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Abstract

Distribution based artificial fish swarm (DbAFS) is a new heuristic for continuous global opti-
mization. Based on the artificial fish swarm paradigm, the new algorithm generates trial points from
the Gaussian distribution, where the mean is the midpoint between the current and the target point
and the standard deviation is the difference between those two points. A local search procedure is
incorporated into the algorithm aiming to improve the quality of the solutions. The performance of
the proposed DbAFS is investigated using a set of small bound constrained optimization problems.
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1 Introduction

The artificial fish swarm (AFS) algorithm belongs to the class of stochastic population-based methods
for solving continuous global optimization problems. The artificial fish is a fictitious entity of a true fish.
Its movements are simulations and interpretations of fish behavior [Wang et al., 2006, Jiang et al., 2007,
Xiu-xi et al., 2010, Rocha et al., 2011, Rocha and Fernandes, 2011, Neshat et al., 2013]. The environ-
ment in which the artificial fish moves, searching for the optimal solution of an optimization problem, is
the feasible search space of the problem. In nature, fishes desire to stay close to the swarm, protecting
themselves from predators and looking for food, and to avoid collisions within the group. These behaviors
inspire mathematical modelers that need to solve efficiently optimization problems.

The main fish swarm behavior are the following:
• random behavior - in general, fish swims randomly in water looking for food and other companions;
• searching behavior - this is a basic biological behavior since fish tends to the food; when fish

discovers a region with more food, by vision or sense, it goes directly and quickly to that region;
• swarming behavior - when swimming, fish naturally assembles in groups which is a living habit in

order to guarantee the existence of the swarm and avoid dangers;
• chasing behavior - when a fish, or a group of fishes, in the swarm discovers food, the others in the

neighborhood find the food dangling quickly after it.
The problem to be addressed in this paper is the bound constrained problem:

min
x∈Ω

f(x), (1.1)

where f : Rn → R is a nonlinear function and Ω = {x ∈ Rn : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . , n} is
the feasible region. The objective function f may be non-smooth and may possess many local minima in
the search space Ω, since we do not assume that f is convex. Here, our purpose is to compute a global
minimizer, i.e., a point x∗ ∈ Ω such that f(x∗) ≤ f(x) for all x ∈ Ω. Many derivative-free algorithms
and heuristics have been proposed to solve problem (1.1), namely those based on swarm intelligence
[Engelbrecht, 2005]. Probably the most well-known and widely used in applications are

• the particle swarm optimization (PSO) algorithms [Kennedy and Eberhart, 1995, Ali and Kaelo, 2008,
Coelho et al., 2005, Hao and Hu, 2009, Miranda et al., 2007, Pires et al., 2010, Vaz and Vicente, 2007];

• the bee colony [Bernardino et al., 2013, Karaboga and Basturk, 2007, Karaboga and Akay, 2009a),
Karaboga and Akay, 2009b), Diwold et al., 2011]; and

• the ant colony algorithms [Dorigo and Stützle, 2004, Matos and Oliveira, 2004, Melo et al., 2010,
Monteiro et al., 2013, Socha and Dorigo, 2008, Vilarinho and Simaria, 2006, Xiao and Li, 2011].
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Our proposal for globally solving the problem (1.1) is a distribution based AFS, hereafter denoted
by DbAFS, that takes the AFS algorithm presented in [Rocha et al., 2011] as a heuristic basis. The
idea presented in this DbAFS algorithm is borrowed from the bare bones swarm concept [Kennedy, 2003,
Omran et al., 2008]. The novelty in DbAFS algorithm is that each trial point is sampled from a Gaussian
distribution, instead of being randomly generated in basis of the corresponding current point and a
direction of search. The center of the distribution is given by the midpoint between the current and
a target point, featured by the selected fish behavior, and the dispersion is related with the difference
between those two points. The goal here is to improve the accuracy and convergence behavior.

The remainder of the paper is organized as follows. Section 2 describes the proposed DbAFS algorithm
and Section 3 presents and discusses the results of preliminary experiments. Finally, the conclusions of
this study and the ideas for future work are presented in Section 4.

2 Distribution based artificial fish swarm
The AFS algorithm is a stochastic method that relies on a swarm intelligence based paradigm to construct
fish/point movements over the search space [Jiang et al., 2007, Neshat et al., 2013]. We will use the
words ‘fish’ and ‘point’ interchangeably throughout the paper. Each point in the space is represented by
xj ∈ Rn (the jth point of a population), m is the number of points in the population, where m < ∞,
and the component i of a vector xj is represented by xji .

2.1 The AFS algorithm
We now describe the procedure used to generate trial points in the AFS algorithm [Rocha et al., 2011].
At each iteration, a population ofm solutions/points, herein denoted by x1, x2, . . . , xm is used to generate
a set of trial points y1, y2, . . . , ym. The population is initialized randomly in the entire search space Ω
using the equation: xji = li + U(0, 1)(ui − li) for each component i = 1, . . . , n of the point xj , where the
notation U(0, 1) represents a random number in (0, 1).

Each point xj movement is defined according to the number of points inside its ‘visual scope’. The
‘visual scope’ is defined as the closed neighborhood centered at xj with a positive radius α. In the
herein implemented versions of the AFS algorithm, the radius is dynamically defined as a fraction of the
maximum distance between xj and the other points xl, l 6= j, αj = γmaxl 6=j

∥∥xj − xl
∥∥, for γ ∈ (0, 1).

Three possible situations may occur:
• the ‘visual scope’ is empty;
• the ‘visual scope’ is crowded;
• the ‘visual scope’ is not crowded.
When the ‘visual scope’ is empty, a random behavior is performed, in which the trial yj is randomly

generated inside the ‘visual scope’ of xj .
When the ‘visual scope’ is crowded, with more than 80% of the population inside the ‘visual scope’

of xj , a target point is randomly selected from the visual, xrand. Then, if f(xrand) ≤ f(xj), the searching
behavior is implemented and the trial point yj is randomly defined along the direction from xj to xrand.
Otherwise, the random behavior is performed.

When the ‘visual scope’ is not crowded, and f(xmin) ≤ f(xj), where xmin is the best point inside
the ‘visual scope’, the chasing behavior is performed. This means that yj is randomly generated along
the direction from xj to the target point xmin. However, if f(xmin) > f(xj) and the central point of the
‘visual scope’, denoted by x̄, satisfies f(x̄) ≤ f(xj), then the swarming behavior is implemented instead.
This means that the trial point is randomly defined along the direction from xj to the target point x̄.
On the other hand, if f(x̄) > f(xj), a target xrand is randomly selected from the ‘visual scope’ and if
f(xrand) ≤ f(xj), the searching behavior is carried out as previously described; otherwise the random
behavior is performed.

We note that each point xj generates a trial point yj , inside the set Ω, as follows:

yji = max
{
li, min

{
xji + U(0, 1) dji , ui

}}
, for i = 1, . . . , n (2.1)

where dj is a vector defined by the direction from xj to one of the above referred target points.
To choose which point between the current xj and the trial yj will be a point of the population for

the next iteration, the objective function at the two points are compared and if f(yj) ≤ f(xj) the trial
point is passed to the next iteration as a current point. Otherwise, the current point is preserved to the
next iteration/population.
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2.2 Local search

In general, algorithms for globally solving an optimization problem have two separate phases:

• the global phase performs the exhaustive exploration of the search space using mostly stochastic
methods to search for a promising region where a global minimum exists;

• the local phase exploits locally the promising region, using preferentially a deterministic method.

In the described AFS algorithm, a derivative-free deterministic method that exploits the neighborhood
of a point for a better approximation using an exploratory move as well as a pattern move, and known
as the Hooke and Jeeves (HJ) method [Hooke and Jeeves, 1961], is implemented.

This is a variant of the well-known coordinate search method. It incorporates a pattern move to
accelerate the progress of the algorithm, by exploiting information obtained from the search in previous
successful iterations. At the initial iteration, the exploratory move carries out a coordinate search centered
at the best point of the population, with a step size of δls. If a new trial point, y, with a better function
value than xbest is encountered, the iteration is successful and δls is maintained. Otherwise, the iteration
is unsuccessful and δls is reduced. If the previous iteration was successful, the vector y − xbest defines
a promising direction and a pattern move is then implemented, i.e., the exploratory move is carried out
centered at the trial point y+(y−xbest), rather than at the current point y. Then, if the coordinate search
is successful, the returned point is accepted as the new point; otherwise, the pattern move is rejected
and the method reduces to a coordinate search centered at y. We refer to [Hooke and Jeeves, 1961] for
details.

When the step size falls below δtol, a small positive tolerance, the search terminates since convergence
has been attained [Kolda et al., 2003].

The pseudo-code for the AFS algorithm is presented below in Algorithm 1.

Algorithm 1 (AFS algorithm)
Data: m ≥ 1, 0 < γ < 1, 0 < δtol � 1.
1: Randomly generate m points in Ω, evaluate xj , j = 1, . . . ,m, and select xbest.
2: While stopping conditions are not satisfied do
3: For all xj , j = 1, . . . ,m do
4: Generate trial point yj using (2.1), evaluate yj , j = 1, . . . ,m.
5: If f(yj) ≤ f(xj) then set xj = yj .
6: End for
7: Select xbest.
8: Perform local search on xbest.
9: End while

2.3 Distribution based artificial fish swarm

The distribution based artificial fish swarm is evolved from a classical version of the AFS algorithm
[Rocha et al., 2011]. A Gaussian sampling strategy is proposed to create the trial points. After selecting
the fish behavior to be implemented to each current point of the population, xj , each component i
(i = 1, . . . , n) of the corresponding trial point, yji , is randomly selected from a Gaussian distribution
N(µi, σi), where:

• the mean is given by the average of the corresponding components of the current and the target

point, µi =
xji + ti

2
;

• the standard deviation is the absolute difference between the corresponding components of the
current and the target point, σi =

∣∣∣xji − ti
∣∣∣;

and the target point t is xrand if the searching behavior is selected, xmin if chasing is selected, or x̄ if
swarming is selected. Furthermore, to maintain the trial point inside the set Ω, the following equation is
used:

yji = max
{
li, min

{
yji , ui

}}
, for i = 1, . . . , n. (2.2)
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However, when a point xj follows a random behavior, it will have a 50% chance that the component i of
the point changes to the corresponding component of the best point of the population:

yji =

{
xji if U(0, 1) > 0.5
xbesti otherwise

. (2.3)

We note that the exploration feature of the algorithm is ensured by the standard deviation which converges
to zero as the points in the population converge to the optimal solution of the problem.

3 Numerical experiments
For a preliminary practical assessment of the proposed DbAFS algorithm, numerical experiments are car-
ried out involving nine standard benchmark small test problems with known acronyms [Ali et al., 2005]:
BR (n=2), CB6 (n=2), GP (n=2), H3 (n=3), H6 (n=6), SBT (n=2), S5, S7 and S10 (n=4). The algo-
rithm is coded in C and the results are obtained on a PC with a 2.8 GHz Core Duo Processor P9700 and
6 Gb of memory. Each problem was solved 30 times and a population of m = 10n points is used. After
an empirical study, we also set γ = 0.8 and δtol = 10−8. The initial δls is set to 10−3 maxi{ui − li}.

The performance of the DbAFS algorithm is compared with the version ‘AFS’ algorithm described in
[Rocha et al., 2011], the improved particle swarm optimization (PSO) algorithms - variants ‘PSO-RPB’
and ‘PSO-HS’ - proposed in [Ali and Kaelo, 2008], the differential evolution ‘DE’ (originally presented in
[Storn and Price, 1997]), and ‘MADDF’ described in [Fernandes et al., 2012]. A brief description of the
notation used in this section follows:

• ‘DbAFSHJ ’ is the distribution based AFS algorithm with the HJ local procedure (Section 2.2);
• ‘DbAFSrand’ is the distribution based AFS algorithm with a simple random local search procedure;
• ‘DbAFS’ is the distribution based AFS algorithm without the local search;
• ‘AFSHJ ’ corresponds to the version presented in [Rocha et al., 2011], with the HJ local procedure;
• ‘PSO-RPB’ is a version of PSO with randomized pbest (best position of a particle) in the cognitive

component;
• ‘PSO-HS’ is a variant of the PSO algorithm with a hybrid scheme (using the point generation

scheme of DE) for position update;
• ‘DE’ is an improved version of the original differential evolution where the scaling factor is randomly

chosen, for each point, and the crossover parameter is randomly chosen, for each iteration;
• ‘MADDF’ is a derivative-free multistart technique based on a filter set methodology for constraint-

handling. (Bound constraints are incorporated into a constraint violation function.)
The stopping conditions used to stop the algorithms are [Ali and Kaelo, 2008]:

∣∣f(xbest)− fopt
∣∣ ≤ 0.001 or nfeval > 20000, (3.1)

where f(xbest) is the best solution found so far, fopt is the known optimal solution, and nfeval is the
number of function evaluations required to obtain a solution with the specified accuracy. However, if the
optimal solution of the problem is unknown, the algorithm may use other termination conditions.

First, we aim to analyze the effect on the performance of the DbAFS algorithm when a local search
procedure is included in the algorithm (see Step 8 in Algorithm 1). Figure 1 depicts the average nfeval
after the 30 runs, required by DbAFS and DbAFSHJ for each problem. We observe that the HJ local
search has improved the efficiency of the algorithm when solving eight out of the nine tested problems.
Only for the problem H6, DbAFSHJ required in average more function evaluations than DbAFS to reach
the solution with the accuracy specified in (3.1).

With an illustrative purpose, Figure 2 aims to compare the DbAFSHJ algorithm performance for
different parameter values. The plot on the left shows the convergence behavior for three values of the
factor γ in the definition of the ‘visual scope’, on the problem H6: γ = {0.1, 0.5, 0.8}. The largest value
of γ gives the fastest reduction in f when applied to H6. The plot on the right aims to show how
population size affects the convergence of the algorithm. The tested values are m = {10, 10n, 100} and
the experiment was done on the problem H6 with γ = 0.8. Convergence is rather slow with the largest
value of the population size.

Finally, Table 1 summarizes the results obtained in terms of the average number of function evaluations
required by the algorithms to reach the optimal solution with the accuracy defined in (3.1). (The reported
results of ‘PSO-RPB’, ‘PSO-HS’, ‘DE’ and ‘MADDF’ are adopted directly from [Ali and Kaelo, 2008,
Fernandes et al., 2012].) Based on the results we may conclude that DbAFSHJ has a good performance.
The computational effort in terms of function evaluations has been reduced when compared with the
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Figure 1: Average nfeval for the nine problems: DbAFS vs. DbAFSHJ .

Figure 2: Factor γ effect (left) and population size effect (right), on the problem H6.

Table 1: Results of average number of function evaluations.

Prob. fopt DbAFS other methods
DbAFSHJ DbAFSrand AFSHJ PSO-RPB PSO-HS DE MADDF

BR 0.39789 487 690 651 2652 2018 1305 506
CB6 -1.0316 274 293 246 2561 2390 1127 660
GP 3.00000 642 710 562 2817 1698 884 1063
H3 -3.86278 851 911 1573 3564 2948 1238 5845
H6 -3.32237 4167 3864 7861 8420 8675 7053 7559
SBT -186.731 526 1256 659 4206 6216 2430 1867
S5 -10.1532 1650 1611 3773 6641 6030 5824 2929
S7 -10.4029 1723 1818 2761 6860 6078 5346 4428
S10 -10.5364 2282 1889 2721 6747 5602 4822 4489

basic AFSHJ . The HJ local procedure incorporated into the DbAFS algorithm has improved in average
the convergence to the optimal solution in six out of the nine tested problems, when compared with a
simple random local search. The results also show that the DbAFSHJ performs better than the other
methods in comparison (PSO variants, DE and MADDF).

4 Conclusions
This paper has introduced a new AFS algorithm which uses the Gaussian distribution to create the trial
points, at every iteration. The main features of AFS are maintained, in particular the concept of ‘visual
scope’ of each point and the selection of fish behavior. The proposed DbAFS algorithm performs well
in a set of small benchmark problems, in terms of number of function evaluations. The effect of some
parameters on the performance of the algorithm has been analyzed. A comparison with other stochastic
population-based techniques available in the literature is carried out using small dimensional problems.
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The results are promising in terms of reduced computational effort.
There are still some issues related to parameter setting that need further investigation. Extensive

numerical experiments with larger dimensional problems remain to be done and will be reported in a
future paper.
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