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ABSTRACT 
 

 

 

 

The Finite Element Method (FEM) is widely used to solve structural analysis problems. 

In this work, a novel Finite Element Model Updating methodology for static analysis is 

presented. The aim of the work is to improve the quality of the results using the Finite 

Element Updating techniques, by optimizing geometric parameters of the models and 

material properties in order to minimize deflection. Deflection can be minimized by 

increasing the Inertia moment of the section and/or Young modulus of the material. The 

Young modulus can be optimized by selecting an adequate material. In this work, 

material selection charts were used to determine the most reliable material. The selected 

material was then tested by tensile and extensometry tests to obtain Young modulus, 

Yield stress, and Poisson coefficient. The Inertia moment can be maximized by 

improving the geometry of the section, such as adding ribs or webs. A substantial 

improvement of the deflection can be achieved, but, in order to obtain the best results, 

optimization must be used. A MATLAB program was used to optimize the ANSYS 

models using a programming code. In order to know if the results are getting worse or 

better in relation to the previous iterations, an objective function was defined. The 

model is optimized when is not possible to further optimize the objective function. 
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RESUMO 
 

 

 

 

O método dos elementos finitos (FEM) é amplamente utilizado para resolver problemas 

de análise estrutural estática. Neste trabalho é apresentada uma nova metodologia de 

melhoria de modelos de elementos finitos para análise estática. O objectivo do trabalho 

é melhorar a qualidade dos resultados utilizando as técnicas de melhoramento de 

elementos finitos, através da optimização de parâmetros geométricos dos modelos e 

propriedades do material, de modo a reduzir os deslocamentos. Os deslocamentos 

podem ser minimizados através do aumento do momento de Inércia da secção e/ou 

módulo de Young do material. O módulo de Young pode ser optimizado através da 

escolha de um material adequado. Neste trabalho foram usadas cartas de selecção de 

materiais para determinar o material mais adequado. Foram feitos ensaios de 

extensometria e de tracção ao material seleccionado para obter as propriedades 

relevantes do material: módulo de Young, tensão de Cedência e coeficiente de Poisson. 

O momento de inércia pode ser maximizado melhorando a geometria da secção com 

nervuras ou redes longitudinais. Uma melhoria substancial do deslocamento pode ser 

obtida, mas, de modo a obter os melhores resultados, tem de se usar optimização. O 

programa MATLAB foi utilizado para optimizar os modelos do ANSYS com um 

código de programação. De modo a saber se os resultados estão a melhorar ou a piorar 

em cada iteração, em relação às iterações anteriores, uma função objectivo foi definida. 

O modelo está optimizado quando não é possível optimizar mais a função objectivo.  
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1.1 Motivation 

 

The projects of industrial equipments have suffered severe changes, mainly because of 

the increasing accelerations caused by electrical motors. Those motors are able to cause 

movements with very high accelerations, sometimes going up to twelve times the 

acceleration of gravity. The improvement of the movement capability makes necessary 

an improvement on the resistance and rigidity of structures. The rigidity is one of the 

basic factors that determine the working capability of equipments, and it usually has a 

superior effect than resistance on the structure dimensioning. The deflection increase 

due to high accelerations can cause problems on the equipment regular behaviour before 

the lack of resistance is problematic. The lack of rigidity in structures causes an increase 

of friction and wear in the mobile parts, but the main problem are the exaggerated 

vibrations, which sometimes disturb the adequate operation. To improve rigidity it is 

necessary to increase the Young modulus of the material and/or the Inertia moment of 

the material section. The rigidity also depends of the geometrical characteristics, the 

length of the object and the type of load. In the other hand, it is possible that some 

composites, such as the glass fiber reinforcement polymer, even having a lower Young 

modulus than most metals, could have a good mechanical behaviour, as well. Due to the 

low density of those materials, one can strengthen the structure using more material, and 

therefore, improve the inertia moment, having a low weight object as a result. The only 

problem is the high cost of those materials, which are usually more expensive than any 

commercial steel. The present work focuses the optimization of relevant parameters in 

structural static analysis by the Finite Element Method. The tools used are the ANSYS 

program, used for Finite Element modelling and the MATLAB program, used to run 

and optimize ANSYS models, running a programming code written specifically for this 

purpose. 
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1.2 Aim of this work 

 

The main aim of this work is the development and analysis of a Finite Element Model 

Updating application for structural static analysis to optimize the mechanical behavior 

of the models when subjected to static combined loads. To achieve the aim, one must 

optimize geometric parameters and material properties, with the goal of maximizing the 

rigidity and minimizing the object mass. Rigidity is very important in what relates to 

engineering parts, because it determines the work capability of engineering industrial 

equipments. As told before, the importance of rigidity can be higher than resistance in 

what relates to equipment reliability. To achieve this aim, one has to focus on two main 

factors: The Young modulus and the Inertia moment. The Young modulus is only 

dependent of the chosen material, and the Inertia moment is highly dependent on the 

section of the object. In the other hand, a low mass is good because two factors: the 

material cost and the admissible acceleration. According to Newton 2
th

 law (eq.1): 

F
a=

m
 

(Eq. 1) 

where: 

a is the acceleration 

F is the applied force 

m is the mass 

 

A lower mass can increase the admissible acceleration that is possible for a system, if 

the Force F is kept constant. This is important because of the increasing accelerations of 

new industrial equipments. In the other hand, a good mass position leads to a higher 

inertia moment. Rigidity is of special importance in machines performing accurate 

operations, such as metal cutting tools (example: Laser cutting), where the dimensional 

precision of the final product must be as higher as possible. Rigidity is also very 

important in some manufacturing machines, mainly those used commonly to 

manufacture transport vehicles, aircraft and rockets. Special attention is given to rigidity 

problems presenting high tensile strength or super-high tensile strength materials, where 

those materials may drastically increase deflections. In fact, there is the tendency of 

reducing the high-strength object thickness because the Yield stress is higher in high-

strength steels than in regular steel. However, their Young modulus is similar, which 
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means that if the material enters the plastic domain, the deflections should be similar if 

the objects have the same dimensions. Therefore, if the thickness of a high-strength 

steel object is decreased, there might be a drastic increase of deflection in comparison to 

a similar object, made of regular steel but with a higher thickness [1]. The applications 

of this work are the transversal beams of some industrial equipments, such as laser 

cutting machines and plotters. 

1.3 State of the art 

1.3.1 Rigidity and the Finite Element Method 

 

Rigidity can be defined as the capability of a mechanical system to deflect as less as 

possible when subjected to external loads. If the rigidity of a system is higher in 

comparison to other considering the same applied loads and the same material, the 

deflections are lower. There are equations to evaluate the rigidity of structural parts by 

means of a stiffness coefficient. The stiffness coefficient is the ratio between the load F 

applied to a system and the maximum deformation f that results from the application of 

the load.  In the case of tension-compression of a beam with constant cross-section in 

the elastic domain, the stiffness coefficient complies with Hooke´s law: 

tens
F EA

λ = =
f L

 
(Eq. 2) 

where: 

tens is the rigidity coefficient in tension-compression 

E is the Elasticity Modulus of the material 

A is the area of cross section of the beam 

L is the beam length measured along the action of the force  

F is the applied load 

f is the maximum deflection 

 

When a beam with constant cross-section is subjected to torsion, the stiffness coefficient 

is the ratio between the applied torque moment Mt and the twist angle (eq.3):    

t p
tors

M GI
λ = =

θ L
 

(Eq. 3) 
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where: 

tors is the rigidity coefficient in torsion 

G is the Shear Modulus of the material 

Ip is the polar moment of inertia of beam section 

L is the beam length measured along the action of the force  

Mt is the torsion moment 

is the distortion angle 

 

In the case of bending of a beam with constant cross-section, the stiffness coefficient 

can be expressed by the eq. 4: 

flex
3

F αEI
λ = =

f L  

(Eq. 4) 

where: 

flex is the rigidity coefficient in bending  

I is the axial inertia moment of the beam´s section 

is a coefficient depending upon loading conditions 

f is the maximum deflection 

 

As described, the rigidity of the constructions is governed by the factors:  

 

-E in tension-compression and bending and G in torsion 

-The moment of inertia I or Ip respectively in bending or torsion loading 

-Linear dimensions of the deformed body L 

-Type of loading and type of supports  

 

The elasticity is a very stable characteristic of the metals and depends uniquely of the 

density of the atomic crystalline lattice (the mean inter-atomic distance). However, with 

the development of composite materials, it has become possible to have multiple 

materials in one object only with the aim of obtaining an adjustable mean Young 

modulus. In these circumstances, this strategy can be considered, along with Inertia 

moment improvement, the best practical way of improving rigidity of a system. 

Particularly in thin walled structures, like plates and shells, the stability of the systems 

is very important. One strategy that can be used against the lack of stability is the 

reinforcement of easily deformable sections in the system by introducing stiffness limits 
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between the deforming section and the rigid units, and providing higher rigidity on 

connecting points. Together with the increase in external sizes and decrease of wall 

sections thickness it is necessary to increase rigidity in the transversal directions of 

acting bending forces and torsion moments in order to avoid losses of construction 

stability. Ribbing has wide application in improving rigidity, particularly in thin walled 

components. Strength may significantly increase when one increase the rib thickness, 

particularly at the critical regions. The influence of relative rib pitch and width of ribs 

upon the rigidity and strength of a part is not easily expressed in a generalized form. 

Because of this fact, an optimization process that can help the designer in the most 

adequate selection between the existing valid solutions is very interesting and useful. 

The use of numeric methods of calculus, such as the Finite Element Method (FEM), 

controlled by optimization processes, can be a precious help in these cases [1]. There 

are scientific works about the application of the Finite Element Method in structural 

static and dynamic analysis. Y. Liu and L. Gannon wrote a paper entitled “Finite 

element study of steel beams reinforced while under load”, consisting of reinforcing a 

w-Shape steel beam with welded plates while under load. The Finite Element Method 

was used for its modeling with the finality of investigate the effect of some parameters 

related to the process [2]. Other authors, as G. Falsone, G. Ferro, demonstrated that “An 

exact solution for the static and dynamic analysis of FE discretized uncertain structures” 

can be obtained. The work is about the probabilistic analysis of FE discretized uncertain 

linear structures in the static and dynamic structural analysis. The authors concluded 

that the corresponding relationships between the response and the reduced number of 

variables may be trivially deduced from the exact ones [3]. The Fixed Grid Finite 

Element Method (FGFEM) method has been recently used by F. Daneshmand and M. 

Kazemzadeh-Parsi to study the “Static and dynamic analysis of 2D and 3D elastic solids 

using the modified FGFEM”. In this work a modification of the FGFEM is presented 

and used for the static and dynamic analysis of 2D and 3D elastic solids. The accuracy 

and convergence of the proposed method was analyzed via some numeric examples and 

the results were compared with analytic and numeric solutions. The authors conclude 

that the results show good agreement with the analytic and numeric solutions [4]. The 

mechanical behavior of shells of revolution was studied in the work “Nonlinear static 

and dynamic analysis of shells of revolution”, by C. Polat , Y. Calayir.  In this work, 

geometrically nonlinear static and dynamic response of shells of revolution is 

investigated. During this work, a MATLAB code was developed to study geometrically 
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linear and nonlinear static and dynamic responses of shells of revolution. The authors 

conclude that the nonlinearity affect the solutions significantly [5]. 

1.3.2 About Optimization methods 

 

B. Zárate and J. Caicedo studied multiple alternatives to the Finite Element Model 

Updating technique in the work “Finite element model updating: Multiple alternatives”. 

The authors studied a Finite Element Model Updating methodology of complex 

structural systems. Traditional Finite Element Model Updating techniques optimize an 

objective function to calculate one single optimal model that behaves similarly to the 

real structure and represents the physical characteristics of the structure. The author 

have discovered that a local minimum, rather than the global minimum could be a better 

representation of the physical properties of the structure, mainly due to numeric and 

identification errors, as well as the limited number of sensors in structures. The 

proposed method is based on MGA – Modeling to Generate Alternatives [6]. An 

optimization method called “Coupled Local Minimizers” was used by P. Bakir, E. 

Reynders, G. Roeck in the paper entitled   “An improved Finite Element Model 

Updating method by the global optimization technique ‘Coupled Local Minimizers’ “.In 

this scientific work, a global optimization method called ‘Coupled Local Minimizers’ 

(CLM) is used for updating the Finite Element Model of a complex structure. The CLM 

method is compared with other local optimization methods such as the Levenberg–

Marquardt algorithm, Sequential Quadratic Programming and Gauss–Newton methods 

and the results show that the CLM algorithm gives better results in Finite Element 

Model Updating problems compared to the above-mentioned local optimization 

methods [7]. The paper “Discrete optimization problems of the steel bar structures”, by 

S. Kalanta, J. Atkociunas, A. Venskus focus the optimal design problems of elastic and 

elastic-plastic bar structures. These problems are formulated as nonlinear discrete 

optimization. The main conclusions were: Elastic-plastic framed structure analysis 

confirmed the statement that often an optimal structure project is determined not by the 

strength, but the stiffness, stability and structural requirements, and, mathematical 

models and solution algorithms for 2D optimization problems can be adopted for 

solutions of 3D optimization problems [8]. X. Bin, C. Nan and C. Haunt have 

implemented “An integrated method of multi-objective optimization for complex 

mechanical structure”, where the authors present an integrated method of multi-
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objective optimization for complex mechanical structures. It integrates prototype 

modeling, FEM analysis and optimization. To explore its advantages over traditional 

methods, optimization of a manipulator in hybrid mode aerial working vehicle 

(HMAWV) is adopted. The results indicated that this integrated method is effective and 

shows a potential in engineering applications. The authors concluded that this integrated 

method of multi-objective optimization has solved a practical problem successfully, and 

its efficiency has been improved greatly compared with enumerative methods [9]. Based 

on the work of this thesis, a scientific paper was written and oral presented on VI 

International Materials Symposium MATERIAIS 2011, held in University of Minho, 

Guimarães (Annex 4) [10].  

1.4 Context and purpose of the work and structure of 

the thesis 

 

The most important goal of this work is the minimization of nodal deflections due to 

applied loads. Ribbing is an effective way of maximizing inertia moment. Therefore, 

there is the need of optimizing ribbing-related variables, such as rib thickness, length 

between consecutive ribs, and rib height, in the particular case of plate objects. When 

those three parameters are optimized using a suitable objective function, one can 

achieve good results. In the case of the tubular beam considered in this work, the 

relevant variables are: distance from the center to the corner segment in each side; 

length of the center segment, and height of the center segment. In the other hand, 

material properties, such as Young modulus and Poisson coefficient also affect the 

deflection results. Having this fact in consideration, all the variables were studied alone, 

in order to know how its variation affects the value of the objective function. In chapter 

1, the state of the art is presented, as well as the motivation and the aim of this work. In 

chapter 2, the related theory is presented, including theory about mechanical tests, 

equation demonstrations and optimization. In Chapter 3, the experimental procedure is 

presented. This chapter is about the materials selection, section optimization, FEM 

models and the MATLAB optimization program. The results are presented on chapter 4. 

The chapter 4 is about mechanical tests results (tensile test and extensometry test), 

variable analysis of the two finite element models (ribbed plate and tubular beam), FEM 

results on ANSYS, and MATLAB optimization results (final values of the objective 
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function and variables). The optimization variables were six, in both models: three 

variables are geometric, and three variables are material properties. The geometric 

parameters are different in the two FEM models. However, the studied material 

properties are the same for the two models. Chapter 5 is about the results discussion and 

conclusions. It features mechanical tests, FEM, and optimization results discussion and 

conclusions. The Annex 1 contains the tensile test and extensometry test charts, 

featuring stress-strain charts, stress-extension charts, and charts used to determine two 

mechanical properties of the material: Yield stress and Young modulus. In the Annex 1, 

there are also the tables used to calculate Young modulus and Poisson coefficient in 

extensometry test. In the Annex 2, one can see the variable analysis data, featuring 

nodal deflection values and the charts obtained in the variable analysis. In the Annex 3 

one can see the Finite Element Model input files, used to optimize the models on 

MATLAB. In the Annex 4 there is the scientific paper published during this thesis. 
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2.1 Introduction to Finite Element Method  
 

The Finite Element Method is a numeric procedure that can be used to obtain solutions 

to a large number of engineering problems involving stress, deflection, heat transfer and 

electromagnetic phenomena. The finite element method (FEM) consists in a computer 

model that is analyzed under certain conditions. FEM is used either in new product 

design, and existing product refinement. It is very useful to verify if a proposed design 

will be able to perform to the client's specifications before manufacturing. A 

modification in an existing product or structure is usually done with the purpose of 

qualify the product or structure for a new service condition. In case of structural failure, 

FEM may be used to help the design improvement in order to meet the new service 

condition [11]. In the case of structural static analysis, which is the subject of this work, 

the model is statically loaded. In this work, one is analyzing the elastic domain only, 

due to the nature of the application. In the elastic domain, there is a linear relation 

between stress and strain. The proportionality constant is the Young modulus E, as 

shown next in eq. 5: 

0

ΔL
σ=Εε=E

L
 (Eq. 5)  

where:  

is theNormal stress 

is the Strain 

is the Young modulus 

L is the length variation 

L0 is the initial length of the object 

 

In FEM, it is very important to assume a solution that approximates the behaviour of the 

elements. Considering the deflection of a solid member with a uniform cross-section A, 

a length L when subjected to a tensile Force F, one can say that the normal stress is 

given by eq. 6: 

F
σ=

A
 (Eq. 6) 
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where: 

F is the applied force 

A is the area of the cross-section 

 

Using Eq. 5 and 6, one can obtain a new equation (Eq.7): 

0

AE
F= ΔL

L
 (Eq. 7) 

The elastic behaviour of an element can be modelled by an equivalent linear spring 

according to the eq. 8 [12]: 

avg i+1 i
e eq i+1 i i+1 i i+1 i

A E (A +A)E
F =k (u -u )= (u -u )= (u -u )

l 2l
 (Eq. 8) 

where: 

Fe is the force on the elements 

Ai and Ai+1 are the cross sectional areas of the member at nodes i and i+1 

Aavg is the average area 

l is the length of the element 

ui and ui+1 are the forces on the elements at nodes i and i+1, respectively 

The equivalent element stiffness is 
i+1 i

eq
(A +A)E

k =
2l

 

 

Despite the advantages of the FEM, it has limitations that can lead to errors in the 

analysis results. In many practical engineering problems one cannot obtain exact 

solutions. The difficulties to obtain exact solutions may be attributed to either the 

complex nature of the governing differential equations or the difficulties that arise from 

dealing with the boundary and initial conditions. The errors that contribute to the 

models limitations can be divided into: User errors, due to mistakes in the data input 

process, such as physical properties and dimensions, misuse of the selected elements, 

misapplication of DOF constraints, low discretization of the geometry of the structure, 

for example, due to an inappropriate rough mesh size or an inaccurate approximation of 

geometries and inherent numeric methods errors used to solve the equilibrium 

equations. These errors are due to the finite precision of the method, where conditions 

are not controllable, or expected. For complex structures, even when using correct 

meshes for each specific problem, errors can be substantial. These errors occur due to 

difficulties in adapting the meshes to the geometry of the model [13]. 
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2.2 About ANSYS 
 

The implementation of the Finite Element Method usually follows three steps: Pre-

processing, solution and post-processing. Within these three basic steps, there are sub- 

steps. In pre-processing, one defines the geometric model and builds the mesh with the 

elements. In this work, the sequence of creating the geometric model was: keypoints, 

then lines by keypoints and then areas by lines. The mesh makes possible the 

discretization of the elements on the domain, by assigning to each element segment a 

partial differential equation. All the differential equations are discretized after 

integration in the area of the elements. The equations are then solved by algebraic 

methods, such as gauss elimination method. In the solution menu it’s necessary to 

define the loads and the DOF displacements (constraints). After solving the model, the 

results can be viewed in the post-processing menu. For structural static analysis, as in 

this work, the most important are the stresses and the deflections. This work has the aim 

of obtaining the lowest possible deflections. Because of that, the results taken from the 

program were the deflections. The stresses are also an indicator of the mechanical 

behavior, since they are responsible for mechanical deflection. With FEM commercial 

software, such as ANSYS, all these steps can be performed through graphical interfaces 

or by command input. 

2.3 Bending and Torsion loading 
 

In practice is very common to find situations where the objects are loaded with a 

combination of bending and torsion. Bending is usually due to central transverse load, 

and torsion can be due to transverse load that is not centered. In some situations, these 

two types of loading act at the same time, and so, one have a combination of bending 

and torsion. In bending there are only normal stresses, and in torsion there are only 

shear stresses. The next figure (fig. 1) shows the FEM model, its loading and DOF 

constraints used in the preliminary analysis. The considered load was a centred bending 

load F of 3528 N, which is 12 times the acceleration of gravity on a mass of 30 kg 

(12*9,8*30=3528 N) and a binary load Mt=0,2*F1 that produces torsion, in which F1 is 

equal to of 5120 N:  
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Fig. 1-Load applied to FEM models and DOF constrains 

 

In torsion and bending combined loading, there are both shear stresses due to torsion 

and normal stresses due to bending. The total deflection is the sum of the deflection due 

to bending and the deflection due to torsion. 

2.3.1 Mechanical deflection 

2.3.1.1Differential elastic curve 

 

The initial equation is: 

f1 M (x)
=

ρ EI
   (Eq. 9) 

where: 

1/is the inverse of the curvature radius 

Mf(x) is the applied bending moment 

An approximation can be used to obtain a term which is a function of 
2

2

d y

dx
: 

2

22

3 2
2 2

d y

1 d ydx

ρ dx
dy

1+
dx

 

  
  

   

 

 

 

(Eq. 10) 

 

 

Substituting and integrating: 

2

f
2

1 d y
EI =EI =M (x)

ρ dx
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x

f 1

0

dy
EIθ EI M (x)dx+C

dx
    

x x

f 1 2

0 0

EIy dx M (x)dx+C x+C    

x x

f 1 2

0 0

EIy= dx M (x)dx+C x+C   

 

Constants can be determined by applying boundary conditions. For a simply supported 

beam, one has: 

bc1 bc2y =0,y =0  

 

The final equation used to obtain the deflection is: 

3 2 3

b
2 3

FL x x
y = 3 -4

48EI L L

 
 
 

 
  (Eq. 11) 

 

where: 

yb is the deflection due to bending  

F is the applied load 

L is the length of the object 

x is the x coordinate 

 

One can see that the deflection is dependent of both the geometry of the object (Inertia 

moment I and length L) and the material (Young modulus E). The deflection is also 

dependent on the load F and is a function of the x coordinate [14]. 

2.3.1.2 Torsion deflection 
 

As a simplification, one can admit that the shear stress is constant along the thickness, 

with a better accuracy the thinner the object is in relation to the dimensions of the 

section. One can then demonstrate that the shear flux C=τt  is constant, meaning that 

the shear stress is constant if the thickness is constant.  

If e,e1 are the thicknesses, and ,are the shear stresses in any two points m and n, it is 

possible to know, by sectioning n and m, that those sections are subjected to shear 

stresses equal to and The next figure (fig. 2 ) shows an illustration of a hollow-box 
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object, along with the representation of the shear stresses ,,  the points m, n, the 

thicknesses e, e1 and the distance between two points ds. 

 
Fig. 2-Representation of a hollow-box object and relevant torsion parameters [15] 

 

Considering two points located on the object wall, separated by a distance ds , the flux is 

the same for the two points: 

1 1C=τe=τ e  (Eq. 12) 

where: 

C is the shear flux 

is the shear stress 

e is the object thickness 

 

A face eds  is subjected to a force τeds , and the moment of this force in relation to any 

point of the section is τerds , where r is the distance of the considered point to the 

action line of the force τeds . Considering that the sum of the moments in every point of 

the wall should be equal to the torsion moment: 

τerds=Mt
 

(Eq. 13) 

 

Therefore, the flux τe  can be expressed as a relation with the torsion moment tM  : 

tτe rds=M  (Eq. 14) 

  

The above equation (Eq. 14) represents the double of the area A0 of the inner side of the 

mean line. Solving the integral, one can find the expression of the shear stress due to 

torsion: 

t

0

M
τ=

2A e
 (Eq. 15) 
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where: 

is the shear stress 

Mt is the torsion moment 

A0 is the area of the mean line 

e is the thickness 

 

The unitary angle of torsion can be obtained by the laws of energy conservation, by 

considering equal the work of deformation of a beam part with unitary length to the 

inner work of the same part: 

tM θ
ξ=

2  
(Eq. 16) 

where: 

is the unitary work 

Mt is the torsion moment 

is the twist angle due to torsion  

 

The forces τeds  applied to the horizontal faces of the volume element suffer the relative 

displacement . The work produced by them is: 

1
= τeμds

2
 .  (Eq. 17 ) 

where: 

is the work produced by the relative displacement of the applied forces  

is the shear stress 

e is the thickness 

is the relative displacement 

ds is the distance between the points n and m 

 

Because the shear flux e on the vertical faces of the element moves perpendicularly to 

it, the work produced by them is null. The inner work of the entire object is then: 

 
21 1 τ

ξ1= τeμds= eds
2 2 G   

 

Considering the equation 16, one obtains: 
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2 2
t t t2

2 2 2
0 0

M θ 1 1 M M ds
= τ eds= eds=

2 2G 2G 4A e 8GA e    

The distortion angle is then:  

t

2
0

M ds
θ=

4GA e
 (Eq. 18) 

 

If the thickness is constant, then the equation 18, reduces to:  

t t t

2
0 0

M l Cl
θ= =

4GA e 2GA e  
(Eq. 19) 

where: 

is the twist angle 

C is the shear flux 

lt is the mean line perimeter 

G is the transversal elasticity modulus 

A0 is the mean line area 

e is the object thickness 

Mt is the torsion moment 

 

The deflection due to torsion can then be calculated [15]: 

t
D

y= θL
2

 (Eq. 20) 

where: 

yt is the deflection due to bending 

D is the diagonal length of the object 

L is the length 

 is the distortion angle 

 

In the next figure (fig. 3), one can see an illustration of a hollow-box object subjected to 

torsion: 

 

Fig. 3-Hollow-box object subjected to torsion and relevant parameters 
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The fig. 3 shows the physical meaning of the torsion deflection yt, twist angle , and 

half of the diagonal lengh D/2. 

2.3.1.3 Total deflection 
 

The total deflection can be expressed as the sum of the contributions of bending and 

torsion: 

total b ty =y +y  (Eq. 21) 

where: 

ytotal is the deflection due to bending and torsion combined load  

yb is the deflection due to bending 

yt is the deflection due to torsion 

 

In a bending and torsion combined load, the resulting stresses are the combination of the 

normal stresses due to bending and the shear stresses due to torsion. 

2.4 Stresses in torsion and bending loading 

 

This work focuses the deflection dimensioning. There is another possible dimensioning 

approach: the stress dimensioning, which is based on stress criteria. The most common 

criteria are the Von Mises criterion and the Tresca criterion. To determine the 

admissible stress for a system, it is necessary to determine the main stresses after 

obtaining the normal stress due to bending and shear stress due to torsion. The normal 

stress due to bending can be calculated by: 

fM y
σ=±

I  

(Eq. 22) 

 

where:  

is the normal stress 

Mf is the bending moment 

y is the y coordinate  

I is the Axial Inertia Moment 
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The shear stresses due to torsion in thin walled objects can be calculated by: 

t

0

M
τ=

2tA 
(Eq. 15) 

where: 

 is the shear stress due to torsion 

Mt is the torsion moment (torque) 

t is the beam thickness 

A0 is the section mean line area 

 

After obtaining the admissible stress by the chosen criteria, one must chose a material 

with a Yield stress higher than the admissible stress as many times as the safety 

coefficient n value. 

2.5 Rigidity indices of materials 
 

It is possible to obtain a generalized strength-rigidity index, by using the factors that 

represent the weight advantage in terms of strength: 
0.2σ

γ
  and rigidity advantage:

E

γ
 . 

The generalized index is:  

0.2
gen

σ E
λ =

γ
 (Eq. 23) 

where: 

gen is the generalized rigidity index 

0.2 is the yield stress 

E is the Young modulus 

is the density 

 

This index represents the capability of a material to have the less deflection possible, 

and less weight when subjected to high loads. The fig. 4 shows the value of the 

generalized rigidity index for the most common engineering materials. The 

correspondence of the material to the number is as follows: 
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Fig. 4-Generalized strength-rigidity indices [1] 

 

According to the fig. 4, the materials can be separated in four groups: 

1-Super high-strength steels ( gen 8*10
5
) 

2-Alloy steels, titanium alloys and sitalls( 3,5*10
5 gen 4*10

5
) 

3-Carbon steels, high strength cast irons and wrought aluminium alloys ( gen 1*10
5
) 

4-Structural bronzes, wrought magnesium alloys, cast aluminium alloys, cast 

magnesium alloys, grey cast irons ( gen 0,5*10
5
)). 

 

In the table 1 one can see some properties of the most common structural materials, 

along with their rigidity characteristics. The material with highest generalized rigidity 

index is the high-strength steel, with a value of 8,4. The alloy steels are the second best, 

but are much worse than the first, with a value of 3,8. Titanium alloys and Sitalls have a 

value of 3,6, a value close to the alloy steels. The other materials have an index much 

lower than titanium alloys. For some materials, the index is slightly higher than 1, but 

for some materials it is substantially lower than one. 
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Materials 

Density 

(kgf/dm
3

) 

Modulus 

of 

elasticity 

(kgf/mm
2
) 

Rigidity 

characteristi

c -3

b

E
*10

σ
 

Generalized 

factor 

0.2 -5σ Ε
*10

γ
 

Carbon Steels 

7,85 21000 

2,6 1,3 

Alloy Steels 1,17 3,8 

High-strenght Steels 0,6 8,4 

Grey cast irons 7,2 8000 2,3 0,3 

High-Strenght cast irons 7,4 15000 1,9 1,1 

Aluminium 

alloys 

Cast 
2,8 7200 

2,9 0,45 

Wrought 1,2 1,1 

Magnesium 

alloys 

Cast 
1,8 4500 

2,1 0,32 

Wrought 1,4 0,52 

Structural Bronzes 8,8 11000 1,85 0,6 

Titanium alloys 4,5 12000 0,8 3,6 

Structural 

plastics 

Delta-

wood 
1,4 4000 2 - 

Glass-

fibers 
1,6 5000 1,67 - 

GFAM 1,9 6000 0,86 - 

Sitalls 3 15000 1,87 3,6 

Table 1-Strenght and rigidity characteristics of structural materials [1] 

 

The material selection for a structural application is determined by the strength-rigidity 

characteristics, but also by the relevant material properties for the considered 

application. The mechanical design has a very high importance, because it´s possible to 

build an object with high rigidity and strength, even when the material is not so stiff and 

strong. The shape is therefore more relevant than the material for the mechanical 

deflections reduction [1]. 

2.6 Relation between structural rigidity and material 
properties   
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The rigidity of the structures is determined by the deflection. The deflection is 

dependent of the material properties and depends also of the geometric characteristics of 

the object. The bending deflection due to transverse load can be expressed, as told 

before, by:  

3 2 3

b
2 3

FL x x
y = 3 -4

48EI L L

 
 
 

 (Eq. 11) 

where: 

yb is the deflection (function of x coordinate) 

I is the axial inertia moment of the section 

E is the Young modulus of the material 

L is the beams length 

F is the applied load 

x is the x coordinate 

 

One can see that the material selection plays an important role in this work, since there 

is a dependency of Young modulus on the deflection results. The results may vary 

drastically if a different material is used, mainly in terms of the Young modulus. The 

density is very important because the object mass is directly related to it: 

m
γ=

V  
(Eq. 24)

 

 
where: 

is the density of the material 

m is the material mass 

V is the object volume 

As Newton´s second law say that: 

F
a=

m  
(Eq. 1) 

where: 

m is the mass of the material 

a is the acceleration 

F is the applied force 

 

One can see that a lower mass can be important to obtain a good behavior of the 

structure, since for a certain load, the lower the mass, the higher can be the acceleration 



CHAPTER 2-RELATED THEORY 

 

26 

without structural failure, or/and undesirable vibrations. The density should be as low as 

possible because for an object of the same dimensions, the mass is lower the lower is 

the density. Two methodologies can be used in this work to achieve the goal of 

deflection minimization: 

 - The Young modulus of the material must be the highest possible, because the 

deflections are a function of it. This methodology is based on the importance of the 

material properties. The high-strength steels, such as dual-phase steels, seem to be the 

most suitable materials. This was the methodology used in this work. 

 - One can choose a material with not so high Young modulus, but with a 

relatively low density and low/medium cost that allows the maximization of the Inertia 

moment by means of object reinforcement with longitudinal webs or ribs. This 

methodology is based on the improvement of the Inertia moment. Some suitable 

materials for this methodology include composites, such as GFRP- Glass fiber 

reinforced polymer. 

2.7 Mechanical tests 

2.7.1 About tensile test 

A tensile test, also known as tension test, is the most relevant type of mechanical test 

that can be performed on a material. It is used to determine the mechanical properties of 

metals and metallic alloys. The main advantages of tensile tests are: simplicity, they are 

relatively inexpensive, and fully standardized.  As the test is performed, one will obtain 

a stress-strain curve similar to what is shown next: (fig. 5)  

 

Fig. 5-Typical stress-strain curve on a tensile test [16] 

http://www.instron.us/wa/applications/glossary/t.aspx#TensionTest
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By performing this test, one can determine how the material reacts to the force being 

applied, and consequently, one is able to obtain the material´s most important 

properties, such as Young modulus, elongation, Yield stress, stress at rupture, 

elongation until fracture (%), and area reduction until fracture (%). The results obtained 

from the test can be used to build a normal stress-strain chart and a normal stress-

extension chart. The test specimens can be round, having 12,7 mm of diameter or can be 

flat. When the original material has enough thickness, the specimens are usually round. 

The reference length in the center of the specimen is usually 51 mm [17]. In the fig. 6 

one can see a tensile test machine. 

 

Fig. 6-Tensile test device [18] 

2.7.2 Elastic and Plastic domains 
 

The stress-strain chart shown on fig. 5 can be divided in two mechanical behavior 

domains. The elastic domain, used to estimate the Young modulus using Hooke’s law, 

and the plastic domain. In graphical terms, the elastic domain is the linear part of the 

graphic, where the stress is directly proportional to the strain, being the Young modulus 

the proportionality constant. The plastic domain is represented by a non-linear curve. 

The difference between the elastic and plastic domains is that when a load is applied 

and the material doesn´t leave the elastic domain, if the load is removed, then there will 

be no residual strain and the material returns to its original dimensions. If the plastic 

domain is reached, then there will be a residual strain after the load is removed, that will 

be higher the higher is the applied load when the load is removed. In the elastic domain, 

the Young modulus can be determined by the slope of the stress-strain curve [17]. 
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2.7.3 Relevant properties obtained from a tensile test 

2.7.3.1 Modulus of Elasticity     

The modulus of elasticity is a measure of the stiffness of the material, but its 

determination is only valid in the linear region of the stress-strain chart. Even in the 

linear region of the chart, one cannot obtain the exact Young modulus, but an 

approximation. The Young modulus is constant in every point of the linear region of the 

stress-strain chart (elastic domain) [17]. 

2.7.3.2 Yield stress 

The Yield stress of a material can be defined as the stress applied to the material at 

which plastic deformation starts to be relevant when the material is loaded. Because 

there is not a well defined point that is the end of the elastic domain region and the 

beginning of the plastic domain, one usually chooses a Yield stress for a certain plastic 

deformation. For structure projects, yield stress is usually calculated for a plastic 

deformation of 0,002, which is 0,2%. Yield stress is usually calculated by making a line, 

starting on the point 0,002 in the strain axis and stress equal to 0. The line is parallel to 

the elastic domain curve. The point where the recta intersects the plastic domain of the 

stress-strain curve is the Yield stress (stress axis) and Yield strain (strain axis) [17]. 

2.7.3.3 Rupture stress 

 

Rupture stress is the current stress when the specimen suffers rupture. In projects with 

ductile metallic alloys, the rupture stress is usually not an important value, because the 

correspondent strain is very high. However, rupture stress can give an indication about 

the presence of defects. When there are defects, such as pores or inclusions, the rupture 

stress may be lower than the expected [17.] 

2.7.3.4 Elongation 

 

One is able to determine the amount of stretch or elongation the specimen suffers during 

tensile test. This can be expressed as an absolute measurement in the change in length 

called extension or as a relative measurement called "strain". There are two types of 

strain, the "engineering strain" and "true strain". Engineering strain is probably the 
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easiest and the most common expression of strain used. It is the ratio of the change in 

length to the original length:  

0
s

0 0

L-L ΔL
e = =

L L  
(Eq. 25) 

where: 

es is the engineering strain 

L is the final specimen length 

L0 is the initial specimen length 

 

The true strain is similar but based on the instantaneous length of the specimen as the 

test progresses: 

i

0

L
ε=ln

L

 
 
 

 (Eq. 26) 

where:  

is the true strain 

Li is the instantaneous length 

L0 the initial length. 

The elongation is a measure of the material ductility. When the elongation is high, the 

material ductility is usually high, and when the elongation is low, the material ductility 

is usually low. The elongation can be obtained by joining the two parts of the specimen 

that break during the tensile test and measuring the length. The initial length is usually 

51 mm. The length should be delimited with a marker before the test, because one has 

no way of measuring the elongation if this is not done [16]. 

2.7.3.5 Ultimate Tensile Strength 

The ultimate tensile strength (UTS) is the maximum load the specimen sustains during 

the test. The UTS may or may not be equal to the strength at break. This all depends on 

what type of material one is testing: brittle, ductile, or a substance that even exhibits 

both properties. The ductility depends on the conditions used, for example, sometimes a 

material may be ductile when tested in a laboratory, but when placed in service and 

exposed to extreme cold temperatures, it may suffer a transition to brittle behavior [17]. 
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2.7.4 Determination of the Young modulus in tensile test 

 

In tensile test, one obtained a results file. The results file has many columns, such as 

time (in seconds), extension (mm), strain 2% (%), Load (N), Tensile Stress (MPa), 

Tensile extension (mm), Tensile strain (%), displacement (Strain 2 in mm), True strain 

%, position(mm),corrected position, toughness (gf/tex), and true stress (Pa).The results 

are sorted by time, and each line corresponds to a time instant. The relevant results are 

the extension, the strain 2%, and the load. By dividing the load by the transversal area 

of the specimen one can find the nominal stress:  

F
σ=

A
 (Eq. 6) 

where: 

F is the applied load 

A is the transversal area of the specimen 

is the normal stress  

 

The Young modulus is given by equation 5: 

σ
E=

ε
 (Eq. 5)

 

where: 

E is the Young modulus 

is the normal stress 

 is the strain 

 

In order to determine Young modulus, one must do the linear fit of the stress-strain 

chart for the elastic domain data. The equation used to perform the linear fit is: 

cy=sx+b  (Eq. 27) 

where: 

y is the y coordinate 

x is the x coordinate 

s is the slope of the recta 

bc is the y coordinate on origin 
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Because the tested material is a dual-phase steel, the expected Young modulus for the 

mechanical tests, either tensile and extensometry is 210 GPa, which is the regular value 

for a steel. 

2.8 About MATLAB 
 

MATLAB is a technical computing environment for high performance numeric 

computation and visualization. MATLAB features numeric analysis, matrix 

computation, signal processing and graphics in an easy-to-use environment. MATLAB 

features a family of solutions for specific applications called toolboxes. Toolboxes are 

collections of MATLAB functions (M-files) that were pre-programmed in order to 

extend MATLAB capabilities. MATLAB toolboxes can be related to many areas, 

including optimization, signal processing, control design, dynamic systems simulation, 

among others. In this work, the optimization toolbox was used in order to be possible to 

use a required optimization function named fmincon [19]. There are many types of 

optimization. According to the type of optimization (linear/nonlinear, constrained/non-

constrained), an objective function can be used for minimization or maximization. The 

optimization toolbox consists of functions that can be applied to each particular case, 

according to the optimization type. These routines require the definition of an objective 

function. The following table (table 2) show the functions provided in the optimization 

toolbox for different optimization problems. 

 

Type Notation Function 

Scalar Minimization 
s

s s1 s s2amin  f(a ) such that a < a  <a
 

fminbnd 

Unconstrained Minimization 
v

vxmin  f(x )
 

fminunc, 

fminsearch 

Linear Programming 
v

T
vx

m v m eq v eq b v b

min  f x  such that 

A .x b , A .x =b ,  l x u  
 

linprog 

Quadratic Programming 

v

T T
v v vx

m v m eq v eq b v b

1
min x Hx +f x  such that

2

A .x b ,  A .x  = b ,  l x u  
 

quadprog 

Constrained Minimization v

v eq v

m v m eq v eq b v b

min f(x ) such that

c(x ) 0,  c (x )= 0

A .x b ,  A .x = b , l x u

x



  
 

fmincon 
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Goal Attainment 
,

v

v eq v

m v m eq v eq b v b

min   such that

F(x ) = w.   goal

c(x ) 0, c (x )= 0

A .x b ,  A .x = b , l x u

vx  

 



  
 

fgoalattain 

Minimax ( ) { }

v eq v

m v m eq v eq b v b

min max { } such that

c(x ) 0,  c (x )= 0

A .x b , A .x = b , l x u

v
f

f xx F F



  
 

fminimax 

Semi-Infinite Minimization v

v

v eq v

m v m eq v eq b v b

min  f(x ) such that

K(x ,w) 0 for all w

c(x ) 0,  c (x )= 0

A .x b ,  A .x =b , l x u

x





    

fseminf 

Table 2- MATLAB Minimization functions [20] 

In this work, the function fmincon was used to optimize the objective function. The 

function fmincon is used for “constrained minimization” optimization type [20]. 

2.9 Mathematical formulation of optimization methods 
 

To achieve an optimal solution one must understand the mathematical formulation of 

the optimization methods, since it is needed to establish correct mathematical 

conditions. Optimization techniques are used to determine a set of parameters 

Tx=[x1,x2..xn]  that can be defined as optimum in certain conditions. Those parameters 

are the optimization variables. An objective function q(x) is subject to a process of 

minimization or maximization, which can be linear or non-linear, and constrained or 

non-constrained. The constraints are functions that restrict the optimization variables, 

and can be of three types: equality constraints, inequality constraints, and upper/lower 

limit constraints as shown next: 

ig (x) 0 e(i=l,...,m ) ; with me equality constraints 

jh (x) 0 f(j=l,...,m ) ; with mf inequality constraints  

 l u
k k ax ,x (k=l,...,m ) , with ma lower limit or upper limit constraints  

 

An optimization problem is usually described by the minimization (or maximization) of 

the objective function q(x): 

min q(x)  

subjected to the constraints conditions: 

g(x)=0  
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h(x) 0  

l ux x x   

where: 

x is the vector of the optimization parameters  

q(x), g(x) and h(x) are functions. 

 

To achieve an efficient solution, one must consider not only the number of constraints 

and optimization variables, but also the characteristics of the objective and constraining 

functions. In linear programming, all the optimization functions have linear behavior. In 

quadratic programming, a quadratic function is minimized or maximized and linearly 

constrained. For both optimization types, there are numeric procedures to obtain the 

solution. For non-linear optimization, there is the need to run an iterative procedure, 

achieved by the solution of a linear programming, quadratic programming, or even a 

non-constrained optimization problem. The objective function q(x) has the purpose of 

establishing a relation between the objective of the project and its variables. Such 

variables can be material properties or geometric parameters. In this work, both material 

properties and geometric parameters are the optimization variables. Usually, the 

variables have linear behavior, but, if at least a single variable has non-linear behavior, 

non-linear programming must be used [13]. 
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3.1 Materials selection 

3.1.1 Initial selection 

 

The first step in the materials selection is the identification of the relevant properties of 

the application. For this application the relevant properties are: 

 

- Young modulus  

- Toughness 

- Inertia moment 

- Cost of the material (cost of matter and manufacturing process) 

- Density 

 

The desired properties are: 

 

 - Young modulus  (highest possible) 

 - Toughness   (highest possible) 

 - Inertia moment  (highest possible) 

    - Cost of the material  (lowest possible) 

 - Density                     (lowest possible) 

 

There are some properties that depend on the material, and some that are independent of 

the material. This independency is shown next: 

 

 - Young modulus  (dependent) 

 - Toughness               (dependent) 

 - Inertia moment          (independent) 

    - Cost of the material    (dependent) 

 - Density                       (dependent) 

 

The inertia moment is not dependent of the material. In fact, the inertia moment depends 

of the geometrical characteristics of the objects, and doesn´t depend on which specific 

material is chosen.  
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For the materials selection one can only focus the material dependent properties. For the 

first materials selection it is necessary to choose a material class, not a specific material. 

This is true because one has more mobility to change to a material in the same class 

with better properties for the application. The materials selection was done using 

materials selection charts. In those charts one has two properties in 2 axes (2D) and 

inside the chart there are the materials classes. This kind of diagrams make the materials 

selection more organized, more simple and more effective than other methods, for 

example, search in handbooks for reliable materials for a specific application. The 

charts used for the first selection of the material were the Young modulus/Cost and 

Young modulus/density. They are shown next (fig. 7) and (fig. 8): 

 
Fig. 7-Materials selection chart Young modulus/density [21] 

 

In this chart (fig. 7), one should select a class of the closest possible to the top left 

corner (ideally) to obtain the highest possible Young modulus and lowest possible 

density. There are no such materials, so one must look and find the best existing classes. 

They are the ceramics, the composites and the metals. The ceramics are too brittle for 

this application, the composites are too expensive, although GFRP- Glass Fiber 

Reinforced Polymer is not very expensive in absolute terms, costing slightly more than 

two Euros a kilogram [21], it is expensive comparing to most of the common metals. 

The CFRP- Carbon Fiber reinforced Polymer is very expensive, with a cost of more 

than 23 Euros a kilogram [21]. The metals have a high Toughness and high Young 
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modulus. The only problem is they have a high density. But one can choose a specific 

material inside the class that has a relatively low density to improve this. 

 
Fig. 8-Materials selection chart Young modulus/Cost [21] 

 

In this chart (fig. 8), one should select a material´s class that is the closest possible to 

the up left corner as in the previous chart to obtain the highest possible Young modulus 

and the lowest possible cost. As in the previous chart, there is no such material class.  

The best material classes are: Metals and alloys, the Composites and the Ceramics. The 

Composites have lower Young modulus than the Metals, and their cost is higher, so 

they are not the best choice. The composites have a much lower density but with a 

higher cost. The selection of the composites is only suitable for high performance 

applications where the equipment cost is high, like boats. The ceramics, as told, are 

brittle and they may fracture easily in an application such as this one. One can then 

conclude that in the current state of art, the best material class is the Metals and Alloys, 

which is the best class in both charts [21].  

3.1.2 Intermediate material selection 

 

If one details the Young modulus/density diagram (fig. 9), one sees that the best 

materials for this application are: Steel, Cast Iron and Nickel, whose have a high Young 

modulus and a relatively low density (they have the best relation between the two 

properties). 
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Fig. 9-Materials selection chart Young modulus/density [21] 

 

A detailed view of the diagram Young modulus/Cost (fig. 10) shows that the best 

materials for this application are:  Low alloy Steels and Stainless Steel, whose have a 

high Young modulus and a relatively low cost (they have the best relation between the 

properties Cost and Young modulus: 

 
Fig. 10-Materials selection chart Young modulus/Cost [21] 

 

One can say that the best material for this application is the Steel, which has a good 

position in both diagrams. [21] 

3.1.3 Final material selection 

 

Of all steels, the dual-phase steels seem to be the most promising material for this 

application. The dual phase steels have higher Yield stress, which means they can resist 
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higher stresses without entering the plastic domain. In the plastic domain, unlike the 

elastic domain, stress is not proportional to the strain and the strain is not totally 

relieved after removal of the load. As in this application one desires that the object 

works all the time in the elastic domain, this material seems to be highly suitable for this 

application. The commercial dual phase steel DOCOL is the selected material. With the 

dual phase steels it can be possible to obtain lower area sections having enough 

mechanical resistance for the involved solicitations. 

3.1.4 About commercial dual phase steels (High strength 

steels) 

3.1.4.1 Main characteristics 

The main incentive for adopting dual phase steels for engineering structures 

manufacture is the significant reduction in processing costs that are possible. The three 

major direct cost savings are: no spheroidisation anneal, no quench and temper 

treatment and no post Q&T descaling necessary. The Dual-phase steel has a soft ferrite 

microstructure, with a matrix containing islands of martensite (increasing yield to 

tensile strength) in the secondary phase (with proportional volume fraction increase in 

analogue to tensile strength.) The fig. 11 shows the microstructure of some commercial 

steels of this type, known as HCT: 

 

Fig. 11-Microstructure of commercial dual phase steels [22] 
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This type of steel features a low yield to tensile strength ratio, high tensile strength and 

high work hardening rate. The high tensile strength is mainly achieved by the 

composition, with manganese, chromium and silicone. The increase of the yield to 

strength ratio in the martensitic phase is achieved by quenching the material before it 

enters the zinc pot of the hot-dip galvanization unit. In the next figure (fig. 12) one can 

see the Stress-Strain Curves for HCT commercial dual phase steels: 

 

Fig. 12-Stress/Strain curves of some commercial dual phase steels [22] 

The Stress-Strain curves are an excellent way to describe some of the most important 

mechanical properties of materials. In the above figure (fig. 12), one can see the 

mechanical behaviour of HCT450XD, HCT500XD and HCT600XD. It is notorious that 

their Young modulus is similar, because the elastic domain slope is similar, but their 

yield stress is quite different. The HCT600XD steel has the highest yield stress of all 

three materials shown in the chart (fig. 12) [22].  

3.1.4.2 About DOCOL dual phase steels 
 

Below (table 3) one can see the chemical composition of the DOCOL dual phase steels.  

Each steel designation number is related to tensile strength, eg. A DOCOL600 has a 

tensile strength of near 600 [23]. 
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Table 3-Chemical composition of some dual phase commercial steels [23] 

The mechanical properties of these steels are shown in the next table (Table 4):  

Table 4-Mechanical properties of some dual phase commercial steels [23] 

One can see that the Yield stress is presented in a range of values. Also, there is not a 

determined value for Young modulus. Therefore, there is the need to perform 

mechanical tests to determine a value for the Young modulus (extensometry test and 

tensile test) and for the Yield stress (tensile test). Poisson coefficient was also 

determined, due to its relevancy in the material deflection (extensometry test). In the 

Annex 1, one can see the Young Modulus, Poisson coefficient and Yield stress obtained 

in tensile test and extensometry test. The obtained values for the Young modulus are 

smaller than the expected 210 GPa for all specimens. The Poisson coefficient is also 

smaller than the expected 0,29 for all specimens, but the values are very close to the 

expected value for most of the specimens. 

 

 



CHAPTER 3-EXPERIMENTAL PROCEDURE 

 

44 

3.2 Section Optimization 

3.2.1 Section Optimization: Main purposes 

 

For the purpose of this work, rigidity is more important than resistance in what relates 

to its structural applications. The bending deflection yb is a function of the bending 

moment Mf(x), the axial inertia moment I and the Young modulus E. It is directly 

proportional to Mf(x) and inversely proportional to I and E. However, in order to 

decrease deflection, it´s important to choose a material with high Yield Stress, because 

with a material having high Yield stress, it´s possible to reduce the object weight using 

a lower thickness and then improve the Inertia moment of the section with ribs, 

resulting in a lower deflection with a similar material cost. The bending deflection 

equation results from double integration of the eq. 28, using the appropriate boundary 

conditions, as shown in chapter 2: 

2
b f

2

d y M (x)
=

dx IE
 (Eq. 28) 

To increase rigidity one must increase the axial inertia moment I, as well as the Young 

modulus E. The aim is to obtain a minimal deflection yb. There are ways of increasing 

the Inertia moment. One is by the use of webs inside the object, the other is by the use 

of ribs. Ribbing is usually less expensive than webs because of material costs (material 

required to web a structure is usually more than to rib the same structure). The increase 

of the axial Inertia moment of a modified object (usually ribbed or webbed) in 

comparison with the initial object is defined by the ratio I/I0. As an example: a ratio of 2 

means that the reinforced object has twice the inertia moment in comparison to the 

initial object. Ribbing is usually more effective in terms of I/I0 than webbing. The 

higher I/I0 one has in the ribbed structure, the higher the Inertia moment will be in 

comparison to the inertia moment of the initial structure (non-ribbed). As a result of the 

improvement of the Inertia moment, there is higher rigidity and consequently, lower 

deflections. In fig. 13, one can see a ribbed plate FEM model: 
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Fig. 13-Example of a ribbed plate 

 

However, there are implications in the use of ribbing. The most critical implication is 

the deflection increase due to wrong ribbing. Also important is the mechanical 

resistance, due to high shear stresses in the ribs joints caused by transverse loads, 

especially when the rib thickness is low [1].  

3.2.2 Section optimization: Longitudinal Webs 

 

About longitudinal webs, the theory says that the best improvement obtained by adding 

longitudinal webs is achieved when there are two longitudinal webs, as in fig. 15. It was 

found in the literature that the webs minimize the lower deflections and stresses while 

almost not affecting the others, and ribs lower the high deflections and stresses while 

almost not affecting the lowers. The next figure (fig. 14) shows the possible types of 

longitudinal webs and the correspondent improvement of the axial inertia moment I.  

 

 
Fig. 14-Effect of longitudinal webs on Inertia moment [1] 
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In the fig. 14, one can see that the objects with diagonal webs are the best. However, 

there is only a slight increase of bending rigidity Iflex and torsion rigidity Itors from one 

diagonal web to two diagonal webs. The Iflex increases from 1,55 to 1,78 and Itors 

increases from 3 to 3,7. The two non-diagonal webs is not useful because the mass m is 

high (1,38) and Itors and Iflex are much lower than in the case of both one diagonal 

webbed beam and two diagonal webbed beam. The fig. 14 also shows Iflex/m and Itors/m.  

Iflex/m is a measure of how the bending rigidity increases per weight unit. In analogy, 

Itors/m is a measure of how the torsion rigidity increases per weight unit. One can see 

that the one diagonal beam is the best, because it has less weight than the two diagonal 

webbed beam. The non-diagonal webbed beam is even worse than the non-webbed 

beam, with a Iflex/m of 0,85, which means that the webs have a low efficient in terms of 

rigidity increase per weight unit in comparison to both of the diagonal webbed beams. 

In terms of Itors/m the two-diagonal webbed beam is the best, with a value of 2,45. 

However, the single diagonal webbed beam has a value of 2,4, which is very close. The 

non-diagonal webbed beam has a value of Itors/m equal to 1,56, which is better than the 

non-webbed beam but much worse than both of the diagonal webbed objects [1].  

 

 
Fig. 15-Example of a webbed beam 

 

The above figure (fig. 15) shows an example of a FEM model with two diagonal webs. 
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3.2.3 Section optimization: Ribbing 
 

The next figure (fig. 16) shows how ribs affect the moment of resistance W and the 

axial inertia moment I of beams. The moment of resistance W of a non-ribbed section is 

considered to be unitary. 

 

 
Fig. 16-Effect of Ribs on the inertia moment and W [1] 

 

About ribbing, one can say that the best rib section has W=180 and I=300 as shown in 

the fig. 16. The rib sections on the left side of the fig. 16 don´t have enough thickness 

and/or height. Due to this fact, the resistance moment W is equal or less than 1 for all 

cases, except for one case, that W wasn´t determined. However, for some rib sections, 

there is a substantial increase of the inertia moment, with values of 4,5 for the last rib 

sections, and 7,8 for the fifth rib section. In the right side of the fig. 16, one can see that 

the second, third and forth solutions have a W=2 and a I of 21 for the second and 11 for 

the third and forth. The second best rib section is the fifth on the right side, with a W of 

5 and a I of 35. The influence of rib height and rib thickness on the Inertia moment and 

moment of resistance can be expressed in a generalized form. For the inertia moment, 

the expression is: 
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3 2

0

I 1+η
=1+δη +3δη(1+δη)( )

I 1+δη
 (Eq. 29) 

where: 

0

h
η=

h
= ratio of rib height h to original profile height h0 

0

b
δ=

b
= ratio of rib width b to original profile width b0 

 

The relation of the moments of resistance can also be expressed in a generalized form: 

2
0

W 1+δη
=

W 1+2η+δη
 (Eq. 30) 

where: 

0

h
η=

h
= ratio of rib height h to original profile height h0 

 
0

b
δ=

b
= ratio of rib width b to original profile width b0 

When the distance between consecutive ribs is high and h/h0 is not sufficiently high, the 

moment of resistance can drop several times in comparison to the original profile. In the 

next figure (fig. 17), one can see the chart of the rib pitch, known as t0, in the abscissa, 

and the values of the increase of the moment of resistance W/W0 for each rib height 

ratio. Rib pitch can be defined as the ratio between the distance between consecutive 

ribs and rib thickness. The rib height ratio is the increase of height caused by ribs in 

comparison to the original profile.  

 
Fig. 17-Values of moment of resistance for different rib pitch and height ratio values [1] 
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One can say that for some values of rib pitch and height ratio there is a decrease of the 

moment of resistance W. This happens when W/W0 < 1. The object will be weaker if 

the rib height decreases, and/or if there is a higher rib pitch. There are three ways of 

increasing rigidity of a ribbed structure: one has to increase rib height, to decrease rib 

pitch, or to increase rib thickness. Ribbing has shown to be a better way to improve the 

rigidity of beams than longitudinal webs. It is better in what concerns to material cost 

and in what concerns to deflections. However, one must consider the processing of the 

ribs. As the material processing of the ribs requires more structural detail, it is more 

expensive than webs (using the same processing method to be able to compare). This 

cost can be relatively high, if the ribbing structure has many ribs [1]. In the next 

illustration (fig. 18) one can see a ribbed structure. 

 

 
Fig. 18-Example of a ribbed beam 

 

This sub-chapter was the base for the selection of the variables of the ribbed plate 

model. It was shown that rib thickness, rib height and rib pitch can substantially affect 

the deflection of ribbed objects, by influencing the rigidity and the resistance. The 

distance between consecutive inner ribs is represented on the ribbed plate model by the 

LG1 variable, the rib height is represented by the LG2 variable and the thickness is 

represented by the LG3 variable. Rib pitch concept was applied to the ribbed plate FEM 

model as the distance between consecutive inner ribs, for a question of simplicity. There 

is no need to define the ratio of distance between consecutive inner ribs divided by the 

thickness, and one can apply the rib thickness only to one variable (LG3). 
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3.3 FEM and Optimization 

3.3.1 Introduction 

 

Nowadays, the engineering structures usually have a high level of complexity. The 

numeric methods, such as the FEM- Finite Element Method, are very useful to test if the 

engineering object specifications are adequate for the working conditions of the 

application. In the case of this work, the aim is to reduce the nodal deflections as much 

as possible in the FEM models. The commercial FEM software used was ANSYS. 

ANSYS can itself give deflection solutions. However, the aim is to reduce the 

deflections as much as possible. To be possible to achieve the aim, one has to use 

another program, called MATLAB (MATrix LABoratory) to optimize the models. A 

programming code was developed in this work for the control of the optimization 

processes. MATLAB is responsible for the control of the optimization processes, by 

collecting deflection data from the text file l5.glw that is filled by ANSYS, 

optimizing the variable values, and re-sending the model input file MODnume.txt 

with the new variable values to ANSYS to be re-analyzed. This process can be done as 

many times as needed to achieve an optimum solution, in an iterative process. The 

ANSYS input file is a text file with all instructions related to the model construction. 

The input files must be edited in order to have: the variables in the keypoints, the initial 

variable values, and to write the deflection results in the nodal points to a file named 

n5.lgw, used by MATLAB to calculate the objective function.  

3.3.2 Finite Element Method experimental procedure 

 

The ANSYS program is divided mainly in 3 sections: Pre-processor, Solution and Post-

processing: 

-Modelling, definitions and meshing in Pre-processor 

-Loads, DOF constraints and solution (solving) in Solution section. 

-Plot results and query results (Total Strain) in Post-processing. 

 

The steps to create and solve the FEM models were: 

Preprocessor 

 Modelling 
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  Creation of keypoints, then lines by keypoints and then areas by lines 

 Definitions  

  Definition of the Element Type 

  Definition of real constants: shell thickness  

  Material properties: Young modulus, density and Poisson coefficient  

  Attributes: Application of the definitions and material properties  

Meshing: element divisions using mapped quadrilaterals elements 

Solution 

 Loads: Binary load on the edges (torsion) and a centred load (bending)  

 DOF constraints: simply supported at its ends. In the program this can be done 

by applying displacements on keypoints of both sides 

Solving: In order to solve the current model 

Postprocessing:  

           Plot results   

Strain solutions were obtained.  

Query results 

Strain results were queried on the central nodes on the top surface (centre 

in x coordinate) along the length of the model 

 

In modelling, the model geometry was created, and in the definitions one chose the 

element type and the material properties. The material properties were the properties of 

the steel: density of 7890 kg/m
3
, Young modulus of 210 GPa and Poisson coefficient of 

0,29. The material properties used in the FEM modelling are standard values (were not 

determined experimentally). In this work, the element type used is Shell elastic 4 nodes 

(named as Shell63). In meshing one choose the mesh type (triangular or quadrilateral), 

and the mesh refinement (how many elements in each direction). In this work only 

quadrilateral element meshes were used. The mesh refinement is different in the two 

models. The main aim is to refine the mesh as much as needed for the results to have a 

good precision, but without a very long processing time to obtain the FEM solutions in 

ANSYS. After the mesh is created, one can apply the loads. As mentioned in chapter 

2.3, the considered load was a centred bending load F of 3528 N, which is 12 times the 

acceleration of gravity on a mass of 30 kg (12*9,8*30=3528 N) and a binary load 

Mt=0,2*F1 that produces torsion, in which F1 is equal to of 5120 N. The loads applied 

on the FEM models are represented on fig.1 (Chapter 2).These values are used as a 
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starting point, having in mind the common values for the laser cutting machines and 

plotters, which are the main applications of this work.  The DOF constraints were: 

rotation in x,y,z and translation in x,y,z. DOF means degrees of freedom and is in what 

directions the object is allowed to move with translation and/or rotation during the 

processing of the FEM solution by ANSYS. The solution sub-section allows solving the 

current model. After the results are ready, one can see the results in the Post-processing 

menu. In this case, the main aim is to study the deflections. In order to study the 

deflection in specific nodal points, the “Query results” submenu (in Post-processing) 

was used for the initial beam. 

3.3.3 The FEM models 

 

In order to validate the Finite Element Model Updating methodology done during this 

thesis two models were built: a ribbed plate (model one) and a tubular beam (model 

two). In both models one considered three geometric variables and three material 

properties variables. Due to the different nature of the two objects the geometric 

variables are different. However, the material properties were the same in the two 

models: Poisson coefficient, density and Young modulus. The loads must be applied on 

keypoints, because if the loads are applied on the nodes, the nodes move during the 

optimization, and the loads move along with the nodes. This means that in that case, one 

is also optimizing the loads. Optimizing load position is not the aim of this work, and 

because of that, the loads must be completely static. For that, loads must be applied on 

keypoints that belong to the model. One can see some small areas at the center of both 

models because those areas were made using the keypoints where the loads are applied. 

The next screenshot shows the ribbed plate model and its geometric variables (fig. 19): 

 

 
Fig. 19-Areas (left) and variables (right) of the ribbed plate FEM model 
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The variables for this model are: 

 Geometric variables: 

LG1: Distance between consecutive inner ribs 

LG2: Rib Height 

LG3: Thickness 

 Material properties variables 

EX: Young modulus 

PXY: Poisson coefficient 

DNS: Density 

 

The ribbed plate model has length L=0,6 m; width b=0,3 m e=0,002 m and has 4 ribs 

having length L=0,6 m; thickness e=0,002 m and height h=0,03 m. 

The next screenshot shows the tubular beam FEM model and its geometric variables 

(fig. 20): 

 

 
Fig. 20-Areas (left) and variables (right) of the tubular beam FEM model 

 

This model is useful to validate the FEM methodology because tubular beams are 

common in machine parts, such as laser cutting machines and industrial printers     

(plotters).  

 

The variables for this model are: 

Geometric variables: 

LG4: Distance from the center to the corner segment 

LG5: Half of the Center width on the wall 

LG6: Height of the central part on the wall 

 



CHAPTER 3-EXPERIMENTAL PROCEDURE 

 

54 

Material properties variables 

EX: Young modulus 

PXY: Poisson coefficient 

DNS: Density 

 

The tubular beam model has length L=1 m, thickness e=0,002 m, section width b=0,3 

m, and section height h=b=0,3 m. There is the aim to prove that this Finite Element 

Model Updating methodology can be applied to different models, with different 

variables (rib related or rib unrelated) and different object nature (beams or plates). 

3.3.4 Optimization Model 

 

This section is about the methodology of the Finite Element Model Updating program 

developed in MATLAB. The main aim of this thesis is the development of a 

programming code in MATLAB, which, using an optimization model, can improve the 

deflections of the FEM models. The fig. 21 shows the interaction between ANSYS and 

the MATLAB optimization program. The MATLAB program is used together with 

ANSYS. MATLAB controls the optimization processes and ANSYS calculates the 

FEM problem, by sending the deflections in specific nodes to a text file, named 

n5.lgw that MATLAB can read. Then, MATLAB calculates the objective function 

value, changes variable values in modife.txt and sends orders to ANSYS to begin 

the new FEM calculation. The objective function q(x) will be minimized by a 

MATLAB function named fmincon. The fmincon function is a Sequential 

Quadratic Programming-SQP optimization function. 

The objective function q is defined as: 

q(x)=BS(xi) 

where: 

q(x) is the objective function 

xi is the deflection on each node 

ABS is absolute value of an argument 
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Fig. 21-Functional fluxogram of the optimization methodology used in this work [13] 

 

The analysis of the deflection results and the change of variables values is done by the 

Finite Element Updating program, without any user action (is totally automated), using 

the implemented optimization methodology. For the solution to be possible, it is needed 

that ANSYS modify the input file modife.txt and the output file n5.lgw, to be 

possible for the Finite Element Model updating program to read and write relevant 

information about the FEM models, such as the objective function value and the 

variables values [13]. 

3.3.5 The MATLAB program 

 

The MATLAB program was developed using .m files. The .m files are programming 

files that MATLAB can read, write and run. The objective of the program is to modify 

the models variables in a manner that the deflections in the nodal points (nodes) are as 

close as possible to zero. The main program is called exper33x.m, and is the program 

used to run the optimization. There are several smaller programs named corri9x.m, 

escri9x.m, calcon21ax.m, nlcOUT6x.m, escrimx3.m and MACfun6x.m. 

Each one has a specific purpose in the program. During the execution of 

expert33x.m, the other programs are executed. One could have all programming 

code in only one .m file, but the program is much more organized this way. The next 

figure (fig. 22) is about what the program does (in the order of execution). Some 

programs run inside others: escrimx3.m is executed inside nlcOUT6x.m. 
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exper33x; 

1-corri9x; 

Run the initial input numeric model in ANSYS and leave after obtaining the 

results  

2-escri9x; 

Counts the lines of the MODnume.txt file 

Creates the modife.txt file, similar to MODnume.txt at the beginning.   

The modife.txt is modified during the optimization routine. 

Open the modife.txt for write access and saves it. 

3-Creates a set of global variables (expert33x) 

4-Establish the weight of each variable (expert33x) 

5- Identifies the lines with parameters and saves them in arrays. Calculates constraints 

for use in x0 vector and writes the results on the array table. 

6-calcon21ax; 

Identifies the lines with parameters and saves them in Arrays  

Calculate constraints 

Does a loop to remove the letters of the string 

Concatenate letter by letter 

7-nlcOUT6x;  

Writes the modified file (modife.txt) 

Runs the modified input file on ANSYS and leaves after results 

  8-escrimx3; 

  Changes the modife.txt file in order to write the updated parameters 

 

9- Initializes the initial values, including the initial vector x0 and initial values of PRNx 

array (exper33x) 

10-Builds matrix PRNx containing initial constraint values, with the objective to modify 

the modife.txt file according to the new values obtained by the MATLAB program. 

(exper33x) 

11- Builds a constraint matrix (exper33x) 

12- Builds the matrix of Lower Bound ‘LB’ and Upper Bound ‘UB’ constraints. 

(exper33) 

13- Calls the optimization routine, using the fmincon function and the Macfun6x 

objective function code (exper33x) 

14- Prints on the screen the optimization results (exper33x) 

15-nlcOUT6x; 

Writes the modife.txt file with the optimum design variables and executes it  

  16-escrimx3; 

  Changes the modife.txt file in order to write the updated parameters 

17- Clear the contents of the used variables (exper33x) 

Fig. 22-MATLAB program instructions 

 

The main program (exper33x.m) runs ANSYS to start the static analysis of the FEM 

models, using the ANSYS input file that contains every instruction. The MATLAB 

program calls the function escri9x.m that copies the initial ANSYS input file, 

named MODnume.txt to a new file, named modife.txt. This step is performed to 
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avoid the edition of the original input file that can be needed to run other optimization 

processes. The modife.txt file is modified during the optimization routine, being 

the variables values updated in every evaluation. The function calcon21ax.m 

identifies the lines of the ANSYS input file where the variables are. The same function 

saves the variables in a table and associates each variable with a variation factor. The 

variation factor can be different for the upper bound limit and the lower bound limit. 

Then, the main program (exper33x.m) defines the vector of initial values x0, and 

does the calculations, using the variation factor, of the lower bound and upper bound 

limits of the chosen variables. The next step of the program is to extract the nodal 

deflections results from the n5.lgw file that was previously filled with values by 

ANSYS. This is done in the MACfun6x.m file. The optimization function fmincon is 

then called by the main program. The fmincon function reads the initial values vector 

x0, and calls the objective function MACfun6x.m. After all iterations, the main 

program receives the optimum value of the variables and the optimum value of the 

objective function. The function Corri9x.m runs the ANSYS input file in ANSYS 

and leaves after the execution. In the next figure (fig. 23), one can see the operation 

sequence of the function corri9x.m: 

 

1. Calls ANSYS 

2. Executes the ANSYS input file MODnume.txt 

3. Close ANSYS 

Fig. 23-Operation sequence of the corri9x function 

 

The function escri9x.m reads the MODnume.txt file, saves it in a column matrix, 

identified by [FID] and writes its content in a new file, called modife.txt. The 

modife.txt file is then saved in [OLA], which is a column matrix. These operations 

are shown in the next figure (fig. 24) 

.  

1. Open the ANSYS input file 

2. Saves the ANSYS input file in [FID] 

3. Creates the modified input file modife.txt 

4. Saves the modified file in [OLA] 

Fig. 24-Operation sequence of the escri9x.m function 
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The function calcon21ax.m creates and fills the [PRN] and {PRNs} matrix. The 

[PRN] and {PRNs} are matrix with the information necessary to inform the program the 

value of the variables. In the next figure (fig. 25), one can see the operation sequence of 

this function: 

 

1. Create [PRN] and {PRNs} matrixes 

2. Extract variables 

3. Defines variable limits 

4. Fills [PRN] and [PRNs] 

Fig. 25-Operation sequence of the calcon21ax.m function 

 

The MATLAB program builds a matrix denominated [PRN] which has five columns. 

Each column has several lines, and the columns have, respectively: 

 

1.   The number of the line in the file where the parameter is located 

2.   The position where the equality signal is located 

3.   The value of the parameter 

4    The lower bound limit 

5    The upper bound limit 

 

The program also builds a second table [PRNs], with one column containing a text 

string with the parameter description in text. The function escrimx3.m reads the 

modife.txt file, saves it in a column matrix identified by [OLAM] and changes the 

lines corresponding to the variables, according with the information received in the 

optimization routine. This information is received by a column matrix denominated 

[PRNx]. The next figure (fig. 26) shows the operation sequence. 

 

1. Reads the input file modife.txt 

2. Modifies the [OLAM] matrix using the [PRNx] values 

3. Saves the input file in [OLAM] 

Fig. 26-Operation sequence of the escrimx3.m function 

 

The function nlcOUT6x.m runs escrimx3.m and runs the modife.txt in 

ANSYS, as shown in the figure below (fig. 27) 
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1. Runs escrim1x.m 

2. Runs modife.txt in ANSYS 

Fig. 27-Operation sequence of the nlcOUT6x.m function 

 

The function MACfun6x.m calculates the objective function value in every 

evaluation. It opens the results file n5.lgw, and calculates the sum of all deflections, 

which is the objective function. The fig. 28 shows the operation sequence of the 

MACfun6x.m function [13]: 

 

1. Runs nlcOUT6x.m 

2. Load the results file n5.lgw 

3. Calculates the number of nodal deflections on the n5.lgw file 

4. Calculate the value of the objective function 

5. Prints in the screen the value of the objective function 

Fig. 28-Operation sequence of the MACfun6x.m function 

 

The Finite Element Model Updating methodology presented in this chapter is based on 

the coordination of ANSYS and MATLAB: ANSYS is used for the FEM calculations 

and MATLAB is used for the optimization processes. The optimization type is 

Sequential Quadratic Programming (SQP). The fmincon function of MATLAB’s 

optimization toolbox is used to control the optimization process. An important aim of 

this work is to validate this Finite Element Model Updating methodology by testing it 

on two FEM models with different geometric variables. 

3.3.6 ANSYS Input file structure 

 

The ANSYS program is able to write and read text files that contain, in ANSYS 

programming language, all instructions done during the model construction. Those files 

are called ANSYS input files. They are needed in the optimization process, because 

ANSYS calculates the deflections in the nodal points by running them. The ANSYS 

input file (MODnume.txt) structure for both models is shown in the table 5. The code 

instructions are of two types: code generated by ANSYS during the FEM model 

construction, or ANSYS-dependent instructions, but not generated by ANSYS. The 
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write of results to output file, the definition of initial variable values, the keypoints 

coordinate modification in order to include the variables, and the commands to get 

nodal deflections are the ANSYS-dependent instructions that were not originated during 

the construction of the model. 

 

User instruction  Defines initial variable values 

 

ANSYS-Preprocessor-Modeling 

Creates Keypoints (with variables) 

Creates Lines 

Creates Areas 

ANSYS-Preprocessor-Element type Select element type- Shell63 

ANSYS-Preprocessor-Real constants Defines shell thickness 

ANSYS-Preprocessor- Material 

properties 

Define Material properties 

ANSYS-Preprocessor- Mesh tool Creates mesh 

ANSYS-Solution- Loads Apply Loads and Displacements 

ANSYS-Solution Solves the Model 

User instruction Get nodal deflections from the model 

User instruction Writes results to output file n5.lgw 

Table 5-Sequence of the ANSYS input files operations. 

 

The ANSYS input file code for the ribbed plate and tubular beam models is shown on 

the Annex 3- Finite Element Model files. 



 

61 

 

 

 

 

 

 

 

 

CHAPTER 4-RESULTS 

 

 

 

 



 

62 

 

 

 

 

 



CHAPTER 4-RESULTS 

 

63 

4.1 Numeric approximation- Comparison between 

numeric and analytic methods 

4.1.1 About the model 

 

In order to compare the numeric and the analytic methods, the calculations must be 

done for the same object points in the two methods. The results can be compared using 

a non-dimensional deflection ratio. The deflection ratio is better the closer it is to 1. The 

beam was subjected to a double load of 5120 N (torsion) and a centred load of 3528 N 

(simple bending).The beams areas are shown next (fig. 29.): 

 
Fig. 29-Areas of the initial finite element model 

 

The beam dimensions are: width of the section b=0,2 m, height of the section h=0,3 m, 

thickness t=0,002 m, length L=3 m. In addition, a rib with dimensions of t=0,002 m, 

h=0,03 m and L=3 m was designed together with the beam. The rib is located on the 

inner side of the beam´s top face. 

4.1.2 Beam Deflection by the Analytic method 

4.1.2.1 Bending 

 

In order to calculate the deflection due to bending, one must consider the effect of the 

longitudinal rib. This can be done by calculating the Inertia moment in relation to the 

centre of mass. The first step is to calculate the y coordinate of the centre of mass yc: 
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1 1 2 2

c

1 2

m y +m y 2*0,285+47*0,15
y = = =0,1556

m +m 2+47
 m 

where: 

yc is the centre of mass coordinate of the system 

m1 is the mass of the object 1(rib) 

m2 is the mass of the object 2 (beam without rib) 

y1 is the mean y coordinate of the object 1(rib) 

y2 is the mean y coordinate of the object 2 (beam without rib) 

 

The inertia moment of the object in relation to the x axis is: 

 
3 3 3 3

1 1 -5
xx

bh b h 0,2*0,3 0,196*0,296
I = - = - *=2,64*10

12 12 12 12
m

4
 

where:  

Ixx is the inertia moment in relation to the x axis 

b is the section width of the beam 

h is the section height of the beam 

b1 is the inner section width 

h1 is the inner section height 

 

The inertia moment in relation to the centre of mass can now be obtained: 

 2 -5 2 -5 4
m xx cI =I +Ay =2,64*10 +0,002*0,03*0,1556 =2,7853*10  m  

where: 

Im is the inertia moment in relation to the centre of mass 

A is the transversal rib area 

 

The deflection due to bending can now be calculated using the calculated inertia 

moment:  

3 2 3 3 2 3

b
2 3 9 -5 2 3

FL x x 3528*3 1,5 1,5
y = 3 -4 = 3* -4*

48EI L L 48*210*10 *2,7853*10 3 3

   
   
     

58,482*10 m 

4.1.2.2 Torsion 
 

In torsion, the rigidity is governed by the transversal elasticity modulus G: 
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9
10E 210*10

G= = =8,14*10
2*(1+ν) 2*(1+0,29)

Pa 

 

The torsion moment can be calculated by multiplying the applied load P by the distance 

between the line of action of the two binary forces. In this case the distance between the 

line of action of the two binary forces bi is equal to the section width b. The torsion 

moment is then: 

 tM=P*b=5120*0,2=1024 N.m   

 

The area of the mean line is necessary to calculate the distortion angle : 

 
2

0A =(b-e)*(h-e)=(0,2-0,002)*(0,3-0,002)=0,059 m  

 

The shear stresses must be calculated, in order to be possible to calculate the shear flux: 

 
0

Mt 1024
τ= = =4338983,1 Pa

2*e*A 2*0,002*0,059
 

 

The shear flux can now be calculated, by multiplying the shear stress by the thickness of 

the object: 

 C=τ*t=4338983,1*0,002=8678 Pa.m  

 

The mean line perimeter lt must be calculated, in order to be possible to calculate the 

distortion angle: 

 tl=2*((h-e)+(b-e))=2*((0,3-0,002)+(0,2-0,002))=0,992 m  

 

The distortion angle can now be calculated: 

 
t -4

10
0

Cl 8678*0,992
θ= = =4,48*10  rad

2GA e 2*8,14*10 *0,059*0,002
 

 

To be possible to calculate the deflection due to torsion, one must calculate the diagonal 

length of the object. It is necessary to calculate the angle of the section: 

 
0,5*b 0,1

Tg = =
0,5*h 0,15

  

-1 0,1
=Τg ( )=33,7 º

0,15
  
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The length of the diagonal can then be calculated: 

 
h 0,3

D= = =0,430 m
cos cos33,7

 

 

The deflection due to torsion can now be calculated by multiplying half of the section 

diagonal by the distortion angle and by the length: 

-4 -4
t

D 0,430
y= θL= *4,48*10 *3=2,89*10  m

2 2
 

 

Because the rib is longitudinal, it has not a significant effect on the torsion deflection. 

As a simplification, the rib was not considered in the calculation of the torsion 

deflection yt. 

4.1.2.3 Total deflection 
 

The total deflection can be expressed as the sum of the torsion and bending deflections: 

-5 -4 -4
total b ty =y +y=8,482*10 +2,89*10 =3,74*10 m  

4.1.3 Beam Deflection by the numeric method 

 

The element type used in the initial beam is the shell elastic four nodes, named shell63. 

The constraints were applied on the two lower keypoints in each side of the beam (four 

in total), which means that the beam is simply supported as its ends. The total deflection 

results are shown next (fig. 30): 

 
Fig. 30-Deflection results for the initial FEM model 
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One can see that the value obtained for the total deflection by the analytic method 

belongs to the interval of values obtained by the numeric method. One can also see that 

there is a much higher deflection in the central region of the beam, due to the applied 

loads. 

4.1.4 Comparison of numeric and analytic methods 

 

As told before, the comparison between analytic and numeric methods was done using a 

deflection ratio. The next figure (fig. 31) shows the points were deflections were 

queried on the numeric method (on ANSYS). 

 

  
Fig. 31- Points were results were queried on ANSYS 

 

One can see that the results were queried on the top surface of the object, having the 

points x coordinate of 0,1, y coordinate of 0,3 and z coordinate shown in fig. 31. In the 

next table (table 6) one can see the deflection results by the two methods. The deflection 

ratio was calculated and is also shown on the same table: 
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Analytic Numeric 

 

Z coordinate[m] yb [m] yt [m] ytotal [m] 
Total 

deflection[m] 

Deflection 

ratio 

0 0,00E+00 2,89E-04 2,89E-04 2,50E-04 1,16 

0,3 8,82E-06 2,89E-04 2,98E-04 2,60E-04 1,15 

0,6 2,98E-05 2,89E-04 3,19E-04 2,77E-04 1,15 

0,9 5,49E-05 2,89E-04 3,44E-04 2,50E-04 1,38 

1,2 7,60E-05 2,89E-04 3,65E-04 8,99E-05 4,06 

1,5 8,48E-05 2,89E-04 3,74E-04 1,32E-03 0,28 

1,8 7,60E-05 2,89E-04 3,65E-04 8,99E-05 4,06 

2,1 5,49E-05 2,89E-04 3,44E-04 2,50E-04 1,38 

2,4 2,98E-05 2,89E-04 3,19E-04 2,77E-04 1,15 

2,7 8,82E-06 2,89E-04 2,98E-04 2,60E-04 1,15 

3 0,00E+00 2,89E-04 2,89E-04 2,50E-04 1,16 

Table 6-Comparison between numeric and analytic method in terms of strain 

  

The bending deflection is a function of the distance to the supports, and the deflection 

due to torsion is constant. In the next figure (fig. 32), one can see the deflection ratio for 

the analytic and numeric methods. The deflection ratio is better, the closer it is to 1. 

 

 
Fig. 32-Deflection Ratio in function of the z coordinate  
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The deflection ratio is close to 1 for most of the considered points, except for the center 

point and for the two points near center. The low deflection ratio in the center of the 

beam is due to stress concentration in the numeric method, because one load is 

concentrated and applied in the center of the beam. Because there is stress concentration 

in the center of the object, it is normal that there is less stress in the surrounding zones. 

This fact can explain the high stress ratios in the points z=1,2 and z=1,8. One can also 

see that the deflection ratio results are symmetric (fig. 32). 

4.2 Mechanical Tests 

 

In the chapter 3, the selected material was the DOCOL dual-phase steel. However, there 

is no Young modulus or Poisson coefficient value in the DOCOL dual-phase steels 

catalogue. Also, there is a range of values for the Yield stress. Because the lack of 

material properties values in the catalogue, there is the need to perform mechanical tests 

to determine a value for the Young modulus, Poisson coefficient and Yield stress. The 

mechanical tests performed were two: tensile test and extensometry test. The tensile test 

has the aim of determining Yield stress with 0,2% offset and Young modulus. The 

extensometry test has the aim of determining Poisson coefficient, and was also used to 

determine Young modulus. Because in tensile test the material suffers rupture, both the 

elastic and plastic domains can be studied. The Yield stress was determined only in 

tensile test, because in extensometry test the material is always in the elastic domain. 

The Young modulus can be determined in both tensile and extensometry tests. In tensile 

test, one considers the Stress-Strain chart and selects only the points that belong to the 

elastic domain. By using a linear fit, one can obtain the Young modulus, because of the 

proportionality between the stresses and strains in the elastic domain. In extensometry 

test, one determines the stress by dividing the load by the transversal area of the 

specimen. Then, dividing the obtained Stress by the longitudinal strain, one can obtain 

the Young modulus. The Poisson coefficient is determined in extensometry test by 

applying relatively small loads, and measuring the longitudinal and transversal strain 

using an extensometer. The Poisson coefficient is the ratio between the transversal and 

longitudinal strain. 
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4.2.1 Denomination of the tested specimens 
 

4.2.1.1 Tensile test 

 

Specimen 1- DOCOL 600 DL Long 

Specimen 2- DOCOL 800 DP Long 

 

4.2.1.2 Extensometry test 
 

 

Specimen 3- DOCOL 600 DL Trans 

Specimen 4- DOCOL 600 DL Long 

Specimen 5- DOCOL 800 DP Trans 

Specimen 6- DOCOL 800 DP Long 

 

4.2.2 Tensile test experimental results 

4.2.2.1 Stress-Strain and Stress-Extension charts 

 

The Annex 1.1 shows the Stress-Extension and the Stress-Strain Charts for the tensile 

test. One can conclude that the specimen 1 has much lower Yield stress than the 

specimen 2. This is expected, because the specimen 1 is DOCOL600 and specimen 2 is 

DOCOL800. The designation of the steels is usually related to Yield stress. The higher 

the number in the designation, the higher Yield stress is expected. The extension at 

break is much higher in the specimen 1 than in the specimen 2. This is due to a higher 

ductility of the specimen 1.  

4.2.2.2 Determination of Young modulus in tensile test 

 

After performing the tensile test, one obtained a .raw file with the results. The .raw 

file can be opened in Microsoft Excel. In order to determine Young modulus, one has to 

select only points that belong to the elastic domain. For that, one must select a point in 

the Stress-Strain chart that belongs to the elastic domain and then select all points of the 

chart until that point. Then, one must plot the Stress-Strain chart of the elastic domain 

only, and perform a linear fit to find the slope of the straight line, which is the Young 

modulus. The charts used to determine Young modulus are in the Annex 1.2. 
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The obtained Young modulus is shown on the table 7:  

 

Specimen number Specimen designation Young modulus Value 

Specimen 1 DOCOL 600 DL Long 193,2 GPa 

Specimen 2 DOCOL 800 DP Long 168,2 GPa 

Table 7-Young modulus results in tensile test 

 

The Young modulus is lower than the regular value for the steel, which is 210 GPa. 

This can be due to the low quantity of martensite precipitated on the grain boundaries. 

The material was subjected to a heat treatment below the eutectoid temperature A1 that 

reduced the quantity of martensite. By reducing the quantity of martensite, the 

formability and ductility of the material increased but the mechanical resistance (in 

terms of the Yield Stress) and the material rigidity (Young modulus) decreased. 

4.2.2.3 Determination of Yield stress in tensile test 

 

The yield stress was calculated using an offset of 0,2%. To calculate Yield stress, one 

had to find the origin y coordinate bs by using the y=sx+bs equation obtained in the 

linear fit. One has to substitute y (stress) by 0, x (strain) by 0,002 and s by the Young 

modulus obtained in the linear fit. One can then find the value of the origin y coordinate 

bs. Then, one has to plot a straight line together with the original Stress-Strain chart. By 

selecting the intercepting point between the two charts, one can obtain the Yield stress, 

which is the Y coordinate of the intersection point. The charts used to determine Yield 

stress are in the Annex 1.3. The obtained Yield stress is shown on table 8: 

 

Specimen number Specimen designation Yield stress value 

Specimen 1 DOCOL 600 DL Long 309,12 MPa 

Specimen 2 DOCOL 800 DP Long 555,06 MPa 

Table 8-Yield stress values obtained in tensile test 

 

The values obtained for the Yield stress are inside the interval of the catalogue for the 

two specimens , as expected. The values are close to the values presented in the table 4. 

One can conclude that the tensile test results in terms of Yield stress are similar to the 

catalogue data presented by the manufacturer, and shown in the end of the chapter 3-

Materials selection. 
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4.2.2.4 Determination of the Poisson coefficient, normal stress, and Young 

modulus in extensometry test 

 

In the Annex 1.4, one can see the tables containing the extensometry test results. In the 

extensometry test, one can obtain the longitudinal strain long ε and the transversal 

strain transε  when the material is subjected to a non-constant tensile load in the elastic 

domain, by using an extensometer in each specimen. For every specimen, two reads was 

done, in order to minimize read errors. The table 9 shows the Young modulus range and 

the mean Poisson coefficient for the 4 specimens: 

 

Specimen number Mean Poisson coefficient  Young modulus range 

Specimen 3 0,285 182-198 GPa 

Specimen 4 0,284 176-186 GPa 

Specimen 5 0,287 186-192 GPa 

Specimen 6 0,270 184-203 GPa 

Table 9- Mean Poisson coefficient and mean Young modulus obtained in the 

extensometry test. 

 

The regular Poisson coefficient of the steel is 0,29. The mean values of Poisson 

coefficient are close to 0,29 for the specimen 3,4 and 5. For the specimen 6 the obtained 

Poisson coefficient is 0,27. The obtained values for the specimens 3, 4 and 5 were 

slightly lower than the expected. For the specimen 6, the values are lower than the 

expected. The obtained Young modulus was less than the expected for all the 

specimens. The specimen with the highest Young modulus is the specimen 6, with an 

upper limit value of 203 GPa and the specimen with the lowest Young modulus is the 

specimen 4, with a lower limit value of 176 GPa. 

4.3 Variable analysis 
 

In order to know if the models variables are being well implemented and have the 

desired physical meaning in the MODnume.txt file, one needs to do a variable 

analysis. The variable analysis consists of changing one variable at each time, keeping 

all other variables constant, and calculate the resulting objective function. In practice, 

the MODnume.txt file was executed on ANSYS after the change of the initial values 

of the variables and the results were written to a results file n5.lgw. The results were 

copied to a Microsoft Excel worksheet, to be possible to perform the calculations of the 
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objective function. This type of analysis was done for the two models: the ribbed plate, 

and the tubular beam. The optimization variables are subjected to constraints limits

b 0 bl x u   

where: 

lb is the lower bound 

x0 is the initial value  

ub is the upper bound 

 

The limits are different for the geometric variables in the two models, since its initial 

value is also different. The vector x0 is the initial values vector (line vector). The 

variable names start in PR(PRLG1,PRLG2,PRLG3,PREX,etc.), however, in the 

optimization there is the need that the initial variables values are all of the same order 

(for example, in the geometric parameters optimization if PRLG1 has a value of 0,2 , 

then PRLG2 and PRLG3 value must belong to the interval [0,1;1[ ). This detail is for 

the MATLAB optimization program to deal with all variables in the same order of 

value. Having that fact in consideration, one must define a relation between the PR 

variables, and the variables used by the program, because the initial variable values 

have a different order of value. A relation variable has the same name as the original, 

but without the PR (PRLG1 relation variable is denoted by LG1, PREX has a relation 

variable of EX, and so on). The variable analysis can be useful to determine the 

importance of each variable in the optimization program, but it can also be used to have 

a rough idea if the variables are being well written in the ANSYS input file. For 

example, if the objective function decreases with the decrease of the LG3 variable “rib 

thickness”, then something is wrong in the ANSYS input file. A decrease of the PRLG3 

variable must originate a worse (higher) objective function. In the Annex 2.1, one can 

see the deflection results for each considered nodal point, when one variable value 

changes. The variable values are also shown on each table. The objective function was 

calculated by the sum of the absolute values of the deflections in all considered nodal 

points. The objective function values were used to make one chart per each variable per 

model, representing the variation of the objective function as dependent variable with 

the value of each considered variable as independent variable. 
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4.3.1 Variable analysis of model 1- ribbed plate 

 

About the variable analysis of model 1, one can say that the variation of the three 

material properties variables seems to be logical: the objective function decreases 

linearly with the increase of Young modulus. The higher the Young modulus, the higher 

rigidity the material has, and, as a consequence, the lower are the deflections. About 

Poisson coefficient, one can say that an increase of the Poisson coefficient leads to 

lower deflections. This happens because the higher the Poisson coefficient, the higher is 

the transversal deformation in relation to the longitudinal deformation. Because there is 

less longitudinal deformation the resulting deflections are lower. The density does not 

affect in any way the objective function, being the objective function totally 

independent of the density value.  About the LG1 variable, the results are not so logical. 

There is a decrease of the objective function value from LG1=0,01 m to LG1=0,025 m 

and then a sudden increase from LG1=0,025 m to LG1=0,03 m. This could happen due 

to the small number of considered nodes (15) used to calculate the objective function. In 

fact, one can see that the nodes 7 and 8 in the model 1 for LG1=0,03 have much higher 

deflection than for LG1=0,025. If the number of considered nodes was higher, ideally 

all nodes, the expected results were a decrease of the objective function with a decrease 

of the LG1 variable. About LG2, one can say that the objective function decreases with 

the increasing value of the rib height, except for LG2=0,65. This can be due to the small 

number of nodal points considered for the calculations that can lead to a high error in 

results, as for the LG1 variable. The variation of the LG3 variable, which is the 

thickness, seems to be logical: the higher the thickness, the lower is the objective 

function, in an approximate inverse proportionality. In the Annex 2 one can see the 

variable analysis tables and charts for this model. 

4.3.2 Variable analysis of model 2- tubular beam 

 

About the variable analysis of Model 2, one can say that the material properties have an 

expected influence on the objective function, like in the model 1. The LG4 variable has 

an expected behavior, because the higher the distance of the center to the corner 

segment of the cross section, the lower rigidity the object has. As a consequence, the 

objective function is higher. The LG5 variable has a non-linear behavior, which could 

happen due to the self non-linearity of the variable, or due to the small number of 
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considered nodes, like in the LG1 and LG2 variables of the ribbed plate model. The 

LG6 variable has an expected influence on the objective function: the higher the LG6 

variable, the higher the object rigidity, and, as a consequence, the objective function is 

lower. In the Annex 2, one can see the variable analysis tables and charts for the tubular 

beam model. 

4.4 Optimization results 

 

The ANSYS input file MODnume.txt is used by MATLAB and ANSYS in the 

optimization routines and the modifications that occur during the optimization processes 

are written to another file called modife.txt. First, the three geometric variables 

were optimized. Then the three material properties were optimized. Then one uses the 

optimized variables values of both geometric parameters optimization and material 

properties optimization and runs an optimization with all six variables. The results were 

analyzed in terms of optimization, having in consideration the initial variable values, the 

final variable values and the final value of the objective function in each optimization 

routine for both models, but also in terms of the FEM results, which are useful to show 

that the models deflections decreased in a global way, and not only on the considered 

nodal points.  

4.4.1 Model 1-Ribbed plate 

4.4.1.1 Initial variable values and limits 

 

The initial variable values and the variable limits for the geometric parameters 

optimization were: (Table 10): 

Variable Lower Bound Initial Value Upper Bound 

LG1[m] 0,025 0,100 0,230 

LG2[m] 0,0075 0,030 0,069 

LG3[m] 0,0005 0,002 0,0046 

Table 10-Variable limits for the geometric optimization (ribbed plate) 

 

The initial values and the limits for the material properties optimization were: (table 11) 

Variable Lower Bound Initial Value Upper Bound 

EX[GPa] 21 210 231 

PXY 0,145 0,29 0,435 

DNS[kg/m
3
] 3945 7890 15780 
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Table 11-Variable limits for the material properties optimization (ribbed plate) 

For all variables optimization, the initial variable values and the variable limits were: 

(table 12): 

Variable Lower Bound Initial Value Upper Bound 

LG1[m] 0,00625 0,025 0,0575 

LG2[m] 0,01275 0,0510 0,11730 

LG3[m] 0,001150 0,0046 0,010580 

EX [GPa] 23,1 231 254,1 

PXY 0,2175 0,435 0,6525 

DNS[kg/m
3
] 3945 7890 15780 

Table 12-Variable limits for all variables optimization (tubular beam) 

 

4.4.1.2 Geometric parameters optimization results 

 

The final value of the objective function is: q(x)=0,00092 m 

 

The optimum design variables are (table 13): 

       

Variable Value 

LG1[m] 0,025 

LG2[m] 0,0510 

LG3[m] 0,0046 

Table 13-Final variable values for the geometric parameters optimization (ribbed plate) 

 

The final value of the LG1 variable is the lower limit. In the LG1 variable analysis one 

can see that the minimum objective function is obtained when LG1=0,025 m, which is 

the final LG1 variable value. The optimum value of the LG2 variable is closer to the 

upper bound than to the lower bound, as expected. The optimum value of LG3 is the 

upper bound. The LG3 variable behavior can be understood by looking at the variable 

analysis, where one can see that the objective function always decreases with an 

increasing value of LG3 variable, which means that the optimum value is always the 

upper bound. With that fact in consideration, there is no need to change the variable 

limits. 

4.4.1.3 Material properties optimization results 
 
 

The final value of the objective function is: q(x)=0,04258 m 

                   

The optimum design variables are: (table 14) 
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Variable Value 

EX [GPa] 231 

PXY 0,435 

DNS[kg/m
3
] 7890 

Table 14-Final variable values for the material properties optimization (ribbed plate) 

 

The final variables values for the EX and PXY variables are the upper bound limits. In 

fact, the variable analysis showed that the value of the objective function always 

decreases with an increase of the EX and PXY variables values. The density has no 

influence on the objective function, as demonstrated in the variable analysis. 

4.4.1.4 Optimization results using all variables 

 

The final value of the objective function is: q(x)=0,00077 m 

 

The optimum design variables are (table 15): 

 

Variable Value 

LG1[m] 0,025 

LG2[m] 0,051 

LG3[m] 0,0046 

EX [GPa] 231 

PXY 0,435 

DNS[kg/m
3
] 7890 

Table 15-Final variable values for all variables optimization (ribbed plate) 

 
One can say that the results are quite similar to the obtained before in the materials 

properties optimization and in the geometric parameters optimization. This means that 

the MATLAB optimization program is not able to further optimize the models. This can 

be due to already fully optimized values or the function tolerance is not sufficiently low, 

and therefore MATLAB has no resolution to further optimize the models. 

4.4.2 Model 2- Tubular beam 

4.4.2.1 Initial variable values and limits 

 

For the geometric parameters optimization, the initial variable values and the variable 

limits were (table 16): 
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Variable Lower Bound Initial Value Upper Bound 

LG4[m] 0,0213 0,0850 0,1955 

LG5[m] 0,0075 0,0300 0,0690 

LG6[m] 0,0088 0,0350 0,0805 

Table 16-Variable limits for the geometric parameters optimization (tubular beam) 

 

For the material properties optimization, the initial variable values and variable limits 

were (table 17): 

 

Variable Lower Bound Initial Value Upper Bound 

EX [GPa] 21 210 231 

PXY 0,145 0,29 0,435 

DNS[kg/m
3
] 3945 7890 15780 

Table 17-Variable limits for the material properties optimization (tubular beam) 

 

For all variables optimization, the initial variable values and the variable limits were 

(table 18): 

 

Variable Lower Bound Initial Value Upper Bound 

LG4[m] 0,00531 0,0213 0,04888 

LG5[m] 0,001905 0,0076 0,017526 

LG6[m] 0,02013 0,0805 0,18515 

EX [GPa] 23,1 231 254,1 

PXY 0,1460 0,2919 0,4378 

DNS[kg/m
3
] 3945 7890 15780 

Table 18-Variable limits for all variables optimization (tubular beam) 

4.4.2.2 Geometric parameters optimization results 
 

The final value of the objective function is: q(x)=0,00053 m 

 

The optimum design variables are presented in table 19: 

 

Variable Value 

LG4[m] 0,0213 

LG5[m] 0,0076 

LG6[m] 0,0805 

Table 19-Final variable values for the geometric optimization 

 

One can say that the optimum value for the LG4 variable is the lower bound. In fact, in 

the variable analysis charts (Annex 2.2) one can see that the objective function always 

increase with the increase of the LG4 variable. If the variable limits were changed, the 

optimum value would be always the lower bound. If the lower bound had a lower value, 
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one could have serious design problems on the model, due to keypoint displacement. 

One can say that the LG5 optimum value 0,0076 m is very close to the lower bound 

0,0075 m . About LG6, one can say that the optimum value is the upper bound. This can 

be explained by the variable analysis (Annex 2.2), where one can see that the objective 

function strictly decreases with the increase of the LG6 variable. 

                  

4.4.2.3 Material properties optimization results 
 

The final value of the objective function is: q(x)=0,01151 m 

 

The optimum design variables are (table 20): 

 

Variable Value 

EX[GPa] 231 

PXY 0,2919 

DNS[kg/m
3
] 7890 

Table 20-Final variable values for the geometric optimization 

 

The variable EX has the same value as the upper bound, exactly as in the ribbed plate 

model. The final value of the variable PXY is very close to the initial value. This could 

happen due to the combined effects of the 3 variables. The variable DNS has no effect 

on the objective function, and because of that, the DNS variable value remains 

unchanged. 

4.4.2.4 Optimization results using all variables 

 
The final value of the objective function is: q(x)=0,00046 m 

 

The optimum design variables are (table 21): 

 

Variable Value 

LG4[m] 0,0213 

LG5[m] 0,0076 

LG6[m] 0,0805 

EX[GPa] 231 

PXY 0,2919 

DNS[kg/m
3
] 7890 

Table 21-Final variable values for all variables optimization 

 

The LG4 and LG5 variables values are the same in all variables optimization in 

comparison to the geometric parameters optimization. The LG6 variable has also the 

same value that was obtained in the geometric parameters optimization. This could be 
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due to the value of the function tolerance (10
-6

), which allows relatively fast results 

processing time, but with a loss of resolution in the optimization process. The optimized 

values of the material properties are the same than the obtained in the previous materials 

optimization routine: the density did not change because, as told before, the objective 

function value does not depend of it, and the Young modulus and Poisson coefficient 

remain unchanged because they already have the optimum value for the used function 

tolerance.   

4.5 Optimization settings  
 

The optimization settings were the following: 

 

'MaxFunEvals'=300 

'MaxIter',=200 

'DiffMaxChange'=10 

'DiffMinChange'=1*10
-1

 

'TolFun'=1*10
-6

 

 

where: 

MaxFunEvals is the maximum evaluations that can be run on a single iteration 

MaxIter is the maximum number of iterations allowed in the optimization process. 

DiffMaxChange is the maximum value that a variable can change at once 

DiffMinChange  is the minimum value that a variable can change at once 

TolFun is the function tolerance 

 

In every optimization routine done in this work, the optimization ended with the 

following message: “Local minimum found that satisfies the constraints. Optimization 

completed because the objective function is non-decreasing in feasible directions, to 

within the selected value of the function tolerance, and constraints were satisfied to 

within the default value of the constraint tolerance.”  
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4.6 FEM results 

4.6.1 Model1: Ribbed plate 

4.6.1.1 Initial model results 
 

In the fig. 33, one can see the FEM results for the initial ribbed plate model.  

 

 
Fig. 33-Deflections of the initial ribbed plate model 

 

There are much higher deflections in the center region of the plate than in the rest of the 

object, due to a load being applied on the center of the object (bending), which lead to 

higher stress concentration that result in higher deflections.  

 

4.6.1.2 Geometric parameters ANSYS results 
 
It is possible to see that the distance between the inner ribs decreased substantially, and 

the rib height is substantially higher (fig. 34) in comparison to the initial model (Fig 

33).The thickness also increased. 
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Fig. 34-Deflections of the ribbed plate model after geometric parameters optimization 

Because the element type is shell, it is not possible to know by the screenshot if the 

thickness is lower or higher in comparison to the initial model, it is only possible to 

know by the optimization results. The deflections reduced greatly in comparison to the 

initial model: the maximum deflection decreased from 0,019597 m to 0,003748 m, 

which is great. The minimum deflection decreased from 0,786*10
-5

 m to 0,331*10
-5 

m, 

which means that the minimum deflection of the optimized model is near half of the 

initial model.    

4.6.1.3 Material properties ANSYS results 
 

The deflection results of the material properties optimization seem to be higher (fig. 35) 

than the initial model (fig. 33). 

 

 
Fig. 35-Deflections of the ribbed plate model after material properties optimization 
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This was surely true if the colors of the two figures were exactly the same. One can see 

that there is a higher quantity of dark blue in the fig. 35, which means that the deflection 

in that area reduced. In fact, the dark blue deflection range in the fig. 35 is [0,947*10
-5

, 

2,467*10
-3

] m and the blue deflection in the fig. 33 is [2,184*10
-3

-4,361*10
-3

] m, which 

means there is a deflection reduction. The nodes with deflection higher than 2,184*10
-3 

m in the fig. 35 can have a higher deflection than in the fig. 33, but in general terms, 

there is a deflection reduction. 

 

4.6.1.4 ANSYS results using all variables 
 

The FEM results of all variables optimization show that the deflections have decreased 

strongly (fig. 36) in comparison to the initial model (fig. 33). 

 
Fig. 36-Deflections of the ribbed plate model after all variables optimization 

 

There is a larger area of dark blue, which means that the deflections have reduced in 

that area. When comparing the deflection value range of each color, one can see that 

there is a strong decrease of the deflections for all colors. 

4.6.2 Model2: Tubular beam 

4.6.2.1 Initial model results 
 

 

The initial tubular beam model is represented on the next figure (fig. 37). 
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Fig. 37-Nodal deflection for the initial tubular beam model 

 

In fig. 37 one can see the nodal deflections of the initial tubular beam model. Like in the 

ribbed plate model, one can see much higher deflections in the center region of the 

object, because there is one load applied exactly in the center of the object (bending), 

and there is also a binary load that is equivalent to a torsion moment. One can say that 

the initial tubular beam model has low deflections, and has a good rigidity. 

4.6.2.2 Geometric parameters ANSYS results 
 

 

It is possible to see that the cross section shape of the tubular beam suffered a severe 

change during the optimization (fig. 37 and fig. 38). 

 

 
Fig. 38-Nodal deflections for the geometrically optimized tubular beam model 
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In fact, one can see an increase of the height of the center segment of the section wall 

(LG6 variable), which led to a higher rigidity. The distance of the center to the corner 

segment decreased (LG4 variable) and the center segment length has decreased (LG5 

variable). The deflections reduced strongly in comparison to the initial model, specially 

the lowest deflections (dark blue color). The results also show that the deflection in the 

area around the point of application of the loads reduced strongly, as one can see by the 

screenshots (fig. 37 and fig. 38). In the geometric parameters optimization results, there 

is only the dark blue color, which is the color of the lowest deflections.  

 

4.6.2.3 Material properties ANSYS results 
 

 

It is possible to see that the deflections have reduced after the materials optimization 

(fig. 39) in comparison to the initial model (fig. 37). 

 

 
Fig. 39-Nodal deflections for the material properties optimized model (tubular beam) 

 

The deflection reduction is much less sharp than in the geometric parameters 

optimization results. The colors in the screenshots have a similar distribution. One can 

then conclude that there is a global deflection reduction, because all the deflection 
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values are lower in the fig. 39 than in the fig. 37 and the color distribution in the two 

screenshots is very similar.  

 

4.6.2.4 ANSYS results using all variables 
 

The FEM screenshots for all-variables optimization (fig. 40) show that the geometric 

parameters values are quite similar than in the geometric parameters optimization, due 

to the similar shape of the object cross section. 

 

 
Fig. 40-Nodal deflections for all variables optimized model (tubular beam) 

 

There is only one color in the fig. 40, which is dark blue. This means that the 

deflections are very low in every zones of the model. All the deflection values are lower 

than in the initial model. A huge decrease in the deflection can be seen in the lower 

bound of dark blue color: 0,292*10
-8

 m in the optimized model (fig. 40) and 0,185*10
-6

  

m in the initial model (fig. 37). 
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5.1 Results discussion 

5.1.1 Variable analysis  

5.1.1.1Material properties 

 

The variables EX, PXY, and DNS have the physical meaning of: Young modulus, 

Poisson coefficient, and density, respectively. The variable analysis tables and charts are 

on the Annex 2.1 and Annex 2.2, respectively. The variable analysis charts for those 

variables have a similar curve for both models. One can see that there is a linear 

dependency between the objective function and the Young modulus. The objective 

function decreases with the increase of Young modulus. This behavior is expected, 

because a higher material rigidity leads to higher object rigidity. There is an almost 

linear dependency between the Poisson coefficient and the objective function. The 

objective function decreases with the increase of the Poisson coefficient. This behavior 

is expected, because when the longitudinal strain is higher and the transversal strain is 

kept constant the Poisson coefficient decreases. The objective function is not dependent 

of the density, as one can see by the results. 

5.1.1.2 Geometric parameters 
 

5.1.1.2.1 Model 1: ribbed plate 
 

 

The chart q(x)=f(LG1) shows a non-linear dependency between the distance of the inner 

ribs to the center (LG1 variable) and the objective function. One can see that the 

minimum value of the objective function occurs for LG1=0,025 m. According to this 

fact, the geometrically optimized model has a LG1 value of 0,025 m in order to 

minimize the objective function. One can say that the objective function decreases with 

LG2 from LG2=0,036 m to LG2=0,061 m. From LG2=0,061 m to LG2=0,066 m there 

is a significant increase of the objective function. There is a decrease of the objective 

function with an increase of the LG3 variable (thickness). The variation is similar to an 

inverse proportionality. An increase of the LG3 variable will necessarily result in a 

higher Inertia moment, and will originate a lower objective function q(x). 

 

 



CHAPTER 5-RESULTS DISCUSSION AND CONCLUSIONS 

 

90 

5.1.1.2.2 Model 2: tubular beam 
 

 
The objective function always increases with the increase of the LG4 variable in the 

considered interval [0,015;0,027]. About LG5, the objective function suffers little 

variation from the interval [0,005;0,01], and then decreases sharply for LG5=0,011. The 

variable analysis chart is similar to an inverse proportionality for LG6 variable. In LG6 

variable analysis chart, the objective function always decreases in the chosen interval 

[0,066;0,096]. 

5.1.2 Mechanical tests 

 

A great variety of materials were analyzed for this application. However, one can 

conclude that the dual-phase steel is the most adequate material because: it has a high 

Young modulus, despite not as high as expected, its cost is relatively low, and their 

Yield stress is high, which means that the material has high mechanical resistance, and 

can be subjected to high loads before entering the plastic domain. Because of these 

reasons, dual-phase specimens were obtained and mechanically tested to determine the 

most relevant properties for the application: Yield stress, Young modulus and Poisson 

coefficient. 

5.1.2.1 Extensometry test 

 

The obtained Poisson coefficient was near 0,29, which is the normal value for a steel, 

except for the specimen 6. For the specimen 6, the obtained Poisson coefficient was 

near 0,27. The Young modulus obtained by the extensometry test ranged from near 180 

to 200 GPa. Those values are lower than the regular value of the steel, which is 210 

GPa. 

5.1.2.2 Tensile test 

 

The specimen 1 has the highest Young modulus of the two specimens tested: 193,2 

GPa. The specimen 2 has a Young modulus of near 168,2 GPa, which is much lower 

than the expected 210 GPa. The Specimen 1 has a lower Yield stress, which is expected, 

because its designation is 600 and the designation of the specimen 2 is 800. This 

number is related to the Yield stress in relative terms, which means that a lower number 
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designation means a lower Yield stress when comparing two specimens. The Yield 

stress was measured using a 0,2% proportionality straight line that is parallel to the 

elastic domain of the stress-strain curve. The Yield stress can be determined by the 

intersection of the stress-strain curve with the straight line. 

5.1.3 Optimization results 

 

The final variable values usually comply with the results of the variable analysis. When 

this does not happen, it´s because the variables when studied alone have different 

behavior then when studied in combination with others. The obtained objective function 

is lower in the geometric parameters optimization than in the material properties 

optimization for both models. One can then conclude that the optimization of the 

geometry is more important than the optimization of the material to achieve deflection 

reduction. 

5.1.4 FEM results 
 

 

One can say that sometimes is obvious the deflection decrease between optimized and 

non-optimized models. In the other cases, mainly in the material properties optimized 

models, the deflections may seem to increase. This is not true, because the material 

properties optimization screenshots have a larger area of dark blue. So, some values 

may be higher in the material optimized model screenshot, but there is a deflection 

decrease in most of the nodes of the object.  

What could have happened during this work is that the considered number of nodal 

points in both models was small (15 nodal points in the ribbed plate model and 21 in the 

tubular beam model), and due to that fact, there can be a high error when comparing the 

FEM results with the optimization results.  

5.1.5 Materials selection 

 

The material selection charts made possible the material selection for the applications of 

this work. The analysed charts were Young modulus/Cost and Young modulus/density. 

The desirable properties are: highest possible Young modulus to improve material 

stiffness, lowest possible Cost for the solution to be reliable and lowest possible density 

for the improvement of the admissible acceleration, having in mind that a lower density 
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means a lower mass for objects with the same dimensions. The combination of those   

factors dictates the best material. It was found that the best material is the high-strength 

steel. The specific material is the DOCOL dual-phase steel.  

5.2 Conclusions of the work 

 

The conclusions of this work are: 

 

- The Finite Element Model Updating code developed in this work can be successfully 

used to optimize both geometric parameters and material properties. 

- The geometric parameters play a more important role in the optimization process than 

the material properties, because the obtained objective function is lower in the 

geometric parameters optimization than in the material properties optimization. 

- The DOCOL dual phase steels tested by tensile test and extensometry test have a 

lower Young modulus than the expected. The expected value was 210 GPa. 

- The Young modulus and the Poisson coefficient are relevant properties for the 

deflection reduction, because they have influence on the objective function, as shown on 

the variable analysis. 

- The density has no influence on the objective function. 

- The material properties influence on the objective function is the same for the two 

models studied in this work. However, the value of the objective function was not the 

same, because the objects are of different nature. 

- The tested materials have high Yield stresses, which mean that the material can be 

subjected to high loads before entering the plastic domain. In the practical applications 

of this work (plotters and laser cutting machines) it is very important to ensure that the 

material doesn´t reach the plastic domain, otherwise the permanent deformation will 

negatively affect the machine operation. Considering this fact, the dual phase steels are 

an adequate material for the applications of this work. 

5.3 Future work proposals 

 

A graphical interface could be created in order to implement the Finite Element Model 

Updating code developed in this work in a user-friendly environment. The 

programming code could then be used to create an executable file, in order to avoid the 
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need of having MATLAB installed on the computer. Other models can be tested by this 

novel methodology, such as hollow-box rectangular section ribbed beams and hollow-

box square section ribbed beams, to optimize both geometric parameters and material 

properties.   



 

94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

95 

 

 

 

 

 

 

 

 

REFERENCES



 

96 



BIBLIOGRAPHIC REFERENCES 

97 

Bibliographic references  
 

 

[1] P. Orlov, 1976, ”Fundamentals of Machine design”, 1
st
 volume, MIR Publishers, 

Moscow. 

  

[2] Y. Liu and L. Gannon, 2009, “Finite element study of steel beams reinforced while 

under load”, Elsevier, Engineering Structures, volume 31, pages 2630-2642 

 

[3] G.Falsone , G. Ferro, 2007, "An exact solution for the static and dynamic analysis of 

FE discretized uncertain structures", Elsevier, Computer Methods in Applied 

Mechanics and Engineering, volume 196, pages 2390-2400 

 

[4] F. Daneshmand , M. J. Kazemzadeh-Parsi, 2009, "Static and dynamic analysis of 2D 

and 3D elastic solids using the modified FGFEM", Elsevier, Finite Elements in 

Analysis and Design, volume 45, pages 755-765 

 

[5] C. Polat, Y. Calayir, 2010, "Nonlinear static and dynamic analysis of shells of 

revolution", Elsevier, Mechanics Research Communications, volume 37, pages 205–209 

 

[6] B. A. Zárate, J. M. Caicedo, 2008, "Finite element model updating: Multiple 

alternatives", Elsevier, Engineering Structures, volume 30, pages 3724-3730 

 

[7] P. G. Bakir, E. Reynders, G. De Roeck, 2008, "An improved finite element model 

updating method by the global optimization technique Coupled Local Minimizers‟, 

Elsevier, Computers and Structures, volume 86, pages 1339–1352 

 

[8] S. Kalanta, J. Atkociunas, A. Venskus, 2009, "Discrete optimization problems of the 

steel bar structures", Elsevier, Engineering Structures, volume 31, pages 1298-1304 

 

[9] X. Bin , C. Nan, C. Huajun, 2010, ”An integrated method of multi-objective 

optimization for complex mechanical structure", Elsevier, Advances in Engineering 

Software, Volume 41, pages 277–285 



BIBLIOGRAPHIC REFERENCES 

 

98 

 

[10] H. M. Silva, J. F. Meireles, 2011, “Determination of material/geometry of the 

section most adequate for a static loaded beam subjected to a combination of bending 

and torsion”, VI International Materials Symposium, Guimarães, Portugal 

 

[11] http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/num/widas 

/history.html, 1997. 

 

[12] S. Moaveni, 2003, ”Finite Element Analysis- Theory and Applications with 

ANSYS”, Prentice Hall, Second Edition. 

 

[13] J. F. B. Meireles, 2007, ”Análise dinâmica de estruturas por modelos de elementos 

finitos identificados experimentalmente”, Ph.D. Thesis, University of Minho. 

 

[14] F. Beer, Johnston, De Wolf, 2001, “Mechanics of Materials, McGraw Hill, Third 

Edition. 

  

[15] C. Massonnet, 1968, ”Resistance des matériaux”, DUNOD, deuxiéme édition, 

Paris. 

 

[16] http://www.instron.us/wa/applications/test_types/tension/default.aspx. 

 

[17] W. F. Smith, 1996, ”Princípios de ciência e engenharia dos materiais”, McGraw 

Hill, Third Edition. 

 

[18] http://www.rutlandplastics.co.uk/materials_datasheets_tensile.shtml. 

 

[19] http://www.math.tu-dresden.de/~schwetli/teaching/tools/using_ml.pdf. 

 

[20] http://www.math.tu-berlin.de/Vorlesungen/WS03/NonLinOpt/optim_tb.pdf. 

 

[21] http://www-materials.eng.cam.ac.uk/mpsite/interactive_charts/default.html. 

  



BIBLIOGRAPHIC REFERENCES 

 

99 

[22] Material data sheet, Dual-phase steel, 2005, ”Continuously hot-dip coated strip 

made of multiphase steels for cold forming in hot-dip galvanized”. 

 

[23] SSAB- Swedish Steel, 2009, “DOCOL DP/DL-Cold reduced dual phase steel”. 

 



 

100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

101 

 

 

 

 

 

 

 

 

ANNEXES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

103 

 

 

 

 

 

 

 

 

ANNEX 1-MECHANICAL TESTS 

 



 

104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ANNEX 1-MECHANICAL TESTS 

 

105 

A1.0-Conditions of the Mechanical tests  

 

The mechanical tests were performed on a Instron 8874 device. The used extensometer 

was a RS Type 632168 with 5 mm length. The load cell was a dynacell with load 

capacity of 25 KN, maximum torsion moment of 100 N.m and weight of 2,5 kg. The 

data acquisition system was SPIDER 8 and the computational software used was 

CATM. The specimens are sheet specimens with a transversal area of 24,8 mm
2
. The 

fixture type is 4-point. 

 

A1.1-Stress-strain and stress-extension charts  

Specimen 1 
 

 

 
Fig. A1-Stress-Strain chart for the specimen 1 
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Fig. A2-Stress-Extension chart for the specimen 1 

 

 

Specimen 2 
 

Fig. A3-Stress-Strain chart for the specimen 2 

 

 

 

0,00E+00

1,00E+08

2,00E+08

3,00E+08

4,00E+08

5,00E+08

6,00E+08

7,00E+08

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

St
re

ss
 (

P
a)

 

Extension (mm) 

0,00E+00

1,00E+08

2,00E+08

3,00E+08

4,00E+08

5,00E+08

6,00E+08

7,00E+08

8,00E+08

9,00E+08

0,00E+00 1,00E-02 2,00E-02 3,00E-02 4,00E-02 5,00E-02 6,00E-02

St
re

ss
 (

P
a)

 

Strain 



ANNEX 1-MECHANICAL TESTS 

 

107 

 
Fig. A4-Stress-Extension chart for the specimen 2 

 

 

 

A1.2-Determination of Young modulus in tensile test 
 

Specimen 1 
 

 

 
Fig. A5-Linear fit of the stress-strain curve (elastic domain) in order 

 to obtain Young modulus for the Specimen 1 
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Specimen 2 

 

 
Fig. A6-Linear fit of the stress-strain curve (elastic domain) in order  

to obtain Young modulus for the Specimen 2 

 

A1.3-Charts used to determine Yield stress 

Specimen 1 
 

 

 
Fig. A7-Determination of the Yield stress for the specimen 1 
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Specimen 2 
 

 

 
Fig. A8-Determination of the Yield stress for the specimen 2 

A1.4-Determination of Poisson coefficient and Young 
modulus in extensometry test 
 

 

Load long trans
Poisson 

coeficient 
Stress 

Young 

modulus(Pa) 

Young 

modulus(GPa) 

2066 424 -124 0,2925 8,33E+07 1,9648E+11 196,48 

3043 624 -126 0,2011 1,23E+08 1,9664E+11 196,64 

4028 834 -248 0,2974 1,62E+08 1,9475E+11 194,75 

5000 1103 -335 0,3037 2,02E+08 1,8279E+11 182,79 

Table A1-Poisson coefficient, Normal Stress, and Young modulus for specimen 4,  

1
st
 read 

 

Load long trans
Poisson 

coeficient 
Stress 

Young 

modulus(Pa) 

Young 

modulus (GPa) 

2010 416 -123 0,2957 8,10E+07 1,9483E+11 194,83 

3100 634 -187 0,2950 1,25E+08 1,9716E+11 197,16 

4040 821 -243 0,2960 1,63E+08 1,9842E+11 198,42 

5010 1044 -311 0,2979 2,02E+08 1,9350E+11 193,50 

Table A2-Poisson coefficient, Normal Stress, and Young modulus for specimen 4,  

2
nd

 read 

 

Load long trans 
Poisson 

coeficient 
Stress 

Young 

modulus(Pa) 

Young 

modulus (GPa) 

2060 459 -129 0,2810 8,31E+07 1,8097E+11 180,97 

3010 663 -187 0,2821 1,21E+08 1,8306E+11 183,06 

4060 885 -252 0,2847 1,64E+08 1,8498E+11 184,98 

5020 1148 -333 0,2901 2,02E+08 1,7632E+11 176,32 

Table A3-Poisson coefficient, Normal Stress, and Young modulus for specimen 5,  

1
st
 read 
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Load long trans 
Poisson 

coeficient 
Stress 

Young 

modulus(Pa) 

Young 

modulus (GPa) 

2100 465 -131 0,2817 8,5E+07 1,8210E+11 182,10 

3100 676 -191 0,2825 1,3E+08 1,8491E+11 184,91 

4045 873 -247 0,2829 1,6E+08 1,8683E+11 186,83 

5050 1107 -315 0,2846 2E+08 1,8395E+11 183,95 

Table A4-Poisson coefficient, Normal Stress, and Young modulus for specimen 5,  

2
nd

 read 
 

Load long trans 
Poisson 

coeficient 
Stress 

Young 

modulus(Pa) 

Young 

modulus (GPa) 

2018 437 -126 0,2883 8,14E+07 1,8620E+11 186,20 

4030 859 -244 0,2841 1,63E+08 1,8917E+11 189,17 

6020 1285 -369 0,2872 2,43E+08 1,8890E+11 188,90 

Table A5-Poisson coefficient, Normal Stress, and Young modulus for specimen 6,  

1
st
 read 

 

Load long trans 
Poisson 

coeficient 
Stress 

Young 

modulus(Pa) 

Young 

modulus (GPa) 

2040 428 -126 0,2944 8,23E+07 1,9219E+11 192,19 

4050 852 -243 0,2852 1,63E+08 1,9167E+11 191,67 

6100 1277 -365 0,2858 2,46E+08 1,9261E+11 192,61 

Table A6-Poisson coefficient, Normal Stress, and Young modulus for specimen 6,  

2
nd

 read 
 

Load long trans 
Poisson 

coeficient 
Stress 

Young 

modulus(Pa) 

Young  

modulus (GPa) 

2120 420 -117 0,2786 8,55E+07 2,0353E+11 203,53 

4060 867 -234 0,2699 1,64E+08 1,8882E+11 188,82 

6060 1325 -355 0,2679 2,44E+08 1,8442E+11 184,42 

Table A7-Poisson coefficient, Normal Stress, and Young modulus for specimen 7,  

1
st
 read 

 

Load long trans
Poisson 

coeficient 
Stress 

Young 

modulus(Pa) 

Young  

modulus (GPa) 

2140 435 -118 0,2713 8,63E+07 1,9837E+11 198,37 

4120 879 -235 0,2673 1,66E+08 1,8900E+11 189,00 

6100 1313 -351 0,2673 2,46E+08 1,8733E+11 187,33 

Table A8-Poisson coefficient, Normal Stress, and Young modulus for specimen 7,  

2
nd

 read 
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A2.1 Variable analysis data  

A2.1.1 Model 1- Ribbed plate 

 

A2.1.1.1 LG1 Variable 
 

 
Variable 

values 
LG1 0,01 0,015 0,02 0,025 0,03 0,035 0,04 

 
LG2 0,051 0,051 0,051 0,051 0,051 0,051 0,051 

 
LG3 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 

 
EX 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 

 
PXY 0,29 0,29 0,29 0,29 0,29 0,29 0,29 

 
DNS 7890 7890 7890 7890 7890 7890 7890 

Nodal 

deflections 
Node 1 6,00E-07 1,10E-07 4,10E-07 9,50E-07 1,50E-06 2,10E-06 2,73E-06 

 
Node 2 9,24E-06 8,26E-06 7,34E-06 6,49E-06 4,45E-06 3,88E-06 3,36E-06 

 
Node 3 5,16E-05 4,88E-05 4,61E-05 4,34E-05 4,78E-05 4,53E-05 4,28E-05 

 
Node 4 8,06E-06 7,20E-06 6,41E-06 5,66E-06 7,39E-05 6,94E-05 6,49E-05 

 
Node 5 7,97E-05 7,58E-05 7,19E-05 6,80E-05 4,11E-05 3,81E-05 3,53E-05 

 
Node 6 2,97E-05 2,77E-05 2,57E-05 2,38E-05 3,00E-04 2,95E-04 2,90E-04 

 
Node 7 1,70E-05 1,58E-05 1,46E-05 1,35E-05 4,60E-04 4,53E-04 4,47E-04 

 
Node 8 5,19E-06 4,82E-06 4,48E-06 4,15E-06 1,06E-03 1,05E-03 1,04E-03 

 
Node 9 4,83E-04 4,77E-04 4,71E-04 4,66E-04 3,34E-04 3,30E-04 3,24E-04 

 
Node 10 1,32E-04 1,30E-04 1,27E-04 1,24E-04 1,05E-04 1,02E-04 1,00E-04 

 
Node 11 2,42E-05 2,39E-05 2,34E-05 2,30E-05 9,44E-05 9,24E-05 9,02E-05 

 
Node 12 8,53E-06 8,39E-06 8,25E-06 8,08E-06 5,34E-05 5,66E-05 6,01E-05 

 
Node 13 8,72E-05 8,60E-05 8,46E-05 8,31E-05 3,90E-05 4,13E-05 4,38E-05 

 
Node 14 1,12E-05 1,18E-05 1,24E-05 1,31E-05 5,33E-05 5,65E-05 6,00E-05 

 
Node 15 3,99E-05 4,22E-05 4,46E-05 4,71E-05 8,09E-05 7,92E-05 7,72E-05 

Objective 

function 
q(x) 9,87E-04 9,67E-04 9,48E-04 9,30E-04 2,75E-03 2,71E-03 2,68E-03 

Table A9-Variable values, obtained nodal deflections, and objective function for the 

LG1 variable analysis (ribbed plate model) 
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A2.1.1.2 LG2 Variable 
 

 
Variable 

values 
LG1 0,025 0,025 0,025 0,025 0,025 0,025 0,025 

 
LG2 0,035 0,04 0,045 0,05 0,055 0,06 0,065 

 
LG3 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 

 
EX 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 

 
PXY 0,29 0,29 0,29 0,29 0,29 0,29 0,29 

 
DNS 7890 7890 7890 7890 7890 7890 7890 

Nodal 

deflections 
Node 1 2,56E-06 1,20E-06 1,10E-06 9,50E-07 7,90E-07 6,70E-07 9,00E-08 

 
Node 2 9,12E-05 6,62E-06 6,56E-06 6,49E-06 6,43E-06 6,38E-06 6,00E-08 

 
Node 3 7,68E-05 4,85E-05 4,56E-05 4,34E-05 4,18E-05 4,07E-05 1,12E-06 

 
Node 4 4,42E-05 5,81E-06 5,73E-06 5,66E-06 5,60E-06 5,55E-06 6,15E-05 

 
Node 5 8,30E-06 7,64E-05 7,15E-05 6,80E-05 6,54E-05 6,37E-05 7,01E-05 

 
Node 6 3,77E-04 2,59E-05 2,47E-05 2,38E-05 2,32E-05 2,27E-05 5,52E-05 

 
Node 7 4,89E-04 1,44E-05 1,39E-05 1,35E-05 1,32E-05 1,29E-05 7,57E-05 

 
Node 8 9,31E-05 4,69E-06 4,38E-06 4,15E-06 3,98E-06 3,88E-06 6,71E-05 

 
Node 9 8,74E-05 4,80E-04 4,72E-04 4,66E-04 4,61E-04 4,57E-04 2,59E-05 

 
Node 10 4,91E-04 1,28E-04 1,26E-04 1,24E-04 1,22E-04 1,21E-04 2,62E-05 

 
Node 11 1,13E-04 3,81E-05 2,91E-05 2,30E-05 1,87E-05 1,60E-05 5,95E-05 

 
Node 12 3,03E-05 1,31E-05 1,01E-05 8,08E-06 6,66E-06 5,80E-06 9,78E-04 

 
Node 13 1,67E-04 1,40E-04 1,06E-04 8,31E-05 6,67E-05 5,68E-05 1,50E-04 

 
Node 14 3,17E-06 2,20E-05 1,67E-05 1,31E-05 1,06E-05 9,03E-06 1,42E-05 

 
Node 15 5,13E-06 8,12E-05 6,09E-05 4,71E-05 3,75E-05 3,18E-05 5,25E-05 

Objective 

function 
q(x) 2,08E-03 1,09E-03 9,94E-04 9,30E-04 8,83E-04 8,55E-04 1,64E-03 

Table A10-Variable values, obtained nodal deflections, and objective function for the 

LG2 variable analysis (ribbed plate model) 
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A2.1.1.3 LG3 Variable 
 

 
Variable 

values 
LG1 0,025 0,025 0,025 0,025 0,025 0,025 0,025 

 
LG2 0,051 0,051 0,051 0,051 0,051 0,051 0,051 

 
LG3 0,0031 0,0036 0,0041 0,0046 0,0051 0,0056 0,0061 

 
EX 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 

 
PXY 0,29 0,29 0,29 0,29 0,29 0,29 0,29 

 
DNS 7890 7890 7890 7890 7890 7890 7890 

Nodal 

deflections 
Node 1 1,80E-06 1,45E-06 1,17E-06 9,50E-07 7,50E-07 5,90E-07 4,50E-07 

 
Node 2 2,15E-05 1,37E-05 9,21E-06 6,49E-06 4,74E-06 3,56E-06 2,73E-06 

 
Node 3 1,32E-04 8,60E-05 5,97E-05 4,34E-05 3,28E-05 2,56E-05 2,05E-05 

 
Node 4 1,86E-05 1,19E-05 8,01E-06 5,66E-06 4,15E-06 3,13E-06 2,41E-06 

 
Node 5 2,05E-04 1,34E-04 9,32E-05 6,80E-05 5,16E-05 4,04E-05 3,24E-05 

 
Node 6 7,45E-05 4,82E-05 3,31E-05 2,38E-05 1,78E-05 1,37E-05 1,09E-05 

 
Node 7 4,27E-05 2,75E-05 1,88E-05 1,35E-05 1,00E-05 7,69E-06 6,05E-06 

 
Node 8 1,23E-05 8,10E-06 5,66E-06 4,15E-06 3,16E-06 2,49E-06 2,01E-06 

 
Node 9 1,49E-03 9,59E-04 6,53E-04 4,66E-04 3,44E-04 2,62E-04 2,05E-04 

 
Node 10 3,98E-04 2,56E-04 1,74E-04 1,24E-04 9,16E-05 6,98E-05 5,45E-05 

 
Node 11 3,45E-05 2,96E-05 2,59E-05 2,30E-05 2,07E-05 1,87E-05 1,71E-05 

 
Node 12 1,21E-05 1,04E-05 9,10E-06 8,08E-06 7,27E-06 6,59E-06 6,03E-06 

 
Node 13 1,25E-04 1,07E-04 9,36E-05 8,31E-05 7,47E-05 6,77E-05 6,18E-05 

 
Node 14 1,94E-05 1,67E-05 1,47E-05 1,31E-05 1,18E-05 1,08E-05 9,91E-06 

 
Node 15 6,96E-05 6,01E-05 5,28E-05 4,71E-05 4,26E-05 3,89E-05 3,57E-05 

Objective 

function 
q(x) 2,66E-03 1,77E-03 1,25E-03 9,30E-04 7,18E-04 5,72E-04 4,67E-04 

Table A11-Variable values, obtained nodal deflections, and objective function for the 

LG3 variable analysis (ribbed plate model) 
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A2.1.1.4 EX Variable 
 

 

Table A12-Variable values, obtained nodal deflections, and objective function for the 

EX variable analysis (ribbed plate model) 

 

 

 

 
 

 

 
 

 

 

 

Variable 

values 
LG1 0,025 0,025 0,025 0,025 0,025 0,025 0,025 

 
LG2 0,051 0,051 0,051 0,051 0,051 0,051 0,051 

 
LG3 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 

 
EX 1,95E+11 2,00E+11 2,05E+11 2,10E+11 2,15E+11 2,20E+11 2,25E+11 

 
PXY 0,29 0,29 0,29 0,29 0,29 0,29 0,29 

 
DNS 7890 7890 7890 7890 7890 7890 7890 

Nodal  

deflection 
Node 1 1,02E-06 9,90E-07 9,70E-07 9,50E-07 9,20E-07 9,00E-07 8,80E-07 

 
Node 2 6,99E-06 6,82E-06 6,65E-06 6,49E-06 6,34E-06 6,20E-06 6,06E-06 

 
Node 3 4,68E-05 4,56E-05 4,45E-05 4,34E-05 4,24E-05 4,15E-05 4,05E-05 

 
Node 4 6,10E-06 5,95E-06 5,80E-06 5,66E-06 5,53E-06 5,41E-06 5,29E-06 

 
Node 5 7,33E-05 7,14E-05 6,97E-05 6,80E-05 6,65E-05 6,49E-05 6,35E-05 

 
Node 6 2,57E-05 2,50E-05 2,44E-05 2,38E-05 2,33E-05 2,28E-05 2,23E-05 

 
Node 7 1,45E-05 1,41E-05 1,38E-05 1,35E-05 1,32E-05 1,29E-05 1,26E-05 

 
Node 8 4,47E-06 4,36E-06 4,25E-06 4,15E-06 4,06E-06 3,96E-06 3,88E-06 

 
Node 9 5,01E-04 4,89E-04 4,77E-04 4,66E-04 4,55E-04 4,44E-04 4,35E-04 

 
Node 10 1,34E-04 1,30E-04 1,27E-04 1,24E-04 1,21E-04 1,18E-04 1,16E-04 

 
Node 11 2,48E-05 2,42E-05 2,36E-05 2,30E-05 2,25E-05 2,20E-05 2,15E-05 

 
Node 12 8,71E-06 8,49E-06 8,28E-06 8,08E-06 7,90E-06 7,72E-06 7,55E-06 

 
Node 13 8,95E-05 8,73E-05 8,52E-05 8,31E-05 8,12E-05 7,93E-05 7,76E-05 

 
Node 14 1,41E-05 1,37E-05 1,34E-05 1,31E-05 1,28E-05 1,25E-05 1,22E-05 

 
Node 15 5,08E-05 4,95E-05 4,83E-05 4,71E-05 4,61E-05 4,50E-05 4,40E-05 

Objective 

function 
q(x) 1,00E-03 9,76E-04 9,53E-04 9,30E-04 9,08E-04 8,88E-04 8,68E-04 
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A2.1.1.5 PXY Variable 
 
 

Variable 

values 
LG1 0,025 0,025 0,025 0,025 0,025 0,025 0,025 

 
LG2 0,051 0,051 0,051 0,051 0,051 0,051 0,051 

 
LG3 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 

 
EX 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 

 
PXY 0,23 0,25 0,27 0,29 0,31 0,33 0,35 

 
DNS 7890 7890 7890 7890 7890 7890 7890 

Nodal 

deflection 
Node 1 7,20E-07 7,90E-07 8,70E-07 9,50E-07 1,02E-06 1,10E-06 1,18E-06 

 
Node 2 6,76E-06 6,67E-06 6,58E-06 6,49E-06 6,39E-06 6,29E-06 6,18E-06 

 
Node 3 4,46E-05 4,42E-05 4,39E-05 4,34E-05 4,30E-05 4,25E-05 4,20E-05 

 
Node 4 5,91E-06 5,83E-06 5,75E-06 5,66E-06 5,57E-06 5,48E-06 5,38E-06 

 
Node 5 6,97E-05 6,92E-05 6,87E-05 6,80E-05 6,74E-05 6,66E-05 6,59E-05 

 
Node 6 2,46E-05 2,44E-05 2,41E-05 2,38E-05 2,35E-05 2,32E-05 2,29E-05 

 
Node 7 1,40E-05 1,38E-05 1,37E-05 1,35E-05 1,33E-05 1,31E-05 1,29E-05 

 
Node 8 4,29E-06 4,25E-06 4,20E-06 4,15E-06 4,10E-06 4,05E-06 3,99E-06 

 
Node 9 4,81E-04 4,76E-04 4,71E-04 4,66E-04 4,60E-04 4,54E-04 4,47E-04 

 
Node 10 1,29E-04 1,27E-04 1,26E-04 1,24E-04 1,22E-04 1,20E-04 1,18E-04 

 
Node 11 2,31E-05 2,31E-05 2,30E-05 2,30E-05 2,30E-05 2,29E-05 2,29E-05 

 
Node 12 8,18E-06 8,15E-06 8,12E-06 8,08E-06 8,05E-06 8,02E-06 7,99E-06 

 
Node 13 8,35E-05 8,34E-05 8,33E-05 8,31E-05 8,30E-05 8,28E-05 8,27E-05 

 
Node 14 1,31E-05 1,31E-05 1,31E-05 1,31E-05 1,31E-05 1,31E-05 1,31E-05 

 
Node 15 4,71E-05 4,71E-05 4,71E-05 4,71E-05 4,72E-05 4,72E-05 4,72E-05 

Objective 

function 
q(x) 9,55E-04 9,47E-04 9,39E-04 9,30E-04 9,20E-04 9,10E-04 8,99E-04 

Table A13-Variable values, obtained nodal deflections, and objective function for the 

PXY variable analysis (ribbed plate model) 
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A2.1.1.6 DNS Variable 
 

 

Table A14-Variable values, obtained nodal deflections, and objective function for the 

DNS variable analysis (ribbed plate model) 

 

 

 

 

 

 

 

 

 

Variable 

values 
LG1 0,025 0,025 0,025 0,025 0,025 0,025 0,025 

 
LG2 0,051 0,051 0,051 0,051 0,051 0,051 0,051 

 
LG3 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 

 
EX 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 

 
PXY 0,29 0,29 0,29 0,29 0,29 0,29 0,29 

 
DNS 7860 7870 7880 7890 8000 8100 8200 

Nodal 

deflection 
Node 1 9,50E-07 9,50E-07 9,50E-07 9,50E-07 9,50E-07 9,50E-07 9,50E-07 

 
Node 2 6,49E-06 6,49E-06 6,49E-06 6,49E-06 6,49E-06 6,49E-06 6,49E-06 

 
Node 3 4,34E-05 4,34E-05 4,34E-05 4,34E-05 4,34E-05 4,34E-05 4,34E-05 

 
Node 4 5,66E-06 5,66E-06 5,66E-06 5,66E-06 5,66E-06 5,66E-06 5,66E-06 

 
Node 5 6,80E-05 6,80E-05 6,80E-05 6,80E-05 6,80E-05 6,80E-05 6,80E-05 

 
Node 6 2,38E-05 2,38E-05 2,38E-05 2,38E-05 2,38E-05 2,38E-05 2,38E-05 

 
Node 7 1,35E-05 1,35E-05 1,35E-05 1,35E-05 1,35E-05 1,35E-05 1,35E-05 

 
Node 8 4,15E-06 4,15E-06 4,15E-06 4,15E-06 4,15E-06 4,15E-06 4,15E-06 

 
Node 9 4,66E-04 4,66E-04 4,66E-04 4,66E-04 4,66E-04 4,66E-04 4,66E-04 

 
Node 10 1,24E-04 1,24E-04 1,24E-04 1,24E-04 1,24E-04 1,24E-04 1,24E-04 

 
Node 11 2,30E-05 2,30E-05 2,30E-05 2,30E-05 2,30E-05 2,30E-05 2,30E-05 

 
Node 12 8,08E-06 8,08E-06 8,08E-06 8,08E-06 8,08E-06 8,08E-06 8,08E-06 

 
Node 13 8,31E-05 8,31E-05 8,31E-05 8,31E-05 8,31E-05 8,31E-05 8,31E-05 

 
Node 14 1,31E-05 1,31E-05 1,31E-05 1,31E-05 1,31E-05 1,31E-05 1,31E-05 

 
Node 15 4,71E-05 4,71E-05 4,71E-05 4,71E-05 4,71E-05 4,71E-05 4,71E-05 

Objective 

function 
q(x) 9,30E-04 9,30E-04 9,30E-04 9,30E-04 9,30E-04 9,30E-04 9,30E-04 
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A2.1.2 Model 2- Tubular beam 

 

A2.1.2.1 LG4 Variable 
 

 

Table A15-Variable values, obtained nodal deflections, and objective function for the 

LG4 variable analysis (tubular beam model) 

 

 

Variable 

values 
LG4 0,015 0,017 0,019 0,021 0,023 0,025 0,027 

 
LG5 0,008 0,008 0,008 0,008 0,008 0,008 0,008 

 
LG6 0,081 0,081 0,081 0,081 0,081 0,081 0,081 

 
EX 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 

 
PXY 0,29 0,29 0,29 0,29 0,29 0,29 0,29 

 
DNS 7890 7890 7890 7890 7890 7890 7890 

Nodal 

deflection 
Node 1 2,60E-07 3,50E-07 5,30E-07 7,90E-07 1,14E-06 1,57E-06 2,09E-06 

 
Node 2 5,00E-08 5,00E-08 5,00E-08 5,00E-08 4,00E-08 4,00E-08 4,00E-08 

 
Node 3 1,08E-06 1,00E-06 8,70E-07 7,00E-07 5,00E-07 2,60E-07 2,00E-08 

 
Node 4 2,66E-06 2,72E-06 2,68E-06 2,57E-06 2,39E-06 2,13E-06 1,81E-06 

 
Node 5 1,05E-05 1,13E-05 1,21E-05 1,30E-05 1,39E-05 1,49E-05 1,60E-05 

 
Node 6 2,00E-08 1,00E-08 0,00E+00 1,00E-08 2,00E-08 3,00E-08 3,00E-08 

 
Node 7 4,09E-06 4,45E-06 4,82E-06 5,22E-06 5,63E-06 6,07E-06 6,54E-06 

 
Node 8 9,53E-06 1,03E-05 1,10E-05 1,19E-05 1,27E-05 1,36E-05 1,46E-05 

 
Node 9 1,92E-04 2,00E-04 2,06E-04 2,11E-04 2,15E-04 2,18E-04 2,20E-04 

 
Node 10 3,90E-06 4,23E-06 4,54E-06 4,85E-06 5,16E-06 5,48E-06 5,80E-06 

 
Node 11 6,49E-05 6,69E-05 6,84E-05 6,96E-05 7,04E-05 7,10E-05 7,14E-05 

 
Node 12 1,78E-04 1,85E-04 1,92E-04 1,97E-04 2,01E-04 2,04E-04 2,06E-04 

 
Node 13 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 

 
Node 14 1,20E-07 1,30E-07 1,50E-07 1,70E-07 1,90E-07 2,20E-07 2,50E-07 

 
Node 15 3,00E-08 3,00E-08 4,00E-08 5,00E-08 7,00E-08 8,00E-08 9,00E-08 

 
Node 16 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 17 6,00E-08 6,00E-08 6,00E-08 6,00E-08 6,00E-08 5,00E-08 5,00E-08 

 
Node 18 2,00E-08 2,00E-08 2,00E-08 2,00E-08 1,00E-08 1,00E-08 1,00E-08 

 
Node 19 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 20 1,00E-07 1,00E-07 1,00E-07 9,00E-08 9,00E-08 9,00E-08 8,00E-08 

 
Node 21 4,00E-08 4,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 

Objective 

function 
q(x) 4,67E-04 4,87E-04 5,03E-04 5,17E-04 5,28E-04 5,37E-04 5,45E-04 
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A2.1.2.2 LG5 Variable 
 

 
Variable 

values 
LG4 0,021 0,021 0,021 0,021 0,021 0,021 0,021 

 
LG5 0,005 0,006 0,007 0,008 0,009 0,01 0,011 

 
LG6 0,081 0,081 0,081 0,081 0,081 0,081 0,081 

 
EX 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 

 
PXY 0,29 0,29 0,29 0,29 0,29 0,29 0,29 

 
DNS 7890 7890 7890 7890 7890 7890 7890 

Nodal 

deflections 
Node 1 5,09E-06 3,22E-06 1,25E-06 7,90E-07 2,86E-06 4,92E-06 1,12E-05 

 
Node 2 8,00E-08 6,00E-08 5,00E-08 5,00E-08 6,00E-08 7,00E-08 1,25E-05 

 
Node 3 2,61E-06 1,92E-06 1,30E-06 7,00E-07 9,00E-08 5,80E-07 3,10E-06 

 
Node 4 7,12E-06 5,73E-06 4,21E-06 2,57E-06 8,60E-07 8,80E-07 6,52E-06 

 
Node 5 6,25E-06 8,53E-06 1,08E-05 1,30E-05 1,52E-05 1,72E-05 1,81E-05 

 
Node 6 6,00E-08 4,00E-08 2,00E-08 1,00E-08 0,00E+00 1,00E-08 1,91E-05 

 
Node 7 3,10E-06 3,79E-06 4,50E-06 5,22E-06 5,94E-06 6,65E-06 5,28E-06 

 
Node 8 5,76E-06 7,79E-06 9,84E-06 1,19E-05 1,38E-05 1,57E-05 1,58E-05 

 
Node 9 2,23E-04 2,20E-04 2,16E-04 2,11E-04 2,05E-04 1,97E-04 1,35E-04 

 
Node 10 8,87E-06 6,71E-06 5,27E-06 4,85E-06 5,33E-06 6,39E-06 2,38E-06 

 
Node 11 6,96E-05 6,73E-05 6,75E-05 6,96E-05 7,25E-05 7,55E-05 6,12E-05 

 
Node 12 1,95E-04 1,97E-04 1,98E-04 1,97E-04 1,95E-04 1,92E-04 1,62E-04 

 
Node 13 2,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 

 
Node 14 9,00E-08 0,00E+00 9,00E-08 1,70E-07 2,40E-07 3,10E-07 2,00E-08 

 
Node 15 4,00E-08 0,00E+00 3,00E-08 5,00E-08 8,00E-08 1,00E-07 0,00E+00 

 
Node 16 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 3,00E-08 

 
Node 17 1,00E-07 9,00E-08 7,00E-08 6,00E-08 5,00E-08 3,00E-08 3,50E-07 

 
Node 18 3,00E-08 3,00E-08 2,00E-08 2,00E-08 1,00E-08 1,00E-08 1,30E-07 

 
Node 19 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 20 1,00E-07 1,00E-07 1,00E-07 9,00E-08 9,00E-08 9,00E-08 8,00E-08 

 
Node 21 4,00E-08 4,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 4,00E-08 

Objective 

function 
q(x) 5,27E-04 5,23E-04 5,19E-04 5,17E-04 5,16E-04 5,17E-04 4,53E-04 

Table A16-Variable values, obtained nodal deflections, and objective function for the 

LG5 variable analysis (tubular beam model) 
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A2.1.2.3 LG6 Variable 
 

 

 

Table A17-Variable values, obtained nodal deflections, and objective function for the 

LG6 variable analysis (tubular beam model) 

 

 

 

 

 

Variable 

values 
LG4 0,021 0,021 0,021 0,021 0,021 0,021 0,021 

 
LG5 0,008 0,008 0,008 0,008 0,008 0,008 0,008 

 
LG6 0,066 0,071 0,076 0,081 0,086 0,091 0,096 

 
EX 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 

 
PXY 0,29 0,29 0,29 0,29 0,29 0,29 0,29 

 
DNS 7890 7890 7890 7890 7890 7890 7890 

Nodal 

deflections 
Node 1 0,00E+00 0,00E+00 0,00E+00 7,90E-07 6,30E-07 4,80E-07 3,60E-07 

 
Node 2 4,60E-07 4,20E-07 3,90E-07 5,00E-08 5,00E-08 7,00E-08 8,00E-08 

 
Node 3 3,60E-07 3,40E-07 3,40E-07 7,00E-07 8,10E-07 9,20E-07 1,03E-06 

 
Node 4 6,85E-06 6,43E-06 6,12E-06 2,57E-06 2,55E-06 2,53E-06 2,51E-06 

 
Node 5 1,60E-04 1,34E-04 1,12E-04 1,30E-05 1,27E-05 1,24E-05 1,22E-05 

 
Node 6 1,89E-04 1,57E-04 1,31E-04 1,00E-08 2,00E-08 2,00E-08 3,00E-08 

 
Node 7 2,32E-04 1,87E-04 1,50E-04 5,22E-06 5,05E-06 4,91E-06 4,81E-06 

 
Node 8 8,92E-05 7,56E-05 6,51E-05 1,19E-05 1,15E-05 1,13E-05 1,11E-05 

 
Node 9 1,04E-06 1,02E-06 9,30E-07 2,11E-04 1,96E-04 1,83E-04 1,72E-04 

 
Node 10 1,65E-05 1,43E-05 1,29E-05 4,85E-06 4,66E-06 4,79E-06 5,16E-06 

 
Node 11 8,22E-05 7,66E-05 7,26E-05 6,96E-05 6,62E-05 6,39E-05 6,24E-05 

 
Node 12 4,00E-07 4,00E-07 3,60E-07 1,97E-04 1,85E-04 1,76E-04 1,68E-04 

 
Node 13 1,60E-07 1,40E-07 1,20E-07 1,00E-08 1,00E-08 1,00E-08 1,00E-08 

 
Node 14 7,00E-08 6,00E-08 5,00E-08 1,70E-07 1,60E-07 1,60E-07 1,60E-07 

 
Node 15 0,00E+00 0,00E+00 0,00E+00 5,00E-08 5,00E-08 4,00E-08 4,00E-08 

 
Node 16 6,10E-07 4,50E-07 3,30E-07 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 17 3,60E-07 2,80E-07 2,30E-07 6,00E-08 5,00E-08 5,00E-08 4,00E-08 

 
Node 18 6,00E-08 5,00E-08 4,00E-08 2,00E-08 1,00E-08 1,00E-08 1,00E-08 

 
Node 19 1,02E-05 9,23E-06 8,46E-06 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 20 4,05E-06 3,52E-06 3,07E-06 9,00E-08 8,00E-08 6,00E-08 5,00E-08 

 
Node 21 1,57E-05 1,41E-05 1,28E-05 3,00E-08 3,00E-08 2,00E-08 2,00E-08 

Objective 

function 
q(x) 8,10E-04 6,80E-04 5,78E-04 5,17E-04 4,86E-04 4,61E-04 4,40E-04 
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A2.1.2.4 EX Variable 
 

 

Table A18-Variable values, obtained nodal deflections, and objective function for the 

EX variable analysis (tubular beam model) 

 

 
 

 

Variable 

values 
LG4 0,021 0,021 0,021 0,021 0,021 0,021 0,021 

 
LG5 0,008 0,008 0,008 0,008 0,008 0,008 0,008 

 
LG6 0,081 0,081 0,081 0,081 0,081 0,081 0,081 

 
EX 1,95E+11 2,00E+11 2,05E+11 2,10E+11 2,15E+11 2,20E+11 2,25E+11 

 
PXY 0,29 0,29 0,29 0,29 0,29 0,29 0,29 

 
DNS 7890 7890 7890 7890 7890 7890 7890 

Nodal 

deflections 
Node 1 8,50E-07 8,30E-07 8,10E-07 7,90E-07 7,70E-07 7,60E-07 7,40E-07 

 
Node 2 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 4,00E-08 

 
Node 3 7,60E-07 7,40E-07 7,20E-07 7,00E-07 6,90E-07 6,70E-07 6,60E-07 

 
Node 4 2,77E-06 2,70E-06 2,63E-06 2,57E-06 2,51E-06 2,45E-06 2,40E-06 

 
Node 5 1,40E-05 1,37E-05 1,33E-05 1,30E-05 1,27E-05 1,24E-05 1,22E-05 

 
Node 6 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 

 
Node 7 5,62E-06 5,48E-06 5,34E-06 5,22E-06 5,10E-06 4,98E-06 4,87E-06 

 
Node 8 1,28E-05 1,24E-05 1,21E-05 1,19E-05 1,16E-05 1,13E-05 1,11E-05 

 
Node 9 2,27E-04 2,22E-04 2,16E-04 2,11E-04 2,06E-04 2,01E-04 1,97E-04 

 
Node 10 5,22E-06 5,09E-06 4,97E-06 4,85E-06 4,74E-06 4,63E-06 4,53E-06 

 
Node 11 7,49E-05 7,30E-05 7,13E-05 6,96E-05 6,79E-05 6,64E-05 6,49E-05 

 
Node 12 2,12E-04 2,06E-04 2,01E-04 1,97E-04 1,92E-04 1,88E-04 1,84E-04 

 
Node 13 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 

 
Node 14 1,80E-07 1,80E-07 1,70E-07 1,70E-07 1,70E-07 1,60E-07 1,60E-07 

 
Node 15 6,00E-08 6,00E-08 6,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 

 
Node 16 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 17 6,00E-08 6,00E-08 6,00E-08 6,00E-08 6,00E-08 6,00E-08 6,00E-08 

 
Node 18 2,00E-08 2,00E-08 2,00E-08 2,00E-08 2,00E-08 2,00E-08 2,00E-08 

 
Node 19 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 20 1,00E-07 1,00E-07 9,00E-08 9,00E-08 9,00E-08 9,00E-08 9,00E-08 

 
Node 21 4,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 

Objective 

function 
q(x) 5,56E-04 5,43E-04 5,29E-04 5,17E-04 5,05E-04 4,93E-04 4,82E-04 
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A2.1.2.5 PXY Variable 
 

 

Table A19-Variable values, obtained nodal deflections, and objective function for the 

PXY variable analysis (tubular beam model) 

 

 

 

 

 

Variable 

values 
LG4 0,021 0,021 0,021 0,021 0,021 0,021 0,021 

 
LG5 0,008 0,008 0,008 0,008 0,008 0,008 0,008 

 
LG6 0,081 0,081 0,081 0,081 0,081 0,081 0,081 

 
EX 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 

 
PXY 0,23 0,25 0,27 0,29 0,31 0,33 0,35 

 
DNS 7890 7890 7890 7890 7890 7890 7890 

Nodal 

deflections 
Node 1 6,90E-07 7,20E-07 7,60E-07 7,90E-07 8,30E-07 8,70E-07 9,10E-07 

 
Node 2 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 

 
Node 3 7,50E-07 7,40E-07 7,20E-07 7,00E-07 6,90E-07 6,70E-07 6,50E-07 

 
Node 4 2,66E-06 2,64E-06 2,60E-06 2,57E-06 2,54E-06 2,50E-06 2,46E-06 

 
Node 5 1,31E-05 1,31E-05 1,30E-05 1,30E-05 1,30E-05 1,30E-05 1,30E-05 

 
Node 6 2,00E-08 2,00E-08 1,00E-08 1,00E-08 0,00E+00 0,00E+00 1,00E-08 

 
Node 7 5,24E-06 5,24E-06 5,23E-06 5,22E-06 5,21E-06 5,20E-06 5,19E-06 

 
Node 8 1,19E-05 1,19E-05 1,19E-05 1,19E-05 1,18E-05 1,18E-05 1,18E-05 

 
Node 9 2,15E-04 2,14E-04 2,12E-04 2,11E-04 2,10E-04 2,08E-04 2,07E-04 

 
Node 10 4,93E-06 4,91E-06 4,88E-06 4,85E-06 4,82E-06 4,80E-06 4,77E-06 

 
Node 11 7,07E-05 7,03E-05 7,00E-05 6,96E-05 6,91E-05 6,87E-05 6,82E-05 

 
Node 12 2,01E-04 1,99E-04 1,98E-04 1,97E-04 1,95E-04 1,93E-04 1,92E-04 

 
Node 13 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 

 
Node 14 1,70E-07 1,70E-07 1,70E-07 1,70E-07 1,70E-07 1,70E-07 1,70E-07 

 
Node 15 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 6,00E-08 6,00E-08 

 
Node 16 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 17 6,00E-08 6,00E-08 6,00E-08 6,00E-08 6,00E-08 6,00E-08 6,00E-08 

 
Node 18 2,00E-08 2,00E-08 2,00E-08 2,00E-08 2,00E-08 2,00E-08 2,00E-08 

 
Node 19 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 20 9,00E-08 9,00E-08 9,00E-08 9,00E-08 9,00E-08 9,00E-08 9,00E-08 

 
Node 21 3,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 

Objective 

function 
q(x) 5,26E-04 5,23E-04 5,20E-04 5,17E-04 5,13E-04 5,10E-04 5,06E-04 
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A2.1.2.6 DNS Variable 
 

Table A20-Variable values, obtained nodal deflections, and objective function for the 

DNS variable analysis (tubular beam model)

Variable 

values 
LG4 0,021 0,021 0,021 0,021 0,021 0,021 0,021 

 
LG5 0,008 0,008 0,008 0,008 0,008 0,008 0,008 

 
LG6 0,081 0,081 0,081 0,081 0,081 0,081 0,081 

 
EX 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 2,10E+11 

 
PXY 0,29 0,29 0,29 0,29 0,29 0,29 0,29 

 
DNS 7860 7870 7880 7890 7900 7910 7920 

Nodal 

deflections 
Node 1 7,90E-07 7,90E-07 7,90E-07 7,90E-07 7,90E-07 7,90E-07 7,90E-07 

 
Node 2 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 

 
Node 3 7,00E-07 7,00E-07 7,00E-07 7,00E-07 7,00E-07 7,00E-07 7,00E-07 

 
Node 4 2,57E-06 2,57E-06 2,57E-06 2,57E-06 2,57E-06 2,57E-06 2,57E-06 

 
Node 5 1,30E-05 1,30E-05 1,30E-05 1,30E-05 1,30E-05 1,30E-05 1,30E-05 

 
Node 6 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 

 
Node 7 5,22E-06 5,22E-06 5,22E-06 5,22E-06 5,22E-06 5,22E-06 5,22E-06 

 
Node 8 1,19E-05 1,19E-05 1,19E-05 1,19E-05 1,19E-05 1,19E-05 1,19E-05 

 
Node 9 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 2,11E-04 

 
Node 10 4,85E-06 4,85E-06 4,85E-06 4,85E-06 4,85E-06 4,85E-06 4,85E-06 

 
Node 11 6,96E-05 6,96E-05 6,96E-05 6,96E-05 6,96E-05 6,96E-05 6,96E-05 

 
Node 12 1,97E-04 1,97E-04 1,97E-04 1,97E-04 1,97E-04 1,97E-04 1,97E-04 

 
Node 13 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 1,00E-08 

 
Node 14 1,70E-07 1,70E-07 1,70E-07 1,70E-07 1,70E-07 1,70E-07 1,70E-07 

 
Node 15 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 5,00E-08 

 
Node 16 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 17 6,00E-08 6,00E-08 6,00E-08 6,00E-08 6,00E-08 6,00E-08 6,00E-08 

 
Node 18 2,00E-08 2,00E-08 2,00E-08 2,00E-08 2,00E-08 2,00E-08 2,00E-08 

 
Node 19 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 
Node 20 9,00E-08 9,00E-08 9,00E-08 9,00E-08 9,00E-08 9,00E-08 9,00E-08 

 
Node 21 3,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 3,00E-08 

Objective 

function 
q(x) 5,17E-04 5,17E-04 5,17E-04 5,17E-04 5,17E-04 5,17E-04 5,17E-04 
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A2.2 Variable Analysis Charts 

A2.2.1 Model 1: Ribbed plate 

 

LG1 variable 
 

 
Fig. A9-q(x)=f(LG1) chart for the model 1 

 

 LG2 variable 
 

 
Fig. A10-q(x)=f(LG2) chart for the model 
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LG3 variable 
 

 
Fig. A11-q(x)=f(LG3) chart for the model 1 

 

 

 

EX variable 

 
Fig. A12-q(x)=f(EX) chart for the model 1 
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PXY variable 
 

 
Fig. A13-q(x)=f(PXY) chart for the model 1 

 

 

DNS variable 
 

 
Fig. A14-q(x)=f(DNS) chart for the model 1 
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A2.2.2 Model 2: tubular beam 

 

LG4 variable 
 

 
Fig. A15-q(x)=f(LG4) chart for the model 2 

 

LG5 variable 
 

 
Fig. A16-q(x)=f(LG5) chart for the model 2 
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LG6 variable 

 
Fig. A17-q(x)=f(LG6) chart for the model 2 

 

EX variable 
 

 
Fig. A18-q(x)=f(EX) chart for the model 2 
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PXY variable 
 

 
Fig. A19-q(x)=f(PXY) chart for the model 2 

 

DNS variable 
 

 
Fig. A20-q(x)=f(DNS) chart for the model 2
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A3.1-Model 1: ribbed plate 
______________________________________________________________________ 

  

!/BATCH   

! /COM,ANSYS RELEASE  5.4    UP19970828         10:02:38    08/10/2010             

/input,start,ans     ,C:\ansys54\docu\,,,,,,,,,,,,,,,,1  

/PREP7   

! 

PREX=2.1 

PRPXY=2.9 

PRDNS=7.89 

PRLG1=0.025 

PRLG2=0.65 

PRLG3=0.46 

PRM=15 

! 

LG1=PRLG1*1 

LG2=PRLG2*0.1 

LG3=PRLG3*0.01 

EX=PREX*1e11 

PXY=PRPXY*0.1 

DNS=PRDNS*1000 

! 

K,1,0,-LG2,0,   

K,2,0,0,0,   

K,3,0.3,-LG2,0, 

K,4,0.3,0,0,    

! 

K,5,0.15-LG1,-LG2,0, 

K,6,0.15-LG1,0,0,  

K,7,0.15+LG1,-LG2,0 

K,8,0.15+LG1,0,0, 

! 

K,10,0,-LG2,0.6, 

K,11,0,0,0.6,    

K,12,0.3,-LG2,0.6, 

K,13,0.3,0,0.6, 

! 

K,14,0.15-LG1,-LG2,0.6,    

K,15,0.15-LG1,0,0.6, 

K,16,0.15+LG1,-LG2,0.6, 

K,17,0.15+LG1,0,0.6,  

! 

K,2014,0.12,0,0.3, 

K,2191,0.15,0,0.3, 

K,2368,0.18,0,0.3, 

! 

! /VIEW, 1 ,1,1,1  

! /ANG, 1  
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! /REP,FAST   

  

K,3000,0.12,0,0.6,   

K,4000,0.15,0,0.6,   

K,5000,0.18,0,0.6,   

K,6000,0.12,0,0, 

! 

K,7000,0.15,0,0, 

K,8000,0.18,0,0, 

! /VIEW, 1 ,1,1,1  

! /ANG, 1  

! /REP,FAST    

K,9000,0.3,0,0.3,   

K,10000,0.15+LG1,0,0.3,   

! 

K,11000,0,0,0.3, 

K,12000,0.15-LG1,0,0.3, 

K,13000,0.15+LG1,-LG2,0.3,   

K,14000,0.15-LG1,-LG2,0.3, 

! 

K,15000,0,-LG2,0.3, 

K,16000,0.3,-LG2,0.3,  

! 

! /REPLOT  

! /AUTO, 1 

! /REP 

! /AUTO, 1 

! /REP 

! /AUTO, 1 

! /REP 

! klist,all,,,coord    

LSTR,      14,      15   

LSTR,      15,   12000   

LSTR,   12000,       6   

LSTR,       2,   11000   

LSTR,   11000,      11   

LSTR,      11,      10   

LSTR,      10,       1   

LSTR,       5,      14   

LSTR,       5,       6   

LSTR,       1,       2   

LSTR,    3000,    2014   

LSTR,    2014,    6000   

LSTR,    7000,    2191   

LSTR,    2191,    4000   

LSTR,    5000,    2368   

LSTR,    2368,    8000   

LSTR,       4,    9000   

LSTR,    9000,      13   

LSTR,      13,      12   
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LSTR,      12,       3   

LSTR,       3,       4   

LSTR,       8,   10000   

LSTR,   10000,      17   

LSTR,      17,      16   

LSTR,      16,       7   

LSTR,       7,       8   

LSTR,       8,       4   

LSTR,   10000,    9000   

LSTR,       4,    8000   

LSTR,    8000,    7000   

LSTR,    7000,    6000   

LSTR,    6000,       2   

LSTR,       2,       6   

LSTR,   12000,   11000   

LSTR,   11000,    2014   

LSTR,    2014,    2191   

LSTR,    2191,    2368   

LSTR,    2368,    9000   

LSTR,      17,      13   

LSTR,      13,    5000   

LSTR,    5000,    4000   

LSTR,    4000,    3000   

LSTR,    3000,      11   

LSTR,      11,      15   

LSTR,   10000,   13000   

LSTR,   12000,   14000   

FLST,2,4,4,ORDE,4    

FITEM,2,7    

FITEM,2,-8   

FITEM,2,20   

FITEM,2,25   

LDELE,P51X   

! /REPLOT  

GPLOT    

LSTR,   15000,   11000   

LSTR,   16000,    9000   

LSTR,   13000,      16   

LSTR,   16000,      12   

LSTR,       7,   13000   

LSTR,       3,   16000   

LSTR,       1,   15000   

LSTR,   15000,      10   

LSTR,   14000,      14   

LSTR,   14000,       5   

FLST,2,4,4   

FITEM,2,2    

FITEM,2,51   

FITEM,2,1    

FITEM,2,46   
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AL,P51X  

FLST,2,4,4   

FITEM,2,46   

FITEM,2,3    

FITEM,2,9    

FITEM,2,52   

AL,P51X  

FLST,2,4,4   

FITEM,2,6    

FITEM,2,5    

FITEM,2,7    

FITEM,2,50   

AL,P51X  

FLST,2,4,4   

FITEM,2,4    

FITEM,2,10   

FITEM,2,49   

FITEM,2,7    

AL,P51X  

FLST,2,4,4   

FITEM,2,44   

FITEM,2,5    

FITEM,2,34   

FITEM,2,2    

AL,P51X  

FLST,2,4,4   

FITEM,2,3    

FITEM,2,33   

FITEM,2,4    

FITEM,2,34   

AL,P51X  

FLST,2,4,4   

FITEM,2,43   

FITEM,2,35   

FITEM,2,5    

FITEM,2,11   

AL,P51X  

FLST,2,4,4   

FITEM,2,4    

FITEM,2,32   

FITEM,2,12   

FITEM,2,35   

AL,P51X  

FLST,2,4,4   

FITEM,2,15   

FITEM,2,14   

FITEM,2,41   

FITEM,2,37   

AL,P51X  

FLST,2,4,4   
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FITEM,2,36   

FITEM,2,42   

FITEM,2,11   

FITEM,2,14   

AL,P51X  

FLST,2,4,4   

FITEM,2,12   

FITEM,2,31   

FITEM,2,13   

FITEM,2,36   

AL,P51X  

FLST,2,4,4   

FITEM,2,37   

FITEM,2,16   

FITEM,2,30   

FITEM,2,13   

AL,P51X  

FLST,2,4,4   

FITEM,2,19   

FITEM,2,25   

FITEM,2,8    

FITEM,2,18   

AL,P51X  

FLST,2,4,4   

FITEM,2,24   

FITEM,2,23   

FITEM,2,45   

FITEM,2,20   

AL,P51X  

FLST,2,4,4   

FITEM,2,8    

FITEM,2,48   

FITEM,2,21   

FITEM,2,17   

AL,P51X  

FLST,2,4,4   

FITEM,2,45   

FITEM,2,22   

FITEM,2,26   

FITEM,2,47   

AL,P51X  

FLST,2,4,4   

FITEM,2,39   

FITEM,2,18   

FITEM,2,28   

FITEM,2,23   

AL,P51X  

FLST,2,4,4   

FITEM,2,28   

FITEM,2,17   
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FITEM,2,27   

FITEM,2,22   

AL,P51X  

FLST,2,4,4   

FITEM,2,40   

FITEM,2,38   

FITEM,2,15   

FITEM,2,18   

AL,P51X  

FLST,2,4,4   

FITEM,2,16   

FITEM,2,29   

FITEM,2,17   

FITEM,2,38   

AL,P51X  

!*   

! /VIEW, 1 ,1,1,1  

! /ANG, 1  

! /REP,FAST    

!*   

ET,1,SHELL63 

! 

R,1,LG3,LG3,LG3,LG3, , , 

RMORE, , , , 

!*   

!*   

UIMP,1,EX, , ,EX, 

UIMP,1,DENS, , ,DNS,    

UIMP,1,ALPX, , , ,   

UIMP,1,REFT, , , ,   

UIMP,1,NUXY, , ,PXY,    

UIMP,1,PRXY, , , ,   

UIMP,1,GXY, , , ,    

UIMP,1,MU, , , , 

UIMP,1,DAMP, , , ,   

UIMP,1,KXX, , , ,    

UIMP,1,C, , , ,  

UIMP,1,ENTH, , , ,   

UIMP,1,HF, , , , 

UIMP,1,EMIS, , , ,   

UIMP,1,QRATE, , , ,  

UIMP,1,RSVX, , , ,   

UIMP,1,PERX, , , ,   

UIMP,1,VISC, , , ,   

UIMP,1,SONC, , , ,   

!*   

TYPE,   1    

MAT,       1 

REAL,       1    

ESYS,       0    
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!*   

ESIZE,0.02,0,    

MSHAPE,0,2D  

MSHKEY,1 

!*   

FLST,5,20,5,ORDE,2   

FITEM,5,1    

FITEM,5,-20  

CM,_Y,AREA   

ASEL, , , ,P51X  

CM,_Y1,AREA  

CHKMSH,'AREA'    

CMSEL,S,_Y   

!*   

AMESH,_Y1    

!*   

CMDEL,_Y 

CMDEL,_Y1    

CMDEL,_Y2    

!*   

FINISH   

/SOLU    

! KPLOT    

FLST,2,1,3,ORDE,1    

FITEM,2,2191 

FK,P51X,FY,-3528,    

FLST,2,1,3,ORDE,1    

FITEM,2,2368 

FK,P51X,FY,-5120,    

FLST,2,1,3,ORDE,1    

FITEM,2,2014 

FK,P51X,FY,5120, 

FLST,2,16,3,ORDE,4   

FITEM,2,1    

FITEM,2,-8   

FITEM,2,10   

FITEM,2,-17  

DK,P51X, , , ,0,ALL 

! 

!  

! FKLIST, ALL  

! FLIST, ALL   

/SOLU    

FLST,2,899,1,ORDE,2  

FITEM,2,1    

FITEM,2,-899 

FDELE,P51X,ALL   

! FKLIST, ALL  

! 

! /STAT,SOLU   
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SOLVE       

!*   

/POST1   

m=PRM  

*DIM,VALUE1,,m,1 

! RECOLHE VALORES 

*GET,U1,NODE,170,U,Y  

*GET,U2,NODE,252,U,Y  

*GET,U3,NODE,308,U,Y  

*GET,U4,NODE,346,U,Y  

*GET,U5,NODE,377,U,Y 

*GET,U6,NODE,420,U,Y 

*GET,U7,NODE,422,U,Y 

*GET,U8,NODE,429,U,Y 

*GET,U9,NODE,468,U,Y 

*GET,U10,NODE,477,U,Y 

*GET,U11,NODE,777,U,Y 

*GET,U12,NODE,782,U,Y 

*GET,U13,NODE,805,U,Y 

*GET,U14,NODE,841,U,Y 

*GET,U15,NODE,870,U,Y 

! 

*VFILL,VALUE1(1,1),DATA,U1  

*VFILL,VALUE1(2,1),DATA,U2 

*VFILL,VALUE1(3,1),DATA,U3 

*VFILL,VALUE1(4,1),DATA,U4 

*VFILL,VALUE1(5,1),DATA,U5  

*VFILL,VALUE1(6,1),DATA,U6 

*VFILL,VALUE1(7,1),DATA,U7 

*VFILL,VALUE1(8,1),DATA,U8 

*VFILL,VALUE1(9,1),DATA,U9   

*VFILL,VALUE1(10,1),DATA,U10 

*VFILL,VALUE1(11,1),DATA,U11 

*VFILL,VALUE1(12,1),DATA,U12 

*VFILL,VALUE1(13,1),DATA,U13   

*VFILL,VALUE1(14,1),DATA,U14 

*VFILL,VALUE1(15,1),DATA,U15 

!* 

/output,n5,lgw,d:\abc 

*VWRITE,VALUE1(1,1) 

(1X,F10.8) 

/output   

!* 

______________________________________________________________________
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A3.2-Model 2: Tubular beam 
 

 

!/BATCH   

! /COM,ANSYS RELEASE  5.4    UP19970828         18:58:07    07/04/2010             

/input,start,ans     ,C:\ansys54\docu\,,,,,,,,,,,,,,,,1  

/PREP7   

! /REPLOT,RESIZE   

PRLG4=0.21 

PRLG5=0.11 

PRLG6=0.81 

PREX=2.1 

PRPXY=2.9 

PRDNS=7.890 

PRM=21 

! 

EX=PREX*1e11 

PXY=PRPXY*0.1 

DNS=PRDNS*1000 

!PRLG7=0.3 

LG4=PRLG4*0.1 

LG5=PRLG5*0.1 

LG6=PRLG6*0.1 

LG7=0.15 

! 

!PRLG4-largura a partir do canto 

!PRLG5-largura ao centro (b) 

!PRLG6-altura (h) 

! 

K,0,0,0,0,   

K,1,0,0.3,0, 

K,2,0.3,0,0, 

K,3,0.3,0.3,0,   

! 

K,4,LG7-LG4,0,0, 

K,5,LG7+LG4,0,0, 

K,6,LG7-LG4,0.3,0,   

K,7,LG7+LG4,0.3,0,   

! 

K,8,LG7-LG5,LG6,0,    

K,9,LG7+LG5,LG6,0,    

K,10,LG7-LG5,0.3-LG6,0,   

K,11,LG7+LG5,0.3-LG6,0,   

! 

K,12,LG6,LG7-LG5,0,   

K,13,LG6,LG7+LG5,0,   

K,14,0.3-LG6,LG7-LG5,0,   

K,15,0.3-LG6,LG7+LG5,0,   

! 
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K,16,0,LG7-LG4,0,    

K,17,0.3,LG7-LG4,0,  

K,18,0,LG7+LG4,0,    

K,19,0.3,LG7+LG4,0,  

K,20,0,0,0,  

!                                                                                 

K,100,0,0,1, 

K,101,0,0.3,1,   

K,102,0.3,0,1,   

K,103,0.3,0.3,1, 

! 

K,104,LG7-LG4,0,1,   

K,105,LG7+LG4,0,1,   

K,106,LG7-LG4,0.3,1, 

K,107,LG7+LG4,0.3,1, 

! 

K,108,LG7-LG5,LG6,1,  

K,109,LG7+LG5,LG6,1,  

K,110,LG7-LG5,0.3-LG6,1,  

K,111,LG7+LG5,0.3-LG6,1,  

! 

K,112,LG6,LG7-LG5,1,  

K,113,LG6,LG7+LG5,1,  

K,114,0.3-LG6,LG7-LG5,1,  

K,115,0.3-LG6,LG7+LG5,1,  

! 

K,116,0,LG7-LG4,1,   

K,117,0.3,LG7-LG4,1, 

K,118,0,LG7+LG4,1,   

K,119,0.3,LG7+LG4,1, 

! 

K,1000,0.15,0.3-LG6,0, 

K,2000,0.15,0.3-LG6,1, 

K,3000,LG7-LG5,0.3-LG6,0.5,   

K,4000,0.15,0.3-LG6,0.5,   

! 

K,5000,LG7+LG5,0.3-LG6,0.5,  

K,6000,0,0,0.5, 

K,7000,0,0.3,0.5, 

K,8000,0.3,0,0.5, 

! 

K,9000,0.3,0.3,0.5, 

K,10000,LG7-LG4,0,0.5, 

K,11000,LG7+LG4,0,0.5, 

K,12000,LG7-LG4,0.3,0.5,   

! 

K,13000,LG7+LG4,0.3,0.5,   

K,14000,LG7-LG5,LG6,0.5,  

K,15000,LG7+LG5,LG6,0.5, 

K,16000,LG6,LG7-LG5,0.5,   
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! 

K,17000,LG6,LG7+LG5,0.5,   

K,18000,0.3-LG6,LG7-LG5,0.5,   

K,19000,0.3-LG6,LG7+LG5,0.5, 

K,20000,0,LG7-LG4,0.5,    

! 

K,21000,0.3,LG7-LG4,0.5,  

K,22000,0.3,LG7+LG4,0.5,  

K,23000,0,LG7+LG4,0.5,    

! 

! /VIEW, 1 ,1,1,1  

! /ANG, 1  

! /REP,FAST    

LSTR,     101,     118   

LSTR,     118,     113   

LSTR,     113,     112   

LSTR,     112,     116   

LSTR,     116,     100   

LSTR,     100,     104   

LSTR,     104,     108   

LSTR,     108,     109   

LSTR,     109,     105   

LSTR,     105,     102   

LSTR,     102,     117   

LSTR,     117,     114   

LSTR,     114,     115   

LSTR,     115,     119   

LSTR,     119,     103   

LSTR,     103,     107   

LSTR,     107,     111   

LSTR,     111,    2000   

LSTR,    2000,     110   

LSTR,     110,     106   

LSTR,     106,     101   

LSTR,    7000,   23000   

LSTR,   23000,   17000   

LSTR,   17000,   16000   

LSTR,   16000,   20000   

LSTR,   20000,    6000   

LSTR,    6000,   10000   

LSTR,   10000,   14000   

LSTR,   14000,   15000   

LSTR,   15000,   11000   

LSTR,   11000,    8000   

LSTR,    8000,   21000   

LSTR,   21000,   18000   

LSTR,   18000,   19000   

LSTR,   19000,   22000   

LSTR,   22000,    9000   

LSTR,    9000,   13000   
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LSTR,   13000,    5000   

LSTR,    5000,    4000   

LSTR,    4000,    3000   

LSTR,    3000,   12000   

LSTR,   12000,    7000   

LSTR,       1,      18   

LSTR,      18,      13   

LSTR,      13,      12   

LSTR,      12,      16   

LSTR,      16,      20   

LSTR,      20,       4   

LSTR,       4,       8   

LSTR,       8,       9   

LSTR,       9,       5   

LSTR,       5,       2   

LSTR,       2,      17   

LSTR,      17,      14   

LSTR,      14,      15   

LSTR,      15,      19   

LSTR,      19,       3   

LSTR,       3,       7   

LSTR,       7,      11   

LSTR,      11,    1000   

LSTR,    1000,      10   

LSTR,      10,       6   

LSTR,       6,       1   

LSTR,     101,    7000   

LSTR,    7000,       1   

LSTR,     118,   23000   

LSTR,   23000,      18   

LSTR,     113,   17000   

LSTR,   17000,      13   

LSTR,     112,   16000   

LSTR,   16000,      12   

LSTR,     116,   20000   

LSTR,   20000,      16   

LSTR,     100,    6000   

LSTR,    6000,      20   

LSTR,     104,   10000   

LSTR,   10000,       4   

LSTR,     108,   14000   

LSTR,   14000,       8   

LSTR,     109,   15000   

LSTR,   15000,       9   

LSTR,     105,   11000   

LSTR,   11000,       5   

LSTR,     102,    8000   

LSTR,    8000,       2   

LSTR,     117,   21000   

LSTR,   21000,      17   
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LSTR,     114,   18000   

LSTR,   18000,      14   

LSTR,     115,   19000   

LSTR,   19000,      15   

LSTR,     119,   22000   

LSTR,   22000,      19   

LSTR,     103,    9000   

LSTR,    9000,       3   

LSTR,     107,   13000   

LSTR,   13000,       7   

LSTR,     111,    5000   

LSTR,    5000,      11   

LSTR,    2000,    4000   

LSTR,    4000,    1000   

LSTR,     110,    3000   

LSTR,    3000,      10   

LSTR,     106,   12000   

LSTR,   12000,       6   

FLST,2,4,4   

FITEM,2,6    

FITEM,2,74   

FITEM,2,27   

FITEM,2,76   

AL,P51X  

FLST,2,4,4   

FITEM,2,5    

FITEM,2,72   

FITEM,2,26   

FITEM,2,74   

AL,P51X  

FLST,2,4,4   

FITEM,2,4    

FITEM,2,70   

FITEM,2,25   

FITEM,2,72   

AL,P51X  

FLST,2,4,4   

FITEM,2,3    

FITEM,2,68   

FITEM,2,24   

FITEM,2,70   

AL,P51X  

FLST,2,4,4   

FITEM,2,2    

FITEM,2,66   

FITEM,2,23   

FITEM,2,68   

AL,P51X  

FLST,2,4,4   

FITEM,2,1    
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FITEM,2,64   

FITEM,2,22   

FITEM,2,66   

AL,P51X  

FLST,2,4,4   

FITEM,2,21   

FITEM,2,64   

FITEM,2,42   

FITEM,2,104  

AL,P51X  

FLST,2,4,4   

FITEM,2,20   

FITEM,2,102  

FITEM,2,41   

FITEM,2,104  

AL,P51X  

FLST,2,4,4   

FITEM,2,19   

FITEM,2,102  

FITEM,2,40   

FITEM,2,100  

AL,P51X  

FLST,2,4,4   

FITEM,2,100  

FITEM,2,18   

FITEM,2,98   

FITEM,2,39   

AL,P51X  

FLST,2,4,4   

FITEM,2,98   

FITEM,2,17   

FITEM,2,96   

FITEM,2,38   

AL,P51X  

LSTR,     103,    9000   

! LPLOT    

FLST,2,4,4   

FITEM,2,94   

FITEM,2,16   

FITEM,2,96   

FITEM,2,37   

AL,P51X  

GPLOT    

FLST,2,4,4   

FITEM,2,94   

FITEM,2,15   

FITEM,2,36   

FITEM,2,92   

AL,P51X  

FLST,2,4,4   
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FITEM,2,14   

FITEM,2,90   

FITEM,2,35   

FITEM,2,92   

AL,P51X  

FLST,2,4,4   

FITEM,2,7    

FITEM,2,78   

FITEM,2,28   

FITEM,2,76   

AL,P51X  

FLST,2,4,4   

FITEM,2,8    

FITEM,2,78   

FITEM,2,29   

FITEM,2,80   

AL,P51X  

FLST,2,4,4   

FITEM,2,9    

FITEM,2,80   

FITEM,2,30   

FITEM,2,82   

AL,P51X  

FLST,2,4,4   

FITEM,2,10   

FITEM,2,82   

FITEM,2,31   

FITEM,2,84   

AL,P51X  

FLST,2,4,4   

FITEM,2,11   

FITEM,2,86   

FITEM,2,32   

FITEM,2,84   

AL,P51X  

FLST,2,4,4   

FITEM,2,12   

FITEM,2,88   

FITEM,2,33   

FITEM,2,86   

AL,P51X  

FLST,2,4,4   

FITEM,2,13   

FITEM,2,88   

FITEM,2,34   

FITEM,2,90   

AL,P51X  

! /ANG, 1 ,-30.000000,YS,1 

! /REP,FAST    

! /ANG, 1 ,30.000000,YS,1  
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! /REP,FAST    

! /ANG, 1 ,30.000000,YS,1  

! /REP,FAST    

! /VIEW, 1 ,1,1,1  

! /ANG, 1  

! /REP,FAST    

FLST,2,4,4   

FITEM,2,22   

FITEM,2,65   

FITEM,2,43   

FITEM,2,67   

AL,P51X  

FLST,2,4,4   

FITEM,2,23   

FITEM,2,67   

FITEM,2,44   

FITEM,2,69   

AL,P51X  

FLST,2,4,4   

FITEM,2,24   

FITEM,2,69   

FITEM,2,45   

FITEM,2,71   

AL,P51X  

FLST,2,4,4   

FITEM,2,25   

FITEM,2,73   

FITEM,2,46   

FITEM,2,71   

AL,P51X  

FLST,2,4,4   

FITEM,2,26   

FITEM,2,73   

FITEM,2,47   

FITEM,2,75   

AL,P51X  

FLST,2,4,4   

FITEM,2,27   

FITEM,2,75   

FITEM,2,48   

FITEM,2,77   

AL,P51X  

FLST,2,4,4   

FITEM,2,28   

FITEM,2,77   

FITEM,2,49   

FITEM,2,79   

AL,P51X  

FLST,2,4,4   

FITEM,2,29   
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FITEM,2,79   

FITEM,2,50   

FITEM,2,81   

AL,P51X  

FLST,2,4,4   

FITEM,2,30   

FITEM,2,81   

FITEM,2,51   

FITEM,2,83   

AL,P51X  

FLST,2,4,4   

FITEM,2,32   

FITEM,2,87   

FITEM,2,53   

FITEM,2,85   

AL,P51X  

FLST,2,4,4   

FITEM,2,33   

FITEM,2,89   

FITEM,2,54   

FITEM,2,87   

AL,P51X  

FLST,2,4,4   

FITEM,2,34   

FITEM,2,55   

FITEM,2,89   

FITEM,2,91   

AL,P51X  

FLST,2,4,4   

FITEM,2,35   

FITEM,2,93   

FITEM,2,56   

FITEM,2,91   

AL,P51X  

FLST,2,4,4   

FITEM,2,36   

FITEM,2,95   

FITEM,2,57   

FITEM,2,93   

AL,P51X  

FLST,2,4,4   

FITEM,2,37   

FITEM,2,95   

FITEM,2,58   

FITEM,2,97   

AL,P51X  

FLST,2,4,4   

FITEM,2,42   

FITEM,2,65   

FITEM,2,63   
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FITEM,2,105  

AL,P51X  

FLST,2,4,4   

FITEM,2,41   

FITEM,2,103  

FITEM,2,62   

FITEM,2,105  

AL,P51X  

FLST,2,4,4   

FITEM,2,40   

FITEM,2,103  

FITEM,2,61   

FITEM,2,101  

AL,P51X  

FLST,2,4,4   

FITEM,2,39   

FITEM,2,60   

FITEM,2,101  

FITEM,2,99   

AL,P51X  

FLST,2,4,4   

FITEM,2,38   

FITEM,2,99   

FITEM,2,59   

FITEM,2,97   

AL,P51X  

! 

! /VIEW, 1 ,1,1,1  

! /ANG, 1  

! /REP,FAST    

!*   

ET,1,SHELL63 

!*   

!*   

R,1,0.002,0.002,0.002,0.002, , , 

RMORE, , , , 

!*   

!*   

UIMP,1,EX, , ,EX, 

UIMP,1,DENS, , ,DNS,    

UIMP,1,ALPX, , , ,   

UIMP,1,REFT, , , ,   

UIMP,1,NUXY, , ,PXY,    

UIMP,1,PRXY, , , ,   

UIMP,1,GXY, , , ,    

UIMP,1,MU, , , , 

UIMP,1,DAMP, , , ,   

UIMP,1,KXX, , , ,    

UIMP,1,C, , , ,  

UIMP,1,ENTH, , , ,   
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UIMP,1,HF, , , , 

UIMP,1,EMIS, , , ,   

UIMP,1,QRATE, , , ,  

UIMP,1,RSVX, , , ,   

UIMP,1,PERX, , , ,   

UIMP,1,VISC, , , ,   

UIMP,1,SONC, , , ,   

!*   

TYPE,   1    

MAT,       1 

REAL,       1    

ESYS,       0    

!*   

ESIZE,0.05,0,    

ESIZE,0.02,0,    

MSHAPE,0,2D  

MSHKEY,1 

!*   

FLST,5,41,5,ORDE,2   

FITEM,5,1    

FITEM,5,-41  

CM,_Y,AREA   

ASEL, , , ,P51X  

CM,_Y1,AREA  

CHKMSH,'AREA'    

CMSEL,S,_Y   

!*   

AMESH,_Y1    

!*   

CMDEL,_Y 

CMDEL,_Y1    

CMDEL,_Y2    

!*   

FINISH   

/SOLU    

! KPLOT    

FLST,2,1,3,ORDE,1    

FITEM,2,4000 

FK,P51X,FY,-3528,    

FLST,2,1,3,ORDE,1    

FITEM,2,5000 

FK,P51X,FY,-5120,    

FLST,2,1,3,ORDE,1    

FITEM,2,3000 

FK,P51X,FY,5120, 

FLST,2,40,3,ORDE,4   

FITEM,2,1    

FITEM,2,-20  

FITEM,2,100  

FITEM,2,-119 
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DK,P51X, , , ,0,ALL  

! /STAT,SOLU   

SOLVE    

! /REPLOT,RESIZE   

! LGWRITE,vigatub_original,lgw,..\..\MATLAB6p5\work\,COMMENT 

! 

m=PRM 

*DIM,VALUE1,,m,1 

   

*GET,U1,NODE,625,U,Y  

!    

    

*GET,U2,NODE,629,U,Y  

*GET,U3,NODE,640,U,Y  

*GET,U4,NODE,649,U,Y  

*GET,U5,NODE,833,U,Y 

*GET,U6,NODE,835,U,Y 

*GET,U7,NODE,844,U,Y 

*GET,U8,NODE,854,U,Y 

*GET,U9,NODE,941,U,Y 

*GET,U10,NODE,948,U,Y 

*GET,U11,NODE,957,U,Y 

*GET,U12,NODE,965,U,Y 

*GET,U13,NODE,3378,U,Y 

*GET,U14,NODE,3385,U,Y 

*GET,U15,NODE,3394,U,Y 

*GET,U16,NODE,3478,U,Y 

*GET,U17,NODE,3489,U,Y 

*GET,U18,NODE,3497,U,Y 

*GET,U19,NODE,3678,U,Y 

*GET,U20,NODE,3687,U,Y 

*GET,U21,NODE,3695,U,Y 

! 

*VFILL,VALUE1(1,1),DATA,U1  

*VFILL,VALUE1(2,1),DATA,U2 

*VFILL,VALUE1(3,1),DATA,U3 

*VFILL,VALUE1(4,1),DATA,U4 

*VFILL,VALUE1(5,1),DATA,U5  

*VFILL,VALUE1(6,1),DATA,U6 

*VFILL,VALUE1(7,1),DATA,U7 

*VFILL,VALUE1(8,1),DATA,U8 

*VFILL,VALUE1(9,1),DATA,U9  

*VFILL,VALUE1(10,1),DATA,U10 

*VFILL,VALUE1(11,1),DATA,U11 

*VFILL,VALUE1(12,1),DATA,U12 

*VFILL,VALUE1(13,1),DATA,U13   

*VFILL,VALUE1(14,1),DATA,U14 

*VFILL,VALUE1(15,1),DATA,U15 

*VFILL,VALUE1(16,1),DATA,U16 

*VFILL,VALUE1(17,1),DATA,U17 
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*VFILL,VALUE1(18,1),DATA,U18 

*VFILL,VALUE1(19,1),DATA,U19 

*VFILL,VALUE1(20,1),DATA,U20 

*VFILL,VALUE1(21,1),DATA,U21   

!* 

/output,n5,lgw,d:\abc 

*VWRITE,VALUE1(1,1) 

(1X,F10.8) 

/output   

!* 

  FINISH  

!* 

!/EXIT   

______________________________________________________________________ 
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Abstract. The acceleration of industrial machines mobile parts has been increasing over 

the last few years, due to the need of higher production in a short period of time. The 

machines were dimensioned for a lower value of acceleration, which means there is not 

enough rigidity for the correct operation at much higher accelerations. Nowadays, the 

accelerations can be near 12 times the acceleration of gravity. There is the need of 

improving rigidity to make possible the correct machine operation without undesired 

vibrations that can ultimately lead to failure. The main applications of this work are 

plotters and laser cutting machines. To improve rigidity, one must improve the relevant 

material properties, and the relevant geometric variables of the model.[1] A novel Finite 

Element Model Updating methodology is presented in this paper. The considered 

models were : a ribbed plate and a tubular beam. The models were built by means of the 

Finite Element Method (FEM), and MATLAB was used to control the optimization 

process, using a programming code. Both material properties and geometric parameters 

were optimized. The main aim of the materials modeling is to know how the value of 

the objective function changes with the value of the material properties. Materials 

selection was performed, using material selection charts, to select the best material for 

the application. The value of these properties was not in the catalogue, and the 

properties used to perform the material selection were related to a material sub-class, 

Eg. Steel. The final material selection determined the best specific material for the 

application, and that material was mechanically tested. The mechanical tests performed 

were: Tensile Test and Extensometry Test, to obtain the relevant material properties, 

mainly Young Modulus, Poisson Coefficient and Yield Stress. The deflection of the 

optimized models reduced strongly in comparison to the initial models.   

1. Introduction 

This paper consists mainly in the development and analysis of a finite element model 

updating application for structural static analysis to reduce the models deflections to a 

minimum when subjected to static bending and torsion combined loads. To achieve the 

aim of deflection reduction, one must optimize both geometric parameters and material 

properties, focusing two main factors: The Young Modulus and the Inertia Moment, 

with the goal of maximizing the rigidity and minimizing the object mass. The Young 

Modulus is only dependent of the chosen material, and the Inertia Moment is highly 

dependent of the geometric characteristics of the object. Rigidity is very important in 

what relates to engineering parts, because it determines the work capability of 

engineering industrial equipments. The importance of rigidity can be higher than 

resistance in what relates to equipment reliability.[1] The use of numeric methods of 

calculus, such as the Finite Element Method (FEM), controlled by optimization 
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processes that can help the designer in the most adequate selection between the existing 

valid solutions can be very useful. 

2. Bending and torsion combined load 

 

In practice is very common to find situations where the structural parts are loaded with a 

combination of bending and torsion. Bending is usually due to moments or centered 

transverse loads, and torsion can be due to non-centered transverse load. In some 

situations, these two types of loads act at the same time, and so, one have a combination 

of bending and torsion. In bending there are only normal stresses, and in torsion there 

are only shear stresses.  

The deflection due to bending can be calculated by (1): 
2

2 48

bd y PL

EIdx
 . 

(1) 

 

The models in this work are simply supported at its ends.  For this type of support, the 

bending deflection due to transverse load can be obtained by (2): 
3 2 3

2 3

3 4
*( ).

48
b

PL x x
y

EI L L
 

 

  (2) 

 

where: 

yb is the deflection due to bending, P is the applied load, L is the beam´s length, E is the 

Young Modulus, I is the axial inertia moment, x is the x coordinate  

 

In a similar manner, the maximum distortion angle for hollow-box beams of low 

thickness subjected to torsion is (3): 

2

0 0

.
4 2

tM M CM

GA t GA t
  

 

(3) 

where: 

  is the twist angle, C is the shear flux, M is the mean line perimeter, G is the 

transversal elasticity modulus,A0 is the mean line area, t is the object thickness, Mt is 

the torsion moment 

 

The deflection due to torsion can be calculated by (4): 

.
2

t

D
y L

 

(4) 

where: 

yt is the deflection due to torsion, D is the diagonal length of the object 

 

The total deflection can be expressed as the sum of the contributions of bending and 

torsion (5): 

.total b ty y y 
 

(5) 

 

In a bending and torsion combined load, the resulting deflection is a consequence of the 

combination of the normal stresses due to bending and the shear stresses due to 

torsion.[2,3] 

 



ANNEX 4-SCIENTIFIC PAPER 

 

159 

3. The FEM models 

 

In order to validate the Finite Element Model Updating methodology done during this 

work two models were built: a ribbed plate, named model one and a tubular beam, 

named model two. In both models one considered three geometric variables and three 

material properties variables. Due to the different nature of the two objects the 

geometric variables are different in the two models. However, the material properties 

were the same in the two models: Poisson coefficient, Density and Young Modulus. The 

variables of the FEM models are in the table 1(ribbed plate) and in the table 2(tubular 

beam). The figure 1 and 2 shows the areas of the FEM models, as well as its variables: 

 

 

 
Fig.1-Areas (left) and variables (right) of the ribbed plate FEM model 

 

Variables of the ribbed plate FEM model 

Geometric variables Material properties 

LG1 Distance of inner ribs to the center  EX Young modulus 

LG2 Rib Height PXY  Poisson coefficient 

LG3 Thickness DNS  Density 

Table 1- Variables of the ribbed plate FEM model 

 

 
Fig.2-Areas (left) and variables (right) of the tubular beam FEM model 

 

Variables of the tubular beam FEM model 

Geometric variables Material properties 

LG4 Center to corner segment distance EX Young modulus 

LG5 Half width of the central segment PXY Poisson coefficient 

LG6 Height of the central part on the wall DNS Density 

Table 2- Variables of the tubular beam FEM model 
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4. Optimization Model 

 

The MATLAB program is used together with ANSYS. MATLAB controls the 

optimization process and ANSYS solves the FEM problem, by sending the deflections 

in specific nodes to a text file, that MATLAB can read. Then MATLAB calculates a 

new objective function value, changes variable values and sends orders to ANSYS to 

recalculate the deflections for the new variable values. The objective function q(U) can 

be defined as: 

 ( ) ( )q U ABS Ui  (5) 

where: 

q(U) is the objective function, Ui is the deflection on each nodal points (nodes),ABS is 

absolute value of an argument. 

The objective function q(U) was minimized by a MATLAB function named fmincon 

(nonlinear minimization). The objective function value is better the closer it is to zero. 

The figure 3 shows the interaction between ANSYS and the MATLAB optimization 

program:   

 
Fig.3-Functional fluxogram of the optimization methodology [4] 

 

5. Materials selection 

 

The first step in the materials selection is the definition of the relevant properties for the 

application. In this work, the desired properties are (Table3): 

 

Relevant properties for the materials selection 

- Young modulus (highest possible) 
- Toughness (highest possible) 
- Cost of the material (lowest possible) 

- Density                     (lowest possible) 

Table 3- Desired properties for materials selection 

    

For the initial materials selection it is necessary to choose a material class, not a specific 

material, because one has more mobility to change to another material in the same class 

with better properties for the application. The materials selection was performed using 

the Young Modulus/Density and Young Modulus/Cost materials selection charts 

(Fig.4). 
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Fig.4-Materials selection charts Young Modulus/Density (left)  

and Young Modulus/Cost (right) [5] 

 

In both charts(fig.4), the best classes are the ceramics, the composites with high Young 

Modulus and the metals. The ceramics are too brittle for this application. The 

composites with high Young Modulus are expensive (Eg. CFRP- Carbon Fiber 

Reinforced Polymer). The cheaper Composites have a low density but a lower Young 

Modulus than Metals. The Metals have a high Toughness and high Young Modulus. 

Some Composites have a low density and high Young Modulus, but their cost is much 

higher, so they are not the best choice. The best material class is the Metals and Alloys, 

which is the best class in both charts. In a detailed view of the Density/Young modulus 

diagram (fig.4), one can see that the best materials for this application are: Steel, Cast 

Iron and Nickel, whose have a high Young Modulus and a relatively low density, 

compared with some metals, such as Gold or Lead. A detailed view of the diagram 

Cost/Young modulus (fig.4) shows that the best materials for this application are: Low 

alloy Steels and Stainless Steel, whose have a high Young modulus and a relatively low 

cost. One can say that the best material for this application is the Steel, which has a 

good position in both diagrams. Of all steels, the dual-phase steels seem to be the most 

promising material for this application. Dual phase steels allows decreasing the objects 

thickness and improving the inertia moment of the section to obtain lower deflections 

with a similar material cost. The dual phase steel has high yield stress, which means it 

can be subjected to high loads without entering the plastic domain. The commercial 

dual phase steel DOCOL is the selected material. 

6  Results 

6.1 Tensile test results 

 

In order to determine Young Modulus, one must plot the Stress-Strain chart of the 

elastic domain only, and do a linear fit to find the slope of the recta. The Yield Stress 

was calculated using a 0,2% offset. The obtained Young Modulus and Yield Stress is 

shown on the table 4:  

 

Young Modulus and Yield Stress obtained in tensile test 

Specimen number Specimen designation Young Modulus Value Yield Stress value 

Specimen 1 DOCOL 600 DL Long 193,2 [GPa] 309,12 [MPa] 

Specimen 2 DOCOL 800 DP Long 168,2 [GPa] 555,06 [MPa] 

Table 4- Young modulus and Yield Stress obtained in the extensometry test 
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6.2 Extensometry test results 

 

The table 5 shows the Young Modulus range and the mean Poisson coefficient for the 

four specimens tested by extensometry test: 

 

Poisson coefficient and Young Modulus obtained in Extensometry test 

Specimen number Specimen designation Poisson coefficient Young modulus 

Specimen 3 DOCOL 600 DL Trans 0,285 182-198 [GPa] 

Specimen 4 DOCOL 600 DL Long 0,284 176-186 [GPa] 

Specimen 5 DOCOL 800 DP Trans 0,287 186-192 [GPa] 

Specimen 6 DOCOL 800 DP Long 0,270 184-203 [GPa] 

Table 5- Poisson coefficient and Young modulus obtained in the extensometry 

test. 

6.3 Optimization results 

 

The final variable values for the ribbed plate model are shown in the table 6. The final 

value of the objective function was: q(x)=0,00092 for the geometric parameters 

optimization and q(x)=0,04258 for the material properties optimization.  

 

Final variable values for the ribbed plate model 

Geometric parameters optimization Material properties optimization 

Variable 
Initial 

Value[m] 

Final 

Value[m] 
Variable Initial Value Final Value 

LG1 0,100 0,025 EX 2,1*10
11 

[Pa] 2,31*10
11 

[Pa] 

LG2 0,03 0,0507 PXY 0,29 0,435 

LG3 0,002 0,0046 DNS 7890 [Kg/m
3
] 7890 [Kg/m

3
] 

Table 6-Final variable values for the geometric parameters optimization (ribbed plate) 

 

The final variable values for the tubular beam model are shown in the table 7. The final 

value of the objective function was: q(x)=0,00053 for the geometric parameters 

optimization and q(x)=0,01151 for the material properties optimization.  

 

Final variable values for the tubular beam model 

Geometric parameters optimization Material properties optimization 

Variable 
Initial 

Value[m] 

Final 

Value[m] 
Variable 

Initial 

Value[m] 
Final Value 

LG4 0,085 0,0213 EX 2,1*10
11 

[Pa] 2,31*10
11 

[Pa] 

LG5 0,030 0,0076 PXY 0,29 0,292 

LG6 0,035 0,0805 DNS 7890 [Kg/m
3
] 7890 [Kg/m

3
] 

Table 7-Final variable values for the material properties optimization (tubular 

beam) 

 

7. Results discussion and conclusions 

 

In tensile test, the specimen 1 has the highest Young Modulus of the two specimens 

tested: 193,2 GPa. The specimen 2 has a Young Modulus of near 168,2 GPa. The 

Young Modulus obtained by extensometry test ranged from near 180 to 200 GPa. The 
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Young Modulus values are lower than the regular value of the steel, which is 210 GPa. 

The manufacturing processes may be the reason of such values of Young Modulus, 

because the material is conformed, and as a result of the increase in plasticity, the 

Young Modulus may decrease. The Specimen 1 has a lower Yield Stress, which is 

expected, because its designation is 600 and the specimen 2 is 800. This number is 

related to the Yield Stress in relative terms, which means that a lower number 

designation means a lower Yield Stress when comparing two specimens. The obtained 

Poisson Coefficient in extensometry test was near 0,29, which is the normal value for a 

steel, except for the specimen 6, which was near 0,27. About the optimization results, 

the obtained objective function is lower in the geometric parameters optimization than 

in the material properties optimization for both models. The conclusions of this work 

are: the developed Finite Element Model Updating code can be successfully used to 

optimize both geometric parameters and material properties. The geometric parameters 

play a more important role in the optimization process than the material properties, 

because the obtained objective function is lower in the geometric parameters 

optimization than in the material properties optimization. The tested specimens have 

high Yield Stresses, which means the material can be subjected to high loads before 

entering the plastic domain. In the practical applications of this work (plotters and laser 

cutting machines) it is very important to ensure that the material doesn´t leave the 

elastic domain, otherwise the permanent deformation will negatively affect the machine 

operation. Considering this fact, the dual phase steels are an adequate material for the 

applications of this work. The selected material does not reduce the deflections, because 

it has a lower Young Modulus, but the deflections can be substantially improved by the 

optimization of the geometry. 
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