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Abstract 

 

Development of a novel fusion system for recombinant protein production and 

purification in Escherichia coli 

 

Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is 

still the dominant host for recombinant protein production but, as a bacterial cell, it presents 

several issues limiting the efficiency of this production. The aggregation of foreign proteins into 

insoluble inclusion bodies is perhaps the main limiting problem found when expressing 

eukaryotic proteins in E. coli. Gene fusion technology has been widely used for the 

improvement of soluble protein expression and/or purification in E. coli. Fusion partners/tags 

are highly soluble and stable proteins that promote target protein solubility, possibly because of 

the protection of nascent polypeptides from the cytoplasm milieu and the given conditions for 

their proper folding. 

The Fh8 is a calcium-binding protein from excreted-secreted antigens of Fasciola hepatica that 

showed to be highly soluble and stable when produced as a recombinant protein in E. coli. This 

recombinant protein is also a useful tool for the diagnosis of fasciolosis, and its N-terminal 

sequence of eleven amino acid residues (denominated as H) was suggested to play an important 

key role in the production and immunological properties of the entire protein. These Fh8 

interesting features suggested this protein usage as a fusion partner for enhanced recombinant 

protein production in E. coli. This is the main focus of this thesis work. 

The Fh8 and H peptides were analyzed as expression and solubility fusion partners, and at the 

same time, compared to commonly used fusion tags (Chapter 2). A broad range evaluation was 

conducted using six target proteins, eight fusion tags, two different induction conditions, and 

four E. coli expression strains. The results showed that Fh8 acts as an effective solubility 

enhancer tag, being ranked among the best solubility tags. It is also an excellent candidate to be 

used with other fusion tags in parallel high throughput screenings, presenting advantages over 

large tags for the evaluation of protein solubility. Results from this work also showed that the H 

tag did not function as a solubility enhancer tag, but it improves protein expression levels in E. 

coli. 

The H tag was then suggested for the recombinant production and adjuvant-free administration 

of immunogens (Chapter 3). By using a 12-kDa antigen from Cryptosporidium parvum as 

example, the H tag demonstrated to be an attractive tool for the production of polyclonal 
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antibodies, overcoming several limitations of the process, namely, the availability of antigen, its 

immunogenicity, adverse effects of adjuvants, and unspecific antibody production.  

The Fh8 fusion partner was further investigated as purification handle (Chapter 4). Taking into 

account its calcium-binding properties, the Fh8 offered a rapid, inexpensive and efficient single-

step purification of biologically active target proteins via hydrophobic interaction 

chromatography (HIC), and under mild conditions. The efficiency of this purification strategy 

was comparable to that obtained using the His6 tag, and both purification technologies were also 

combined into a dual affinity strategy to improve further the purity level of target proteins. 

Proteins purified by the Fh8-HIC strategy have the extra feature of being free of E. coli 

endotoxins. 

Taking into account the versatility of the Fh8 fusion system, a novel strategy for the soluble 

production of bone morphogenetic protein-2 (BMP-2) and interleukin-10 was developed 

(Chapter 5). Fh8 fusion proteins were directly soluble produced in E. coli, presenting dimeric 

and oligomeric ordered conformations. The Fh8BMP-2 was, however, not functional, rising 

intriguing questions about the final structure of the fusion protein. Indeed, the Fh8 might direct 

the BMP-2 to a soluble folding pathway, but BMP-2 presents a different conformation from that 

required for its biological function. 

Two novel variants of Fh8 were then developed as fusion partners, conducting the mutation of 

its single cysteine residue to alanine or tyrosine (Chapter 6). Fh8Ala and Fh8Tyr fusion proteins 

achieved similar solubility as Fh8-fused ones, presenting less calcium-dependent 

conformational changes and less oligomer forms than the Fh8-fused ones. These two mutations 

demonstrated the importance of the cysteine residue in Fh8 oligomerization, though other 

residues may also contribute to this state.  

This thesis work reported for the first time the efficient use of the calcium-binding protein Fh8 

as a promising gene fusion technology. The Fh8 fusion system is a robust tool for the 

recombinant protein production in E. coli, combining four main skills into such a small partner:  

protein expression, solubility, purification and immunogenicity. 

 

 

  



ix 

 

Resumo 

 

Desenvolvimento de um novo sistema de produção e isolamento de proteínas 

recombinantes em Escherichia coli 

 

As proteínas são atualmente produzidas em diversas fábricas celulares microbianas, sendo a 

Escherichia coli o hospedeiro dominante na produção de proteínas recombinantes. Contudo, 

este hospedeiro apresenta alguns problemas que limitam a eficiência desta produção, sendo a 

agregação em corpos de inclusão insolúveis uma das suas principais limitações na expressão de 

proteínas eucariotas em E. coli. A tecnologia de fusão genética tem sido muito usada para 

melhorar a expressão e purificação de proteínas solúveis em E. coli. Os tags /parceiros de fusão 

são proteínas altamente solúveis e estáveis que promovem a solubilidade de proteínas alvo, 

possivelmente conferindo-lhes proteção no citoplasma, reunindo as condições necessários para 

o seu folding adequado. 

O Fh8 é uma proteína de ligação ao cálcio, excretada-secretada pelos antigénios do Fascíola 

hepatica, que mostrou ser altamente solúvel e estável quando produzida em E. coli. O Fh8 é 

também uma ferramenta útil no diagnóstico da fasciolose, e a sua sequência N-terminal de onze 

aminoácidos (denominada de H) poderá ser importante na produção e nas propriedades 

imunológicas da proteína total. Todas estas características do Fh8 realçam o seu possível uso 

como parceiro de fusão para uma melhor produção de proteínas recombinantes em E. coli, 

sendo esse o objetivo principal do presente trabalho. 

Os péptidos Fh8 e H foram analisados como parceiros de expressão e solubilidade, tendo sido 

também comparados com outros parceiros de fusão regularmente usados (Capítulo 2). Realizou-

se uma profunda avaliação com recurso a seis proteínas alvo, oito tags de fusão, duas condições 

de indução diferentes e quatro estirpes de expressão de E. coli. Os resultados mostraram que o 

Fh8 é de facto um parceiro de fusão que promove a solubilidade, enquadrando-se entre os 

melhores tags de solubilidade. O Fh8 é também um bom candidato para ser usado com outros 

tags em extensas avaliações paralelas, apresentando vantagens em relação a tags maiores na 

avaliação da solubilidade das proteínas. Os resultados deste trabalho também mostraram que o 

tag H não funcionou como parceiro de solubilidade, mas este parceiro de fusão aumentou os 

níveis de expressão de proteínas em E. coli. 

O tag H foi usado para a produção recombinante de imunogénios e para a sua administração 

sem adjuvantes (Capítulo 3). Usando um antigénio de 12 kDa de Cryptosporidium parvum 

como exemplo, o tag H demonstrou ser uma ferramenta interessante para a produção de 



x 

 

anticorpos policlonais, contornando várias limitações do processo, tais como, a disponibilidade 

do antigénio, a sua imunogenicidade, os efeitos adversos dos adjuvantes e uma produção de 

anticorpos pouco específica.   

O parceiro de fusão Fh8 foi também estudado como tag de purificação (Capítulo 4). Tendo em 

conta as suas propriedades de ligação ao cálcio, o Fh8 possibilitou uma purificação rápida, 

barata e eficiente de proteínas biologicamente ativas numa só etapa, através da cromatografia de 

interação hidrofóbica (HIC) e em condições moderadas. Esta estratégia de purificação teve uma 

eficiência semelhante à obtida usando o tag His6, e estas duas tecnologias de purificação foram 

ainda combinadas numa dupla purificação para aumentar o nível de pureza das proteínas alvo. A 

purificação por Fh8-HIC apresenta a mais-valia de obter proteínas livres de endotoxinas de E. 

coli. 

Tendo em conta a versatilidade do sistema de fusão Fh8, desenvolveu-se uma nova estratégia 

para a produção solúvel da bone morphogenetic protein-2 (BMP-2) e da interleukin-10 

(Capítulo 5). As proteínas de fusão com o Fh8 foram diretamente produzidas de forma solúvel 

em E. coli, apresentando dímeros e oligómeros numa conformação ordenada. No entanto, a 

Fh8BMP-2 não foi funcional, levantando questões sobre a estrutura final da proteína de fusão. 

O Fh8 poderá direcionar a BMP-2 para uma via de folding solúvel, sendo que, no entanto, a 

BMP-2 apresenta uma conformação diferente daquela exigida para a sua atividade biológica.  

Neste trabalho, foram ainda desenvolvidos dois novos parceiros de fusão variantes do Fh8, 

tendo-se efetuado uma mutação no único aminoácido cisteína para alanina ou tirosina (Capítulo 

6). As proteínas de fusão com Fh8Ala e Fh8Tyr alcançaram uma solubilidade semelhante à 

obtida pelas proteínas de fusão com Fh8, apresentando uma menor alteração conformacional 

dependente de cálcio e uma menor oligomerização comparativamente às proteínas de fusão com 

Fh8. Estes dois mutantes demonstraram a importância do aminoácido cisteína na 

oligomerização do Fh8; outros aminoácidos podem, porém, contribuir para este estado. 

Este trabalho apresentou pela primeira vez o uso eficiente da proteína de ligação ao cálcio, o 

Fh8, como uma tecnologia de fusão genética promissora. O sistema de fusão Fh8 é uma 

ferramenta robusta para a produção de proteínas recombinantes em E. coli, combinando quatro 

características principais num pequeno tag: expressão proteica, solubilidade, purificação e 

imunogenicidade.  
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CHAPTER 1 

Figure 1.1. Schematic representation of the expression vectors used in this thesis. (a) pETM 

vector characteristics (adapted from EMBL): ColE1 - origin of replication, lacI – repressor, 

AntibioticR – selection resistance marker, T7 promoter – transcriptional promoter, SD 

sequence – Shine-Delgarno sequence (required for translation initiation), His6-tag – 

hexahistine affinity tag, Fusion tag – fusion protein for soluble production, MCS – multiple 

cloning site, TEV – Tobacco Etch Virus protease, Transcription terminator. (b) pQE-30 

vector characteristics (adapted from Qiagen): ColE1 - origin of replication, PT5 – T5 

promoter, lacO – operator (it binds lac repressor), RBS – ribosome binding site, 6xHis – 

hexahistidine tag, MCS - multiple cloning site. 5 

Figure 1.2. Schematic pathway from protein expression to purification using solubility tags and 

the hexahistidine (His6) affinity tag (adapted from Esposito and Chatterjee, 2006). (a) Four 

tagged versions of the target protein are expressed in E. coli, and some fusions will end-up 

in the insoluble fraction (as occurred with Tag1) whereas others remain in the soluble 

fraction (as occurred with Tag2, Tag3, and Tag4). (b) Soluble fusion proteins are then 

purified by immobilized metal affinity chromatography (IMAC) using the His6 tag, and the 
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Aims and thesis planning 

 

The Escherichia coli remains the dominant host for producing recombinant proteins, 

and its low cost and simplicity of cultivation makes it an unbeatable choice over other 

expression systems for lab and industrial applications. As a bacterial system, E. coli has 

however its limitations at producing foreign proteins from higher organisms. Here, the 

development of new strategies that promote the soluble expression of these proteins is 

essential for an efficient recombinant protein production, and for a successful protein 

application, for instance, in biopharmaceutical industry.   

Gene fusion technology has attained increased attention in the past decades, being 

widely considered as an attractive tool for the improvement of soluble protein 

expression and purification of recombinant proteins in E. coli. 

Fh8 is an 8-kDa excreted-secreted protein from the parasite Fasciola hepatica, and it 

has aroused interest for diagnosis of infections from this parasite, being also a good 

candidate for vaccine and drug development. The Fh8 is one of the smallest calcium-

binding proteins described so far, and it is highly soluble and stable when expressed as a 

recombinant protein in E. coli. Moreover, its N-terminal sequence (herein denominated 

H) may play a key role in the production and immunological properties of the entire 

protein. As a result of their features, Fh8 and H peptides have been proposed to function 

as fusion partners for recombinant protein production in E. coli. 

 

The main goal of this work is to develop a novel fusion system for soluble protein 

expression and purification in E. coli, using the Fh8 and H peptides as fusion partners. 

 

To achieve this goal, novel expression vectors were constructed to carry the Fh8 or H 

peptides as N-terminal fusion partners, and several different proteins of interest were 

cloned and expressed in E. coli as Fh8- or H-fused proteins. These fusion proteins were 

then evaluated regarding their soluble expression, purification, and/or immunogenicity. 

This dissertation is divided into seven chapters, as follows: in the first chapter, a general 

review of the main subjects of this work is presented; the experimental work and main 
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results obtained here are described from the second to the sixth chapter; and in the 

seventh chapter, the main conclusions and future perspectives are presented. 

 

Specific aims of this thesis work: 

- To evaluate both Fh8 and H peptides as solubility enhancer partners, and to 

compare this novel fusion system with the traditionally used solubility tags 

(Chapter 2); 

- To evaluate the H peptide as a fusion partner for the adjuvant-free production of 

immunogens and corresponding polyclonal antibodies (Chapter 3); 

- To study the Fh8 hydrophobic binding properties, and the Fh8 usefulness as a 

purification handle (Chapter 4); 

- To soluble express and purify two proteins difficult-to-express in E. coli and 

with extensive biomedical applications (bone morphogenetic protein-2 and 

interleukin-10), using the Fh8 fusion system (Chapter 5); 

- To characterize and evaluate two novel Fh8 variant fusion partners, and their 

effect in the Fh8 oligomerization and solubility properties (Chapter 6). 
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 Chapter 1 

General introduction 

 

1.1.  General introduction 

 

Proteins are key elements of life, constituting the major part of the living cell. They play 

important roles in a variety of cell processes, namely, cell signaling, immune responses, 

cell adhesion, and the cell cycle, and their failure is consequently correlated with several 

diseases.  

Amino acids are the basic building block units of proteins that form a polypeptide chain 

when covalently linked by peptide bonds. This polypeptide sequence constitutes the 

primary structure of a protein molecule, and it is then folded into a specific functional 

three-dimensional conformation driven by a large number of non-covalent interactions 

(as hydrogen bonds and hydrophobic interactions) between amino acids.  

With the introduction of the DNA recombinant technology in the seventies, proteins 

started to be expressed in several host organisms resulting in a faster and easier process 

compared to their natural sources (Demain and Vaishnav, 2009).  

Escherichia coli remains the dominant host for producing recombinant proteins, owing 

to its advantageous fast and inexpensive, and high yield protein production, together 

with the well-characterized genetics and variety of available molecular tools (Demain 

and Vaishnav, 2009).  

The recombinant protein production in E. coli has greatly contributed for several 

structural studies, as indicated by the number of solved structures (90%) available at the 

Protein Data Bank (Nettleship et al., 2010; Bird, 2011). The E. coli recombinant 

production has also boosted the biopharmaceutical industry: 29.8% of the recombinant 

biopharmaceuticals licensed up to 2009 by the U. S. Food and Drug Administration 

(FDA) and European Medicines Agency (EMEA) were obtained using this host cell 

(Ferrer-Miralles et al., 2009; Walsh, 2010). 
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E. coli recombinant protein-based products can also be found in major sectors of the 

enzyme industry and the agricultural industry with applications ranging from catalysis 

(e.g. washing detergents) and therapeutic use (e.g. vaccine development) to functional 

analysis and structure determination (e.g. crystallography) (Demain and Vaishnav, 

2009).  

As a bacterial system, the E. coli has, however, limitations at expressing more complex 

proteins due to the lack of sophisticated machinery to perform posttranslational 

modifications, resulting in poor solubility of the protein of interest that are produced as 

inclusion bodies (Demain and Vaishnav, 2009; Kamionka, 2011). Previous studies 

(Bussow et al., 2005; Pacheco et al., 2012) reported that up to 75% of human proteins 

are successfully expressed in E. coli but only 25% are produced in an active soluble 

form using this host system. Other problems found within this host system include 

proper formation of disulfide bonds, absence of chaperones for the correct folding, and 

the miss-match between the codon usage of the host cell and the protein of interest 

(Terpe, 2006; Demain and Vaishnav, 2009; Pacheco et al., 2012). Moreover, the 

industrial culture of E. coli leads cells to grow in harsh conditions, resulting in cell 

physiology deterioration (Chou, 2007; Pacheco et al., 2012). 

Despite the above-mentioned issues of E. coli recombinant protein expression, the 

benefits of cost and ease of use and scale make it essential to design new strategies 

directed for recombinant soluble protein production in this host cell. 

Several strategies have been made for efficient expression of proteins in E. coli, namely, 

the use of different mutated host strains, co-expression of chaperones and foldases, 

lowering cultivation temperatures, and addition of a fusion partner (Terpe, 2006; 

Demain and Vaishnav, 2009). The combination of some of these strategies has 

improved the soluble protein expression of recombinant proteins in E. coli, but the 

prediction of robust soluble protein production processes is still a “a challenge and a 

necessity” (Jana and Deb, 2005).  

Nowadays, with the aid of genetic and protein engineering, novel tailor-made strategies 

can be designed to suit user or process requirements. 

In this chapter, a brief introduction of the main solubility factors that correlate with 

successful protein production in E. coli is first presented, followed by a comprehensive 

summary of the available fusion partners for protein expression and purification in the 
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bacterial host. A general presentation and characterization of the Fh8 as a calcium-

binding protein (CaBP) is then described.  

 

 

1.2.  Recombinant protein production in E. coli 

 

The above-mentioned advantages of E. coli ensured its unbeatable choice as host cell 

for protein production over other systems. In spite of all the extensive knowledge on 

genetics and molecular biology of E. coli, and despite all the improvements made so far, 

the efficient expression of recombinant proteins in this host cell is not always 

guaranteed (Jana and Deb, 2005).  

The production of recombinant proteins requires a successful correlation between the 

protein expression, its solubility and its purification (Esposito and Chatterjee, 2006). 

The expression levels of recombinant proteins produced in E. coli are no longer pointed 

as a limitation for the success of the overall process, but care should be taken with the 

protein solubility, which is still a major bottleneck in the field. The downstream 

processing is deeply associated with an efficient protein production strategy, and thus it 

must be tailor-designed to maximize the recovery of pure recombinant proteins.  

All these three properties – expression, solubility and purification – shall always be 

considered together as determinants for the effective protein production in E. coli. 

Several aspects are though essential for each individual success, as described below. 

   

 

1.2.1. Key factors involved in the expression of recombinant proteins  

When designing strategies for high-level expression of recombinant proteins in E. coli, 

key factors such as the expression vector, the stability and efficiency of mRNA, and 

differences in codon usage between the foreign gene and native E. coli should be 

considered, since they play an important role in the process efficiency and regulation 

(Schumann and Ferreira, 2004; Jana and Deb, 2005; Sorensen and Mortensen, 2005a) 
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The expression of recombinant proteins is usually induced from a plasmid-harbouring 

cell. The plasmid, or vector, contains central elements involved in the regulation of a 

high level of protein synthesis, such as: 

i) the replicon: it contains the origin of replication (Ori) that controls the plasmid 

copy number (and consequently the gene dosage), and it prolongs the autonomous 

plasmid replication. Most of the expression vectors replicate by the ColE1 or the 

p15A replicon (Sorensen and Mortensen, 2005a). 

ii) transcriptional promoters: they must exhibit certain features to achieve a 

desirable gene transcription, such as, strength, tight regulation (presenting a low 

basal expression level), easily transferable to other E. coli strains, and a simple and 

cost-effective induction. The activity of the promoter is modulated by a suitable 

repressor, which minimizes basal transcription, and may be present in the vector 

itself or may be integrated in the host chromosome. Promoter induction can be 

thermal or chemical, and the most common inducer is the lactose analog isopropyl 

β-D-thiolgalactopyranoside (IPTG) (Makrides, 1996; Hannig and Makrides, 1998; 

Jana and Deb, 2005; Sorensen and Mortensen, 2005a; Terpe, 2006).  

iii) antibiotic-resistance markers: they are genes that confer resistance to the host cell 

against antibiotics, and are useful for plasmid selection and propagation. Ampicilin, 

kanamycin, chrolamphenicol or tetracycline are the most used resistance markers in 

recombinant expression plasmids (Jana and Deb, 2005; Sorensen and Mortensen, 

2005a). The use of antibiotic resistance genes is, however, limited in gene 

therapeutic products. Moreover, antibiotics add extra costs in large-scale cultivation 

and impose a metabolic burden on the host cells. Antibiotic-free host-plasmid 

balanced lethal systems start to be used as an alternative to select and maintain the 

recombinant plasmids (Hägg et al., 2004; Dong et al., 2010; Peubez et al., 2010).   

Expression vectors also contain other regions that play an important role in the 

efficiency of gene expression, such as, the translational initiation region (91% of E. 

coli sequenced genes have the initiation codon AUG, and the secondary structure at this 

region is determinant for a successful gene expression), and transcriptional and 

translation terminators, which are indispensible components for plasmid stability 

(preventing transcription through the origin of replication) and for translation 

termination (preferably mediated in E. coli by the stop codon UAA), respectively (Jana 

and Deb, 2005; Sorensen and Mortensen, 2005a).  
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The work presented in this thesis was mainly conducted using modified pET vectors 

(pETM), and also the pQE30 vector system (Qiagen). The pETM vectors (EMBL) 

derive from the pET vector series (Novagen) initially developed by Studier and 

colleagues, and represent nowadays a powerful system for cloning and expression of 

recombinant proteins in the E. coli host. The pETM plasmids use the same T7 

promoter-based transcription-translation system as the pET collection. Some important 

features of pETM vectors (Figure 1.1.a) are: a conserved multiple cloning site (MCS), 

the presence of two 6xHis-tags (one before and other after the MCS), and a Tobacco 

etch virus (TEV) protease recognition site. The pQE-30 plasmid, represented in Figure 

1.1.b, uses a transcription–translation system based in T5 promoter/lac operator, which 

allows high expression levels of recombinant proteins in E. coli. The regulation of 

expression is carried out using the low-copy plasmid pREP4, which confers kanamycin 

resistance, and constitutively expresses the lac repressor protein encoded by the lacI 

gene. 

a) b) 

 

 

Figure 1.1. Schematic representation of the expression vectors used in this thesis. (a) 

pETM vector characteristics (adapted from EMBL): ColE1 - origin of replication, lacI – 

repressor, AntibioticR – selection resistance marker, T7 promoter – transcriptional 

promoter, SD sequence – Shine-Delgarno sequence (required for translation initiation), 

His6-tag – hexahistine affinity tag, Fusion tag – fusion protein for soluble production, 

MCS – multiple cloning site, TEV – Tobacco Etch Virus protease, Transcription 

terminator. (b) pQE-30 vector characteristics (adapted from Qiagen): ColE1 - origin of 

replication, PT5 – T5 promoter, lacO – operator (it binds lac repressor), RBS – ribosome 

binding site, 6xHis – hexahistidine tag, MCS - multiple cloning site. 
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The gene expression levels in E. coli are also dependent on the messenger RNA 

(mRNA) stability and its translation efficiency. A rapid degradation of mRNA may, 

thus, compromise protein production. The mRNA degradation process is mediated by 

RNases like endonucleases and 3´exonucleases. In spite of some nucleotide sequences 

have shown to prolong the half-life of several mRNAs, none of these stabilizing 

sequences works as a “universal stabilizer” (Hannig and Makrides, 1998; Jana and Deb, 

2005). Hence, the mRNA stability should be tested on a case-study basis.  

The codon usage between the host cell and target protein is often correlated with 

expression problems, affecting the protein production level and quality. E. coli presents 

a non-random usage tendency of synonymous codons. The frequency of use of these 

codons reveals the abundance of cognate tRNA in the cell cytoplasm (Hannig and 

Makrides, 1998; Schumann and Ferreira, 2004). The overexpression of heterologous 

genes enriched with codons that are rarely used in E. coli may result in a deficient 

synthesis of the corresponding protein. The location of rare codons can also interfere 

with the translational level (Schumann and Ferreira, 2004; Jana and Deb, 2005). 

Translational errors include mistranslational amino acid substitutions, frameshifting 

events, or premature translational termination (Kurland and Gallant, 1996; Sorensen and 

Mortensen, 2005a). The effect of preferential codon bias in E. coli can be minimized by 

genetic alteration of rare codons in the target gene, maintaining the codified protein, and 

by co-expression of rare tRNAs from additional plasmids, thus increasing the amount of 

appropriate cognate tRNA (Makrides, 1996; Hannig and Makrides, 1998; Schumann 

and Ferreira, 2004).  

 

 

1.2.2. Strategies for the successful and efficient soluble protein production in E. 

coli – prevention of protein aggregation 

E. coli recombinant protein expression systems are designed to achieve a high 

accumulation of soluble protein product in the bacterial cell. However, a strong and 

rapid protein production can lead to stressful situations for the host cell, resulting in 

protein misfolding in vivo, and consequent aggregation into inclusion bodies (Schumann 

and Ferreira, 2004; Sorensen and Mortensen, 2005b; Sorensen and Mortensen, 2005a; 

Sevastsyanovich et al., 2010). For instance, macromolecular crowding of proteins at 
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high concentrations in the E. coli cytoplasm often impairs the correct folding of 

proteins, leading to the formation of folding intermediates that, when inefficiently 

processed by molecular chaperones, promote inclusion body formation (Sorensen and 

Mortensen, 2005b; Sorensen and Mortensen, 2005a). 

Apart from the poor quality of production, protein aggregation events are also 

associated with some diseases, such as Alzheimer’s disease, and type II diabetes 

(Harper and Lansbury, 1997). Strategies that direct the soluble production of proteins in 

E. coli are, thus, envisaged, and become more attractive than protein refolding 

procedures from inclusion bodies.  

Several methods have been shown to prevent or decrease protein aggregation during 

protein expression in E. coli on a trial-and-error basis, including: 

i) Lower expression temperatures: protein cultivation at reduced temperatures is 

often used to reduce protein aggregation, since it slows down the rate of protein 

synthesis and folding kinetics, decreasing the hydrophobic interactions that are 

involved in protein self-aggregation (Schumann and Ferreira, 2004; Sorensen and 

Mortensen, 2005b). Low cultivation temperatures can also reduce or impair protein 

degradation due to a poor activity of heat shock proteases that are usually induced 

during protein overexpression in E. coli (Chesshyre and Hipkiss, 1989). This 

strategy has, however, some drawbacks as the reduction of temperature can also 

affect replication, transcription and translation rates, besides decreasing the 

bacterial growth and protein production yields. Nevertheless, these limitations can 

be circumvented by the use of cold-inducible promoters that maximize protein 

expression under low temperature conditions (Mujacic et al., 1999). 

ii) E. coli-engineered host strains: E. coli mutant strains are a significant advance 

towards the soluble production of difficult recombinant proteins. Several targeted 

strain strategies have been developed through the introduction of DNA mutations 

that affect protein synthesis, degradation, secretion or folding (reviewed in Makino 

et al., 2011), including: mutated strains that increase mRNA stability by attenuation 

of RNases activity, which is responsible for the shorter half-life of mRNA in E. coli 

cells (Lopez et al., 1999); engineered strains that supply extra copies of rare tRNAs, 

such as the Rosetta strains (Invitrogen) and the BL21 Codon Plus strains (Novagen) 

(Baca and Hol, 2000; Sorensen et al., 2003b); mutant strains that facilitate disulfide 

bond formation and protein folding in the E. coli cytoplasm by render it oxidizing 



General introduction | Chapter 1 

 

Costa, S. J. | 2013 8 

due to mutations in glutathione reductase (gor) and thioredoxin reductase (trxB) 

genes, and/or by co-expression of Dsb proteins (Bessette et al., 1999; Lobstein et 

al., 2012), such as the Origami strains (Novagen) or the new SHuffle strain (New 

England Biolabs) (Lobstein et al., 2012); and C41 and C43 (Avidis) BL21 (DE3) 

mutant strains that improve the expression of membrane proteins (Miroux and 

Walker, 1996). 

iii) Cultivation conditions: protein production can be efficiently improved by the use 

of high cell-density culture systems like batch, which offers a limited control of the 

cell growth, and fed-batch, which allows the real time optimization of growth 

conditions (Sorensen and Mortensen, 2005b). The composition of the cell growth 

medium and the fermentation variables such as temperature, pH, induction time, 

and inducer concentration are also essential for the prevention of protein 

aggregation, whereby a careful optimization improves the yield and quality of 

soluble protein production (Jana and Deb, 2005).  

iv) Co-expression of molecular chaperones and folding modulators: The initial 

folding of proteins can be assisted by molecular chaperones that prevent protein 

aggregation through binding exposed hydrophobic patches on unfolded, partially 

folded or misfolded polypeptides, and traffic molecules to their subcellular 

destination. Protein aggregation is also prevented by folding catalysts that catalyze 

important events in protein folding such as the disulfide bond formation (Kolaj et 

al., 2009). A low concentration of these folding modulators in the cell often results 

in protein folding failures; thereby their co-expression together with the target 

protein becomes a suitable strategy for the improvement of soluble protein 

production in E. coli (reviewed in Thomas et al., 1997; Schlieker et al., 2002; 

Baneyx and Palumbo, 2003; Hoffmann and Rinas, 2004; Betiku, 2006; Gasser et 

al., 2008; Kolaj et al., 2009). Chaperones like trigger factor, DnaK, GroEL, 

members of the heat shock protein Hsp70 and Hsp60 families (hsHsp proteins), and 

ClpB assist protein folding in the E. coli cytoplasm, and their individual or 

cooperative activities presents different contributions for target protein solubility 

(Nishihara et al., 1998; Kuczynska-Wisnik et al., 2002; Schlieker et al., 2002; 

Deuerling et al., 2003; de Marco and De Marco, 2004; de Marco et al., 2007). 

v) Fusion partner proteins: in contrast to the above-mentioned strategies, the use of 

fusion partners involves the target protein engineering. Fusion partners are very 
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stable peptide or protein molecules soluble expressed in E. coli that are genetically 

linked with target proteins to mediate their solubility and purification. The fusion 

protein technology is the core strategy applied in the work of this thesis. A 

summary of the available fusion protein moieties is presented in the next section. 

 

 

1.2.3. Chromatographic strategies for recombinant protein purification 

The protein purification accounts for most of the expenses in recombinant protein 

production. Hence, the design of a straightforward and cost-effective protein isolation 

and purification is one of the first steps to be considered in the production strategy.  

There is no single or simple way to purify all kinds of proteins because of their diversity 

and different properties. Therefore, several strategies have been developed in the past 

decades to address a broad range of samples. With the introduction of recombinant 

DNA technology in the seventies, novel affinity tagging methodologies have 

revolutionized protein purification processes and several easy-to-use affinity tags have 

emerged since then. Besides the isolation of recombinant proteins, the purification 

process is also used to concentrate the desired protein. The target protein is usually first 

designed to be affinity tagged, thus facilitating the purification process and allowing the 

target protein to maintain its properties without interacting directly with a matrix. 

However, if the target protein cannot be affinity tagged or if further purification is 

needed, other purification strategies are added to the process.  

When designing a purification strategy, one must consider the final goal of the target 

protein to be purified. For instance, recombinant proteins for therapeutic and biomedical 

applications require a high-level protein purity and they probably should undergo 

several subsequent purification steps. 

The available protein purification methodologies separate the target proteins according 

to differences between the properties of the protein to be purified and properties of the 

rest of the protein mixture. Recombinant proteins are nowadays purified using column 

chromatography in scales from micrograms or milligrams in research laboratories to 

kilograms in industrial settings. The purification of a target protein from a crude cell 

extract is, however, not always easy and even with all the progresses achieved so far, 

additional physicochemical-based chromatography methods such as size exclusion 
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(SEC), ion exchange (IEX) and hydrophobic interaction (HIC) are often used to 

complement the affinity tagging. These methods rely on minor differences between 

various proteins properties such as size, charge and hydrophobicity, respectively (GE 

Healthcare, 2010).  

In a traditional purification pipeline, the chromatography starts with a capturing step, 

where the target protein binds to the absorbent while the impurities do not. Then, 

weakly bound proteins are washed out of the column, and conditions are changed so 

that the target protein is eluted from the column.  

 

Hydrophobic interaction chromatography (HIC): 

HIC separates proteins according to differences in their surface hydrophobicity by using 

a reversible interaction between non-polar regions on the surface of these proteins and 

the immobilized hydrophobic ligands of a HIC medium (Queiroz et al., 2001). The 

proteins are separated according to differences in the amount of exposed hydrophobic 

amino acids. This technique is ideal for capture and intermediate steps in a multiple-step 

purification strategy. 

The interaction between hydrophobic proteins and a HIC medium is influenced 

significantly by several parameters (reviewed in Queiroz et al., 2001; Lienqueo et al., 

2007), including: 

i) the type of the ligand and degree of substitution: the type of immobilized ligand 

(alkyl or aryl) determines the protein adsorption selectivity of the HIC adsorbent. In 

general, alkyl ligands show more pure hydrophobic character than aryl ligands. The 

protein binding capacities of HIC adsorbents increase with increased degree of 

substitution of immobilized ligand. At a reasonably high degree of ligand 

substitution, the apparent binding capacity of the adsorbent remains constant (the 

plateau is reached) but the strength of the interaction increases. Solutes bound 

under such circumstances are difficult to elute due to multi-point attachment (GE 

Healthcare, 2006). 

ii) The type of base matrix: the matrix should be neutral to avoid ionic interactions 

between the protein and the matrix, and it should also be hydrophilic. The two most 

widely matrices are strongly hydrophilic carbohydrates, such as cross-linked 

agarose, or synthetic copolymer materials (GE Healthcare, 2006). 
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iii) The type and concentration of salt: a high salt concentration enhances the 

interaction, while lowering the salt concentration weakens the interaction. The 

effect of the salt type on protein retention follows the Hofmeister series (see Figure 

A1.1 in the Apenddix 1.6.2) for the precipitation of proteins from aqueous solutions 

(Collins and Washabaugh, 1985; Zhang and Cremer, 2006). In Hofmeister series, 

the chaotropic salts (magnesium sulfate and magnesium chloride) randomize the 

structure of the liquid water and thus tend to decrease the strength of hydrophobic 

interactions. In contrast, the kosmotropic salts (sodium, potassium or ammonium 

sulfates) promote hydrophobic interactions and protein precipitation, due to higher 

‘salting-out’ or molar surface tension increment effects. 

iv) pH: When pH is close to a protein’s pI, net charge is zero and hydrophobic 

interactions are maximum, due to the minimum electrostatic repulsion between the 

protein molecules allowing them to get closer. In general, an increase in the pH 

weakens the hydrophobic interaction probably due to an increased titration of 

charged groups, thereby leading to an increase of protein hydrophilicity. A decrease 

of the pH may result in an increase of hydrophobic interactions. However, the 

effect of pH in HIC is not always straightforward (GE Healthcare, 2006). 

v) Temperature: the role of temperature in HIC is complex, but in general, increased 

temperatures enhance the protein retention. Careful should be taken when 

conducting protein purifications at room temperature as the protein performance in 

the HIC will probably not be reproducible in a cold room, and vice-versa. 

vi) Additives: Low concentrations of water-miscible alcohols, detergents and aqueous 

solutions of chaotropic (‘‘salting-in’’) salts result in a weakening of the protein-

ligand interactions in HIC leading to the desorption of the bound solutes. The non-

polar parts of alcohols and detergents compete with the bound proteins for the 

adsorption sites on the HIC media resulting in the displacement of the latter. 

Chaotropic salts affect the ordered structure of water and/or that of the bound 

proteins. Both types of additives also decrease the surface tension of water thus 

weakening the hydrophobic interactions to give a subsequent dissociation of the 

ligand-solute complex. The use of additives should be carefully considered as they 

might compromise the target protein structure and activity (GE Healthcare, 2006; 

GE Healthcare, 2010).  
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Proteins bound to HIC media can be eluted using some of the above-mentioned 

parameters such as reduced salt concentration, increased pH or addition of alcohols or 

detergents (Lienqueo et al., 2007), but trial-and-error experiments should be conducted 

to select the best option for each specific target protein. 

Besides protein purification, the HIC methodology offers several potentialities in 

protein production, being described as one of the most used strategies for endotoxin 

clearance (Wilson et al., 2001; Magalhães et al., 2007; Ongkudon et al., 2012). It can 

also be used for protein refolding (Hwang et al., 2010). 

The HIC methodology has been applied for the purification of calcium-binding proteins 

(CaBP) (Rozanas, 1998; Shimizu et al., 2003; McCluskey et al., 2007). These proteins 

expose a large hydrophobic surface in the presence of calcium that can absorb to 

hydrophobic matrices such as Phenyl Sepharose, even in the presence of low salt 

concentration. Most of the contaminant proteins will not bind under these conditions, 

which benefits the recovery of a pure CaBP. The elution step is often achieved by 

removal of the bound calcium through the use of chelating agents like EDTA (Rozanas, 

1998).  

 

Other chromatographic techniques: 

i) Ion exchange chromatography (IEX) – this technique separates proteins with 

different surface charges and it offers a high-resolution separation combined with 

high sample loading capacity. The purification relies on a reversible interaction 

between a charged protein and an oppositely charged chromatography medium. 

Proteins purified by IEX are usually obtained in a concentrated form. The net 

surface of proteins is influenced by the surrounding pH: when the pH is above the 

protein isoelectric point (pI), the target protein has a negatively charged shield that 

is used for binding to a positively charged anion exchanger; when the pH is below 

its pI, the target protein has a positively charged shield that is used for binding to a 

negatively charged cation exchanger. The IEX purification protocol initiates under 

low ionic strength, and the conditions are then changed so that the bound 

substances can be eluted differentially by increasing salt concentration or changing 

pH using a gradient or stepwise strategy. In general, the IEX is used to bind the 

target protein, but it can also be used to bind impurities when required. The IEX is 
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the most common technique used for the capture step in a multiple-step purification 

strategy, but it can be used in the intermediate step as well (GE Healthcare, 2010). 

 

ii) Size exclusion chromatography (SEC) – this technique is a non-binding method 

that separates protein samples with different molecular sizes under mild conditions. 

SEC can be used for protein purification, in which it usually dilutes the sample, or 

for group separation, which is mainly used for desalting and buffer exchange of 

samples. This technique is ideal for the final polishing in a multiple-step 

purification strategy. Analytical SEC allows the determination of the hydrodynamic 

radius of protein molecules and the corresponding molecular weight (GE 

Healthcare, 2010).  

 

iii) Affinity chromatography – this technique separates proteins through a reversible 

interaction between the target protein and a specific ligand attached to a 

chromatographic matrix. The interaction can be performed via an antibody 

(biospecific interaction), or via an immobilized metal ion (nonbiospecific 

interaction) or dye substance. The affinity chromatography usually offers high 

selectivity and resolution together with an intermediate-high capacity.  The sample 

is first bound to the ligand using favorable conditions for that binding. Then, the 

unbound material is washed out of the column and the elution of pure protein is 

achieved using a competitive ligand or by changing the pH, ionic strength or 

polarity (GE Healthcare, 2010). This purification strategy can profit from the use of 

recombinant DNA technology as the affinity tag can be fused to the protein of 

interest during cloning and it is further presented in the next section. 
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1.3. Fusion protein technology 

 

Fusion partners or tags are incorporated into E. coli expression vectors to improve 

protein expression yields, solubility and folding, and to facilitate protein purification. 

They can also confer specific properties for target proteins characterization and study, 

such as protein immunodetection, quantification, and structural and interactional studies 

(Malhotra, 2009). Besides the fusion(s) partner(s), E. coli expression vectors can 

contain a protease cleavage site between the fusion partner and passenger protein that 

allows the tag removal when the latter protein is for using in protein therapies, vaccine 

development and structural analyses.   

Some fusion partners also protect target proteins from degradation by promoting the 

translocation of the passenger protein to different cellular locations, where less protease 

content exists (Butt et al., 2005). Both maltose-binding protein (MBP) and small 

ubiquitin related modifier (SUMO) fusion partners present this feature, passing target 

proteins from the E. coli cytosol for cell membrane and nucleus, respectively (Nikaido, 

1994; Kishi et al., 2003). 

 

When designing a fusion strategy, the choice of the fusion partner depends on several 

aspects (Young et al., 2012), including: 

i) purpose of the fusion: is it for solubility improvement or for affinity purification? 

Nowadays, a variety of fusion tags that render different purposes are available, and 

systems containing both solubility and affinity tags like, for instance, the dual 

hexahistine (His6)-MBP tag, can be designed in order to get a rapid “in one step” 

protein production. Some protein tags can also function in both affinity and 

solubility roles, as for instance, the MBP or gluthathione-S-transferase (GST) 

(Esposito and Chatterjee, 2006). If the fusion tag is to be used in protein 

purification, the cost and buffer conditions are often the criteria for selection. For 

instance, proteins that require reducing agents as EDTA are not suitable for 

immobilized metal affinity chromatography (IMAC) via the His6 tag as nickel ions 

in the affinity matrix are chelated by EDTA (Malhotra, 2009).    

ii) amino acid composition and size: these two factors should be considered when 

selecting a fusion partner because target proteins may require larger or smaller tags 
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depending on their application. Larger tags can present a major diversity in the 

amino acid content, and will impose a metabolic burden in the host cell different 

from that imposed by small tags (Malhotra, 2009). 

iii) required expression levels: structural studies require higher protein expression 

levels that can be rapidly achieved with a larger fusion tag, which has strong 

translational initiation signals, whereas the study of physiological interactions 

demands for lower expression levels and small tags (Malhotra, 2009). 

iv) tag location: Fusion partners can promote different effects when located at the N-

terminus or C-terminus of the passenger protein. Usually, N-terminal tags are 

advantageous over C-terminal tags because: (1) they provide a reliable context for 

efficient translation initiation, in which fusion proteins take advantage of efficient 

translation initiation sites on the tag; (2) they can be removed leaving none or few 

additional residues at the native N-terminal sequence of the target protein, since 

most of endoproteases cleave at or near the C-terminus of their recognition sites 

(Waugh, 2005; Malhotra, 2009).       

 

In spite of all the approaches conducted so far, the choice of a fusion partner is still a 

trial-and-error experience. Fusion partners do not perform equally with all target 

proteins, and each target protein can be differentially affected by several fusion tags 

(Esposito and Chatterjee, 2006). In the past decade, parallel high throughput (HTP) 

screenings using different fusion partners have developed soluble protein production, 

and facilitated a rapid, tailored and cost-effective choice of the best fusion partner for 

each target protein (Hammarstrom et al., 2002; Shih et al., 2002; Dyson et al., 2004; 

Dummler et al., 2005; Cabrita et al., 2006; Hammarstrom, 2006; Marblestone et al., 

2006; Kim and Lee, 2008; Kohl et al., 2008; Ohana et al., 2009; Bird, 2011).  

Fusion tags can be incorporated using different strategies: affinity and solubility tags are 

set individually or together, and sites for protease cleavage are designed between the 

fusion tags and target proteins.  

Figure 1.2 illustrates the schematic pathway from protein expression to purification 

using solubility and affinity tags.  



General introduction | Chapter 1 

 

Costa, S. J. | 2013 16 

 

Figure 1.2. Schematic pathway from protein expression to purification using solubility 

tags and the hexahistidine (His6) affinity tag (adapted from Esposito and Chatterjee, 

2006). (a) Four tagged versions of the target protein are expressed in E. coli, and some 

fusions will end-up in the insoluble fraction (as occurred with Tag1) whereas others 

remain in the soluble fraction (as occurred with Tag2, Tag3, and Tag4). (b) Soluble 

fusion proteins are then purified by immobilized metal affinity chromatography (IMAC) 

using the His6 tag, and the fusion tags are removed from the target protein by protease 

cleavage. (c) Some fusions will not cleave efficiently, resulting in a mixture of cleaved 

and uncleaved proteins that are difficult to separate (as occurred with Tag2). (d) Other 

fusions will cleave efficiently, and the target protein will remain in solution, being 

collected in the flow-through sample of a second IMAC purification step (as occurred 

with Tag3). (e) Despite a successful protease cleavage, some target protein becomes 

insoluble after tag removal (as occurred with Tag4).  
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The mechanisms by which fusion tags enhance the solubility of their partner proteins 

remain unclear, but several hypotheses have been suggested (Butt et al., 2005; 

Nallamsetty and Waugh, 2007): 

i) fusion proteins form micelle-like structures: misfolded or unfolded proteins are 

sequestered and protected from the solvent and the soluble protein domains face 

outward; 

ii) fusion partners attract chaperones: the fusion tag drives its partner protein into a 

chaperone-mediated folding pathway. MBP and N-utilization substance (NusA) are 

two fusion tags that present this mechanism, being previously reported to interact 

with GroEL in E. coli (Huang and Chuang, 1999; Douette et al., 2005); 

iii) fusion partners have an intrinsic chaperone-like activity: hydrophobic patches of 

the fusion tag interact with partially folded passenger proteins, preventing their self-

aggregation, and promoting their proper folding. MBP was previously reported to 

act also as a chaperone in the fusion context (Kapust and Waugh, 1999; Fox et al., 

2001). Solubility enhancer partners may thus play a passive role in the folding of 

their target proteins, reducing the chances for protein aggregation (Waugh, 2005; 

Nallamsetty and Waugh, 2006);  

iv) fusion partners net charges: highly acidic fusion partners were suggested to inhibit 

protein aggregation by electrostatic repulsion (Zhang et al., 2004; Su et al., 2007). 

 

 

1.3.1. Solubility enhancer partners 

A large variety of solubility enhancer tags are available (Table 1.1), including the well-

known MBP, NusA, thioredoxin (TrxA), GST, and SUMO, and several other novel 

moieties recently discovered.  
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Table 1.1. Solubility enhancer tags (adapted from Esposito and Chatterjee, 2006; 

Malhotra, 2009): 

Tag Protein Size (aa) Organism Reference 

MBP Maltose-binding 

protein 

396 E. coli (di Guan et al., 

1988; Kapust and 

Waugh, 1999) 

NusA N-Utilization 

substance 

495 E. coli (Davis et al., 

1999) 

Trx Thioredoxin 109 E. coli (Lavallie et al., 

1993) 

SUMO Small ubiquitin 

modified 

~100 Homo sapiens (Butt et al., 2005; 

Marblestone et 

al., 2006) 

GST Gluthathione-S-

transferase 

211 Schistosoma 

japonicum 

(Smith and 

Johnson, 1988) 

SET Solubility-enhancer 

peptide sequences 

<20  Synthetic (Zhang et al., 

2004) 

GB1 IgG domain B1 of 

Protein G 

56 Streptococcus 

sp. 

(Zhou et al., 

2001; Cheng and 

Patel, 2004) 

ZZ IgG repeat domain 

ZZ of Protein A 

116 Staphylococcus 

aureus  

(Rondahl et al., 

1992; Inouye and 

Sahara, 2009) 

HaloTag Mutated 

dehalogenase 

~300 Rhodococcus sp. (Ohana et al., 

2009) 

SNUT Solubility 

eNhancing 

Ubiquitous Tag 

147 Staphylococcus 

aureus 

(Caswell et al., 

2010) 

Skp Seventeen 

kilodalton protein 

161 E. coli (Esposito and 

Chatterjee, 2006) 

T7PK Phage T7 protein 

kinase 

~240 Bacteriophage 

T7 

(Esposito and 

Chatterjee, 2006) 

EspA E. coli secreted 

protein A 

192 E. coli (Cheng et al., 

2010) 

Mocr Monomeric 

bacteriophage T7 

0.3 protein (Orc 

protein) 

117 Bacteriophage 

T7 

(DelProposto et 

al., 2009) 

Ecotin E. coli trypsin 

inhibitor 

162 E. coli (Malik et al., 

2006; Malik et 

al., 2007) 

CaBP Calcium-binding 

protein 

134 Entamoeba 

histolytica  

(Reddi et al., 

2002) 
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ArsC Stress-responsive 

arsenate reductase 

141 E. coli (Song et al., 

2011) 

IF2-Domain I N-terminal 

fragment of 

translation 

initiation factor IF2 

158 E. coli (Sorensen et al., 

2003a) 

Expressivity 

tag(part of 

IF2-Domain I) 

N-terminal 

fragment of 

translation 

initiation factor IF2 

7 (21 nt) E. coli (Hansted et al., 

2011) 

RpoA, SlyD, 

Tsf, RpoS, 

PotD, Crr 

Stress-responsive 

proteins 

329, 196, 

283, 330, 

348, 169 

E. coli (Ahn et al., 2007; 

Han et al., 2007a; 

Han et al., 2007c; 

Han et al., 2007b; 

Park et al., 2008) 

msyB, yjgD, 

rpoD 

E. coli acidic 

proteins  

124, 138, 

613 

E. coli (Su et al., 2007; 

Zou et al., 2008) 

aa – amino acids; nt - nucleotides 

 

MBP is a large (43 kDa) periplasmic and highly soluble protein of E. coli that acts as a 

solubility enhancer tag (Kapust and Waugh, 1999; Fox et al., 2001), and it has a native 

affinity property to function as a purification handle.  

MBP plays an important role in the translocation of maltose and maltodextrins 

(Nikaido, 1994): it has a natural protein-binding site that it uses to interact with other 

proteins involved in maltose signaling and chemotaxis, and it has a large hydrophobic 

cleft close to this site that undergoes conformational changes upon maltose binding 

(Fox et al., 2001).  

When used in the fusion context, MBP promotes target protein solubility by showing 

chaperone intrinsic activity (Kapust and Waugh, 1999; Bach et al., 2001; Fox et al., 

2001), and it is more efficient at the N-terminus of the target proteins rather than at the 

C-terminus (Sachdev and Chirgwin, 2000). In fact, MBP promotes the proper folding of 

the target protein by interacting with the latter, and occluding its self-association. This 

passive role of MBP in protein folding is correlated with the large hydrophobic area 

exposed on its surface, which is responsible for the contact with other proteins in the 

maltose transport apparatus (Kapust and Waugh, 1999; Fox et al., 2001). Hence, the 

MBP hydrophobic cleft is pointed as the site where fused polypeptides interact with the 

fusion partner (Kapust and Waugh, 1999; Fox et al., 2001; Nallamsetty and Waugh, 
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2007), similar to what it is reported for GroEL and DnaK molecular chaperones (Buckle 

et al., 1997; Chatellier et al., 1999; Tanaka and Fersht, 1999). The presence of this cleft 

can explain why only certain soluble proteins like MBP act as solubilizing agents. 

Moreover, MBP presents certain conformational flexibility associated with the cleft; 

thereby it can adjust its shape to accommodate several different polypeptides.  

MBP fusion proteins bind to immobilized amylose resins, but this binding is highly 

dependent on the nature of the passenger protein as it can block or reduce the amylose 

interaction (Pryor and Leiting, 1997). Difficulties found in the binding of MBP fusion 

proteins to amylose resins corroborate the hypothesis that target proteins interact with 

MBP via its binding site (Fox et al., 2001).      

Other affinity tags, specific proteases and protein cultivation strategies are being 

employed together with MBP to improve protein soluble expression, purification and 

native protein recovery, as for instance, His6-MBP fusions (Nallamsetty et al., 2005), 

His6-MBP-TEV fusions (Rocco et al., 2008), MBP-His6-Smt3 fusions in which the 

Saccharomyces cerevisiae Smt3 protein is used for protein processing by proteolytic 

cleavage between the MBP-His6 tags and the protein of interest (Motejadded and 

Altenbuchner, 2009), and secretion of MBP fusion protein into the culture medium 

(Sommer et al., 2009). 

Several commercial expression vectors containing the MBP tag are available for 

cytoplasmic and periplasmic expression of target proteins, including the pMAL series 

(New England Biolabs) and pIVEX (Roche). 

 

NusA is a transcription anti-termination factor that promotes pauses in DNA 

transcription by RNA polymerase. NusA (55 kDa) is used as a fusion partner to confer 

stability and high solubility to its target proteins (De Marco et al., 2004; Dummler et al., 

2005; Turner et al., 2005). The NusA ability to improve the soluble production of fusion 

proteins may be correlated with its intrinsically solubility and biological activity in E. 

coli. NusA slows down translation at the transcriptional pauses, offering more time for 

protein folding (Davis et al., 1999; De Marco et al., 2004). In contrast to MBP, NusA 

does not present an intrinsic affinity property, therefore requiring the addition of an 

affinity tag for efficient protein production, as for instance, the His6 tag (Davis et al., 

1999). As for MBP, several strategies have been exploited to use the NusA solubility 
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enhancer fusion partner with purification tags and specific proteases like the pETM60 

vector (EMBL) (De Marco et al., 2004) that render the expression of a NusA-His6-TEV 

fusion protein, or the pET43 (Novagen), that offers the same NusA-His6 fusion protein 

but with a thrombin and enterokinase cleavage sites between the fusion tags and target 

proteins.  

In spite of the different physiochemical and structural properties, as well as different 

biological functions, MBP and NusA are often reported to promote similar solubility 

improvements in their target proteins, being ranked as two of the best tags for making 

soluble proteins (Shih et al., 2002; Kohl et al., 2008; Bird, 2011). Both fusion partners 

were reported to probably work by similar mechanisms, in which NusA, like MBP, 

plays a passive role on the target protein folding (Nallamsetty and Waugh, 2006).  

 

TrxA, or Trx, is a 12-kDa intracellular thermostable protein of E. coli that is highly 

soluble expressed in its cytoplasm (Young et al., 2012). The E. coli Trx can be used for 

co-expression with a target protein, improving the solubility of the latter (Yasukawa et 

al., 1995). Trx is also commonly employed as a fusion tag to avoid inclusion body 

formation in recombinant protein production by taking advantage of its intrinsic oxido-

reductase activity responsible for the reduction of disulfide bonds through thio-disulfide 

exchange (Stewart et al., 1998; LaVallie et al., 2000; Young et al., 2012). The fusion 

partner Trx can be placed both at the N- or C-terminal of target proteins (LaVallie et al., 

2000) but this fusion partner is more effective at the N-terminal of the target protein 

(Terpe, 2003; Dyson et al., 2004). In some high throughput screenings (Hammarstrom 

et al., 2002; Dyson et al., 2004; Kim and Lee, 2008), the Trx fusion partner improves 

target protein solubility similar to MBP tag, being considered one of the best choices 

for protein production in E. coli. 

Unlike MBP, Trx does not have intrinsic affinity properties, thus requiring an additional 

fusion tag for protein purification such as the His6 tag. The pET32 (Novagen), one of 

the commercially available vectors for Trx tagging, carries this dual-fusion partners for 

protein expression and purification (Austin, 2003). 

Trx fusion partner has been useful in protein crystallization of its target proteins because 

it readily form several crystals itself, and it offers a rigid connection to the target 

protein, which is an essential feature for blocking conformational heterogeneity usually 
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found in various attempts of fusion proteins crystallization (Smyth et al., 2003; Corsini 

et al., 2008). 

 

SUMO is a small protein (~11 kDa) found in yeast (one single gene codifying for Smt3) 

and vertebrates (three genes codifying for SUMO-1, SUMO-2, and SUMO-3) (Kawabe 

et al., 2000) that has recently been used as an effective N-terminal solubility enhancer 

fusion partner, offering advantages over other fusion systems (Marblestone et al., 2006; 

Bird, 2011).  

The SUMO fusion partner offers the production of the target protein or peptide with its 

native N-terminal amino acid composition. Moreover, the robust SUMO protease 

(catalytic domains of Ulp1) recognizes the tertiary structure of SUMO, offering a 

significant advantage over other endoproteases as it does not present unspecific 

cleavage of the protein linear amino acid sequence (Malakhov et al., 2004; Marblestone 

et al., 2006).  

SUMO promotes the proper folding and solubility of its target proteins possibly by 

exerting chaperoning effects in a similar mechanism to the described for its structural 

homologous Ubiquitin (Ub) (Khorasanizadeh et al., 1996). Ub was reported to be the 

nature’s fastest folding protein, and SUMO also present a tight, rapidly folding soluble 

structure (Marblestone et al., 2006). In addition, Ub and Ub-like proteins (Ulp) have a 

highly hydrophobic inner core and a hydrophilic surface that, together with such a rapid 

folding, may explain the SUMO behaviour as a nucleation site for the proper folding of 

target proteins (Malakhov et al., 2004; Marblestone et al., 2006). 

SUMO fusion proteins or peptides are usually purified by affinity chromatography 

using the His6 tag (Lee et al., 2008; Gao et al., 2010; Wang et al., 2010; Satakarni and 

Curtis, 2011). Due to its unique features, SUMO technology has being constantly 

explored, and novel strategies for a facile and rapid protein production are now 

available, as the SUMO-intein system (Wang et al., 2012). The SUMO fusion partner is 

also available for recombinant protein expression in other host cells, namely, insect 

cells and other eukaryotic cells (Panavas et al., 2009).    

 

GST is a gluthathione-S-transferase from Schistosoma japonicum (26 kDa) that has 

been used as an affinity fusion partner for the single-step purification of its target 
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proteins (Smith and Johnson, 1988). GST can also promote protein soluble expression 

in E. coli, being more efficient when positioned at the N-terminal rather than at the C-

terminal end (Malhotra, 2009). This fusion partner can protect its target protein from the 

proteolytic degradation, stabilizing it into the soluble fraction (Kaplan et al., 1997; Hu 

et al., 2008; Young et al., 2012). In spite of performing quite well in some high 

throughput studies (Dummler et al., 2005; Cabrita et al., 2006; Kim and Lee, 2008), 

GST is often a poor solubility tag when compared to other commonly fusion partners, 

rendering the target protein production into inclusion bodies (Hammarstrom et al., 2002; 

Dyson et al., 2004; Hammarstrom, 2006; Kohl et al., 2008; Ohana et al., 2009). 

Glutathione transferases are dimeric enzymes that catalyze the nucleophilic addition of 

the thiol of glutathione to a wide range of hydrophobic electrophilic molecules 

(Ketterer, 2001). Taking this feature into account, GST can be useful for monitoring the 

protein expression and purification via its catalytic activity, and the purification of GST 

fusion proteins can be easily performed by affinity chromatography using glutathione 

derivates immobilized into a solid support (Viljanen et al., 2008). GST fusion proteins 

can be eluted with glutathione under mild conditions (Vinckier et al., 2011).  

A major disadvantage for using GST as solubility and affinity tag relies on its 

oligomerized form: GST has four solvent exposed cysteines that can provide a 

significant oxidative aggregation (Kaplan et al., 1997), making it a poor choice for 

tagging oligomeric target proteins (Malhotra, 2009).  

As occurs with MBP, GST can be coupled with other affinity strategies, for instance, 

the His6 tag, to improve the protein expression and purification (Scheich et al., 2003; 

Hayashi and Kojima, 2008; Hu et al., 2008). GST expression vectors like the pGEX 

(Hakes and Dixon, 1992) or pCold-GST (Hayashi and Kojima, 2008) usually contain a 

protease cleavage site between the fusion tag and target protein for GST tag removal 

after or during protein purification. 

GST has also been applied as a fusion partner in other expression systems apart from 

the E. coli, such as yeast (Mitchell et al., 1993), insect cells (Beekman et al., 1994), and 

mammalian cells (Rudert et al., 1996). This fusion partner has shown to be useful for 

protein labeling (Ron and Dressler, 1992; Viljanen et al., 2008), antibody production 

(Aatsinki and Rajaniemi, 2005), and vaccine development (Mctigue et al., 1995). 
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In addition to these commonly used fusion partners, new solubility enhancer tags are 

constantly emerging in literature (see the corresponding references in Table 1.1), as for 

instance, the HaloTag (34 kDa), which uses a modified haloalkane dehalogenase 

protein that improves protein solubility and can bind to several synthethic ligands, the 

monomeric mutant of Orc protein of the bacteriophage T7 (Mocr), the E. coli protein 

Skp, stress-responsive proteins RpoA, SlyD, Tsf, RpoS, part of the domain I of IF2 

(Expressivity tag), the E. coli secreted protein A (EspA), and the SNUT tag, which is a 

protein derived from a portion of the bacterial transpeptidase sortase A of 

Staphylococcus aureus.  

 

 

1.3.2. Affinity purification handles 

Affinity fusion partners have widely contributed for the development of recombinant 

protein production studies in basic research and in high throughput structural biology 

(Waugh, 2011) by simplifying protein purification procedures, and allowing for protein 

detection, and characterization (Butt et al., 2005; Malhotra, 2009; Young et al., 2012).  

Affinity purification handles can be divided into two groups: (1) peptides or proteins 

that bind a small ligand immobilized on a solid support, as for instance, the His6 tag and 

nickel affinity resins, and (2) tags that bind to an immobilized molecule such as 

antibodies (Arnau et al., 2006). 

The purification of a target protein using an affinity handle offers several advantages 

over the conventional chromatographic methodologies, namely: 

i) the target protein never interacts directly with the chromatographic resin (Waugh, 

2005); 

ii) target proteins can be easily obtained pure after a single-step purification (Terpe, 

2003); 

iii) affinity purification offers a variety of strategies to bind the target protein on an 

affinity matrix (Malhotra, 2009); 

iv) affinity tags are an economically favorable and time-saving strategy, and they allow 

different proteins to be purified using a common method in contrast to highly 

customized procedures used in conventional chromatographic purification (Arnau 

et al., 2006). 
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An affinity tag is often chosen taking into account the purification costs whereby 

different affinity media have different expenses in the resin itself and in the operation 

process. The buffer requirements are also essential for the designing of an efficient 

purification strategy (Malhotra, 2009). In addition, the choice of an affinity can also rely 

on the size: small tags are useful for protein detection and antibody production, as they 

are not immunogenic as large tags (Terpe, 2003). 

 

Tandem affinity purification (TAP) or dual-tagging strategies are now commonly 

used in recombinant protein production: they offer a highly specific isolation of target 

proteins with minimal background and under mild conditions, and they are very useful 

in the study of protein interactions, allowing the separation of different mixed protein 

complexes (Arnau et al., 2006; Li, 2010).     

 

 

Table 1.2 lists some of the common purification tags used in recombinant protein 

production. 
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Table 1.2. Affinity purification tags (adapted from Esposito and Chatterjee, 2006; 

Malhotra, 2009): 

Tag Protein Size 

(aa) 

Affinity 

matrix 

Reference 

His6 Hexahistidine tag 6-10 Immobilized 

metal ion – Ni, 

Co, Cu, Zn 

(Gaberc-Porekar and 

Menart, 2001) 

GST Gluthathione-S-

transferase 

211 Gluthathione (Smith and Johnson, 1988) 

MBP Maltose-binding 

protein 

396 Amylose (di Guan et al., 1988; 

Pryor and Leiting, 1997) 

FLAG FLAg tag peptide 8 Anti-FLAG 

antibody 

(Einhauer and Jungbauer, 

2001) 

Strep-II Streptavidin 

binding peptide 

8 Streptavidin (Schmidt and Skerra, 

1994) 

CBP Calmodulin-

binding protein 

26 Immobilized 

calmodulin 

(Vaillancourt et al., 2000) 

HaloTag Mutated 

dehalogenase 

~300 Chloroalkane (Ohana et al., 2009) 

Protein A Staphylococcal 

Protein A 

280 Immobilized 

IgG 

(Stahl and Nygren, 1997) 

IMPACT 

(CBD) 

Intein mediated 

purification with 

the chitin-

binding domain 

51 Chitin (Chong et al., 1997; 

Sheibani, 1999) 

CBM Cellulose-

binding module 

* Cellulose (Tomme et al., 1998) 

Dock Dockerin domain 

of Clostridium 

josui 

22 Cohesin - 

Cellulose 

(Kamezaki et al., 2010) 

Tamavidin fungal avidin-

like protein  

~140 Biotin (Takakura et al., 2010) 

*Several sizes, from 4-20 kDa 

 

  



General introduction | Chapter 1 

 

Costa, S. J. | 2013 27 

The polyhistidine affinity tag or His tag consists of a variable number of consecutive 

histidine residues (usually six) that coordinate, via the histidine imidazole ring, 

transition metal ions such as Ni
2+

 or Co
2+

 immobilized on beads or a resin for 

immobilized metal affinity purification (IMAC) (Gaberc-Porekar and Menart, 2001; 

Terpe, 2003; Kimple and Sondek, 2004; Malhotra, 2009). Commonly used IMAC resins 

such as nitrilotriacetic acid agarose (Ni-NTA, from Qiagen), or carboxymethylasparte 

agarose (Talon, from ClonTech) have a high binding capacity, and can be used for 

purification of fusion proteins directly from crude cell lysates (Terpe, 2003; Kimple and 

Sondek, 2004; Li, 2010). 

The His tag is one of the most widely used purification tags, and it offers several 

advantages (Kimple and Sondek, 2004; Li, 2010): 

i) its small size and charge rarely interferes with protein function and structure; 

ii) it can be used under native and denaturing conditions  

iii) target proteins can be eluted under mild conditions by imidazole competition or low 

pH 

The His tag has been used in several high throughput screenings, placed at the N- or C-

terminal end, or even in the middle of the fusion protein (Cabrita et al., 2006; 

Hammarstrom, 2006; Marblestone et al., 2006; Bird, 2011), and it is also an useful tool 

in protein crystallization as well as protein detection (Carson et al., 2003; Kimple and 

Sondek, 2004). 

Taking into account the mechanism of protein interaction with the immobilized ions, 

careful should be taken in IMAC to avoid strong reducing and chelating agents in any of 

the buffers (as for instance, EDTA), as they will reduce or strip the immobilized metal 

ions (Carson et al., 2003; Kimple and Sondek, 2004; Li, 2010). 

 

Epitope tags are short sequences of amino acids that serve as the antigen region to 

which the antibody binds, being suitable for several immunoapplications. These include 

affinity chromatography on immobilized monoclonal antibodies, and protein trafficking 

in vitro or in cell cultures (Kimple and Sondek, 2004; Young et al., 2012). Epitope 

tagging engages an expensive purification that often limits its wide application.  

The following partners are often used as epitope tags: the FLAG tag (Einhauer and 

Jungbauer, 2001), the hemaglutinin, and the c-Myc (Fritze and Anderson, 2000). Their 
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short sequences rarely interfere with structure or function of target proteins, and are 

very specific for their respective primary antibodies (Kimple and Sondek, 2004; 

Malhotra, 2009). The FLAG tag is a short hydrophilic eight amino-acid peptide, and it 

was the first tag to be used in the epitope context. This tag works either for protein 

detection or purification (Hopp et al., 1988; Knappik and Pluckthun, 1994), and it has 

an intrinsic enterokinase cleavage site at its C-terminus end, allowing its complete 

removal from the target protein (Einhauer and Jungbauer, 2001; Young et al., 2012). 

 

Strep II tag is a short tag of only eight amino acid residues that possesses a strong and 

specific binding to streptavidin via its biotin pocket (Schmidt and Skerra, 1994). This 

affinity partner can be fused at both N- or C-terminal ends, or within the target protein. 

Strep II-fused proteins elute from streptavidin columns with biotin derivates under 

gentle conditions (Terpe, 2003; Li, 2010). 

 

The CBP tag is a calmodulin-binding peptide derived from the C-terminus of skeletal 

muscle myosin light chain kinase, and it has been used as an N- or C-terminal affinity 

tag of target protein purification on a calmodulin immobilized matrix (Terpe, 2003; 

Malhotra, 2009). The CBP interaction with calmodulin is calcium-dependent, and 

hence, the addition of calcium-chelating allows the single step elution of target proteins 

under gentle conditions (Terpe, 2003; Malhotra, 2009; Li, 2010). This tag is an affinity 

system highly specific for protein purification in E. coli but not in eukaryotic systems, 

as E. coli does not contain endogenous proteins that interact with calmodulin (Terpe, 

2003; Malhotra, 2009).  

 

In addition to the above-mentioned affinity tags, new affinity purification strategies are 

now described in literature for protein isolation and detection (see the corresponding 

references in Table 1.2) such as cellulose-binding domains I, II and III (CBD), the 

HaloTag, the dockerin domain Dock tag, and the avidin-like protein, Tamavidin tag. 
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1.3.3. Tag removal 

The removal of the fusion partner from the final protein is often necessary because the 

tag can potentially interfere with the proper structure and functioning of the target 

protein (Waugh, 2005; Malhotra, 2009; Young et al., 2012).  

The fusion partners are removed from their target proteins either by enzymatic 

cleavage, in which site specific proteases are used under mild conditions, or by 

chemical cleavage that offers a less expensive tag removal but it is also less specific 

compared to the enzymatic strategy, besides presenting harsh conditions that can affect 

the target protein stability and solubility (Malhotra, 2009; Li, 2011).  

The efficiency of the enzymatic removal of fusion proteins may vary in an unpredicted 

manner with different proteins (Li, 2011; Vergis and Wiener, 2011; Young et al., 2012), 

and it often requires the optimization of cleavage conditions through and trial-and-error 

process (Malhotra, 2009). Two types of proteases can be used for tag removal (reviewed 

in Waugh, 2011): 

i) endoproteases: they are divided into serine proteases such as the activated blood 

coagulation factor X (Factor Xa), enterokinase, and α-thrombin, and viral 

proteases like the tobacco etch virus (TEV), and the human rhinovirus  3C 

protease (Table 1.3). In spite of recognizing a similar number of substrate amino 

acid residues, viral proteases have usually more stringent sequence specificity 

than serine proteases, presenting also slower rates than the latter. Endoproteases 

are useful tools for the removal of N-terminal fusion tags, since they cleave close 

to the C-terminus end of their recognition sites thus leaving the target protein with 

its native N-terminal sequence.  

ii) exoproteases: they are often used together with endoproteases mainly for the 

removal of C-terminal fusion tags. The available exoproteases include 

metallocarboxypeptidases, and aminopeptidases. 
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Table 1.3. Common endoproteases for tag removal (adapted from Malhotra, 2009): 

Protease Source Cleavage site Reference 

TEV Tobacco etch virus 

protease 

ENLYFQ/G (Parks et al., 

1994; Kapust et 

al., 2001) 

EntK Enterokinase DDDDK/ (Choi et al., 

2001) 

Xa Factor Xa IEGR/ (Jenny et al., 

2003) 

Thr Thrombin LVPR/GS (Jenny et al., 

2003) 

PreScission  Genetically 

engineered derivative 

of human rhinovirus 

3C protease 

LEVLFQ/GP GE Healthcare; 

(Cordingley et 

al., 1990) 

SUMO 

protease 

Catalytic core of Ulp1 Recognizes SUMO tertiary 

structure and cleaves at the 

C-terminal end of the 

conserved Gly-Gly sequence 

in SUMO 

(Malakhov et al., 

2004; Butt et al., 

2005; 

Marblestone et 

al., 2006) 

 

 

The removal of a fusion tag is usually accomplished by two purification steps, as 

follows: after the initial affinity purification step, the purified fusion protein is mixed in 

solution with the endoprotease to cleave off the tag. The cleaved target protein (TP) is 

recovered in the flow-through sample after a second affinity purification step, in which 

the cleaved fusion tag and the added protease are collected in the eluted sample.  

 

Figure 1.3 illustrates an example of a tag removal using the above-mentioned two-step 

purification protocol. 
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Figure 1.3. Tag removal strategy using the His-TEV endoprotease (adapted from 

Waugh, 2011). His: hexahistidine tag. F: solubility fusion partner. TP: target protein. 

See the explanation in the text above. 

 

In spite of widely employed, the removal of fusion partners has always been the 

Achilles’ heel of affinity tagging, presenting several difficulties such as:  

i) unspecific cleavage due to the recognition of a linear amino acid sequence (except 

for SUMO protease); 

ii) inefficient processing due to steric hindrance or the presence of unfavorable 

residues around the cleavage site (Li, 2011; Waugh, 2011). The inclusion of extra 

amino acid residues (a spacer or linker) between the cleavage site and target protein 

(Esposito and Chatterjee, 2006; Malhotra, 2009) can alleviate this problem;  

iii) low protein yields after tag removal, and failure in recover active, structurally 

organized target proteins due to protein precipitation and aggregation (Butt et al., 

2005; Waugh, 2011);  

iv) high costs of proteases and tedious optimization of cleavage conditions (Smyth et 

al., 2003).  
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Independently of the cleavage type, additional chromatographic steps are often required 

to purify the target protein from the cleavage mixture. Although conventional affinity 

technologies have greatly simplified recombinant protein production, resins and buffers 

are still too expensive. Hence, the tag removal adds another layer of complexity and 

expense to the recombinant protein production process (Mee et al., 2008; Li, 2011). 

 

Self-cleaving tags are a special group of fusion tags that possess inducible proteolytic 

activity, therefore being considered an attractive alternative to the existent affinity 

strategies for simple and costless protein purification and tag removal (Chong et al., 

1997; Li, 2011).  

The protein splicing is a process in which the intervening sequence (intein) removes 

itself and binds the flaking residues (exteins) to produce two independent protein 

products (Perler et al., 1994). Self-cleaving tags undergo specific cleavage upon being 

triggered by low molecular weight compounds or upon a change of conformation. The 

available technologies include inteins, the Staphylococcus aureus sortase A, the N-

terminal protease (N
pro

), the Neisseria meningitides iron-regulated protein FrpC, and the 

cysteine protease domain secreted by Vibrio cholerae, all of them reviewed in Li 

(2011).  
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1.4. The Fh8 excreted-secreted protein of Fasciola hepatica 

 

The liver fluke Fasciola hepatica is a trematode parasite of ruminants (mainly cattle, 

goat and sheep), but it also infects humans worldwide. Fasciolosis is an 

anthropozoonotic disease caused by the F. hepatica, and it is responsible for a large 

economic loss in the agricultural industry (Silva et al., 2004; Mas-Coma et al., 2005).  

Infection from F. hepatica occurs upon ingestion of vegetables contaminated with 

parasite metacercariae. After occlusion, the worm penetrates into the intestinal wall and 

migrates through the peritoneal cavity and liver. 

The F. hepatica secretes a large number of proteins into the host organism that are 

important for the host-parasite interaction during infection, as highlighted by an 

integrated transcriptomic and proteomic analysis of the parasite secretome (Robinson et 

al., 2009). 

Despite the low number of human cases of fasciolosis, this parasite infection is 

considered a public health problem. The diagnosis of human and animal fasciolosis has 

been improved by the introduction of new tools, using more specific and sensitive 

antigens, as for instance, the excreted-secreted antigens (ESP) (Berasain et al., 1997; 

Silva et al., 2004; Hewitson et al., 2009). 

Several proteins of the F. hepatica ESP have been identified as useful tools for 

serodiagnosis, and as infection markers, namely the cathepsin L (O'Neill et al., 1999), 

peroxiredoxin (Salazar-Calderon et al., 2000), and the calcium-binding protein (CaBP) 

Fh22 (de Eguino et al., 1999). 

 

The Fh8 (Genbank ID: AF213970.1) is one of the excreted-secreted antigens by the 

parasite F. hepatica in the early stages of infection (Silva et al., 2004). This protein 

presents a low molecular weight (8 kDa), and it is located on the surface of the parasite, 

therefore being suggested as a useful tool for the diagnosis, vaccine and drug 

development against F. hepatica infections (Silva et al., 2004). The Fh8 has high 

homology with 8-kDa CaBPs of Schistosoma mansoni (Sm8) (Ram et al., 1989), of 

Clonorchis sinensis (Ch8), and of Schistosoma japonicum (Sj8) (Lv et al., 2009), and it 

belongs to the calmodulin-like EF-hand CaBP family (Fraga et al., 2010).  
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Besides Fh8 and Fh22, two other CaBPs have been recently identified in F. hepatica, 

presenting high homology with calmodulin: the FhCaM1 and the FhCaM2 (Russell et 

al., 2007).  

 

Calcium is an important second messenger in eukaryotes that controls vital processes 

such as bone mineralization and cell signaling (Lewit-Bentley and Rety, 2000). This ion 

exerts its effects by binding to a very large number of proteins that constitute the 

calcium-binding proteins family.  

CaBPs are structurally organized by EF-hand motifs, which are helix-loop-helix 

structures that participate in Ca
2+

 coordination (Bhattacharya et al., 2004; Zhou et al., 

2006; Chazin, 2011). Proteins of the EF-hand CaBP family are usually classified as 

Ca
2+

 sensors or Ca
2+

 buffers. Upon calcium binding, sensor proteins, like calmodulin 

(Nelson and Chazin, 1998; Chin and Means, 2000) and troponin C (Nelson and Chazin, 

1998), translate the physiological changes in calcium levels by undergoing a 

conformational change. This then allows the binding of other proteins downstream the 

process. In EF-hand proteins, the open of the EF-hand structure exposes a hydrophobic 

surface, which binds the target sequence (Lewit-Bentley and Rety, 2000; Bhattacharya 

et al., 2004). Ca
2+

 buffer proteins, such as calbindin D9k and parvalbumin (Schwaller, 

2010), are involved in calcium signal modulation, undergoing minimal conformational 

changes upon calcium binding.  

 

The Fh8 (Figure 1.4) presents two EF-hand motifs, and it was characterized as a 

calcium sensor protein: when calcium binds, the Fh8 switches from a closed (apo-state) 

to an open (calcium-loaded state) conformation due to the reorientation of the four 

helices, exposing a large hydrophobic region that acts as a target-binding surface (Fraga 

et al., 2010).  
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Figure 1.4. Modeled structure of Fh8 in the open (green) and closed (yellow) 

conformation (from (Fraga et al., 2010)). The Fh8 has two calcium binding sites, 

located the EF-hands (site I and II). The four EF-hand helices are named A, B, C and D.  

 

The use of recombinant Fh8 produced in E. coli led to the development of a novel, rapid 

and simple immunodetection of F. hepatica infections (Silva et al., 2004). Moreover, 

when produced recombinantly in E. coli, the Fh8 revealed to be a highly soluble and 

unusual thermal stable protein (keeping secondary structure integrity up to 74 ºC) (Silva 

et al., 2004; Fraga et al., 2010).  

 

Previous studies of the Fh8 by directed mutagenesis (conducted at the National Health 

Institute Doutor Ricardo Jorge) revealed that EF-hand-mutated Fh8 proteins produced 

in E. coli presented similar expression levels to those obtained for the wild type Fh8. 

These results suggested that other Fh8 residue sequences (apart from those involved in 

the calcium-binding) could be critical for Fh8 stability and production. The prediction 

of the Fh8 three-dimensional structure showed that, except for small sequences in the 

N-terminal (11 amino acid residues) and C-terminal (6 amino acid residues), all the 

remaining residues are involved or affected by the calcium-binding. Taking into account 

that the N-terminal of a protein is very important for its half-life, the N-terminal eleven 

residues of Fh8 were suggested to play a key role in the stability and production of the 

entire Fh8 protein. This 11-amino acid sequence (named H) may also be critical for the 

immunological response of the Fh8 antigen.  
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Both Fh8 and H peptides improved the E. coli expression levels of several target 

proteins (see patent WO 2010/082097 in the Appendix 1.6.1), in which the Fh8 

presented further improvements than the H peptide.  

This thesis stems from these findings and due to Fh8 properties, namely its high 

solubility, high stability and calcium-binding features, it aims at studying this protein as 

a fusion partner for the soluble overexpression and purification of recombinant 

proteins in E. coli. Taking into account the above-mentioned importance of the Fh8 N-

terminal eleven residues, this thesis also aims at studying the H tag for the production 

of immunogenic proteins.  

 

In this work, the novel fusion tag Fh8 is evaluated as a solubility enhancer and 

compared with the traditionally used solubility tags in Chapter 2. The H tag is 

investigated in Chapter 3 as a fusion partner for the adjuvant-free production of 

polyclonal antibodies. The Fh8 tag is also explored as a purification handle, as 

described in Chapter 4. The utility of Fh8 partner is highlighted in Chapter 5, whereby it 

is used for the soluble expression and purification of two difficult-to-express proteins. 

As a solubility and purification tag, the Fh8 partner should interfere as less as possible 

with its target proteins, but its previously reported oligomerization tendency (Fraga et 

al., 2010) can add some difficulties in the fusion context. An attempt to reduce this Fh8 

characteristic is revealed in the Chapter 6 by studying two novel Fh8 variants as fusion 

tags.  
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1.6. Appendices 

 

1.6.1. Patent WO 2010/082097: Fusion proteins, its preparation process and its 

application on recombinant protein expression systems 

Please, open here:  

https://dl.dropbox.com/u/10833879/Fh8tag_Patents/WO2010082097.pdf 

 

 

1.6.2. The Hofmeister series 

 

Figure A1.1. The Hofmeister series (adapted from GE Healthcare, 2006). 
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Chapter 2 

The novel Fh8 and H fusion partners for soluble protein expression in 

Escherichia coli: a comparison with the traditional gene fusion 

technology 

Adapted from Applied Microbiology and Biotechnology, In press. 

 

Abstract 

The Escherichia coli host system is an advantageous choice for simple and inexpensive 

recombinant protein production but it still presents bottlenecks at expressing soluble proteins 

from other organisms. Several efforts have been taken to overcome E. coli limitations, including 

the use of fusion partners that improve protein expression and solubility. New fusion 

technologies are emerging to complement the traditional solutions. This work evaluates two 

novel fusion partners, the Fh8 tag (8 kDa) and the H tag (1 kDa), as solubility enhancing tags in 

E. coli and their comparison to commonly used fusion partners.  

A broad range comparison was conducted in a small-scale screening and subsequently scaled-

up. Six difficult-to-express target proteins (RVS167, SPO14, YPK1, YPK2, Frutalin and CP12) 

were fused to eight fusion tags (His, Trx, GST, MBP, NusA, SUMO, H and Fh8). The resulting 

protein expression and solubility levels were evaluated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis before and after protein purification and after tag removal. 

The Fh8 partner improved protein expression and solubility as the well-known Trx, NusA or 

MBP fusion partners. The H partner did not function as a solubility tag. Cleaved proteins from 

Fh8 fusions were soluble and obtained in similar or higher amounts than proteins from the 

cleavage of other partners as Trx, NusA or MBP.  

The Fh8 fusion tag therefore acts as an effective solubility enhancer, and its low molecular 

weight potentially gives it an advantage over larger solubility tags by offering a more reliable 

assessment of the target protein solubility when expressed as a fusion protein.  
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2.1. Introduction 

 

The production of soluble and functional protein in Escherichia coli is still a major 

challenge in biotechnology research. In spite of its fast growth, low cost, high-

productivity, and extensive genetic characterization, E. coli occasionally still suffers 

from low expression and/or low solubility of target proteins (Terpe, 2006; Peti and 

Page, 2007; Demain and Vaishnav, 2009; Makino et al., 2011).  

Several efforts have been exploited to prevent recombinant protein aggregation and to 

improve its soluble production by the use of different promoters, expression strains and 

induction conditions, co-expression of chaperones, and soluble fusion partners 

(Sorensen and Mortensen, 2005; Studier, 2005; Berrow et al., 2006; Makino et al., 

2011; Vernet et al., 2011; Pacheco et al., 2012). The fusion of a highly soluble carrier to 

recombinant proteins has been generally used to improve protein solubility and 

expression in E. coli (Terpe, 2003; Waugh, 2005; Esposito and Chatterjee, 2006; Ohana 

et al., 2009), although success is not yet always guaranteed.  

The Trx (LaVallie et al., 2000), GST (Smith and Johnson, 1988; Smith, 2000), MBP 

(Kapust and Waugh, 1999; Sachdev and Chirgwin, 2000), and NusA (Davis et al., 1999; 

De Marco et al., 2004) fusion partners are commonly employed as solubility enhancing 

carriers, but when producing a recombinant protein for structural and functional 

applications, these fusion partners must often be removed. The removal of fusion 

partners is usually made by specific protease sites included between the fusion tag and 

the target protein. However, after cleavage of the soluble fusion partner, precipitation of 

the target proteins can occur.  Here, a major bottleneck appears as the target protein 

solubility can dramatically change in the presence and absence of the fusion partner. 

Meanwhile, new fusion solutions are constantly emerging and complementing the other 

fusion partners, as for instance, SUMO fusion technology (Michael P. Malakhov and 

Butt, 2004; Marblestone et al., 2006).  

A novel fusion system (Hitag®) is presented in this work: the Fh8 and H partners. The 

Fh8 fusion partner is an 8-kDa calcium-binding recombinant protein (GenBank ID 

AF213970) extracted from the parasite Fasciola hepatica and it has been previously 

used on the diagnosis of parasite infections (Silva et al., 2004). The recombinant Fh8 

was also studied before by directed mutagenesis, in which its N-terminal sequence 
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revealed to be important for Fh8 stability and production in E. coli (not published). 

From this analysis, a new fusion partner was suggested: the H tag that corresponds to 

the first eleven aminoacids of the Fh8 N-terminus, resulting in a molecular weight of 1 

kDa.  

In this work, both Fh8 and H fusion partners are explored as solubility enhancing 

partners and compared to the commonly used fusion partners Trx, GST, MBP, NusA, 

and SUMO. The study conducted here does not only evaluate the novel fusion system 

effect on protein solubility but also the behavior of target proteins after Fh8 and H tags 

removal in comparison to the other fusion partners. Six difficult-to-express target 

proteins in E. coli were fused to eight fusion tags and the resulting solubility compared 

in a broad screening before and after tag removal.   

 

 

2.2. Materials and Methods 

 

2.2.1. General 

In this work, all the cloning PCRs used the Phusion High-Fidelity DNA Polymerase 

(New England Biolabs) with an annealing temperature of 55 ºC, according to the 

manufacturer’s instructions. The colony PCRs were conducted using the in-house DNA 

Taq Polymerase with an annealing temperature of 55 ºC and with the T7 forward and 

reverse universal primers. Plasmid DNA extractions were performed using the Qiagen 

kits for maxi- and minipreps and the QIAquick DNA gel extraction kit or QIAquick 

PCR purification kit (Qiagen) were used for DNA purification. The restriction enzymes 

used in this work were from New England Biolabs. All the DNA ligations were carried 

out with the Rapid DNA Ligation kit (Roche). For plasmid maintenance and protein 

expression, different antibiotics were used depending on the strain and plasmid 

requirements. Antibiotic stock solutions were prepared, filtered through 0.2 µm, and 

stored at -20 ºC in the following concentrations: kanamycin, 30 mg.mL
-1

; carbenicillin, 

100 mg.mL
-1

; and chloramphenicol, 10 mg.mL
-1

.  
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2.2.2. Construction of the pETMFh8 and pETMH vectors 

The insertion of the Fh8 tag with the TEV cleavage site into the pETM10 vector (Table 

2.1) was carried out by DNA ligation of the NcoI-KpnI digested plasmid and PciI-KpnI 

digested fh8 PCR product.  The pETMH fusion vector was obtained from the pETM11 

backbone (Table 2.1), performing three PCRs: The PCR-I inserted part of the H tag (the 

first 28 nucleotides) after the His6 tag sequence from the pETM11 plasmid. The PCR-II 

inserted part of the H tag (the final 28 nucleotides) before the TEV cleavage site of the 

pETM11 plasmid. As the H tag sequence has only 33 basepairs (bp), specific primers 

were designed for the PCR I and II in order to have 23 nucleotides of the H tag 

sequence matching in both PCRs. The universal primers T7 forward and reverse were 

used in the PCR-III for amplification of the His6 tag/H tag/TEV-site sequence to be 

cloned into the pETM11 plasmid. The purified PCR-III product and the pETM11 

plasmid were digested with XbaI and XhoI restriction enzymes, and the final pETMH 

vector was obtained by ligation of the digested DNAs.  

E. coli DH5α competent cells were transformed with the constructed pETMFh8 and 

pETMH plasmids, and the obtained clones were analyzed by colony PCR. The novel 

pETMFh8 and pETMH fusion vectors were confirmed by sequencing with both T7 

forward and reverse universal primers.  
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Table 2.1. Construction of the pETMFh8 and pETMH expression vectors: 

Backbone Vector PCR Primers Sequence (5’3’) Comments 

pETM 10 pETMFh8 I 

Fh8-FWD 
TCTATTACATGTCCCCTAGTGTTCAAGA

GGTTGAAAAAC 

In bold is the PciI restriction enzyme sequence and 

underlined is the initial part of the Fh8 tag sequence. 

Fh8-RV 

AATAGAGGTACCGGAACCCATGGAGCC

CTGAAAATAAAGATTCTCTGACAAAATCG

AAACGAG 

In bold is the KpnI restriction enzyme sequence and in 

bold underlined is the NcoI restriction enzyme 

sequence. In italic bold is the TEV recognition 

cleavage site and underlined is the final part of the Fh8 

tag sequence. 

pETM 11 pETMH 

I 

T7-FWD TAATACGACTCACTATAGGG Underlined are the first 28 nucleotides of the H tag 

sequence. In bold underlined are the 23 common 

nucleotides used in both I and II PCRs. In italic bold is 

the His6 tag sequence of the pETM11 plasmid. Htag-RV 
GTTTTTCAACCTCTTGAACACTAGGCA

TGTGATGGTGATGGTGATGTTTC 

II 

 

Htag-FWD 
TAGTGTTCAAGAGGTTGAAAAACTCCT

TGAGAATCTTTATTTTCAGGGC 

Underlined are the final 28 nucleotides of the H tag 

sequence. In bold underlined are the 23 common 

nucleotides used in both I and II PCRs. In italic bold is 

the TEV recognition cleavage site of the pETM11 

plasmid. 
T7-RV GCTAGTTATTGCTCAGCGG 
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2.2.3. Cloning of the target genes into pETM vectors  

The target genes ypk1_frag, rvs167, spo14_frag and ypk2 used in this work (Table 2.2) 

are synthetic genes previously optimized for E. coli expression. All these genes were 

inserted into the pETM vectors (Table 2.3) using the NcoI/BamHI - XhoI restriction 

sites, presented at the beginning of each gene sequence and after the stop codon, 

respectively.  The frutalin and cp12 genes (Table 2.2) were modified by PCR to have 

the NcoI/BamHI-XhoI restriction sites at the same positions as the other target genes. A 

similar primer designing was used to amplify both frutalin and cp12 sequences as 

follows:  primer forward 5´-TCTATTCCATGGGATCC-22 initial nt of the target gene -

3’ with the NcoI restriction site in bold, the BamHI restriction site in italic and the first 

22 nucleotides of each gene underlined; and primer reverse 5’-AATAGACTCGAG-22 

final nt of the target gene-3’ with the XhoI restriction site in bold and the final 22 

nucleotides of each gene underlined. After ligation of the digested PCR products and 

plasmids, E. coli DH5α competent cells were transformed, and the resulting clones were 

analyzed and confirmed as previously mentioned.  

 

2.2.4. Expression strains and culture conditions 

Four different expression strains were evaluated in this work: the E. coli BL21 (DE3) 

Codon Plus-RIL; the E. coli Rosetta (DE3) cells, the E. coli Tuner (DE3) strain, and the 

E. coli SoluBL21 strain. Competent cells of the four different strains were prepared and 

transformed with the constructed fusion vectors. The resulting clones were confirmed 

by colony PCR, and one positive clone was selected for the expression trials. All the 

cells were grown in LB media with the appropriate antibiotics diluted with a factor of 

1000 (see Table 2.3 for selection and maintenance of pETM vectors). In this work, the 

degradation-resistant carbenicillin was used instead of ampicillin. Precultures were 

grown overnight (o/n) at 37 ºC and a dilution factor of 100 was used for inoculation of 

all cultures (usually corresponding to a starting OD600nm of 0.02). Cultures were 

performed in parallel, using 10 mL of culture media in 24 deep-well plates (25 mL 

capacity per well - DIA Nielsen GmbH&Co. KG, Germany) for small-scale screenings 

and 500 mL of culture media in 2 L flasks for the scale-up. Cultures were grown at 37 

ºC and 200 rpm to a final OD600nm of 0.4-0.6 before induction. In the small-scale study, 

two plates with the same strain and fusion proteins were used to test different induction 
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conditions: isopropyl-β-D-1-thiogalactopyranoside at 0.5 mM, 28 ºC and 3 hours (first 

plate) or at 0.2 mM, 18 ºC and o/n (second plate). Each 10-mL culture was divided in 

two 5-mL cultures. All cells were harvested for 25 min, at 4 ºC and 4500 rpm. Cell 

pellets from 500 mL cultures were washed once with 1x phosphate-buffered saline, and 

collected again by centrifugation. Bacterial pellets were flash frozen in liquid nitrogen 

and stored at -20 ºC.  

 

2.2.5. Cell lysis 

In the small-scale screening, two sonication protocols were tested using an eight-

microtip sonicator or a single-tip sonicator (G. Heinemann, Germany). For the eight-

microtip lysis, cells from a 5-mL culture pellet were resuspended in 1 mL of lysis buffer 

[50 mM Tris pH 8.0, 250 mM NaCl, 20 mM imidazole buffer supplemented with 1x 

complete free EDTA protease inhibitor (Roche), 5 mM MgCl2 (Sigma), 5 µg.mL
-1

 

DNAse (Sigma) and 1 mg.mL
-1 

lysozyme (Sigma)] and transferred to a 96-deep-well 

plate (2 mL capacity per well) and incubated at room temperature for 10 min. The plate 

was placed on ice, and cells were further lysed by sonication. The lysis efficiency was 

improved by adding 400 µL of 0.5 mm beads to each well. The 96-deep-well plates 

were then centrifuged at 4000 rpm, 4 ºC for 45 min, and the supernatant fraction was 

collected to a new 96-deep-well plate. For the single-tip lysis, 5-mL cell pellets were 

resuspended in 1 mL of Lysis buffer and transferred to a 2-mL tube containing 0.5 mm 

beads. After 10 min incubation at room temperature, bacterial cells were lysed by 

sonication, and 2 mL-tubes were centrifuged at 13000 rpm at 4 ºC for 25 min. The 

supernatant fractions were transferred to new 2-mL tubes.  

In the scale-up experiments, cell pellets were thawed and resuspended in 10 mL of lysis 

buffer. After incubation at room temperature for 10 min, cells were sonicated (Branson 

Sonifier 250, G. Heinemann, Germany), and the soluble fraction was removed from the 

insoluble cell debris by ultracentrifugation at 40000 rpm, 4 ºC for 30 min. In all the 

experiments, aliquots of total lysates and supernatant samples were taken and prepared 

to be analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE). 
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Table 2.2. Features and properties of target genes used in this study: 

Synthetic genes GenBank/ 

Uniprot 

Organism Localization Function or 

application 

Gene 

size 

(nt) 

Protein 

size (aa) 

MW 

(Da) 

pI Cysteines 

(%) 

GRAVY 

Frutalin Jacalin-related lectin: 

L03795.1 

Q38720 

Artocarpus incisa Plant seeds Biomarker of 

cancer cells [27] 

477 158 17194 

 

8.73 

 

0 -0.089 

cp12fragment XM_625821.1 

Q5CR31 

Cryptosporidium 

parvum 

Oocyst surface Involved in the 

host-control 

interaction  [25] 

216 71 8414.2 

 

4.72 0 -1.104 

ypk1fragment NM_001179692.1 

P12688 

Saccharomyces 

cerevisiae 

Cell membrane 

and cytoplasm 

Proliferation of 

yeast cells; 

involved in 

signaling 

pathways 

(Uniprot) 

964 312 35629 

 

6.54 1.6 -0.224 

rvs167 NM_001180696.1 

P39743 

Saccharomyces 

cerevisiae 

Cytoplasm and 

cytoskeleton 

Formation of 

endocytic vesicles 

and cytoskeletal 

reorganization 

(Uniprot) 

1516 496 54134 5.77 0.2 -0.470 

spo14fragment NM_001179821.1 

P36126 

Saccharomyces 

cerevisiae 

Endosome, 

nucleus and 

prospore 

membrane  

Meiosis and spore 

formation 

(Uniprot) 

1192 388 

 

44828 8.56 0.5 -0.579 

ypk2 NM_001182604.1 

P18961 

Saccharomyces 

cerevisiae 

Nucleus and 

cytoplasm 

Proliferation of 

yeast cells; 

involved in 

signaling 

pathways 

(Uniprot) 

2104 692 78111 7.33 0.9 -0.427 

 

nt – nucleotides; aa – aminoacids; MW – molecular weight; Da – Dalton; pI – Isoelectric point; GRAVY – Grand average of hydropathicity 
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Table 2.3. Features of expression vectors and properties of the tags used in this work: 

Expression 

vectors 

(pETM) 

Fusion protein 
Tag size 

(aa) 
pI MW tag 

(Da) 
GRAVY Promoter Selection 

Protease 

cleavage 

site 

11 (His) MK-His6-TEV(ENLYFQG)AMGS-Target 29 6.24 3,419.7 -1.09 T7/lac kan TEV 

20 (Trx) M-Trx- -His6-TEV(ENLYFQG)AMGS-Target 136 5.66 14,673 -0.189 T7/lac amp TEV 

30 (GST) MK-His6-GST-TEV(ENLYFQG)AMGS-Target 254 6.31 29,264 -0.446 T7/lac kan TEV 

41 (MBP) MK-His6- MBP-TEV(ENLYFQG)AMGS-Target 404 5.49 44,549 -0.462 T7/lac kan TEV 

60 (NusA) M-NusA- His6-TEV(ENLYFQG)AMGS-Target 519 4.63 57,383 -0.306 T7/lac kan TEV 

SUMO MK-His6-TEV(ENLYFQG)-SUMO-TGGS-Target 108 6.02 12,453 -0.882 T7/lac kan SUMO 

H MK-His6-Htag-TEV(ENLYFQG)AMGS-Target 30 6.56 3553.0 -0.773 T7/lac kan TEV 

Fh8 MK-His6-Fh8tag-TEV(ENLYFQG)SMGS-Target 90 6.43 10,146 -0.780 T7/lac kan TEV 

aa – aminoacids; ; pI – Isoelectric point; MW – molecular weight; Da – Dalton; GRAVY – Grand average of hydropathicity 
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2.2.6. Protein purification and tag removal 

The selected fusion proteins were purified by nickel affinity chromatography using a 

spin protocol with Ni-NTA slurry (Qiagen) for the small-scale screening or a semi-

automated system, in which 100 µL prepacked Ni-NTA superflow columns (Robot 

Columns, Atoll GmbH, Germany) were set on a 96-well-plate matrix, for the scale-up 

experiments. Both purifications were conducted according to manufacturer’s 

instructions, using 50 mM Tris pH 8.0, 250 mM NaCl with 20 mM imidazole as 

running and washing buffer, and with 300 mM imidazole for the elution buffer. The 

collected fractions were analyzed by SDS-PAGE, and the total protein content of robot 

eluted samples was also estimated by Bradford assay. 

For tag removal, the selected and purified proteins were digested with the TEV 

protease. After digestion, aliquots were taken, and samples were centrifuged at 13000 

rpm for 10 min at 4 ºC. The cleaved proteins were then purified from the fusion tags and 

proteases by nickel affinity chromatography using the same above-mentioned protocol. 

The collected samples were prepared to be analyzed by SDS-PAGE.  

 

2.2.7. Protein expression and solubility evaluation  

The expression and solubility evaluation was conducted using a score of 0, 1, 2, and 3, 

based on the expected soluble protein production yields obtained after the purification 

of 1-L cultures (Berrow et al., 2006; Bird, 2011). The score 0 corresponds to no 

expression/soluble protein; a score of 1 was given to the soluble expressions that are 

expected to yield less than 0.5 mg; the score of 2 indicates a soluble expression yield 

between 0.5 mg and 5 mg; and a score of 3 specifies the soluble expressions with an 

expected yield higher than 5 mg. The soluble expression results were estimated from the 

SDS-PAGE analysis of the eluted fractions from nickel column and also from the 

corresponding supernatant fractions, according to the following equations: 

Equation 2.1: 
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Equation 2.2: 

                         
                                                                  

                               
    

 

Equation 2.3: 

                        
                                                               

                               
 

 

The total expression results were estimated from the SDS-PAGE analysis of the total 

lysate fractions using the same scores 0-3, but here for the expected expression yields, 

as follows: 

Equation 4: 

                      
                                                   

                               
  

 

 

2.3. Results 

 

2.3.1. The novel pETMFh8 and pETMH fusion vectors 

The fusion tags in this study, Fh8 and H tags, were inserted into the pETM vector series 

(Dummler et al., 2005) resulting into two novel expression vectors: the pETMFh8tag 

and pETMHtag (see Appendix 2.7.1, Figure A2.1). The pETMFh8tag vector was 

constructed using the pETM10 backbone and the pETMHtag vector used the pETM11 

backbone (Table 2.1). Both new vectors share common features with the rest of the 

pETM vectors used in this work (Table 2.3): they have similar multiple cloning sites 

(MCS) suitable for direct subcloning of the target genes; two His6 tag sequences, one 

placed at the N-terminal of the fusion partner and the other after the MCS; and a TEV 

protease cleavage site between the fusion partner and the MCS. The novel fusion 

plasmids are kanamycin resistant.  
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In this work, only the N-terminal His6 tag was used for protein purification. In the 

pETM series, the Fh8 and H tags have only 10 and 3.6 kDa, respectively (Table 2.3). 

Both new fusion tags have lower molecular weights than the studied fusion tags, even 

compared to the low molecular weight tags such as SUMO (12.5 kDa) and Trx (14.7 

kDa). The analysis of fusion tags features (Table 2.3) shows that Fh8 and H tags have 

identical isoelectric points, which are also similar to the GST or SUMO values.  

The Grand average of hydropathicity (GRAVY) shows a predominantly hydrophilic 

nature of the fusion tags (all the GRAVY values are negative). The Fh8 and H tags 

along with SUMO and His tags present the highest hydrophilic character.  

 

2.3.2. Cloning of target proteins into the pETM expression vectors 

The synthetic genes used in this work (Table 2.2) were cloned in parallel into the pETM 

vectors by using the same restriction enzymes for all the constructions: all the pETM 

vectors received NcoI-XhoI digested target genes with the exception for pETMSUMO, 

which received BamHI-XhoI digested inserts. This strategy allowed a rapid and easy 

cloning procedure and a successful cloning rate of 98%.  From the 48 fusion genes to be 

constructed, only the cloning of the ypk1_frag into the pETMHtag vector was not 

successful, as confirmed by sequencing at the GATC (Germany).  

The six target proteins used in this work were selected regarding their previous 

difficulty of expression in soluble form in E. coli. Four of these proteins (two full 

length, RVS167 and YPK2; and two truncated proteins, SPO14 and YPK1) are found in 

the yeast Saccharomyces cerevisiae and were chosen due to the little/absent soluble 

expression in E. coli obtained when formerly fused to human SUMO3 tag  (data not 

shown). The other two target proteins [the truncated CP12 derived from the 

Cryptosporidium parvum parasite (Yao et al., 2007) and the lectin Frutalin from the 

plant seed Artocarpus incisa (Oliveira et al., 2009; Oliveira et al., 2011)] were 

previously expressed as full lengths in E. coli presenting poor solubility.  

The selected target proteins have different locations and functions or applications, and 

they also differ in size: the smallest target protein used in this work (a truncated form of 

the CP12 protein lacking its transmembrane region) has only 71 amino acids, and the 

largest one, YPK2, has approximately 700 amino acids. All the target proteins have low 
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cysteine content, and they range from a slight to moderate hydrophilic nature (Table 

2.2).  

 

2.3.3. Small-scale screening: selection of the expression strain and culture 

conditions 

Figure 2.1 presents the small-scale comparison of the soluble expression for the 

different strains, fusion tags, and target proteins. Figure 2.1a presents the SDS-PAGE 

analysis of supernatant samples from the selected strains, using the two induction 

conditions tested. Figure 2.1b result from the analysis of scores 1-3 in supernatant 

fractions obtained from the 8-microtip sonication protocol, using Eq. 2.1.  

For all the four strains, the number of soluble expressed proteins using the Fh8 tag was 

similar to the number obtained with the MBP or NusA tags, and higher than the number 

obtained using the Trx and GST tags. Proteins fused to the H tag and His6 tag presented 

the lowest soluble expression along with proteins fused to SUMO, whose insolubility 

was previously evaluated for four of the six targets. The solubility of SUMO-Frutalin 

fusion was difficult to evaluate, as observed by the small protein content in lanes 12 and 

13 of Figure 2.1a. SUMO-CP12 and SUMO-YPK2 fusion proteins presented amounts 

of soluble protein similar to those of Fh8-CP12 and Fh8-YPK2, respectively, as 

observed in Figure 2.1a. CP12 and Frutalin were soluble expressed within the highest 

number of fusion tags, and this result was observed amongst all the four strains used in 

this work (Figure 2.1b). This small-scale screening resulted in the following rank of the 

fusion tags for protein solubility: MBP > NusA > Fh8 ~Trx > GST ~H > His.  

According to the obtained results in Figure 2.1, the E. coli BL21 (DE3) Codon Plus-RIL 

strain was established for the expression of the fusions with CP12, RVS167, and YPK2 

target proteins, and the E. coli Rosetta (DE3) strain was selected for the expression of 

the fusions with Frutalin and truncated SPO14. Finally, fusions with the truncated 

YPK1 protein were later expressed using the E. coli Tuner (DE3) strain. The E. coli 

SoluBL21 strain was not used further in this study.  

Regarding the two different culture conditions tested, the overnight induction condition 

presented the highest level of soluble expression for five of the six target proteins. The 

3-h induction condition was only the best option for the fusions with CP12 target 

protein.  
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All the soluble expressed fusion proteins presented a molecular weight identical to the 

expected size (see Appendix 2.7.2, Table A2.1). SUMO fusions migrated on SDS-

PAGE with a molecular weight of 3 kDa higher than the expected, which is also known 

from previous publications (Marblestone et al., 2006).   



Comparison of Fh8 and traditional fusion tags | Chapter 2 

 

Costa, S. J. | 2013 68 

a 

  CP12 Frutalin 
 

RVS167 
 

kDa 
220 
116 
97 
77 
70 
66 
52 
44 
34 
29 
24 
20 
17 

14.6  

    1   2   3   4   5   6   7   8   9  10 11 12 13  14 15 16 17 

 
 

    1   2   3  4   5    6   7   8   9  10 11 12 13 14 15 16 17 

 
 

    1   2   3  4   5   6   7   8   9  10 11 12 13 14 15 16 17 

 

  SPO14 YPK1 YPK2 
kDa 
220 
116 
97 
77 
70 
66 
52 
44 
34 

29 
24 
20 
17 

14.6  

   1   2   3   4   5    6   7   8   9  10 11 12 13  14 15 16 17 

 

    1    2    3   4   5    6   7    8    9  10  11 12  13  14  15 

 

    1   2   3   4    5   6   7   8   9  10 11  12 13 14 15 16 17 

 
 

 

b 

 
 

Figure 2.1. Comparison of fusion protein soluble expression using different E. coli 

strains: small-scale screening evaluation of the supernatant fractions from the cell lysis 

with the eight-tip sonicator. (a) SDS-PAGE of the supernatant samples from the two 

induction conditions tested. The 3-h induction samples were loaded aside with the o/n 

induction, according to the following fusion tags order: His – Trx – GST – MBP – 

NusA – SUMO – H – Fh8tag. The YPK1 gel follows the same order except for the H 

tag (which is not available with this target protein). The in-house protein marker was 

used for this analysis. Arrows indicate the expected molecular weights for all fusion 

proteins following the fusion tags order loaded on the gels. (b) Soluble expression 

(scores 1-3) per target protein with different strains. Plotted values were estimated by 

Equation 2.1.  
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2.3.4. Small-scale expression and solubility results: validation 

For each target protein, four to six tags were selected to continue with the small-scale 

screening and to validate the initial solubility results. Table 2.4 summarizes the selected 

fusion proteins for the direct comparison of commonly used fusion tags and Fh8 tag.  

 

Table 2.4. Selection of fusion proteins for small-scale screening – comparison groups: 

Comparison group no. Selected fusion tags Target proteins 

I 
His, MBP, Fh8 

Frutalin, RVS167, SPO14, 

YPK1, YPK2 

II 
His, NusA. Fh8 

CP12, Frutalin, RVS167, 

YPK1 

III His, MBP, NusA, Fh8  Frutalin, RVS167, YPK1  

IV His, Htag, Fh8 CP12, Frutalin, YPK2 

V His, SUMO, Fh8 CP12, YPK2 

VI His, Trx, NusA, H, Fh8 CP12, Frutalin 

 

 

 

Figure 2.2 presents the SDS-PAGE analysis of the total lysate and supernatant fractions 

of the selected fusion proteins that were obtained from the bacterial lysis with a single 

microtip sonication. These samples were also scored 0-3 (see Appendix 2.7.3, Figure 

A2.2). As observed, the MBP, NusA, and Trx fusions resulted in higher total expression 

than the Fh8 fusions. The Fh8 fusions resulted in a total expression identical to the H 

and His fusions.  
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Figure 2.2. SDS-PAGE analysis of the total lysate and supernatant samples from the 

selected fusion proteins in the second small-scale screening. Samples were obtained 

after cell lysis with a single tip sonication. Gels were loaded with each total lysate 

sample aside with the corresponding supernatant (soluble) sample. Arrows indicate the 

expected molecular weights for all fusion proteins following the fusion tags order 

loaded on the gels.   

 

 

 

To further validate the solubility screening, the supernatant samples presented in Figure 

2.2 were processed by nickel affinity small-scale purification. Results from this analysis 

were evaluated by SDS-PAGE and also scored 0-3 (Figures 2.3a and 3b, respectively). 

The MBP and NusA fusion proteins improved the solubility of a higher number of 

proteins than the Fh8 tag (groups I, II and III; Table 2.4). Proteins fused to MBP and 

NusA tags were, however, obtained in lower soluble amounts than those estimated 

before purification (see Appendix 2.7.3, Figure A2.2-e). For the Fh8 fusion proteins, no 

differences were observed before (see Appendix 2.7.3, Figure A2.2) and after 

purification. The same observation is valid for the fusions of the comparison groups IV, 

V, and VI of Table 2.4 (see Appendix 2.7.3, Figure A2.2, for the scoring results before 

purification). SUMO and Fh8 tags presented identical soluble amounts for CP12 and 

YPK2 proteins (Table 2.4, group V). The Fh8 fusions presented higher solubility than 

the H fusions. Interestingly, when directly compared using the CP12 and Frutalin 
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proteins (Table 2.4, group VI), Fh8 fusion proteins achieved the highest solubility, 

identical to proteins fused with NusA tag.  

In general, the rank of the fusion tags obtained in this analysis for protein solubility 

after purification was identical to the previously observed, with the NusA and the MBP 

on the top of solubility tags, followed by the Fh8 and Trx tags. The H tag increased the 

E. coli protein expression identical to the Fh8 tag but did not improve protein solubility. 

The target protein SPO14 was not used further in this work as no soluble protein was 

detected in the small-scale expression and purification screenings.    
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Figure 2.3. Fusion proteins nickel-affinity purification: small-scale processing. (a) SDS-

PAGE analysis of nickel affinity purifications. Gels were loaded following this 

sequence: supernatant fraction – flow through – washing step – elution 1 – elution 2. 

Arrows indicate the location of fusion proteins at the observed/expected molecular 

weight. (b) Soluble expression comparison per fusion tag of the different groups of 

target proteins. The “tag soluble expression” refers to the percentage of proteins with 

scores 1-3, estimated by Eq. 2.2. The “tag soluble score 2+3” refers to the percentage of 

proteins with scores 2 and 3, estimated by Eq. 2.3. 
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2.3.5. Scale-up protein processing: evaluation of the fusion proteins solubility 

before and after tag removal 

Figure 2.4 presents the SDS-PAGE results obtained for the scale-up screening. All the 

fusion proteins were successfully expressed in soluble form at the expected molecular 

weights (see Appendix 2.7.2, Table A2.1) in E. coli 500 mL cultures. Bradford 

estimations were also conducted to support the SDS-PAGE analysis (see Appendices 

2.7.4 and 2.7.5, and corresponding Figures A2.3 and A2.4). 

Making a wide comparison based on the group VI (Table 2.4), the Fh8 fusions resulted 

in similar soluble amounts as the Trx and NusA fusions, corroborating the small-scale 

screening results. After tag removal, the Fh8 fusions performed better than the NusA or 

MBP fusions, resulting in higher soluble amounts of the cleaved proteins. A case by 

case comparison established that NusA, Trx, and Fh8 fusions improved the Frutalin 

soluble expression following this order: NusA ~ Fh8 > Trx > His > Htag (Figure 2.4a).  

Interestingly, after tag removal, the cleaved and purified Frutalin (17 kDa) from the Fh8 

and Trx fusions presented higher protein amounts than the Frutalin cleaved from the 

NusA fusion protein. A similar result was obtained for the expression of CP12 target 

protein with the different fusion tags (Figure 2.4b). The Fh8-CP12 fusion protein 

achieved similar, but slightly lower, soluble amounts than the Trx and NusA fusions. 

After tag removal, the cleaved CP12 protein (8 kDa) from Fh8 fusion presented higher 

soluble amounts than the NusA-containing cleaved protein.  

The RVS167 (Figure 2.4a) and YPK1 (Figure 2.4c) target proteins were obtained in 

higher soluble amounts when fused with the NusA tag than with the Fh8 tag. After tag 

removal, the cleaved YPK1 protein (35 kDa) from the NusA fusion yielded higher 

amounts than the one from the Fh8 fusion (Figure 2.4c). For the RVS167 tag removal 

experiment, only the NusA fusion was tested. The SDS-PAGE bands resulting from this 

digestion (Figure 2.4a) were difficult to distinguish as the molecular weight expected 

for the cleaved RVS167 (54 kDa) was close to the one (57 kDa) expected for the NusA. 

The YPK2 target protein, of which the soluble expression was not easy to assess in the 

small-scale screening, presented interesting results in the scale-up experiments. Upon 

scale-up, this target protein revealed to be highly soluble expressed when fused to the 

Fh8 tag, out-performing the MBP fusion protein. The final cleaved YPK2 (78 kDa) 
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from the Fh8 fusion was obtained in 2.3-foldhigher amount than the cleaved protein 

from the MBP fusion.  

 

a 

  

b 

  

c 

 

Figure 2.4. Fusion proteins nickel-affinity purification and tag removal: semi-

automated processing. (a) Frutalin (in brackets) and RVS167 5th eluted fractions and 

corresponding samples before/after TEV digestion and after cleaved protein 

purification. (b) CP12 5th eluted fractions and corresponding samples before/after TEV 

digestion and after cleaved protein purification. (c) YPK1 (in brackets) and YPK2 4th 

eluted fractions and corresponding samples before/after TEV digestion and after cleaved 

protein purification. M In house protein marker. 1-3 Samples before TEV, after TEV, 

and after TEV plus centrifugation. 4 and 5 Flow through and washing samples from the 

purification of the cleaved proteins. The right arrowhead marks show the Fh8-fusion 

proteins on the gel. Arrows () indicate the expected molecular weight of cleaved 

proteins. Asterisk position the fusion tags after TEV digestion. 
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2.4. Discussion 

 

In this work, a novel fusion system for soluble protein overexpression in E. coli – the 

Fh8 tag (8 kDa) and H tag (1 kDa) – is presented and compared to the traditional fusion 

partners using a screening methodology. For the soluble protein expression screening, 

both Fh8 and H partners were inserted into the pETM vector series (Dummler et al., 

2005). Using the same backbone, promoter, and cloning procedures, it was possible to 

achieve a systematic and consistent comparative analysis of the different solubility tags. 

All the selected pETM vectors are identical, differing only at the N-terminal fusion 

partners. Here, any differences found in target protein expression levels will probably be 

caused by the fusion partners sequence specific properties. The N-terminal position of 

the fusion partners seems to be a good option for optimal protein expression compared 

to the C-terminal position (not tested in this study) as it will allow the fusion partner to 

be translated first, providing time for the correct folding of the target proteins (Dyson et 

al., 2004).  

The Trx, GST, MBP,  and NusA  fusion partners were used in the screening comparison 

due to their known expression and solubility enhancing features and also because they 

are the most widely used fusion partners for recombinant protein production. The 

SUMO partner (Michael P. Malakhov and Butt, 2004; Marblestone et al., 2006) was 

determinant for the selection of four target proteins, which were previously insoluble 

with this tag. Nevertheless, it was also included in this study to evaluate its solubility 

effect among the other fusion tags in the Frutalin and CP12 target proteins. The 

solubility of SUMO-Frutalin fusion was, however, not well evaluated probably due to a 

technical problem during the eight-tip sonication lysis, in which the ultrasound may not 

be equally distributed among the eight tips, resulting in the lower protein content 

observed in the small-scale screening of this fusion protein.  

The first expression and solubility comparisons between proteins fused to the Fh8 and H 

fusion partners and to the other tags were conducted in a small-scale screening, using 

qualitative SDS-PAGE and Bradford analyses. The small-scale screening strategy 

already proved to be a reliable tool for the comparison and selection of soluble proteins 

among different constructs, and it is a useful indicator of the expected protein 

production amounts upon scale-up expressions (Dummler et al., 2005; Berrow et al., 



Comparison of Fh8 and traditional fusion tags | Chapter 2 

 

Costa, S. J. | 2013 77 

2006). Gel bands of fusion proteins were scored according to the 0-3 scale used by 

Berrow et al. and Bird (Berrow et al., 2006; Bird, 2011). In this study, scores 1-3 were 

given to an increased protein solubility level (for purified and supernatant samples) and 

were also used to estimate the total expression levels of fusion proteins. At a small-scale 

screening, scores 2 and 3 proved to be more consistent solubility predictors than the 

score 1, which may not represent a proper soluble expression in scale-up cultures (Bird, 

2011). Thus, three different evaluations were conducted here: the comparison of total 

expression (scores 1-3), the comparison of soluble expression (scores 1-3) and the 

comparison of soluble proteins with scores 2 and 3.  

The small-scale comparisons showed that the Fh8 fusion partner stands among the well-

described best fusion partners, MBP, NusA, and Trx, for soluble protein expression 

(Nallamsetty and Waugh, 2006; Kohl et al., 2008). Interestingly, the Fh8 fusions 

presented lower total expression levels than these known tags. This difference in the 

expression levels may explain the better solubility results of some proteins when fused 

to the Fh8 tag. In spite of presenting higher total expression levels than the His tag 

fusions and identical to the Fh8 fusions, the H tag performed poorly in the protein 

solubility analysis, not working as solubility enhancing tag in E. coli. The GST fusion 

partner was previously evaluated as a relatively poor tag in several comparison studies 

(Hammarstrom, 2006; Ohana et al., 2009; Bird, 2011), which was confirmed also in our 

study.  

In addition to the fusion partners comparison, four different expression strains and two 

induction conditions were also tested in the small-scale screening. The best induction 

condition revealed to be correlated with the molecular weight of target proteins. 

Proteins with high molecular weights performed better at lower induction temperatures, 

in contrast to the CP12 protein, the smallest molecular weight target studied, which 

performed better with an induction temperature of 30 ºC for 3 hours. In fact, a lower 

induction temperature will slow down the protein expression rate, promoting a less 

stressful environment to the cell for protein production. A slow translation rate may 

improve the correct folding of higher molecular weight proteins and consequently their 

solubility (Sorensen and Mortensen, 2005; Berrow et al., 2006; Terpe, 2006; Pacheco et 

al., 2012). Most of the fusion proteins presented higher solubility when expressed in E. 

coli strains engineered with extra copies of rare codons [BL21 (DE3) Codon Plus-RIL 
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and Rosetta (DE3)], thus confirming the importance of protein expression optimization 

via its host cell (Makino et al., 2011; Vernet et al., 2011; Pacheco et al., 2012).  

The small-scale screening was reproducible as shown by the comparison screenings 

before and after protein purification, which is essential to assess the real protein 

solubility among the different fusion tags (Dummler et al., 2005). In general, results 

from the scale-up analysis were consistent with the small-scale screening: the Fh8 

fusion partner is among the best expression and solubility enhancing tags (as NusA and 

Trx). The YPK2 target (not successfully expressed in small-scale screening) was an 

exception, resulting in an improved solubility when fused to the Fh8 tag at the scale-up 

expression. Thus, when conducting a small-scale high throughput analysis, one must be 

aware of the balance between the loss of some target proteins for scale-up and the gain 

in increased number of parallel evaluations (Berrow et al., 2006). The YPK1 and 

RVS167 target proteins were, effectively, difficult to express as soluble proteins even 

using the NusA or Fh8 tags. In both screening methodologies, the position of the His6 

tag did not interfere with the expression and purification results since fusion constructs 

with the affinity tag in the middle of the fusion partner and the TEV cleavage site 

(NusA and Trx) performed as well as the fusion constructs with the affinity tag in the 

N-terminus (Trx, MBP and Fh8).  

In both small-scale and scale-up experiments, fusion partners were removed using the 

TEV protease, leaving a glycine residue in the N-terminal of target proteins. The Fh8-

derived target proteins presented similar final solubility as the Trx-derived ones and, 

curiously, performed better than the target proteins cleaved from NusA and MBP 

fusions. In fact, larger fusion partners are good solubilizers, but their large size can lead 

to an overoptimistic evaluation of protein solubility and yield (Kapust and Waugh, 

1999; Shih et al., 2002; Dyson et al., 2004; Hammarstrom, 2006), as shown by the 

different solubility results before and upon tag removal. Looking among the solubility 

fusion partners used in this work, the Fh8 tag has the lowest contribution on the final 

size of the fusion protein (see Appendix 6, Table A2.2), which can explain the apparent 

lower solubility of Fh8 fusions in comparison to NusA or MBP fusions. In this context, 

the YPK2 target protein was again a particular case, in which the solubility effect of the 

Fh8 tag over the MBP tag was noticed in both “before” and “after” tag removal 

experiments.  
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The SDS-PAGE and Bradford screening methodology used for the assessment of 

soluble expression before and after protein purification as well as upon tag removal is 

protein dependent, requiring a calibration for each protein (Hammarstrom, 2006). Even 

so, a good agreement between the two methodologies was obtained, indicating that it 

can be used to predict and compare the protein soluble expression levels among 

different constructs.  

 

 

2.5. Conclusions 

 

The novel Fh8 fusion partner presented in this work revealed to be an effective tool for 

the improvement of protein solubility in E. coli.  

The conducted study pointed that (1) there is no “the best tag” for protein soluble 

expression, so multiple tags need to be tested with different proteins; (2) larger tags 

usually result in higher production yields, but these can lead to overestimation of the 

amount of soluble protein; (3) the smaller the size of the fusion tag, the easier it is to 

assess the solubility of the target protein. Thus, the Fh8 tag is an excellent candidate for 

testing expression and solubility next to the other well-known fusion tags. Its low 

molecular weight and its solubility enhancing effect make Fh8 an advantageous option 

compared to larger fusion tags for soluble protein production in E. coli. 
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2.7. Appendices 

 

2.7.1. Schematic representation of the pETMFh8 and pETMH vectors  

a 

 
b 

 

Figure A2.1. Schematic representation of the pETMFh8 vector (a) and pETMH vector 

(b). Both Fh8 and H tags are cloned between the His6 tag and TEV cleavage site. The 

novel fusion vectors have similar multiple cloning sites (MCS). An extra His6 tag is also 

available at the end of the MCS. The pETMH vector has a stuffer gene for cloning 

control. 

 

2.7.2. Molecular weights of fusion proteins 

 

Table A2.1. Molecular weights (kDa) of fusion proteins estimated by the ProtParam 

tool (Expasy.org): 

Fusion Tags 
Targets 

RVS167 SPO14 YPK1 FTL CP12 YPK2 

His 57.2 48.0 38.8 20.5 11.8 81.8 

Trx 68.5 59.2 50.0 31.7 23.1 92.6 

GST 83.1 73.8 64.6 46.3 37.7 107 

MBP 98.4 89.1 79.9 61.6 52.9 122 

NusA 111 102 92.7 74.4 65.8 135 

SUMO 66.3 57.0 47.8 29.5 20.8 90.3 

H 57.4 48.1 - 20.6 11.9 81.4 

Fh8 64.0 54.7 45.5 27.2 18.5 88.0 

  

RBS 6xHis Fh8 TEV MCS 6xHis

NcoI-KpnI-BamHI-EcoRI-SacI-NotI-XhoI
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operator

ATG

T7 promoter

RBS 6xHis H-tag TEV MCS 6xHis

KpnI-EcoRI-SacI-XhoI
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2.7.3. Small-scale screening evaluation before protein purification: expression and 

solubility 
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Figure A2.2. Individual comparisons of fusion proteins total expression and solubility: 

small-scale screening evaluation before protein purification. Fusion proteins were 

scored 0-3 according to their expression and solubility level. (a) Total expression 

comparison per fusion tag of group III – Table 2.4. (b) Total expression comparison per 

fusion tag of group VI – Table 2.4. In both (a) and (b), “Total expressed” refers to the % 

of proteins with scores 1+2+3, estimated by Equation 2.4. (c to h) Soluble expression 

comparison per fusion tag. From (c) to (h), the “Tag Soluble Expression” refers to the % 

of proteins with scores 1, 2 and 3, estimated by Eq. 2.2. The “Tag Soluble Score 2+3” 

refers to the % of proteins with scores 2 and 3, estimated by Eq. 2.3. 
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2.7.4. Estimated protein production yields 

a 

 

b 

 

c 

 

d 

 

e 

 

Figure A2.3. Fusion protein estimated production amounts (mg) after semi-automated 

purification from 15% of 500 mL E. coli cultures. (a) Fusions with Frutalin. (b) Fusions 

with CP12. (c) Average improvements in soluble protein expression for fusions with 

Frutalin and CP12 (Group VI – Table 2.4). (d) Fusions with YPK1. (e) Fusions with 

YPK2. 
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2.7.5. Estimated protein production yields after tag removal 

a 

 

b 

 

c 

 

d 

 

Figure A2.4. Estimated protein production amounts (µg) after tag removal. (a) Frutalin 

cleaved proteins. (b) CP12 cleaved proteins. (c) YPK1 cleaved proteins. (d) YPK2 

cleaved proteins. 

 

2.7.6. Percentage of the fusion tag in the molecular weight of fusion proteins 

 

Table A2. 2. Molecular weight ratio (%) between fusion tags and total fusion proteins: 

Fusion Tags 
Targets 

RVS167 SPO14 YPK1 FTL CP12 YPK2 

His 6% 7% 9% 17% 29% 4% 

Trx 21% 25% 29% 46% 64% 16% 

GST 35% 40% 45% 63% 78% 27% 

MBP 45% 50% 56% 72% 84% 36% 

NusA 52% 56% 62% 77% 87% 42% 

SUMO 19% 22% 26% 42% 60% 14% 

H 6% 7% - 17% 30% 4% 

Fh8 16% 19% 22% 37% 55% 12% 
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Chapter 3 

The novel adjuvant-free H fusion partner for the production of 

recombinant immunogens in Escherichia coli: its application to a 12-

kDa antigen from Cryptosporidium parvum 

 

 

Abstract 

The production of recombinant antigens and specific polyclonal antibodies for diagnosis and 

therapy is still a challenge for world-wide researchers. Several different strategies have been 

explored to improve both antigen and antibody production, all of them depending on a 

successful correlation between its expression and immunogenicity. Escherichia coli host cell is 

widely used for recombinant antigen production. This host cell has, however, its limitations at 

producing recombinant antigens and these are often poor immunogens, being unable to elicit 

itself an adequate immune response in the organism of interest. Gene fusion technology 

attempts to overcome these problems: fusion partners have been applied to optimise 

recombinant antigen production in E. coli, and to increase protein immunogenicity.  

This work presents the effects of the novel H fusion partner in the E. coli expression of a 12-

kDa surface adhesion antigen from Cryptosporidium parvum (CP12), and its subsequent 

adjuvant-free immunisation. The solubility enhancer partner Fh8 is also here used for the 

production of CP12. Both fusion partners increased the recombinant CP12 antigen availability 

via its production in E. coli. 

The H tag efficiently triggered a CP12-specific immune response, and it also improved the 

immunisation procedure without requiring co-administration of adjuvants. Polyclonal antibodies 

raised against the HCP12 fusion antigen detected native antigen structures displayed on the 

surface of C. parvum oocysts, making this novel fusion system a promising tool for the 

diagnosis and therapy of C. parvum infections in animals and humans.  

Taking CP12 by example, the H fusion partner appears as an attractive option for the 

development of recombinant immunogens and its adjuvant-free immunisation. 
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3.1.  Introduction 

 

Antibodies are important tools in biomedical research. They allow the identification of 

new genes, the purification of proteins, and the study of protein properties such as 

structure, function and localisation (Lowenadler et al., 1986; Chowdhury et al., 2001). 

Most of these applications use polyclonal antibodies, which are produced in response to 

multiple epitopes of the same target protein (antigen). Polyclonal antibodies are usually 

raised against a specific protein by immunising an animal with the target protein in its 

purified form (Chowdhury et al., 2001). 

 The most effective way of obtaining the high quantities of antigenic protein required 

for efficient immunisation is by heterologous expression in a host cell. The bacteria 

Escherichia coli is one of the most widely used organisms for this purpose, as it is easy 

to manipulate, has a fast growth rate and is relatively cheap to use (Jana and Deb, 2005; 

Sorensen and Mortensen, 2005b; Sorensen and Mortensen, 2005a; Terpe, 2006; Peti and 

Page, 2007; Demain and Vaishnav, 2009). However, it also has its limitations; the 

recombinant protein it produces is not always correctly folded or sufficiently soluble for 

use in immunisation. The development of alternative strategies for protein production 

that overcome these drawbacks is therefore highly desirable (Villaverde and Carrio, 

2003; Vallejo and Rinas, 2004; Peti and Page, 2007). One such strategy is gene fusion 

technology, whereby the gene coding for the protein of interest is fused to a polypeptide 

chain, known as a fusion partner. 

Fusion partners can simplify protein purification, improve protein production yield, 

reduce susceptibility to proteolysis and increase protein solubility (Makrides, 1996; 

Nilsson et al., 1997; Sorensen and Mortensen, 2005a; Waugh, 2005; Esposito and 

Chatterjee, 2006). They have also been reported to increase protein immunogenicity 

(Kaslow and Shiloach, 1994; Larsson et al., 1996; Sjolander et al., 1997; Kink and 

Williams, 1998; Libon et al., 1999; Chowdhury et al., 2001; Chuang et al., 2009).  

Fusion partners, such as SpA (Lowenadler et al., 1986), GST (Lopez-Monteon et al., 

2003), BB-SpG (Sjolander et al., 1997), MBP (Kink and Williams, 1998) and Trx 

(Barrell et al., 2004), have been used to improve both antigen expression and antibody 

production. However, these fusion partners have also been shown to have drawbacks. In 

some cases, the resulting recombinant antigen is not sufficiently soluble or pure 
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(Chowdhury et al., 2001; Lopez-Monteon et al., 2003). In others, the immune response 

obtained against fusion antigens is often triggered predominantly by the fusion partner 

itself, rather than by the target antigen (Lowenadler et al., 1986; Knuth et al., 2000; 

Lopez-Monteon et al., 2003). And in others still, the fusion partners have shown 

inadequate immunopotentiating properties to elicit the production of sufficient 

quantities of the antibodies of interest. In such cases, during immunisation, it is 

necessary to co-administer an adjuvant. Despite being widely used for routine antibody 

production in animals, adjuvants are undesirable because they may trigger non-specific 

immune responses and cause several side effects and lesions at the injection site 

(Lowenadler et al., 1986; Sjolander et al., 1997; Andersson et al., 2000; Knuth et al., 

2000). Evidently, therefore, the use of recombinant fusion partners for protein and 

antibody production has much scope for improvement.   

In this work, we show how the novel H fusion partner can be used for the expression in 

E. coli and subsequent adjuvant-free immunisation of the 12-kDa recombinant protein, 

CP12 (GenBank ID: XM625821.1), belonging to the parasite Cryptosporidium parvum 

(C. parvum). The solubility enhancer partner Fh8 (Chapter 2) (Costa et al., 2012) is here 

also used for the production of Fh8CP12 fusion protein, which will help to clarify the 

specificity of the immune response in study.  

As a surface adhesion protein, CP12 plays a major role in the diagnosis of C. parvum 

infections in various mammals, including humans (Yao et al., 2007). A higher 

availability of this antigen and its specific polyclonal antibodies is therefore important 

for cryptosporidiosis prevention and therapy. The novel fusion system presented here 

offers a strategy for obtaining CP12 and anti-CP12 antibodies in quantities that make 

them fit for this purpose. 

The H partner consists of the N-terminal part of the Fh8 sequence. Fh8 (GenBank ID: 

AF213970.1) is a calcium-binding protein excreted and secreted by the adult worm of 

Fasciola hepatica. Fh8 is highly soluble and stable in E. coli, can be easily purified by 

nickel affinity chromatography, and it was previously used for the detection of F. 

hepatica infections (Silva E, 2004). Previous structural studies carried out on Fh8 

protein (unpublished work) revealed that the H fusion partner region may be critical for 

the stability and production of the entire protein.  

The low molecular weight of the H fusion partner (1 kDa) makes it a particularly 

attractive option for use in antibody production. 
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3.2. Material and Methods 

 

3.2.1. Plasmids, strains and media 

Plasmids pGEM-T easy (Promega) and pQE-30 (Qiagen) were used to sub-clone the 

cp12 gene obtained as described below. Escherichia coli XL1 and M15 [pREP4] cells 

were chosen for cloning and expression of the CP12 protein. Bacteria cultures were 

grown in Luria Broth medium with proper antibiotics (see subsection 3.2.4). 

 

3.2.2. Fusion vectors 

Fh8 and H fusion partners containing the restriction sites for BamHI and SacI enzymes 

were introduced into pQE-30 vectors between the restriction sites for the same enzymes 

(Figure 3.1). The resulting fusion vectors are pQE-30 modified vectors with a Fh8 tag 

sequence (GenBank ID: AF213970.1), designated by pQEFh8, or a H tag sequence site, 

designated by pQEH, after N-terminal polyhistidine. Both Fh8 and H tags are low 

molecular weight peptides with 8 kDa and 1 kDa, respectively.  
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a) 

  
b) M   R   G   S   H   H   H   H   H   H   G   S   M   P   S   V     

ATG AGA GGA TCG CAT CAC CAT CAC CAT CAC GGA TCC ATG CCT AGT GTT 

         His-tag       BamH I  

 

 Q   E   V   E   K   L   L   E   L   E   G   V   L   W   H   N 

CAA GAG GTT GAA AAA CTC CTT GAG CTC GAA GGA GTA CTT TGG CAC AAC 

      H-tag    Sac I 

 

 V   F   E   Q   D   R   L   Q   W   Q   P   E   R   N   D   A 

GTA TTC GAA CAG GAT AGG CTC CAG TGG CAA CCT GAA AGA AAC GAT GCG 

 

 

 Q   N   F   T   N   G   N   Q   Y   N   Y   I   Q   V   P   T 

CAA AAT TTT ACC AAT GGT AAT CAA TAT AAC TAT ATT CAA GTT CCA ACC 

     cp12 

 

 D   F   N   S   V   M   G   G   L   Q   S   P   S   E   M   A 

GAT TTT AAT AGT GTG ATG GGA GGG CTA CAG TCG CCT TCA GAA ATG GCA 

 

 R   T   I   E   R   N   I   E   K   K   Q   M   N   E   Q   I 

AGA ACA ATT GAA AGG AAC ATA GAA AAG AAA CAG ATG AAT GAA CAA ATA 

 

 * 

TAG TTA GTA TTC TTG ATA ATG AAA GGT ACC 

              Kpn I 

Figure 3.1. Fusion vectors. (a) Schematic maps of Fh8 and H fusion vectors containing 

cp12 gene. His tag – six-histidine tag sequence. Fh8/H – novel fusion tags sequence. 

cp12 – cp12 gene sequence. (b) Amino acid and nucleotide sequences of the HCP12 

codifying gene.  
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3.2.3. Construction of expression vectors 

The cp12 gene used in this work (Figure 3.1) corresponds to a truncated form of the 

original cp12 gene: it lacks the original N-terminal peptide signal and transmembrane 

region. This truncated gene (cp12 gene) was obtained from genomic DNA of C. parvum 

by a PCR using the forward primer: 5’ – CATACTGGTATGAGCTCGAAGGAGTAC 

- 3’ and the reverse primer: 5' – CATTAAAAGGTACCTTTCATTATCAAG - 3'. The 

forward primer introduced a restriction site for SacI enzyme (bold) between the C. 

parvum genomic DNA sequence and the initial part of cp12 gene (underlined). The 

reverse primer introduced a restriction site for KpnI enzyme (bold) between the final 

part of cp12 gene (underlined) and the C. parvum genomic DNA sequence. The PCR 

mix was first preheated at 95 ºC for 4 min, followed by 30 amplification cycles: a 95 ºC 

denaturation for 30 sec, a 50 ºC annealing for 1 min and a 72 ºC extension. A final 

elongation step was carried out at 72 ºC for 7 min.  

The PCR product was cloned into pGEM T-easy vector (Promega), according to 

manufacturer instructions, and used to transform E. coli XL1 strain. Positive clones 

were selected and sequenced using pQE universal primers.  

pGEM plasmid containing the cp12 gene was digested with SacI and KpnI restriction 

enzymes (Promega) and the cp12 gene was then cloned into the same restriction sites of 

pQE-30, pQEH and pQEFh8 vectors, using T4 DNA ligase (Promega). Both H and Fh8 

fusion vectors contain a MCS similar to pQE-30 vector. The H partner sequence 

corresponds to the initial N-terminal sequence of Fh8 partner and both are preceded by 

an N-terminal hexahistidine tag from pQE-30 vector. Codifying gene sequences are 

allowed to be cloned immediately after fusion tags using the specific restriction site for 

SacI enzyme.  

Following this strategy, E. coli M15 [pREP4] cells were transformed with pQE-30 

(Qiagen), pQEH and pQEFh8 expression vectors containing the 237 bp cp12 gene. 

Positive clones were confirmed by DNA sequencing (as mentioned above) and the 

resulting sequence was aligned to cp12 (GenBank ID: XM625821.1).  

LB medium plates supplemented with ampicilin (100 μg.mL
-1

) and kanamicin (50 

μg.mL
-1

) were used to select and maintain E. coli M15 [pREP4] transformants. 
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3.2.4. Expression and purification of fusion proteins in E. coli 

E. coli M15 [pREP4] cells were transformed with fusion vectors, pQEH and pQEFh8, 

containing cp12 gene, and also with pQE-30 harbouring the same cp12 gene. Cells were 

grown at 37 ºC in LB medium supplemented with ampicilin and kanamicin. The E. coli 

culture was induced with 1 mM of isopropyl-β-D-1-thiogalactopyranoside (IPTG) for 5 

hours at 37 ºC. After induction, cells were harvested by centrifugation at 4000 g during 

15 minutes at 4 ºC, and the resultant pellet was lysed with 8 M urea, pH 8.0, overnight 

at room temperature, 150 rpm. An aliquot of E. coli total lysates was taken and then, 

cell extracts were centrifuged at 10000 g, 20 minutes. The resulting supernatants and 

pellets were collected for further analyses (SDS-PAGE and protein purification).  

The supernatant fraction was applied onto a Ni-NTA column (GE Healthcare), pre-

equilibrated with 8 M urea, pH 8.0. Ni-NTA column was washed with 5 column 

volumes (CVs) of 8 M urea, pH 8.0 and 5 CVs of 8 M urea, pH 6.5. Fusion proteins and 

non-fused protein were eluted with 8 M urea, pH 4.5.  

All CP12, HCP12 and Fh8CP12 production procedures were repeated in three different 

periods of time to obtain biological independent replicates. Recombinant antigens 

(HCP12 and CP12) to be administrated to CD1 mice were first dialysed with phosphate 

buffer saline 1x (PBS) prepared in apyrogenic water (B Braun), pH 7.2, and then, 

concentrated using Centricon 3 (Millipore).  Pyrogens from concentrated recombinant 

antigen suspensions were removed with Detoxi-Gel Endotoxin Removing Gel (Pierce) 

according to the manufacturer’s instructions. Recombinant antigen samples were 

recovered in pyrogen-free water (Braun) and stored at –20ºC until use. 

  

3.2.5. Protein electrophoresis and protein determination 

The purity of collected fractions from Ni-NTA chromatography as well as the E. coli 

total lysates and supernatant samples were analysed by 17%- or 12%-4% SDS-PAGE 

gels (Laemmli, 1970) stained with Coomassie Brilliant Blue dye. 15%-4% tris-tricine 

gels (Schagger and von Jagow, 1987) were also used for Western blot analyses, as 

described below. Protein content of each collected fraction and final production yields 

were determined by Bradford assay (Bradford, 1976). 
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3.2.6. Immunisations  

Polyclonal antibodies were produced in CD1 female mice with 10 to 12 weeks old 

purchased from Charles River SA, Barcelona. The animals were housed and maintained 

with food and drink ad libitum.  

For immunisation, groups of 3 mice were injected intraperitoneally (IP) at 2 week 

intervals with 20 µg of antigen (CP12 or HCP12) in 200 µl of inocula, without using 

Freund’s adjuvant. Purified recombinant antigens were diluted in pyrogen-free 

physiological serum (Braun) to a concentration of 0.5 mg.ml
-1

, filtered by 0.2 m 

membrane (Sarstedt) in sterile conditions, prior to administration. Control animals 

harbouring the same age and characteristics did not receive either protein or inocula. 

Blood collection was carried out for five times at 3
rd

 IP, 5
th

 IP, 7
th

 IP, 8
th

 IP at the tail 

vein and mice were sacrificed 1 week later. After blood collection, mice sera were 

separated by centrifugation at 2500 rpm for 10 minutes and then stored at -20 ºC.  

All animal experiments were carried out in accordance to the European Communities 

Council Directive of 24 November 1986 (86/609/EEC). 

 

3.2.7. ELISA 

The antibody titer was determined by ELISA. Briefly, 96-well microtiter plates were 

coated with 100 μL per well of HCP12 fusion antigen or CP12 antigen (both at 10 

μg.mL
-1

) by incubating overnight at 4 ºC. The plates were washed twice with PBS 1x 

containing 0.3% (v/v) of Tween 20 (PBST), and the remaining binding sites were 

blocked with 3% (w/v) of Bovine serum albumin (BSA) in PBST, for 1h at 37 ºC. After 

washing plates three times with PBST, 100 µL of diluted (1:400 in PBST) anti-HCP12, 

anti-CP12 or negative serum (from the non-injected group) was dispensed into each 

well and plates were incubated at 4 ºC overnight. Plates were then washed three times 

with PBST, and 100 µL per well of diluted Protein A-Horseradish Peroxidase mixed 

with Protein G- Horseradish Peroxidase (1:4000 in PBST) was added. Plates were 

incubated for 2h at 37 ºC. After several washes, 100 µL per well of ο-phenylenediamine 

in 0.2 M phosphate buffer (pH 5.6) were added, and plates were incubated at room 

temperature (RT). The reaction was stopped by adding 100 µL per well of 3 M HCl 

solution.  
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The optical density (O.D.) was measured at 492 nm using an ELISA reader (Biorad). 

ELISA measurements were submitted to a Mann-Whitney U test with 95% confidence 

level. 

 

3.2.8. H tag specific humoral response assay 

For testing the humoral response against H tag, several ELISAs were performed using 

two different proteins as coating antigens, which contain the H-tag sequence, Fh8 and 

HTgOWP - a Toxoplasma gondii oocyst wall protein, with anti-CP12, anti-HCP12 and 

negative sera. 96-well microtiter plates were coated with 100 μL per well of Fh8 or 

HTgOWP antigens (both at 10 μg.mL
-1

), and were subsequently treated following the 

above-mentioned ELISA protocol. 

 

3.2.9. Western blot 

Tris-Tricine gel containing recombinant Fh8CP12 or Fh8 antigens were transferred to 

nitrocellulose membranes using a sandwich system. Membranes were saturated with a 

5% (w/v) PBS-Milk solution for 1h at room temperature (RT). Diluted anti-HCP12, 

anti-CP12 or negative group sera (1:1000 in PBST) were added to each membrane and 

incubated overnight at 4 ºC. Membranes were washed three times with 0.3% (v/v) 

PBST and incubated with diluted Protein G-peroxidase (1:1000 in PBST) for 2h at RT. 

Protein detection was carried out using 4-chloro-1-naphthol in cold methanol, phosphate 

buffer saline and hydrogen peroxide.  

 

3.2.10. Immunofluorescence assay (IFA) 

C. parvum oocysts were used for IFA assays. C. parvum oocysts were isolated from 

positive fecal samples of animals by using cesium chloride density gradients (Arrowood 

and Donaldson, 1996). Isolated oocysts were counted using a Newbauer chamber, and 

added to the slides for testing. Oocysts were air-dried onto slides, and then fixed with 

acetone, and incubated at 37 ºC in a humid atmosphere with either anti-HCP12 or 

negative control sera, both diluted 1:20. After being washed twice with PBS 1x, oocysts 

were incubated with anti-mice IgG conjugated with FITC (Sigma) and diluted 1:80, 
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according to the manufacturer’s instructions. This conjugate was used to reveal the 

bound antibodies, which were then observed using a fluorescence microscope. 

 

 

3.3. Results  

 

3.3.1. Expression and purification of cp12 codifying gene in E. coli using H and 

Fh8 fusion partners 

E. coli M15 [pREP4] cells were transformed with both H and Fh8 fusion vectors and 

pQE-30 vector containing the cp12 codifying sequence (Figure 3.1). This sequence 

matches 100% identity with the original cp12 sequence except that it lacks the original 

N-terminal peptide signal and transmembrane region. 

SDS-PAGE analysis of E. coli cultures (Figure 3.2.a) showed that both fusion proteins 

(HCP12 and Fh8CP12) were expressed at higher amounts than the non-fused CP12 

protein. This improvement in protein expression was most notable for Fh8CP12 fusion 

protein, as demonstrated by its total lysate and supernatant samples.  

SDS-PAGE analysis also confirmed that CP12 and HCP12 proteins were expressed at 

the predicted 10 kDa and 11 kDa, respectively. Fh8CP12 protein appeared at 18 kDa as 

expected, and also at 36 kDa (Figure 3.2.b), suggesting dimer forms of this recombinant 

fusion protein.  

After being purified, CP12 non-fused protein achieved a production yield of 0.40 ± 

0.050 mg per litre of E. coli culture while HCP12 fusion protein achieved a production 

yield of 1.5 ± 0.30 mg per litre of E. coli culture. Further improvements on protein 

production levels were obtained with the Fh8 partner (4.7 ± 0.81 mg per litre of E. coli 

culture). 
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a) b) 

    CP12              HCP12           Fh8CP12 
    TL   SN                  TL   SN                   TL   SN  

 

       CP12          HCP12      Fh8CP12 

 

Figure 3.2. CP12, HCP12 and Fh8CP12 proteins production in E. coli. (a) SDS-PAGE 

analysis of TL – E. coli total lysate and S – supernatant samples obtained from total 

lysate, as described in the Materials and Methods section, of CP12, HCP12 and 

Fh8CP12 cultures. (b) SDS-PAGE analysis of purified proteins after nickel affinity 

chromatography (5 µg of protein).  

 

 

3.3.2. Production of polyclonal antibodies anti-CP12 using the H tag 

ELISA assays were performed with sera from three different groups of mice: HCP12-

injected mice, non-fused CP12-injected mice and non-injected mice, and plates were 

coated with recombinant CP12 antigen and with HCP12 fusion antigen.  

Similar results were achieved using both CP12 and HCP12 coatings: an increased 

humoral immune response was observed in CP12 and HCP12-injected mice. CP12-

injected mice produced polyclonal antibodies anti-CP12 statistically different from the 

non-injected group at 49 days post injection (CP12-coated plate, Figure 3.3.a), and at 42 

days post injection (HCP12-coated plate, Figure 3.3.b). This result shows that CP12 

antigen is itself an immunogenic protein. The IgG levels for HCP12-injected mice 

started to increase after the 14
th

 day post injection (Figure 3.3.a), which reveals an 

earlier immune response than the obtained in CP12-injected mice.  

After 28 days post injection, the production of polyclonal anti-HCP12 antibodies was 

higher than the production of polyclonal anti-CP12 antibodies, but these titers were only 

statistically different at 49 days post injection (CP12 and HCP12-coated plates, Figures 

3.3.a and 3.3.b).  
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Results from ELISA showed that, when fused to the H partner, CP12 antigen was able 

to trigger an earlier immune response than the non-fused antigen. Furthermore, HCP12 

mice group achieved higher polyclonal antibody titers than those obtained with CP12-

injected group.  

 

 

3.3.3. Humoral response against H partner 

The serum collected from HCP12-injected mice was also analysed by ELISA to 

determine if the H partner elicited itself a humoral response. 96-well plates were coated 

with Fh8 and HTgOWP antigens and polyclonal antibodies anti-CP12, anti-HCP12 and 

negative sera were added to the assay. Both Fh8 and HTgOWP antigens have the H 

partner sequence at its N-terminal, which make them suitable for studying the specific 

humoral response against this fusion partner. For all sera analysed, no significant IgG 

levels were observed in plates coated with Fh8 or HTgOWP antigens. Neither anti-

CP12 nor anti-HCP12 polyclonal antibodies reacted with Fh8 (Figure 3.3.c) and 

HTgOWP (Figure 3.3.d) antigens.  

These assays demonstrated that the H partner did not triggered itself a humoral response 

since polyclonal antibodies anti-HCP12 were not capable to interact with H-containing 

antigens.  
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a)

 

b)

 

c)

 

d)

 

Figure 3.3. Evaluation of IgG production against CP12 and HCP12 antigens during the 

course of immunisation. ELISAs were performed with sera collected periodically from 

CD1 mice experimentally injected with HCP12 (here presented as anti-HCP12), with 

CP12 (here presented as anti-CP12), and from non-injected mice (here presented as 

NEG). 1
st
/3

rd
/5

th
/7

th
/8

th
 IP – Blood collection before 1

st
/3

rd
/5

th
/7

th
/8

th
 intraperitoneal 

injections. D56 – Blood collection at seven
 
days after 8

th
 IP. () and () – O. D. values 

statistically different from negative control. () - O. D. values statistically different 

from CP12-injected mice. (a) Plates coated with 10 μg.mL
-1

 of CP12. (b) Plates coated 

with 10 μg.mL
-1

 of HCP12. (c) Plates coated with 10 μg.mL
-1

 of HTgOWP. (d) Plates 

coated with 10 μg.mL
-1

 of Fh8. 

 

 

3.3.4. CP12 specific polyclonal antibodies 

Western blot assays were also performed to evaluate the CP12 specificity of polyclonal 

antibodies produced by HCP12-injected mice. In this analysis we used Fh8CP12 fusion 
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antigen to test if there were cross reactions with the H partner, which DNA sequence is 

part of Fh8 sequence. 

Western analyses with sera of CP12 and HCP12-injected mice (collected 7
 
days after 8

th
 

IP) revealed the formation of blots at a molecular weight that corresponds to dimeric 

Fh8CP12 antigen (36 KDa). Arrows presented in Figure 3.4.a, lanes 1 and 2, focus this 

observation. The Western analysis performed with the mice control group sera did not 

reveal blot formation, as expected (Figure 3.4.a, lane 3).  

An immunoblotting analysis using Fh8 recombinant antigen was also carried out with 

mice sera of the three groups (CP12, HCP12 and negative), in the same conditions as 

above, but no blots were observed (Figure 3.4.b).  

The Western blot analyses showed also that polyclonal antibodies produced by HCP12-

injected mice group specifically recognized the CP12 antigen and do not cross react 

with the H partner. 

 

 

3.3.5. Recognition of native CP12 epitopes 

Immunofluorescence assays were conducted to evaluate the potential of polyclonal 

antibodies produced by HCP12-injected mice to recognize native CP12 epitopes 

presented on the surface of the parasite C. parvum.  

The fluorescence observed in Figure 3.4.c highlights the surface of C. parvum oocysts, 

thus confirming the ability of these polyclonal antibodies to detect the native CP12 

epitopes displayed on the surface of parasite oocysts.  
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a) b) 
                     1                 2               3 

 

                        1              2              3 

 

c) 

 

Figure 3.4. Evaluation of polyclonal antibodies specificity against CP12 antigen. (a) 

Western blot analysis of Fh8CP12 antigen. (b) Western blot analysis of Fh8 antigen. In 

all images, 1 – Polyclonal antibodies produced by HCP12-injected mice (presented in 

Figure 3.3 as anti-HCP12); 2 – Polyclonal antibodies produced by CP12-injected mice 

(presented in Figure 3.3 as anti-CP12); 3 - Negative sera (presented in Figure 3.3 as 

NEG). (c) Immunofluorescence assay using anti-HCP12 polyclonal antibodies: 

detection of C. parvum oocysts surface. 
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3.4. Discussion 

 

A novel approach to produce CP12 specific polyclonal antibodies is presented in this 

work, in which the H partner plays an important role for adjuvant-free immunisation.  

CP12 is an adhesion protein that was previously identified on C. parvum sporozoite and 

oocyst surface (Yao et al., 2007). Due to its surface localization and its contribution in 

host-parasite interactions, CP12 is a potential target for cryptosporidiosis prevention and 

therapy (Yao et al., 2007). Taking into account its diagnostic and prophylactic relevance 

in the control of C. parvum infections in various organisms, novel strategies to improve 

CP12 antigen production and its specific polyclonal antibodies availability are desired.  

Generally, to raise a specific antibody against a certain target antigen it is first required 

to obtain substantial amounts of the purified and soluble antigen and second, the target 

antigen has to trigger an immune response in the organism (to be immunogenic) 

(Chowdhury et al., 2001). Most of the times, however, target proteins do not meet these 

criteria, being inefficiently expressed, purified and/or presenting a misfolded structure 

in E. coli, and acting as poor immunogens.  

Following a production strategy from gene to antibody, the study conducted here 

demonstrates that both Fh8 and H fusion partners increase recombinant protein 

production of CP12 in E. coli, being a versatile tool for the generation of antigenic 

proteins. Furthermore, the H fusion partner improves the immunogenic properties of 

CP12, without using adjuvants or additional immunisation procedures. The 

immunopotentiating properties of the H fusion partner make it an innovative alternative 

to the traditional immunisation methods.  

In the cloning strategy, we used a truncated cp12 gene, which lacks the original N-

terminal transmembrane region of cp12 because it may hamper soluble protein 

expression. This truncated cp12 gene was inserted into pQE modified vectors 

containing Fh8 and H fusion partners and also into pQE-30 vector, which was used for 

expression and immunisation control.  

Both fusion partners increased CP12 production yields, allowing also a rapid and easy 

purification of this antigen by the use of the same hexahistidine tag from pQE-30 

plasmid. HCP12 and Fh8CP12 fusion proteins achieved a production yield four-fold 

and twelve-fold higher than the non-fused protein in E. coli, respectively. These 
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production yields may, however, be overestimated because contaminant proteins were 

also quantified by Bradford.  

Findings from this work reveal several advantages of using H partner to produce 

polyclonal antibodies. The H partner improves specific antibody production against 

CP12 antigen, resulting in an earlier immune response and in higher polyclonal 

antibody titers when compared to the non-fused CP12 immunisation. Moreover, 

polyclonal antibodies anti-HCP12 reacted only with CP12 antigen but not with the H 

moiety contained in the N-terminal part of Fh8 partner as well as in the HTgOWP 

antigen. This CP12 specific immune response resulted from immunisation of HCP12 

antigen with no addition of adjuvants, whereby the immunogenicity rise may be 

exclusively due to the fusion of CP12 recombinant antigen with H partner. Further 

studies are actually being conducted to clarify the mechanism behind this effect, in 

which the ability of H partner to function as an immunomodulator or adjuvant is tested 

in vitro.  

CP12 antigen has a low molecular weight that can hinder the production of polyclonal 

antibodies. When producing such low molecular weight antigens, fusion partners like 

GST (Lopez-Monteon et al., 2003), Trx (Barrell et al., 2004), BB-SpG (Sjolander et al., 

1997), MBP (Kink and Williams, 1998)  and SpA (Lowenadler et al., 1986) are usually 

used to increase the molecular weight of target proteins, making them detectable by the 

immune system. However, these fusion partners are often not capable to elicit a 

satisfactory immune response, requiring therefore the use of adjuvants, such as Freund’s 

complete/incomplete adjuvants. Fusion partners as SSNAP (Knuth et al., 2000) and 

CTB (Holmgren et al., 1994; Liljeqvist et al., 1997) can also act themselves as 

adjuvants by expressing fusion proteins in inclusion bodies or by forming multimeric 

structures. Here, a local immune response is stimulated at the injection site and a 

sustained release of small antigen quantities occurs over a long period of time.  

In fact, all of these adjuvant stimulations are not desirable as they can be difficult to 

prepare or may cause several side effects, namely, chronic inflammation response at the 

injection site. In addition, the immune responses obtained with these fusion partners are 

frequently not specific for the target antigen, resulting in polyclonal antibodies 

production against both fusion moiety and target antigen. For most antibody 

applications, extra purification steps need to be conducted, which makes this a time-

consuming and expensive methodology.  
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Taking into account all these aspects, the ability of H-partner to effectively improve the 

specific immunogenicity of CP12 protein without adjuvants makes this fusion partner 

an attractive option to the existent and commonly used fusion partners. Furthermore, H 

partner has only 1 kDa, which is, to our knowledge, the lowest molecular weight partner 

used for protein and antibody production.  

The immunofluorescence assay conducted in this work revealed also that polyclonal 

antibodies raised against HCP12 antigen were effective on detecting the native CP12 

antigen structure presented on the surface of C. parvum oocysts. Besides allowing an 

adjuvant-free immunisation procedure and a faster humoral response than usual, the 

fusion of the H partner to the CP12 antigen produced polyclonal antibodies that can be 

used as a diagnostic tool for immunodetection of C. parvum infections in humans or 

animals. A small fusion partner like the H tag may not interfere negatively with target 

antigen conformation and, hence, polyclonal antibodies raised against antigens fused to 

the H partner are able to recognize native antigen structures.  

The low molecular weight of H partner may also clarify the reason why this moiety 

does not trigger an immune response against itself when fused to a target antigen.  

Apart from CP12, the H partner was already successfully applied to the production of 

other antigens (Conceição et al., 2010) and their corresponding polyclonal antibodies, 

such as, the human interleukin-5 (IL-5), the cyst wall protein-1 from Toxoplasma gondii 

(TgOWP) that was used above as a control for cross reactions with the H partner, the 

cyst wall protein from Giardia lamblia cysts (CWG), the β-giardin cytoskeletal protein 

of the ventral disk from the Giardia lamblia trophozoite (βG), the cyst wall specific-

glycoprotein Jacob from Entamoeba histolytica (Ent), and the falcipain-1 trophozoite 

cysteine proteinase from Plasmodium falciparum (Pfsp), among others (Conceição et 

al., 2011). 
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3.5. Conclusion 

 

The novel fusion system studied in this work has overcome problems related to the 

production of CP12 antigen and its polyclonal antibodies such as low antigen quantity, 

poor immunogenicity, adverse effects of adjuvants and unspecific antibody production. 

When fused to CP12, the H partner improves its immunogenic properties without being 

removed from the fusion antigen and without co-administration of adjuvants, resulting 

in a more effective and earlier immune response.  

We suggest this novel fusion system as an improved strategy and promising technology 

for immunodiagnostic and immunoprophylactic purposes in the control of infections, 

allowing a rapid and easy recombinant procedure (see Patents WO 2010/082097 and 

WO 2011/071404 in Appendices 1.6.1 and 3.7.1, respectively).  
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3.7. Appendices 

 

3.7.1. Patent WO 2011/071404: Immunogens, process for preparation and use in 

systems of polyclonal antibodies production 

 

Please, open here: 

https://dl.dropbox.com/u/10833879/Fh8tag_Patents/WO2011071404.pdf 
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Chapter 4 

The Fh8 tag: a novel fusion partner for simple and inexpensive protein 

purification in Escherichia coli 

 

 

Abstract 

Downstream processing is still a major bottleneck in recombinant protein production 

representing most of its costs. Hence, there is a constant demand of novel and cost-effective 

purification processes aiming at the recovery of pure and active target protein.   

In this work, a novel purification methodology is presented, using a calcium binding protein as 

fusion handle: the Fh8 tag. The binding properties of Fh8 tag to a hydrophobic matrix were first 

studied via hydrophobic interaction chromatography (HIC). The Fh8 tag was then evaluated as a 

purification handle by its fusion to green fluorescent protein and superoxide dismutase. The 

purification efficiency of the Fh8-HIC strategy was compared to the immobilized metal ion 

affinity chromatography (IMAC) using the His6 tag.  

Results showed that the Fh8-HIC binding mechanism is calcium dependent in a low salt 

medium, making the purification process highly selective. Both target proteins were biologically 

active and successfully purified by HIC when fused to Fh8, achieving efficiencies identical to 

those of IMAC. Thus, Fh8 can be used as an affinity tag, allowing the design of inexpensive and 

effective purification processes, complementing its ability to promote the soluble expression of 

recombinant proteins in E. coli.  
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4.1. Introduction 

 

The continuing growth of biotechnology industry demands new strategies for the rapid 

and economical recombinant protein production through the use of a variety of host 

organisms and solubility as well as affinity partners (Hearn and Acosta, 2001; Waugh, 

2005; Esposito and Chatterjee, 2006; Malhotra, 2009; Vernet et al., 2011).  

The purification of a protein of interest from biological mixtures using rapid, robust and 

cost-effective methodologies is still a current challenge for a good number of scientists 

in academia and industry. Taking into account that the downstream processing 

comprises up to 80% of the production costs (Hearn and Acosta, 2001), novel solutions 

that simplify the protein purification process are essential for the biotechnology’s 

progress. This purification bottleneck has been somewhat overcome by the use of 

affinity fusion partners together with DNA recombinant techniques that allow to clone 

in frame the peptide or protein affinity tag at the N- or C-terminal end of the target 

construct (Hearn and Acosta, 2001). These fusion partners or tags diverge in molecular 

size and complexity and can also be used to improve soluble protein production, besides 

facilitating its purification by specific interaction with a known ligand/adsorption matrix 

(Malhotra, 2009).  

Several affinity tags are commercially available for research or large scale protein 

production as, for instance, the Glutathione S-Transferase (GST) tag (Smith, 1988), 

Maltose Binding Protein (MBP) tag (Di Guan et al., 1988) and Hexahistidine tag 

(Hochuli et al., 1987) that have affinity to bind immobilized glutathione, maltose and 

nickel, respectively. Although being widely used, these fusion tags often yield low 

levels of protein purity due to unspecific and/or weak interactions with the matching 

matrices (Arnau et al., 2006). New purification tags are constantly emerging, 

outperforming the existing techniques and advancing the affinity concept or protein 

detection, as for instance, the Si-tag (Ikeda et al., 2010), Tamavidin tag (Takakura et al., 

2010), Tab2 tag (Crusius et al., 2006), intein-mediated purifications (Wang et al., 2010), 

Heme tag (Asher and Bren, 2010), Z-basic tag (Hedhammar and Hober, 2007), Dock 

tag (Kamezaki et al., 2010) and the HiCaM tag (McCluskey et al., 2007).  

The ideal purification process should: allow efficient and high yield protein recovery 

from a biological mixture; be universally applied to any protein without disturbing its 
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function; use a small fusion partner; be compatible with native conditions; and it should 

offer great control over selectivity (binding and elution of the protein of interest) using 

inexpensive and high capacity resins (Lichty et al., 2005; Waugh, 2005).  

In this work, we investigate the Fh8 tag as a novel fusion purification strategy that 

meets these criteria by combining the calcium-binding intrinsic property of the Fh8 

molecule with an inexpensive hydrophobic resin (phenyl-Sepharose). The Fh8 

(GenBank ID: AF213970) was first isolated from the excreted/secreted proteins of the 

Fasciola hepatica parasite and recombinantly produced in Escherichia coli for 

diagnostic purposes, presenting a molecular weight of 8 kDa (Silva et al., 2004). This 

recombinant protein has been successfully used in E. coli as a solubility enhancer tag 

(Chapter 2) (Costa et al., 2012) and it was previously characterized as a calcium sensor 

protein that changes its structure upon calcium binding, exposing its hydrophobic 

residues to interact with its targets or other molecules (Fraga et al., 2010).  

We demonstrate here that the Fh8 tag interacts with the phenyl-Sepharose hydrophobic 

resin with an identical mechanism as other calcium-binding proteins (Rozanas, 1998; 

Shimizu et al., 2003). Furthermore, using the green fluorescent protein (GFP) and the 

superoxide dismutase (SOD) as target model proteins, we also reveal that the Fh8 tag 

can be successfully applied as a purification handle for simple, rapid, and low cost 

recover of biologically active proteins.  

 

4.2. Materials and Methods 

 

4.2.1. Cloning of sod and gfp genes into expression vectors 

Both gfp and sod genes were first modified and amplified by PCR to be later sub-cloned 

into the pETM11 and pETMFh8 expression vectors. The PCRs were conducted using 

minipreps (GenElute™ Plasmid Miniprep Kit - Sigma) of gfp and sod harboring 

plasmids as templates and the Phusion High-Fidelity DNA Polymerase (New England 

Biolabs - NEB), according to the manufacturer’s instructions. Specific primers were 

design as follows: Forward primer: 5’ – TCTATTCCATGGGATCC+18 nt gfp/sod – 3’ 

and Reverse primer: 5’ – AATAGACTCGAGTTA+21 nt gfp/sod – 3’, to introduce the 

NcoI/BamHI restriction sites (underlined) at the N-terminal of both genes and the XhoI 

restriction site (underlined) after the stop codon (bold) at the C-terminal of both genes.  
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After DNA purification (QIAquick DNA gel extraction kit - Qiagen), the PCR products 

and the expression vectors were digested using the NcoI and XhoI restriction enzymes 

(New England Biolabs) and DNA ligations were carried out using the Rapid DNA 

Ligation kit (Roche). E. coli TOP10 competent cells were transformed with the obtained 

vectors and the resulting clones were verified by colony PCR using the T7 forward and 

reverse universal primers.  

The correct insertion of gfp and sod genes into the pETM11 and pETMFh8 expression 

vectors was additionally confirmed by sequencing with both T7 forward and reverse 

universal primers. 

 

4.2.2. Expression of Fh8 tag and HisGFP/SOD and Fh8GFP/SOD fusion proteins 

in E. coli 

The expression strains and induction conditions used in this work were selected from a 

small-scale screening using 10 mL cultures (see Appendix 4.7.1, Figure A4.1). GFP 

recombinant proteins and the Fh8 tag were expressed in 2 L cultures using the E. coli 

BL21 Codon Plus-RIL strain. SOD recombinant proteins were expressed in 2 L cultures 

of E. coli Rosetta strain. Recombinant proteins were expressed as follows: pre-cultures 

were grown overnight (o/n) at 37 ºC and a dilution factor of 50 was used for inoculation 

of all cultures.  Eight flasks of 250 mL of culture media (total culture volume of 2 L) 

were grown in 1 L flasks at 37 ºC and 200 rpm to a final O.D.600nm of 0.4-0.6. E. coli 

cultures were induced with isopropyl-β-D-1-thiogalactopyranoside (IPTG) 0.2 mM, 18 

ºC, o/n (for SOD and GFP expressions) or 1 mM, 30 ºC, 4 hours (for Fh8 tag 

expression).  

After induction, three 5 mL samples were taken from each culture for dry weight 

estimation and the remaining cells were harvested for 25 minutes, at 4 ºC and 4000 rpm. 

Cell pellets were washed once with phosphate buffer saline 1x and collected again by 

centrifugation. Bacterial pellets were then stored at -20 ºC.  

Stock solutions of antibiotics for plasmid maintenance and protein expression were 

prepared, filtered through 0.2 µm and stored at -20 ºC to be used in culture media with 

the following concentrations: kanamycin 50 µg.mL
-1

 and chloramphenicol 10 µg.mL
-1

.  
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4.2.3. Fh8 purification by HIC  

Three different HIC purifications were tested to evaluate the interaction of Fh8 with the 

hydrophobic resin in the presence and absence of calcium, following the strategy 

presented in Appendix 4.7.2, Figure A4.2.  

Cell pellets of 1.5 L culture of Fh8 tag were thawed and resuspended in a total volume 

of 3x25 mL of lysis buffer (50 mM Tris pH 7.6 and 150 mM NaCl, supplemented with 

1x complete free EDTA protease inhibitor (Roche), 5 µg.mL
-1

 DNAse (Sigma) and 1 

mg.mL
-1 

lysozyme (Sigma)). The lysis buffer was also supplemented with 5 mM CaCl2, 

accordingly.  After ressuspension, cells were incubated at room temperature for 10 

minutes and then lysed by sonication (Branson) for six cycles of 30 seconds each, with 

30 seconds intervals. Aliquots of 100 µL of total lysates were taken and stored at 4 ºC. 

Supernatant fractions were collected from the insoluble debris by centrifugation at 

10000 rpm, 30 minutes, 4 ºC and aliquots of 100 µL were stored at 4 ºC for Bradford 

estimation of the total protein content and for sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) analysis.  

The Fh8 tag purifications were conducted in the Biologic Duoflow FPLC system (Bio 

Rad) using a 5 mL pre-packed Phenyl Sepharose 6 Fast Flow High Sub column (GE 

Healthcare). Supernatant samples were loaded onto the HIC column, using the 

following buffers: in the HIC-1, the Fh8 tag was purified by HIC using a Tris NaCl 

buffer without calcium addition (50 mM Tris pH 7.6 and 150 mM NaCl). In the HIC-2, 

the Fh8 tag was purified by HIC using the Tris NaCl buffer supplemented with 5 mM 

CaCl2. For both purifications, the Elution buffer was used in the same concentration as 

indicated in Table 4.1. In the HIC-3, the Fh8 tag was purified by HIC using the Tris 

NaCl buffer supplemented with 5 mM CaCl2 but with two different Elution buffers: a 

first Elution buffer with EDTA (50 mM Tris pH 7.6, 150 mM NaCl and 5 mM EDTA) 

and a second Elution buffer identical to the described at Table 4.1 (50 mM Tris pH 10). 

Aliquots of all supernatant and flowthrough samples, washing steps and eluted samples 

were stored at 4 ºC to be further analysed. 
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Table 4.1. Composition of purification buffers: 

Purification technique Buffer Composition 

IMAC 

Binding 

50 mM Tris pH 7.6 

150 mM NaCl 

20 mM Imidazole 

Washing 

50 mM Tris pH 7.6 

150 mM NaCl 

50 mM Imidazole 

Elution 

50 mM Tris pH 7.6 

150 mM NaCl 

300 mM Imidazole 

HIC 

Binding 

50 mM Tris pH 7.6 

150 mM NaCl 

5 mM CaCl2 

Washing = Binding 1:2 

25 mM Tris pH 7.6 

75 mM NaCl 

2.5 mM CaCl2 

 

Elution 

 

50 mM Tris pH 10 

 

 

4.2.4. Protein purification by HIC and by IMAC 

Cell pellets of HisSOD, Fh8SOD, HisGFP and Fh8GFP proteins (one pellet per protein, 

corresponding to 1 L E. coli culture) were thawed and resuspended in a total volume of 

2x20 mL of lysis buffer (50 mM Tris pH 7.6 and 150 mM NaCl, supplemented with 1x 

complete free EDTA protease inhibitor (Roche), 5 µg.mL
-1

 DNAse (Sigma) and 1 

mg.mL
-1 

lysozyme (Sigma)) with the addition of 20 mM imidazole, for IMAC 

purifications (1x20 mL), or 5 mM CaCl2, for HIC purifications (1x20 mL). Cells were 

lysed as mentioned in the Fh8 purification (section 4.2.3) and aliquots of total lysates 

and supernatant samples were stored at 4 ºC for Bradford estimation of the total protein 

content and for SDS-PAGE analysis.  

SOD and GFP target proteins were purified in parallel by HIC, using the same column 

as for the Fh8 purification, and by IMAC, using a 5 mL Histrap pre-packed column (GE 

Healthcare). All the proteins were purified following an identical strategy (see 
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Appendix 4.7.2, Figure A4.2). The composition of specific buffers used for each 

purification methodology is described in Table 4.1.  

The obtained purified SOD and GFP fusion proteins were dialysed in 50 mM Tris pH 

7.6, 150 mM NaCl buffer, filtered through 0.2 µm and stored at 4 ºC and -20 ºC until 

used. Columns regeneration and storage was performed according to the manufacturer’s 

instructions.  

 

4.2.5. Dual protein purification using HIC/IMAC and IMAC/HIC 

Fh8GFP and Fh8SOD fusion proteins were purified by HIC followed by IMAC using 

the same protocols mentioned in the previous section 4.2.4, with the following 

modifications: after HIC purification, eluted samples were dialysed in 50 mM Tris pH 

7.6, 150 mM NaCl buffer supplemented with 20 mM imidazole.  

The IMAC/HIC purification was only conducted for the Fh8SOD protein. Eluted 

samples from the IMAC purification were dialysed in 50 mM Tris pH 7.6, 150 mM 

NaCl buffer supplemented with 5 mM CaCl2, following an identical protocol as above-

mentioned.  

At the end of the HIC/IMAC or IMAC/HIC purifications, samples were dialysed in 50 

mM Tris pH 7.6, 150 mM NaCl buffer and stored at 4 ºC and -20 ºC until needed. 

Aliquots of all purification samples were stored at 4 ºC to be further analysed. 

 

4.2.6. Protein electrophoresis and protein quantification  

SDS-PAGE of Fh8 and His fusion proteins was conducted according to the Laemmli 

method (Laemmli, 1970) using 12%-4% gels. SDS-PAGE of Fh8 tag expressed samples 

was conducted according to the Schagger and Jagow method (Schagger and von Jagow, 

1987), using 15%-4% gels. Gels were loaded with the PageRuler Unstained Broad 

Range Protein Ladder (Thermo Scientific).  

Protein purity and correspondent molecular weights in the SDS-PAGE and Tris-Tricine 

gels were estimated by densitometry, conducting three independent readings in the 

Image Lab 2.0 software (Bio Rad), using the Molecular Imager Chemidoc XRS+ 

system (Bio Rad).  



The Fh8 tag as purification handle | Chapter 4 

 

Costa, S. J. | 2013 119 

The total protein content of supernatant samples and purification samples was estimated 

by Bradford method (Bradford, 1976), using the Bio Rad protein assay dye reagent and 

bovine serum albumin as standard. Protein quantifications were also conducted by 

reading the absorbance of eluted samples at 280 nm. All protein quantifications were 

conducted in triplicates.  

Purification efficiencies were estimated by the ratio between the protein amount in 

eluted samples and the protein amount loaded onto the purification column.    

 

4.2.7. GFP fluorescence measurements and SOD activity evaluation 

The GFP target protein was considered to be active by emitting green fluorescence. The 

fluorescence intensity of GFP eluted samples was measured in triplicates using a 

spectrofluorometer with an excitation filter of 475 nm and an emission filter of 505 nm. 

The resulting fluorescence intensities were normalized by the protein amount (in 

milligrams).  

The SOD activity was evaluated according to the method of Marklund and Marklund 

(Marklund and Marklund, 1974), in three independent assays, estimating the inhibition 

of pyrogallol autoxidation promoted by the eluted samples, using a spectrophotometer 

at 420 nm. 

 

 

4.3. Results 

 

4.3.1. Cloning of SOD and GFP fusion proteins 

The insertion of gfp and sod genes into the pETM11 and pETMFh8 vectors was 

successfully confirmed by sequencing and further analysed by BLASTN and BLASTP 

tools at the NCBI website. The obtained gfp gene presented 100% identity with the 

Aequorea coerulescens-derived gfp gene cloned into vector pT7XbG2-AcGFP1 

(GenBank: AB255038.1) and 76% identity with the original gfp gene from Aequorea 

coerulescens (GenBank: AY151052.1). The obtained gfp gene presented also 89% 

identity with the enhanced gfp gene cloned into vector pEGFP-1 (GenBank: U55761.1). 
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At the amino acid level, the obtained GFP protein presented 91% homology with the 

enhanced GFP (GenBank: AAB02572.1) and 98% homology with the AcGFP (GFP 

from Aequorea coerulescens, GenBank: AAN41637.1). The obtained sod gene 

presented 100% identity with Saccharomyces cerevisiae copper-zinc superoxide 

dismutase gene (GenBank: AY690619.1). The constructed pETMFh8SOD and 

pETMFh8GFP vectors presented 100% identity with the mRNA from Fasciola hepatica 

putative calcium-binding protein (GenBank: AF213970.1).  

 

4.3.2. The Fh8 tag interaction with the hydrophobic resin 

The SDS-PAGE analysis of the three HIC experimental protocols tested for the Fh8 tag 

is presented in Figure 4.1 and the densitometry results can be consulted in the Appendix 

4.7.3, Table A4.1.  

Figure 4.1. SDS-PAGE analyses of the three HIC purifications of the Fh8 tag, using 

TrisNaCl buffers from Table 4.1 with or without 5 mM CaCl2. SN – supernatant sample 

loaded onto the columns; FT – flow-through sample; W – washing sample; E – eluted 

sample; E1 - eluted sample using the buffer: 50 mM Tris pH 7.6, 150 mM NaCl, 5 mM 

EDTA; E2 – eluted sample using the buffer: 50 mM Tris pH 10 (Table 4.1). 

 

In the HIC purification without calcium supplementation in the binding step, most of 

the loaded Fh8 (gel band of 12 kDa) is observed in the flow-through (FT lane, gel band 

of 12 kDa) and washing (W lane, gel band of 12 kDa) samples. The eluted sample is 
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majorly composed by two gel bands, one of 23 and other of 54 kDa, as estimated by 

densitometry (see Appendix 4.7.3, Table A4.1).  

In the HIC purifications using buffers supplemented with calcium, the Fh8 is mostly 

visible in the eluted samples (E lanes, gel band of 12 kDa) and small leakages are 

observed in the washing steps. When performing the elution with 50 mM Tris pH 10, it 

is possible to observe the recovery of Fh8 together with the other two gel bands of 23 

and 54 kDa. On the other hand, when a first elution step with EDTA supplementation 

was performed, only the 12 kDa gel band is observed (lane E1). The other high 

molecular weight gel bands elute in 50 mM Tris pH 10 buffer (lane E2).  

Table 4.2 presents the total protein content of the collected samples from all the HIC 

purifications as well as the corresponding purification efficiency. As shown in this 

table, for the assay with no calcium addition, there was no eluted Fh8 from the total 

protein loaded (0% purification efficiency). In the assays with calcium addition, the 

purification efficiency using the two elution strategies was similar (82±6.2% and 

86±4.3%, respectively). These results are in good agreement to the SDS-PAGE 

analysis, showing that a higher recovery of the Fh8 tag is obtained when using the 

TrisNaCl buffers supplemented with calcium. 

 

Table 4.2. Fh8 tag purification results using three different HIC protocols:  

 HIC-1 HIC-2 HIC-3 

 Binding: No Calcium Binding: + 5mM 

CaCl2 

Binding: + 5mM CaCl2 

Elution:  

 Elution: Tris pH 10 Elution: Tris pH 10 
TrisNaCl+EDTATris 

pH 10 

Loaded (mg)
a
 37 ± 1.4 22 ± 0.7 35 ± 0.9 

Eluted (mg)
b
 0 ± 0 18 ± 1.3 31 ± 1.5 

Purification 

Efficiency (%) 
c 0 ± 0 82 ± 6.2 86 ± 4.3 

  
a, b

 Values were determined by taking into account the SDS-PAGE densitometric analysis of 

each target protein and the total protein amount presented in the loading (
a
) or elution step (

b
). 

c
 Efficiency is the ratio between the target protein amount in the elution step and the initially 

loaded amount of each target protein.   
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4.3.3. SOD and GFP purification by HIC and by IMAC 

The Fh8 tag was evaluated as a purification handle using the HIC in the presence of 

calcium. Fh8GFP and Fh8SOD recombinant fusion proteins were purified by HIC in 

parallel with IMAC, and the equivalent His-fused proteins were also used as a reference 

control for both HIC and IMAC purifications. Figures 4.2 and 4.3 present the main 

comparison results obtained for HIC and IMAC purifications: Figure 4.2 shows the 

SDS-PAGE of the comparison analysis and Figure 4.3 shows the resulting purification 

efficiency of each target protein that was estimated from the ratio between the amount 

of eluted proteins and the corresponding amount of loaded proteins (see Table 4.3).  

a                        HisGFP          Fh8GFP b                Fh8GFP  

                           E   W FT SN FT W E      E W   E W   FT  SN FT                            E 

                        1   2  3  4   5   6   7     8  9 10 11 12 13 14 

 

15 

 

c                   HisSOD         Fh8SOD d              Fh8SOD 

   E   W2    W  FT            SN  FT  W  E           E W2   w  FT SN FT  w W2  E            E          E 

  1    2     3    4             5    6   7   8          9  10  11 12 13 14 15 16  17 

 

        18 

 

        19 

  

Figure 4.2. SDS-PAGE of HIC and IMAC purifications of: (a) HisGFP and Fh8GFP, 

(b) Fh8GFP by HIC/IMAC, (c) HisSOD and Fh8SOD, (d) Fh8SOD by HIC/IMAC and 

IMAC/HIC. Aliquots of all samples were prepared and resolved by SDS-PAGE as 

follows: supernatant (SN) and flow-through (FT) aliquots contain 10 µg of total protein; 

washing samples (W, w and W2) contain 2 µg of total protein; eluates (E) contain 5 µg 

of total protein. Proteins were purified by HIC or IMAC using the buffers presented at 

Table 4.1. Arrows indicate the position of each recombinant protein in SDS-PAGE. 
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GFP 

  

SOD 

  

Figure 4.3. GFP and SOD protein purification efficiency by HIC in comparison to 

IMAC and/or IMAC/HIC and/or HIC/IMAC: values are the ratio between the target 

protein amount (average±standard deviation) in the elution step (Eluted yield - Table 

4.3) and the initially loaded amount (average±standard deviation) of each target protein 

(Loaded – Table 4.3). 
 

 

In Figure 4.2.a, the HisGFP samples (30 kDa – see Appendix 4.7.3, Table A4.1) were 

loaded at lanes 1-7 and the Fh8GFP samples (37 kDa – see Appendix 4.7.3, Table A4.1) 

at lanes 8-14. As observed in this figure, the Fh8GFP purification by the Fh8-HIC 

methodology resulted in an identical purification profile as the Fh8GFP IMAC 

purification, with low protein amount in the flow-through samples (lanes 12 and 14) and 

with most of the protein in the elution samples (lanes 8 and 10). In both HIC and IMAC 
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elution samples, it is also possible to observe a second gel band (at 22 kDa for HIC and 

at 28 kDa for IMAC) that affected the purity of Fh8GFP samples. The Fh8GFP 

purification efficiencies by Fh8-HIC (77%±12%) and by IMAC (72%±4%) were 

identical (Figure 4.3) and these results were in good agreement to what it was observed 

in SDS-PAGE analysis. The HisGFP was successfully purified by IMAC (lane 1) but 

not so well by HIC, in which most of the protein was found in the washing sample (lane 

6) rather than in the elution sample (lane 7). The HisGFP purification by IMAC yielded 

a similar efficiency (63%±7%) as the Fh8GFP purifications by IMAC or Fh8-HIC 

(Figure 4.3). 

Figure 4.2.c presents the purification results obtained for SOD recombinant proteins. 

Fh8SOD (26 kDa) and HisSOD (19 kDa) proteins migrated in SDS-PAGE with a 

molecular weight 3 kDa higher than expected (see Appendix 4.7.3, Table A4.1). The 

Fh8SOD purification profile by Fh8-HIC (lanes 14-17) was identical to the purification 

profile by IMAC (lanes 9-12). In both chromatographic techniques, the flow-through 

and washing samples presented low protein amount and the Fh8SOD protein was 

mostly recovered in the elution step. The eluted samples were not completely pure, 

presenting other protein bands of different molecular weights.  

As observed in Figure 4.3, the Fh8SOD recovered from Fh8-HIC strategy (75%±6%) 

resulted in a similar purification efficiency as the Fh8SOD recovered from IMAC 

(70%±2%).  

The purification efficiency of Fh8SOD fusion protein was higher than the one of 

HisSOD fusion protein. The HisSOD purifications showed a similar pattern as the 

HisGFP purifications: HisSOD was purified by IMAC (Figure 4.2.c, lane 1) but, 

without the presence of Fh8 tag, this target protein was not purified by HIC, coming out 

of the column in the flow-through and washing samples (Figure 4.2.c, lanes 6 and 7). In 

the HIC purification, other gel band from the soluble extract of E. coli expressing the 

HisSOD protein was observed nearby the HisSOD protein gel band. We could confirm 

that this gel band did not correspond to the HisSOD protein as it was not purified by 

IMAC (Figure 4.2.c, lanes 3 and 4) and its densitometric analysis revealed a molecular 

weight of 3 kDa higher than the observed for HisSOD (21 kDa – see Appendix 4.7.3, 

Table A4.1). Also a protein loss of 96%±8% was estimated for the HisSOD purification 

by HIC, taking into account the total protein content and corresponding densitometric 

analysis in the flowthrough and washing samples.  
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4.3.4. Dual purification system: HIC/IMAC and IMAC/HIC 

The purity of eluted Fh8GFP and Fh8SOD proteins from the Fh8-HIC purification was 

further evaluated by a second purification with IMAC. A second HIC purification was 

also conducted with the Fh8SOD protein after IMAC purification.  

As observed in Figures 4.2.b and 4.2d, the HIC/IMAC or IMAC/HIC purifications 

improved both Fh8GFP and Fh8SOD proteins purity, achieving purity levels between 

85% and 92% of the target protein, evaluated by SDS-PAGE densitometry analysis. In 

Figure 4.3, the efficiency of the two-step purifications was compared to the efficiency 

of single purifications. The Fh8GFP protein recovered after HIC/IMAC presented a 

similar purification yield as the Fh8GFP from Fh8-HIC purification. Fh8SOD proteins 

after HIC/IMAC or IMAC/HIC yielded similar purification efficiencies as in the 

corresponding single purifications.  

 

Table 4.3. Summary of Fh8 and His fusion proteins purification results by HIC in 

comparison to IMAC: 

 Fh8-GFP His-GFP Fh8-SOD His-SOD 

 IMAC HIC IMAC HIC IMAC HIC IMAC HIC 

Loaded (mg)
a
 55±2.1 69±5.2 48±2.5 58±4.0 7.9±0.014 19±1.2 9.7±0.56 8.8±0.37 

Eluted (mg)
a
 40±2.2 54±8.4 30±3.3 23±1.4 5.5±0.18 14±1.2 5.0±0.30 0 

Yield (mg) per g of 

E. coli dry weight
b
 

61±3.4 82±13 46±5.1 35±2.1 14±0.45 36±3.0 19±1.1 0 

  
a
 Values (mg) per litre of E. coli culture. These values were determined by taking into account 

the SDS-PAGE densitometric analysis of each target protein and the total protein amount 

presented in the loading or elution step, respectively.  

b
 Values (mg per g of E. coli dry weight) were obtained by the ratio between the eluted yield of 

each target protein (in mg per litre of E. coli culture) and the dry weight of the corresponding E. 

coli culture (in g/L). These values are calculated by the SDS-PAGE densitometric analysis for 

each target protein.  
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4.3.5. Functional assays of purified fusion proteins 

The Fh8-HIC purification methodology was further compared to the IMAC purification 

regarding the biological activity of the purified protein. Figure 4.4 presents the activity 

results per mg of target protein.  

a) GFP 

  

b) SOD 

  

Figure 4.4. GFP (a) and SOD (b) activity measurements: comparison of protein activity 

after HIC, IMAC, HIC/IMAC and/or IMAC/HIC purifications. The presented values for 

GFP or SOD activity are the ratio between the obtained results of three activity 

measurements per target protein (average±standard deviation) and the target protein 

amount (mg). GFP fluorescence was measured with an excitation filter of 475 nm and 

an emission filter of 505 nm. One SOD activity unit is defined as the amount of SOD 

that inhibits the rate of pyrogallol autoxidation by half at pH 8.2 and 25 ºC (Marklund 

and Marklund, 1974). 
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In general, the GFP proteins purified by IMAC resulted in higher relative fluorescence 

units (RFU) per mg of protein than the GFP proteins purified by HIC. The Fh8 tag did 

not interfere with the GFP fluorescence as shown by the higher fluorescence readings of 

the Fh8-HIC and IMAC eluted Fh8GFPs compared to the eluted HisGFPs. Even so, 

Fh8GFP and HisGFP proteins yielded high fluorescence measurements (>1500 RFU per 

mg of protein), indicating that their natural ability to fluoresce was not affected by the 

purification steps. The Fh8GFP purified protein from HIC/IMAC presented also high 

RFU values. The several GFP target proteins did also exhibit green light under natural 

daylight. Photos of all purified GFP proteins are available at the Appendix 4.7.4, Figure 

A4.3. 

The Fh8SOD fusion protein purified by the Fh8-HIC strategy presented similar 

biological activity as the HisSOD protein purified by IMAC, and higher biological 

activity than the Fh8SOD purified by IMAC. In the eluted sample of HisSOD purified 

by HIC, no considerable SOD activity was detected, thus confirming the SDS-PAGE 

results of Figure 4.2.  In good agreement with the results observed for the GFP activity, 

the Fh8 tag did not affect the SOD activity as fusion protein.  
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4.4. Discussion 

 

In this study, a novel methodology for protein purification using the Fh8 tag was 

investigated. The chromatographic properties of the Fh8 tag were firstly demonstrated 

through simple proof-of-principle experiments and the usefulness of the Fh8 as 

purification tag was then evaluated by its fusion to two different model proteins: GFP 

and SOD. The purification efficiency of Fh8-fused proteins by HIC was also compared 

to the His tag technology. 

The Fh8 tag has been used as solubility tag for protein overexpression in E. coli 

(Chapter 2) (Costa et al., 2012) and it was previously characterized as a calcium binding 

sensor protein from the Calmodulin-like protein family. In the presence of calcium, the 

Fh8 molecule undergoes conformational changes, exposing its hydrophobic region for 

interaction with its targets or other molecules (Ikura, 1996; Fraga et al., 2010; Russell et 

al., 2012). Taking into account this calcium-binding property, the Fh8 was explored as a 

purification tag using the hydrophobic interaction chromatography. Experiments using 

the Fh8 tag alone were performed in order to demonstrate the specificity of the binding 

mechanism and the consequent behavior of Fh8 as a calcium binding protein in terms of 

hydrophobicity and affinity to the phenyl-Sepharose hydrophobic resin.  

Our results showed that the Fh8 could only bind the hydrophobic matrix in the presence 

of calcium in the mobile phase. Without calcium, most of the Fh8 was collected in the 

flow through, revealing low affinity for the matrix. The Fh8 tag was also able to bind to 

the phenyl-Sepharose resin under low salt concentration in the mobile phase, 

corroborating the results obtained for other calcium binding proteins (Rozanas, 1998; 

Shimizu et al., 2003). The salt concentration in the mobile phase has significant 

contribution for the HIC performance: when using anti-chaotropic salts as sodium 

chloride, in a medium of high salt concentration, the bound form of the protein is 

thermodynamically more favorable than the unbound state. These salts bind water 

molecules strongly, excluding them from the protein and ligand surfaces, which start to 

interact hydrophobically (salting-out effect) (Queiroz et al., 2001; Lienqueo et al., 2007; 

Tsumoto et al., 2007). Therefore, when using low salt concentrations in the mobile 

phase, the binding of proteins to the HIC matrix is not favored. Considering that the 

purification buffers used in this work have low salt concentrations, most of the 
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contaminant proteins in the E. coli extract are excluded in the binding step, promoting 

selectivity towards the purification of the desired fusion protein.  

The Fh8 tag eluted from the phenyl-Sepharose column either with EDTA or with pH 10. 

The use of a calcium chelating agent was already demonstrated to be effective for the 

elution of other calcium binding proteins (Rozanas, 1998; Shimizu et al., 2003; 

McCluskey et al., 2007). This elution mechanism proved to be highly selective towards 

Fh8 tag since other proteins of superior molecular weight (between 20-25 kDa and 50-

75 kDa) were only observed in the elution with pH 10, after the first elution with 

EDTA. These other proteins could, however, correspond to oligomer forms of the Fh8 

tag, as suggested by their molecular weight. In fact, the Fh8 molecule was previously 

described to form dimmers upon calcium binding that can resist to the denaturating 

conditions used in the SDS-PAGE analysis (Fraga et al., 2010).  

Overall, the Fh8 tag interacts with the HIC resin as a calcium binding protein and it has 

the properties required for protein purification by HIC, offering the possibility to control 

the binding, selectivity and elution steps with the exclusion of major E. coli 

contaminants.  

In order to investigate if the chromatographic properties of Fh8 were preserved after 

fusion to target proteins, we selected two proteins with different characteristics, GFP 

and SOD. These proteins were fused to the Fh8 tag and to the His6 tag, and a Fh8-HIC 

purification protocol with mild conditions that do not interfere with target biological 

activity of target proteins was developed.  

Results from this work demonstrated that the purification efficiency and biological 

activity obtained for the Fh8-fused proteins after Fh8-HIC purification is comparable to 

those of Fh8-fused and His-fused proteins after IMAC purification.  

The higher biological activity observed for the Fh8SOD fusion protein purified by HIC 

or by HIC/IMAC may be correlated to the calcium addition during the HIC purification 

protocol and its effect on SOD activity itself. Actually, the addition of calcium has a 

positive effect on SOD activity (Bakardjieva et al., 2000). In order to corroborate this 

effect, we also compared the biological activity of Fh8SOD protein purified by IMAC 

with or without the addition of CaCl2 5 mM, and an increase in SOD activity per mg of 

protein was observed (data not shown).  



The Fh8 tag as purification handle | Chapter 4 

 

Costa, S. J. | 2013 130 

Results from this work also established that the HIC purification of both GFP and SOD 

proteins was only possible when fused to Fh8 tag as shown by the weak interaction of 

the His6-tagged proteins with the HIC matrix (most of the proteins were found in the 

flow-through samples). This unfavorable interaction to the HIC matrix can be explained 

by the previously-mentioned low salt concentration used in the binding buffer. The 

difference between the pH value used in both binding and washing buffers (pH 7.6) and 

the pI values of target proteins (5.8 for HisGFP and 5.9 for HisSOD) is probably 

causing a net charge shield around these proteins that will also decrease the chance for 

hydrophobic interactions (Xia et al., 2005; Tsumoto et al., 2007). In the HisGFP 

purification by HIC, the HisGFP protein was mostly detected in the washing sample but 

it was also identified in its active form in the elution sample. However, the fact of 

finding active GFP in the elution sample can be mostly caused by a non-optimized 

washing step rather than a specific hydrophobic interaction due to the above-mentioned 

conditions (low salt concentration and different pH and pI values).  

The use of dual tags for expression and purification of recombinant proteins has become 

an increasingly popular method that simplifies purification and yields homogeneous 

preparations of the protein of interest (Terpe, 2003). Our results showed that the Fh8-

HIC and IMAC purification strategies can be used in a sequential step, complementing 

each other, to obtain an active and more purified protein. The use of two consecutive 

purification steps and the distinct nature of HIC and IMAC methodologies allows for 

the efficient removal of contaminating proteins (McCluskey et al., 2007).  

The data presented here have proven the feasibility of the Fh8-HIC purification strategy 

as a rapid, easy and low cost methodology for protein recover from E. coli extracts, 

even without an optimized purification protocol. Proteins purified by the Fh8-HIC 

strategy have the extra feature of being free of E. coli endotoxins, since the HIC is itself 

one of the strategies used for the removal of endotoxins (Wilson et al., 2001; Magalhães 

et al., 2007; Ongkudon et al., 2012). 

The Fh8-HIC purification strategy is calcium-dependent and, consequently, chelating 

agents must be avoided during protein binding and washing steps. This could be 

considered a limitation of the process but it is important to mention that this limitation 

can also be found in the IMAC technology. Due to the calcium-dependent mechanism 

for protein purification using the Fh8 tag, this Fh8-HIC strategy can be potentially 
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applied for several different target proteins without requiring the development and 

optimization of a new system for each new protein of interest.    

 

4.5. Conclusion 

 

By taking part of a one-step purification process, we successfully established a novel 

purification tag – Fh8 tag – that offers several benefits: a low molecular weight (8 kDa) 

that may not disturb the biological activity of target proteins, highly soluble and easy 

protein production in E. coli, besides simplicity and economy of the purification process 

(it does not require specialized buffers and substrates for elution and it makes use of 

inexpensive and high-capacity matrices). 

The novel Fh8 purification tag can be of most utility for the inexpensive large scale 

production and purification of several proteins. In addition, it can also be used in a two-

step purification procedure together with IMAC methodology, as well as other 

purification strategy, to improve the protein purity level.  
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4.7. Appendices 

 

4.7.1. Solubility small-scale screening of SOD and GFP expression in E. coli 

30 ºC     HisGFP    18 ºC 

 

30 ºC    Fh8GFP    18 ºC 

 

30 ºC     HisSOD     18 ºC 

 

30 ºC    Fh8SOD    18 ºC 

 

Figure A4.1. Solubility small scale screening evaluation in different E. coli strains by 

SDS-PAGE Gels were loaded as follows: supernatant samples expressed in E. coli 

Tuner, in BL21 Codon Plus-RIL and in Rosetta strains. The left side of the protein 

marker corresponds to proteins from the induction at 30 ºC, 0.5 mM IPTG for 3 hours. 

The right side of the protein marker presents proteins from the overnight induction at 18 

ºC and 0.2 mM IPTG. 
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4.7.2. Purification strategy 

 

Figure A4.2. Purification strategy conducted in this work. 

  

Binding buffer: 4 CVs at 1.5 mL.min-1

Supernatant sample loading onto the

column at 0.5 mL.min-1

Wash with Binding buffer: 8 CVs at 1.5 

mL.min-1

Wash with Washing buffer: 8 CVs at 1.5 

mL.min-1 or until baseline

Elution buffer: at least 6 CVs at 1 mL.min-1

Regeneration buffer: 6 CVs at 1 mL.min-1
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4.7.3. Protein molecular weights 

 

Table A4.1. Protein molecular weights estimated by the Expasy ProtParam tool and by 

densitometry of SDS-PAGE (values are “average±standard deviation” from three 

independent analyses of the same gel): 

Protein MW by ProtParam Densitometry (kDa) 

 (kDa) HIC IMAC all 

Fh8 tag 12 

12 ± 0.61 

Ea: 23 ± 0.56 

Eb: 54 ± 2.1 

- - 

Fh8GFP 37 38 ± 0.90 40 ± 1.3 39 ± 1.4 

HisGFP 30 29 ± 0.57 30 ± 1.6 30 ± 1.3 

Fh8SOD 26 30 ± 0.59 28 ± 1.5 29 ± 1.4 

HisSOD 19 21 ± 0.42 21 ± 0.56 21 ± 0.50 

Ea: 2
nd

 gel band (of three) observed in the elution; Eb: 3
rd

 gel band (of three) observed in the 

elution. 
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4.7.4. GFP purification samples 

  

 

Figure A4.3. Photos of GFP purification samples at UV light. 
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Chapter 5 

Soluble expression in Escherichia coli of difficult-to-express 

recombinant bone morphogenetic protein-2 and interleukin-10 

proteins by fusion to the Fh8 solubility partner 

 

 

Abstract 

Bone morphogenetic proteins and interleukins are important components of the immune system, 

being crucial for bone formation and repair, and in host defence, respectively. Among these 

proteins, the bone morphogenetic protein-2 (BMP-2) and the interleukin-10 (IL-10) have been 

intensively studied, being usually produced in recombinant hosts such as Escherichia coli. Both 

BMP-2 and IL-10 are produced in this bacterial cell as insoluble inclusion bodies, requiring 

several time-consuming solubilisation and refolding steps to acquire their biologically active 

structure. 

In this work, a novel strategy for BMP-2 and IL-10 soluble E. coli expression and purification is 

presented by using the new Fh8 tag. Both proteins are directly expressed in the soluble form as 

Fh8BMP-2 and Fh8IL-10 fusion proteins in E. coli, in contrast to the His6-tagged proteins that 

are insoluble in this host cell. The novel purification strategy via Fh8 hydrophobic interaction 

allowed the successful recovery of both fusion proteins, while some steric hindrance was 

observed during their nickel affinity purification. Moreover, Fh8BMP-2 and Fh8IL-10 purified 

fusion proteins presented secondary structures similar to those reported for BMP-2 and IL-10 

proteins, and were obtained in dimeric and oligomeric forms, which are essential for their 

biological activity. 

In spite of their soluble production, some issues were found in the immunodetection of purified 

proteins that, together with the biological inactivity of Fh8BMP-2 and difficulties in the tag 

removal, suggest a structural complexity of the soluble Fh8-fused proteins, which must be 

circumvented.    
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5.1.  Introduction 

 

Bone morphogenetic proteins and interleukins play important and mutual roles in the 

immune system, and their potential application in diverse medical areas has been 

growing over the years (Asadullah et al., 2003; Bessa et al., 2008b; Kwan, 2011). 

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-β 

(TGF-β) superfamily, and are identified by their ability to induce bone and cartilage 

formation (Urist, 1965; Szpalski and Gunzburg, 2005; Bessa et al., 2008a; Kwan, 2011). 

Biologically active BMPs are homo or heterodimers, which chains are connected via 

disulfide bonds (Israel et al., 1996; Scheufler et al., 1999). 

To date, at least fifteen BMPs have been identified and characterized, and among them, 

the bone morphogenetic protein-2 (BMP-2) protein has received a lot of attention due to 

its osteoinduction properties during skeletal development and repair. BMP-2 is localized 

in bone tissue and is released in response to bone damage, stimulating differentiation, 

via the Smad pathway, of pluripotent mesenchymal stem cells into multiple cell 

lineages, such as bone, cartilage, muscle, or fat cells (Shea et al., 2003; Yu et al., 2010; 

Kwan, 2011). BMP-2 is one of the two bone morphogenetic proteins approved by the 

Food and Drug Administration (FDA) as biological method to stimulate bone repair 

(Sharapova et al., 2010; von Einem et al., 2010; Oliveira et al., 2011), and it has been 

studied as an alternative to autologous bone grafting in many clinical situations, 

including spinal fusion, osteoporosis, treatment of bone defects, non-union fractures and 

root canal surgery (Azari et al., 2001; Bessa et al., 2008a). In terms of structure, human 

BMP-2 consists of a long precursor protein of 396 amino acids, which is glycosylated, 

proteolytically cleaved and dimerized to form the mature homodimeric protein 

consisting of two 114 residue subunits (Scheufler et al., 1999; Hillger et al., 2005).   

The biological activity of BMP-2 has been reported by the ability to promote the 

differentiation of mesenchymal stem cells into bone, involving different strategies, such 

as, the study of phenotypic characteristics of skeletal cells, the evaluation of alkaline 

phosphatase activity and extracellular matrix mineralization, the expression of various 

extracellular matrix proteins (collagen type II or osteocalcin), and the terminal 

phenotypic markers of the differentiated state of these cells (Shea et al., 2003; Vallejo 
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and Rinas, 2004a; Bessa et al., 2008c; Ihm et al., 2008; Sharapova et al., 2010; von 

Einem et al., 2010; Yu et al., 2010; Zhang et al., 2011).  

Interleukin-10 (IL-10) is a pleiotropic cytokine that exerts potent effects on numerous 

cell populations, in particular, circulating and resident immune cells as well as epithelial 

cells, by its specific cell surface receptor complex (IL-10R). IL-10 is, thus, an important 

broad effector molecule in immunoregulation and host defence (Moore et al., 2001; 

Pestka et al., 2004). Taking into account its anti-inflammatory and immunostimulatory 

properties, IL-10 has been proposed to be used in several clinical applications, such as 

vaccination (Berzofsky et al., 2001) or treatment of allergies (Pullerits, 2002), infectious 

diseases (Hubel et al., 2002), acute and chronic inflammatory diseases (Asadullah et al., 

2003). Human IL-10 is a homodimer with a molecular mass of 37 kDa and each 

monomer consists of 160 amino acids with a molecular mass of 18.5 kDa. Murine IL-10 

has about 80% homology with human IL-10 (Asadullah et al., 2003) and it consists of a 

polypeptide chain of 157 amino acids. 

Both BMP-2 and IL-10 proteins can be obtained from their corresponding natural 

sources, and several commercial solutions are now available, but the high cost, time-

consuming, laborious protein purification, and low yields limit their therapeutic use. 

Therefore, several strategies have been applied to produce BMP-2 and IL-10 

recombinantly, including the use of mammalian cell cultures and insect cells, but 

prokaryotic expression systems are still the best choice due to its advantageous high 

yield, low cost cultivation/production and high bio-safety (Bessho et al., 1999; 

Asadullah et al., 2003; Bessa et al., 2008b; Klompus et al., 2008; Carvalho et al., 2010).  

BMP-2 and IL-10 have been produced in Escherichia coli as insoluble inclusion bodies 

(Long et al., 2006; Zhang et al., 2006; Bessa et al., 2008c; Klompus et al., 2008; 

Carvalho et al., 2010; Sharapova et al., 2010; Zhang et al., 2010). Despite all the 

optimizations conducted so far, this production methodology is disadvantageous as it 

requires solubilisation and refolding steps that are time-consuming and limit their 

production at large scale (Makrides, 1996; Terpe, 2006; Demain and Vaishnav, 2009).  

Taking into account the limitations found in the production of BMP-2 and IL-10, a 

novel strategy for their soluble E. coli expression and purification is presented in this 

work by using the new Fh8 tag (Chapters 2 and 4) (Costa et al., 2012). Both BMP-2 and 

IL-10 are fused to the Fh8 tag, and their soluble expression is compared to that of His6-

fused proteins. The secondary structure of Fh8BMP-2 and Fh8IL-10 is also reported. In 
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addition, the in vitro bioactivity of soluble Fh8BMP-2 fusion protein is further explored 

using C2C12 myoblast cell cultures. 

 

 

5.2. Materials and Methods 

 

5.2.1. Materials 

In this work, all the cloning PCRs used the Phusion High-Fidelity DNA Polymerase 

(Thermo Scientific), according to manufacturer’s instructions. The colony PCRs were 

conducted using the Taq Polymerase (Nzytech) with an annealing temperature of 55 ºC 

and T7 forward and reverse universal primers. Plasmid DNA extractions were 

performed using the GenElute™ plasmid miniprep kit (Sigma) for minipreps, and the 

QIAquick DNA gel extraction kit or QIAquick PCR purification kit (Qiagen) were used 

for DNA purification. The restriction enzymes used in this work were from New 

England Biolabs. The DNA ligations were carried out with the T4 DNA ligase 

(Promega) or with the Rapid DNA Ligation kit (Roche). Kanamycin and 

chloramphenicol antibiotics were used for plasmid maintenance and protein expression 

at a final concentration of 50 µg.mL
-1

 and 10 µg.mL
-1

, respectively.  Antibiotic stock 

solutions were prepared at 1000x, filtered through 0.2 µm and store at -20 ºC.   

 

5.2.2. Cloning of bmp-2 and il-10 genes into the pETM11 and pETMFh8 vectors 

The bmp-2 (Swiss Prot ID: P12643.1, Bioclone Inc cat# RPA0305) and il-10 genes 

(Carvalho, 2010) used in this work are synthetic genes previously optimized for E. coli 

expression. The cloning of these genes into pETM11 (EMBL) and pETMFh8 plasmids 

(Chapter 2) (Costa et al., 2012) followed an identical strategy, in which both sequences 

were modified and amplified by PCR in order to have the NcoI/BamHI cleavage site at 

the 5’ position and the XhoI cleavage site at the 3’ position. An annealing temperature 

of 68 ºC and 58 ºC was used to modify and amplify the bmp-2 and il-10 genes, 

respectively. Primers used in both PCRs are listed at Table 5.1. 
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Table 5.1. Primers used in bmp-2 and il-10 PCRs: 

Primer Sequence Comments 

BMP-2_fwd 5’-TCTATTCCATGGGATCCACTTTCGGC 

CACGATGGTAAAGG-3’ 

the NcoI restriction site is in bold, the 

BamHI restriction site in italic and the 

first 23 nucleotides of the bmp-2 gene 

underlined; 

BMP-2_rv 5’-AATAGACTCGAGCTAGCGACAGCC 

ACAACCCTCCACAAC-3´ 

the XhoI restriction site in bold, the stop 

codon in italic and the final 24 

nucleotides of the bmp-2 gene 

underlined; 

IL-10_fwd 5 ´-TCTATTCCATGGGATCCTCTCGTGG 

CCAGTACTCTC-3´ 

the NcoI restriction site is in bold, the 

BamHI restriction site in italic and the 

first 23 nucleotides of the il-10 gene 

underlined; 

IL-10_rv 5’-AATAGACTCGAGCTAGCTTTTCATTT 

TGATCATCATG-3’ 

the XhoI restriction site in bold, the stop 

codon in italic and the final 24 

nucleotides of the il-10 gene underlined. 

fwd – forward; rv – reverse 

 

The resulting PCR products were purified and digested with NcoI and XhoI restriction 

enzymes. DNA ligation was conducted at a molar ratio of 1:3 using the NcoI-XhoI 

digested PCR products and the NcoI-XhoI digested pETM11 and pETMFh8 vectors. E. 

coli TOP10 competent cells were transformed with the obtained vectors and the 

resulting clones were verified by colony PCR. The insertion of bmp-2 and il-10 genes 

into the pETM11 and pETMFh8 expression vectors was additionally confirmed by 

sequencing with both T7 forward and reverse universal primers.  

 

5.2.3. Recombinant protein soluble expression and extraction in E. coli 

The expression of recombinant Fh8BMP-2 and Fh8IL-10 proteins was conducted using 

the E. coli BL21 (DE3) Codon Plus-RIL strain that was selected from a small-scale 

screening as the best host for soluble expression of these proteins (data not shown). The 

same strain was also used for the expression of BMP-2 and IL-10 proteins without the 

Fh8 tag.  
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Each fusion protein was expressed using different culture volumes, as follows: BMP-2 

proteins were expressed in 100-mL Erlenmeyers containing 20 mL cultures, and in 

several 1-L flasks containing 250 mL cultures; IL-10 proteins were expressed in 250-

mL, and 1-L flasks containing 50 mL, and 250 mL cultures, respectively. All 

precultures were grown in LB media containing kanamycin and chloramphenicol 

antibiotics, at 37 ºC, overnight. Precultures were diluted 1:50 for inoculation of LB 

media and cells were grown at 37 ºC, 200 rpm, to a final OD600 nm of 0.4-0.6. The 

induction of protein expression occurred at 18 ºC, o/n, with 0.2 mM isopropyl-β-D-1-

thiogalactopyranoside (IPTG).  

After induction, cells were harvested and cell pellets were stored at -20 ºC. For the 

protein extraction from E. coli cells, bacterial pellets were resuspended in lysis buffer 

[50 mM Tris pH 7.4, 250 mM (for BMP-2 proteins) or 150 mM (for IL-10 proteins) 

NaCl buffer with 1x complete free EDTA protease inhibitor (Roche), 5 mM MgCl2 

(Sigma), 5 µg.mL
-1

 DNAse (Sigma) and 1 mg.mL
-1 

lysozyme (Sigma)], and incubated 

at room temperature for 10 minutes prior sonication.  

Total lysate samples were collected after cell lysis and the supernatant fractions were 

recovered by centrifugation at 10000 rpm, 30 minutes, 4 ºC. Aliquots of soluble and 

insoluble fractions as well as total lysates were prepared for sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analyses. 

 

5.2.4. IMAC protein purification  

Supernatant samples were resuspended as mentioned above, supplemented with 20 mM 

imidazole, and centrifuged for 10 minutes at 10000 rpm, 4 ºC.  Two purification 

protocols were then conducted using Ni-NTA beads (GE Healthcare) for small-scale 

spin purification, and a prepacked Histrap column (GE Healthcare) for purification of 

large sample volumes in a manual pump system. Supernatant fractions were filtered 

through 0.45 µm before each purification. Both protocols were performed according to 

manufacturer’s instructions, using 50 mM Tris pH 7.4, 250/150 mM NaCl buffer in all 

purification steps, supplemented with 20 mM imidazole (for the binding step), with 40 

mM imidazole (for the washing step), and with 300 mM imidazole (for the elution step). 

Aliquots of flow-through, washing and eluted samples were prepared and analysed by 

SDS-PAGE. Protein content from the eluted samples was estimated by Bradford assay.  
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5.2.5. Fh8/HIC protein purification  

Fh8BMP-2 and Fh8IL-10 cell pellets were resuspended in lysis buffer supplemented 

with 5 mM CaCl2 and incubated at room temperature for 10 minutes prior sonication. 

Total lysate samples were collected after cell lysis and the supernatant fractions were 

recovered by centrifugation as mentioned above. Supernatant fractions were filtered 

through 0.45 µm and applied onto a pre-equilibrated Phenyl Sepharose™ 6 Fast Flow 

(high substitution) column (GE Healthcare) to be purified using the Fh8 as purification 

tag via hydrophobic interaction chromatography (HIC), in a manual pump system. An 

identical protocol was performed for both fusion proteins using the 50 mM Tris pH 7.4, 

250/150 mM NaCl, 5 mM CaCl2 buffer as binding buffer. Two washing steps were 

conducted: the first with the binding buffer diluted 1:2, and the second with distilled 

water. Fh8BMP-2 and Fh8IL-10 fusion proteins were eluted from the HIC resin using 

50 mM Tris at pH 10 as elution buffer. Aliquots of flow-through, washing and eluted 

samples were prepared and analyzed by SDS-PAGE. Protein content from the eluted 

samples was estimated by Bradford assay. Purified Fh8BMP-2 and Fh8IL-10 fusion 

proteins were finally dialyzed in phosphate buffer saline (PBS) 1x, pH 7.4, filtered 

through 0.2 µm, and stored at -20 ºC. Aliquots of purified samples were also used to 

estimate protein concentration by absorbance at 280 nm. 

 

5.2.6. Protein electrophoresis and quantification  

SDS-PAGE of Fh8 and His fusion proteins was conducted according to the Laemmli 

method (Laemmli, 1970) using 12%-4% gels. The total protein content of supernatant 

samples and purification samples was estimated by Bradford method (Bradford, 1976), 

using the Biorad protein assay dye reagent and bovine serum albumin as standard. 

Protein quantifications were also conducted by reading the absorbance of eluted 

samples at 280 nm. 

 

5.2.7. Immunodetection of Fh8BMP-2 and Fh8IL-10 soluble fusion proteins 

After SDS-PAGE, supernatant and purified samples of Fh8BMP-2 and Fh8IL-10 fusion 

proteins were transferred to nitrocellulose membranes using a sandwich system. The 
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immunodetection of BMP-2 was conducted with the in-house polyclonal mouse 

antibody anti-BMP-2 as primary antibody, and anti-mouse IgG HRP (Biorad) together 

with protein G HRP (Biorad) as conjugates. Anti-BMP-2 polyclonal antibodies were 

produced using the H partner as described in Chapter 3. The IL-10 analysis was carried 

out with the biotinylated anti-mouse IL-10 monoclonal antibody and streptavidin-

horseradish peroxidase conjugate (BD Biosciences). The substrate 4-chloro-naftol 

(Sigma) was used for membrane revelation.  

 

5.2.8. DLS and CD 

Dynamic Light Scattering (DLS) measurements were conducted in the Zetasizer Nano 

ZS (Malvern Instruments), using a protein concentration between 0.5-1 mg.mL
-1

. 

Protein samples were centrifuged and filtered before measurements to remove any 

aggregates.  

The circular dichroism (CD) spectra of purified recombinant proteins (30 µg of 

Fh8BMP-2 or 60 µg of Fh8IL-10 fusion proteins in 10 mM sodium phosphate buffer, 

pH 8.0) were collected with a 1 mm path length cuvette, between 190 and 260 nm, set 

up to 1 nm band width, continuous scan mode at 200 nm/min. The presented spectra are 

the average of 3 scans with the average buffer control spectrum subtracted. Spectra were 

acquired in a J-815 circular dichroism spectropolarimeter (Jasco), at 20 ºC. The results 

are expressed in terms of molar ellipticity (mean residue ellipticity, θ) in deg.cm
2
.dmol

-

1
, according to the equation:      

     

           
, where θobs is the observed ellipticity in 

mdeg, Cr is the mean residue molar concentration (mol/L), and l is the cuvette path 

length in cm. The mean residue molar concentration is obtained as follows:    

 
           

  
, where n is the number of residues of the protein, C´ is the protein 

concentration (g/mL), and MW is the protein molecular mass (g/mol). 

 

5.2.9. Recombinant Fh8BMP-2 biological activity test 

The biological activity of the purified Fh8BMP-2 was evaluated by the induction of 

alkaline phosphatase (ALP) activity in C2C12 cells, at 10
4
 cells.cm

-2
 in a 48-well plate, 

as described elsewhere (Abarrategi et al., 2012) with the following modifications: after 

cell seeding in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal 
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bovin serum (FBS), recombinant Fh8BMP-2 was added at 0, 1, 2, 5, and 10 µg.mL
-1

 

and incubated for four days. Culture medium was removed at the end of incubation 

period and wells were washed with PBS (400 µL per well). After that, lysis buffer (50 

mM Tris pH 6.8, 0.1% Triton X-100, 2 mM MgCl2) was added to each well and three 

cycles of temperature (-80 /37 ºC) were carried out for 30 minutes each.  

ALP activity was determined using p-nitrophenyl phosphate dissolved in alkaline buffer 

solution (Sigma) as a substrate. The reaction was stopped with 0.5 M NaOH and the 

absorbance was measured at 405 nm on a Microplate Reader (Biotek FL-600). Protein 

content of cell lysate was estimated by Bradford assay, according to the manufacturer’s 

instructions. ALP results are presented as Relative Fluorescence Units (RFU) per µg of 

Fh8BMP-2 protein. 

 

5.2.10. Tag removal of Fh8BMP-2  

The Fh8 tag removal from the Fh8BMP-2 fusion protein was conducted with the 

recombinant HisTEV protease (EMBL). Three different buffer incubation conditions 

were initially tested: (A) 50 mM Tris pH 8.0, 150 mM NaCl, 1 mM EDTA buffer; (B) 

the same buffer supplemented with 0.1 % Triton X100; and (C) the same buffer 

supplemented with 0.1 % Tween 20. In this analysis, 150 µg of protein were used, and 

HisTEV (1 mg.mL
-1

) was added at different concentrations (diluted 1:50, 1:20, and 

1:10), followed by an o/n incubation at 4 ºC. After selecting the best buffer and protease 

concentration, 15 mg of Fh8BMP-2 protein were digested as referred before. The 

efficiency of the Fh8 tag removal from Fh8BMP-2 was assessed by SDS-PAGE.  

The cleaved BMP-2 was purified further from the Fh8 tag and HisTEV protease by 

IMAC followed by ion exchange chromatography (IEX), performing both purifications 

according to the manufacturer’s instructions. The IMAC purification was conducted in a 

5-mL prepacked Histrap column (GE Healthcare), using the 50 mM Tris pH 7.6, 250 

mM NaCl buffer supplemented with 20 mM imidazole for the binding step, 

supplemented with 40 mM imidazole for the washing step, and supplemented with 300 

mM imidazole for the elution step. In IEX purification, a 1-mL prepacked Hitrap SP 

column (GE Healthcare) was used with the 50 mM Tris pH 7.0 as binding buffer. The 

same buffer supplemented with a gradient of NaCl 1 M was used for washing and 

elution of cleaved BMP-2.  The final purity of cleaved BMP-2 was evaluated by SDS-

PAGE and samples stored at -20 ºC. 
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5.3. Results 

 

5.3.1. Expression of soluble BMP-2 and IL-10 as Fh8 fusion proteins  

BMP-2 and IL-10 codifying genes were successfully cloned into the pETM11 (EMBL) 

and pETMFh8 (Chapter 2) (Costa et al., 2012) plasmids, as confirmed by sequencing. 

The obtained plasmids have the His6 tag or the His6-Fh8 tags at the N-terminal, and a 

Tobacco Etch Virus (TEV) protease recognition site is placed between fusion tags and 

BMP-2 and IL-10. At the nucleotide level, the obtained sequences presented 89% 

identity with the Homo sapiens BMP-2 (GenBank: GQ335530.1), and 92% identity 

with the Mus musculus IL-10 (GenBank: NM_010548.2). The obtained amino acid 

sequences presented 100% identity with the BMP-2 from Homo sapiens (GenBank: 

EAX10386.1), and with the IL-10 from Mus musculus (GenBank: AAI20613.1).  

The soluble BMP-2 and IL-10 recombinant production in E. coli was evaluated using 

the Fh8 tag as solubility partner and the His6 tag as purification partner. Figure 5.1 

shows the small-scale solubility results obtained for these two proteins before and after 

purification by nickel affinity chromatography.  

As observed in Figures 5.1.a and 5.1.b, recombinant BMP-2 was soluble expressed 

when fused to the Fh8 tag at a molecular weight of about 25 kDa, identical to the 

estimated by the ProtParam tool (Expasy.org). When only fused to the His6 tag, the 

BMP-2 is highly expressed but not in the soluble form, as observed by the presence of a 

gel band at the estimated molecular weight of 18 kDa in lane 3 (total lysate sample) and 

the absence of a gel band of the same molecular weight in lane 4 (supernatant sample). 

The recombinant IL-10 was also soluble expressed as a Fh8-fused protein of 

approximately 29 kDa (Figures 5.1.c-d). Without the Fh8 tag, the recombinant HisIL-10 

was highly expressed in the insoluble fraction with an estimated molecular weight of 22 

kDa (lane 2 of Figure 5.1.c), and no soluble production was observed in supernatant and 

eluted samples from Ni-NTA purifications (lanes 3, 6 and 9 of Figures 5.1.c-d). 
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BMP-2 a) b) 

 TL    SN     TL    SN      SN    TL    SN      TL    M        M     SN    FT    W1     W2             Eluted                M    

     1      2        3      4      5        6       7      8        9            10    11      12     13    14       15     16       17      18      19 

 

  

IL10 c) d) 

                   M        IN         SN        SN      IN                SN      FT    W      E      M     E       W     FT     SN  

                    1         2           3          4         5                    6        7       8       9     10     11     12    13      14  

 

  

Figure 5.1. Evaluation of BMP-2 and IL-10 proteins solubility in small-scale cultures. 

(a) Comparison of total cell extract and soluble fraction of the E. coli harboring 

pETM11BMP-2, pETMFh8BMP-2 and corresponding pETM11 and pETMFh8 empty 

plasmids. (b) Ni-NTA pool downs of Fh8BMP-2. (c) Comparison of insoluble and 

soluble fractions of the E. coli harboring pETM11IL-10 and pETMFh8IL-10. (d) Ni-

NTA pool downs of IL-10 and Fh8IL-10. TL – total lysate fraction (cell extract); SN – 

supernatant (soluble) sample; IN – insoluble sample; FT – flow-through sample; W, W1 

and W2 – washing samples; E and Eluted – Eluted samples from Ni-NTA pool downs. 

M – PageRuler broad unstained protein marker (Thermo Scientific). 

 

 

5.3.2. Fh8BMP-2 and Fh8IL-10 proteins purification 

E. coli 500 mL cultures producing soluble Fh8BMP-2 and Fh8IL-10 fusion proteins 

were further purified by nickel affinity chromatography (IMAC, Figure 5.2), and by 

hydrophobic interaction through the Fh8 tag (Fh8-HIC, Figure 5.3).  
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As observed in Figure 5.2, identical results were obtained for the two recombinant 

proteins: Fh8BMP-2 or Fh8IL-10 supernatant fractions loaded onto the nickel column 

(lane 1 – Figure 5.2.a, and lane 2 – Figure 5.2.b) were mainly collected at the flow-

through (lane 2 – Figure 5.2.a, and lane 3 – Figure 5.2.b) and washing (lanes 3 and 4 – 

Figure 5.2.a, and lanes 4 and 5 – Figure 5.2.b) samples, presenting low affinity for the 

nickel resin. This weak interaction revealed a low protein amount in the eluted samples, 

as observed in lanes 6-11 and 7-9 of Fh8BMP-2 and Fh8IL-10, respectively. Several 

optimizations of the IMAC protocol were conducted to improve the Fh8BMP-2 and 

Fh8IL-10 purification by testing different imidazole concentrations and buffer 

compositions, but no positive results were obtained (data not shown). 

 

a) Fh8BMP-2 b) Fh8IL-10 

   SN  FT   W1  W2    M                      Eluted                    TL      SN       FT      W1      W2    M           Eluted     

    1     2     3      4      5       6        7      8       9      10       11       1        2         3         4         5       6         7        8        9       

  

Figure 5.2. Fusion protein purification from the E. coli extract of a 500 mL culture by 

IMAC: (a) Fh8BMP-2 purification. (b) Fh8IL-10 purification. In both SDS-PAGE: SN 

– supernatant samples, FT – flow-through samples, W1 and W2 – washing samples, 

Eluted – eluted samples, M – PageRuler broad unstained protein marker (Thermo 

Scientific). 

 

 

Taking into account the low purification efficiency achieved with nickel affinity, a 

novel strategy for Fh8BMP-2 and Fh8IL-10 proteins purification was performed, using 

the Fh8 tag as purification handle via HIC. When purified by this methodology, both 

fusion proteins interacted with the hydrophobic resin, presenting higher protein amounts 

in the eluted samples than by IMAC (Figure 5.3).  
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a) Fh8BMP-2 b) Anti-BMP-2 

      M     TL     SN     FT     W1                                    Eluted                             M             E           SN        M’ 

      1       2        3        4        5           6       7      8     9      10    11    12   13    14      15             16           17        18 

    

c) Fh8IL-10 d) Anti-IL-10 

TL    SN     FT   W1    M  W2        Eluted                  M’       SN         E 

1       2       3      4     5      6      7     8     9      10              11        12       13 

  

Figure 5.3. Fusion protein purification from the E. coli extract of a 500 mL culture by 

Fh8-HIC: (a) Fh8BMP-2 purification. (b) Western blot detection of supernatant sample 

of Fh8BMP-2. (c) Fh8IL-10 purification. (d) Western blot detection of supernatant 

sample of Fh8BMP-2. In all SDS-PAGE: TL – total lysate samples diluted 1:2, SN – 

supernatant samples diluted 1:2, FT – flow-through samples diluted 1:2, W1 and W2 – 

washing samples diluted 1:2, Eluted – eluted samples. M – PageRuler broad unstained 

protein marker (Thermo Scientific). M’ – Precision Plus Protein Kaleidoscope standards 

(Bio Rad).  

 

In the Fh8-HIC purification of Fh8BMP-2 protein (Figure 5.3.a), two gel bands of 

approximately 25 and 50 kDa were observed in the supernatant (lane 3), flow-through 

(lane 4) and washing (lane 5) samples. The Fh8BMP-2 eluted samples presented only 

the gel band of 25 kDa together with some protein contaminants from the E. coli extract 

(lanes 6-14, Figure 5.3.a).  
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The soluble Fh8BMP-2 loaded onto the HIC column was identified by Western blot but 

the purified fusion protein was, however, not detected (Figure 5.3.b). This soluble 

fusion protein was recovered with a final production yield of 31 mg per litre of E. coli 

culture. Eluted samples from lanes 6, 7 and 8 were purified further by a second Fh8-

HIC methodology, improving the purity level (ratio between Fh8BMP-2 and other 

contaminants) of the obtained Fh8BMP-2 (data not shown). 

The supernatant fraction of Fh8IL-10 protein for Fh8-HIC purification (lane 2, Figure 

5.3.c) presented two gel bands of approximately 29 and 60 kDa that were detected by 

Western blot (Figure 5.3.d). The gel band of 60 kDa was mainly observed in the eluted 

Fh8IL-10 together with some protein contaminants from the E. coli extract (lanes 7-10, 

Figure 5.3.c). The eluted Fh8IL-10 was not identified by Western blot (Figure 5.3.d)  

The soluble Fh8IL-10 was recovered from the HIC resin with a final production yield 

of, approximately, 6 mg per litre of E. coli culture.  

 

 

5.3.3. Biophysicial characterization 

The hydrodynamic radius of Fh8BMP-2 and Fh8IL-10 fusion proteins purified by 

Fh8/HIC and subsequent estimation of the molecular weight showed an oligomerization 

tendency of both fusion proteins. The Fh8BMP-2 resulted in a hydrodynamic radius of 

3.43±0.0924 nm, corresponding to a globular protein of 60 kDa. As Fh8BMP-2 presents 

a molecular weight of 25 kDa in SDS-PAGE gel, the estimated molecular weight 

obtained in DLS analysis could correspond to a dimer of the Fh8BMP-2 molecule. The 

hydrodynamic radius measured in the Fh8IL-10 was 7.93±1.09 nm, estimating a 

globular protein with a molecular weight of 423 kDa. This molecular weight shows a 

high oligomerization state of Fh8IL-10.  

Figure 5.4 presents the secondary structure analysis of both Fh8BMP-2 and Fh8IL-10 

fusion proteins. The spectrum of Fh8BMP-2 exhibited one minimum at 213 nm, 

resembling the shape of a β-sheet predominant structure. The spectrum of Fh8IL-10 

shows two minima at 209 and 219 nm, revealing a mainly alpha helical structure.  
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Fh8BMP-2 

 

Fh8IL-10 

 

Figure 5.4. Secondary structure analysis by circular dichroism: spectra were measured 

between 190 and 260 nm, at 20 ºC, in a J-815 circular dichroism spectropolarimeter 

(Jasco), as described in the Material and Methods section. 

 

 

5.3.4. Fh8BMP-2 bioactivity: evaluation of C2C12 myoblasts cells differentiation 

into osteoblasts  

The alkaline phosphatase protein is a marker enzyme frequently used to measure the 

differentiation of diverse cells into osteoblasts (Zhang et al., 2010), and the C2C12 

myoblast cells have been used in several differentiation studies with recombinant BMP-

2 produced in E. coli (Bessa et al., 2008c; Ihm et al., 2008; Sharapova et al., 2010; von 

Einem et al., 2010).  
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Several in vitro experiments were performed to conclude about Fh8BMP-2 activity, 

testing different culture volumes, well-plates and protein amounts, but the same result 

was obtained for all the trials: the Fh8BMP-2 recombinant protein did not promote 

C2C12 cells for differentiation into osteoblasts, as observed by the low levels of 

alkaline phosphatase (ALP) per µg of Fh8BMP-2 protein (Figure 5.5.a, RFU – relative 

fluorescence units), and identical morphology of C2C12 cells cultured with or without 

Fh8BMP-2 fusion protein (Figure 5.5.b).  

a) 

 

b)                    DMEM                                    PBS 1x                                          1 µg 

 

                      2 µg                                        5 µg                                            10 µg 

 

 
 

Figure 5.5. Biological activity of Fh8BMP-2. (a) Alkaline phosphatase (ALP) activity 

in C2C12 cells. (b) Comparison of C2C12 cell culture morphology between control 

wells (DMEM and PBS 1x), and Fh8BMP-2 wells, in which 1, 2, 5 and 10 µg of the 

purified fusion protein were added. Cell cultures were observed with 10x amplification 

in an Olympus BX51 microscope.  
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5.3.5. Fh8 tag removal and purification of cleaved BMP-2 

Taking into account bioactivity results, the removal of Fh8 tag from the fusion protein 

was attempted using the TEV protease, which was placed between the fusion tag and 

the target proteins (Chapter 2) (Costa et al., 2012). An initial optimization of the 

cleavage buffer and protease concentration was performed (Figure 5.6.a), resulting in 

the selection of a TEV dilution of 1:20, and 50 mM Tris pH 8.0, 150 mM NaCl, 1 mM 

EDTA buffer supplemented with 0.1% Tween 20 (buffer C). Even using these 

optimized conditions, the BMP-2 protein was removed from the fusion protein with low 

cleavage efficiency, as observed in Figure 5.6.b and 5.6.c. 

In the IMAC purification (Figure 5.6.b), the BMP-2 cleaved protein was expected to be 

collected in the flow-through and washing samples, and the Fh8 tag and TEV protease 

were expected to be collected in the eluted samples. However, as observed in this 

figure, the flow-through contained the Fh8 tag, and washing samples contained both 

cleaved BMP-2 and Fh8BMP-2 proteins, resulting in a recovery of the cleaved protein 

of 18% and 20% in the washing samples (W1 and W2, estimated by densitometry in the 

Image Lab 2.0 software (Bio Rad), using the Molecular Imager Chemidoc XRS+ 

system (Bio Rad)).  

The IEX purification was attempted to further purify the cleaved BMP-2 (Figure 5.6.c). 

As observed in this figure, the cleaved BMP-2 was not collected pure in the eluted 

sample 2 (E2), representing 42% of the total eluted content (estimated by densitometry). 

Taking into account that no pure BMP-2 was obtained after Fh8 tag removal, the 

bioactivity assay of cleaved BMP-2 was no longer conducted.  
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a) Small-scale screening 

TEV dilued 1:10 TEV diluted 1:20 TEV diluted 1:50 

      M     A      A@      B     B@     C    C@     M     A       A@     B       B@    C     C@      A       A@     B      B@     C     C@    M 

   

b) IMAC c) IEX 

                             M       L        FT      W1    W2      E                              M        L       FT     E1     E2     E3 

  

Figure 5.6. Tag removal from the Fh8BMP-2 fusion protein. (a) Small-scale screening 

of Fh8 tag removal using different TEV concentrations and buffers (see Material and 

Methods section). (b) IMAC purification of the cleaved BMP-2 protein. (c) IEX 

purification of the washing samples from IMAC purification. In all SDS-PAGE: M - 

PageRuler broad unstained protein marker (Thermo Scientific). A, B and C – TEV 

digested Fh8BMP-2 using different buffers, as referred in Material and Methods 

section. A@, B@ and C@ – Digested Fh8BMP-2 after centrifugation. L – loaded 

sample onto the IMAC or IEX column. FT – flow-through sample. W1 and W2 – 

washing samples 1 and 2. E, E1, E2, E3 – Eluted samples.  
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5.4. Discussion 

 

A novel strategy for the E. coli soluble production of BMP-2 and IL-10 recombinant 

proteins is presented in this work, using the Fh8 tag as solubility enhancer partner 

(Chapter 2) (Costa et al., 2012) and purification handle (Chapter 4). The difficulty in 

expressing BMP-2 and IL-10 as soluble proteins in E. coli is easily recognized by the 

several reports describing the optimization of inclusion bodies solubilisation and 

renaturation procedures (Bessa et al., 2008c; Klompus et al., 2008; Carvalho et al., 

2010; von Einem et al., 2010; Zhang et al., 2010; Zhang et al., 2011), and by the lack in 

literature of reports describing BMP-2 and IL-10 soluble production using native 

conditions (Ihm et al., 2008).  

In this work, the solubility evaluation of both Fh8BMP-2 and Fh8IL-10 fusion proteins 

was conducted in two steps: a first small-scale screening, in which the Fh8-tagged 

BMP-2 and IL-10 proteins were compared to the corresponding His-tagged proteins 

using Ni-NTA pool downs, and a scale-up production, in which two purification 

methodologies – the IMAC and Fh8-HIC – were tested, using the Fh8BMP-2 and 

Fh8IL-10 fusion proteins. 

The direct solubility comparison of BMP-2 and IL-10 proteins fused to the Fh8 tag and 

fused to the His6 tag revealed that these proteins were only soluble expressed when the 

Fh8 tag was present. The soluble expression of Fh8BMP-2 and Fh8IL-10 was also 

confirmed by immunodetection, revealing a monomer molecular weight for Fh8BMP-2 

and a monomer and dimer molecular weights for Fh8IL-10. 

Fh8BMP-2 and Fh8IL-10 fusion proteins were soluble expressed in the E. coli BL21 

(DE3) Codon Plus-RIL after an o/n induction at 18 ºC. This strain and this induction 

condition were selected among other strains and temperatures, in an initial comparison 

screening. Apart from the major contribution of Fh8 tag as solubility enhancer, the 

initial optimization of host cell and induction condition was also important for the 

soluble expression of BMP-2 and IL-10 fusion proteins in E. coli. In fact, as reported in 

other works (Dyson et al., 2004; Makino et al., 2011; Vernet et al., 2011; Pacheco et al., 

2012), the selection of E. coli strains engineered with extra copies of rare codons, like 

the BL21 Codon Plus-RIL, together with a lower induction temperature may improve 
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the translation efficiency and the correct folding of target proteins that are known to be 

difficult to express in the bacterial host, like BMP-2 and IL-10.   

The lower total expression levels observed in total lysate and insoluble fractions of 

Fh8BMP-2 and Fh8IL-10 fusion proteins, respectively, indicate a reduced expression 

rate of Fh8-fused BMP-2 and IL-10 proteins compared to His6-tagged BMP-2 and IL-10 

proteins. This lower expression was also observed in previous work (Chapter 2) (Costa 

et al., 2012) and it may contribute to the solubility shift promoted by Fh8 tag, opposing 

the insolubility of His6-tagged BMP-2 and IL-10 proteins. 

The inability to purify Fh8BMP-2 and Fh8IL-10 fusion proteins by nickel affinity via 

the His6 tag at scale-up led to the hypothesis that some steric hindrance exists in the 

structure of both fusion proteins, occluding the exposure of the His6 tail. Here, the Fh8 

partner presented the additional advantage of acting as a purification handle as well. 

Both Fh8BMP-2 and Fh8IL-10 fusion proteins were successfully purified by Fh8-HIC 

methodology, presenting an organized secondary structure similar to the human BMP-2 

and IL-10 previously reported structures (Zdanov et al., 1995; Scheufler et al., 1999; 

Hillger et al., 2005; Carvalho et al., 2010; Gilde et al., 2012).  These results supported 

the Fh8 utility as an efficient affinity tag described in Chapter 4. The estimation of 

Fh8BMP-2 and Fh8IL-10 molecular weights, by measuring their hydrodynamic radius, 

corroborated the existence of dimer and oligomer forms for both fusion proteins. 

The lack of immunodetection in the eluted Fh8BMP-2 and Fh8IL-10 samples was, 

however, unexpected, and it may indeed be a consequence of the higher oligomerization 

state of fusion proteins after passing through the HIC column. Previous studies (Fraga et 

al., 2010) demonstrated that the Fh8 molecule has a large solvent-exposed hydrophobic 

region and, it also undergoes conformational changes in the presence of calcium, 

promoting Fh8 interaction with other targets. So, the soluble Fh8BMP-2 and Fh8IL-10 

loaded onto the HIC resin may already present an oligomerized form, but the structure 

of the fusion proteins at this stage is still exposing the specific epitopes for anti-BMP-2 

or anti-IL-10 detection.  

As the binding and washing of the HIC column was conducted in the presence of 

calcium, similar to the Fh8 molecule alone (Chapter 4), Fh8BMP-2 and Fh8IL-10 

molecules will probably hold the calcium ions trapped into their structure during all 

purification steps, including the elution step. This contact with calcium may increase the 

availability for interaction, leading to a higher oligomerization state of both Fh8BMP-2 
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and Fh8IL-10 proteins. Moreover, the alkaline pH of elution buffer (pH 10) may be 

favoring the formation of disulfide bridges, as previously described in other works 

(Vallejo and Rinas, 2004b; Bessa et al., 2008c). All of these together can direct the both 

fusion proteins to a tridimensional structure that may not favor the exposure of specific 

epitopes for anti-BMP-2 or anti-IL-10 detection.   

Unfortunately, the Fh8BMP-2 fusion protein did not promote the C2C12 cell 

differentiation into osteoblasts. Native BMP-2 is only biologically active in its 

homodimeric form, which is stabilized by the cystine knot between the two monomers 

(Scheufler et al., 1999). Hence, the formation of disulfide bonds is essential to the 

native and recombinant BMP-2 activity, as demonstrated by other works (Vallejo et al., 

2002; Long et al., 2006; Ihm et al., 2008; Sharapova et al., 2010). Even when the 

protein is soluble, correct disulfide bridges must occur to obtain a natively folded BMP-

2 (von Einem et al., 2010).  

In spite of being directly soluble produced in the E. coli cytoplasm when fused to the 

Fh8 tag, the folded Fh8BMP-2 fusion protein is probably presenting a different 

rearrangement from that of native BMP-2, since proper disulfide bridges may not occur 

in the cytoplasm environment. In addition, the estimated dimers of this fusion protein 

may mostly result from the Fh8 oligomerization rather than the natively folded BMP-2.  

Difficulties found in Fh8 removal from the Fh8BMP-2 fusion corroborated the steric 

hindrance suggested by the unsuccessful IMAC purification of this fusion protein.  

 

 

5.5. Conclusion 

 

A novel strategy for the production of soluble BMP-2 and IL-10 recombinant proteins 

was successfully established in this work. By taking advantage of the Fh8 tag solubility 

enhancing and purification properties, both BMP-2 and IL-10 proteins were highly 

soluble produced in E. coli as fusion proteins, without using any solubilization and 

renaturation procedures.  
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Fh8BMP-2 and Fh8IL-10 fusion proteins presented ordered secondary structures, and 

they were produced in monomer, dimer and oligomer forms that are essential for their 

biological activity.  

All together, this work demonstrated for the first time a simple, cost-effective and 

directly soluble production of BMP-2 and IL-10 as fusion proteins in E. coli. However, 

some issues with the immunodetection of purified proteins, the biological inactivity of 

Fh8BMP-2 and difficulties in the tag removal suggest a structural complexity of the 

soluble Fh8-fused proteins that must be circumvented.    
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Chapter 6 

Characterization of two novel Fh8 variants and evaluation of the 

mutation effects on Fh8 tag oligomerization and solubility enhancer 

activity 

 

 

Abstract 

The solubility enhancer and purification handle Fh8 tag is a Ca
2+

-sensor protein that undergoes 

conformational changes upon calcium binding, exposing a large hydrophobic region for target 

interaction. The only cysteine residue of Fh8 sequence is solvent-exposed, becoming available 

for oxidation by covalent binding to other molecules. Both these features were previously 

suggested to be involved in the Fh8 oligomerization activity. Hence, two novel mutant Fh8 tags, 

Cys36Ala and Cys36Tyr mutants, were developed in this work, and characterized biophysically 

to evaluate the role of the cysteine residue in Fh8 oligomerization and to study the effect of the 

mutations on the Fh8 tag properties as solubility enhancer. The novel mutant Fh8 tags were 

fused to frutalin and 12-kDa Cryptosporidium parvum oocyst wall proteins, and Fh8Cys, 

Fh8Ala and Fh8Tyr fusion proteins were analyzed and compared in the presence and absence of 

calcium, and upon tag removal. 

Fh8Ala or Fh8Tyr fusion proteins presented a reduced calcium-dependent conformational 

change, and less oligomer forms than those proteins fused to the wild type Fh8 tag, thus, 

suggesting an important role of the cysteine residue in Fh8 oligomerization. Since Fh8 mutant-

fused proteins and corresponding cleaved proteins presented identical solubility and secondary 

structure as the Fh8-fused and corresponding cleaved ones, they are reported in this work to be 

structurally advantageous tags over Fh8Cys. 
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6.1. Introduction 

 

The Fh8 fusion partner is a novel solubility enhancer tag that stands among the well-

described best fusion partners, MBP, NusA, and Trx for the improvement of protein 

solubility in Escherichia coli (Chapter 2) (Costa et al., 2012). This fusion tag is also a 

promising purification handle for target protein recovery, owning to its calcium-binding 

properties via hydrophobic interaction chromatography (Chapter 4).  

Before being applied as a fusion tag, the Fh8 protein was primarily identified as an 8-

kDa calcium-binding recombinant protein (GenBank ID AF213970) extracted from the 

parasite Fasciola hepatica with great potential for the diagnosis of parasite infections, 

and consequent vaccine and drug development (Silva et al., 2004).  

Calcium-binding proteins (CaBPs) are usually grouped between Ca
2+

-sensors, which 

transduce calcium signals and display calcium-dependent conformational changes, and 

Ca
2+

-buffers that modulate the shape and duration of calcium signals, undergoing 

minimal structural changes upon calcium binding (Lewit-Bentley and Rety, 2000; 

Bhattacharya et al., 2004; Gifford et al., 2007; Chazin, 2011).  

Biochemical and structural characterization of Fh8 from F. hepatica revealed structural 

similarities with calmodulin (CaM) and troponin C (TnC) that are representative 

proteins of the Ca
2+

-sensor group of CaBPs, and thus led to Fh8 classification as a Ca
2+

-

sensor protein (Castro, 2001; Fraga et al., 2010). Fh8 is structurally organized into two 

helix-loop-helix EF-hand motifs, which are involved in calcium coordination. The two 

EF-hands are covalently bound by a linker between the exit helix of EF-1 and the 

entering helix of EF-2, and their stability is maintained by an antiparallel β-sheet 

formed by two stretches of the calcium binding loops (Fraga et al., 2010).  

In the absence of calcium, the Fh8 molecule presents already a large hydrophobic region 

that acts as a target-binding surface. When calcium is present, Fh8 switches from a 

closed to an open conformation, reorienting the four helices, and exposing a larger 

hydrophobic region. The Fh8 protein forms dimers in this loaded state, being found in 

monomer form in the apo-state.  



Two novel Fh8 mutant tags | Chapter 6 

 

Costa, S. J. | 2013 170 

The only cysteine residue of Fh8 sequence was located on protein surface, and due to its 

location and consequent availability for oxidation by covalent binding to other 

molecules, it was suggested to be involved in Fh8 dimerization (Fraga et al., 2010).  

Previous studies of the Fh8 protein by directed mutagenesis in the cysteine residue 

(conducted by the research team at the National Health Institute Doutor Ricardo Jorge) 

highlighted an additional contribution of calcium ions in the Fh8 dimerization, and 

revealed a key role of the cysteine residue in the Fh8 stability. 

Consistent with these observations/hypotheses, and taking into account the utility of 

Fh8 molecule as fusion tag, we propose here two novel variant Fh8 tags, the Fh8Ala and 

Fh8Tyr mutants, to decrease the oligomerization state of the Fh8Cys wild type tag, and 

to understand further the contribution of the cysteine residue in calcium-binding activity 

and solubility of the Fh8 fusion proteins. 

The wild type and mutant Fh8 molecules are studied as fusion tags in Escherichia coli 

and biophysically characterized in the presence and absence of calcium, using Frutalin 

(FTL), an α-D-galactose binding lectin from the plant seed Artocarpus incisa (Oliveira 

et al., 2009), and 12-kDa Cryptosporidium parvum oocyst wall protein (CP12) (Yao et 

al., 2007) as target fusion proteins.  

 

 

6.2. Material and Methods 

 

6.2.1. General  

Cloning PCRs used the Phusion High-Fidelity DNA Polymerase (New England 

Biolabs) with an annealing temperature of 55 ºC, according to the manufacturer’s 

instructions. Colony PCRs were conducted using the NZYTaq DNA polymerase 

(Nzytech) with an annealing temperature of 55 ºC and with the T7 forward and reverse 

universal primers. Plasmid DNA extractions were performed using the PlasmidPure™ 

Miniprep Kit (Sigma) and the QIAquick DNA gel extraction kit or QIAquick PCR 

purification kit (Qiagen) were used for DNA purification. XbaI, NcoI and XhoI 

restriction enzymes were from New England Biolabs. All the DNA ligations were 

carried out with the Rapid DNA Ligation kit (Roche).  
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For plasmid maintenance and protein expression, different antibiotics (diluted 1000x) 

were used depending on the strain and plasmid requirements. Antibiotic stock solutions 

were prepared, filtered through 0.2 µm and stored at -20 ºC in the following 

concentrations: kanamycin 50 mg.mL
-1

, and chloramphenicol 10 mg.mL
-1

.  

 

6.2.2. Construction of pETMFh8 Ala and Tyr mutant vectors 

Fh8Ala and Fh8Tyr mutants were obtained from the modification of the Cys36 residue 

from Fh8 tag sequence into Ala36 and Tyr36, respectively (see Appendix 6.7.1, Figure 

A6.1). 

Specific primers were design to insert the Ala or the Tyr point mutation into the 

previously constructed pETMFh8 tag vector (Chapter 2) (Costa et al., 2012), conducting 

three PCR as follows: PCR-I used the T7 forward universal primer and the Fh8 mutant 

(Fh8Ala or Fh8Tyr) reverse primer (Table 6.1) to modify and amplify the initial part of 

the Fh8 tag sequence containing the Cys36 residue; in PCR-II the Fh8 mutant (Fh8Ala 

or Fh8Tyr) forward primer (Table 6.1) and the T7 reverse universal primer were used to 

modify and amplify the final part of the Fh8 tag sequence containing the Cys36 residue. 

The Fh8 mutant forward and reverse primers were designed to have 13 nucleotides in 

common that will be essential in PCR-III for the amplification of the complete sequence 

of Fh8Ala/Tyr mutants using the T7 forward and reverse universal primers (Table 6.1). 

Final PCR products contained the His6 tag/Fh8 mutant tag/TEV site sequence/Multiple 

cloning site to be inserted into the pETMFh8 tag vector. The pETMFh8Ala and 

pETMFh8Tyr plasmids were obtained by the ligation between the XbaI-XhoI digested 

purified PCR-III products and pETMFh8 plasmid.  

E. coli DH5α competent cells were transformed with the constructed pETMFh8Ala/Tyr 

mutant plasmids and the resulting clones were analyzed by colony PCR. The novel 

pETMFh8Ala and pETMFh8Tyr fusion vectors were confirmed by sequencing with 

both T7 forward and reverse universal primers.  

  

6.2.3. Cloning of frutalin and cp12 target genes into new mutant vectors  

The target genes used in this work were previously cloned into the pETMFh8 vector 

(Chapter 2) (Costa et al., 2012). The frutalin gene (ftl) was cloned into the novel mutant 

vectors by DNA ligation of NcoI-XhoI digested ftl from pETMFh8FTL minipreps and 
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NcoI-XhoI digested pETMFh8Ala/Tyr mutant plasmids. The cp12 gene was cloned into 

the novel mutant vectors using an identical strategy as shown in Table 6.1. By using the 

pETMFh8CP12 plasmid as template, the Ala or Tyr point mutations were obtained by 

three PCR using the same primers designed for the construction of the mutant vectors. 

The final pETMFh8AlaCP12 and pETMFh8TyrCP12 plasmids were obtained by the 

ligation between the XbaI-XhoI digested purified PCR-III products and pETMFh8 

plasmid.  

E. coli DH5α competent cells were transformed with the constructed plasmids and the 

resulting clones were analyzed and confirmed as previously mentioned.  

 

Table 6.1. List of primers used for the cloning of Fh8 mutants and target proteins: 

PCR Primer Sequence Comments 

I 

T7_FWD 5'-TAATACGACTCACTATAGGG-3' - 

Fh8Ala_RV 5´-TTGGAGTCCAGAGGAGCTTTTG– 3’ 

The modified codon 

[TGT(Cys)GCT(Ala)] is in bold 

and mutated nucleotides are 

underlined. The forward and 

reverse primer matching 

nucleotides are in italic. 

Fh8Tyr_RV 5´-TTGGAGTCCAGAGGGTATTTTG– 3’ 

The modified codon 

[TGT(Cys)TAC(Tyr)] is in bold 

and mutated nucleotides are 

underlined. The forward and 

reverse primer matching 

nucleotides are in italic. 

II 

Fh8Ala_FWD 5´- GCTGATGATTCAAAAGCTCCTCT-3´ 
See the above comment for 

Fh8Ala-RV 

Fh8Tyr_FWD 5´- GCTGATGATTCAAAATACCCTCT-3´ 
See the above comment for 

Fh8Tyr-RV 

T7_RV 5'-GCTAGTTATTGCTCAGCGG-3' - 

III 
T7_FWD as above 

 
T7_RV as above 
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6.2.4. Protein expression and purification 

Fh8Cys/Ala/Tyr fusion proteins were expressed in 3 L cultures (6x500 mL in 2 L 

flasks), using E. coli BL21 (DE3) Codon Plus-RIL strain for CP12s expression and E. 

coli Roseta (DE3) for FTLs expression. Cell growth, induction, and harvesting were 

conducted using an identical protocol as previously described for the Fh8CysFTL or 

CP12 fusion proteins (Chapter 2) (Costa et al., 2012) with the following additional step: 

after induction, three 5 mL samples were taken from each culture for dry weight 

estimation and the remaining cells were harvested for 25 minutes, at 4 ºC and 4000 rpm. 

For cell lyses, bacterial pellets were resuspended in 60 mL of lysis buffer (50 mM Tris 

pH 8.0, 150 mM NaCl, 20 mM imidazole, supplemented with 1x complete free EDTA 

protease inhibitor (Roche), 5 mM MgCl (Sigma), 5 µg.mL
-1

 DNAse (Sigma) and 1 

mg.mL
-1 

lysozyme (Sigma)), and incubated at room temperature for 10 minutes with 

agitation. The cell suspension was lysed by sonication (Branson 450 Sonifier) and the 

supernatant fraction was collected at 10000 rpm, 4 ºC for 25 minutes. Total lysate and 

supernatant aliquots were taken and stored at 4 ºC.  

A 5 mL prepacked Histrap HP column (GE Healthcare) was used for protein 

purification. Supernatant fractions were filtered through 0.45 µm and loaded onto the 

Histrap column. The purification protocol followed the manufacturer’s instructions, 

using the following buffers: binding and washing buffers (50 mM Tris pH 8.0, 150 mM 

NaCl, 20 mM Imidazole), and elution buffer (50 mM Tris pH 8.0, 150 mM NaCl, 300 

mM Imidazole). Columns regeneration and storage was also performed according to the 

manufacturer’s instructions.  

The flow-through, washing and eluted samples were stored at 4 ºC and analysed by 

SDS-PAGE. The eluted samples were pooled together and divided either for dialysis 

with storage buffer (50 mM Tris pH 8.0, 150 mM NaCl) at 4 ºC, o/n or for dialysis with 

binding buffer combined with HisTEV (EMBL) digestion. The cleaved CP12 and 

Frutalin fusion proteins were purified from the corresponding Fh8 tags and the HisTEV 

protease by nickel affinity chromatography using the same protocol as above. The 

purified cleaved proteins were further dialyzed with storage buffer at 4 ºC, o/n.  

All the fusion proteins and cleaved proteins were analyzed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and quantified by Bradford assay and 
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by absorbance at 280 nm. Protein stocks of 0.5-1 mg.mL
-1

 were filtered through 0.22 

µm and stored at -20 ºC for subsequent functional and structural analyses.  

 

6.2.5. Western blot 

Purified samples of FTL and CP12 fusion proteins were transferred to nitrocellulose 

membranes using a sandwich system. The Western blotting analysis was conducted 

with the polyclonal mouse antibodies anti-FTL and anti-CP12 diluted 1:1000 as primary 

antibodies, and anti-mouse IgG HRP (Biorad) diluted 1:1000 together with protein G 

HRP (Biorad) diluted 1:2000 as conjugates. Polyclonal antibodies anti-FTL and anti-

CP12 were produced using the H partner methodology described in Chapter 3. The 

substrate 4-chloro-naftol (Sigma) was used for membrane revelation.  

 

6.2.6. Analytical size exclusion and DLS 

Analytical size exclusion of Fh8Cys/Ala/Tyr-tagged FTL and CP12 proteins and 

corresponding cleaved proteins was carried out in a Superose 12, 10/300 GL column 

(GE Healthcare) using the running buffer: 50 mM Tris pH 8.0, 150 mM NaCl, and 100 

µg in 200 µL of each protein. Ribonuclease A (1.64 nm and 13.7 kDa), chymosin (2.09 

nm and 25 kDa), ovalbumin (3.05 nm and 43 kDa), bovine serum albumin (3.55 nm and 

67 kDa), aldolase (4.81 nm and 158 kDa), and catalase (5.22 nm and 232 kDa) were 

also analyzed in the Superose 12 column to be further used as standard proteins for 

calibration of size exclusion analyses.  

The size calibration curve (see Appendix 6.7.2, Figure A6.2.a) was obtained by plotting 

each standard protein value of  –           versus the corresponding Stoke radius (in 

nm). The Kav indicates the ratio between the elution volume of a given molecule and the 

total available volume of the column, and can be determined by the following equation: 

    
     

     
, where Ve is the elution volume, Vo is the void volume and Vt is the total 

column volume.  

The molecular weight calibration curve (see Appendix 6.7.2, Figure A6.2.b) was 

obtained by plotting the Kav versus Log MW.  

The elution volume of each fusion and cleaved proteins was used for the estimation of 

size and molecular weight, using the above-mentioned calibration curves. 
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DLS measurements were conducted in Malvern Zetasizer Nano ZS using a protein 

concentration of 0.5 mg.mL
-1

, previously filtered through 0.2 µm.  

In both size exclusion and DLS experiments, Fh8Cys/Ala/Tyr-tagged FTL and CP12 

samples were incubated in running buffer supplemented with 1 mM EDTA or 5 mM 

CaCl2, at 4 ºC, overnight. Cleaved proteins were incubated in running buffer 

supplemented with 1 mM EDTA.  

 

 

6.2.7. Frutalin functional assay 

The hemagglutination assay of Fh8Cys/Ala/Tyr-tagged FTL proteins and corresponding 

cleaved FTL proteins was conducted as described elsewhere (Oliveira et al., 2009), 

using a initial protein concentration of 0.1 mg.mL
-1

 in storage buffer. The 

hemagglutination activity of fusion proteins and corresponding cleaved proteins was 

also evaluated in storage buffer supplemented with 5 mM CaCl2 or 1 mM EDTA 

(proteins were incubated at 4 ºC, overnight, in this buffer prior to the analysis). 

Negative and positive controls were also performed with the Fh8 tag alone and with 

native Frutalin, respectively. 

 

6.2.8. CD spectroscopy 

The Fh8Cys/Ala/Tyr-tagged FTL and CP12 proteins as well as their corresponding 

cleaved proteins were further analyzed concerning its secondary structure. The circular 

dichroism (CD) spectra of purified recombinant proteins (20 µg per protein in 10 mM 

sodium phosphate buffer, pH 8.0) were collected with a 1 mm path length cuvette, 

between 190 and 260 nm, set up to 1 nm band width, continuous scan mode at 200 

nm/min. The presented spectra are the average of 3 scans with the average buffer 

control spectrum subtracted. Spectra were acquired in a J-815 circular dichroism 

spectropolarimeter (Jasco), at 20 ºC.  

The results are expressed in terms of molar ellipticity (mean residue ellipticity, θ) in 

deg.cm
2
.dmol

-1
, according to the equation:     

     

           
, where θobs is the observed 

ellipticity in mdeg, Cr is the mean residue molar concentration (mol/L), and l is the 

cuvette path length in cm. The mean residue molar concentration is obtained as follows: 
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, where n is the number of residues of the protein, C´ is the protein 

concentration (g/mL), and MW is the protein molecular mass (g/mol). 

The spectra were deconvoluted in the Dichroweb server using the CONTIN analysis 

program and the SP175 reference dataset of proteins. 

 

6.2.9. Fluorescence spectroscopy 

The differential scanning fluorimetry (DSF) experiment was performed in 

quadruplicate, using the CFX96
TM

 Real-time PCR detection system (Biorad) and the 

Sypro Orange (Sigma) as reporter dye. Briefly, a 2.5x solution of Sypro Orange was 

added to the wells of a 96-well thin-wall PCR white plate (Biorad) together with 20 µM 

of fusion and cleaved FTL proteins, previously incubated in storage buffer in the 

presence of 1 mM EDTA or 5 mM CaCl2. Control experiments were also conducted 

using water alone, dye alone, and proteins alone. The plates were sealed with Optical-

Quality Sealing Tape (Biorad) and heated from 20 to 95 ºC with 30 seconds holding 

time every 0.5 ºC. The changes in fluorescence were collected using 545/585 nm 

wavelengths for excitation/emission, respectively.  

The fluorescence of 8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS) was 

measured in a Horiba spectramax fluorimeter using 20 µM of Fh8Cys/Ala/Tyr-fused 

proteins and 300 µM of ANS, in the presence of 1 mM EDTA or 20 mM CaCl2. 

Fluorescence emission spectra were measured in the range of 400-700 nm, with an 

excitation wavelength for ANS of 385 nm, 3 nm excitation and 5 nm emission slits, and 

an integration time of 2 seconds.  
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6.3. Results 

 

6.3.1. Novel Fh8 mutants cloning and fusion protein expression and purification 

The sequencing results of the novel Fh8 mutant plasmids showed a successful cloning 

strategy: the Fh8Ala plasmid contains a GCT (Ala) instead of TGT (Cys) at the amino 

acid position 36 and the Fh8Tyr plasmid has a TAC codon (Tyr) instead of TGT (Cys) 

at the expected position. These two novel Fh8 fusion plasmids presented 99% identity 

to the Fh8Cys sequence, as observed by the nucleotide BLAST analysis (see Appendix 

6.7.1, Figure A6.1).  

The FTL and CP12 codifying genes were also successfully cloned into the novel 

Fh8Ala/Tyr mutant vectors, presenting 95% identity with the Artocarpus integrifolia 

jacalin isolectin (GenBank: L03797.1), and 100% identity with the Cryptosporidium 

parvum Iowa II hypothetical protein (GenBank: XM625821.1), respectively. ftl and 

cp12 genes cloned into the novel pETMFh8Ala/Tyr mutant plasmids presented 100% 

identity with the same genes previously cloned into the pETMFh8 vector (Chapter 2) 

(Costa et al., 2012).  

All the Fh8 fusion proteins were soluble expressed when using either the Fh8Cys tag 

(wild type tag) or the Fh8Ala/Tyr mutant tags, but FTL recombinant proteins were 

obtained with higher purity than the CP12 recombinant proteins, as shown by the SDS-

PAGE analysis in Figure 6.1. All the fusion proteins in study were also detectable by 

anti-FTL or anti-CP12 polyclonal antibodies, as observed in the Western blot analysis 

presented in Figure 6.1. 
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Figure 6.1. SDS-PAGE (left panel) and Western blot (right panel) analyses of (a) 

Fh8FTL fusion proteins, and (b) Fh8CP12 fusion proteins, and corresponding cleaved 

proteins after tag removal using the Tobacco Etch Virus (TEV) protease. In all images, 

each Fh8-fused protein is loaded aside of the matching cleaved protein, which is 

represented by a c preceding the protein’s name. The same numbered lanes in the SDS-

PAGE and Western blot images were used for the same loaded samples. M – PageRuler 

broad unstained protein marker (Thermo Scientific). 

 

 

Frutalin recombinant proteins fused to the three Fh8 tags presented similar protein 

amounts after IMAC purification (mg of purified proteins per litre of E. coli), but some 

differences were found in the dry weight estimation of these cultures (Figure 6.2). The 

Fh8Ala/Tyr mutant FTL (Figure 6.2.a) or CP12 (Figure 6.2.b) cultures presented higher 

dry weight (g/L) than the original Fh8FTL or Fh8CP12 cultures. As the volumetric 

yields (mg of protein per litre of E. coli culture) were similar among each group of three 

fusion proteins, both Fh8FTL and Fh8CP12 presented higher final production yields 

(mg per g of dry weight of E. coli) than the corresponding mutant fusion proteins. 

 

a) 
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b) 
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a) 

   

b) 

   

Figure 6.2. Comparison of the production results of (a) Fh8FTL fusion proteins, and (b) Fh8CP12 fusion proteins. Production results are 

represented by the E. coli dry weight estimation (g of dry cell per litre of E. coli culture), the Eluted protein (volumetric yield: protein mg per 

litre of E. coli culture), and the Production yield (protein mg per gram of E. coli culture). 
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6.3.2. Size estimation of Fh8-fused and cleaved proteins: characterization of 

protein oligomerization in apo- and calcium-loaded states 

Table 6.2 summarizes the analytical size exclusion results for Fh8CP12 fusion proteins 

and corresponding cleaved proteins.   

 

Table 6.2. Stokes radius (R, in nm) and corresponding protein molecular weight (MW, 

in kDa) of Fh8CP12 and cleaved CP12 proteins, estimated by analytical size exclusion: 

Sample 
1 mM EDTA 5 mM CaCl2 

R (nm) MW (kDa) R (nm) MW (kDa) 

Fh8CP12 

3.5 68 3.2 55 

2.8 38 2.6 32 

2.1 23 1.9 18 

Fh8AlaCP12 
2.6 34 2.4 29 

1.6 15 1.7 16 

Fh8TyrCP12 
2.4 28 2.4 28 

1.5 13 1.8 17 

Cleaved CP12 (Fh8) 1.9 18 - - 

Cleaved CP12 (Fh8Ala) 1.8 17 - - 

Cleaved CP12 (Fh8Tyr) 1.8 17 - - 

 

Comparing the Stokes radius (in nm) between proteins dissolved in EDTA buffer and 

proteins dissolved in CaCl2 buffer, no considerable differences were observed among 

the three Fh8CP12 fusion proteins. 

Fh8CP12 presented three protein populations close to the expected molecular weight for 

monomer (18.5 kDa), dimer (37 kDa), and possible tetramer (74 kDa) forms. This 

tetramer form was not observed for Fh8Ala/TyrCP12 fusion proteins, which presented 

only two mainly populations close to the expected molecular weight for monomer and 

dimer forms.  

In all three fusion proteins, the dimer conformation was predominant, as observed by 

the highest peak intensity at the corresponding elution volume in size exclusion 

chromatograms (see Appendix 6.7.3, Figure A6.3).  

Cleaved CP12 proteins have an expected molecular weight of about 9 kDa and were 

collected with an elution volume matching a predominant dimer form. 
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The analytical size exclusion was also performed for Fh8FTL fusion proteins and 

corresponding cleaved proteins, but a delay in elution was observed possibly due to a 

protein interaction with the size exclusion matrix. Thus, the obtained elution volumes 

could not be used for size and molecular weight determination, and a different approach 

was further conducted.  

Figure 6.3 presents the hydrodynamic radius (comparable to Stokes radius in the 

previous analysis) of Fh8FTL fusion proteins, obtained in the DLS analysis.  

 

 

Figure 6.3. Hydrodynamic radius of the three Fh8FTL fusion proteins, measured by 

DLS. EDTA refers to proteins in the presence of 1 mM of this chelating agent. Ca2+ 

refers to proteins in the presence of 5 mM CaCl2. 

 

Here, no differences were observed for the EDTA or CaCl2 dissolved Fh8Ala/TyrFTL 

proteins, but a larger radius was obtained for Fh8FTL in the presence of calcium, 

compared to the same molecule in the presence of EDTA.  

The hydrodynamic radius of all three Fh8FTL fusion proteins (wild type and mutants) 

revealed a high oligomerization state (between 100-200 kDa), estimated using the 

Zetasizer software, and assuming the three Fh8FTL as globular proteins.  

Cleaved FTL proteins presented a hydrodynamic radius of 3.5±0.16 nm, resulting in a 

globular protein with a molecular weight of, approximately, 65 kDa. Taking into 

account the expected molecular weight (17.5 kDa), cleaved FTL proteins were possible 

obtained in the tetramer form. 
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6.3.3. Protein surface hydrophobicity in apo- and calcium-loaded states  

The hydrophobic probe ANS was used to evaluate the hydrophobic surface exposure of 

Fh8 fusion proteins, thus, verifying if the Fh8 used in the fusion context exhibited the 

Ca
2+

-sensor property previously reported for Fh8 protein alone (Fraga et al., 2010). 

Figure 6.4 presents the fluorescence measurements of the three Fh8CP12/FTL fusion 

proteins in the presence of 1 mM EDTA or 20 mM CaCl2.  

As observed in Figure 6.4.a, ANS fluorescence dramatically increased for Fh8FTL in 

the presence of calcium, when compared to the same protein in the presence of EDTA. 

The other Fh8Ala/TyrFTL fusion proteins showed little to no shift in ANS fluorescence 

between the EDTA and calcium state. 

A similar result was obtained for Fh8CP12 fusion proteins (Figure 6.4.b). Among the 

three Fh8CP12 fusion proteins, the Fh8CP12 (wild type tag) promoted the highest shift 

of ANS fluorescence in the presence of calcium, comparing to that fluorescence 

obtained in the presence of EDTA. Fh8TyrCP12 promoted a slight shift in ANS 

fluorescence when incubated with calcium, and no considerable differences in ANS 

fluorescence were observed for the Fh8AlaCP12 in the presence of calcium or EDTA. 
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a) Fh8FTL 

  

b) Fh8CP12 

  

Figure 6.4. Comparison of the hydrophobic surface exposure between Fh8Cys, Fh8Ala 

and Fh8Tyr-fused proteins, in the presence of EDTA (1 mM) or Calcium (20 mM 

CaCl2), by ANS fluorescence spectroscopy (see Material and Methods section). (a) 

Fh8FTL fusion proteins. (b) Fh8CP12 fusion proteins. In all images, Fh8 is used for 

Fh8Cys-fused proteins, λ nm refers to the wavelength in nm, and RLU refers to relative 

luminescence units, which in this case represents the counts per second (CPS) . 
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6.3.4. Biological activity and stability of FTL recombinant proteins 

Table 6.3 resumes the hemagglutination activity of the three purified Fh8FTL fusion 

proteins and corresponding cleaved proteins, presented into “hemagglutination units” 

(HU) that are equivalent to the reciprocal of the last dilution presenting clot formation, 

and into “specific activity” (µg.mL
-1

), which represents the minimal protein 

concentration required to promote visible agglutination.  

 

Table 6.3. Hemagglutination activity results of the different fusion FTL and cleaved 

FTL proteins: 

Buffer Sample HU Specific activity (ug.mL
-1

) 

50 mM Tris 

150 mM NaCl 

pH 8.0 

NC - - 

Fh8Cys, Fh8Ala, Fh8Tyr - - 

Fh8FTL 64 1.56 

Fh8AlaFTL 4 25.0 

Fh8TyrFTL 4 25.0 

cleavedFh8FTL 64 1.56 

cleavedFh8AlaFTL 4 25.0 

cleavedFh8TyrFTL 16 6.25 

50 mM Tris 

150 mM NaCl 

pH 8.0 

+ 5 mM CaCl2 

 

Fh8FTL 128 0.781 

Fh8AlaFTL 128 0.781 

Fh8TyrFTL 128 0.781 

cleavedFh8FTL 64 1.56 

cleavedFh8AlaFTL 64 1.56 

cleavedFh8TyrFTL 64 1.56 

 

 

As observed in Table 6.3, with no calcium or no EDTA addition, both Fh8FTL and 

cleaved FTL presented identical HUs and specific activity. The Fh8Ala/Tyr FTLs and 

corresponding cleaved proteins presented lower HUs than the original Fh8FTL and 

cleaved FTL proteins. Curiously, after calcium addition, all the three Fh8-fused FTL 

proteins showed identical HU and specific activity, and higher HUs than the same 

proteins without calcium. An identical result was also obtained for cleaved FTL proteins 

in the presence of calcium.  

Fusion proteins lost their agglutination activity when incubated with 1 mM EDTA.  
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In general, all three Fh8FTL fusion proteins as well as corresponding cleaved proteins 

were very stable, as determined by the DSF assay (Figure 6.5). Here, similar melting 

temperatures were obtained for proteins in the presence of EDTA or CaCl2. The three 

cleaved FTL proteins presented also identical melting temperatures (of about 59 ºC). 

Interestingly, this analysis revealed that Fh8TyrFTL was the most stable fusion protein, 

shifting to an unfolded structure only after 61 ºC.  

 

 

Figure 6.5. Thermal stability results of Fh8Cys, Fh8Ala and Fh8Tyr-fused FTL 

proteins, obtained by DSF (see Material and Methods section). EDTA refers to proteins 

in the presence of 1 mM of this chelating agent, Ca2+ refers to proteins in the presence 

of 5 mM CaCl2, and Cleaved refers to FTL proteins after tag removal using TEV 

protease. Fh8 is used for Fh8Cys-fused proteins. 

 

 

6.3.5. Secondary structure of Fh8-fused and cleaved proteins 

The analysis of secondary structure from all Fh8FTL fusion proteins (Figure 6.6.a) 

resembled a predominant β-sheet conformation with a minimum molar ellipticity at 

about 218 nm. The obtained spectra were not, however, pure β-strands, revealing a 

possible mixed helical structure for the three fusion proteins (22-35% helical, 40-48% 

β-strand). The three cleaved FTL proteins presented identical structure, mainly β-sheet, 

(8-27% helical, 42-75% β-strand) with a minimum molar ellipticity at around 219 nm, 

as observed in Figure 6.6.b.  
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All three Fh8CP12 fusion proteins (Figure 6.6.c) presented an alpha-helical structure 

(63-80% helical, 10-12% β-turn), with two minima at about 205 and 220 nm. The three 

cleaved CP12 presented the same spectra, resembling an undefined structure (random 

coil), with a minimum at around 200 nm, as observed in Figure 6.6.d. 

 

a) Fh8FTL 
b) Cleaved FTL 

  

c) Fh8CP12 
d) Cleaved CP12 

  

Figure 6.6. Secondary structures analyzed by CD of Fh8Cys, Fh8Ala and Fh8Tyr-fused 

proteins and corresponding cleaved proteins. (a) Fh8FTL fusion proteins, (b) cleaved FTL 

proteins, (c) Fh8CP12 fusion proteins, and (d) cleaved CP12 proteins. Results are presented in 

Molar Ellipticity (deg.cm
2
.dmol

-1
), calculated as mentioned at the Material and Methods section. 

In the four images, Fh8 refers to Fh8Cys-fused proteins; (Fh8), (Fh8Ala) and (Fh8Tyr) refer to 

cleaved proteins from the equivalent fusion proteins, and nm refers to the wavelength in nm. 
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6.4. Discussion 

 

Two novel variants of the solubility enhancer Fh8 tag are characterized in this work by 

performing single point mutations at the only cysteine residue of Fh8, located at 

position 36. Cys36Ala and Cys36Tyr mutants, studied here for the first time as fusion 

tags, were designed to reduce the Fh8 tag oligomerization state, and also to understand 

the cysteine role in calcium-binding activity and solubility of the Fh8 fusion proteins. 

Interesting findings of this work suggested that the Cys36 residue is, indeed, involved in 

the calcium-dependent exposure of Fh8 hydrophobic patch, as discussed below. 

Fh8Cys, Fh8Ala and Fh8Tyr mutant tags were fused to FTL and CP12 recombinant 

proteins and their structural characteristics were compared by size exclusion, DLS, ANS 

fluorescence and CD, to assess the calcium effect on the three types of fusion tags.  

In both FTL and CP12 target proteins, Fh8 mutant tags presented the solubility 

enhancer effect of the Fh8Cys wild type tag, though, yielding less protein amounts per 

gram of E. coli culture than the latter. The size characterization results obtained from 

analytical size exclusion and DLS demonstrated that Fh8 mutant-fused proteins exhibit 

less calcium-dependent shifts in molecule radius and protein aggregation than the 

Fh8Cys-fused proteins.  

Upon calcium binding, Fh8 mutant-fused proteins promoted little to no change in 

fluorescence of the hydrophobic probe ANS, differing from the Fh8Cys-fused proteins 

that presented a considerable calcium-dependent increase in ANS fluorescence, 

therefore, showing the Fh8-sensor protein behavior.  The ability to bind ANS was 

previously used in other works (Ababou and Desjarlais, 2001; Ababou et al., 2001; 

Bunick et al., 2004; Fraga et al., 2010) as a qualitative indication of the presence of an 

open-state conformation. Hence, the similar ANS fluorescence between apo-state 

(proteins in the presence of 1 mM EDTA) and loaded-state (proteins in the presence of 

20 mM CaCl2) of Fh8 mutant-fused proteins, together with their lower ANS 

fluorescence compared to that of Fh8Cys-fused proteins, suggest that Fh8Ala and 

Fh8Tyr fusion proteins may no longer be adopting the full open-state conformation. 

However, as ANS fluorescence in the presence of EDTA is similar among Fh8Cys, 

Fh8Ala and Fh8Tyr fusion proteins, these ones may already be exposing a large 
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hydrophobic surface in the apo-state, like it was reported for the Fh8 molecule (Fraga et 

al., 2010).  

Fh8FTL fusion proteins were characterized further by their ability to promote 

hemagglutination of rabbit erythrocytes, by their thermal stability and secondary 

structure. Contrary to what it was reported for native FTL (Moreira et al., 1998), the 

divalent calcium showed to have an important role in recombinant FTL biological 

activity, as the agglutination promoted by the three Fh8 fusion proteins and 

corresponding cleaved FTL proteins was completely abolished by 1 mM EDTA, a 

calcium chelating agent. Without calcium addition, the higher agglutination activity 

observed for Fh8CysFTL and for the corresponding cleaved FTL over Fh8 mutant-fused 

FTL and matching cleaved FTL proteins, can be correlated with an easier calcium 

accommodation already in the E. coli cytosol by Fh8CysFTL molecule, opposite to Fh8 

mutant-fused proteins.  

Curiously, when 5 mM CaCl2 was added, all three fusion proteins and corresponding 

cleaved FTL proteins presented identical agglutination units and specific activities, 

possible due to a saturation of the calcium-binding sites of the three Fh8 fusion proteins, 

together with a possible identical calcium-effect on cleaved FTL proteins. Actually, 

other galactose-binding proteins were already reported to require this divalent ion for its 

activity (Suzuki et al., 1990; Sampaio et al., 1998; Dutta et al., 2005). In the specific 

case of recombinant FTL, little is known about calcium influence in its activity, but the 

different final structure arrangement between native FTL, which undergoes post-

translation modifications, and recombinant FTL produced in E. coli (non-glycosylated 

protein) (Oliveira et al., 2009) may contribute for the observed calcium-effect in the 

latter protein. The addition of calcium did not considerable improve the thermal stability 

of the three Fh8FTL fusion proteins, which were already very stable without calcium.  

An important finding came out from the characterization conducted with FTL: the 

removal of Fh8 tags did not hamper FTL biological activity and stability, and the 

obtained secondary structure of cleaved proteins was similar to that reported for native 

FTL (Moreira et al., 1998; Campana et al., 2002). 

In spite of presenting little to no calcium-dependent conformational changes in contrast 

to the Fh8 fusion proteins, Cys36Ala and Cys36Tyr mutations did not modify Fh8FTL 

and Fh8CP12 secondary structures.  
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Fh8 mutant-fused proteins have also showed the presence of dimer forms, 

independently of the presence of calcium. These dimers were not unexpected, as FTL 

and CP12 target proteins exhibited oligomer forms in the unfused state, and the Fh8 

molecule was previously reported to present a large solvent-exposed hydrophobic area 

in the Ca
2+

-free state that is available for interaction with other targets (Fraga et al., 

2010). Moreover, previous studies of the Fh8 protein using identical mutations showed 

also dimer forms for Fh8Ala and Fh8Tyr proteins. 

Altogether, our results revealed that the novel Fh8 mutant tags are functional as 

solubility enhancer tags and promote less calcium-dependent protein oligomerization 

than the Fh8Cys wild type tag.  

Mutations conducted in this study corroborated the previous observations by the 

research team with Fh8 mutant proteins, and demonstrated that the Fh8 tag dimerization 

is not exclusively due to the solvent-exposed cysteine residue, but this residue is 

probably playing an important role in Fh8 calcium-dependent conformational changes 

due to its location. Cys36 is in the linker between the two EF-hands, a region that 

presents different arrangements in apo- or calcium-loaded state, becoming close to the 

hydrophobic patch in the latter state (Fraga et al., 2010).  

Besides Cys36, other key residues may be involved in Fh8 tag oligomerization, as for 

instance, residues responsible for calcium coordination in the two existent loops 

between each EF-hand helix, and polar residues located at the loop side chains. In other 

calmodulin-like proteins, these residues were determinant for calcium-induced 

conformational changes (Permyakov et al., 2000; Ababou and Desjarlais, 2001; Ababou 

et al., 2001; Bunick et al., 2004; Xiong et al., 2010).  

Results from this work suggest that the Fh8 oligomerization can be important for its 

solubility enhancing mechanism, because Fh8Ala and Fh8Tyr-fused proteins are still 

soluble produced in oligomer forms, and are probably exposing a large hydrophobic 

surface in the apo-state identical to the Fh8Cys-fused proteins. Thus, similar to what it 

was proposed for other fusion tags (Fox et al., 2001; Nallamsetty and Waugh, 2006; 

Nallamsetty and Waugh, 2007), the Fh8 tag may present an intrinsic chaperone-like 

mechanism, by which its exposed hydrophobic patches (in both apo- and calcium-

loaded states) interact with partially folded target proteins. This Fh8 hydrophobic 

interaction with target proteins can prevent their self-aggregation, and change their 

folding pathway to a soluble structure. 
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To better clarify if the oligomerization of Fh8 is essential for the solubility enhancer 

activity, and to further investigate the mechanisms behind this activity, new mutants at 

the loop residues of EF-hands and corresponding side chains should be designed and 

evaluated. 

 

 

6.5. Conclusions 

 

Two novel variants of the Fh8 solubility enhancer tag were successfully obtained in this 

work by mutation of the only cysteine residue to alanine and tyrosine.  

The new Fh8Ala and Fh8Tyr fusion tags did not completely abolished the Fh8 tag 

oligomerization, but they highlighted the importance of the cysteine residue in the 

calcium-dependent conformational change of the Fh8 tag. The two Fh8 mutant tags 

preserved the solubility enhancer activity of the wild type tag, offering less 

oligomerization and calcium-dependent conformational changes to the fusion proteins. 

Hence, both Fh8Ala and Fh8Tyr fusion tags provide less complexity to the overall 

structure of the fusion protein, and are more attractive to be used in the fusion context.   

In order to investigate further the mechanism by which the Fh8 tag promotes fusion 

protein solubility, additional mutants shall be designed to completely block the Fh8 

oligomerization and to study its consequent effect in the solubility enhancer activity. 
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6.7. Appendices 

 

6.7.1. Sequence alignment of Fh8 mutant and Fh8 wild type tags 

Fh8Ala mutant 

 

Fh8Tyr mutant 

 

Figure A6.1. Nucleotide BLAST (http://blast.ncbi.nlm.nih.gov/) of Fh8 tag sequence 

and sequenced Fh8Ala and Fh8Tyr mutants. The “subject” sequence refers to the 

Fh8Cys tag and the “query” sequence refers to the Fh8 mutant tag. In the Fh8Ala 

mutant tag sequence, the codon TGT (cys) was changed to GCT (ala). In the Fh8Tyr 

mutant tag sequence, the codon TGT (cys) was changed to TAV (tyr). Both point 

mutantions are highlighted in a red box.  

 

  



Two novel Fh8 mutant tags | Chapter 6 

 

Costa, S. J. | 2013 195 

6.7.2. Calibration curves of analytical size exclusion 

a) 

 

b) 

 

Figure A6.2. Calibration curves for size estimation using analystical size exclusion. (a) 

Calibration curve of Stokes radius. (b) Calibration curve of molecular weight. Both 

curves were obtained using the following standards: Ribonuclease A (1.64 nm and 13.7 

kDa), chymosin (2.09 nm and 25 kDa), ovalbumin (3.05 nm and 43 kDa), bovine serum 

albumin (3.55 nm and 67 kDa), aldolase (4.81 nm and 158 kDa), and catalase (5.22 nm 

and 232 kDa). 
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6.7.3. Size exclusion chromatograms 

  

 

Figure A6.3. Size exclusion chromatograms of Fh8CP12 fusion proteins in the presence 

of 1 mM  EDTA or 5 mM CaCl2, and CP12 cleaved proteins in the presence of 1 mM 

EDTA. 
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Chapter 7 

Conclusions and future perspectives 

A novel and unique fusion system for simple and inexpensive soluble protein 

overexpression and purification in E. coli was developed in this work. Results obtained 

here led to the following conclusions: 

- The H tag improves protein expression in E. coli but it does not function as solubility 

enhancer tag (Chapter 2). Nevertheless, this novel fusion partner presents attractive 

features for the production of immunogens and corresponding polyclonal antibodies 

(Chapter 3).  

- The H tag (1 kDa) is the lowest fusion partner used so far for protein and antibody 

production, making it potentially advantageous over other fusion tags. The H tag 

facilitates a simple, rapid, and adjuvant-free production “from gene to antibody”. In 

addition, polyclonal antibodies produced using the H tag can be directly applied for 

the immunnodiagnosis of several parasite infections. Although the H tag is here 

mostly applied for the production of recombinant parasite immunogens, it is also 

foreseen to be a promising tool for the immunoproduction of other proteins of 

interest as well.   

- The Fh8 is an effective solubility enhancer partner and a robust purification handle 

(Chapters 2 and 4). This dual functionality turns this tag into a valuable tool for 

efficient recombinant protein production in E. coli. 

- The Fh8 is ranked among the best solubility enhancer tags as Trx, MBP or NusA, 

being easily removed from the target protein without compromising the solubility of 

the latter (Chapter 2).  

- Besides being one of the few existent fusion tags to offer the combined feature of 

enhancing protein solubility and purification, the Fh8 performs both actions in a 

unique inexpensive manner. Fh8 is potentially advantageous over MBP or GST 

affinity tags because it uses its natural calcium-binding properties and mild 
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conditions for hydrophobic interaction chromatography (Chapter 4) instead of 

expensive resins, harsh buffers and additional compounds for protein purification.  

- The Fh8-HIC technology offers the potential feature of eliminating most of E. coli 

endotoxins in a single-step purification of biologically active recombinant proteins.  

The dual His6-Fh8 tagging can also be explored when a more stringent and efficient 

removal of contaminating proteins is required.   

- The low molecular weight of Fh8 (8 kDa) is, indeed, a great advantage over other 

large fusion partners for recombinant protein production in E. coli. The Fh8 is thus 

an excellent candidate for testing expression, solubility and purification in high 

throughput screenings next to the other well-known fusion tags. 

- When applied to the production of proteins of interest, namely FTL, which has a 

potential biomedical interest in cancer diagnostic, the Fh8 tag presented two major 

advantages for its recombinant production in E. coli: it increased FTL expression and 

solubility, and the Fh8 removal from the fusion protein did not affect the solubility, 

native secondary structure and bioactivity of FTL (Chapters 2 and 6). 

- The Fh8 fusion partner is also a promising tool for the economical and rapid E. coli 

soluble expression and purification of two difficult-to-express proteins: the bone 

morphogenetic protein-2 (BMP-2) and interleukin-10 (IL-10) proteins (Chapter 5). 

Both these proteins have relevant biomedical applications that emphasize the need 

for their efficient recombinant production. The Fh8 fusion system allows for the first 

time the soluble production of BMP-2 and IL-10 proteins in E. coli without any 

solubilization and renaturation process. For both proteins, the Fh8-HIC purification 

system is superior to the His6-IMAC, overcoming limitations observed with the 

latter. The Fh8-HIC purification strategy allows both BMP-2 and IL-10 proteins to 

be purified in a single-step and low cost methodology. At the end of this purification, 

Fh8BMP-2 and Fh8IL-10 proteins are potentially ready for in vitro trials as they 

present ordered secondary structures and protein oligomerecy, and may contain low 

levels of endotoxins.  

- The Fh8 tag may, however, address some obstacles to the biological activity of 

BMP-2 protein. This protein is only effective when presenting a specific dimeric 

conformation. The Fh8 can thus maintain the BMP-2 in solution long enough to 

undergo into a soluble folding pathway but, in spite of presenting an ordered 
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structure and dimeric form, this fusion protein may be in a stable conformation 

different from that of native BMP-2, which is crucial for its activity. In addition, the 

Fh8 is not easily removed from the fusion protein probably due to steric hindrance 

found in the complex structure. Results from Chapter 5 led to the conclusion that the 

structure of Fh8 fusion partner requires optimization for the production of oligomeric 

target proteins, in order to interfere as less as possible with the structure of the latter. 

- Two novel variants of Fh8 fusion partner – Fh8Ala and Fh8Tyr – are structurally 

advantageous proteins over Fh8Cys to be used in the fusion context (Chapter 6) 

because they showed less calcium-dependent conformational changes and less 

oligomeric forms while performing as efficient solubility enhancer tags. Fh8 Ala and 

Fh8Tyr mutations led to the conclusion that the Cys residue is indeed involved in the 

Fh8 oligomerization, but other residues are surely contributing to this state. 

 

The novel Fh8 fusion partner overcomes several issues related to the recombinant 

protein production in E. coli: by using a straightforward methodology, this novel system 

increases protein expression levels, promotes protein solubility and low cost 

purification, and helps for protein immunogenicity (the H tag). This novel fusion system 

offers the great advantage of combining these four abilities into the two lowest 

molecular weight fusion partners described so far. The aim of this work was thus 

achieved, highlighting the Fh8 fusion partner potential to move forward the 

recombinant protein production field. 

 

In order to develop further the knowledge and utility of the Fh8 fusion system, the 

following strategies are proposed as future work: 

- Other variants of Fh8 fusion partner shall be investigated to completely abolish the 

Fh8 oligomerization state, and to better clarify if its solubility enhancer activity is 

dependent of this state. Directed mutagenesis can be conducted in residues 

responsible for calcium-coordination between the EF-hands, and also in hydrophobic 

residues that are already solvent-exposed without the presence of calcium (apo-state). 

In other calcium-binding proteins, these residues showed to be involved in the Ca
2+

-

sensor activity, therefore being also here of most interest for the discovery of novel 

Fh8 variant fusion partners. 
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- The Fh8 fusion partner shall be considered for co-expression with the target protein 

of interest in order to evaluate if it still improves protein solubility. This co-

expression strategy may be useful for certain applications that prohibit the use of 

fusion partners but require high amounts and/or soluble protein. Moreover, if the Fh8 

improves target protein solubility by co-expression, it may help to clarify its 

mechanism of action (for instance, it may function as a chaperone or as a chaperone-

magnet). 

- A wide systems biology analysis can be conducted to track and evaluate the potential 

mechanisms underlying the protein soluble overexpression promoted by the N-

terminal Fh8 fusion partner. The differential screening of transcriptional and 

proteomic profiles in E. coli expressing soluble Fh8 fusion proteins, expressing only 

soluble non-fused proteins, and expressing insoluble target proteins or fusion 

proteins, may highlight the pathways by which the Fh8 fusion partner acts as an 

effective solubility enhancer tag.  

- An in depth understanding of the H tag mechanism of action shall be elucidated by 

the evaluation of the cellular components involved in the overall immunological 

response promoted by this fusion partner. In vitro trials shall be conducted to 

estimate the contribution of different cells from the immune system in the enhanced 

humoral response developed when using the H tag. Additional insights can be taken 

by the comparison between the H tag and other immunopotentiating agents. 

- The proteolytic activity of the Fh8 fusion partner may be explored to create a novel 

self-cleaving tag. The Fh8 protein has demonstrated in previous studies to have an 

intrinsic and calcium-dependent autocatalytic activity. This feature shall be further 

investigated in the fusion context in order to advance the use of Fh8 for single-step 

protein solubility, purification and tag removal.  

 

While this work in this thesis applies to the use of Fh8 and H for recombinant protein 

production in bacterial host systems, it is hoped that the novel fusion system presented 

here will apply to other hosts, as for instance, eukaryotes and mammalian cells. 
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