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We propose to study proof search from a coinductive pointiefvv In this paper, we consider
intuitionistic logic and a focused system based on HerlselidT for the implicational fragment.
We introduce a variant of lambda calculus with potentiafifiiitely deep terms and a means of
expressing alternatives for the description of the “solupaces” (called Bohm forests), which are
a representation of all (not necessarily well-founded klitiscally well-formed) proofs of a given
formula (more generally: of a given sequent).

As main result we obtain, for each given formula, the redurctif a coinductive definition of the
solution space to a effective coinductive description imadry term calculus with a formal greatest
fixed-point operator. This reduction works in a quite dire@nner for the case of Horn formulas.
For the general case, the naive extension would not everube\lve need to study “co-contraction”
of contexts (contraction bottom-up) for dealing with theyimag contexts needed beyond the Horn
fragment, and we point out the appropriate finitary calcwusere fixed-point variables are typed
with sequents. Co-contraction enters the interpretatidgheoformal greatest fixed points - curiously
in the semantic interpretation of fixed-point variables antof the fixed-point operator.

1 Introduction

Proof theory starts with the observation that a proof is nibam just the truth value of a theorem. A
valid theorem can have many proofs, and several of them camdresting. In this paper, we somehow
extend this to the limit and study all proofs of a given prapos. Of course, who studies proofs can
also study any of them (or count them, if there are only figitelny possible proofs, or try to enumerate
them in the countable case). But we do this study somehowitsineously: we introduce a language to
express the full “solution space” of proof search. And siweefocus on the generative aspects of proof
search, it would seem awkward to filter out failed proof agesrfrom the outset. This does not mean
that we pursue impossible paths in the proof search (whialldMeardly make sense) but that we allow
to follow infinite paths. An infinite path does not correspdad successful proof, but it is a structure of
locally correct proof steps. In other words, we use coinglacyntax to modedll locally correct proof
figures. This gives rise to a not necessarily wellfoundedcbeimee. However, to keep the technical effort
simpler, we have chosen a logic where this tree is finitelyptiang, namely the implicational fragment
of intuitionistic propositional logic (with proof systenivgn by the cut-free fragment of the systéniy
Herbelin [3]).

Lambda terms or variants of them (expressions that may hawecbvariables) are a natural means
to express proofs (an observation that is catleelCurry-Howard isomorphism) in implicational logic.
Proof alternatives (locally, there are only finitely manytlbém since our logic has no quantifier that
ranges over infinitely many individuals) can be formally negented by a finite sum of such solution
space expressions, and it is natural to consider those spitesagiuivalence of theetof the alternatives.
Since infinite lambda-terms are involved and since wholetsni spaces are being modeled, we call
these coinductive termBdhm forests

D. Baelde and A. Carayol (Eds.): Fixed Points © J. Espirito Santo and R. Matthes and L. Pinto
in Computer Science 2013 (FICS 2013) This work is licensed under the
EPTCS 126, 2013, pp. 28343, d0i:10.4204/EPTCS.126.3 Creative Commoris Attribution License.


http://dx.doi.org/10.4204/EPTCS.126.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

J. Espirito Santo and R. Matthes and L. Pinto 29

By their coinductive nature, Bohm forests are no propetasstit objects: they can be defined by all
mathematical (meta-theoretic) means and are thus not fetaic as would be expected from syntactic
elements. This freedom of definition will be demonstrated arploited in the canonical definition
(Definition [8) of Bohm forests as solutions to the task ofyimg a sequent (a formulA in a given
contextl’). In a certain sense, nothing is gained by this representatithough one can calculate on
a case-by-case basis the Bohm forest for a formula of isitened see that it is described as fixed point
of a system of equations (involving auxiliary Bohm foreasssolutions for the other meta-variables that
appear in those equations), an arbitrary Bohm forest chnlmnobserved to any finite depth, without
ever knowing whether it is the expansion of a regular cycligpy structure (the latter being a finite
structure).

Our main result is that the Bohm forests that appear asisolgpaces of sequents have such a finitary
nature: more precisely, they can be interpreted as semanttia finite term in a variant of lambda
calculus with alternatives and formal greatest fixed-moinfEor the Horn fragment (where nesting of
implications to the left is disallowed), this works very sotidy without surprises (Theoreml15). The
full implicational case, however, needs some subtletiexeming the fixed-point variables over which
the greatest fixed points are formed and about capturinghdethey that comes from the introduction of
several hypotheses that suppose the same formula. Thpréetaion of the finite expressions in terms
of Bohm forests needs a special operation that weccattontraction(contraction bottom-up). However,
this operation is already definable in terms of Bohm fore®¥thout this operation, certain repetitive
patterns in the solution spaces due to the presence of megatturrences of implications could not be
identified. With it, we obtain the finitary representatiorh€breni 24).

In the next section, we quickly recapitulate syntax andrgpiles of the cut-free fragment of system
A and also carefully describe its restriction to Horn fornsula

Sectior B has the definition of the not necessarily well-flmehproofs, corresponding to a coinduc-
tive reading ofA (including its typing system). This is systeinco. Elimination alternatives are then
added to this system (yielding the Bohm forests), whicleatly allow the definition of the solution
spaces for the proof search for sequents. We give severaiptea and then show that the defined
solution spaces adequately represent alﬁtﬁoeproofs of a sequent.

In Sectior#, we present first the finitary system to captuee-tbrn fragment and then modify it to
get the main result for full implicational logic.

The paper closes with discussions on related and future iw@kctior 5.

2 Background

We recall below the cut-free fragment of systém(a.k.a. LJT), a sequent calculus for intuitionistic
implication by Herbelin[[3].

Lettersp, g,r are used to range over a base set of propositional varialbtdsH we also calatoms.
LettersA,B,C are used to range over the set of formulas (= types) built fppapositional variables
using the implication connective (that we write> B) that is parenthesized to the right. Often we will
use the fact that any implicational formula can be uniquegainposed a8; D A O ... D A, D p with
n > 0, also written in vectorial notation @& > p. For example, if the vectoh is empty the notation
means simplyp, and ifA = A, Ay, the notation mean&; > (A; D p).

The cut-free expressions afare separated into terms and lists, and are given by:

(terms)  t,u = xI|AxAt
(lists) I == ()fu:l
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Figure 1: Typing rules ok
FFu:A T|l:BFp

fopEp ™ Tusl:AoBEp MO
Mx:AFt:B : :
X RIntro rl:Ak-p (y:A el App
FrNEAXRt:ADB M=yl:p

where a countably infinite set of variables ranged over ligie, y, w, zis assumed. Note that in lambda-
abstractions we adopt @domain-full presentation, annotating the bound variable with a formdlae
term constructokl is usually callecapplication Usually in the meta-level we prefer to writédt, ..., tn)
(with n € Np) to range over application constructions, and avoid spgaibout lists explicitly (where
obviously, the notationts, .. .,t,) means() if n=0 andt; :: I, if (t,...,t;) meand). In the meta-level,
when we known = 0, instead ok(ts, .. .,t,), we simply write the variable.

We will view contextsl™ as finite lists of declarations: A, where no variables occurs twice. The
contextl,x: Ais obtained fromT by adding the declaratiox: A, and will only be written if this yields
again a valid context, i. e., ¥ is not declared i. The system has a form of sequent for each class of
expressions:

FEt:A rl:AFPp.

Note the restriction tatomic sequent@§he RHS formula is an atom) in the case of list sequents.

The rules ofA for deriving sequents are in Figuré 1. Note that, as list eetyuare atomic, the
conclusion of the application rule is also atomic. This i the@ case in Herbelin’s original system [3],
where list sequents can have a non-atomic formula on the RHBe variant of cut-free we adopted,
the only rule available for deriving a term sequent whose R$1& implication isRIntro. Still, our
atomic restriction will not cause loss of completeness efdfsstem for intuitionistic implication. This
restriction is typically adopted in systems tailored foogrsearch, as for example systems of focused
proofs. In factA corresponds to a focused backward chaining system wheatoatls aresynchronous
(see e. g. Liang and Millef [7]).

We will need the following properties of.

Lemma 1 (Type uniqueness) 1. Givenl andt, there is at most one A such that t : A.
2. Givenl, | and A, there is at most one p such tiidk: A p.

Proof Simultaneous induction on derivability. O

Since the empty list) has no type index, we need to kn@win the second statement of the previous
lemma.

Lemma 2 (Inversion of typing) In A:
1. T+ AxAt: Biff there exists C s.t. B:AD C andl,x: At :C;
2. THx({ty,...,t%) : Aiff A= p and there existB s.t. x B> pe T andl -t; : B;, for any i.

Proof 1. is immediate and 2. follows with the help of the fact thaft;, ... tx) : Bl piff there exist
Biy,...,Bks.t.B=B; D ... D B¢ D pand, for anyi, I' -t : Bj (proved by induction ok). 0
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Figure 2: Typing rules oA yom

LA Mu:p F|I:H|—qL|t
rQ:pkp X Mu:l:pDOHEQ ntro

Fl:HEPp (y:H)erl
Feyl:p App

Now we identify theHorn fragmentof cut-free A, that we denote by\ yom. The class oHorn
formulas(also calledHorn clauseyis given by the grammar:

(Hornformulas) H == p|pDH

where p ranges over the set of propositional variables. Note thaHfaorn formulas, in the vectorial
notationH > p, the vector components; are necessarily propositional variables, i. e., any Hormtda
is of the formd D p.

The Horn fragment is obtained by restricting sequents dowel

1. contexts are restricted orn contextsi. e., contexts where all formulas are Horn formulas;
2. term sequents are restricted to atomic sequents, irm. siequents are of the form-t: p.

As a consequence, theabstraction construction and the riéntro, that types it, are no longer needed.
The restricted typing rules are presented in Fiflire 2.

3 Coinductive representation of proof search in lambda-bar

We want to represent the whole search space for cut-freéfpino\. This is profitably done with
coinductive structures. Of course, we only consider lgcadirrect proofs. Since proof search may fail
when infinite branches occur (depth-first search could hgped there), we will consider such infinite
proofs as proofs in an extended sense and represent thenfi,abugawe will introduce expressions that
comprise all the possible well-founded and non-wellfouhdeofs in cut-freel.

The raw syntax of these possibly non-wellfounded proofsésgnted as follows

N :i=co AX N X(Ny,...,N) ,

yielding the (co)terms of system  (read coinductively, as indicated by the inde). Note that instead
of a formal class of list$ as in the-system, we adopt here the more intuitive notatjdh, ..., N) to
represent finite lists.

Since the raw syntax is interpreted coinductively, alsotyfjpéeng rules have to be interpreted coin-
ductively, which is symbolized by the double horizontaklim Figure[ B, a notation that we learnt from
Nakata, Uustalu and Bezem [9]. (Of course, the formulasAygiay inductive.) As expected, the restric-
tion of the typing relation to the finit&-terms coincides with the typing relation of thesystem:

Lemma3 Foranyte A, T -t:AinAiffTFt:AinAc.

Proof By induction ont, with the help of Lemmal2. o
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Figure 3: Typing rules ok’

M x:A-t:B RInt (X:Bg,...,BkDp el TEN:B,i=1,...,k
ntro
M-AxAt:ADB M x(Ng,..,Ng) : p LVeclntro

Figure 4: Extra typing rule oky W.r.t.A°

NrN-g:p,i=1...,n
MEEi+--+Enqip

Alts

Example 4 Considerw := A fP°P.AxP.N with N= f(N) of type p. This infinite term N is also denoted
fe.

It is quite common to describe elements of coinductive sybta(systems of) fixed point equations.
As a notation on theneta-levelfor unique solutions of fixed-point equations, we will use thinderv
for the solution, writingv N.M, whereN typically occurs in the ternM. Intuitively, vN.M is theN s. .
N = M. (The letterv indicates interpretation in coinductive syntax.)

Example 5 w of Examplé ¥ can be written asf PP AXP.VN.f(N). ', f: pD p,x: pFVN.f(N): pis
seen coinductively, sowe det- w: (p>p) D pD p.

We now come to the representation of whole search s OacesseTImé coinductive cut-fre-terms
with finite numbers of elimination alternatives is denotgd\ly and is given by the following grammar:

(co-terms) N =coc AXAN|E;+---+E,
(elim. alternatives) E :=¢o X(Ng,...,Ng)

where bothn,k > 0 are arbitrary. Note that summands cannot be lambda-atietrsld We will often
usey E; instead ofE; + - - + Ej if the dependency d&; oni is clear, as well as the number of elements.

|
Likewise, we write(N;); instead of(Ny, ..., Ny). If n=0, we writeO for E; +---+Ep. If n=1, we write
E; for E1 + - -- + E,, (in particular this injects the category of eliminationeafiatives into the category of
co-terms) and do as #f was a binary operation on (co)terms. However, this will alsvhave a unique
reading in terms of our raw syntax @ ZO. In particular, this reading makes associative and) its
neutral element.

Co-terms oﬁgo will also be called Bohm forests. Their coinductive typindes are the ones ﬁco,
together with the rule given in Figuté 4, where the sequemtgdo)terms and elimination alternatives
are not distinguished notationally.

Notice thatl - O : pfor all I andp.

Below we consider sequenfts= A with I" a context and\ an implicational formula (corresponding
to term sequents of without proof terms — in fact; = A is nothing but the pair consisting 6fandA,
but which is viewed as a problem description: to prove foauin contextl).

1The division into two syntactic categories also forbidsdkeeration of an infinite sum (for whigh= 2 would suffice had
the categories faN andE been amalgamated).



J. Espirito Santo and R. Matthes and L. Pinto 33

Definition 6 The function.”, which takes a sequemt = A and produces a &m forest which is a
coinductive representation of the sequent’s solution spacgiven corecursively as follows: In the case
of an implication,

ST =ADB):=Ax 7, x:A=B) ,

since RIntro is the only way to prove the implication.
In the case of an atom p, for the definition.gf(I" = p), let y; : A be the i-th variable il with A
of the forml§i D p. Letl§i =Bj1,...,Bjk. Define Nj:= L= Bi’j). Then, E:= yi<Ni.j>j, and finally,

L (M=p): z E .
This is more sloppily written as

SC=p:= 5 WS =B,
y:Boper
In this manner, we can even write the whole definition in one: i
ST=Aop) =AA § I (B=B)); withd:=Tx:A

y:BopeA

This is a well-formed definition: for every andA, . (I = A) is a Bohm forest and as such rather a
semantic object.

Lemma 7 Givenl and A, the typing .#(T = A) : A holds inAy .
Let us illustrate the functiot” at work with some examples.

Example 8 We consider first the formulaA (p D p) O p D p and the empty context. We have:
L(=(podp)dpdp) =AfPPPAXP. . Z(f:pDp,x:p=p)

Now, observe tha?’(f : pD p,x: p=p) = f(L(f: pD p,x: p= p)) +x. We identify” (f : pD p,x
p = p) as the solution for N of the equation-N f(N) +x. Usingv as means to communicate solutions
of fixed-point equations on theeta-levelas forA® , we have

L(=(podp)2pdp) =AfPPPAXPVN.f(N)+x

By unfolding of the fixpoint and by making a choice at each efdimination alternatives, we can
collectfrom this coterm as the finitary solutions of the sequent@Ii@hurch numerals\(f P°P. A xP. f”(
with n € Np), together with the infinitary solutiod fP°P.AxP.f*, studied before as example far
(corresponding to always making the f-choice at the elifidmealternatives).

Example 9 We consider now an example in the Horn fragment.lLetx: p> gD p,y:q> pDq,z:
p (again with p# q). Note that the solution spaces of p and g relative to thigisat are mutually
dependent and they give rise to the following system of emsat

Np = X(Np,Ng)+2
Ng = Y(Ng,Np)
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Figure 5: Membership relations

mem(M,N) memg (M, E)
mem()\xA,MJ\XA.N) mem(M,E1 + - -+ Ep)

(for somei)

mem(M1,N1) ... mem(Mg,Ny)
memE(X(Ml, ceey Mk>,X<N1, ceey Nk>)

and so we have
F(T=p) = VNp.X(Np,VNg.y(Ng,Np)) +2
S(F=0ad) = VNg.¥(Ng,VNp.X(Np,Ng) +2)

Whereas for p we can collect one finite solution (z), for g weasaly collect infinite solutions. Because
in the Horn case the recursive calls of ti¥ function are all relative to the same (initial) context, mg
fragment the solution space of a sequent can always be egues a finite system of equations (one for
each atom occurring in the sequent), see Thedrém 15.

Example 10 Let us consider one further example whereA(((p > q) D p) D p) 2 q) D g (a formula
that can be viewed as double negation of Pierce’s law, whes\gewed as absurdity). We have the
following (where in sequents we omit formulas on the LHS)

No = (= A)=Ax{((P2a)2p)2p)2a Ny

N;, = Y(x:>q)_x<N2>

N, = Z(x=((pDq) D p)Dp)=AyP9PN;
N3 = Y(Xy:HO) Y(Na)

Ny = (xy=p>Dq) =AZ".Ns

Ns = 7(XY,z= 0q) =X(Ng)

Ne = Z(xy.z=(( qu)Dp)Dp):)\y(lquDp.N7
N7 = Z(XY,zy1= p) =Y(Ng) +2+Yy1(Ng)

Ng = Z(xY,zy1=p>0) =Az Ny

No = Z(XV¥,2Y1,21=0)

Now, in Ny observe that yy; both have typé€p O q) O p and zz; both have type p, and we are back at N
but with the duplicates;yof y and z of z. Later, we will call this duplication phenomenoor-contraction
and we will give a finitary description ofg\and, more generally, of alt”’(I" = A), see Theore 24. Of
course, by taking the middle alternative in,Mve obtain a finite proof, showing that A is provablein

We now define a membershlp semantics for co-terms and elimmalternatives oi’\Z in terms of
sets of (co)terms ine

Themembership relatlonenem(M N) andmemg (M, E) are contained in° ><)\z andA®® x E/\z
respectively (WherE)\ s ° stands for the set of elimination alternatlves«\g?) and are given coinductively
by the rules in Figl 5.

Proposition 11 For any Ne A°, mem(N,. (T = A))iff T - N:AinA
Proof “If”. Consider the relations

_{(Ny(F:>A))|FFN'A}
Re := {(X{(N)i,x(-(T = Bi))i) | (X:By,...,Bk D p) € TAT FX(Ng,...,Ny) : p}
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It suffices to show thalR C mem, but this cannot be proven alone simaem andmemg are defined si-
multaneously. We also prowg: C memg, and to prove both by coinduction on the membership relafion
it suffices to show that the relatiofis Rg arebackwards closed. e.:

1. (AXA.M,AXA.N) € Rimplies (M,N) € R;
2. (M,E1+---+E,) € Rimplies for somd, (M, Ej) € Rg;
3. (X(M1,...,Mk),x(Ng,...,Nk)) € Re implies for alli, (Mi,Ni) € R

We illustrate one case. Consid@M,.” (I = A)) € R, with #(I' = A) = Eg +--- + E5. We must
show that, for some (N,E;) € Re. From.”(I' = A) = E; + - - - + Ep, we must havéA = p. Now, from
= N: p, there must existx: By,...,Bx D p) € I andNy,...,Ng s. t. N = X(Ny, ..., Nk). By definition of
(= A), thereis s.t. & =x(Z(I = By),...,.7 (I = By)).

“Only if”. By coinduction on the typing relation ok ° This is conceptually easier than the other
direction since- is a single coinductively defined notion. We define a relaRdor which it is sufficient
to proveR CI-:

R:={(F',N,A) | mem(N,.7 (I = A))}

ProvingR g_l;oby coinduction amounts to showing tHaits backwards closed — with respect to the typing
relation ofA ", i. e., we have to show:

1. (M, AxAt,ADB) € Rimplies((I,x: A),t,B) €R;

2. (I, x(Ny,...,Ng), p) € Rimplies the existence d;,...,Bx s.t. (X: By,...,Bx D p) € I and, for
alli=1,...,k (I',N;,B) e R

We show the second case (relative to ruMecintrg. So, we havemem(N,. (I = A)) with N =
X(Ny,...,Nx) andA = p, and we need to show that, for somhe By,...,Bx D p) € I', we have, for all,
mem(N;,.” (I = By)). SinceA=p, (I = A) = E1+--- + E,. Hence, the second rule fatem was
used to infermem(N,.7(I" = A)), i.e., there is g s.t. memg(N,E;j). Therefore E; = x(My,..., M)
with termsMy, ..., My, and, for alli, mem(N;, M;). By the definition o (I" = A), this means that there
are formulasBy, ...,Bxs.t.(X:By,...,Bx D p) € ' and, for alli, M; = .7 (I' = B). 0

Example 12 Let us consider the case of Pierce’s law that is not validitinistically. We have (for

p#Q):
Z(= (P2 ) D p) D p) = AXPDP x(AyP.0)

The fact that we arrived ad and found no elimination alternatives on the waynihilatesthe co-term
and implies there are no terms in the solution space>of(p D g) > p) D p (hence no proofs, not even
infinite ones).

Corollary 13 (Adequacy of the co-inductive representatiorof proof search inA) For any te A, we
havemem(t,.7 (I = A)) iff I -t : A (where the latter is the inductive typing relation/of.

Proof By the proposition above and Lemina 3. O

4 Finitary representation of proof search in lambda-bar

In the first section we define a calculus of finitary repred@na. In the third section we obtain our main
result (Theorerh 24): giveh = C, there is a finitary representation.&f(I" = C) in the finitary calculus.
To make the proof easier to understand, we first develop isehend section the particular case of the
Horn fragment.
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4.1 The finitary calculus

The set of inductive cut-fred-terms with finite numbers of elimination alternatives, andixpoint
. —gf] o : . ,
operator is denoted by§ P and s given by the following grammar (read inductively):

(terms) N = AXAN|gfpX.E;+---+Eq|X
(elim. alternatives) E := x(Ni,...,Ny)
where X is assumed to range over a countably infinite sefixgfoint variables(lettersY, Z will also
be used to range over fixpoint variables that may also be titafgas meta-variables), and where both

n,k > 0 are arbitrary. Below, when we refer fimitary termswe have in mind the terms ﬁ?p. The
fixed-point operator is callegfp (“greatest fixed point”) to indicate that its semantics isvih defined in
terms of infinitary syntax, but there, fixed points are unigdence, the reader may just read this as “the
fixed point”.

We now give a straightforward interpretation of the formakél points (built withgfp) of X?p in
terms of the coinductive syntax Eﬁo (using thev operation on the meta-level).

Dej&ition 14 We callenvironmenta function from the set of fixpoint variables into tﬂgoset ojt@rms
of A5 . The interpretation of a finitary term (relative to an enviraent) is a (co)term ofs given via a

family of functiong]—] : ngp — X;O indexed by environments, which is recursively defined &sifsl

[XJe = &(X)
[AAN]e = AXA[N]e
[[gpr-IXEi]]z = VN'Iz[[Ei]]EU[X»—}N]
[X(Ng,....NQJe = X([Nafg,..., [Nfle)

where the notatior§ U [X — N] stands for the environment obtained frénby setting X to N.

Remark that the recursive definition above has an embeddedwsive case (pertaining to thep-
operator). Its definition is well-formed since every eliaiion alternative starts with a head/application
variable and the occurrencesMfare thus guarded.

When a finitary termN has no free occurrences of fixpoint variables, all enviramseetermine the
same coterm, and in this case we simply wifii] to denote that coterm.

4.2 Equivalence of the representations: Horn case

Theorem 15 (Equivalence for the Horn fragment) Let ' be a Horn context. Then, for any atom r,
there exists Ne ngp with no free occurrences of fixpoint variables such ] = .7 (I = r).

Proof

Let us assume there aketoms occurring i = r. We define simultaneousk/functionsNp( )
(one for each atorp occurring inl” = r), parameterized by a vector of declarations of the frng. The
vector is writtenX : g and is such that no fixpoint variable and no atom oceurs twite. simultaneous
definition is by recursion on the number of atomg e r not occurring inX : g, and is as follows:

X34

_ X N if p=qi
No(X20) =19 gfpXp. 3 YNy (X:G,Xp:p)); otherwise
(. Fop)er
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where vector)ﬁq,xp . p is obtained by adding the componexy : p to the vectorX—:c>1. Observe
that o_nI)y fixpoint variables among the fixpoint variablesldesd in the vector have free occurrences in
Np(X @ q).
By induction on the number of atoms of (the fixed sequéng- r not in (the variable))ﬁq, we
prove that: N
[Np(X:q

Casep = q;, for somei. Then,

e =7 (T = p)if £(X) = (I = ), for anyi. (1)

LHS=[X]¢ = £(X) = #(T = ¢) =RHS

Otherwise,
_> .
LHS=[gfpXp. > ¥(N;(X:9.Xp:p))ifle =N
(Y. Fop)elr
whereN®” is given as the unique solution of the following equation:
© VA .
N™ = Z Y(IN, (X0, %p 2 P euxpsne) i (2

(y:Fop)er

Now observe that, by I.H., the following equatioh$ (3) dnjda¢e equivalent.

ST =p) = S WING (X2 6%t P leupnr () 3
(y:Fop)el
S (C=p= > W =rj) (4)
(y: ¥ op)er

By definition of (" = p), (4) holds; hence — because bf (3)4T" = p) is the solutionN* of (2),
concluding the proof thdtHS= RHS

Finally, the theorem follows as the particular case[df (1erelp =r and the vector of fixpoint
variable declarations is empty. O

4.3 Equivalence of the representations: full implication&case

The main difference with exhaustive proof search in the cdddorn formulas is that the backwards
application ofRIntro brings new variables into the context that may have the sgpeeds an already
existing declaration, and so, for the purpose of proof $gdhey should be treated the same way.

We illustrate this phenomenon with the following definitiand lemma and then generalize it to the
form that will be needed for the main theorem (Theokemn 24).

Definition 16 For N and E inxgo, we defingxy +--- +%,/y|N and[x; + - - - 4+ xn /y]E by simultaneous
corecursion as follows:

[X1+ -+ Xn /Y] (AXA.N) AXR X1+ -+ % /YN
vr+~-+mﬁw;Ei ;Dq+~-+mﬁwa
Dat- /M (ZNDi) = Z{[xa+ -+ X/YINDi ifz#y
[ Iy(NDi) = 5 xp(Pa+-+X/yINi

1<T<n

X1+ X /Y
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Lemma 17 (Co-contraction: invertibility of contraction) If x1,X,y ¢ I', then
L(Cx1 A% A=C)=[X1+X/y.7(Ty:A=C) .

Proof The proof is omitted since Lemrial20 below is essentially a&g@ization of this result. O

We now capture when a contdXxtis an inessential extension of contéxt
Definition 18 1. |I| = {A:3xs.t(x:A) el}.

2.r<r’ifr crrand|l| =1r".

3.TM=p<(M=p)ifr<r’and p=p.

Let o range over sequents of the fofim=- p. Thus, the last definition clause defines in general when
o<da.

Definition 19 1. Letl <I’. For N and E inAs , we defindl” /TN and[[’/[|E by simultaneous
corecursion as follows:

T"/TJAXAN) = AXA I, (x:A)/T,(x: AN

[F’/F]Iin = ;_[rf/r]a

[r//r](Z<Ni>i) = Z(["/TIN))i if z¢ dom()

[r/r(zN)i) = wrd) I /FING, if z € dom()
w.l(z))el”

2. Leto < c'. [0’/g]N =[I""/T|N whereo = (I' = p) ando’ = (I'" = p). Similarly for[o’/0|E.
Lemma 20 (Co-contraction) If ' <’ then.”(I" = C) =["/T](.(I = C)).

Proof LetR:={(/(I'"=C),[l"/T|(~(I =C))) | <TI’,Carbitrary}. We prove thaRis backv&%rd
closed relative to the canonical equivalenegenerated by the coinductive definition of terms)\q?
(but see the comments following the proof), wheRcg=.

S =>C)=Ag"zv.  § S D =By), (5)

(zBop)ed

and
P =C)=AZ220 T Y wA/ALS (b= By), (6)
(y:Bop)eh (WA(y))en
whereA:=TU{z : A1, -,z : Ay} andA :=T"U{z : A1, -,z An}.
Froml < T’ we getA < 4A’, hence

(7 (& = Bj),[A /A7 (A= Bj)) R .

To conclude the proof, it suffices to show that (i) each heatablez that is a “capability” of the sum-
mation in [3) is matched by a head-variablethat is a “capability” of the summation i](6); and (ii)
vice-versa.

(i) Let ze domA"). We have to exhibiy € dom(A) such thatz: A(y)) € A'. First casez € dom(A).
By A <A, (z:A(z)) € A'. So we may take = z. Second and last case= I'\I'. By ' < T, there is
ye Tl suchthatz: ' (y)) e ['. Butthen(z: A(y)) € &.

(i) We have to show that, for aly € domA), and all(w: A(y)) € &', w e dom4A'). But this is
immediate. O
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Notice that we cannot expect that the summands appear imthe srder in[(5) and{6). Therefore,
we have to be more careful with the notion of equality of Botamests. It is not just bisimilarity, but
we assume that the sums of elimination alternatives aréettess if they were sets of alternatives, i.e.,
we further assume that is symmetric and idempotent. It has been shown by Picard lemdeécond
author [10] that bisimulation up to permutations in unbaeohdists of children can be managed in a
coinductive type even with the interactive proof assis@od). In analogy, this coarser notion of equality
(even abstracting away from the number of occurrences oftamative) should not present a major
obstacle for a fully formal presentation.

In the rest of the paper — in particular in Theorflemh 24 — we asghiat sums of alternatives are treated
as if they were sets.

Example 21 (Exampld_10 continued)Thanks to the preceding lemma, il obtained by co-contraction
from Ns:

No=[X:-y:(pPDQ)Dp,z:py1:(PDQ DP,zz:p/X:-y: (P> DpP,2z:pNs ,

where the type of x has been omitted. Hencg,N§, Ng and Ny can be eliminated, and d\can be
expressed as the (meta-level) fixed point:

N5 = v N‘X<)\yg_p3q)3p‘y<)\Z:IF_)‘[X7y>Z>ylazl/X>y7Z]N> +Z+ y1<)\ Zf-[x>y>Z,Y1azl/X>y>Z]N>> ’
now missing out all types in the context substitution. Hipale obtain the closedd@m forest
(= A) = AxU(P2A2P)OP)A y () y(POAOP i) 7P N5))

The question is now how to give a finitary meaning to terms Nkdn the example above, which
are defined by fixed points over variables subject to contetastgution. We might expect to use the

equation definind\Ns to obtain a finitary representation Fﬁfp, provided context substitution is defined
on this system. But how to do that? Applying syy,z v1,21/X,y,2] to a plain fixed-point variable
cannot make much sense.

The desired finitary representation in the full implicatibnase is obtained by adjusting the terms of

227 used in the Homn case as follows:
(terms) N 1= (---)|gfpX9.Ex+---+Ey| X°

Hence fixpoint variables are “typed” witequents.

Different free occurrences of the saienay be "typed” with different’s, as long as a lower bound
of thesea’s can be found w.r.t< (Definition[18).

Relatively to Definitior_I4, an environme@dt now assigns (co)term of X;o to “typed” fixpoint
variablesxX?, providedX does not occur with two different “types” in the domainéaffor all X; we also
change the following clauses:

X [07/0]&(X?) if 0 <o
[efpX©. ) Els = VN. 3 [Eleuxersn

We will have to assign some default valueX8' in case there is no suah, but this will not play a role
in the main reiglt below.
Map Np(X : q) used in the proof of Theorem 115 is replaced by the following:
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Definition 22 Let=:= X : © = q be a vector of m> 0 declarations(X; : ©; = q;) where no fixpoint
variable and no sequent occurs twice. I, ,(=) is defined as follows:
If, for somel <i <m, p=q and®; C T and|O;| = |A|, then

NF:>AD p\— =A Zf ﬁ X,

otherwise,
F:>A)p )‘Zf Zﬁ gfpY°. HZ y<NA;\Bj (Z2,Y:0));
(y:BOp)ea
where, in both cased ;=T U{z :As,---,z,: Ay} ando :=A = p.

The definition ofNp(X : @) in the proof of Theorem 15 was by recursion on a certain nurober
atoms. The following lemma spells out the measure that igrsd@ly decreasing in the definition of

NI’:>C(E)-
Lemma 23 For all ' = C, Nr—¢(+) is well-defined, wheredenotes the empty vector.

Proof Let us callrecursive calla “reduction”
. N
N z5p(X 1@ =)~ Nasp (X :©=0,Y : 0) @)

where the if-guard in Def 22 failsh and o are defined as in the same definition; and, for sgme
(y:B D p) € A. We want to prove that every sequence of recursive calls fpn(+) is finite.

First we introduce some definitionse7S'P:= {B | there isA € &/ such thaB is subformula of\},
for <7 a finite set of formulas. We say is subformula-closeif <7S'"°= o7, A stripped sequeris a pair
(%,p), whereZ is a finite set of formulas. [&6 =T = p, then|o| denotes the stripped sequétit|, p).
We say(%, p) is over.«/ if 28 C o/ andp € <. There aresize.<7 ) := a- 2 stripped sequents over, if
a (resp.k) is the number of atoms (resp. formulas)dn

Let .o/ be subformula-closed. We séy=-C and= := X : © = q satisfy thes/-invariant if:

(i) [Fu{C} c «;
(i) ©,C O, C--- COn=T (if m=0 then this is meant to be vacuously true);
(iiy For1<j<m,qj €|,

wherem > 0 is the length of vectaE (if m= 0, also item (iii) is vacuously true). In particulag| is over
o, forall o € =. We prove that, if = C and= satisfy thes/-invariant for somez/, then every sequence
of recursive calls fronNr_.c(=) is finite. The proof is by induction osiz€ <7 ) — sizg=), wheresizg=)
is the number of elements ¢f| and|=| := {|o|: 0 € =}.

LetC = A > p. We analyze an arbitrary recursive call (7) and prove thatyesequence of recursive
calls fromNa—.g;(Z,Y : 0) is finite. This is achieved by proving:

() A= Bjand=,Y : o satisfy thes/-invariant;
() sizd=)Y :0) > sizg=).
Proof of (1). By assumption, (i), (ii), and (iii) above holtVe want to prove:
(") 16|U{B;} C o;
(i) ©1COC---COCA=A;
@iy Forl <j<m+1,q €A
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Proof of ("). |A] = [T U{Aq,--- ,AH} C &/ by (i) and.«Z subformula-closedB; is a subformula of
B> pandB D p € |A| becausdy: B D p) € A, for somey.

Proof of (ii"). Immediate by (ii) and” C A.

Proof of (jii"). For 1< j <m, gj € [[[SY°C |A[S®, by (iii) and I C A. On the other handjj.1 = p €
|A[*Pbecausdy : B O p) € A, for somey.

Proof of (Il). Given that the if-guard of D€f, 22 fails, ancatt®; C I due to (ii), we conclude: for all
1<i<m p#q or |6 # Al ) > sizg=).

Now, by I.H., every sequence of recursive calls frdiaL g, (=,Y : 0) is finite. This concludes the
proof by induction.

Finally let.<” = (|F| U {C})S"Pand observe thdt = C and= = - satisfy thes-invariant. 0

-

Theorem 24 (Equivalence)For any I and C, there exists tN.c € A2" with no free occurrences of
fixpoint variables such thgiNr_.c]] = .7 (I = C).

Proof We prove: if, for alli, E(Xi@iiqi) =.7(0;=q), then

where=:= X : © = @. In this proof we re-use the concepts introduced in the podafemma28. Let
= (JFJU{A D p})3. The proof is by induction osiz€.<7) — siz€=).
Casep=q and®] C I and|©{| = |A|, for some 1< i < m, with mthe length of=. Then,

LHS = AZ*---Zn[X 9] (by definition)
= )\zf A= Gi/6 = GIEXDTY)  (by definition and (*) below)
At 20 A= q/6i = )7 (0 = q) (by assumption)
AZe-- z;\n.y(A = i) (by Lemmd2D and (*))
= RHS (by definition)

whereA:=TU{z : A, -,z : Ay}, which implies(©; = q;) < (A= q;). The latter fact is the justifica-
tion (*) used above.

The inductive case is an easy extension of the inductiveinaBeeoreni 15. Suppose the case above
holds for no 1<i <m. ThenLHS= )\z’jl-'-zﬁ“.N“", whereN® is the unique solution of the following
equation

N = 5> ¥([Na=g(ZY: 0)euposns)] ()
(y:ﬁ)p)eA

and, againA:=T U{z : Ay, --,Z,: Aq}. Now observe that, by I.H., the following equations](10) and
(@1) are equivalent.

SB=p) = > Y[Na=g(EY:0)evyonss@a=p))i (10)
(y:ﬁ)p)eA

JB=p = > YWB=B)); (11)
(y:ﬁ)p)eA

By definition of (A = p), (11) holds; hence - because bf(10¥<A = p) is the solutionN* of (9).
ThereforeLHS= )\zfl ...Z. (A = p), and the latter i®RH Sby definition of.& (I = AD p).

Finally, the theorem follows as the particular case df (8w = A > p and the vector of fixpoint
variable declarations is empty. O
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5 Conclusion

We proposed a coinductive approach to proof search, whiclilugtrated in the case of the cut-free
systemLJT for intuitionistic implication (Oand its proof-annotate@nsionA). As the fundamental tool,
we introduced the coinductive caIcuI|A§ which besides the coinductive readlng)qflntroduces a
construction for finite alternatives. The (co)terms of ttédculus (also called Bohm forests) are used
to represent the solution space of proof searchLfbf-sequents, and this is achieved by means of a
corecursive function, whose definition arises naturallytdiing a reductive view of the inference rules
and by using the finite alternatives construction to accéemmultiple alternatives in deriving a given
sequent.

We offered also a finitary representation of proof seardhlif, based on the inductive calculﬁfp
with finite alternatives and a fixed point construction, ahdveed equivalence of the representations.
The equivalence results turned out to be an easy task in eeofdhe Horn fragment, but demanded for
co-contraction of contexts (contraction bottom-up) in¢hse of full implication.

With Pym and Ritter [11] we share the general goal of settifrgmework for studying proof search,
and the reductive view of inference rules, by which eachrerfee rule is seen as a reduction opera-
tor (from a putative conclusion to a collection of sufficigmemises), and reduction (the process of
repeatedly applying reduction operators) may fail to yial¢finite) proof. However, the methods are
very different. Instead of using a coinductive approachmrynd Ritter introduce tha uve-calculus
for classical sequent calculus as the means for repregetiinvations and for studying intuitionistic
proof search (a task that is carried out both in the contegti@tequent calculus LJ and of intuitionistic
resolution).

In the context of logic programming with classical first-erdHorn clauses, and building on their
previous work [[6] 4], Komendantskaya and Power [5] esthbdiscoalgebraic semantics uniform for
both finite and infinite SLD-resolutions. In particular, atina of coinductive (and-or) derivation tree
of an atomic goal w.r.t. a (fixed) program is introduced. Stness and completeness results of SLD-
resolution relative to coinductive derivation trees anthecoalgebraic semantics are also proved. Logic
programming is viewed as search for uniform proofs in segicgiculus by Milleret al. [8]. For intuition-
istic implication, uniform proofs correspond to the clag$m-)expanded normal natural deductions (see
Dyckoff and Pinto[[2]), hence to the typedterms we considered in this paper (recall the restriction t
atoms in ruleDer of Fig.[d for typing application). Under this view, our wordates to Komendantskaya
and Power([b], as both works adopt a coinductive approadheicontext of proof search. However, the
two approaches are different in methods and in goals. Asdhes lof the coinductive representation of
the search space, instead of and-or infinite trees, we fat@nCurry-Howard view of proofs as terms,
and propose the use of a typed calculus of coinductive lardrtas. Whereas Komendantskaya and
Power [5] are already capable of addressing first-ordertdication, we only consider intuitionistic im-
plication. Still, as we consider full intuitionistic imlation, our study is not contained in classical Horn
logic. The fact that we need to treat negative occurrencempifcation, raises on the logic programming
side the need for dealing with programs to which clauses eaadlded dynamically.

f
As a priority for future work, we plan to develop notions ofnmmlisation for the calcuil s and)é P

in connection with aspects of proof search like pruning deapaces and reading off (finite) proofs.

In order to test for the generality of our approach, we intendxtend it to treat the first-order case.
Staying within intuitionistic implication, but changingpe proofs searched for, another case study we
intend to investigate is Dyckhoff’s contraction-free yat[1].
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