      

 
 

   
                                                   

The fraction of uncomplexed fluorophores is thus 

   

    
 

 

 +      
                                                                

Considering that the fluorescence intensities are proportional to the concentrations 

(which is valid only in dilute solutions), this relationship can be rewritten as 

  
 
  +                                                                        

Note that this relation is linear, as in the case of the Stern-Volmer plot for dynamic 

quenching, except that the quenching constant is now the association constant. 

 

 

(MQ)* 

M + Q   MQ 

 

h 

Non  fluorescent 
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6.4. How to distinguish between dynamic and static quenching 

The value of KS can sometimes be used to demonstrate that dynamic quenching 

cannot account for the decrease in intensity. However, the measurement of 

fluorescence lifetimes is the most definitive method to distinguish static and dynamic 

quenching. Static quenching removes a fraction of the fluorophores from observation. 

The complexed fluorophores are nonfluorescent, and the only observed fluorescence 

is from the uncomplexed fluorophores. The uncomplexed fraction, and thus, the 

lifetime 0 are unperturbed. Therefore, for static quenching 
  

 
 = 1 whereas for dynamic 

quenching  
  

 
 

  

 
 . 

Static and dynamic quenching can also be distinguished by their differing dependence 

on temperature and viscosity. Higher temperatures result in faster diffusion and in the 

dissociation of weakly bound complexes. Consequently, there are larger amounts of 

collisional quenching and smaller amounts of static quenching. 

One additional method to distinguish between static and dynamic quenching is by 

careful examination of the absorption spectra of the fluorophore. Collisional 

quenching only affects the excited states of the fluorophores, and thus no changes in 

the absorption spectra are expected. In contrast, static quenching as a result of the 

formation of a ground-state non-fluorescent complex will frequently result in 

perturbation of the absorption spectrum of the fluorophore. Attention must be paid to 

the fact that, at low concentrations, the absence of changes on the absorption 

spectrum and a linear variation of 
  

 
 can lead to confusion between dynamic 

quenching and static quenching as a result of the existence of a quenching sphere 

(Figure 4.21)17. 

 

 

 

 

 

 

 

 

Figure 4.21. Comparison between dynamic and static quenching (adapted from ref. 17). 

  
No changes on absorption spectrum   Changes on absorption spectrum 

       (for complex formation) 

Collisional quenching             Static quenching 

Slope=KSV = kq0   

Slope=VqNA  for quenching 
sphere 
 at low cocentration   
Slope=KS for complex formation 
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6.5. Simultaneous dynamic and static quenching 

In many cases, the fluorophore can be quenched both by collisions and by complex 

formation or by a quenching sphere, with the same quencher. The characteristic 

feature of the Stern-Volmer plots in such circumstances is an upward curvature, 

concave towards the y-axis.  

Let us consider first the case of static quenching by formation of a non-fluorescent 

complex. The ratio  
  

 
  obtained for dynamic quenching must be multiplied by the 

fraction of fluorescent molecules (i.e. uncomplexed)17: 

 

  
  

 

  
 
   

  
   

    
                                                        

Replacing  
 

  
 
   

 by 
 

        
 (from the Stern-Volmer equation, equation 4.38) and 

   

    
  

by 
 

       
 (static quenching by formation of a non-fluorescent complex, equation 

4.47):  

  
 
   +          +                                                        

This modified form of the Stern-Volmer equation is second order in [Q], which 

accounts for the upward curvature observed when both static and dynamic quenching 

occur for the same fluorophore (Figure 4.22, left). 

 

 

 

 

 

 

 

 

Figure 4.22. Simultaneous dynamic and static quenching by formation of a non-fluorescent complex
17

. 

 
The dynamic portion of the observed quenching can be determined by lifetime 

measurements. That is, 
  

 
  +        (the dashed line in Figure 4.22, left). If 

lifetime measurements are not available, then the last equation can be modified to 

allow a graphical separation of KS and KSV. Multiplication of the terms in parentheses 

yields 

 

KSV + KS 

Slope = KSV KS 
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  +     +       +         

   
  
 
  +         

         
  
 
   

 

   
     +    +                                      

The apparent quenching constant is calculated at each quencher concentration. A plot 

of  
  

 
   

 

   
      versus [Q] yields a straight line with an intercept of KSV + KS and 

a slope of KSVKS  (Figure 4.22, right). The individual values can also be obtained from 

the two solutions of the quadratic equation below.  

In the case of the sphere of effective quenching model, the ratio  
  

 
  obtained for 

dynamic quenching must be multiplied by the ratio  
  

 
  obtained for static quenching by 

a quenching sphere17: 

 

  
  

 

  
 
   

   
 

  
 
    

                                                      

Replacing  
 

  
 
   

 by 
 

        
 (from the Stern-Volmer equation, equation 4.38) and 

 
 

  
 
    

 by                for high concentrations or by 1 +          for low 

concentrations (static quenching by a quenching sphere, equation 4.43) we obtain  

  
 
   +                                                                  

for high concentrations (upward curvature)  

or            

  
 
   +           +                                                        

for low concentrations (upward curvature) 

But if we plot 
  

 
   versus [Q] we obtain a straight line with an intercept of                 

KSV +      and a slope of KSV     . 

 

6.6. Some applications of quenching 

The extent of quenching can be affected by steric shielding and charge. Thus, 

protection against quenching is frequently observed for probes bound to 

macromolecules39,40 and even cyclodextrins41. Furthermore, charge effects are 
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generally present with charged quenchers such as iodide, and absent with neutral 

quenchers like oxygen and acrylamide. 

The most dramatic effects of charge and shielding on quenching have been observed 

for fluorophores bound to DNA. The extent of quenching is decreased by intercalation 

of probes into the DNA double helix. For instance, ethidium bromide (EB) bound to 

DNA was found to be protected from oxygen quenching by a factor of 30 as compared 

to EB in solution42. Given the high negative charge density of DNA, one can expect the 

quenching to be sensitive to the charge of the quencher, the ionic strength of the 

solution, and the rate of quencher diffusion near the DNA helix43,44.  

The extent of quenching can also be affected by the charge on the quenchers. For 

instance, Hoechst 33258 is readily quenched by iodide when free in solution, but is not 

quenched when bound to DNA. Apparently, the negative charges on DNA prevent 

iodide from coming into contact with Hoechst 33258 when bound to DNA45.  

As the occurrence of intercalation with DNA is one of the fundamental steps for 

antitumoral activity46, fluorescent quenching experiments with external quenchers are 

of major importance, in order to determine the DNA binding modes47 of new potential 

antitumoral compounds.  

 

6.7. Experimental considerations in quenching 

When performing quenching experiments, several problems can appear: 

 We should examine emission spectra under conditions of maximum quenching. 

In these conditions (low fluorescence intensity), the contribution from 

background fluorescence may begin to be significant. 

 Quenchers are often used at high concentrations, and the quenchers 

themselves may contain fluorescent impurities. 

 The intensity of the Raman and Rayleigh scattering peaks from solvent is 

independent of quencher concentration. Hence, the relative contribution of 

scattered light always increases with quenching. 

 The absorption spectra of the quenchers must be taken into consideration. For 

example, iodide and acrylamide absorb light below 290 nm. In this case, the 

inner filter effect due to absorption can decrease the apparent fluorescence 

intensity, causing distortion on the quenching data48. Thus, if inner filter effects 
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are present, the observed fluorescence intensities must be corrected, except 

for lifetime measurements which are relatively independent of total intensity. 

 When using iodide or other ionic quenchers, it is important to maintain a 

constant ionic strength. This is usually accomplished by addition of KCl. It is also 

important to use freshly prepared solutions or to add a reducing agent, such as 

Na2S2O3 (otherwise, I2 may be formed)3,17. 
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7.  Fluorescence anisotropy 

As we saw at the beginning of section 4, light is an electromagnetic wave consisting of 

an electric field E and a magnetic field H perpendicular to each other and to the 

direction of propagation, and oscillating in phase (vd. Figure 4.1). These fields have no 

preferred orientation for natural light but they oscillate along a given direction when 

the light is linearly polarized (the intermediate case corresponds to light which is 

partially polarized, Figure 4.23)3. 

 

Figure 4.23. Natural, linearly polarized and partially polarized light
3
. 

 

When excited with polarized light, those fluorophores that have their absorption 

transition moments,   
            , oriented along the electric vector of the incident light are 

preferentially excited. Indeed, if the incident light is linearly polarized, the probability 

of excitation of a chromophore is proportional to the square of the scalar product 

  
  .E, and therefore to cos2 A, A being the angle between the electric vector      of 

the incident light and the absorption transition moment   
            ,  (Figure 4.24). This 

probability is maximum when      is parallel to   
            ,  of the molecule; it is zero when the 

electric vector is perpendicular (photoselection)3. 
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Figure 4.24. Transition moments and photoselection
3
. 

 
Upon excitation with polarized light, the emission from many samples is also polarized. 

The extent of polarization of the emission is described in terms of the anisotropy (r). 

Samples exhibiting nonzero anisotropies are said to display polarized emission. Any 

change in direction of the transition moment during the lifetime of the excited state 

will cause this anisotropy to decrease, i.e. will induce a partial (or total) depolarization 

of fluorescence. The emission can become depolarized by a number of factors: 

 Noncollinear absorption and emission transition moments17; 

 Torsional vibrations; 

 Light scattering, reabsorption and misalignment of the polarizers; 

 Transfer of the excitation energy to another molecule with different orientation; 

 Brownian motion (molecular rotation occurring between fluorophore excitation 

and emission). 

 
Anisotropy measurements reveal the average angular displacement of the fluorophore 

that occurs between absorption and subsequent emission of a photon. This angular 

displacement is dependent upon the motions of the fluorophore. Therefore, the 

viscosity of the solvent and the size and shape of the molecule are important factors 

that affect anisotropy. For example, small fluorophores in low-viscosity solutions move 

very fast comparatively to the rate of emission. Under these conditions, the emission is 

depolarized and the anisotropy is close to zero. The dependence of fluorescence 

anisotropy upon fluorophore motions has resulted in numerous applications of this 

technique in biochemical research, as it provides useful information on molecular 

mobility, size, shape and flexibility of molecules, fluidity of a medium, and order 



Chapter 4- Molecular Fluorescence Spectroscopy 
__________________________________________________________________________________________________________ 

147 
 

parameters (e.g. in a lipid bilayer). For example, the anisotropies of membrane-bound 

fluorophores have been used to estimate the internal viscosities of membranes and 

the effects of lipid composition upon the membrane phase-transition temperature17. 

 

7.1. Polarization ratio and emission anisotropy 

For most experiments of fluorescence anisotropy, the sample is excited with vertically 

polarized light. The electric vector of the excitation light is oriented parallel to the 

vertical or z-axis. The intensity of the emission is measured through a polarizer. When 

the emission polarizer is oriented parallel to the direction of the polarized excitation 

the observed intensity is called IVV. Likewise, when the polarizer is perpendicular to the 

excitation, the intensity is called IVH (Figure 4.25)17. 

 

 
 
 
 
 
 
 

Figure 4.25. Schematic diagram for measurement of fluorescence anisotropies
17

. 

 

Fluorescence can be considered as the result of three independent sources of light 

polarized along three perpendicular axis Ox, Oy, Oz without any phase relation 

between them. Ix, Iy, Iz are the intensities of these sources, and the total intensity is   

                                IT = Ix + Iy + Iz                                                          (4.55) 

For vertically polarized incident light, Iz= IVV and Ix =Iy =IVH and thus the total intensity 

is  

IT = IVV + 2 IVH                                                           (4.56) 

 The polarization state of fluorescence is characterized either by 

 the polarization ratio, p, defined as the fraction of light that is linearly polarized:  

  
       
   +    

                                                                     

When IVV or IVH is 0, the polarization ratio will have values of -1 or 1, respectively. This 

represents the full range of polarization ratio values possible with a value of 1, 

 

IVV 

IVH 
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indicating a perfect alignment of emission dipoles with the orientation of the light 

source electric field; a value of -1 indicates an orthogonal orientation49.  

 or the emission anisotropy, r, which represents the ratio of the polarized 

component to the total intensity (IT) : 

  
       
   +     

                                                                  

When IVV or IVH is 0, the emission anisotropy will have values of –0.5 or 1, respectively. 

This represents the full range of anisotropy values possible; a value of 1 indicates a 

perfect alignment of emission dipoles with the orientation of the light source and a 

value of -0.5 indicates an orthogonal orientation of emission dipoles49. 

The anisotropy is a dimensionless quantity that is independent of the total intensity of 

the sample. This is because the difference (IVV – IVH) is normalized by the total intensity            

(IT=IVV+2IVH), whereas in the expression of the polarization ratio, the denominator 

represents the fluorescence intensity in the direction of observation.  For that reason, 

the use of anisotropy leads to simpler equations and is preferred to the use of 

polarization, except in a few situations (e.g. the study of radiative transfer). 

When the sample contains a mixture of fluorophores, each has its own emission 

anisotropy3, ri: 

   
         
    +      

 
         

   
                                                 

and each contributes to the total fluorescence intensity with a fraction  

   
   

  
                                             (4.60) 

Thus, the total emission anisotropy is the weighted sum of the individual anisotropies: 

       
 

                                                                     

The polarization and anisotropy values can be interchanged using 

  
  

 +  
                                                                        

and                                                           

  
  

   
                                                                          

If the light observed through the emission polarizer is completely polarized along the 

transmission direction of the polarizer, then IVH = 0 and p = r = 1.0. Completely 
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polarized emission can be observed for oriented samples, but not for homogeneous 

unoriented samples: in this case, the measured values are smaller due to the angular 

dependence of photoselection.  

If the light observed through the emission polarizer is completely depolarized, then   

IVH = IVV and p = r = 0. It is important to note that p and r are not equal for 

intermediate values.  

For the moment, we have assumed that these intensities could be measured without 

interference due to the polarizing properties of the optical components, especially the 

emission monochromator. However, an additional factor must be introduced in order 

to correct this effect: in most cases, the sample is excited with vertically polarized light, 

and the emission is observed through a monochromator. The monochromator will 

usually have different transmission efficiencies for vertically and horizontally polarized 

light. Consequently, rotation of the emission polarizer changes the measured 

intensities even if the sample emits unpolarized light. The measured intensities are not 

the desired parallel and perpendicular intensities, but rather intensities that are also 

proportional to the transmission efficiencies of the monochromator for each polarized 

component. The objective is to measure these actual intensities, IVV and IVH, unbiased 

by the detection system17.  

The measured intensity ratio IVV/IVH is different from the true value by a factor G, 

which is the ratio of the sensitivities of the detection system for vertically and 

horizontally polarized light (SV and SH, respectively). The G factor is easily measured 

using horizontally polarized excitation: 

  
  
  

 
   
   

                                                                 

When the G factor is known, the polarization ratio and the anisotropy are respectively 

given by: 

  
        
   +     

                                                              

 

and                                              

  
        
   +      
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7.2. Relation between anisotropy and the absorption and emission dipoles 

orientation 

 7.2.1. Parallel absorption and emission transition moments 

We will consider a population of N molecules randomly oriented and excited at time 0 

by an infinitely short pulse of light polarized along Oz. At time t, the emission 

transition moments,   
            , of the excited molecules have a certain angular distribution. 

Here we assume that the absorption and emission transition moments are parallel. 

The orientation of these transition moments is characterized by , the angle with 

respect to the Oz axis, and by , the angle between the projection of the  transition 

moments in the xy plane and the Ox axis (Figure 4.26)3. 

 

Figure 4.26. System of coordinates for characterizing the emission dipole orientation of one molecule 
(adapted from ref. 3). 

 

Figure 4.26 shows IVV and IVH being proportional to the projection of the emission 

transition moment of one molecule onto the axes. This is true because the projection 

of the transition moment is the same as the projection of the electric field created by 

the fluorophore. Hence the projection of the field onto the z-axis is proportional to 

cosθ and the intensity is proportional to cos2θ. Similarly, the field along the y-axis is 

proportional to sinθsin and the intensity is proportional to sin2θsin2: 

IVV  cos2                                                              (4.67) 

and                    IVH   sin2θsin2                                                     (4.68) 
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If we consider now randomly oriented fluorophores, the anisotropy is calculated by 

performing the appropriate averaged intensities based on excitation photoselection. 

For excitation polarized along the z-axis, the population of excited molecules is 

oriented with values of  from 0 to 2  with equal probability. Hence we can eliminate 

the  dependence (equation 4.68) by calculating the average value of sin2 with the 

general definition of an averaged quantity17: 

 s      
 s      
  

 

   
  

 

 
 

 
                                                       

Therefore, 

IVV  cos2                                                              (4.70) 

 and                IVH  
 

 
sin2θ                                                            (4.71) 

If we assume we are observing a collection of fluorophores that are oriented relative 

to the z-axis with a probability f(θ), the measured fluorescence intensities for this 

collection of molecules are 

       θ   s θ θ      s θ  

 
 

 

                                         

and                                   
 

 
   θ s   θ
   

 
 θ  

 

 
 s   θ                                       

 

where f(θ)dθ is the probability that a fluorophore is oriented between θ and θ + dθ, 

and k is an instrumental constant. 

Thus, using the identity  

sin2=1-cos2                                                         (4.74) 

we can write 

  
       
   +     

 
    s θ    

 
                                              

 

This equation shows that, for a single fluorophore oriented along the z-axis with 

collinear transitions (=0), r=1.0. However, it is not possible to obtain a perfectly 

oriented excited-state population with optical excitation of homogeneous solutions. 

Hence the anisotropies are always less than 1.0. Complete loss of anisotropy is 

equivalent to θ=54.7. This does not mean that each fluorophore is oriented at 54.7, 
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or that they have rotated through 54.7. Rather, it means that the average value of 

cos2θ is 1/3.  

In this expression, we assumed that the absorption and the emission transition 

moments are collinear. However, for almost all fluorophores, they rarely are. In 

addition, these anisotropies values are not taking into account the effects of 

photoselection17.  

When a sample is illuminated with polarized light, those molecules with absorption 

transitions aligned parallel to the electric vector of the polarized excitation have the 

highest probability of excitation (photoselection) and this probability is proportional to 

cos2
. For the random ground state distribution, which must exist in a disordered 

solution, the number of molecules at an angle between θ and θ + dθ is proportional to 

sin θ dθ. This quantity is proportional to the surface area on a sphere within the angles 

θ and θ + dθ. 

Hence, the probability distribution of molecules excited by vertically polarized light is 

given by: 

f()d = cos2sind                                                  (4.76) 

This probability determines the maximum photoselection that can be obtained using 

one-photon excitation (more highly oriented populations can be obtained using 

multiphoton excitation). 

For collinear absorption and emission transition moments, the value of <cos2
> is 

given by: 

   s θ   
   s θ  θ  θ
   

 

   θ  θ
   

 

 
 

 
                                             

The emission anisotropy can thus be written as 

   
    s θ    

 
 
 

 
                                                  

r0 is called the fundamental anisotropy, i.e. the theoretical anisotropy that is observed 

when the absorption and emission dipoles are collinear, and when there are no 

processes which result in depolarization (in practice, rotational motions can be 

hindered in a rigid medium). Under these conditions, the excited-state population is 

preferentially oriented along the z-axis and the value of IVH is one-third the value of IVV 
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(IVV = 3 IVH). This value of 0.4 is considerably smaller than that possible for a single 

fluorophore oriented along the z-axis (r = 1.0).  

The experimental value, called the limiting anisotropy, is always slightly smaller than 

the theoretical value (normally it ranges from 0.32 to 0.39). This difference is mainly 

due to torsional vibrations of the fluorophores about their equilibrium orientation50. 

Consequently, a temperature dependence of the limiting anisotropy is noted51,52: at 

low temperature (i.e. when the medium is frozen), r0 may be considered as a constant 

quantity, whereas at high temperature it decreases linearly with the temperature. 

It is important to remember that there are other possible origins for polarized light. 

These include reflections and light scattered by the sample that can interfere with 

anisotropy measurements: in the case of one-photon excitation, if the measured 

anisotropy for a randomly-oriented sample is greater than 0.4, we can infer the 

presence of scattered light in addition to fluorescence (for multiphoton excitation, 

anisotropy values can exceed 0.4)17. 

 

7.2.2. Non-parallel absorption and emission transition moments 

The situation of non-parallel absorption and emission transition moments occurs when 

excitation brings the fluorophores to an excited state other than the first singlet state 

from which fluorescence is emitted. In this case, the absorption and emission 

transition moments are displaced by an angle β relative to each other. We saw 

previously that displacement of the emission dipole by an angle θ from the z-axis 

resulted in a decrease in the anisotropy by a factor (3cos2θ – 1)/2. Similarly, the 

displacement of the absorption and emission dipoles by an angle β results in a further 

loss of anisotropy. The observed anisotropy in a vitrified dilute solution is a product of 

the loss of anisotropy due to photoselection (2/5), and that due to the angular 

displacement of the dipoles. The fundamental anisotropy of a fluorophore is then 

given by  

   
 

 
 
    s β    

 
                                                           

where β is the angle between the absorption and emission transition moments3. 

The fundamental anisotropy value is zero when β = 54.7. When β exceeds 54.7 the 

anisotropy becomes negative. The maximum negative value (-0.20) is found for 
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β=90. In other words, for any fluorophore randomly distributed in solution, with one-

photon excitation, the value of r0 must be within the range from -0.20 to 0.40. The 

values for both r0 and p0 are summarized in Table 4.5. 

 
Table 4.5. Relationship between the angular displacement of transition moments (β) and the 

fundamental anisotropy (r0) or polarization (p0)
17

. 

 (deg) r0 p0 

0 0.40 0.50=1/2 
45 0.10 0.143=1/7 

54.7 0.00 0.000 
90 -0.20 -0.333=-1/3 

 

Negative values generally correspond to S0S2 transitions. A value close to -0.2 is 

indeed observed in the case of some aromatic molecules excited to the second singlet 

state whose transition moment is perpendicular to that of the first singlet state, from 

which fluorescence is emitted (e.g. perylene).  

The measurement of the fundamental anisotropy requires special conditions. In order 

to avoid rotational diffusion, the probes are usually examined in solvents that form a 

clear glass at low temperature, such as propylene glycol or glycerol. Additionally, the 

solutions must be optically dilute to avoid depolarization due to radiative reabsorption 

and emission, or due to resonance energy transfer. One commonly used solvent for 

measuring fundamental anisotropies is propylene glycol at -60 to -70 C. Under these 

conditions, the fluorophores remain immobile during the lifetime of the excited state. 

Glycerol also forms a rigid glass at low temperature. However, glycerol typically 

displays more autofluorescence than propylene glycol. At similar temperatures, 

phosphorescence from the fluorophores seems to be more common in glycerol than in 

propylene glycol. The anisotropy values (r0) determined in these rigid solutions provide 

a measure of the angle between the absorption and emission dipoles17. 

 

7.3. Causes of depolarization 

There are several causes of depolarization. One of them is non-collinear absorption 

and emission transition moments, as we discussed in section 7.2.2. Another cause of 

depolarization can be torsional vibrations of the fluorophores about their equilibrium 

orientation50 (section 7.2.1.). The two principal causes of depolarization are Resonance 
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Energy Transfer (RET) and rotational Brownian motion, which will be discussed in 

sections 7.3.1. and 7.3.2., respectively. Light scattering, reabsorption and misalignment 

of the polarizers represent three experimental causes of depolarization and will be 

examined in section 7.3.3. 

 

7.3.1. Resonance Energy Transfer (RET) 

Radiationless energy transfer in solution occurs only in concentrated solutions, where 

the average distance between the fluorophore molecules is comparable to a 

characteristic distance R0, which is typically near 40 Å. Millimolar fluorophore 

concentrations are required to obtain this average distance. This concentration is 

considerably larger than the usual concentrations required for fluorescence 

measurements, which are about 10–6 M. Hence, radiationless energy transfer is easily 

avoided by the use of dilute solutions. The solutions also need to be adequately diluted 

so that radiative transfer does not occur3. 

The effect of RET on the anisotropy is illustrated by the excitation anisotropy spectrum 

of fluorescein in dilute and concentrated solution53. Fluorescein is subject to radiative 

(emission and reabsorption) and non-radiative energy transfer because of the small 

Stokes shift. In this experiment (Figure 4.27), radiative transfer was avoided by using 

thin samples, and rotational diffusion was eliminated by using a vitrified sample. Under 

these experimental conditions, RET is the only mechanism that can decrease the 

anisotropy. In dilute solution, fluorescein displays its characteristic anisotropy 

spectrum, with high anisotropy for excitation above 380 nm. At high concentration, 

the anisotropy is decreased, due to the occurrence of RET between fluorescein 

molecules. In random solution, it is known that a single non-radiative transfer step 

reduces the anisotropy to 4% of the initial value54-57. Hence, RET is an effective 

mechanism of depolarization. The presence or absence of RET can usually be predicted 

from the concentration of the sample and the spectral properties of the probes. 
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Figure 4.27. Excitation polarization spectra of fluorescein in propylene glycol at -50°C. Radiative transfer 
was avoided by using thin samples, 30 to 50 microns thick. Adapted from ref. 53. 
 

7.3.2. Rotational Brownian motion: the Perrin equation 

If excited molecules can rotate during the excited-state lifetime, the emitted 

fluorescence is partially (or totally) depolarized. Rotational diffusion of fluorophores is 

a dominant cause of fluorescence depolarization, and most applications depend on 

changes in the rate of rotation. From the extent of fluorescence depolarization, we can 

obtain information on the molecular motions, which depend on the size and the shape 

of molecules, and on the fluidity of their microenvironment. A distinction should be 

made between free rotation and hindered rotation. In the case of free rotation, after a 

-pulse excitation, the emission anisotropy decays from r0 to 0, because the rotational 

motions of the molecules lead to a random orientation at long times. In the case of 

hindered rotations (not considered here), the molecules cannot become randomly 

oriented at long times, and the emission anisotropy does not decay to zero, but to a 

steady value17. 

Depolarization by rotational diffusion of spherical rotors (isotropic rotations) is 

described by the Perrin equation58-60: 

  
 
  +

 

θ
  +                                                         

where  is the fluorescence lifetime, θ is the rotational correlation time, and D is the 

rotational diffusion coefficient. If the correlation time is much larger than the lifetime 

(θ >> ), then the measured anisotropy (r) is equal to the fundamental anisotropy 
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(r0). If the correlation time is much shorter than the lifetime (θ << ), then the 

anisotropy tends to zero. 

The rotational correlation time of the fluorophore () is related to the rotational 

diffusion coefficient by θ=(6D)–1 and is given by the Stokes-Einstein relation: 

θ  
  

  
                                                                     

where   is the viscosity of the medium, T is the absolute temperature, R is the gas 

constant, and V is the volume of the rotating unit. The Stokes-Einstein relation is valid 

only when the microviscosity around the molecule is equal to the total viscosity of the 

sample. 

A different version of the Perrin equation (equivalent, except for the use of 

polarization instead of anisotropy) is often found in literature 
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   +                                 

 
Using the Perrin equation, it is possible to calculate the anisotropy expected for 

fluorophores in solvents or for labelled macromolecules, assuming the molecules are 

spherical. For example, perylene has a lifetime of 6 ns and r0=0.36. In ethanol, 

rotational diffusion is expected to decrease the anisotropy to 0.005. 

The Perrin equation also allows calculating the apparent volume of a protein. 

Substitution of equation 4.81 into equation 4.80 yields a modified form of the Perrin 

equation: 

 

 
 

 

  
+
   

    
                                                                  

 

Normally, the protein is covalently labeled with an extrinsic fluorophore, which is 

chosen on the basis of its fluorescence lifetime. This lifetime should be comparable to 

the expected rotational correlation time of the protein (this way, the anisotropy will be 

sensitive to changes in the correlation time)17.  

In most cases, fluorescent molecules undergo anisotropic rotations because of their 

asymmetry (non-spherical rotors). A totally asymmetric rotor has three different 

rotational diffusion coefficients. Steady-state anisotropy measurements are then 
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insufficient for fully characterizing rotational motions and time-resolved experiments 

are required. 

 

7.3.3. Experimental causes of depolarization 

Light scattering, reabsorption and misalignment of the polarizers are three 

experimental problems on anisotropy measurements that depend only on the optical 

conditions of the experiment, and do not provide useful information on the molecular 

properties of the sample. 

Biological samples, such as aqueous suspensions of membranes, are frequently turbid. 

This turbidity can cause scattering of both the incident light and the emitted photons. 

The scattered incident light can result in excitation, and the emitted photons can be 

scattered prior to observation. The observed anisotropy is expected to decrease 

linearly with the optical density due to turbidity. It is therefore advisable to investigate 

the effect of turbidity for any sample which displays visible turbidity. This can be 

accomplished by either actual dilution of the sample or using a cuvette with smaller 

dimensions. If dilution does not change the anisotropy value, then there is unlikely to 

be significant depolarization due to scattering.  

A more serious effect of scattering is the possibility that scattered light reaches the 

detector. This is particularly true for dilute solutions where the intensity is low and 

scattering from the optics and sample can be significant. Since the scattered light will 

be highly polarized (r=1.0), a small percentage of scattered light can result in 

significant changes in the anisotropy (normally, the measured anisotropy increases 

relative to its true value). 

Reabsorption of emitted photons (radiative transfer) is another cause of depolarization 

that occurs with fluorophores with large spectral overlap (e.g. fluorescein). It is difficult 

to eliminate this effect since it occurs at lower concentrations than RET. Radiative 

transfer is more efficient in depolarization than RET since a single radiative transfer 

step results in an anisotropy loss of 28%, whereas a single RET step results in an 

anisotropy loss for 4%17. 

Inefficiency of the polarizers can also result in a loss of anisotropy: for example, film 

polarizers become less ideal at short wavelengths. Misalignment of the polarizers can 
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also reduce the anisotropy, but the alignment can be easily checked and adjusted using 

a dilute suspension of glycogen or colloidal silica in water (it is essential to use dilute 

suspensions of the scatterer; otherwise multiple scattering events lead to decreased 

values of polarization). The scattered light is 100% polarized, that is, r=1.0. To 

accomplish alignment, the excitation polarizer is rotated to the approximate vertical 

position. Precise vertical alignment is not necessary since the scattered light is 

vertically polarized. The angular alignment of the emission polarizer is adjusted so that 

the minimum intensity is observed. This is the horizontal position. Rotation of the 

emission polarizer should now yield the maximum and minimum intensities when the 

polarizer is at the vertical and horizontal stops, respectively. These adjustments should 

be performed with the emission monochromator removed, or its wavelength chosen 

for approximate equal transmission efficiencies for vertically and horizontally polarized 

light. Otherwise, the polarizing properties of the emission monochromator could 

interfere with the alignment. The wavelength selection for equal transmission 

efficiencies can be accomplished using either horizontally polarized excitation, to 

obtain IVV=IVH, or a sample whose emission is not polarized. Examples of such 

solutions are 9-cyanoanthracene in the fluid solvent ethanol or [Ru(bpy)3]2+ in water61. 

Alignment of the excitation polarizer is performed in a similar manner17. 

Finally, one should always examine a blank sample that scatters approximately the 

same light as the sample. Background signals can be especially problematic for 

anisotropy measurements. The background signal may be polarized if due to scattered 

light, or unpolarized if due to low-molecular-weight impurities. Hence, background 

signals can either increase or decrease the anisotropy. In order to correct for 

background, it is necessary to measure the four individual intensities from the blank 

sample, and subtract them from each respective intensity value. 

 

7.4. Applications of fluorescence polarization 

There are several fields concerned with the applications of fluorescence polarization. 

For example, the study of DNA-fluorophore interactions in the field of molecular 

biology; the determination of fluidity and order parameters; the determination of the 

phase-transition temperature and the effect of additives such as cholesterol, in the 

field of biological membranes3,17. In this work, steady-state fluorescence anisotropy 
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measurements were performed in order to evaluate the location and the behavior of 

several new potential antitumoral fluorophores into lipid membranes (Chapter 5, 

sections 5.1., 5.2., and 5.4.). 
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Benzothienoquinolines: new one pot synthesis and 
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and polynuceotides 

 

 

M.Solange D. Carvalho, A. Rita O. Rodrigues, João A.V. Cardoso, Ricardo C. Calhelha, 

Elisabete M.S. Castanheira, Maria-João R.P. Queiroz, manuscript to be submitted for 
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My contribution to this paper was the photophysical studies in several solvents, and 

fluorescence studies of the interaction with DNA, including fluorescence quenching. 
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ABSTRACT 

In this work we were able to obtain the benzothieno[3,2-b]quinoline 1 and benzothieno[2,3-

c]quinoline 2 using a new one pot procedure from the reaction of the commercial available 3-

bromobenzo[b]thiophene-2-carbaldehyde with 2-aminophenylpinacolborane under Suzuki 

coupling conditions using a stereochemically hindered ligand, 2-

(cyclohexylphosphane)biphenyl and Ba(OH)2.8H2O as the base.  

Fluorescence properties of the benzothieno[3,2-b]quinoline 1 and the benzothieno[2,3-

c]quinoline 2 were studied in solvents of different polarity. Both compounds exhibit a solvent 

sensitive emission, compound 1 being less fluorescent (F < 0.05) than compound 2 (0.04 ≤ 

F ≤ 0.10). 

The interaction of these compounds with salmon sperm DNA and synthetic double-stranded 

heteropolynucleotides, poly(dA–dT)·(dA–dT) and poly(dG–dC)·(dG–dC), was studied using 

spectroscopic methods, allowing the determination of the intrinsic binding constants and 

binding site sizes. The interaction of both compounds is stronger with adenine-thymine (A-T) 

base pairs. Compound 1 is the most intercalative in salmon sperm DNA (47%) and 

polynucleotides (46%-49% of intercalated molecules), while for compound 2, 41% is 

intercalated in salmon sperm DNA and only 8% in poly(dG–dC)·(dG–dC). Overall, these 



224 

 

results point to a predominant interaction of both compounds to nucleic acids by groove 

binding. 

 
 
KEYWORDS: Benzothieno[3,2-b]quinoline, Benzothieno[2,3-c]quinoline, DNA interaction, 
polynucleotides, binding constants. 
 

 

1. INTRODUCTION 

The investigation of the nature and dynamics of the binding of small molecules to 

biomacromolecules is actually an active area of research [1,2]. DNA interaction studies are 

important to understand the mechanism of action of antitumor and antiviral drugs and to 

design new DNA-targeted drugs [3,4]. Three different modes of binding to DNA have been 

described: intercalation into the base pairs, in the major or minorgrooves, and outside the 

double helix by electrostatic interactions. Small molecules are stabilized on groove binding 

and intercalationwith DNA through a series of associative interactions such as π-stacking, 

hydrogen bonding, attractive van der Waals and hydrophobic interactions [4]. DNA 

intercalation seems to be an essential, but not sufficient, step for antitumoral activity [3]. 

Benzothieno[3,2-b]quinoline 1 [5] and benzothieno[2,3-c]quinoline 2 [6] are known for 

their anti-plasmodic and anti-infectious activities, acting mainly through intercalation between 

DNA base pairs when used in their salt form. Earlier synthesized by separated reactions and 

in several steps [5,6], in this work we were able to obtain the two compounds in a one pot 

procedure.  

The interactions of the biologically active compounds with nucleic acids have been 

studied using a variety of techniques [7-11], including absorption and fluorescence 

spectroscopies. The binding of the fluorescent polycyclic molecules to DNA can be 

conveniently investigated by these methods, because their absorption and emission properties 

significantly change on complex formation [7,12,13]. Fluorescence quenching experiments 

using external quenchers have been used to establish the DNA-binding modes, since 

intercalated fluorophores are less accessible to anionic quenchers, due to electrostatic 

repulsion with the negatively charged DNA backbone [13-15]. 

In this work, the interaction of the synthesized benzothienoquinolines 1 and 2 with 

natural double-stranded salmon sperm DNA and with synthetic ds-polyheteronucleotides was 
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investigated by fluorescence emission measurements. These studies are important due to the 

biological relevance of both compounds as potential antitumorals.  

 

 

2. EXPERIMENTAL 

2.1. Synthesis 

General remarks 

Melting points (oC) were determined in a SMP3 Stuart apparatus and are uncorrected. 1H and 
13C NMR spectra were recorded on a Varian Unity Plus at 300 and 75.4 MHz, respectively. 

Heteronuclear correlations, 1H-13C, HMQC or HMBC were performed to attribute some 

signals. HRMS data were recorded using a method of direct injection by EI by the mass 

spectrometry service of the University of Vigo, Spain. The reactions were monitored by thin 

layer chromathography (TLC) in aluminium plates covered with a layer of silica gel 60 

(Macherey-Nagel) of 0.2 mm, with UV254 fluorescence indicator. Column chromatography 

was performed using silica-gel 230-400 mesh. Petroleum ether refers to the 40-60 ºC boiling 

range fraction. 

 

One pot synthesis of  benzotieno[3,2-b]quinoline 1 and benzotieno[2,3-c]quinoline 2: To a 

solution of 3-bromobenzo[b]thiophene-2-carbaldehyde (150 mg, 0.600 mmol) in dioxane (5 

mL) Pd(AcO)2 (5 mol%), 2-(cyclohexylphosphane)biphenyl (20 mol%), Ba(OH)2.8H2O (3 

equiv.) and 2-aniline pinacolborane (170 mg, 0.780 mmol). The mixture was heated at 100 ºC 

for 5h. After cooling, H2O and AcOEt were added and the phases were separated. The organic 

phase was dried (MgSO4), filtered and the removal of the solvent gave an oil which was 

submitted to column chromatography using solvent gradient from neat petroleum ether to  

20% ether/petroleum ether and the two products were separated.  

Compound 1 was the major product and was isolated using 10% ether/petroleum ether (45.0 

mg, 30 %), p.f. 173-175 ºC [5]. 1H NMR (CDCl3, 300 MHz): δ 7.55-7.67 (3H, m, Ar-H), 

7.74-7.81 (1H, m, Ar-H), 7.84-7.94 (2H, m, Ar-H), 8.31 (1H, d, J = 8.4 Hz, Ar-H), 8.59 (1H, 

s, 11-H), 8,66-8,71 (1H, m, Ar-H) ppm. 13C NMR (CDCl3, 75.4 MHz): δ 123.04 (CH), 124.01 

(CH), 125.08 (CH), 126.19 (CH), 126.60 (C), 127.08 (CH), 128.89 (11-CH), 129.06 (CH), 

129.42 (CH), 129.90 (CH), 130.61 (C), 134.14 (C), 141.17 (C), 146.44 (C), 153.96 (C). MS 
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(EI): m/z (%) 235 (M+, 100). HRMS M+: Calculated for C15H9NS: 235.0456; Found: 

235.0449.  

Compound  2 was isolated  using 20% ether/petroleum ether (28.0 mg, 20 %), p.f. 123-125 ºC 

[6]. 1H NMR (CDCl3, 300 MHz): δ 7.61-7.70 (2H, m, Ar-H), 7.74-7.82 (2H, m, Ar-H), 8.05-

8.11 (1H, m, Ar-H), 8.30-8.36 (1H, m, Ar-H), 8.84-8.94 (2H, m, Ar-H), 9.37 (1H, s, 6-H) 

ppm. 13C NMR (CDCl3, 75.4 MHz): δ 122.92 (CH), 123.77 (CH), 125.39 (CH+C), 126.04 

(CH), 127.49 (CH), 127.51 (CH), 127.76 (CH), 130.81 (CH), 133.37 (C), 135.15 (C), 135.37 

(C), 141.35 (C), 145.56 (C), 145.65 (6-CH) [6b]. MS (EI): m/z (%) 235 (M+, 100). HRMS 

M+: Calculated for C15H9NS: 235.0456; Found: 235.0457. 

The data for both compounds are identical to those presented in earlier works [5,6]. 

2.2. Spectroscopic measurements 

Absorption spectra were recorded in a Shimadzu UV-3101PC UV-Vis-NIR 

spectrophotometer. Fluorescence measurements were performed using a Fluorolog 3 

spectrofluorimeter, equipped with double monochromators in both excitation and emission 

and a temperature-controlled cuvette holder. For fluorescence quantum yield determination, 

the solutions were previously bubbled for 30 minutes with ultrapure nitrogen. Fluorescence 

spectra were corrected for the instrumental response of the system.  

The fluorescence quantum yields (s) were determined using the standard method 

(equation 1) [16,17] and 9,10-diphenylanthracene in ethanol as reference, r = 0.95 at 25 ºC 

[18]. 

 

     r
2
rrs

2
ssrs  nFAnFA     (1) 

where A is the absorbance at the excitation wavelength, F the integrated emission area and n 

the index of refraction of the solvents used. Subscripts refer to the reference (r) or sample (s) 

compound.  

All solutions were prepared using spectroscopic grade solvents and Milli-Q grade water. 

Natural double-stranded salmon sperm DNA was obtained from Invitrogen, while synthetic 

double-stranded heteropolynucleotides, poly(dA–dT)·(dA–dT) and poly(dG–dC)·(dG–dC), 

were obtained from Sigma-Aldrich. Salmon sperm DNA, polynucleotides and compounds 

stock solutions were prepared in 10-2 M Tris-HCl buffer (pH=7.2), with 10-3 M EDTA. The 

purity of DNA was checked by monitoring the absorption spectrum and the ratio of the 
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absorbance at 260 and 280 nm, A260/A280=1.95 (good-quality DNA has an A260/A280 ratio 

higher than 1.8) [19]. The DNA and polynucleotide concentrations in number of bases (or 

phosphate groups) were determined from the molar absorption coefficients [12], ε=6600      

M-1 cm-1 at 260 nm for DNA, ε=8400 M-1 cm-1 at 254 nm for poly(dG–dC)·(dG–dC) and 

ε=6600 M-1 cm-1 at 260 nm for poly(dA–dT)·(dA–dT). 

The absorption and emission spectra of several solutions with different [nucleic 

acid]/[compound] ratios using the same compound concentration (210-6 M) were recorded. 

The solutions were left 24 h to stabilize. The absorbance at excitation wavelengths was 

always less than 0.1, in order to avoid inner filter effects. All measurements were performed 

at room temperature (25.00.5 ºC). Binding analysis of the experimental data was performed 

according to McGhee and von Hippel model [20] to determine the intrinsic binding constants 

and the binding site sizes. 

 

3. RESULTS AND DISCUSSION 

3.1. Synthesis 

The reaction of the commercial available 3-bromobenzo[b]thiophene-2-carbaldehyde 

with 2-aminophenylpinacolborane under Suzuki coupling conditions using a stereochemically 

hindered ligand as 2-(cyclohexylphosphane)biphenyl [21] and Ba(OH)2.8H2O as the base, 

gave in a one pot procedure compounds 1 and 2 which were separated by column 

chromatography (Scheme 1). 

 

Scheme 1. One pot synthesis of benzothieno[3,2-b]quinoline 1 and benzothieno[2,3-c]quinoline 2. 
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Although these compounds have already been synthesized by other authors in several 

steps, we were able to prepare them in a one pot procedure which is very advantageous to 

save reagents and time. 

The synthesis of the benzothieno[3,2-b]quinoline 1 was unexpected using these reaction 

conditions. It seems that it is the result of a Pd-catalyzed C-N coupling followed by an 

intramolecular cyclization that may perhaps occur by nucleophilic attack of the activated 

ortho position of the diarylamine intermediate on the carbonyl of the aldehyde, after 

deboronation. In the synthesis of the expected compound 2, a Suzuki cross-coupling and a 

nucleophilic attack of the amino group on the aldehyde occurred.  

 

3.2. Fluorescence studies in several solvents 

The absorption and fluorescence properties of compounds 1 and 2 were studied in several 

solvents of different polarity. The maximum absorption (abs) and emission wavelengths (em) 

and fluorescence quantum yields (F) of both compounds in several solvents are presented in 

Table 1. The normalized fluorescence spectra are shown in Figures 2 and 3 (examples of 

absorption spectra are also shown as insets).  

Compounds 1 and 2 exhibit fluorescence emission in several polar and non-polar media, 

including water. Fluorescence quantum yield values are generally low, varying from 2% to 

10% (Table 1), the benzothieno[2,3-c]quinoline 2 being the more fluorescent compound. A 

red-shift and loss of vibrational structure is observed for the emission in polar solvents, this 

effect being more pronounced for compound 1 (red shifts between cyclohexane and water are 

48 nm for compound 1 and 28 nm for compound 2). As in the absorption spectra the red shifts 

are negligible (Table 1), this behavior indicates that solvent relaxation after photoexcitation 

plays an important role, especially for the benzothieno[3,2-b]quinoline 1. This predicts a 

higher ICT character of the excited state for the latter compound. 
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Figure 2. Normalized fluorescence spectra of solutions (3×10-6 M) of compound 1 (λexc=335 nm) in 
several solvents. Inset: absorption spectra of 2×10-5 M solutions of compound 1 in cyclohexane and 
ethanol, as examples.  
 
 

 
Figure 3. Normalized fluorescence spectra of solutions (3×10-6 M) of compound 2 (λexc=325 nm) in 
several solvents. Inset: Absorption spectra of 10-5 M solutions of compound 2 in cyclohexane and 
ethanol, as examples.  
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Table1. Maximum absorption (λabs) and emission wavelengths (λem) and fluorescence quantum yields (F) of 
compounds 1 and 2 in several solvents.  

Solvent λabs(nm) λem (nm) F
a 

1 2 1 2 1 2 
Cyclohexane 372, 354, 334, 272, 243 359, 342, 319, 307, 256 378 364 0.02 0.07 

Dioxane 372, 354, 335, 272, 242 359, 343, 320, 308, 257 392 367 0.03 0.10 

Ethylacetateb 371, 353, 334, 271 358, 342, 318, 307 393 365 0.02 0.08 

Dichloromethane 372, 354, 336, 273, 243 360, 344, 321, 309, 257 392 370 0.02 0.06 

Chloroformb 374, 356, 337, 274 361, 345, 322, 310, 258 394 372 0.02 0.04 

Acetonitrile 371, 353, 334, 270, 241 358, 342, 319, 307, 255 394 369 0.02 0.05 

N,N-Dimethylformamideb 372, 355, 335 360, 344, 320, 309 395 384 0.04 0.08 

Dimethylsulfoxideb 373, 356, 337 360, 344, 322, 310 403 374 0.03 0.08 

Ethanol 372, 336, 272, 241 361, 347, 321, 310, 256 401 374 0.03 0.09 

Methanol 371, 336, 271, 240 361, 346, 321, 310, 256 406 375 0.02 0.07 

Water 372, 336, 271, 240 362, 349, 321, 311, 255 426 392 0.01 0.06 

aRelative to 9,10-diphenylanthracene in ethanol (R =0.95) [18]. Error about 10%. 
bSolvents cut-off: Chloroform: 250 nm; Ethyl acetate: 265 nm; N,N-dimethylformamide: 280 nm.  
Dimethylsulfoxide: 275 nm. 
 
 
 

The fluorescence quantum yields in protic solvents tend to decrease with increasing 

solvent hydrogen bonding capability (ФF in ethanol > ФF in methanol > ФF in water), may be 

due to an increase of ST intersystem crossing efficiency through H-bond formation 

between these quinoline derivatives and protic solvents, probably by protonation of the N 

atom of the pyridine moiety. A similar behaviour has been observed previously for other 

compounds synthesized by us and containing a pyridine ring, namely several thieno[3,2-

b]pyridine derivatives [22-24]. The formation of hydrogen bonds between chloroform and 

these proton acceptor quinoline derivatives can also explain the lower fluorescence quantum 

yield values in this solvent [25,26]. 

 

3.3. Interaction with salmon sperm DNA and with synthetic double-stranded 
polynucleotides 

The interaction of compounds 1 and 2 with natural double-stranded salmon sperm DNA 

was studied by fluorescence. Changes in absorption spectra upon DNA interaction are 

negligible, as previously observed for other neutral aromatic compounds already studied by 

some of us, namely tetracyclic lactams [27] and thieno[3,2-b]pyridine derivatives [24]. 

Figures 4 and 5 show the emission spectra of the benzothienoquinolines 1 and 2 with 

increasing [DNA]/[compound] ratio, where [DNA] is expressed in number of bases or 
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phosphate groups. For both quinoline derivatives, spectral invariance with increasing DNA 

concentration occurs for the ratio [DNA]/[compound]=100, indicating that total compound 

binding is achieved at this [DNA]/[compound] ratio (spectra corresponding to ratio 100 and 

120 are overlapped). 

 
Figure 4. Fluorescence spectra of the benzothienoquinoline 1 (210-6 M) in 10 mM Tris-HCl buffer     

(pH = 7.2), with increasing DNA content.  
 
 

 
Figure 5. Fluorescence spectra of the benzothienoquinoline 2 (210-6 M) in 10 mM Tris-HCl buffer     

(pH = 7.2), with increasing DNA content.  
 

An enhancement in emission intensity with increasing DNA concentration is observed for 

compound 1, while the opposite occurs for compound 2 (figure 6). This may indicate a 
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different type of interaction of the two benzothienoquinolines with DNA bases, as already 

observed for other tetracyclic compounds [24,27]. The high [DNA]/[compound] ratio needed 

for total binding, together with the negligible changes observed in absorption spectra (not 

shown), point to a weak interaction of these molecules with the nucleic acid, which is also a 

common behavior with tetracyclic thienopyridine derivatives [24]. 

 
Figure 6. Fluorescence intensities ratio in the presence (I) and absence (I0) of DNA for compounds 1 
and 2 at several [DNA]/[compound] molar ratios. 

 

To clarify the different behavior of the two quinolines, the base sequence binding 

preference was also investigated, using synthetic ds-heteropolynucleotides, poly(dA-dT)·(dA-

dT) and poly(dG-dC)·(dG-dC). Figure 7 displays the ratio of maximum emission intensities in 

the presence (I) and absence (I0) of ds-heteropolynucleotides for several [nucleic 

acid]/[compound] ratios, for compounds 1 and 2, respectively. The behaviour in 

heteropolynucleotides is similar to that in salmon sperm DNA, with a rise in fluorescence 

intensity with increasing polynucleotide concentration for compound 1 and a decrease for 

compound 2. However, the stabilization in emission intensity, indicative of full binding, is 

attained at a significantly lower molar ratio for poly(dA-dT)·(dA-dT) 

([nucleotide]/[compound]=60 and 80, respectively for compound 1 and 2). For poly(dG-

dC)·(dG-dC), the stabilization is attained at a molar ratio of 100 for both quinolines, similarly 

to the behavior observed with salmon sperm DNA. 
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Figure 7. Fluorescence intensities ratio in the presence (I) and absence (I0) of heteropolynucleotides 
for the benzothienoquinolines 1 and 2 at several [nucleotide]/[compound] molar ratios.  
A: Poly(dA-dT)∙poly(dA-dT); B: poly(dG-dC)∙poly(dG-dC). 

 

The binding constants and binding site sizes were determined by the modified Scatchard 

equation, given by McGhee and von Hippel [20] 

       1
i

f
)1(111 


n

rnnrnrK
c

r      (2) 

where Ki is the intrinsic binding constant, n is the binding site size in base pairs, r is the ratio 

cb/nucleic acid, cb and cf are the concentrations of bound and free compound, respectively, 

calculated by 

   total
bF,F,0

FF,0
b c

II
II

c 



     ;     bftotal ccc     (3) 

being IF,0 the fluorescence intensity of the free compound and IF,b the fluorescence intensity of 

the bound compound at total binding. 

The fluorescence measurements results were fitted by least squares methods to obtain the 

values of the binding constants (Ki) and the number of base pairs between consecutive 

intercalated compound molecules (n). The results are presented in Table 2. 
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Table 2. Values of binding constants (Ki) and binding site sizes (n) for benzothienoquinolines interaction with 
DNA and synthetic heteropolynucleotides. 

 Nucleic acid Ki (M-1) n 

Compound 1 
salmon sperm DNA (2.6 


 0.3)105 14 

 5 
poly(dA-dT)·(dA-dT)  (3.0 


 0.4)105 13  5 

poly(dG-dC)·(dG-dC)  (5.9 


 0.6)104 35 ± 9  

Compound 2 

salmon sperm DNA (2.9 


 0.3)105 16 ± 6 
poly(dA-dT)·(dA-dT)  (3.1 


 0.4)105 14  5 

poly(dG-dC)·(dG-dC)  (4.5 


 0.5)104 25 ± 9  
 

It has already been reported that small variations in the structure of tetracyclic 

compounds, as differences only in the substituent groups, influence strongly the interaction 

with nucleic acids [13,24,27], either by changes in the main mechanism and/or by affecting 

the magnitude of interaction (binding constant and binding site size). As both compounds 

exhibit a stronger interaction with poly(dA-dT)∙poly(dA-dT) than with poly(dG-dC)∙(dG-dC) 

(higher binding constants and lower binding site sizes in the former), it can be concluded that 

the main interaction in DNA is established with A-T base pairs. The mechanism of 

photoinduced electron transfer between compounds and DNA bases is not expected to occur, 

as this kind of interaction depends strongly on the bases structure [28,29]. A more likely 

mechanism for the intercalation of these compounds in nucleic acids is the π-stacking.  

Fluorescence quenching experiments with iodide ion were also performed for compounds 

1 and 2 in the presence of DNA and heteropolynucleotides. The quenching data were first 

plotted according to the Stern-Volmer relation (equation 4) [30], 

 Q1 SV
0 K
I

I
       (4) 

where I0 and I are, respectively, the fluorescence intensities in the absence and in the presence 

of quencher (I-), KSV is the Stern-Volmer constant and Q is the quencher concentration.  

In all cases, Stern-Volmer plots are non-linear (figure 8, as an example), with a 

downward curvature. This means that not all the fluorescent molecules are accessible to the 

quencher. In this case, the system contains heterogeneously emitting sites, in which some 

compound molecules are accessible to the quencher and other molecules are not accessible. 

Thus, the Stern-Volmer equation must be modified [31] as (5): 
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
                        (5) 

where III  0 , fa is the accessibility to quencher. From the plots of II 0  vs. 1/[Q], it is 

possible to obtain the accessibilities to the anionic quencher. The results are summarized on 

Table 3. 

 
 

Table 3. Values of the accessibilities (fa) to the quencher (I-) and Stern-Volmer constants 
for compounds 1 and 2 bound to DNA and heteropolynucleotides. 

 Nucleic acid KSV (M-1) fa 

Compound 1 

Salmon sperm DNA 4.65 0.53 

poly(dA-dT)·(dA-dT) 9.33 0.54 

poly(dG-dC)·(dG-dC) 11.1 0.51 

Compound 2 

Salmon sperm DNA 8.61 0.59 

poly(dA-dT)·(dA-dT) 9.54 0.63 

poly(dG-dC)·(dG-dC) 6.1 0.92 
 

 
Anionic quenchers can be used to distinguish between DNA binding modes [14,15,31]. 

Intercalated chromophores are less accessible to quenching by iodide ion due to electrostatic 

repulsion between the negatively charged DNA and iodide anion [15]. Compounds which are 

bound at the DNA surface (groove binding or electrostatic binding) are more accessible and, 

therefore, emission from these molecules can be quenched more efficiently. As these 

benzothienoquinolines are neutral molecules, electrostatic binding to nucleic acids is not 

anticipated. Therefore, the fraction of compound molecules accessible to the external 

quencher (fa) should correspond to bound molecules at the grooves. 
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Figure 8. A: Stern-Volmer plots for quenching with iodide ion (I-) for compounds 1 and 2 with 
salmon sperm DNA. B: Corresponding modified Stern-Volmer plots.  
 

The fraction of intercalated molecules into salmon sperm DNA and 

heteropolynucleotides is higher for the benzothienoquinoline 1 (46% to 49%). On the 

contrary, compound 2 presents a very small fraction of intercalated molecules (8%) in 

poly(dG-dC)(dG-dC), while in poly(dA-dT)(dA-dT) the percentage is similar to the 

observed in natural DNA (around 40%). As both compounds are neutral molecules, the 

relatively high value for fa for compounds 1 and 2 may indicate that the main type of binding 

of these quinoline derivatives to DNA must be the groove binding [24,27] (electrostatic 

interaction is not expected), being compound 1 the more intercalative one. 
 
 

CONCLUSIONS 

A new one pot method was achieved for the synthesis of benzothieno[3,2-b]quinoline 1 and 

benzothieno[2,3-c]quinoline 2 by the reaction from the reaction of the commercial available 

3-bromobenzo[b]thiophene-2-carbaldehyde with 2-aminophenylpinacolborane under Suzuki 

coupling conditions using a stereochemically hindered ligand, 2-

(cyclohexylphosphane)biphenyl and Ba(OH)2.8H2O as the base. Although the compounds 

have already been synthesized earlier by other authors using several steps, our methodology is 

advantageous saving reagents and time. Both compounds are fluorescent and present a solvent 

sensitive emission, despite the low fluorescence quantum yields (below 10%). 
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The benzothieno[3,2-b]quinoline 1 is the most intercalative compound in DNA and synthetic 

heteropolynucleotides. Both compounds exhibit a stronger interaction with A-T than with G-

C base pairs, exhibiting higher binding constants and smaller binding site sizes. Fluorescence 

quenching measurements allowed concluding that the main mechanism of interaction of these 

quinoline derivatives is the binding in the DNA grooves. 
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As outlined in the Abstract the spectroscopic properties of several classes of potential 

antitumoral heterocyclic compounds, derivatives of indoles, benzo[b]thiophenes and 

thieno[3,2-b]pyridines, synthesized in our research group, were studied in different 

environments, like solvents of different polarity, liposomes and in the presence of 

nucleic acids.  

All compounds exhibited a solvent sensitive emission, with red-shifts in polar solvents.  

For the planar tetracyclic compounds, either derivatives of thieno[3,2-b]pyridines or of 

benzo[b]thiophenes, the interaction with nucleic acids, which may be important for 

the antitumoral activity, was also evaluated by fluorescence. Experiments of 

fluorescence quenching using iodide anion indicated that the groove binding is the 

main type of interaction, some of the compounds exhibiting also a significant 

intercalation.  

The intrinsic fluorescence of the compounds was used to monitor the location and 

behaviour in nanoliposomes of neat lipids and lipid mixtures of different formulations, 

keeping in mind drug delivery applications using these systems as carriers. 

Future work is envisaged, considering applications of the most promising compounds 

as antitumoral drugs: 

- Evaluation of the interaction and internalization of the nanoliposomes with 

incorporated compounds, with human tumor cell lines. 

- Development of nanoliposomes labeled with folate or transferrin in order to 

enhance the interaction with the tumor cells. 

- Development of magnetoliposomes (liposomes entrapping magnetic 

nanoparticles) with incorporated antitumoral compounds. These systems allow 

the exact location in the therapeutic site of interest, through the use of an 

external magnetic field.  
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