
1

Runtime Values Driven by Access Control Policies
Statically Enforced at the Level of Relational Business Tiers

Óscar Mortágua Pereira1, Rui L. Aguiar2

Instituto de Telecomunicações
DETI, University of Aveiro

Aveiro, Portugal
{omp1, ruilaa2}@ua.pt

Maribel Yasmina Santos
Centro Algoritmi

DSI, University of Minho
Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract—Access control is a key challenge in software
engineering, especially in relational database applications.
Current access control techniques are based on additional
security layers designed by security experts. These additional
security layers do not take into account the necessary business
logic leading to a separation between business tiers and access
control mechanisms. Moreover, business tiers are built from
commercial tools (ex: Hibernate, JDBC, ODBC, LINQ), which
are not tailored to deal with security aspects. To overcome this
situation several proposals have been presented. In spite of
their relevance, they do not support the enforcement of access
control policies at the level of the runtime values that are used
to interact with protected data. Runtime values are critical
entities because they play a key role in the process of defining
which data is accessed. In this paper, we present a general
technique for static checking, at the business tier level, the
runtime values that are used to interact with databases and in
accordance with the established access control policies. The
technique is applicable to CRUD (create, read, update and
delete) expressions and also to actions (update and insert) that
are executed on data retrieved by Select expressions. A proof of
concept is also presented. It uses an access control platform
previously developed, which lacks the key issue of this paper.
The collected results show that the presented approach is an
effective solution to enforce access control policies at the level
of runtime values that are used to interact with data residing in
relational databases.

Keywords-security; access control; database, business tiers;
software architecture.

I. INTRODUCTION
Sensitive data is growing every day as an immediate

consequence of the increasing usage of software systems.
The data is related not only to personal information, as it
happens for example in social networks, but it is also related
to other important and critical areas such as commercial,
institutional and security organizations. To prevent any
security violation, several security measures are taken such
as user authentication, data encryption and secure
connections. Another relevant security concern is access
control. There are two main approaches to enforce access
control policies: the one provided by vendors of database
management systems and XACML [1] (eXtensible Access
Control Markup Language). Both approaches rely on
additional security layers built by security experts leading to
a clear separation between the security mechanisms and

business tiers. Moreover, current commercial tools that are
used to develop business tiers do not support access control
policies, this way hampering the process of bridging the gap
between access control mechanisms and business tiers built
from those tools. To overcome this situation, several access
control techniques have been proposed [2-13] but none of
them effectively models the values that are defined at
runtime. The runtime values are critical because they are
dynamically defined by users at runtime, this way enabling
users to request the access to different data in each execution
cycle. We present three examples to justify our claims. The
first one is based on a native Select expression, the second
one is based on a native Update expression and, finally, the
third one is based on modifying the contents of a record set
containing data retrieved by a Select expression (in these
cases the modifications are also committed to the host
database). The following example is a simple Select
expression.

Select t1.* from table1 t1, table2 t2
 where t1.id = t2.t1_id and
 t1.value > pValue

The parameter (runtime value) pValue plays a key role to
decide which data are retrieved from table1. In each
individual execution cycle, the parameter may have a
different value, this way retrieving a different set of records
from table1. To overcome this source of possible security
gaps, two approaches are used to implement the access
control mechanisms: centralized approach and distributed
approach. Regarding the centralized approach, the most
common technique is the use of views (with [10] or without
query rewriting techniques). This technique conveys several
drawbacks among which the lack of scalability is
emphasized [14, 15]. Regarding the distributed approach,
two techniques were proposed: in [4] is proposed a new
predicate, identified as known, to model which information
users already know, this way covering the points here under
discussion but only superficially; in [2] the policies are
statically enforced at the table columns level and not at the
CRUD (Create, Read, Update and Delete) expressions level,
leading to lack of flexibility.

The following example is the second example, which is a
simple Update expression:

 Update table1 t1 set t1.value=pValue
 Where t1.id=pId

2

Similar to the Select expression, this Update expression also
uses parameters. The parameter pValue updates the attribute
value of table1 of a record identified by another parameter
pId. Once again, parameters are user defined and play a key
role on Update expressions to decide the data to be updated.
The current techniques and their limitations, previously
described for Select expressions, are also applied to Update
expressions. The remaining types of CRUD expressions,
Insert and Delete, convey similar limitations.

The last example is a very common situation on current
tools that are used to develop business tiers, such as JDBC
[16], Hibernate [17], ADO.NET [18] and LINQ [19]. The
example shows that beyond the use of CRUD expressions,
databases are also modifiable by executing protocols on data
retrieved by Select expressions. The example shows that
after retrieving data from a database, it is kept in record sets
(recordSet) and then applications are allowed to update their
content through an update protocol. In this case the attribute
attributeName was updated to value and then the
modification was committed. This case is different from the
two previous ones because there is no evidence of any
CRUD expression and users are modifying data they have
been previously authorized to retrieve. Even so, we cannot
despise the need to control the runtime values being used to
modify the contents of those record sets and, therefore, used
to modify the contents of databases. Beyond the update
protocol, current tools also provide an insert protocol where
users are also allowed to use runtime values.

recordSet=executeSelectExpression(sql)
recordSet.update(“attributeName”, value)
recordsSet.commit()

Currently, there isn´t any known access control technique

to enforce policies at the business tier level and able to
statically control the provenance of runtime values that are
used on actions issued against databases. To overcome this
situation we propose a technique where parameters are
statically driven by access control policies enforced at the
business tier level. Additionally, we present a proof of
concept to validate the proposed technique. The proof of
concept leverages an existent and internal access control
platform, partially based on [13].

This paper is organized as follows. Section II presents the
related work. Section III presents the required background to
keep the paper self-contained. Section IV describes the
conceptual architecture and, finally, section V presents the
final conclusion.

II. RELATED WORK
Views have been widely used to restrict the access to

protected data. In spite of their relevance, the use of views to
implement access control conveys a key drawback: lack of
scalability [14, 15]. Basically the number of views increases
with the number of policies. Access control based on views
is easily managed in database applications with a short
number of policies. But access control in database
applications with a large number of policies may become
unmanageable as in cases where they depend, for example,
on data stored on databases. Moreover, the problem is not

restricted to the level of views. Users accessing the same
table but with different authorization levels use different
views and, therefore, different CRUD expressions. In order
to minimize this scalability gap, Rizvi et al. [10] present a
query rewriting technique to determine at runtime if a CRUD
expression is authorized, without the need of creating
different versions of views. It uses security views to filter
contents of tables and simultaneously to infer and check at
runtime the appropriate authorization to execute any CRUD
expression issued against the unfiltered table. The user is
responsible for formulating the CRUD expression properly.
They call this approach the Non-Truman model. Non-
Truman models, unlike Truman models, do not change the
original CRUD expressions. The process is transparent for
users, and CRUD expressions are rejected if they do not have
the appropriate authorization. This approach has some
disadvantages: 1) performance - the inference rules to check
the appropriate authorization at runtime are complex and
time consuming; 2) productivity - authorizations are checked
against security views and not against original data in a
transparent way, hampering the debugging process when any
syntax error or security violation occurs; 3) awareness -
programmers cannot statically check the correctness of
CRUD expressions because the policies and the mechanisms
are centralized in a server; 4) incompleteness - the inference
rules are complex and their completeness is not assured by
the authors.

In [4], Chlipala et al. present a tool, Ur/Web, that allows
programmers to write statically-checkable access control
policies as CRUD expressions. Basically, each policy
determines which data is accessible. Then, programs are
written and checked to assure that data involved in queries is
accessible through some policy. To allow policies to vary
from one user to another, their CRUD expressions use actual
data and a new extension to the standard SQL to capture
‘which secrets the user knows’. This extension is based on a
predicate referred to as ´known’ used to model which
information users are already aware of to decide upon the
information to be disclosed. Ur/Web is a promising solution,
but beyond introducing a new programming technique, it
presents two key drawbacks: 1) it does not check the use of
runtime values of where clauses, allowing queries to
implicitly leak protected data; 2) authors say that their
implementation “…only handles a subset of the common
SQL features.”.

Caires et al. [2] introduces a new programming language,
name as λ, to define and enforce access control policies by
static typing. The security model comprises tables, their
attributes and the access control policies associated to each
attribute. Authors show that runtime values are checked
against the policies before being used. Beyond introducing a
new programming language, policies are enforced at the
attribute level of tables, this way hindering or even
preventing the use of multiple policies on each attribute.

The paper [13] presents an access control-driven
architecture with dynamic adaptation (ACADA). Business
tiers are automatically built from a business architectural
model, enforcing access control policies defined by a
security expert. Access control mechanisms are statically

3

implemented by typed objects driven by security policies at
the business tier level. ACADA effectively controls which
CRUD expressions are authorized to be used but does not
control the runtime values being used.

III. BACKGROUND
To ease the development process of business tiers,

system architects use tools specially designed to that end.
Two main groups of tools are considered: Call Level
Interfaces (CLI) [20] and Object-to-Relational Mapping
(O/RM) tools. ODBC [21], JDBC [16] and ADO.NET [22]
are three examples of CLI and Hibernate [17], LINQ [23]
and JPA [24] are three examples of O/RM tools. These tools
provide services to allow applications to interact with
databases. These services need to be understood before
advancing to any security solution implemented at the
business tier level. In spite of the diversity of tools and the
difference between the paradigms of the two groups, there is
a common basis between them. This is very important to
promote the use of a single technique in all tools and mainly
on both groups. The common basis is centered on their two
main access modes to stored data: direct access mode and the
indirect access mode. The direct access mode allows the
execution of CRUD expressions written in the native SQL
language and the indirect access mode allows applications to
interact with data returned by Select expressions. While the
direct access mode is widely used and easily understood, the
indirect access mode needs a more detailed explanation.
When a Select expression is executed, it returns a relation
containing the retrieved data. These relations are locally
managed by local memory structures (LMS). There are four
protocols to interact with the data managed by LMS: read
protocol (to read data from LMS), update protocol (to update
data contained in LMS), insert protocol (to insert new data in
LMS) and delete protocol (to delete data contained in LMS).
Any modification on the contents of LMS is replicated on the
host database. Figure 1 and Figure 2 depict a simple example
based on JDBC and LINQ, respectively. The method
updateStudentMobilePhone updates numbers of mobile
phones of every student whose id is contained in the first
argument (sId). The Select expression is built with two
parameters (line 29-31, 116-118) and executed (line 32, 119-
120) through the direct access mode (rs.executeQuery and
jpa.ExecuteQuery). Then LMS (rs (ResultSet [25]) for JDBC
and ord (typed object) for LINQ) are iterated row by row
(line 33, 121). mobilePhone is updated (line 36-37, 126-127)
if the student id (rs.getInt and s.id) is contained in the list sId
(line 34-35, 123-124) through the indirect access mode. This
update on the LMS is equivalent to the following Update
expression

 Update Student s
 Set s.mobilePhone=mobilePhone
 Where s.id=sId(idx)

and, therefore, sId and modiblePhone in Figure 1 and Figure
2 behave as runtime values for the two parameters of the
equivalent Update expression. From this example it is also
easily inferred the equivalency between the insert and delete
protocols and the correspondent Insert and Delete

Figure 1. Example based on JDBC.

Figure 2. Example based on LINQ.

expressions. These two simple examples have shown the
usage of the two access modes that are provided by current
tools and also the usage of runtime values. Additionally, the
examples also show that JDBC and LINQ, akin to the
remaining tools, are not driven by access control policies.
Their access modes allow programmers to write any CRUD
expression (using the direct access mode) and also allow the
use of any protocol on LMS. These latter two issues have
been addressed in [13].

IV. ARCHITECTURE PRESENTATION
In this section we present an access control technique

which enforces policies at the business tier level which is
able to statically control the provenance of runtime values
that are used on actions issued against databases. The
technique supervises the runtime values that are used on both
access modes of current tools that are used for developing
business tiers. Nevertheless, access control policies can only
be effectively enforced if other complementary aspects are
also considered. Among them the authorized CRUD
expressions and the actions on LMS are emphasized. Those
aspects are not addressed in this paper because they were
already addressed in [13]. From [13], a platform has been
designed and developed. The platform will be used and
modified to present the proof of concept. This section is
organized as follows: the sub-section A presents the proposed
technique; sub-section B briefly presents the used platform;

4

sub-section C presents the proof of concept and, finally,
subsection D presents a use case.

A. Proposed Technique
We start by introducing the concept of Business Access

Point (BAP). A BAP is an entity responsible for managing
the runtime values of the two access modes in accordance
with the established access control policies. Each access
mode type has its own particular characteristics. As such,
their conceptual architecture is presented separately.

Direct Access Mode

The direct access mode allows the execution of CRUD
expressions based on the native SQL language. In a general
context, each CRUD expression comprises a hard coded part
and eventually one or more parameters of which the values
are defined at runtime. The values for these parameters are
not mandatory to be driven by any access control policy. It is
up to the security expert to decide for each CRUD expression
which parameters are driven by access control policies and
which parameters are not driven by any access control
policy. Thus, the direct access mode (DAM) is formalized by
the next triplet:

DAM(RTV, RTVacp, execute)

where RTV is a set of RunTime Values for parameters not
driven by any access control policy, RTVacp is a set of
RunTime Values for the parameters driven by access control
policies and, finally, execute is a method responsible for
setting the runtime values for parameters and also for the
execution of CRUD expressions. As initially announced,
RTVacp are statically enforced and, therefore, their
implementation will have this in consideration. Eventually,
each runtime value may be encapsulated as an interface that
provides a service aimed at returning values driven by access
control policies.

Indirect Access Mode

The indirect access mode provides four protocols for the
interaction with the data contained by LMS that is returned
by native Select expressions. A first solution has been
proposed to provide the four protocols driven by access
control policies [13]. Basically, it includes two aspects: 1)
the availability of each protocol is individually configured
and 2) each protocol that is made available provides methods
to access only the attributes that are authorized by the
established policies. This approach is not complete because
it does not support parameters driven access control policies.
Next follows the proposed approach to overcome this
security gap. The indirect access mode (IAM) is formalized
as follows:

IAM(readP, insertP, updateP, deleteP)

where readP is the read protocol, insertP is the insert
protocol, updateP is the update protocol and, finally, deleteP
is the delete protocol. Only the insert and the update
protocols use runtime values. The read protocol does not
modify the contents of LMS and the delete protocol is
executed as an atomic operation on all attributes of the
selected row. Thus, each individual method of the insert and

update protocol that is used to modify each attribute of the
returned relation (contained in LMS) needs to be configured
to be or not to be driven by access control policies. They are
formalized as:

method(RTV) or method(RTVacp)

where method is the method’s name, RTV and RTVacp have
the meaning previously presented for the direct access mode.
The only difference is that either RTV or RTVacp represent a
single runtime value. The indirect access mode is only
available after a Select expression is executed through the
direct access mode. The remaining CRUD expressions do
not create LMS. This leads to the need of defining two facets
for the BAP: one for the Select expressions (BAPs) and
another for the remaining expressions (BAPiud). BAPiud
supports the direct access mode only and is formalized as
follows:

BAPiud(DAM)

BAPs supports both modes and is formalized as follows:

BAPs(DAM,IAM)

B. Used Platform
The proof of concept here presented leverages the work

previously presented in [13]. The work has been used to
design a new architecture known as DACA (Dynamic
Access Control Architecture). Figure 3 presents a simplified
block diagram of DACA. DACA is able to dynamically, at
runtime, build and keep updated business logic of relational
database applications in accordance with the established
access control policies. It comprises 2 main components: a
client side component for the application and business tiers
and a server side component where metadata of access
control mechanisms are kept. The basic operation of DACA
is as follows (see Figure 3): 1- application tier instantiates a
Dynamic Access Control Component (DACC); 2- DACC,
through the Business Manager, establishes a connection with
the Policy Server; 3- The Policy Server transfers and keeps
security metadata and CRUD expressions continuously
updated on DACC, in accordance with the established access
control policies; 4- DACC, through the Business Manager,
dynamically builds and keeps business logic updated; 5-
application tiers ask Business Manager to execute authorized
CRUD expressions; 6- Business Manager delegates the
execution of CRUD expressions on the implemented

Server Side
Client Side

DACC

Business
Manager

Application
Tier

Policy Server

RDBMS

Business
Logic

1 2

3

4

5

6

7

Figure 3. Simplified block diagram of DACA.

5

Business Logic; 7- CRUD expressions are executed (the
RDBMS server may or may not be the same as the
one responsible for the Policy Server).

C. Proof of Concept
The initial version of DACA was redesigned to address

the issues of this research and it is hereafter known as
RDACA (Redesigned-DACA). We have decided that the
policy to be followed for RTVacp requires that the values can
only come from data previously retrieved by authorized
Select expressions. To address this new security requirement
the original DACA security access control mechanisms were
redesigned. To give a complete view of the implemented
solution, class diagrams of BAP will be provided.

The client-side of RDACA was implemented in Java and
JDBC and, therefore, all examples are based on those tools.
In the RDACA each RTVacp is defined as an interface
comprising a unique method which is responsible for
retrieving the authorized value. The proposed approach, as it
will be shown, allows a static validation for all RTVacp at
development time.

Figure 4, Figure 5 and Figure 6 present simplified class
diagrams for the approach followed for the BAP to enforce
access control policies. In a first step, one interface is defined
for each individual RTVacp as shown in Figure 4: IRTV_a,
IRTV_b, …, IRTV_n. Each interface is related to a unique
RTVacp and it comprises also one unique method responsible
for ensuring that the values are effectively authorized. rA, rB,
…, rN are the defined methods and DT_a, DT_b and DT_n
are the data types of the RTVacp in the host programming
language. The concrete implementation of each method
depends on the adopted security strategy. In case of the
RDACA, these methods retrieve data from data previously
retrieved by authorized Select expressions and also managed
by BAPs.

Figure 5 presents a simplified class diagram for one
BAPs. The constructor of the base class, BAPs, receives a
connection to the database and the CRUD id to be executed.
Programmers do not write CRUD expressions anymore.
They are only allowed to select, though the CRUD id, which
CRUD expression is necessary. In case she is not authorized
to use the requested CRUD expression, an exception will be
raised. Other important aspects are the IExecute and the
ILMS interfaces. IExecute is associated with the direct access
mode and ILMS is associated with the indirect access mode.
IExecute comprises one unique method (execute). It accepts
as arguments RTV and RTVacp for the runtime values of the
clause conditions for the Select expression to be executed. In
this particular case, it accepts an RTV of type DT_a and an
RTVacp of type IRTV_b. Thus, to execute the requested
Select expression it is necessary to be a holder of an BAPs
providing an IRTV_b. Regarding the ILMS interface, it
comprises several interfaces being IRead and IUpdate
presented with some detail. They are enough to convey a
complete understanding about the followed approach. IRead
implements the read protocol on LMS providing all the
necessary methods to that end. Each method retrieves the
value of one attribute of the returned relation. There are two

types of methods: one type retrieves values that can only be
used as RTV and the other type retrieves values that can be
used as RTVacp. Methods retrieving RTV are directly defined
in the IRead interface, such as rB and rC as shown in Figure
5. Methods retrieving RTVacp are defined by extending IRead
with the interfaces that provide RTVacp, see Figure 4. The
shown IRead interface provides two methods for RTV (rB
and rC) and one interface for one RTVacp (IRTV_a). This
distinction allows Business Manager (see Figure 3), by
analyzing the schema, to be able to distinguish between RTV
from RTVacp and, therefore, to provide, during the automatic
building process of Business Logics, different
implementations for the two types of methods. Regarding the
IUpdate interface it is associated with the update protocol. In
this particular case it comprises two methods: a) uA updates
the attribute a and it accepts an RTVacp (IRTV_a); b) uB
updates the attribute b and it accepts any RTV of type DT_b.

Figure 6 presents a simplified class diagram for one
BAPiud. The description for the base class and also for the
IExecute interface is identical to the previous BAPs.
Regarding ISet, it comprises one unique method (set), which
accepts as arguments RTV and RTVacp for the runtime values
of the column list of the Update expressions. In t his case it
accepts two RTVacp and one RTV. Thus, to be able to use

...
+rA() : DT_a

«interface»
IRTV_a

+rB() : DT_b

«interface»
IRTV_b

+rN() : DT_n

«interface»
IRTV_n

Figure 4. Set of RTVacp.

+uA(in value : IRTV_a)
+uB(in value : DT_b)

«interface»
IUpdate

+execute(in a : DT_a, in b : IRTV_b)

«interface»
IExecute

«interface»
IBAPs

+BAPs(in conn : Connection, in crud : uint)

BAPs

«interface»
ILMS

IDelete

IInsert

+rB() : DT_b
+rC() : DT_c

«interface»
IRead

IRTV_a

Figure 5. Simplified class diagram for a concrete BAPs.

+BAPr(in conn : Connection, in crud : uint)

BAPiud «interface»
IBAPiud

+execute(in a : IRTV_a, in c : IRTV_c, in d : DT_d)

«interface»
IExecute

+set(in b : IRTV_b, in c : IRTV_c, in d : DT_d)

«interface»
ISet

Figure 6. Simplified class diagram for a BAPiud.

6

this BAPiud it is required to be authorized to execute the
required CRUD expressions and to hold three RTVacp
(IRTV_a, IRTV_B and IRTV_c) provided by one or more
BAPs.

D. Use Case
We are now prepared to present a real use case

implemented with Java, JDBC and Microsoft Northwind
database1. The use case is based on an actor responsible for
managing orders coming from customers in the USA only.
The actor is authorized to execute the two following CRUD
expressions:

Select * from Customers
 where customerId=? // (RTV)
 and Country=’USA’

Select * from Orders
 Where CustomerId=? // (RTVacp)

 and ShipCountry=? // (RTV)

The first Select expression allows the access to
information about the customers residing in the USA and the
second Select expression allows the access to orders only
from customers the user is authorized to know (RTVacp – in
this case residing in USA) and whose ship county is user
defined (RTV). The BAPs associated with the latter Select
expression is updatable and one particularity is that the
attribute employeeId requires an RTVacp when using the
indirect access mode.

To address this case, two BAPs are needed, one for each
CRUD expression. We have used the table names to identify
each BAPs, Customers and Orders. From the two Select
expressions we see that, when using the direct access mode,
the second one requires an RTVacp for the first parameter -
CustomerId. Figure 7 shows an example of how the two
BAPs (Customers and Orders) may be used. A new instance
of Customers is created (line 30) and the CRUD expression
is executed (line 31) to select data about the customer
identified by the RTV of customerId. Then, the first and only
row of the LMS (rs) is selected (line 32). Some attributes are
read (line 33-34). Then an instance of Orders is created (line
35) and the CRUD is executed (line 36). The CRUD has two
parameters, the first one is an RTVacp and the second one is
an RTV. The RTVacp is for customerId and it is passed as the
instance of Customers, which implements the required
interface for the RTVacp. The ship country is an RTV and,
therefore, it is user defined. Some attributes are read (line 37-
38) and the programmer tries to update employeeId but the
NetBeans indicates an error because the correct data type
cannot be an integer (line 39). To update employeeId through
the indirect access mode the programmer needs an RTVacp of
the required type. To convey a deeper understanding some
additional details are provided for the two BAPs. Figure 8
shows the interface herein named as ICustomerId for the
RTVacp customerId. This interface is used not only to be
implemented by BAPs but also used whenever identifications
of customers need to be used as RTVacp for arguments of
BAP methods, as shown in Figure 7. The implementation of

1 http://www.microsoft.com/en-us/download/details.aspx?id=23654

Figure 7. Example to show the use of the two BAPs: Customers and Orders.

Figure 8. Interface for the RTVacp to be used for the parameter CustomerId.

this interface should comprise some validation procedures to
prevent its misuse. As previously explained,
BusinessManager automatically generates the required
source code for Business Logic. In this particular case, it
creates the required source code for rCustomerId() in
accordance with the established security requirements.

The IRead interface for Customers is presented in Figure
9. It provides a set of methods to read the attributes of the
returned relation. CustomerId is the only attribute with the
ability to be used as an RTVacp and, therefore, the IRead
interface extends the ICustomerId interface.

Figure 10 shows the IExecute interface for the BAPs
Orders. It comprises two arguments. The first argument is an
RTVacp for customerId and, therefore, it requires the
correspondent interface (ICustomerId). The second argument
is an RTV for the ship country. Figure 11 presents its
implementation in which a main aspect is emphasized. The
RTVacp (customerId) is passed as an interface (line 28) and

Figure 9. IRead interface for Customers.

Figure 10. IExecute interface for Orders.

Figure 11. execute method implementation of Orders.

7

the run time value (line 32) is obtained from the method
specifically created for the effect and defined in the
ICustomerId interface.

There is a runnable demo available at
https://dl.dropboxusercontent.com/u/71192544/Work/Confer
s/SEKE/SEKE_2013/Example.7z .

V. CONCLUSION
This paper presents a technique aimed at enforcing access

control policies statically at the level of the runtime values
that are used on business tiers to interact with data stored on
relational database management systems. The technique is
applicable to commercial tools geared up to develop business
tiers, such as JDBC, ODBC, Hibernate and LINQ, and
supports their two most common access modes: the direct
and the indirect access mode. Security experts are able to
decide the policies to be used, which runtime values are
driven by those policies and which are not. Runtime values
driven by access control policies are managed at the business
tier level to ensure the use of authorized values only. The
presented proof of concept is based on an existent platform
that has been redesigned to support a new security
requirement. The new security requirement says that only
previously retrieved values from the database are allowed to
be used for the runtime values driven by access control
policies. The implemented technique is based on interfaces
comprising a unique method of which the implementation
ensures the new security requirement. Beyond the presented
proof of concept a runnable demo is also available.

It is expected that the outcome of this research will have
impact on future proposals addressing access control on
relational databases, mainly when policies are enforced at the
level of client business tiers.

As future work, we intend to apply the techniques used in
[26, 27] to design a thread-safe version of DACC. These
techniques have proved to be not only simple to implement
but above all conveying a significant performance
improvement.

REFERENCES
[1] OASIS. "XACML - eXtensible Access Control Markup Language,"

Feb, 2012; http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

[2] L. Caires, J. A. Pérez, J. C. Seco et al., "Type-based access control in
data-centric systems," in 20th European conference on Programming
Languages and Systems: part of the joint European conferences on
theory and practice of software, Saarbrucken, Germany, 2011, pp. 136-
155.

[3] S. Chaudhuri, T. Dutta, and S. Sudarshan, “Fine Grained Authorization
Through Predicated Grants,” in IEEE 23rd ICDE - Int. Conf. on Data
Engineering, Istanbul, Turkey, 2007, pp. 1174-1183.

[4] A. Chlipala, "Static checking of dynamically-varying security policies
in database-backed applications," in 9th USENIX Conf. on Operating
Systems Design and Implementation, Vancouver, BC, Canada, 2010,
pp. 1-14.

[5] B. J. Corcoran, N. Swamy, and M. Hicks, "Cross-tier, Label-based
Security Enforcement for Web Applications," in 35th SIGMOD Int.
Conf. on Management of Data, Providence, Rhode Island, USA, 2009,
pp. 269-282.

[6] J. Fischer, D. Marino, R. Majumdar et al., “Fine-Grained Access
Control with Object-Sensitive Roles,” in 23rd ECOOP - European
Conference on Object-Oriented Programming, Italy, 2009, pp. 173-
194.

[7] Q. Wang, T. Yu, N. Li et al., “On the correctness criteria of fine-
grained access control in relational databases,” in 33rd Int. Conf. on
Very Large Data Bases, Vienna, Austria, 2007, pp. 555-566.

[8] W. Gary, G. Carl, S. Zhendong et al., “Static checking of dynamically
generated queries in database applications,” ACM Transansactions on
Software Eng. Methodology, vol. 16, no. 4, pp. 14:01-14:27, 2007, doi:
http://doi.acm.org/10.1145/1276933.1276935.

[9] B. Hicks, S. Rueda, D. King et al., “An architecture for enforcing end-
to-end access control over web applications,” in 15th ACM
symposium on Access Control Models and Technologies, Pittsburgh,
Pennsylvania, USA, 2010, pp. 163-172.

[10] S. Rizvi, A. Mendelzon, S. Sudarshan et al., “Extending Query
Rewriting Techniques for Fine-grained Access Control,” in ACM
SIGMOD Int. Conf. on Management of Data, Paris, France, 2004, pp.
551-562.

[11] K. LeFevre, R. Agrawal, V. Ercegovac et al., “Limiting disclosure in
hippocratic databases,” in 30th Int. Conf. on Very Large Databases,
Toronto, Canada, 2004, pp. 108-119.

[12] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language for
automatically enforcing privacy policies,” SIGPLAN Not., vol. 47, no.
1, pp. 85-96, 2012, doi: 10.1145/2103621.2103669.

[13] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, " ACADA - Access
Control-driven Architecture with Dynamic Adaptation," in SEKE -
24th Intl. Conf. on Software Engineering and Knowledge Engineering,
San Francisco, CA, USA, 2012, pp. 387-393.

[14] M. I. Y. d. Valle, A. Mana, J. Lopez et al., “Secure Content
Distribution for Digital Libraries,” in Proceedings of the 5th
International Conference on Asian Digital Libraries: Digital Libraries:
People, Knowledge, and Technology, 2002, pp. 483-494.

[15] J. Lopez, A. Mana, and M. I. Y. d. Valle, “XML-Based Distributed
Access Control System,” in Proceedings of the Third International
Conference on E-Commerce and Web Technologies, 2002, pp. 203-
213.

[16] M. Parsian, JDBC Recipes: A Problem-Solution Approach, NY, USA:
Apress, 2005.

[17] B. Christian, and K. Gavin, Hibernate in Action: Manning Publications
Co., 2004.

[18] C. Pablo, M. Sergey, and A. Atul, "ADO.NET entity framework:
raising the level of abstraction in data programming," in ACM
SIGMOD International Conference on Management of Data,
Beijing,China, 2007, pp. 1070-1072.

[19] M. Erik, B. Brian, and B. Gavin, “LINQ: Reconciling Object,
Relations and XML in the .NET framework,” in ACM SIGMOD Intl
Conf on Management of Data, Chicago,IL,USA, 2006, pp. 706-706.

[20] ISO. "ISO/IEC 9075-3:2003," [2011 May;
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134.

[21] Microsoft. "Microsoft Open Database Connectivity," Jul, 2012;
http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx.

[22] G. Mead, and A. Boehm, ADO.NET 4 Database Programming with C#
2010, USA: Mike Murach & Associates, Inc., 2011.

[23] D. Kulkarni, L. Bolognese, M. Warren et al., "LINQ to SQL: .NET
Language-Integrated Query for Relational Data," Microsoft.

[24] D. Yang, Java Persistence with JPA, pp. 390: Outskirts Press, 2010.
[25] Oracle. "ResultSet," Jul, 2012;

http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html.
[26] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, "A Concurrent Tuple

Set Architecture for Call Level Interfaces," in ICIS - 12th IEEE/ACIS
International Conference on Computer and Information Science,
Niigata,Japan, 2013, pp. (accepted).

[27] O. M. Pereira, R. L. Aguiar, and M. Y. Santos, "Assessment of a
Enhanced ResultSet Component for Accessing Relational Databases,"
in ICSTE-Int. Conf. on Software Technology and Engineering, Puerto
Rico, 2010, pp. V1:194-201.

