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1.1. INTRODUCTION 

Modulation of protein activity is essential for the functioning of a living organism, 

particularly during rapid environmental changes, when physiological responses must often occur 

quickly and reversibly. This modulation can take place by the addition of small molecules to target 

proteins, a process known as post-translation modification (PTM). Important modifiers of proteins 

include not only phosphate, methyl, acetyl, lipids and sugars, but also small peptides (Kerscher et 

al., 2006; Vertegaal, 2011). Ubiquitin is the foremost example, but a series of similar ubiquitin-like 

modifiers (UBLs) have also been described as sharing analogous structural conformation and 

conjugation machinery (Downes and Vierstra, 2005; Kerscher et al., 2006; Miura and Hasegawa, 

2010). One such UBL, the Small Ubiquitin-like Modifier (SUMO), is an essential factor in 

development processes in eukaryotic organisms, being implicated in several cellular mechanisms 

such as maintenance of genome integrity, subcellular trafficking, transcription modulation, and 

regulation of the cell cycle (Hay, 2005; Lomeli and Vazquez, 2011). Unlike ubiquitin, SUMO is not 

traditionally associated to protein degradation, rather to the control of the target’s conformation, 

which interferes with protein activity and creates or blocks interacting interfaces depending on the 

target at hand (Meulmeester and Melchior, 2008; Wilkinson and Henley, 2010). Since sumoylation 

and ubiquitination target the same type of amino acid, they were initially suggested to be 

antagonistic processes. This notion is currently evolving, as recruitment of ubiquitin by SUMO 

chains was shown to occur in humans and yeast via SUMO-Targeted Ubiquitin Ligases (STUbLs; 

Geoffroy and Hay, 2009). SUMO may therefore act as a positive regulator of the Ubiquitin 

Proteasome System (UPS), though STUbL plant homologs have yet to be established. In support of 

this mechanism, heat shock has been found to induce the formation of mixed SUMO/Ubiquitin 

chains in Arabidopsis (Miller et al., 2010). 

One unique characteristic of SUMO is environmental stress challenges induce a drastic 

increase in SUMO-conjugates; this increase seems to be preserved among eukaryotic organisms 

(Kurepa et al., 2003; Manza et al., 2004; Zhou et al., 2004; Lallemand-Breitenbach et al., 2008; 

Golebiowski et al., 2009). In the model plant Arabidopsis, SUMO is specifically involved in a 

plethora of abiotic stress responses, including those to extreme temperatures, water-availability, 

salinity, oxidative stress and nutrient imbalance (Kurepa et al., 2003; Miura et al., 2005; Yoo et al., 

2006; Catala et al., 2007; Miura et al., 2007b; Saracco et al., 2007; Conti et al., 2008; Cheong et 

al., 2009; Miura et al., 2009; Chen et al., 2011; Miura et al., 2011a; Miura et al., 2011b; Park et 

al., 2011a). In addition, it is involved in plant development and the response to pathogens (Lee et 
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al., 2007; Miura et al., 2010; van den Burg et al., 2010). Many of the known SUMO targets are 

related to RNA- and DNA-associated processes, namely transcription factors (TFs) and chromatin-

remodeling components (Golebiowski et al., 2009; Miller et al., 2010; Park et al., 2011b).  

SUMO can be removed from conjugates by SUMO proteases, with the protein then returning to its 

non-modified state. Thus, the balance between conjugated/deconjugated forms is a major 

determinant in the modulation of SUMO-target function (Kurepa et al., 2003; Golebiowski et al., 

2009). These highly reversible and transient modifications place SUMO as a rapid transcriptional 

regulator in response to stress. 

The present review focuses on recent advances regarding the ever-growing link between 

PTM by SUMO and plant responses to environmental challenges. We also demonstrate how new 

information on the full range of SUMO targets may bring new insights into the modulation of the 

plant stress response.  

 

 

1.2. A PRIMER OF THE SUMOYLATION PATHWAY 

SUMO is a small protein of approximately 100-115 amino acids. Despite its relatively 

reduced homology to other UBLs, it shares a similar ubiquitin-like structural conformation 

characterized by a -grasp fold that seems to act as a multi-functional scaffold (Fig. 1.1A; Downes 

and Vierstra, 2005; Burroughs et al., 2007). Unlike ubiquitin, SUMO possesses a flexible amino 

acidic extension in its N-terminal end, and its topology is differently charged (Bayer et al., 1998; 

Downes and Vierstra, 2005). The Arabidopsis genome contains eight putative SUMO copies, but 

only four paralogs have confirmed gene expression (SUM1 ~ SUM2 > SUM3 ~ SUM5; Saracco et 

al., 2007). At least three SUMOs can be found in Oryza sativa and four in Populus trichocarpa 

(Miura et al., 2007a; Reed et al., 2010). Arabidopsis SUM1 and -2 (SUM1/2) are functionally 

equivalent (Saracco et al., 2007) and in planta, SUM1, -3 and -5 isoforms have been shown to 

conjugate with high molecular weight target proteins (Budhiraja et al., 2009). SUMO isoforms 

display different conjugation profiles, and not all isoforms are capable of forming poly-SUMO chains 

(SUM1/2, but not SUM3; Kurepa et al., 2003; Colby et al., 2006; Saracco et al., 2007; van den 

Burg et al., 2010; Castano-Miquel et al., 2011). SUMO profiles show that SUM1/2 and SUM3 have 

different specificities and possibly different targets. In vitro, conjugation rates are highest for  

SUM1 and SUM2 >> SUM3 > SUM5, possibly because of differences on the residues are 



impo

Miqu

prote

acid)
deco
betwe

(SEN

Sum

thro

(SUM

SUM

ortant for the

uel et al., 20

ein’s sumoylatio

, although alter
njugating SUM
een the target’s

 

SUMO u

NP), process

moylation by 

ugh a three-

MO Activatin

MO, while the

e interaction

11). 

on consensus m

rnative sumoyla
O from the ta
s conjugated/d

ubiquitin-like 

s pre-SUMOs

 which the 

-step cascad

ng Enzyme: 

e E2 (SUMO 

 with the E1

motif ψKXE (ψ,

ation sites also 
rget. This final 
econjugated fo

 proteases (

s by removi

maturated S

de (E1, E2, E

SAE1-SAE2 

 Conjugating 

1 activating e

, large hydroph

 exist. ULPs dis
 step recycles 
rms. 

(ULP), also 

ng C-termina

SUMO is cov

E3) similar t

heterodimer

g Enzyme: SC

enzyme (van 

 

Figure 1.1
dimensiona
ubiquitin-lik
and ubiqui
the Prote
home/hom
open-source
3D (www.jm
conserved f
E1-activatio
deconjugati
the conjug
protein. SU
peptide tha
proteases 
endopeptida
a di-glycine
heterodime
2 (SAE1, SA
SUMO to A
residue is 
SAE2, thro
The peptid
SUMO-conju
transesterifi
subsequent
target prote
SUMO E3 
transfer is
generated b

amino grou
hobic residue; K

splay isopeptida
 SUMO and, m

designated 

al amino ac

valently atta

to the ubiqu

r) promotes 

CE) mediates

CHAPTER

 den Burg et

1. The sumoyl
l (3D) struc
e modifier (SU
tin (acc. no. 
in Data Ban
e.do/) and vis
e Java viewer f
mol.org/). B, Th
five-step pathw
n, E2-conj
on) and media
ated/deconjuga
UMO isoforms
t undergoes m
(ULP). These 
ases cleave the
e (GG) motif. I
ric E1 SUMO-a
AE2) promote 

AMP (SUMO-AM
also coupled t
ough a high-
de is then 
ugating enzy
cation of a C re

tly capable of 
ein. This step 
ligases, even 

s possible. A
between the SU

p of a lysine (K
K, lysine; X, any

ase in addition 
most significant

sentrin/SUM

cids, exposin

ched to a t

itin pathway

the ATP-dep

s conjugation

R 1. GENERAL INT

et al., 2010; 

lation pathway.
cture of hum
UMO) 1 (acc. 
 1UBQ), obta
nk (www.rcsb
sualized using
for chemical st
he sumoylation

way (involving m
jugation, 

ates the balanc
ated forms of
s encode a 

maturation by ub
SUMO-specific

e C-terminal end
In the presenc
activating enzym
the C-terminal 

MP). A SUMO 
to a cysteine 
-energy thioes
conjugated to

yme (SCE1), 
residue in the E

transferring S
 is mostly me
 though E3-in

An isopeptide 
UMO G residue 

K) side chain in
y amino acid; E

to endopeptida
tly, mediates th

MO-specific p

ng a di-glycin

target protei

y (Fig. 1.1B)

pendent acti

n of SUMO to

TRODUCTION 

5 

Castano-

. A, Three-
man small 

no. 1A5R) 
ained from  
b.org/pdb/ 

g Jmol, an 
ructures in 

n cycle is a 
maturation, 
E3-ligation, 
ce between 
f a target 
pre-SUMO 

biquitin-like 
c cysteine 
d, exposing 
ce of ATP, 
mes 1 and 
 binding of 
glycine (G) 
(C) of the 

ster bond.  
o an E2  
 through 

E2. E2s are 
UMO to a 
ediated by 

ndependent 
bond is 

 and the ε-

n the target 
E, glutamic 

ase activity, 
he balance 

proteases 

ne motif. 

n occurs 

. The E1 

vation of 

o a target 



CHAPTER 1. GENERAL INTRODUCTION 

6 

protein. SUMO E3 ligases enhance the conjugation step. SUMO can be removed by the action of 

SUMO proteases, thereby recycling free SUMO into the pathway (Fig. 1.1B). Conjugation 

traditionally occurs in a lysine residue of the target protein, within a sumoylation consensus motif 

ψKXE (ψ, large hydrophobic residue; K, lysine; X, any amino acid; E, glutamic acid). Several 

alternative SUMO-conjugation sites have also been described, namely the inverted consensus 

motif, hydrophobic cluster motif, phosphorylation dependent SUMO motif (PDSM), and the 

negatively charged amino acid-dependent SUMO motif (NDSM; Gareau and Lima, 2010; Vertegaal, 

2011). Positioning of the motif within the target is extremely important. Most validated SUMO 

consensus sites tend to be placed in extended loops or intrinsically disordered regions of the 

substrate outside of its globular fold, since the motif adopts an extended conformation to interact 

effectively with the E2. In addition, SUMO interacting motifs (SIMs) mediate non-covalent 

interactions between SUMO and various different SIM-containing proteins, adding complexity to the 

network of SUMO-dependent protein interactions. SIMs are traditionally composed of a short 

stretch of hydrophobic amino acids, (V/I)X(V/I)(V/I), flanked by acidic residues (Gareau and Lima, 

2010).  

Orthologs for the full scope of SUMO pathway components can be found in plant genomes. 

Genomic studies in Arabidopsis thaliana have validated the existence of a functional SUMO 

pathway in plants, revealing the important role of this pathway in developmental processes and the 

plant’s response to external stimuli (Table 1.1). Mutations that disrupt the main conjugation 

machinery, i.e. SUMO peptides (SUM1/2), the SAE2 subunit of the E1 heterodimer, or the SUMO 

E2 conjugation enzyme SCE1, result in development arrest at the early stages of embryogenesis 

(Saracco et al., 2007); a similar finding has been observed in other models (Bossis and Melchior, 

2006b). However, over-expression of SUMOs results in growth-defective plants (Budhiraja et al., 

2009; van den Burg et al., 2010). To date, two E3 ligases have been characterized in Arabidopsis, 

the SIZ/PIAS-type SAP and Miz 1 (SIZ1) and the NSE2/MMS21-type High Ploidy 2 (HPY2), both 

with pleiotropic phenotypes in loss-of-function mutants, evidencing the importance of E3s within the 

pathway (Miura et al., 2005; Catala et al., 2007; Jin et al., 2008; Huang et al., 2009; Ishida et al., 

2009; Miura et al., 2010). SUMO proteases are more abundant in the genome than any other 

SUMO pathway component, resulting in a high degree of redundancy (Chosed et al., 2006; Colby 

et al., 2006; Lois, 2010). Mutants also display developmental phenotypes: Early in Short Days 4 

(ESD4) mutants are severely dwarfed and their developmental defects are incremented by the over-

expression of SUM1 (Murtas et al., 2003); ULP1c and ULP1d, also designated Overly Tolerant to 
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Salt 2 and -1 (OTS2 and -1), respectively, act redundantly to regulate flowering and rosette growth 

(Chapter 4; Conti et al., 2008). More information can be found in a series of excellent reviews that 

recently addressed the diversity of the plant SUMO machinery and its impact on plant development 

(Lois, 2010; Miura and Hasegawa, 2010; Park et al., 2011c).  

 

Table 1.1. Expressed Arabidopsis small ubiquitin-like modifier pathway components.  

     
Component 
(AGI code) 

Loss- or gain-
of-function 
allele 

Development
al phenotype 

Abiotic stress-related 
phenotype 

Reference 

     
     
SUMO peptide     
     

SUM1  
(At4g26840) 

sum1-1 
 

Wild-type  Saracco et al. (2007)  

 35S::SUM1 
 

Early 
flowering, 
short petioles 

Lower ABA root growth 
inhibition; decreased 
acquired thermotolerance  

Lois et al. (2003); Saracco 
et al. (2007); Cohen-Peer 
et al. (2010); van den 
Burg et al. (2010)  

SUM2  
(At5g55160) 

sum2-1 Wild-type  
 
 

Saracco et al. (2007) 

 35S::SUM2 Early 
flowering,  
short petioles 

Lower ABA root growth 
inhibition 

Lois et al. (2003); van den 
Burg et al. (2010)  

 sum1-1 sum2-1 Embryo lethal  Saracco et al. (2007) 
 sum1-1 amiR-

SUM2 
 

Pleiotropic  van den Burg et al. (2010) 

SUM3  
(At5g55170) 

sum3-1 Late flowering  van den Burg et al. (2010) 

 35S::SUM3 
 

Early flowering  van den Burg et al. (2010) 

SUM5  
(At2g32765) 

n.d. n.d.   

     
E1 (Activation)     
     

SAE1a 
(At4g24940) 

sae1a-1 Wild-type  Saracco et al. (2007) 

SAE1b 
(At5g50580) 

n.d. n.d.   

SAE2 
(At2g21470) 

sae2-1 Embryo lethal  Saracco et al. (2007) 

     
E2 (Conjugation)     
     

SCE1 
(At3g57870) 

sce1-5, sce1-6 
 

Embryo lethal  Saracco et al. (2007) 

 co-SCE1a * 
 

n.d. Higher ABA root growth 
inhibition 

Lois et al. (2003)  
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Table 1.1. (Continued) 
     
E3 (Ligation)     
     

HPY2/MMS21 
(At3g15150)  

hpy2-1, hpy2-2 
mms21-1 
 

Pleiotropic  Huang et al. (2009); 
Ishida et al. (2009)  

SIZ1 
(At5g60410) 

siz1-1, siz1-2, 
siz1-3 

Pleiotropic Sensitivity to extreme 
temperatures, drought and 
copper; abnormal Pi-
starvation responses; 
higher ABA-induced 
inhibition of germination 
and root growth; impaired 
in N-metabolism; tolerance 
to salt 

Miura et al. (2005);  
Yoo et al. (2006);  
Catala et al. (2007);  
Miura et al. (2007b); 
Cheong et al. (2009); 
Miura et al. (2009);  
Chen et al. (2011);  
Miura et al. (2011a); 
Miura et al. (2011b);  
Park et al. (2011a)  

     
Protease     
     

ESD4 
(At4g15880) 

esd4-1, esd4-2 
   

Pleiotropic  Reeves et al. (2002); 
Murtas et al. (2003)  

 35S::ESD4 Wild-type  Murtas et al. (2003) 
 esd4-1 

35S::SUM1,2,3 
Pleiotropic  Murtas et al. (2003) 

 esd4-1 
35S::preSUM1,
2,3 

Pleiotropic  Murtas et al. (2003) 

ULP1a/ELS1 
(At3g06910) 

els1-1, els1-2 Slightly smaller  Hermkes et al. (2011)  

 esd4-2 els1-1 
 

Pleiotropic  Hermkes et al. (2011) 

ULP1b 
(At4g00690) 

n.d. n.d.   

ULP1c/OTS2 
(At1g10570) 

ots2-1 Wild-type  Conti et al. (2008)  

ULP1d/OTS1 
(At1g60220) 

ots1-1 Wild-type  
 

Conti et al. (2008) 

 35S::OTS1 
 

 Salt tolerance Conti et al. (2008) 

 ots1-1 ots2-1 Early flowering Salt sensitivity Conti et al. (2008) 
 ots1-1 ots2-1 

35S::HA:SUM1 
Smaller rosette  Conti et al. (2009) 

ULP2a 
(At4g33620) 

n.d. n.d.   

ULP2b 
(At1g09730) 

n.d. n.d.   

     
ABA - abscisic acid; Pi - inorganic phosphate; n.d. - not determined; * – co-supression line 

 

 

1.3. THE SUMO-ABIOTIC STRESS ASSOCIATION 

The accumulation of SUMO-conjugates during stress is ubiquitous in eukaryotes (Kurepa et 

al., 2003; Zhou et al., 2004; Golebiowski et al., 2009). In plants it has been observed in rice, 
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poplar and, more frequently, Arabidopsis following heat shock (Kurepa et al., 2003; Miura et al., 

2005; Yoo et al., 2006; Saracco et al., 2007; Cheong et al., 2009; van den Burg et al., 2010),  

cold shock (Miura et al., 2007b; Miura and Ohta, 2010), drought (Catala et al., 2007), salt stress 

(Conti et al., 2008), exposure to excessive copper (Chen et al., 2011), and incubation with 

hydrogen peroxide, ethanol, and canavanine (Kurepa et al., 2003). Conjugation is accompanied by 

a decrease in the pool of free SUMOs and correlates with the duration and intensity of the stress 

(Kurepa et al., 2003; Miller and Vierstra, 2011). In the absence of the stimulus, SUMO-conjugate 

levels decrease within hours or even minutes, suggesting that sumoylation acts transiently (Kurepa 

et al., 2003; Golebiowski et al., 2009). 

Functional approaches using Arabidopsis thaliana knockout mutants have implicated 

various SUMO pathway components in abiotic stress responses (Table 1.1). The lethality of 

SUM1/2, E1 and E2 knockouts has meant that most evidence has been obtained in E3 and ULP 

mutants. Null SIZ1 alleles (siz1-1, siz1-2 and siz1-3) display a series of abiotic stress-related 

phenotypes, including sensitivity to extreme temperatures, drought stress, and excess copper, 

altered phosphate-starvation responses, reduced nitrogen (N) assimilation, and salt tolerance 

(Table 1.1; Miura et al., 2005; Yoo et al., 2006; Catala et al., 2007; Miura et al., 2007b; Cheong 

et al., 2009; Miura et al., 2009; Chen et al., 2011; Miura et al., 2011a; Miura et al., 2011b; Park 

et al., 2011a). SIZ/PIAS family members are composed of different regulatory domains (Rytinki et 

al., 2009), and directed mutation studies have implicated the SIZ1 SP-RING domain (essential for 

SUMO conjugation and nuclear localization) in heat shock sensitivity during germination (Cheong et 

al., 2009). In rice, the two SIZ1 orthologs (OsSIZ1/2) are involved in heat stress-induced 

sumoylation, but can only partially complement the Arabidopsis siz1 mutant (Park et al., 2010), 

suggesting that OsSIZ1/2 have slightly different functions. The accumulation of SUMO-conjugate 

levels during heat, cold, and drought stress and following exposure to excess copper has been 

shown to be essentially SIZ1 dependent, although the slight but visible presence of stress-

responsive SUMO-conjugates in siz1 suggests either alternative E3s or E3-independent conjugation 

(Miura et al., 2005; Catala et al., 2007; Miura et al., 2007b; Saracco et al., 2007; Chen et al., 

2011). HPY2, an E3 ligase that also displays an SP-RING domain, has been mainly associated with 

the regulation of cell cycle division (Huang et al., 2009; Ishida et al., 2009). There are a number of 

other genes in the Arabidopsis genome, other genes possessing an SP-RING domain which are 

potential SUMO E3 ligases, including the PIAS-like 1 (At1g08910) and PIAS-like 2 (At5g41580) 

proposed by Novatchkova and co-workers (2004). Interestingly, PIAS-like 2 has been found to be 
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modified by SUM1 (Miller et al., 2010), though its involvement in stress-responses has yet to be 

reported.  

Relative to other SUMO pathway components, there are a larger number of plant SUMO 

proteases and these have different SUMO isoform discrimination and enzymatic activities (Chosed 

et al., 2006; Colby et al., 2006). Plant SUMO proteases display some degree of functional 

redundancy which has delayed their characterization. The fact that SUMO targets seem to be 

conjugated transiently following stress imposition implicates ULP-dependent deconjugation in the 

abiotic stress response. The identification of abiotic stress-related phenotypes has been limited to 

the redundant gene pair ULP1c/OTS2 and ULP1d/OTS1. Conti and co-workers (2008) reported 

that this ULP1 pair is a determinant of salt tolerance, and subsequent evidence suggests they also 

act as negative regulators of drought tolerance (Chapter 4). 

 

 

1.4. IDENTIFICATION OF SUMO TARGETS 

Identification of the full set of sumoylated proteins is a major objective of current SUMO 

research, as it provides a molecular link between SUMO function and the numerous phenotypes 

displayed by SUMO pathway components. In non-plant models, various strategies have been 

employed to screen for SUMO targets, namely, purification of epitope-tagged SUMO, use of anti-

SUMO antibodies or isolation through SIMs (Makhnevych et al., 2009; Vertegaal, 2011). In plants, 

initial approaches relied on hypothesis generation to identify candidate genes, based on phenotypic 

evidence and literature mining, and resulted in the identification of nine proteins that are 

sumoylated (Fig. 1.2A, subset 1; Miura et al., 2005; Miura et al., 2007b; Jin et al., 2008; Miura et 

al., 2009; Okada et al., 2009; Cohen-Peer et al., 2010; Castano-Miquel et al., 2011; Park et al., 

2011a). Candidate genes were validated through a series of in bacteria, in planta, or in vitro 

studies. The majority of proteins play a regulatory role in gene expression, which is consistent with 

traditional SUMO function (Gill, 2005; Lyst and Stancheva, 2007; Garcia-Dominguez and Reyes, 

2009). Importantly, most proteins are involved in abiotic stress responses, thereby validating the 

physiological and functional data in support of a major role for sumoylation in abiotic stress 

resistance. However, the discovery rate using candidate gene approaches is slow when the large 

number of hypothesized sumoylation targets within the plant proteome is taken into account. This 

limitation has led to a recent series of systematic functional genomics approaches being used to 

identify SUMO targets (Fig. 1.2A). These approaches can be categorized into the in planta 
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screening of Tag-SUMO conjugates coupled with peptide sequencing (herein designated SUMO-

conjugates; Budhiraja et al., 2009; Miller et al., 2010; Park et al., 2011b) or the identification of 

protein-protein interaction (PPI) partners of the sumoylation machinery (herein designated 

Sumoylation-interacting; Matarasso et al., 2005; Xu et al., 2007; Garcia-Dominguez et al., 2008; 

Nigam et al., 2008; Elrouby and Coupland, 2010). 

 In plants, mass identification of SUMO-conjugates (Fig. 1.2A, subset 2) was first performed 

by Budhiraja and co-workers (2009), through in vivo expression of His-tagged SUM1, -3 and -5. 

Single step enrichment by affinity column chromatography was used before mass spectrometric 

protein identification, revealing 14 putative SUMO targets. Five of the candidates were 

subsequently shown to be sumoylated in vitro. Most targets are involved in DNA-related or  

RNA-dependent processes, namely regulation of chromatin structure, splicing, translation, and 

assembly and dis-assembly processes (Budhiraja et al., 2009). The highest rending SUMO-

conjugate assay was performed by Miller and co-workers (2010), who developed a stringent 

method to isolate a total of 357 His-SUM1-conjugating proteins from Arabidopsis. Given the known 

involvement of SUMO in abiotic stress, Arabidopsis plants were subjected to heat and oxidative 

stresses in addition to the control treatment. Once more, the majority of targets consisted of 

nuclear proteins involved in chromatin remodeling/repair, transcription, RNA metabolism, and 

protein trafficking. Interestingly, many were condition specific, which supports a stress-specific 

modulation of the pool of SUMO-conjugates. Park and co-workers (2011b) used two-dimensional 

(2D) gel electrophoresis to screen for SUMO targets following heat stress imposition and identified 

a total of 27 proteins involved in DNA or RNA-related metabolism, signaling pathways, and general 

metabolism. The seemingly deficient coverage of SUMO targets evidenced by Budhiraja et al. 

(2009) and Park et al. (2011b) may be due to the use of overextended tags, which were shown to 

compromise SUMO function in Arabidopsis (Miller et al., 2010). For instance, 6xHis-FLAG3-SUM1 

proteins failed to identify SUMO conjugates under conditions of no stress, when SUMO conjugation 

is lowest (Park et al., 2011b). Tagged SUMOs may also compete deficiently with the native peptide, 

a problem that was overcome by Miller and co-workers’ (2010) use of a sum1-1 sum2-1 

background. As a result there is no significant overlap between the three sets of SUMO-conjugates, 

as evidenced by Venn diagram analysis (Fig. 1.2B).  

 



CHAPTER 

12 

Figure 1
adopted fo
existing S
targets. D
GO functi
using the 
subseque

 1. GENERAL INTR

1.2. Annotation
or identifying p
UMO-conjugate

D, Scatterplot of
onal categoriza
 BioMaps func
nt scatterplot 

RODUCTION 

n and characte
lant SUMO targ

e studies. C, V
f enriched gene
ation was perf
tion with a 0.0
analysis were

erization of the
gets have rende
enn diagram a
e ontology (GO
formed in Virtu
01 p-value cuto
e performed u

e predicted pla
er a total of 76
analysis of the 
O) terms (biolog
ualPlant 1.2 so
off (Katari et a
using the REV

ant SUMO targ
68 proteins. B, 
four subsets o

gical process) f
oftware (virtua
l., 2010). Excl
VIGO tool (rev

gets. A, The fo
Venn diagram 
f strategies use
or the subset o
lplant.bio.nyu.e
usion of GO te
vigo.irb.hr/), w

our major stra
analysis of the
ed to identify S
of SUMO-conju
edu/cgi-bin/vpw
erm redundanc
with a 0.5 C

 

tegies 
 three 
SUMO 
gates. 
web/), 
cy and 
C-value  



CHAPTER 1. GENERAL INTRODUCTION 

13 

(Supek et al., 2011). Bubble size indicates the frequency of the GO term, colored circles indicate GO terms related to 
stress or nutritional stimuli. The scatterplot represents the cluster representatives in a 2D space (x- and y-axis) derived 
by applying multidimensional scaling to a matrix of the GO terms’ semantic similarities (Supek et al., 2011). # Number 
of genes within the subset, asterisk non-Arabidopsis genes, MALDI-TOF MS matrix-assisted laser desorption/ionization-
time of flight mass spectrometry. 

 

In a sumoylation-interacting approach (Fig. 1.2A, subset 3), a high-throughput strategy 

aimed at identifying SUMO targets was carried out by Elrouby and Coupland (2010), who used 

yeast two-hybrid (Y2H) to identify 238 interactors of SUMO pathway components SCE1 and/or 

ESD4. An Escherichia coli-based sumoylation system was used to test a substantial number of 

targets, indicating that approximately half are bona fide SUMO substrates. Proteins involved in 

stress responses, namely temperature stress, were shown to be over-represented within Y2H 

interactors. A similar screening using SIZ1 as bait resulted in the identification of GTE3 and GTE5, 

members of global transcription factor group E that contain a bromodomain that is possibly 

involved in binding to acetylated histones (Garcia-Dominguez et al., 2008). Other Y2H interactions 

have been reported, including the interaction of Nuclear-pore Anchor (NUA) protein with ESD4. In 

other models, tomato Cys protease LeCp interacted with the SUM1/2 ortholog T-SUMO, and rice 

OsFKB20, a stress-inducible FK506-binding protein, interacted with OsSCE1 (Matarasso et al., 

2005; Xu et al., 2007; Nigam et al., 2008). As an additional source of potential SUMO targets, we 

used the Arabidopsis Interactions Viewer function from BAR (Geisler-Lee et al., 2007), a database 

of almost 105 predicted and confirmed Arabidopsis interacting proteins, to identify estimated 

interactors for all components of the sumoylation machinery (Fig. 1.2A, subset 4). Our analysis 

rendered a total of 176 predicted interactors, mostly associated with SUMO peptides.  

We cross-referenced all predicted plant SUMO targets in order to obtain an overview of all 

four subsets of proteins (Fig. 1.2C). Not surprisingly, four out of the five most over-represented 

proteins included SUM1, SAE2, SCE1, and SUMO E3 ligase candidate PIAS-like 2, which validates 

the current analysis. However, there was still no significant overlap between subsets, similar to an 

analogous study of yeast SUMO targets (Makhnevych et al., 2009). This limited overlap suggests 

that saturation is far from being achieved; however, it may also reflect the different methodologies 

employed, particularly considering that PPI-based approaches (subsets 3 and 4) may detect non-

covalent interactions mediated by SIMs rather than bona fide sumoylation of substrates. Since 

SUMO-conjugate genes provide the highest confidence candidates, we analyzed gene ontology (GO) 

term enrichment for this subset (Fig. 1.2D). The REVIGO tool was used to exclude redundant GO 

terms, as redundancy tends to confound interpretation and inflate the perceived number of 
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biologically relevant results (Supek et al., 2011). As expected, functional categorization of biological 

processes revealed standard roles in SUMO function. However, over-represented GO terms also 

included stimuli that have been physiologically and functionally associated with the sumoylation 

pathway, namely, abiotic stress and nutrient-related stimuli. Using a detailed GO term 

categorization of the subset of 393 SUMO-conjugates, we identified 52 abiotic stress-related 

proteins (Appendix I - Table S1.1). These form a core of highly likely SUMO targets that link SUMO 

function to a wide range of abiotic stress responses. In non-plant models, many known targets are 

regulators of expression (acting as transcription factors, co-activators, or repressors; Bossis and 

Melchior, 2006b). A detailed analysis of these 52 genes we identified reveals a strong involvement 

in transcriptional regulation and nucleic acid binding activities, concomitant with the role for SUMO 

in the control of transcription during environmental challenges already envisaged by known plant 

SUMO targets (Miura et al., 2005; Miura et al., 2007b; Cohen-Peer et al., 2010).  

 

 

1.5. MOLECULAR BASIS OF SUMO REGULATION OF ABIOTIC STRESS TOLERANCE 

 

Extreme temperatures 

During heat stress, protein stability is compromised, which affects cellular structures and 

organelles, including the nucleus (Richter et al., 2010). The best documented resistance proteins 

comprise transiently expressed Heat Shock Proteins (HSPs) which act as molecular chaperones of 

the native protein structure (Kotak et al., 2007; Richter et al., 2010), as well as Heat Shock Factors 

(HSFs) that function as key signaling effectors, modulating the transcription of heat-responsive 

genes (Kotak et al., 2007). Both types of proteins can be abundantly found in confirmed or 

predicted SUMO conjugates, including HSFA1D, HSFA2, HSFB2B, HSP70-1/HSC70-1, HSP17.4, 

HSC70-3/HSP70-3, HSP17.6C-CI and HSP70. HSP70 proteins are particularly over-represented in 

the different subsets of sumoylated proteins, which is consistent with their central role in protein 

folding processes, namely, during external stress (Mayer and Bukau, 2005). Interestingly, over-

expression of HSC70 results in less accumulation of SUM1/2 conjugates following heat shock 

(Kurepa et al., 2003). The impact of sumoylation on these targets is unresolved, with the exception 

of the Arabidopsis transcription factor HSFA2 (Fig. 1.3A; Cohen-Peer et al., 2010). HSFA2 is a key 

element in acquired thermotolerance (Charng et al., 2007), and its activity in the nucleus seems to 

be repressed by SUM1 at position K315 (Cohen-Peer et al., 2010). Over-expression of SUM1 in 
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seedlings results in a reduced tolerance to repeated heat, implying that sumoylation acts negatively 

upon acquired thermotolerance (Cohen-Peer et al., 2010). Conversely, SIZ1 seems to be a positive 

regulator of basal responses (acting independently of salicylic acid), but not of acquired 

thermotolerance (Yoo et al., 2006; Saracco et al., 2007), which suggests the involvement of a 

SIZ1-independent pathway in the control of acquired thermotolerance. The seemingly antagonistic 

effect of SUMO pathway components on the different heat stress responses reflects the complex 

nature of these mechanisms. It also supports the idea that modulation of SUMO-conjugate steady-

state levels during heat stress represents a dynamic and precisely fine-tuned process (Anckar et 

al., 2006). A microarray analysis study revealed that in the siz1 mutant, eight HSPs and HSFs (e.g. 

HSFA7A and HSF4/HSFB1) were up-regulated under standard growth conditions, while no down-

regulated HSP and HSF were observed (Catala et al., 2007). Similarly, sHSP-CI is consistently 

down-regulated following SUM1 over-expression (Cohen-Peer et al., 2010). Experimental evidence 

corroborates the notion that sumoylation acts mainly as an inhibitor of transcription (Gill, 2005). 

Apart from HSFs, other heat-related TFs are predicted to be sumoylated in association to heat 

stress, namely WRKY3 and WRKY4, two Group 1 members of the large WRKY TF family associated 

with numerous stress stimuli (Eulgem et al., 2000; Miller et al., 2010). 

In addition to heat shock, SIZ1 is also important for cold acclimation and tolerance to 

freezing and chilling. More specifically, Miura and co-workers (2007b) found that upon cold 

imposition, SIZ1 positively affects the expression of the C-repeat Binding Factor 3/Dehydration 

Responsive Element Binding factor 1a (CBF3/DREB1a) TF and, consequently, its regulon. The 

CBF3/DREB1a regulator Inducer of CBF Expression 1 (ICE1) was shown to be sumoylated by SIZ1 

at position K393, which does not seems to impact on ICE1 TF activity, rather it counteracts 

polyubiquitination by the E3 Ubiquitin ligase HOS1, decreasing ICE1-degradation and allowing 

CBF3/DREB1a-regulon expression (Fig. 1.3B). ICE1 sumoylation can also negatively regulate 

MYB15, a repressor of the CBF3/DREB1a-regulon that binds to MYB elements in the promoter of 

several cold-inducible genes (Fig. 1.3B; Miura et al., 2007b). It is likely that other SUMO substrates 

are involved in the response to cold, since the transgenic line ICE1(K393R) displays less sensitivity 

to freezing than the siz1 mutant. Also, SUMO-conjugates increase drastically after cold  

imposition, indicating that numerous proteins are SUMO modified upon challenge. We  

identified various cold-related proteins within the subset of abiotic stress-related SUMO-conjugates 

(Appendix I - Table S1.1), namely, Stabilized 1 (STA1) and the components of transcriptional 

coactivator complexes ADA2a, ADA2b and GCN5. 
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Drought and salt stresses 

Drought and salt stresses have tremendous impact on plant growth and development, 

significantly affecting crop yield. Plants cope with water limitation using complex physiological and 

molecular strategies that can be generally grouped within the categories of escaping, avoiding or 

tolerating the stress (Verslues and Juenger, 2011). Drought induces SUMO-conjugate accumulation 

in Arabidopsis, a process partially dependent on the activity of the E3 ligase SIZ1 (Catala et al., 

2007). SIZ1 seems to act positively on drought tolerance since the siz1 mutant shows drought 

sensitivity to short- and long-term dehydration. In addition, microarray data indicates that an 

extensive number of drought-responsive genes are significantly deregulated in siz1 mutant (Catala 

et al., 2007). In terms of the stress hormone abscisic acid (ABA), there is sufficient evidence to 

suggest that both ABA-dependent and -independent mechanisms are involved in the SUMO-drought 

association (Fig. 1.3C). In support of ABA-independent mechanisms, no significant difference in the 

sumoylation pattern following drought imposition was observed between wild-type and aba2  

(a mutant impaired in ABA biosynthesis; Catala et al., 2007). The authors suggest that SIZ1 

participates in ABA-independent pathways mediated by TFs other than ERD1 and DREB2A, since 

their regulons are not transcriptionally affected in siz1 mutant. On the other hand, sumoylation 

may control the activity of DREB2A by regulating DREB2A-Interacting Protein1 and -2 (DRIP1/2), 

predicted to be a SUM1 target by Miller and co-workers (2010). These two proteins contain C3HC4 

RING domains functioning as E3 ubiquitin ligases that target DREB2A for proteolysis (Qin et al., 

2008), therefore acting as negative regulators of drought responses.  

In contrast, rice seedlings treated with ABA were shown to accumulate SUMO-conjugates 

(Chaikam and Karlson, 2010; Park et al., 2010). Most significantly, deregulated genes in siz1-3 

during drought have been found to have a 41% overlap with ABA-responsive genes, and under 

normal growth conditions, genes of the ABA biosynthetic pathway (namely ABA1 and NCED3) are 

also deregulated (Nemhauser et al., 2006; Catala et al., 2007). Developmentally, the siz1 mutant 

displays ABA hypersensitivity in cotyledon greening after germination, functionally associated to the 

SP-RING domain responsible for the ligase activity of SIZ1 (Cheong et al., 2009). Over-expression of 

SUM1/2 attenuated ABA-mediated growth inhibition while SCE1a-co-suppressed lines displayed the 

opposite phenotype (Lois et al., 2003). It is likely that ABA-signaling changes the sumoylation 

pattern of at least a small number of targets, enough to exert a phenotypical effect on the plant.  

A suitable target is the homeobox leucine zipper TF ATHB6, a SUMO-conjugate candidate that 

negatively regulates ABA-responses (Himmelbach et al., 2002). Strong evidence towards the 
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SUMO-ABA relationship, albeit distinct from the drought response, is the demonstrated sumoylation 

of ABA Insensitive 5 (ABI5), a bZIP TF that positively regulates ABA-dependent seed germination 

and desiccation via binding of the ABA-Responsive Element (ABRE, ACGTGG/TC) cis-element  

(Fig. 1.3D; Miura et al., 2009). SIZ1 knockout does not affect ABI5 expression but enhances its 

regulon. The K391 residue of ABI5 is sumoylated in vivo and in vitro in a SIZ1-dependent fashion, 

rendering ABI5 inactive. In addition, sumoylation may also stabilize ABI5, by counteracting 

ubiquitin-dependent degradation mediated by the ubiquitin E3 ligase Keep On Going (KEG; Miura et 

al., 2009).  

In contrast to the positive regulation of drought-stress responses, SIZ1 acts as a negative 

regulator of high salinity responses (Fig. 1.3C). In fact, siz1 was first isolated from a second 

mutation screening that suppressed the sos3 salt-sensitivity phenotype (Miura et al., 2005), and 

siz1 seedlings are tolerant to salt. In parallel, the double knockout mutant for SUMO proteases 

ULP1c/OTS2 and ULP1d/OTS1 displays sensitivity to salt stress, while over-expression of 

ULP1d/OTS1 increases salt tolerance (Conti et al., 2008). The mutant ots1 ots2 disrupts SUMO 

deconjugation constitutively, increasing the accumulation of SUM1/2-conjugated proteins (but not 

SUM3), particularly in response to salt stress (Conti et al., 2008). Miura and co-workers (2011b) 

recently found that siz1 accumulates less sodium (Na) and more potassium (K) in shoots 

comparatively to the wild-type, suggesting the involvement of ionic adjustments. Salt stress has 

also been shown to negatively modulate ULP1d/OTS1 (and probably ULP1c/OTS2) abundance via 

the ubiquitin-proteasome system rather than through transcription (Conti et al., 2008). Thus, it is 

possible that, at least partially, the increment of SUM1/2-conjugates during stress is due to the 

turnover of SUMO proteases, implying a new level of regulation in the sumoylation pathway. 

 

Nutrient imbalance 

Nutrient deficiency is a type of stress that severely conditions plant growth and 

development. To circumvent nutritional scarcity plants possess a wide range of strategies, involving 

morphological, biochemical and transcriptional remodeling. Sumoylation, by controlling the 

homeostasis of essential nutrients such as N, inorganic phosphate (Pi), and cooper (Cu), is 

emerging as a hub in nutritional sensing and response in plants (Fig. 1.3E). Under low Pi 

conditions, siz1 mutant shows exacerbated Pi-starvation responses, such as inhibition of primary 

root growth, extensive lateral root and root hair development, increased root-to-shoot ratio, and 

anthocyanin accumulation, suggesting that this E3 acts as a negative regulator (Miura et al., 2005; 
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Miura et al., 2011a; Miura et al., 2011b). Remodeling of the root architecture during Pi-deficiency 

involves an altered auxin pattern, with SIZ1 acting as a negative regulator in the transcription of a 

series of auxin-responsive genes (Miura et al., 2011a). This regulation may involve the sumoylation 

of Auxin-Resistant 4 (AXR4, present in the list of abiotic stress-related SUMO-conjugates). AXR4 is 

involved in auxin redistribution and re-modulates root architecture in response to Pi starvation 

(Nacry et al., 2005). Miura and co-workers (2005) found that Phosphate Starvation Response 1 

(PHR1), a key transcription factor in several Pi-starvation responses, is positively regulated by SIZ1-

dependent sumoylation at positions K261 and K372 (Fig. 1.3E). In support of this finding, SIZ1 

appears to positively regulate Pi-starvation genes such as IPS1 and RNS1, which are part of the 

PHR1-regulon (Miura et al., 2005). Also, PHR1 expression is not significantly induced nor its 

subcellular localization affected by Pi-starvation (Rubio et al., 2001), suggesting modulation at  

PTM level. 

 Unlike siz1, no differences in root hair length and number have been observed in the phr1 

mutant (Rubio et al., 2001; Miura et al., 2005; Nilsson et al., 2007), suggesting the existence of 

additional pathways regulated by SIZ1/SUMO in response to Pi-starvation. One plausible candidate 

found in the SUMO conjugate list by Miller et al. (2010) is Low Phosphate Root-2 (LPR2). LPR2 and 

its paralog LPR1 are multicopper oxidases that positively control the decrease in primary root 

length and increase in thenumber of lateral roots upon Pi-starvation (Svistoonoff et al., 2007). 

Since the lpr2 seems to be insensitive (while siz1 is hypersensitive) to Pi-starvation, sumoylation 

may have a negative effect on LPR2 function. This antagonistic role is supported by  

the intermediate phenotype displayed by the lpr1 siz1 double mutant in terms of root architecture, 

anthocyanin content, and regulation of Pi-starvation-responsive genes PAP2, IPS1 and PT2  

(Wang et al., 2010). 

SIZ1-dependent sumoylation also controls N homeostasis in Arabidopsis, positively 

regulating the catalytic activity of nitrate reductases NIA1 and NIA2 (Park et al., 2011a). These two 

enzymes are important for N-assimilation, explaining why siz1 displays low N content. Moreover, 

the siz1 pleiotropic phenotype is reverted by exogenous ammonium but not nitrate, reinforcing the 

notion that deficient N reduction is one of the main determinants of the siz1 pleiotropic phenotype 

(Fig. 1.3E,F; Park et al., 2011a).  

Nutrient availability is essential for normal growth, yet an excess on nutrients may lead to 

detrimental effects. For example, Cu is crucial factor in multiple biological processes, but 

overabundance induces reactive oxygen species (ROS) production and results in toxicity due to its 
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high redox activity (Cuypers et al., 2011). The involvement of SIZ1 in the control of Cu level and 

distribution was suggested by Chen and co-workers (2011), who showed that under conditions of 

excess Cu, the mutant siz1 accumulated this nutrient in the aerial organs and showed Cu 

hypersensitivity. These phenotypes could be partially explained by the observed induction of the 

metal transporters Yellow Stripe-Like1 and 3 (YSL1/3). Since sumoylated proteins increase in a Cu 

dose-dependent fashion, SUMO is likely to block transcription of YSL1/3 (Fig. 1.3E; Chen et al., 

2011). YSL transporters have been associated to iron and zinc remobilization (Curie et al., 2009), 

and in fact Chen and co-workers (2011) observed that manganese, zinc, and Pi also accumulate in 

the siz1 mutant while the accumulation of potassium decreases, suggesting  that sumoylation is 

closely involved in the allocation and homeostasis of metal ions as well as other nutrients. 

 

 

1.6. ADDITIONAL INSIGHTS INTO SUMO FUNCTION AND REGULATION BY STRESS 

In plants, SUMO seems to take part in the interplay between normal development and 

abiotic-stress coping modes. Hormones are important factors in many tolerance responses 

(Hirayama and Shinozaki, 2010; Qin et al., 2011), and should play a key role in the SUMO-abiotic 

stress association since mutants for SUMO pathway components have been shown to deregulate 

the metabolism/homeostasis of salicylic acid (SA), ABA, auxins, ethylene, brassinosteroids, 

jasmonic acid, and cytokinins (Lois et al., 2003; Matarasso et al., 2005; Catala et al., 2007; Lee et 

al., 2007; Jin et al., 2008; Huang et al., 2009; Ishida et al., 2009; Miura et al., 2009; Miller et al., 

2010; Miura et al., 2010; Miura et al., 2011a). The foremost example is SA, which accumulates 

considerably in sum1-1 amiR-SUM2, and siz1 mutants. Inhibiting SA levels in siz1 by mutating 

PAD4 or ectopically expressing the bacterial salicylate hydrolase transgene NahG greatly reverts its 

pleiotropic phenotype (Lee et al., 2007). This includes the SIZ1-dependent response to cold but not 

that to basal thermotolerance, highlighting an underlying complexity (Yoo et al., 2006; Miura and 

Ohta, 2010).  

SUMO modulation of abiotic stress responses occurs primarily at the nuclear level. Saracco 

and co-workers (2007) observed that sumoylated proteins concentrate in the nucleus, while part of 

the free SUMO is cytoplasmic, suggesting that SUMO exerts a function in the regulation and 

remodeling of the nuclear proteome. In agreement, isolated SUMO targets are mainly nuclear 

proteins (Budhiraja et al., 2009; Miller et al., 2010; Park et al., 2011b). In general, SUMO is 

assumed to be a repressor of transcription, namely by modification of chromatin-remodeling 
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complexes and more specifically by the promotion of histone deacetylation (van den Burg and 

Takken, 2009, 2010). Not surprisingly, chromatin remodeling is also a critical aspect of plant 

abiotic stress responses (Kim et al., 2010), and we have identified several chromatin-associated 

proteins such as GCN5, ADA2a, and ADA2b, within the subset of abiotic stress-related SUMO-

conjugates (Appendix I - Table S1.1). A functional correlation is now emerging between sumoylation 

and mRNA fate in the nucleus (particularly in response to abiotic stress), since in non-plant 

models, sumoylation candidates are involved in all steps of mRNA processing and export from the 

nucleus (Meier, 2012). In support of this functional correlation, Arabidopsis ESD4, the first SUMO 

protease described in plants, is preferentially located in the nuclear periphery, associated to the 

nuclear pore complex component NUA (Xu et al., 2007), and possibly to the nucleoporin NUP160 

(Muthuswamy and Meier, 2011). Mutants of these components accumulate SUMO-conjugates and 

Poly(A)+ RNA in the nucleus (Xu et al., 2007; Muthuswamy and Meier, 2011). The E3 ligase siz1 

mutant displays similar mRNA retention in the nucleus, while evidencing decreased SUMO levels, 

particularly in response to stress (Muthuswamy and Meier, 2011). It would appear that the 

disruption of SUMO homeostasis leads to mRNA accumulation in the nucleus, a phenomenon that 

can also be observed following abiotic stress (Muthuswamy and Meier, 2011).  

Perhaps the most intriguing enigma lays in the regulation of the SUMO pathway. Part of 

the answer may reside in the fact that the sumoylation machinery itself is a target of SUMO 

modification. For example, upon being exposed to heat stress, the E1 subunit SAE1 and E2 SCE1 

undergo reduced sumoylation while the sumoylation of SIZ1 increases substantially (Miller and 

Vierstra, 2011). Moreover, SUMO components may themselves be susceptible to temperature 

changes, as suggested by Castaño-Miquel and co-workers (2011) who showed that sumoylation is 

enhanced by high temperatures. Interestingly, SIZ1 is a target of multimeric sumoylation in lysines 

K100, K479 (a non-consensus site) and K488, the first also being modified by oxidative stress 

(Miller et al., 2010). In mammals, low physiological concentrations of H2O2 inhibit SUMO 

conjugation by inducing the formation of a disulfide bond between the catalytic cysteines of the E1 

and E2 enzymes (Bossis and Melchior, 2006a), whereas higher ROS levels inhibit SUMO 

proteases, leading to increased conjugation (Xu et al., 2009). Modulation of sumoylation by the 

redox status of the cell is an interesting concept, given that most environmental stimuli trigger ROS 

signaling events in a wave-like manner (Mittler et al., 2011), consistent with the transient nature of 

the sumoylation/desumoylation cycle. Interestingly, siz1 mutants display increased H2O2 levels 

(Kim, 2010). Ascorbate Peroxidase 1 (APX1) and Catalase 3 (CAT3), two important H2O2 
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scavengers and modulators of the cellular redox status (Miller et al., 2007; Mhamdi et al., 2010), 

are also likely to be sumoylated (Miller et al., 2010; Castano-Miquel et al., 2011). Future research 

efforts should not overlook the interplay between SUMO and ROS homeostasis. 

An increasing focus of attention is the cross-talk between diverse PTMs (Gareau and Lima, 

2010; Vertegaal, 2011). An attractive prospect is the identification in plants of human and yeast 

STUbL orthologs that would link sumoylation of a target to its ubiquitin-dependent protein 

degradation (Geoffroy and Hay, 2009). Acetylation can also target the same lysine residue as 

SUMO and ubiquitin (Bossis and Melchior, 2006b), and future focus on the three competing PTMs 

should be important. In non-plant models, sumoylation was also shown be both positively and 

negatively regulated by substrate phosphorylation (Bossis and Melchior, 2006b). In Arabidopsis, 

cross-talk between MAP Kinase 3/6/4 signaling and sumoylation has been suggested, with one 

example being the common targeting of WRKY TFs (van den Burg and Takken, 2010), opening up 

new possibilities for SUMO-abiotic stress interplay in plants.      

 

 

1.7. FINAL CONSIDERATIONS AND FUTURE PERSPECTIVES 

A strong correlation between sumoylation and abiotic stress tolerance seems to be 

conserved among eukaryotic organisms (Tempe et al., 2008), and SUMO has clearly emerged as a 

heavyweight PTM contender in the regulation of plant development, hormonal metabolism, 

resistance to pathogen challenge and, particularly, the response to environmental stimuli. Many 

SUMO targets act as key hubs in abiotic stress responses, yet in vivo, SUMO substrates are 

modified at very low steady states, a clear contradiction to the drastic phenotypes of mutants with 

altered SUMO pathways. One possible explanation for this paradox is that SUMO may be a PTM as 

common as phosphorylation. A first glimpse at the rapidly expanding number of SUMO targets 

suggests as much, with sumoylation candidates implicating this PTM in key abiotic stress 

responses. Future gene-centered approaches will be pivotal to confirm these hypotheses at a 

molecular level. Studies of SUMO pathway components should also be addressed. The E3 ligase 

SIZ1 is clearly a major abiotic stress determinant, but solving SUMO protease function and 

specificity will shed new light on the dynamics of SUMO conjugation/deconjugation cycles. Most 

significantly, future research should address the mechanistic influence of SUMO on target 

molecules, including chromatin remodeling and RNA-fate mechanisms. The use of high-throughput 

strategies, such as that of Miller et al. (2010), to accelerate the discovery of SUMO conjugates and 
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map them to different environmental challenges is now an attractive prospect, particularly when 

coupled with the use of null mutants of SUMO pathway components. It is clear that understanding 

the full impact of SUMO on the proteome during abiotic stress will be a demanding yet exciting 

challenge in forthcoming years.  

  

 

1.8. OBJECTIVES AND OUTLINE OF THE THESIS 

Unfavorable environmental conditions significantly disturb plant growth, and understanding 

the mechanisms and molecular basis behind the plant response to stress will help establish future 

strategies to optimize crop yield. Many fundamental advances in gene function discovery have been 

possible due to the genetic approaches that use Arabidopsis thaliana as model plant. Protein post-

translational modification provides a molecular regulatory level that has been the focus of 

increasing attention, particularly in what concerns the plant response to environmental stimuli. 

SUMO, an ubiquitin-like modifying peptide, has been recently implicated in the regulation of various 

nuclear processes, including transcriptional control, that coordinate the response to numerous 

abiotic stresses. 

The main aim of the current thesis was the functional characterization of SUMO pathway 

components as potential regulators of the plant abiotic stress response. Since most of these 

components lacked significant functional characterization, their implication on plant development 

and biotic stress was also addressed. Studies were carried out in the model plant Arabidopsis 

thaliana, which has been amply used in most plant sumoylation studies. Functional discovery 

combined a reverse genetics approach, based on loss-of-function T-DNA insertion mutants, and 

microarray-based transcriptomics. The SUMO E3 ligase SIZ1 is the most studied component of the 

pathway, and was one of the focus of the current thesis, namely to address the interplay between 

SUMO, mitogen-activated protein kinase (MAPK) cascades and ROS homeostasis. Another aim of 

the thesis was the functional study of previously uncharacterized SUMO pathway components, and 

for this purpose studies were carried out in two SUMO protease gene pairs: ULP1c/ULP1d  

and ULP2a/ULP2b. The present thesis is organized in seven chapters. The current chapter 

(Chapter 1) provides a general overview of the state of the art for SUMO function in plants, with a 

special focus on the regulatory role of SUMO on abiotic stress responses.   

External stresses converge in the production of ROS, and sumoylation increases in 

response to oxidative stress. To our knowledge, no function has been previously singled out for 
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SUMO in the maintenance and/or regulation of ROS homeostasis in plants. Therefore, Chapter 2 

explores the SUMO-ROS relationship using as a model the Arabidopsis siz1 mutant. We show that 

SIZ1 is involved in SUMO-conjugate increment in response to exogenous ROS (H2O2) and ROS 

inducers (methyl viologen, MV). In siz1, seedlings are sensitive to oxidative stress, and mutants 

accumulate different ROS throughout development. This deregulation in ROS homeostasis is 

partially due to SA accumulation in siz1. SUMO-related proteins converge with various ROS 

homeostatic genes. Simultaneously, oxidative stress-dependent SUMO-conjugates suggest a strong 

interplay between SUMO, ROS and SA at the nuclear level, namely with the involvement of 

chromatin remodeling proteins.  

Albeit the biological importance of SUMO functioning, the mechanisms that indeed control 

SUMO cycle homeostasis are still unclear. It is likely that internal signaling cascades may control 

sumoylation. In Chapter 3 we reported a match in expression patterns, targets and mutant 

phenotypes, between the MAPK and SUMO signaling cascades. Although no obvious sumoylation 

of MKK2 or MPK4 or even interaction of SUMOs with MPK4 was observed, mutants of these MAPK 

components phenocopy siz1 defects and also control SUMO-conjugate accumulation.   

In contrast to the low number of components involved in SUMO conjugation, there are 

several SUMO proteases coded in plant genomes. SUMO proteases are sources of selectivity, since 

they can discriminate different SUMO targets to be de-sumoylated, and display different expression 

patterns and subcellular localizations. Considering that most SUMO proteases are functionally 

unresolved, we produced homozygous T-DNA mutants for all Arabidopsis ULP family members, 

and focused on the novel functional characterization of several ULPs. In Chapter 4 we 

characterize ULP1c and ULP1d involvement in plant development and the response to water 

deficit. We show that ULP1c and ULP1d proteases act redundantly to positively regulate growth 

and germination. GUS reporter assays indicate that both genes are expressed in various 

developmental stages, with focus on the vasculature. Microarray analysis show that genes involved 

in development, ABA-signalling and drought tolerance are deregulated in the ulp1c/d double 

mutant. The ulp1c/d mutant accumulates high levels of SUMO conjugates even under non-stress 

conditions, and displays tolerance to prolonged drought. We observe increased stomatal aperture 

and decreased stomatal density in ulp1c/d, with no impact on the response to rapid dehydration. 

Conversely, ulp1c/d displays diminished in vitro root growth under low water potential. Generation 

and analysis of the triple mutant ulp1c/d siz1, suggests that ULP1c/d and SIZ1 may display 

separate functions in the control of development and the response to low water potential.  
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In Chapter 5 we report that ULP1c/d are negative regulators of defence responses 

against Pseudomonas syringae pv. tomato (Pst) DC3000. The ulp1c/d mutant seems to be more 

tolerant to Pst DC3000 infection, but no phenotypes were observed for ULP1c or ULP1d 

overexpression lines. Microarray analysis of ulp1c/d infiltrated with Pst DC3000 led us to conclude 

that upon infection, ULP1c/d contributes for gene expression regulation associated to  

various physiological traits. Examples include the up-regulation of Xyloglucan 

endotransglucosylase/hydrolases genes (XTHs) and the down-regulation of several auxin-induced 

genes. Since auxin-responsive genes were affected, we tested ulp1c/d for auxin phenotypes in 

normal growth conditions and upon Pst DC3000 challenging. Although no major changes in auxin 

pattern were observed in ulp1c/d using the transgenic line proDR5::GUS, ulp1c/d displayed 

sensitivity to exogenous supplementation of auxins.    

In Chapter 6, we characterize the Arabidopsis SUMO protease pair ULP2a and ULP2b. 

These proteases are partially redundant and ULP2b seems to play a more dominant role. 

Phylogenetic and structural analyses place these two proteases in a ULP2-type subgroup that 

shares many features with SUMO chain editing proteases of non-plant species. The double mutant 

ulp2a/b, and less pronouncedly ulp2b, displays several morphological defects. An ulp2a/b 

microarray profile shows a clear deregulation in the expression of genes spatially mapped to the 

extremity of chromosomes. Some ulp2a/b phenotypes are antagonistic to siz1, including SUMO-

conjugate accumulation, late flowering and higher pigment content. By introgressing ulp2a/b with 

the siz1 background, we show that ulp2a/b siz1 morphologically resembles siz1 and displays a 

superimposing transcriptional profile with siz1, suggesting that ULP2a/b are epistatic to SIZ1.  

In the last chapter, Chapter 7, we address the main conclusions of the thesis and provide 

an overview of future research lines.   

The work presented in each chapter is arranged in a scientific paper-like manner. 

Contributions to the current work by collaborators are discriminated in each chapter cover, and the 

use of the first person plural is adopted as standard throughout the thesis.  
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2.1. INTRODUCTION 

Incorporation of molecular oxygen (O2) into metabolic processes considerably expanded 

energetic efficiency but also led to the concomitant production of partially reduced or activated 

forms of oxygen, designated reactive oxygen species (ROS). Potentially dangerous ROS forms can 

occur by energy transfer (singlet oxygen, 1O2) or by electron transfer reactions (superoxide, O2
•−; 

hydrogen peroxide, H2O2; hydroxyl radical, HO•; Apel and Hirt, 2004). ROS are predominantly 

produced as by-products of metabolism, namely in chloroplasts, mitochondria and peroxisomes, 

and a competent network of ROS scavenging mechanisms has evolved to ensure appropriate ROS 

homeostatic levels (Mittler et al., 2004). In recent years, ROS have been increasingly viewed as 

central and extremely effective signalling molecules, contributing for the integration of hormone 

signals and plant development (Gadjev et al., 2006; Mittler et al., 2011). In fact, ROS can induce 

transcriptional changes that are specific of their chemical nature and subcellular origin (Gadjev et 

al., 2006; Rosenwasser et al., 2011). Production of ROS is a common feature of plant stress 

responses, and it is believed to play a key role in the signal transduction pathways that lead to 

transcriptional reprogramming (Gadjev et al., 2006; Miller et al., 2010a). 

Post-translational modifications (PTMs) are essential, rapid and reversible protein activity 

modulators. These modifications are particularly important for plants that, being sessile, require 

optimal and swift responses to a constantly changing environment. One PTM of pivotal importance 

employs modification by ubiquitin and small ubiquitin-like peptides (UBLs). Ubiquitin is the focus of 

intensive research, but the UBL class includes the increasingly important Small Ubiquitin-like 

Modifier (SUMO; Miura and Hasegawa, 2010). Modification by SUMO can exert different effects on 

a target protein, including conformational changes, and creation or blocking of interacting 

interfaces (Wilkinson and Henley, 2010). Most SUMO targets are associated to nuclear-related 

functions, involving histone regulation, formation of subnuclear bodies, remodeling of chromatin 

complexes, and ultimately contributing for transcription regulation (Lyst and Stancheva, 2007; 

Cubenas-Potts and Matunis, 2013). The mechanism by which SUMO is attached to a target is 

named sumoylation: SUMO peptides are first processed by SUMO proteases (ULP/SENP family) 

exposing an N-terminal di-glycine motif, and are then conjugated to a target protein via SUMO E1 

activases (SAE1/SAE2 heterodimer) and SUMO E2 conjugases (SCE), with the aid of SUMO E3 

ligases (e.g. SIZ/PIAS family); deconjugation of the SUMO peptide is carried out by SUMO 

proteases (Gareau and Lima, 2010). SUMO homeostasis has been proved to be fundamental for 

plant development because mutations in pathway components result in embryonic lethality or 
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pleiotropic phenotypes (Murtas et al., 2003; Catala et al., 2007; Saracco et al., 2007; Ishida et al., 

2009; Miura et al., 2010). Most functional studies have been carried out in siz1 mutants that are 

dwarf but not lethal (Catala et al., 2007; Miura et al., 2010). SIZ1 is involved in many abiotic stress 

tolerance mechanisms, including the response to extreme temperatures, drought, salinity, and 

altered levels of nutrient availability (Castro et al., 2012). One interesting feature of SUMO is that 

SUMO-conjugates rapidly accumulate upon stress conditions, placing SUMO in the first stages  

of the plant response to stress, most likely associated to transcriptional re-programming (Castro et 

al., 2012). 

Sumoylation machinery components are themselves targets of SUMO modification, a 

process that may be modulated by stress. While E1 subunit SAE1 and E2 SCE1 seem to be less 

sumoylated in response to heat shock, SIZ1 is heavily and transiently sumoylated at multiple 

lysines (Miller et al., 2010b; Miller and Vierstra, 2011; Miller et al., 2013). In addition, other stress 

conditions such as H2O2 and ethanol induce SIZ1 sumoylation, being SIZ1 one of the most SUMO-

modified targets reported by high-throughput analysis of the sumoylome (Miller et al., 2013). 

SUMO-conjugates accumulate in response to oxidative conditions, but the mechanism through 

which conjugates increase is still unresolved. Cellular redox fluxes in response to multiple 

environmental stimuli may ultimately regulate SUMO-conjugates levels. At low concentrations of 

H2O2, a disulfide bond within the catalytic cysteines of the mammal E1 and E2 is produced, 

inhibiting sumoylation (Bossis and Melchior, 2006). Meanwhile, higher concentrations of ROS lead 

to inhibition of SUMO protease activity (Xu et al., 2008), suggesting that in non-plant models, 

SUMO pathway components are highly responsive to the cellular redox status. Examples of 

possible plant SUMO conjugates that are part of the ROS scavenging network include APX1 and 

CAT3 (Miller et al., 2010b; Castano-Miquel et al., 2011). Recently, Miller et al. (2013) reported that 

APX1 is highly and specifically over-sumoylated in response to H2O2 treatment.  

In the present study we provide evidence towards a reciprocal regulation between ROS 

levels and sumoylation. We demonstrated that SIZ1 is important for SUMO-conjugate induction in 

response to oxidative conditions. Moreover the siz1 mutant displayed altered ROS homeostasis, 

constitutively accumulating H2O2, superoxide ion and singlet oxygen. In addition, siz1 shoots are 

sensitive to both exogenous and endogenous ROS. These siz1 phenotypes can be greatly recovery 

by the expression of the transgenic salicylate hydroxylase NahG, implicating salicylic acid (SA) in 

the de-regulation of ROS homeostatic levels.   
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2.2. RESULTS 

 

Endogenous and exogenous ROS induce SIZ1-dependent sumoylation  

There is strong evidence towards a correlation between sumoylation and ROS homeostatic 

levels, since in non-plant models, oxidative stress has been linked with an increase in high 

molecular weight SUMO-conjugate levels (Manza et al., 2004; Zhou et al., 2004; Bossis and 

Melchior, 2006). The existence of this phenomenon in plants was first identified in hydroponically-

grown Arabidopsis seedlings subjected to exogenous H2O2 (Kurepa et al., 2003; Miller et al., 2013). 

To better resolve how ROS determine the plant sumoylation status, we infiltrated 10-day-old 

Arabidopsis seedlings with an exogenous ROS source (H2O2) and induced internal ROS using methyl 

viologen (MV), prior to analyzing the SUMO-conjugate profile. The total protein immunoblot was 

performed using antibodies raised against the main Arabidopsis SUMO peptides SUM1/2 and 

SUM3. The Arabidopsis SUMO E3 ligase SIZ1 is the major E3 associated to abiotic stress 

responses (Castro et al., 2012). SIZ1 null alleles are standard for functional studies on sumoylation 

in Arabidopsis, therefore experiments were carried out using the knockout siz1-2 mutant.  

As depicted in Figure 2.1A, an increase in SUM1/2-conjugates was observed following 

both H2O2 and MV challenges. Endogenous generation of ROS via MV generated higher  

SUMO-conjugate levels when compared to exogenous ROS generation by H2O2. Consistently, a clear 

dose-dependent response was observed for MV, whereas no obvious dose-dependency was 

observed at existing concentrations of exogenously applied H2O2. Results suggest that priming 

SUMO conjugation with MV was more efficient, and should be subsequently used as a 

methodology. As expected, accumulation of SUM1/2-conjugates was severely impaired in the  

loss-of-function mutant for the E3 ligase SIZ1 (Fig. 2.1A), placing SIZ1 as a modulator of  

ROS-dependent increase of SUM1/2-conjugation. In contrast to SUM1/2, SUM3-conjugates did not 

accumulate in response to oxidative stress (Fig. 2.1B). Overall results suggest that SUM1/2 are 

the main Arabidopsis SUMO isoforms that respond to ROS, and that their conjugation is greatly  

SIZ1-dependent. 

 

The siz1 mutant displays altered responses to oxidative stress  

The correlation between SUMO-conjugates and increased ROS levels suggests a role for 

sumoylation in the response to oxidative stress. Thus we analyzed siz1-2 behavior in the presence 

of MV, which generates oxidative stress mostly by promoting the formation of superoxide ion in 
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(Castro et al., 2012); (2) the compiled set of known protein-protein interactors with the SUMO 

conjugation/deconjugation machinery (Castro et al., 2012). Data included a subset of SUMO 

conjugates that differentially increase following oxidative stress (Miller et al., 2013). We first cross-

referenced the RGN and PRX datasets with SUMO-related genes. Surprisingly only six overlapping 

genes were observed, all encoding RGN members (Fig. 2.6A,B; Table 2.1). Major ROS-scavenging 

enzymes APX1, CAT1, CAT3 and FSD1, as well as the thioredoxin-like TTL1, were identified as 

SUMO targets, and APX1 was within the subset of oxidative stress-induced SUMO conjugates 

(Table 2.1). The thioredoxin ATHX was identified as a predicted protein interactor of the SUMO 

pathway E2 enzyme (SCE1) and the SUMO protease ESD4 (Fig. 2.6B; Elrouby and Coupland, 

2010).  

 

Table 2.1. Involvement of ROS Gene Network components and peroxidases with SUMO. Arabidopsis genes of all 
described SUMO-conjugates (Castro et al., 2012; Lopez-Torrejon et al., 2013; Miller et al., 2013), as well as 
differentially expressed genes in adult siz1-3 (Catala et al., 2007) and 10-day-old siz1-2 (current work), were cross-
referenced with ROS Gene Network and typical Arabidopsis peroxidases (biol.unt.edu/~rmittler/re4.htm).  

    

AGI Code Gene Name Description Functional association to SUMO  

    

 
ROS Gene Network 
 
At1g07890 APX1; CS1; 

MEE6 
Ascorbate peroxidase 1 SUMO conjugate (oxidative stress inducible) 

At1g20630 CAT1 Catalase 1 SUMO conjugate; down-regulated in siz1-2 
seedlings 

At1g20620 CAT3; SEN2 Catalase 3 SUMO conjugate 

At4g25100 FSD1 Fe superoxide dismutase 1 SUMO conjugate; up-regulated in siz1-2 
seedlings 

At1g06830  Glutaredoxin family protein Up-regulated in siz1-2 seedlings 

At1g63940 MDAR6 Monodehydroascorbate reductase 6 Up-regulated in siz1-2 seedlings 

At3g24170 GR1 Glutathione-disulfide reductase Up-regulated in siz1-2 seedlings 

At1g53300 TTL1 Tetratricopetide-repeat thioredoxin-like 1 SUMO conjugate 

At1g50320 ATHX; THX Thioredoxin X Sumoylation interactor 

At4g15680  Thioredoxin superfamily protein Up-regulated in siz1-2 seedlings 

At5g07460 ATMSRA2; 
PMSR2 

Peptidemethionine sulfoxide reductase 2 Up-regulated in siz1-2 seedlings 

At1g08830 CSD1 Copper/zinc superoxide dismutase 1 Down-regulated in siz1-2 seedlings 

At1g48130 PER1 1-cysteine peroxiredoxin 1 Down-regulated in siz1-2 seedlings 

At2g28190 CSD2; 
CZSOD2 

Copper/zinc superoxide dismutase 2 Down-regulated in siz1-2 seedlings 

At1g03850 GRXS13 Glutaredoxin family protein Up-regulated in adult siz1-3  

At1g32350 AOX1D Alternative oxidase 1D Up-regulated in adult siz1-3 

At1g45145 ATH5; LIV1; 
TRX5 

Thioredoxin H-type 5 Up-regulated in adult siz1-3 
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Table 2.1. (Continued)  
    

At3g62960  Thioredoxin superfamily protein Up-regulated in adult siz1-3 

At4g33040  Thioredoxin superfamily protein Up-regulated in adult siz1-3 

At5g20230 BCB; SAG14 Blue-copper-binding protein Up-regulated in adult siz1-3 

At5g47910 RBOHD Respiratory burst oxidase homologue D Up-regulated in adult siz1-3 

 
Peroxidases 
 
At2g37130  Peroxidase superfamily protein Up-regulated in siz1-2 seedlings 

At3g01190  Peroxidase superfamily protein Up-regulated in siz1-2 seedlings 

At3g21770  Peroxidase superfamily protein Up-regulated in siz1-2 seedlings 

At3g49120 ATPCB; 
PERX34; 
PRX34; 
PRXCB 

Peroxidase CB Up-regulated in siz1-2 seedlings 

At1g14540  Peroxidase superfamily protein Up-regulated in adult siz1-3 

At3g28200  Peroxidase superfamily protein Down-regulated in adult siz1-3 

 

Sumoylation operates mostly in the cell nucleus and is assumed to act largely as a 

transcriptional repressor (van den Burg and Takken, 2009, 2010), therefore we analyze how loss 

of sumoylation impacted on ROS homeostatic genes at the gene expression level. In order to 

generate transcriptional data at the early stages of development when a deregulation of both O2
•− 

and H2O2 was shown to occur in the absence of clear developmental differences (Fig. 2.3), we 

performed microarray analysis of 10-day-old siz1-2 seedlings. Analysis rendered 380 up-regulated 

and 232 down-regulated genes in the siz1-2 mutant. Gene ontology (GO) term enrichment analysis 

showed the differentially expressed genes (DEGs) to be functionally related to nutrient and 

secondary metabolism, including cell wall modification, as well as the response to abiotic stimulus 

and regulation of hormone levels (Fig. 2.7A). DEGs did not significantly overlap with the previously 

estimated transcriptome of adult 4-week-old siz1-3 mutants, which was over-represented with 

genes related to brassinosteroids, auxin, abscisic acid, jasmonic acid (JA) and light responses 

(Catala et al., 2007). Venn analysis revealed that only 20% of DEGs at the seedling stage  

co-expressed at the adult stage (Fig. 2.7B).  

We subsequently cross-referenced differentially-expressed genes at both stages with RGN 

and PRX datasets (Fig. 2.7C,D; Table 2.1). In 10-day-old seedlings we noticed that several major 

ROS scavenging enzymes were differentially expressed (Fig. 2.7C). Analysis revealed that 

copper/zinc superoxide dismutases CSD1 and -2 were down-regulated, while Fe superoxide 

dismutase 1 (FSD1) was up-regulated. In addition, CAT1 was down-regulated and glutathione 

reductase GR1 was up-regulated. In late stages of siz1 development, no traditional ROS scavenging 
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seedlings with methyl viologen, a contact herbicide commercially known as Paraquat and 

commonly used as an oxidative-stress generator (Scarpeci et al., 2008). MV acts as an alternative 

electron acceptor from photosystem I and transfers it to molecular oxygen promoting the 

endogenous formation of superoxide ion in the chloroplast (Fujii et al., 1990; Scarpeci et al., 

2008). In the present study we showed how endogenous ROS generation by MV was more effective 

than exogenous application of H2O2 in the promotion of sumoylation, establishing a positive and 

dose-dependent correlation between intracellular ROS levels and the pool of high-molecular weight 

SUMO-target conjugates (Fig. 2.1). SUMO-conjugates produced in response to oxidative stress were 

specifically composed of SUM1/2 (Fig. 2.1), since we could not detect obvious pattern changes in 

the SUM3 profile. These findings are in agreement with previous reports stating that SUM3-

conjugates do not change in response to salt (Conti et al., 2008), a stress condition that leads to 

ROS production (Miller et al., 2010a). Castaño-Miquel et al. (2011) have shown that SUM3 cannot 

efficiently establish non-covalent interactions with SUMO E2 conjugase, limiting conjugation 

efficiency. Nevertheless, many SUM3 targets were predicted by Elrouby and Coupland (2010) 

through a yeast two-hybrid screening and in vitro sumoylation assay, suggesting that in addition to 

covalent attachments, SUM3 may interact via non-covalent interactions. In sum, we show  

that intracellular increase in oxidative stress seems to control the generation of SUM1/2- but not 

SUM3-conjugates.   

 

SUMO controls ROS homeostatic levels and oxidative stress responses via SIZ1 

We observed that SIZ1, the major plant SUMO E3 ligase, was essential for the 

accumulation of SUMO-conjugates that took place in response to oxidative stress (Fig. 2.1).  

High-throughput strategies for the identification of SUMO-conjugates have shown that SIZ1 is one of 

the most heavily sumoylated targets in response to stress imposition, including exogenous 

application of H2O2 (Miller et al., 2013). Both indications point towards an involvement of SIZ1 in 

the response to oxidative stress. We subsequently showed that siz1-2 leaves were more susceptible 

to oxidative stress by both H2O2 and MV (Fig. 2.2). Conversely, siz1-2 roots grew better in MV 

comparatively to wild-type. These differences may relate to the fact that MV-dependent oxidative 

stress is mostly generated in photosynthetically-active tissues, when it receives electrons at the PSI 

and transfers them to molecular oxygen producing superoxide (Fujii et al., 1990; Scarpeci et al., 

2008). Also, ROS have been shown to be important for various developmental root traits (Swanson 

and Gilroy, 2010). In root tips, superoxide ion was shown to accumulate in the meristem, while 
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H2O2 accumulated in the elongation zone (Tsukagoshi et al., 2010). The balance between both ROS 

was shown to be important for the transition from cell proliferation to differentiation, impacting on 

root growth.  

Considering that siz1 displayed altered responses to oxidative stress, we analyzed how 

impaired sumoylation impacted on the homeostatic levels of major ROS. Indeed, the SIZ1 knockout 

resulted in the accumulation of the major ROS hydrogen peroxide, superoxide, and singlet oxygen 

(Figs. 2.3 and 2.8). Particularly, hydrogen peroxide levels were increased in siz1 from early to later 

stages of development. These results place SIZ1 as a homeostatic regulator of ROS levels in plants.  

 

SUMO is likely to interplay with ROS-scavenging mechanisms 

SIZ1 may inhibit the generation of ROS by acting as a positive regulator of ROS scavenging 

enzymes, controlling their detoxifying activities either at the transcriptional or PTM levels (Table 

2.1). Recently, targets of sumoylation in response to oxidative stress were identified (Miller et al., 

2013), revealing that levels of SUMO-conjugated APX1 increase significantly in H2O2-treated plants 

(Table 2.1). APX1 is a cytosolic and highly expressed ascorbate peroxidase that is essential for the 

control of ROS homeostatic levels and can exert a protective effect on various organelles (Davletova 

et al., 2005; Maruta et al., 2012). APX1 is part of the ascorbate-glutathione (Asc-Glu) cycle, 

responsible for the recycling of the pool of these major anti-oxidant molecules (Mittler et al., 2004). 

Other ROS-scavenging enzymes that have been identified as SUMO targets include CAT1, CAT3 

and FSD1 (Table 2.1). Like APX, catalases are high specificity for H2O2 (Mhamdi et al., 2010) and 

therefore major components of the ROS detoxifying network. Unlike CAT1, CAT3 is highly 

expressed, and as a class II catalase, is associated with vascular tissues (Mhamdi et al., 2010). 

This is interesting since various SUMO pathway components including SIZ1 are  

preferably expressed in the vasculature (Chapter 4; Catala et al., 2007; Hermkes et al., 2011; 

Ishida et al., 2012).  

Despite the fact that several peroxidases and RGN members are transcriptionally de-

regulated in siz1 and some even constitute potential SUMO targets (Table 2.1), we were unable to 

observe obvious differences in CAT, SOD, APX, or PPOD activities in siz1-2 seedlings (Fig. 2.5).  

To better resolve this preliminary data, subsequent studies should focus on later developmental 

stages, and take into consideration tissue specificity as well as isoform analysis by in-gel activity 

assays. One interesting aspect is the issue of subcellular localization, since SIZ1 is nuclear (Miura 

et al., 2005) and these enzymes are cytosolic (APX1 and FSD1) or predicted to be peroxisomal 
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(CAT1 and -3), which might hint to SIZ1-independent sumoylation (Myouga et al., 2008; Mhamdi et 

al., 2010). Also, mutants for FSD1, CAT1 or CAT3 do not develop great phenotypic differences 

when compared to the wild-type (Myouga et al., 2008; Mhamdi et al., 2010). APX1 knockout is 

smaller and accumulates more H2O2 in response to high light (Davletova et al., 2005). Analysis of 

the genes associated to sumoylation (Table 2.1) indicates a prevalence of stress-responsive genes, 

which suggests a preponderant role for SUMO on the oxidative stress response.   

 

ROS accumulation involves SA signaling  

We have found that ROS production is partially a consequence of SA accumulation in the 

siz1 background. The siz1 mutant displays common features to an autoimmune mutant: SA 

accumulation, cell death lesions, up-regulation of Pathogen-Related genes, dwarfed phenotype, and 

increased tolerance to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 

(Lee et al., 2007; Miura et al., 2010). The expression of NahG in siz1 greatly reverts the dwarfism 

and many of these autoimmune responses (Appendix II – Fig. S2.1; Lee et al., 2007; Miura et al., 

2010). In the case of ROS levels, NahG partially suppressed the accumulation of H2O2 and O2
•− but 

not of 1O2 (Fig. 2.4), suggesting that SA-dependent and independent mechanisms of ROS level 

maintenance are controlled by SIZ1.  

One interesting gene de-regulated in siz1 is the NADPH oxidase/respiratory burst oxidase 

homologue protein D (RBOHD), which is up-regulated in 4-week-old mutants (Table 2.1). RBOHD is 

considered a master regulator in Arabidopsis ROS-generated responses (Marino et al., 2012). 

Generally, RBOHs are transmembrane proteins that produce superoxide ion by transferring 

electrons to an extracellular O2 electron acceptor (Marino et al., 2012). Unlike remaining RBOHs 

which seem to play specific roles, RBOHD is widely expressed and assumes a more housekeeping 

function in Arabidopsis (Marino et al., 2012). It is also essential for the propagation of ROS signals 

triggered by stress conditions, including the response to pathogens (Miller et al., 2009; Pogany et 

al., 2009). The mutant rbohd accumulates more SA in standard conditions (Miller et al., 2009). 

More significantly, RBOHD expression is controlled by SA (Devadas et al., 2002), therefore, 

overexpression of RBOHD in siz1 may be one of the causes of SA-dependent ROS accumulation. 

Introgression of a rbohd mutation into the siz1 background will be important to genetically establish 

a correlation between RBOHD and SIZ1 in the control of ROS homeostatic levels. 
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Oxidative stress-dependent SUMO-conjugates suggest interplay between SUMO, ROS 

and SA at the nuclear level 

The most intriguing set of targets proteins that increase their SUMO-conjugate levels in 

response to oxidative stress are chromatin remodeling proteins, with special focus for repression 

complexes involved in histone deacetylase recruitment (Mazur and van den Burg, 2012; Miller et 

al., 2013). Many adaptors within these complexes are sumoylated, including LEUNIG (LUG), 

LEUNIG HOMOLOG (LUH), SEUSS (SEU), TOPLESS (TPL) and TPL-related proteins (TPRs). TPL 

and TPRs are associated with many transcription factors and repressors. For instance, Pauwels et 

al. (2010) revealed that TPL/TPR interact with the ethylene-responsive element binding factor-

associated amphiphilic repression (EAR) motif of the protein Novel Interactor of JAZ (NINJA), 

creating a repressive complex associated with JAZs and the TF MYC2. This complex blocks early 

JA-genes in the absence of JA. The TOPLESS interactome includes many TFs and many are 

enriched in EAR motifs (Causier et al., 2012), highlighting the idea that TPL interacts with TFs to 

promote transcription repression. However, no direct interactions were observed between TPL and 

the histone deacetylase HDA19 (Causier et al., 2012). Zhu et al. (2010) observed the TPR1 and 

HDA19 interaction in pull-down experiments, suggesting that they are part of a complex where 

additional factors might mediate such associations. Interestingly, Groucho, the mammalian TPL 

homolog, is multisumoylated by SUMO1, a process that is fundamental for HDAC1 recruitment via 

SIM to establish the corepressor complex (Ahn et al., 2009). SUMO might be the link that 

establishes these co-repressor complexes, and oxidative stress may trigger these assemblies, as 

suggested by SUMO-conjugate increment in response to H2O2 (Miller et al., 2013). 

Additionally, components of the SAGA complex are also highly sumoylated following 

oxidative stress, including the histone acetylase GCN5 and the adaptors ADA2a and ADA2b that 

enhance GCN5 activity and recruit GCN5 to TFs (Gamper et al., 2009; Miller et al., 2013). In yeast, 

GCN5 sumoylation inhibits the induction of gene expression (Sterner et al., 2006), placing SUMO 

as a negative regulator of acetylation. Altogether, it would seem that SUMO blocks histone 

acetylation and enhances deacetylation through GCN5 and HDA19, respectively. Long et al. (2006) 

reported that the tpl-1 mutant’s aberrant development was suppressed by gcn5 and enhanced by 

had19, likely by sharing common targets for gene expression regulation. Accordingly, it was 

reported that GCN5-HDA19 forms an antagonist duet in the control of histone 

acetylation/deacetylation status to regulate light-responsive genes (Benhamed et al., 2006). In 

addition, HDA19 is involved in the repression of SA-induced expression (but not ET/JA) including 
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EDS1, PAD4, EDS5, ICS1, GDG1, PR1, and PR2 (Choi et al., 2012). These genes are up-regulated 

in siz1 mutants (Catala et al., 2007; Lee et al., 2007). SIZ1 may modulate transcriptional 

regulation, via sumoylation of corepressor components such as members of the 

TPL/Groucho/TUP1 family that recruits histone deacetylases to the promoters of key proteins of 

SA biosynthesis and signaling pathways. 

 

The siz1 mutant displays a conditional phenotype  

In the present study we generated microarray data of 10-day-old in vitro-grown seedlings, 

which were compared to Catala et al. (2007) experiments in siz1-3 adult plants, showing just 20% 

of overlapping DEGs (Fig. 2.7B). First, in addition to the different developmental stages, we should 

take into consideration that our plants were grown in in vitro conditions, which reproduce ideal 

growth conditions in what concerns nutrient availability and exposure to environmental fluctuations. 

Park et al. (2011) reported that N-assimilation is one determinant of siz1 constitutive defence 

responses and that, in supplemented ammonium conditions, siz1 partially recovers the wild-type 

phenotype. Second, in our experiment we used the siz1-2 and Catala et al. (2007) used siz1-3 

allele. Nevertheless, in all reported works, both seem to function as null alleles that lead to 

identical morphological phenotypes (Miura et al., 2010). Results suggest that the siz1 pleiotropic 

phenotype is conditional, depending on environmental conditions such as temperature (Chapter 2) 

and N-supplementation. These conditions ultimately influence the SA levels in siz1 mutants, one of 

the major causes of the siz1 phenotype. NahG, and to a little extent sid2 mutations (data not 

shown), can revert the siz1 dwarfism phenotype. This can be explained by a possible redundancy 

of ICS1/SID2 with ICS2 (At1g18870), the existence of alternative SA biosynthesis pathways, or the 

hypothesis that precursors of SA may exert a SA-like effect (Vlot et al., 2009). Alternatively, 

catechol, the byproduct of NahG, may lead to unpredictable effects, like the already suggested 

production of hydrogen peroxide (van Wees and Glazebrook, 2003). SIZ1 controls the expression of 

additional genes and in fact no key SA-associated genes were observed in in vitro-grown seedlings. 

Interestingly, these include the down-regulation of genes associated to the chlorophyll biosynthetic 

pathway, and in fact siz1 mutants display a constitutive reduction in chlorophyll levels (data not 

shown). More specifically, microarray data indicates that NADPH:protochlorophyllide 

oxidoreductase A (PORA) is down-regulated in siz1 (Catala et al., 2007). PORA is involved in the 

light-dependent conversion of protochlorophyllide (Pchlide) to chlorophyllide a, and PORA down-

regulation can lead to the accumulation of Pchlide (Buhr et al., 2008). The observed 
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overproduction of singlet oxygen (Fig. 2.8) can thus be explained by the fact that, in the presence 

of light, Pchlide suffers photoreduction to generate singlet oxygen (Buhr et al., 2008).  

 

Final considerations 

In eukaryotes, sumoylation is an essential player in the molecular control of both 

development and the response to a constantly changing environment (Castro et al., 2012). 

Specifically in plants, sumoylation has developed increasing preeminence over the last decade, and 

discovering the molecular basis of SUMO function and regulation can have an extensive impact on 

crop development. Future studies should address how SIZ1 seems to contribute, at multiple levels, 

to the modulation of ROS homeostasis. Focus should also be put on the possible role of SIZ1 in the 

assembly of transcriptional repression complexes, likely to modulate ROS homeostasis and impact 

on the repression of defence genes that are deleterious for plant growth.  

 

 

2.4. MATERIALS AND METHODS 

 

Plant material and growth conditions 

The Arabidopsis thaliana lines are in the ecotype Columbia-0 (Col) background. The T-DNA 

insertion mutant siz1-2 (SALK_065397; Miura et al., 2005) was ordered from the NASC European 

Arabidopsis Stock Centre (arabidopsis.info). The transgenic line NahG, that expresses a bacterial 

SA hydroxylase, was kindly provided by Miguel Botella (University of Malaga, Spain). Homozygous 

lines for siz1-2 NahG were determined by siz1-2 phenotype reversion of F3 seedlings as previously 

described (Lee et al., 2007). The primers used for genotyping are listed in Table S2.1 (Appendix II).  

Synchronized seeds were stratified for 3 days at 4ºC in the dark. Surface sterilization was 

performed in a horizontal laminar flow chamber by sequential immersion in 70% (v/v) ethanol for  

5 min and 20% (v/v) commercial bleach for 10 min before washing five times with sterile ultra-pure 

water. Seeds were resuspended in sterile 0.25% (w/v) agarose, sown onto 1.2% agar-solidified MS 

medium (Murashige and Skoog, 1962) containing 1.5% sucrose, 0.5 g L-1 MES, pH 5.7, and grown 

vertically in culture rooms with a 16 h light/8 h dark cycle under cool white light (80 μE m-2 s-1 light 

intensity) at 23ºC. For standard growth, 7-day-old in vitro-grown seedlings were transferred to a soil 

to vermiculite (4:1) mixture, and maintained under identical growth conditions, with regular 

watering. Oxidative stress was generated by supplementing MS media with methyl viologen  
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(MV, Sigma), or by vacuum infiltrating plant material with H2O2 or MV solutions for three cycles of  

5 min, followed by incubation under standard light conditions for 3 h.   

 

Detection by staining of ROS  

In situ H2O2 levels were estimated using the 3,3’-diaminobenzidine (DAB; Sigma) staining 

method adapted from Thordal-Christensen et al. (1997). Plant tissue was vacuum-infiltrated (three 

cycles of 5 min) with 1 mg mL-1 DAB solution, and correct with NaOH to pH 3.8. Samples were 

incubated overnight in the dark at room temperature. To remove chlorophyll content, plant tissue 

was cleared in 96% ethanol at 70ºC.  

Plant infiltration with nitroblue tetrazolium (NBT Color Development Substrate, Sigma) 

allowed the in situ detection of superoxide ion. The NBT staining method was adapted from Jabs et 

al. (1996). Plants and seedlings were vacuum-infiltrated (three cycles of 5 min) with 0.5 mg mL-1 

NBT in 10 mM sodium phosphate buffer, pH 7.8. Samples were incubated for 1 h in the dark at 

room temperature and then cleared in 96% ethanol at 70ºC until complete removal of chlorophyll.  

Singlet oxygen levels were detected using Singlet Oxygen Sensor Green (SOSG) 

fluorescence, as previously described (Flors et al., 2006; Ramel et al., 2009). Briefly, 10-day-old 

seedling were immersed and infiltrated in the dark under vacuum (three cycles of 5 min)  

with a solution of 100 μM SOSG (S36002, Invitrogen) in 50 mM phosphate potassium buffer (pH 

7.5). Seedlings were then placed again on control or high light (200 μmol Photon m-2 s-2) conditions 

for 30 min, before being photographed in a confocal fluorescence microscope for image acquisition 

or an optical fluorescence microscope for fluorescence quantification. Quantification of 

fluorescence levels was performed in ImageJ (rsb.info.nih.gov/ij/index.html). 

 

RNA extraction and microarray analysis 

The RNA from seedlings was extracted using an RNeasy Plant Mini kit (QIAGEN) and 

treated with Recombinant DNase I (Takara Biotechnology), followed by a new column cleaning step 

using an RNeasy Plant Mini kit (QIAGEN). RNA quantity and quality were assessed using both a 

Nanodrop ND-1000 spectrophotometer and standard agarose-gel electrophoretic analysis. 

Genome-wide transcription studies were performed using the ATH1 microarray chip 

(Affymetrix) with three independent replicates per genotype, each replicate represented RNA from a 

pool of four different MS plates containing 10-day-old plants grown at standard conditions. 

Microarray execution and differential expression analysis were conducted at Unité de Recherche en 
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Génomique Végétale (Université d’Evry Val d’Essonne, France). The method to determine DEGs 

was based on variance modelisation by common variance of all genes (Gagnot et al., 2008).  

 

Protein extraction and immunoblotting 

 Plant tissue was grinded in a microtube in liquid nitrogen with the help of polypropylene 

pestles. Protein extracts were obtained by adding extraction buffer [50 mM Tris; 150 mM NaCl; 

0.2% (v/v) Triton X-100] supplemented with Complete Protease Inhibitor Cocktail (Roche) as per 

the manufacturer’s instructions. Following incubation for 1 h at 4°C with agitation, microtubes 

were centrifuged two times for 30 min at 16000 g. The supernatant was subsequently recovered 

and stored at -80°C. Protein was spectrophotometrically quantified using Bradford reagent (Sigma; 

Bradford, 1976). Equal amounts of protein were resolved by standard SDS-PAGE in a 10% (w/v) 

acrylamide resolving gel, using a Mini-PROTEAN Cell (Bio-Rad) apparatus.  For immunoblotting, 

proteins were transferred to a PVDF-membrane using a Mini Trans-Blot Cell (Bio-Rad). The 

membrane was blocked for 1 h at 23ºC or overnight at 4ºC in blocking solution (5% dry milk 

powder in PBST). The primary antibody Anti-AtSUMO1 (ABCAM) or Anti-SUMO3 (ABCAM) was 

added in a 1:2000 dilution and incubated for 2 to 3 h. The membrane was washed three times 

with 10 mL of PBST for 10 min, and incubated with the secondary antibody (anti-rabbit, Santa 

Cruz; 1:10,000 in blocking solution) for 1 h. The membrane was washed as previously detailed 

and developed by a chemiluminescence reaction using the Immune-Star WesternC Kit (Bio-Rad) 

and a ChemiDoc XRS system (Bio-Rad) for image acquisition. PVDF membranes were incubated for 

15 min with Ponceau S solution [0.1% (w/v) Ponceau S; 5% (v/v) acetic acid] to stain total protein 

levels.  

 

Enzymatic activity and lipid peroxidation detection 

Lipid peroxidation was quantified spectrophotometrically by the MDA-TBA method, which 

quantifies the end product of lipid peroxidation malondialdehyde (MDA) by reaction at low pH and 

high temperature with 2-thiobarbituric acid (TBA; Loreto and Velikova, 2001). Quantification of the 

MDA-TBA complex was performed by determining the absorbance of the supernatant at 532 nm 

and deducting non-specific absorbance at 600 nm. The absorbances were measured in a 

microplate spectrophotometer (SpectraMax 340PC; Molecular Devices). The molar extinction 

coefficient of MDA-TBA complex, at 532 nm, is 155 mM-1 cm-1. 
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Pyrogallol peroxidase activity (PPOD) was determined by measuring the increase in 

absorbance at 430 nm due to the formation of purpurogallin (Radic et al., 2006). Catalase (CAT) 

activity was determined by monitoring H2O2 removal as a decrease in absorbance at 240 nm 

(Dutilleul et al., 2003). Superoxide dismutase activity was determined by measuring the inhibition 

of the photochemical reduction of NBT at 560 nm (Campa-Cordova et al., 2009). Ascorbate 

peroxidase (APX) activity was measured by monitoring the rate of  

H2O2 -dependent oxidation of ascorbate at 290 nm (Ramel et al., 2009). For all essays except APX 

activity, total soluble protein was extracted as previously described. For APX activity, leaf tissue was 

ground in liquid nitrogen, mixed with 0.5 mL of extraction buffer containing 50 mm Na-phosphate 

(pH 7.0), 0.25 mM EDTA, 2% (w/v) polyvinylpyrrolidone-25, 10% (w/v) glycerol, and 1 mM 

ascorbic acid, and centrifuged at 14000 g for 10 min at 0°C (Panchuk et al., 2002). Proteins 

levels were quantified using Bradford reagent (Sigma) method (Bradford, 1976). 

 

Bioinformatic analyses 

Venn diagrams were obtained using Venn Diagram Generator 

(www.pangloss.com/seidel/Protocols/venn.cgi). Microarray execution and differential expression 

analysis were outsourced (Gagnot et al., 2008). GO term functional categorization was performed 

in VirtualPlant 1.3 (virtualplant.bio.nyu.edu/cgi-bin/vpweb/), using the BioMaps function with a 

0.01 p-value cutoff (Katari et al., 2010). Redundancy exclusion and scatterplot analysis were 

performed using REVIGO (revigo.irb.hr/), with a 0.4 C-value. The scatterplot represents the cluster 

representatives in a two dimensional space (x- and y-axis) derived by applying multidimensional 

scaling to a matrix of the GO terms’ semantic similarities (Supek et al., 2011).  
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3.1. INTRODUCTION 

The post-translational modifier (PTM) SUMO has clearly emerged as a heavyweight 

contender in the regulation of the plant response to environmental stimuli. Many SUMO targets act 

as key hubs in these responses, and sumoylation may be a PTM as important as phosphorylation, 

making it a high profile topic in current biology in general, and plant science in particular (Castro et 

al., 2012). The mechanism by which SUMO is attached to a target is designated as sumoylation: 

SUMO peptides are first processed by SUMO proteases (ULP/SENP family) exposing an N-terminal 

di-glycine motif, and then conjugated to a target’s lysine via SUMO E1 activases (SAE1/SAE2 

heterodimer), SUMO E2 conjugases (SCE) and aided by SUMO E3 ligases (e.g. SIZ/PIAS family). 

Deconjugation of the SUMO peptide can be carried out by the same SUMO proteases. Additionally, 

SUMO may establish non-covalent interactions with proteins that contain SUMO interacting motifs 

(SIMs). SIMs are composed of a short stretch of hydrophobic amino acids, (V/I)X(V/I)(V/I) or 

(V/I)(V/I)X(V/I), and flanked by acidic residues (Gareau and Lima, 2010).  

The SIZ1 SUMO E3 ligase was previously associated with abiotic stress-responses, mainly 

by remodeling the activity of transcription factors (TFs; Castro et al., 2012). In addition, SIZ1 has 

been singled out as an important regulator of flowering time, plant growth and development (Catala 

et al., 2007; Jin et al., 2008; Miura et al., 2010). The siz1 mutant displays a dwarf phenotype 

typical of constitutive autoimmune responses, characterized by salicylic acid (SA) over-

accumulation (Lee et al., 2007; Miura et al., 2010). SIZ1 belongs to the PIAS/SIZ1 family, which is 

known for encompassing multifunctional proteins that possess several domains involved in 

functions other than sumoylation (Reindle et al., 2006; Sharrocks, 2006; Rytinki et al., 2009). 

None withstanding, siz1 defects have been specifically related to dysfunctional capacity of SIZ1 to 

aid sumoylation, since the point mutation C379A in the catalytic SP-RING domain is sufficient to 

promote the siz1 dwarfism phenotype (Cheong et al., 2009). In agreement, mutants that seriously 

compromise sumoylation upstream of SIZ1, such as sum1 amiRSUM2 and dominant negative 

SCE1(C94S), display dwarfed phenotypes that are similar to siz1 (van den Burg et al., 2010; 

Tomanov et al., 2013). SIZ1 is considered the main SUMO E3 ligase. A second functionally 

characterized E3 ligase, HPY2/MMS21, also displays a dwarfed phenotype but it is not SA-related 

(Ishida et al., 2012). SIZ1 and HPY2 expression patterns do not overlap, and reciprocal expression 

does not complement the single mutants (Ishida et al., 2012). Thus SIZ1 and HPY2 are likely to 

play different roles in the control of plant growth and development (Ishida et al., 2012).  
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MAPK cascades are common signal transducers in eukaryotes, acting as sequential 

phosphorylation cascades that link external stimulus to a rapid and adequate cellular response 

(MAPK-Group, 2002). In the pathway, MAP kinases (MPKs) are activated by upstream MAPK 

kinases (MKKs) that phosphorylate conserved threonine and tyrosine residues. In turn, MKKs are 

activated by MAPK kinase kinases (MEKKs) in serine and/or threonine residues (MAPK-Group, 

2002). MAPKs act upon gene transcription regulation, and many described MPK targets are TFs 

(Fiil et al., 2009; Popescu et al., 2009; Yang et al., 2013). MAPK cascades have been associated 

with abiotic and biotic stress responses, as well as plant growth and development (Rodriguez et al., 

2010). A good example of these pathways’ mode-of-action is the MEKK1-MKK1/2-MPK4 cascade, 

whose loss-of-function mutants exhibit a gradient of phenotypic severity (Qiu et al., 2008b). Part of 

their phenotype results from constitutive autoimmune responses, including over-accumulation of 

SA, constitutive Pathogen Releated (PR) genes expression, and resistance to pathogens (Petersen 

et al., 2000; Gao et al., 2008; Qiu et al., 2008b; Zhang et al., 2012b). Moreover, the  

MEKK1-MKK1/2-MPK4 cascade has been implicated in the regulation of ROS levels (Pitzschke et 

al., 2009). Mutants within this cascade are ROS-accumulators, lacking the capacity to maintain 

homeostatic levels of ROS (Petersen et al., 2000; Nakagami et al., 2006; Gao et al., 2008). 

Recently, van den Burg and Takken (2010) proposed that in plants, SUMO and MAPK-

dependent phosphorylation of key proteins may collaborate in the regulation of the biotic stress-

response. This cross-talk has been reported in other biological models, assuming the form of (1) 

sumoylation of MAPK components (Sobko et al., 2002; Woo et al., 2008; Kubota et al., 2011), (2) 

modification-by-phosphorylation of sumoylation machinery components (Yang and Sharrocks, 

2006), (3) sharing of common targets. The later seems the most common situation, and common 

targets often include transcription factors such as  HSFs, Bcl11b, Elk-1, PEA3, and STAT1 (Yang et 

al., 2003; Hietakangas et al., 2006; Vanhatupa et al., 2008; Guo and Sharrocks, 2009; Zhang et 

al., 2012a). Hietakangas et al. (2006) reported that some SUMO consensus sites contain an 

adjacent proline residue susceptible for phosphorylation (ΨKxExxSP), designed as phosphorylation-

dependent sumoylation motif (PDSM). In this case, phosphorylation of the PDSM contributes for 

the sumoylation of the target (Hietakangas et al., 2006). 

In the current work we proposed to explore MAPK and SUMO cross-talk in Arabidopsis. We 

found that the transcription profiles of mkk1/2 and mpk4 greatly overlapped with previously the 

published microarray profile of siz1 (Catala et al., 2007). In agreement, we found that many 

transcription factors were commonly regulated by SUMO and MAPK. In our experiments we failed 
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to detect in vitro sumoylation of MKK2 or MPK4 or protein-protein interaction between MPK4 and 

SUMO in a yeast-two-hybrid (Y2H) assay. However, MAPK cascade components were found to 

regulate sumoylation levels in vivo in a SIZ1-dependent fashion. The present work is the first report 

on MAPK and SUMO interplay in plants.  

 

 

3.2. RESULTS 

When comparing the transcriptomic profile of siz1 mutants at different developmental 

stages (10-day-old seedlings vs 4-week-old adult plants), roughly 20% of the differentially expressed 

genes (DEGs) overlap (Fig. 2.7B). One notorious difference between the two arrays is that SA-

associated genes are mainly deregulated in adult plants (Fig. 2.7B). This is evident by the up-

regulation in adult plants of central genes in plant defence such as EDS1, PAD4, ICS1/SID2, NPR1 

and many PRs. The autoimmune phenotype of the adult siz1 mutants results in constitutive innate 

defence responses and several morphological defects (Lee et al., 2007; Miura et al., 2010). In 

contrast, siz1 seedlings, growing in vitro, do not display such drastic development defects  

(Fig. 2.3; Catala et al., 2007).  

To determine the molecular basis behind the adult siz1 phenotype, we performed 

exploratory analysis for transcriptomic profiles that mimic the differential expression pattern of 

adult siz1. The siz1 most significant up- and down-regulated genes (Catala et al., 2007) were 

matched against the differential transcriptome of publicly available Arabidopsis genotypes using the 

Signature feature of Genevestigator (Hruz et al., 2008). Strong matches were observed between 

siz1 and MAPK cascade components mkk1/2 (which scored highest) and mpk4, as well as 

mutants involved in biotic stress and SA-signaling such as cpr5, bio4, csn5, cs26, lht1, and nudt7 

(Fig. 3.1A). MEKK1-MKK1/2-MPK4 cascade mutants share several phenotypical features with siz1, 

including SA accumulation, constitutive PR genes expression, resistance to Pst DC3000, and ROS 

accumulation (Petersen et al., 2000; Nakagami et al., 2006; Gao et al., 2008; Qiu et al., 2008b; 

Zhang et al., 2012b), suggesting convergence between both signaling pathways. Therefore, when 

we cross-referenced predicted SUMO targets with putative MPK interactors, 63 matches were 

observed, a higher frequency than randomly expected (Fig. 3.1B). MPKs with the highest number 

of common targets were MPK4 and MPK6 (Fig. 3.1C). Although MPK4 is the usual target for 

MKK1/2, MKK2 can also phosphorylate MPK6 in vivo (Teige et al., 2004). In in vitro conditions, 

MKK1 can also modify MPK1, -2, -4, -5 and -6, and MKK2 can also modify MPK2, -4 and -6 
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(Popescu et al., 2009). To summarize, MKK1/2 may act towards MPK2, 4 and 6 which are the 

highest consensus modifiers of SUMO targets (Fig. 3.1C; Appendix III – Table S3.1). These 

observations reinforce the potential for cross-talk between the sumoylation pathway and MAPKs, 

with emphasis on MKK1/MKK2.  

In non-plant organisms, some MKKs and MPKs were found to be SUMO targets (Sobko et 

al., 2002; Woo et al., 2008; Kubota et al., 2011). Curiously, MKK1 and MKK2 are up-regulated in 

siz1 under normal conditions (Catala et al., 2007), yet the siz1 phenotype suggests loss of 

MKK1/2 function, leading to the possibility of SIZ1-dependent post-translational regulation of 

MKK1/2. Taking in consideration that MKK1 and MKK2 are redundant (Gao et al., 2008; Qiu et 

al., 2008b), we checked MKK2 for in vitro sumoylation. Since MPK4 shares a similar 

transcriptomic profile and many SUMO targets, we explored if MPK4 was also a target of 

sumoylation. The sumoylation system consisted in the overexpression of mammalian SUMO, E1s 

and E2 (the system does not include an E3 ligase) in E. coli along with the target (Mencia and de 

Lorenzo, 2004). Constructs 6xHis-MKK2 and 6xHis-MPK4 were created to subsequently facilitate 

detection by immunoblotting. Results showed no obvious MKK2 shift corresponding to a putative 

MKK2-SUMO conjugate (Fig. 3.2A), while our positive control PCNA (Strzalka et al., 2012) showed 

a clear upper shift for the PCNA-SUMO isoform. Also, MPK4 did not show an obvious shift (Fig. 

3.2B). We observed that the MPK4 sumoylation residues predicted using SUMOplot 

(www.abgent.com) were not canonical (Fig. 3.2C), and in these cases, sumoylation normally 

requires the activity of E3 ligases, which were absent in the E. coli expression essay. We performed 

a 3D topological model of MPK4, based on PDB ID 4IC7 structure, and observed that potential 

sumoylation sites were not openly exposed in the protein surface, which might indicate that MPK4 

is not sumoylated. However, we observed within the catalytic domain several hydrophobic regions 

that matched the consensus site for SIMs (Fig. 3.2D). This raised the hypothesis that MPK4 may 

indeed interact with the SUMO peptide. Therefore, we tested if MPK4 interacted with Arabidopsis 

SUM1 and SUM3 in an Y2H assay. Results indicated that no interactions occur between Binding 

Domain (BD)-MPK4 and Activation Domain (AD)-SUM1, AD-SUM3 or the SUMO E2 AD-SCE1 (Fig. 

3.2E). Nevertheless, MPK4 was capable of interacting weakly with itself (BD-MPK4 with AD-MPK4), 

BD-SCE1 with AD-SUM1 (as expected) and also the internal positive controls BD-p53/AD-AgT and 

BD-SNF4/AD-SNF1 were consistent, validating the Y2H experiment (Fig. 3.2E). 
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To explore the genetic basis behind a potential SIZ1 and MAPK cascade convergence, we 

introgressed into the siz1 background the mutants mkk1, mkk2, mkk1/2 (Qiu et al., 2008b) and 

mpk4 from SALK (Fig. 3.3A). The MPK4 mutant (mpk4, SALK_056245) was genotyped and 

expression of MPK4 was assessed by quantitative Real-Time PCR (qPCR) and western blot, since it 

was uncharacterized at the beginning of the present study (Fig. 3.3B-E). The MPK4 transcript was 

almost undetectable and no protein was detected by immunoblot in the mutant. Already in the 

early stages of development, mpk4 showed abnormal root growth (Fig. 3.3F) and seedling lethality 

(data not shown). In fact, all the MEKK1-MKK1/2-MPK4 cascade components mutants are lethal in 

the seedling stage (reviewed by Rodriguez et al., 2010). Unlike mkk1/2, the mkk1 and mkk2 single 

mutants do not show development defects due to functional redundancy (Gao et al., 2008; Qiu et 

al., 2008b). This lethality was circumvented by permanently growing plants in a higher though 

moderate temperature (28ºC; Fig. 3.4A), as previously described (Gao et al., 2008; Qiu et al., 

2008b). While mkk1/2 greatly recovered to a wild-type phenotype (Fig. 3.4A), mpk4 still showed 

some development defects (Fig. 3.3G, 3.4A), including aberrant flowering development (Fig. 3.3F). 

Interestingly, siz1 developmental defects were also greatly recovered by temperature (Fig. 3.4A), a 

previously unreported result. We subsequently analyzed the SUMO profile of the mutants, and as 

expected siz1 displayed a reduction in high molecular weight SUMO conjugates (Fig. 3.4B). We 

observed that mpk4 accumulated more SUM1/2-conjugates, while mkk1/2 and to some extent 

mkk2 accumulated less SUM1/2-conjugates (Fig. 3.4B). We also noticed that sometimes mkk1/2 

did not recover to a wild-type phenotype (herein designated dwarf); in those situations the SUM1/2-

conjugates levels were increased. Results suggest that developmental fitness of the mutants 

correlate with their overall SUMO-conjugate level. SUM3-conjugates unexpectedly increased in the 

siz1 mutant but not in any of the other mutants (Fig. 3.4C).  

We also performed an anti-MPK4 immunoblot, and results suggested that more than one 

band might be present. Given the observed molecular weight, the band is likely to reflect the 

phosphorylated MPK4 form (Fig. 3.4D). In agreement, the mkk1/2 mutant showed a thinner band. 

No differences were observed in siz1 comparing to the wild-type, suggesting that SIZ1 may not 

interfere significantly with MPK4 phosphorylation. At normal temperature, MPK4 levels seemed 

higher in comparison to plants growing at 28ºC (Fig. 3.4D).  
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Concerning introgressed SIZ1 and MAPK mutants, siz1 mkk1/2 showed a siz1-like 

phenotype, while siz1 mpk4 was much more dwarfed (Fig. 3.4E). The SUM1/2-conjugate 

accumulation in mpk4 decreased in siz1 mpk4, placing SIZ1 as partially responsible for SUM1/2-

conjugate increment in mpk4 (Fig. 3.4F). The triple mutant siz1 mkk1/2 did not show great 

differences in relation to siz1 or mkk1/2 (Fig. 3.4F). Overall results suggest a clear convergence 

between SUMO and MAPK signaling pathways, though MAPK components display a differential role 

in the interplay with sumoylation. 

 

 

3.3. DISCUSSION 

In this report we describe the first experimental evidence of SUMO and MAPK cross-talk in 

plants. The similarity of the transcriptomic profile of siz1 adult plants with that of mkk1/2 and 

mpk4 mutants suggests that both pathways may cooperate in the coordination of the activity of 

common targets (Fig. 3.1A). In fact, most of the targets for both pathways are transcription 

regulators and a significant number are common to SUMO and MPKs (Fig. 3.1B-C; Popescu et al., 

2009; Castro et al., 2012; Mazur and van den Burg, 2012). It is therefore feasible that SUMO 

machinery components and MPK-signaling elements such as the MEKK1-MKK1/2-MPK4 cascade 

converge at some point to regulate transcription. Similarly, it was previously reported that SIZ1 is 

located in the nucleus and MKK1/2 and MPK4 interact in the plasma membrane and nucleus 

(Miura et al., 2005; Gao et al., 2008), allowing direct modulation of common targets.   

A potential direct interaction between both PTMs may occur, as was previously described 

for non-plant models. This crosstalk may occur by the sumoylation of MAPK cascade components 

(Sobko et al., 2002; Woo et al., 2008; Kubota et al., 2011), phosphorylation of sumoylation 

machinery elements (Yang and Sharrocks, 2006), or the modulation of activity in common targets 

(Yang et al., 2003; Hietakangas et al., 2006; Vanhatupa et al., 2008; Guo and Sharrocks, 2009; 

Zhang et al., 2012a). For instance, the Dictyostelium MEK1 is sumoylated in the nucleus in 

response to chemoattractant stimulation, then it is released into the cytoplasm where it activates 

the MAPK ERK1 (Sobko et al., 2002). To check if components of the MEKK1-MKK1/2-MPK4 

cascade were sumoylated, we employed an in bacteria sumoylation system described by Mencia 

and de Lorenzo (2004). In our experiment we could not detect an obvious SUMO-conjugated 

version of MKK2 or MPK4, although good levels of unconjugated proteins were obtained (Fig. 

3.2A,B). Given that Dictyostelium MEK1 activity and phosphorylation are critical for its sumoylation 
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(Sobko et al., 2002), perhaps MKK1/2 and MPK4 might also need to be activated first prior to be 

sumoylated. Another possible explanation for the absence of sumoylation of these MAPKs, is that it 

occurs in a SUMO E3 ligase-dependent fashion, a component that is missing in our sumoylation 

system. Kubota et al. (2011) reported that MEK1/2 is sumoylated by a specific SUMO E3 ligase 

that is, in fact, the upstream kinase MEKK1. At the plasma membrane, MEKK1 interacts with 

SUMO E2 conjugase UBC9 and with MEK1/2, sumoylating the latter (Kubota et al., 2011). MPK4 

potential sumoylation sites, predicted by SUMOplot, are not canonical (Fig. 3.2C) and in these 

cases the sumoylation requires the activity of an E3 ligase (Yunus and Lima, 2009). In favor of this 

idea, MPK4 was incapable of interacting with the SUMO E2 conjugase SCE1 in an Y2H assay  

(Fig. 3.2E). Meanwhile, positional analysis of predicted MPK4 sumoylation sites within the 

topological model suggests that MPK4 sumoylation is unlikely to occur due to lysine seems 

inaccessible (Fig. 3.2D).The 3D location of SIMs inside the MPK4 catalytic pocket (Fig. 3.2D) 

suggested that this MAPK would interact directly with SUMOs by non-covalent bounding. However 

no interaction with SUM1 or SUM3 was observed in the context of our experiments (Fig. 3.2E).  

As described for other biological systems, phosphorylation of some targets may enhance 

its sumoylation (Hietakangas et al., 2006). It is likely that phosphorylation-dependent sumoylation 

also occurs in plants since MKK1/2-MPK4 and SUMO share some common targets (Fig. 3.1C). 

Examples include WRKY transcription factors such as WRKY33. WRKY33 is a target for MPK4 

phosphorylation and was pointed as a SUMO-conjugate in a high-throughput identification of SUM1-

conjugates (Qiu et al., 2008a; Miller et al., 2010). WRKY33 is an important regulator of PAD3 

expression, contributing for camalexin synthesis after pathogen attack. The wrky33 mutant partially 

suppresses the mpk4 phenotype (Qiu et al., 2008a). Interestingly, PAD3 is also up-regulated in 

siz1-3 (Catala et al., 2007). The phosphorylation of the mouse PEA3 TF contributes for its 

sumoylation (Guo and Sharrocks, 2009) and it would be important to determine if this also occurs 

to WRKY33. Other transcription factors involved in plant defence mechanisms have been predicted 

to be modified by both pathways (van den Burg and Takken, 2010). Thus SUMO-MAPK crosstalk 

would be particularly important in the response to pathogen attack, as both pathways were singled 

out as negative regulators of innate immunity (Lee et al., 2007; Gao et al., 2008; Qiu et al., 2008b; 

van den Burg et al., 2010).  

Mutants for the MEKK1-MKK1/2-MPK4 components and SUMO machinery mutants such 

as those for SUM1/2 and SIZ1 are dwarfed, partially due to SA-accumulation (Petersen et al., 

2000; Brodersen et al., 2006; Lee et al., 2007; Qiu et al., 2008b; van den Burg et al., 2010), 
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sharing common developmental phenotypes. We previously reported that siz1 constitutively 

accumulates ROS, partially due to SA-accumulation (Chapter 2). Also mekk1, mkk1/2 and mpk4 

mutants accumulate ROS and their differentially expression gene patterns show a great overlap 

with ROS and SA-regulated gene expression (Pitzschke et al., 2009). It is well described that 

SUMO-conjugation levels increase in response to oxidative stress (Chapter 2; Kurepa et al., 2003). 

This induction is partially dependent on SIZ1-activity since the mutant still shows some increase in 

SUMO-conjugates after H2O2 treatment (Chapter 2). Considering that SIZ1 is highly sumoylated in 

response to oxidative stress (Miller et al., 2013), it is likely that SIZ1 plays a role in the regulation of 

sumoylation in response to ROS oscillation, especially in response to stress conditions. MAPKs 

have been singled out as ROS sensors, and the MEKK1-MKK1/2-MPK4 cascade, also involved in 

ROS homeostasis regulation, may be activated to regulate SUMO-conjugate levels.  

The mkk1/2 and mpk4 mutants are seedling lethal when grown at standard conditions, 

but at moderately increase temperatures (28-32ºC) mutants are able to grow (Su et al., 2007; Gao 

et al., 2008; Qiu et al., 2008b). The mkk1/2 mutant showed in some occasions a dwarf 

phenotype, probably because 28ºC is the threshold for recovery from the dwarf phenotype (Fig. 

3.4E). Nevertheless, when mkk1/2 is similar to the wild-type, the sumoylation levels are relatively 

low (Fig. 3.4F). In contrast, when mkk1/2 is dwarfed, the sumoylation levels increase (Fig. 3.4F). 

In the case of mpk4, the development defects are moderately attenuated by a mild increase in 

temperature (Fig. 3.4A). MPK4 also functions in other processes apart of MAPK cascades, 

including a role in microtubule organization (reviewed by Komis et al., 2011), and that accounts for 

the great root defects in early stages, not observed in mkk1/2. The mpk4 root phenotype is 

independent of siz1 (data not shown). The increment of sumoylation in mpk4 is, at least partially, 

due to SIZ1 since the double siz1 mpk4 mutant shows a decrease in SUMO-conjugate pattern (Fig. 

3.4F). The double mutant siz1 mpk4 enhanced the dwarfism of the single mpk4, while siz1-2 is 

similar to wild-type (Fig. 3.4F). One important aspect to take in consideration is that the MEKK1-

MKK1/2-MPK4 is indirectly guarded by the resistance (R) protein SUMM2 (Kong et al., 2012; 

Zhang et al., 2012b). The constitutively autoimmune responses are practically lost in MAPK 

mutants in the summ2 background (Zhang et al., 2012b). Interestingly, expression of SUMM2 

increases in the siz1-3 mutant (Catala et al., 2007). It is possible that, to some extent, SUMM2 up-

regulation in siz1 may contribute for the enhanced dwarfism of mpk4 even when grown at higher 

temperatures. In addition, SUMM2 up-regulation may also contribute for siz1 dwarfism. Moderately 

higher temperature inhibit defence responses triggered by R genes (Alcazar and Parker, 2011). 
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This inhibition is due to the inability of SNC1 and RPS4 to localize in the nucleus, a mechanism 

dependent on the ABA increment at high temperature (Mang et al., 2012). SUMO is a regulator of 

both ABA signaling and nuclear-cytoplasm trafficking (Palancade and Doye, 2008; Miura et al., 

2009; Zheng et al., 2012) therefore, sumoylation may be an important mechanims in R-mediated 

immunity at the transcription and post-transcriptional levels.   

 

 

3.4. MATERIALS AND METHODS 

 

Plant material and growth conditions 

The Arabidopsis thaliana wild-type ecotype Columbia-0 (Col) and T-DNA insertion mutants 

SALK_065397 (siz1-2; Miura et al., 2005) and SALK_056245 (mpk4-2) were ordered through the 

NASC European Arabidopsis Stock Centre (arabidopsis.info) or the Arabidopsis Biological Resource 

Stock Center (www.biosci.ohio-state). The mutants SALK_027645 (mkk1-3), SAIL_551_H_01 

(mkk2-1) and double mutant mkk1 mkk2 (mkk1/2) seeds were kindly provided by Peter C. Morris 

(Heriot-Watt University, UK; Qiu et al., 2008b). Homozygous insertion mutants were genotyped 

based on SIGnAL T-DNA Primer Design (signal.salk.edu/tdnaprimers.2.html), using primers in 

Table S3.2 (Appendix III) and previously described by Qiu et al. (2008b).  

Seeds were stratified for 3 days at 4ºC in the dark. Seeds were surface sterilized in a 

horizontal laminar flow chamber by immersing sequentially in 70% (v/v) ethanol for 5 min and 20% 

(v/v) commercial bleach for 10 min before washing five times with sterile ultra-pure water. Seeds 

were resuspended in sterile 0.25% (w/v) agarose, sown onto 1.2% (w/v) agar-solidified MS medium 

(Murashige and Skoog, 1962) containing 1.5% (w/v) sucrose, 0.5 g L-1 MES, pH 5.7, and grown 

vertically in culture rooms with a 16 h light/8 h dark cycle under cool white light (80 μE m-2 s-1 light 

intensity) at 22-23ºC. In vitro-grown 7-day-old seedlings were transferred to a soil to vermiculite 

(4:1) mixture. Plants were watered regularly and maintained at 23ºC or 28ºC with 80% humidity. 

Plants were genotyped by PCR before the experimental assays.  

 

Quantitative Real-Time PCR 

RNA was extracted from plant tissue using an RNeasy Plant Mini kit (QIAGEN). Estimation 

of RNA quantity and quality was performed using both a Nanodrop ND-1000 spectrophotometer 

and standard agarose-gel electrophoretic analysis. Afterwards, RNA samples were treated with 
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Recombinant DNase I (Takara Biotechnology) and cDNA was generated using a SuperScript II 

Reverse Transcriptase kit (Invitrogen). For the qPCR reaction mixture SsoFast EvaGreen Supermix 

(BioRad) was used according to the manufacturer’s indications. The reaction was performed in a 

MyiQ Single-Color Real-Time PCR Detection system (Bio-Rad).  

Primers for qPCR (Appendix III - Table S3.3) were designed using NCBI Primer-BLAST 

(www.ncbi.nlm.nih.gov/tools/primer-blast/; Ye et al., 2012) to ensure specific amplification within 

the Arabidopsis transcriptome, 100-250 bp PCR amplification product size, 50-60% GC content 

and ~60ºC Tm. ACT2 (At3g18780) was used as a reference gene (Lozano-Duran et al., 2011). 

 

Plasmid construction, bacteria transformation and yeast two-hybrid assay 

The Arabidopsis MPK4 and MKK2 open reading frames were amplified from cDNA using 

the Expand High Fidelity PCR System (Roche) that contains Taq DNA polymerase and Tgo DNA 

polymerase with proofreading activity. The primers were designed to incorporate the appropriate 

restriction sites (Appendix III – Table S3.4): NheI and XhoI to clone into pET28b (Novagen), and 

NotI and AscI to clone into pENTR (Invitrogen). The amplification product was sub-cloned into the 

pGEM-T Easy vector (Promega) and sequenced. The pENTR-MPK4 vector was used to transfer the 

MPK4 ORF by recombination into yeast two-hybrid vectors pGADT7 and pGBT9 (Clontech) using 

the Gateway LR Clonase II enzyme mix (Invitrogen).  

Escherichia coli strain NCM631 competent cells (Govantes et al., 1996) were transformed 

with pET28-MPK4 or pET28-MKK2. Sequential transformations and gene overexpression were 

performed according to Mencia and de Lorenzo (2004). Y2H assays were performed as described 

in Castillo et al. (2004).  

 

Protein extraction and Immunoblotting 

Plant tissue was frozen in liquid nitrogen and grinded in a microtube with polypropylene 

pestles. Protein extracts were prepared by adding extraction buffer [50 mM Tris; 150 mM NaCl; 

0.2% (v/v) Triton X-100] supplemented with Complete Protease Inhibitor Cocktail (Roche) as per 

the manufacturer’s instructions. Samples were incubated for 1 h at 4°C with agitation and then 

centrifuged for 30 min at 16000 g. The supernatant was recovered and stored at -80°C. Protein 

was spectrophotometrically quantified using Bradford reagent (Bio-Rad; Bradford, 1976). In the 

case of in bacteria sumoylation, cell culture suspensions were directly re-suspended in sample 

buffer and boiled at 95ºC.  
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Equal amounts of protein were resolved by standard SDS-PAGE in a 10% (w/v) acrylamide 

resolving gel, using a Mini-PROTEAN Cell (Bio-Rad) apparatus. For immunoblotting, proteins were 

transferred to a PVDF-membrane using a Semi-dry Transfer Unit TE 77 (Hoefer) or Trans-Blot 

Turbo Transfer System (Bio-Rad). The membrane was blocked for 1 h at RT in blocking solution 

[5% (w/v) dry milk powder in PBST]. The primary antibody was added in a dilution 1:2000 of anti-

AtSUMO1 (ABCAM), 1:2000 of anti-AtSUMO3 (ABCAM), 1:500 of anti-HsSUMO (Abgent), 1:3000 

of anti-6xHis-tag (Biomedal), or 1:1000 of anti-AtMPK4 (Sigma) and incubated for 3 to 5 h. The 

membrane was washed three times with 10 mL of PBST for 10 min, and incubated with the 

secondary antibody (anti-rabbit IgG-HRP or anti-mouse IgG-HRP, Sigma and GE Healthcare, 

respectively; 1:10,000 in blocking solution) for 1 h. The membrane was washed as previously 

detailed and developed by a chemiluminescence reaction using the Immune-Star WesternC Kit 

(Bio-Rad) and detected by photographic film. As a protein loading control, PVDF membranes were 

stained with Ponceau S solution [0.1% (w/v) Ponceau S; 5% (v/v) acetic acid]. 

 

Bioinformatics analysis  

Protein sequence alignment of the Arabidopsis MAPK family was performed using PRALINE 

(Simossis and Heringa, 2005). The SUMO plot Analysis Program was used to predict the highest 

probable SUMO attachment lysine (www.abgent.com/tools/). The structural extrapolation of 

AtMPK4 protein was performed using the SWISS-MODEL workspace (Arnold et al., 2006), as 

previously detailed (Bordoli et al., 2009). The program DeepView/Swiss-PdbViewer was used to 

display and manipulate the extrapolated protein structure (Johansson et al., 2012).  

The comparison of the most deregulated genes in the microarray data with available 

transcriptomic profiles was done using the Signature tool in Genevestigator (Hruz et al., 2008). 

MPKs interactors and targets were obtained from the Arabidopsis Interactions Viewer (Geisler-Lee 

et al., 2007). Venn diagrams were calculated using Venn Diagram Generator 

(www.pangloss.com/seidel/Protocols/venn.cgi).  
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4.1. INTRODUCTION 

To cope with a constantly changing environment, plants have developed a number of 

molecular, biochemical and morphological strategies to withstand stress. One major problem faced 

by plants is the reduced water availability that results from stresses such as dehydration, salinity 

and extreme temperatures. Tactics to overcome low water availability include the control of 

stomata opening, root morphology and hydraulic properties, modulation of photosynthesis, cell wall 

modification and the accumulation of osmotically compatible metabolites (Aroca et al., 2012; 

Setter, 2012). To implement these strategies, plants carry out physiological adjustments and gene 

expression reprogramming, partially through phytohormone signaling circuits (Kilian et al., 2012). 

The most preponderant hormone is abscisic acid (ABA), a key regulator of many stress responses 

and particularly important for dehydration avoidance and drought tolerance, including the 

biosynthesis of protective components, the control of stomata movement, seed maturation and 

germination (Cutler et al., 2010; Raghavendra et al., 2010; Sreenivasulu et al., 2012).  

Post-translational modifications (PTMs) are essential regulators of plant stress responses, 

rapidly modulating protein function. Among PTMs, modification by ubiquitin and ubiquitin-like small 

peptides (UBLs) has been deemed essential to the control of key components in abiotic stress 

responses (Miura and Hasegawa, 2010; Lyzenga and Stone, 2012). Small Ubiquitin-like Modifier 

(SUMO) is a UBL that has gained preponderance in the past decade, since several functional 

studies have implicated this peptide in the fast and reversible modulation of protein activity without 

the necessity for degradation or de novo synthesis. SUMO may exert different effects depending on 

the target protein, controlling its conformation, or even creating or blocking interacting interfaces 

(Wilkinson and Henley, 2010). Since ubiquitination and sumoylation target the same type of amino 

acid, the latter often blocks lysine modification by ubiquitin, creating an antagonism between these 

two PTMs (Hay, 2005). More recently, SUMO chains were found to be recognized by  

SUMO-Targeted Ubiquitin Ligases (STUbLs), positively contributing for protein degradation via the 

Ubiquitin Proteasome System (Geoffroy and Hay, 2009). Even though the existence of plant 

STUbLs is yet to be established, mixed SUMO/ubiquitin chains were observed in Arabidopsis 

following heat shock (Miller et al., 2010).  

Generally, SUMO conjugates accumulate drastically during stress, a feature that seems 

characteristic of all eukaryotes (Kurepa et al., 2003; Zhou et al., 2004; Lallemand-Breitenbach et 

al., 2008). In plants, SUMO conjugation has been associated to extreme temperatures, drought 

and salinity tolerance, oxidative stress modulation and control of nutritional homeostasis (Castro et 
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al., 2012). Many of these stress responses involve the coordinated regulation of hormones, such 

as salicylic acid (SA), ABA and auxins (Miura et al., 2009; Miura et al., 2010; Miura et al., 2011). 

SUMO modulation of cellular processes occurs primarily at the nuclear level, as SUMO pathway 

components and most known SUMO targets are located in the nucleus (Budhiraja et al., 2009; 

Miller et al., 2010; Miura and Hasegawa, 2010; Park et al., 2011). Sumoylation is normally 

considered to have a repressor effect on transcription, targeting key regulators of nuclear 

mechanisms such as transcription factors (TFs) and chromatin remodeling components (Garcia-

Dominguez and Reyes, 2009; van den Burg and Takken, 2009). 

A cyclic pathway mediates the conjugation and deconjugation of SUMO to target proteins. 

Pre-SUMO peptides are initially maturated by SUMO proteases, designated Ubiquitin-Like Proteases 

(ULPs). Through their endopeptidase activity, ULPs cleave the C-terminal end of the pre-SUMO, 

exposing a di-glycine motif. Sumoylation, the covalent attachment of SUMO to a target, is similar to 

ubiquitination in that it requires the sequential activity of three enzymes, E1, E2, and E3 (Gareau 

and Lima, 2010). Through the heterodimer SUMO E1-activating enzyme (SAE), and E2-conjugating 

enzyme (SCE), an isopeptide bond is established between SUMO and the target’s ε-amino group of 

lysines, in an ATP-dependent reaction. This lysine is normally within the consensus ΨKXE 

sequence (Ψ, large hydrophobic residue; K, lysine; X, any amino acid; E, glutamic acid). In vivo this 

process is greatly enhanced by SUMO E3 ligases that aid in the reaction and promote specificity 

(Gareau and Lima, 2010). SUMO itself can be sumoylated, and for instance the major Arabidopsis 

SUMO isoforms SUM1 and -2 (but not SUM3) contain sumoylation sites enabling the formation of 

SUMO chains (Colby et al., 2006; van den Burg et al., 2010; Castano-Miquel et al., 2011). Both 

the SUMO peptide and SUMO-chains can be removed from the target by ULPs presenting 

isopeptidase activity, allowing the SUMO peptide to re-enter the conjugation pathway.  

SUMO seems to be essential for plant development. Disruption of SUMO conjugation 

components, namely SAE2, SCE1 and the SUM1/SUM2 peptides, results in developmental arrest 

in the early stages of embryogenesis, while mutants for the SUMO E3 ligases SIZ1 and 

HPY2/MMS21 display pleiotropic phenotypes (Catala et al., 2007; Saracco et al., 2007; Jin et al., 

2008; Huang et al., 2009; Ishida et al., 2009; Miura et al., 2010). In contrast to the low number of 

SUMO-conjugating components, ULPs comprise a family of at least seven elements in the model 

plant Arabidopsis thaliana (ESD4, ULP1a/ELS1, ULP1b, ULP1c/OTS2, ULP1d/OTS1, ULP2a and 

ULP2b), which may confer both specificity and redundancy to the SUMO pathway (Chosed et al., 

2006; Colby et al., 2006; Lois, 2010). ESD4 and ULP1a were previously associated to the control 
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of flowering time and plant development (Murtas et al., 2003; Hermkes et al., 2011). Although 

ESD4 and ULP1a are phylogenetically close they do not seem to be redundant since the single 

mutants display dissimilar phenotypes (the ulp1a mutant is nearly wild-type while esd4 is severely 

dwarfed) and they have different subcellular localizations (Xu et al., 2007; Hermkes et al., 2011). 

Functional characterization of SUMO proteases remains largely incomplete. To the best of 

our knowledge, the only known association between plant ULPs and abiotic stress was reported for 

ULP1c/OTS2 and ULP1d/OTS1, with both proteins acting redundantly in the tolerance to salt 

stress. A ots1 ots2 double mutant was shown to be sensitive to salt and accumulate SUMO 

conjugates, while ULP1d overexpression lines were salt tolerant and displayed reduced SUMO-

conjugate levels after stress imposition (Conti et al., 2008). In this work we showed that ULP1c/d 

are highly expressed and display unequal redundancy in the control of developmental traits, 

particularly rosette growth. Genome-wide transcriptome analysis of ulp1c/d indicates that a 

surprisingly large set of differentially expressed genes are associated with drought and ABA 

responses. These results led us to investigate the role of ULP1c and ULP1d in the response to ABA 

and water stress indicating that ULP1c and ULP1d are essential modulators of water deficit 

responses. 

 

 

4.2. RESULTS 

 

ULP1c and ULP1d show a similar expression pattern 

The fairly large number of Arabidopsis ULPs and the high phylogenetic proximity of several 

family members suggests the existence of various redundant gene pairs, one of which comprising 

Arabidopsis SUMO protease genes ULP1c/OTS2 (At1g10570) and ULP1d/OTS1 (At1g60220; 

Chosed et al., 2006; Colby et al., 2006; Lois, 2010). ULP1c/d have been implicated in salt stress 

responses (Conti et al., 2008), yet little is known on their involvement on other abiotic stress 

responses or their importance to plant development.  

To gain insight on ULP1c and ULP1d function, we first determined the spatial and 

developmental expression pattern, by generating promoter::GUS constructs that were subsequently 

transformed into Arabidopsis (Fig. 4.1). The genomic sequence of the promoters comprised  

the intergenic region for ULP1c and the 2 kbp region upstream of the start codon for ULP1d  

(Fig. 4.1A,B).  
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proULP1d::GUS expression was restricted to the vascular tissue (Fig. 4.1G,H). A slight increase in 

GUS signal was observed in emerging lateral root regions. In leaves of adult soil-grown plants, 

expression of both genes was reduced (Fig. 4.1I). For most tissues, ULP1d expression was 

stronger than that of ULP1c. In flowers and siliques, proULP1c::GUS lines showed stronger staining 

than proULP1d::GUS although the pattern remained similar (Fig. 4.1J-L). Staining was observed at 

the top and at the base of developing siliques, in the vascular tissues of petals and sepals, in the 

stamen filament and at the base of the stigma. Both genes seemed to be expressed in early 

germination stages (Fig. 4.1M-O).  

Expression patterns were consistent with publicly available gene expression maps of 

Arabidopsis development based on systematic microarray data (Appendix IV - Fig. S4.1A), including 

the prevalently higher expression of ULP1d over ULP1c (Appendix IV - Fig. S4.1B). Additional data 

supports the existence of functional redundancy between both genes: (1) co-expression analysis 

using GeneMANIA (genemania.org/) showed that ULP1c and ULP1d are highly co-expressed and 

share various genes in their co-expression networks (Appendix IV – Fig. S4.2A); (2) ULP1c/d are 

the highest co-expressing members of annotated Arabidopsis ULPs (Appendix IV – Fig. S4.2B);  

(3) phylogenetic reconstruction and syntenic relationship analysis places them as highly similar 

genes originated by a recent duplication event (Appendix IV - Fig. S4.2C,D). 

 

ULP1c and ULP1d have a role in plant growth and seed germination 

The importance of SUMO in development is supported by the pleiotropic phenotype of non-

lethal loss-of-function mutants of the pathway, including the SUMO protease ESD4 and the E3 

ligases SIZ1 and HPY2/MMS21 (Murtas et al., 2003; Catala et al., 2007; Huang et al., 2009; 

Ishida et al., 2009; Miura et al., 2010). Therefore, to investigate the role of SUMO proteases 

ULP1c and ULP1d in Arabidopsis, we isolated previously uncharacterized T-DNA lines for ULP1c 

(ulp1c-2; SALK_050441) and ULP1d (ulp1d-2; SALK_029340), with insertion sites located 

upstream from SALK lines ots1-1 and ots2-1 (Fig. 4.2A,B). Homozygous lines were selected using 

diagnostic PCR, and quantitative RT-PCR (qPCR) was used to confirm disruption in gene expression 

(Fig. 4.2C). In order to avoid the possible redundancy between ULP1c and ULP1d, the ulp1c-2 

ulp1d-2 double mutant (herein designated ulp1c/d) was generated. 

The ubiquitous expression of ULP1c and ULP1d (Fig. 4.1, Appendix IV – Fig. S4.1) 

suggested their involvement in various aspects of development; therefore we performed a 

morphological characterization of the single and double mutants. As previously reported (Conti et 
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Lethality of SUM1/2, E1 and E2 knockouts in Arabidopsis imply a fundamental role for 

sumoylation in embryo formation (Saracco et al., 2007), therefore we investigated whether seed 

development or germination were also compromised in ulp1c/d. While siliques did not show 

differences in morphology or seed number (Appendix IV - Fig. S4.3C,D), seeds displayed a delay of 

approximately one day in the formation of green cotyledons (Fig. 4.2H,I). Complementation of 

ulp1c/d by ectopic expression of a pro35S::ULP1d construct in the mutant background  

(C-ulp1c/d) reverted the delayed germination phenotype, indicating a role for ULP1c and ULP1d in 

seed germination.  

 

Microarray transcript profiling of ulp1c/d  

In order to further investigate ULP1c and ULP1d function, microarray analysis using the 

Affymetrix ATH1 chip was performed in 5-week-old wild-type and ulp1c/d plants. A total of 59 

genes were up-regulated and 53 were down-regulated by at least two-fold in the ulp1c/d double 

mutant relative to the wild-type. Indicative of the success of the microarray, ULP1c and ULP1d 

ranked highest amongst down-regulated genes and were excluded from the analysis. The most 

significant differentially expressed genes (DEGs) are summarized in Table 4.1. Gene Ontology (GO) 

analysis showed an overrepresentation of genes functionally related to shoot development, 

including organ morphogenesis, which is consistent with ulp1c/d developmental defects  

(Fig. 4.3A). Genes involved in the plant response to pathogens (fungi in particular) were also 

differentially expressed. Meanwhile, a substantial number of genes (particularly up-regulated genes) 

correlated with the plant response to abiotic stress, including responses to temperature and ABA 

stimuli (Fig. 4.3A; Table 4.1). Thus, ~38% and ~23% of ulp1c/d DEGs co-expressed with genes 

differentially expressed after drought and ABA treatment, respectively (Fig. 4.3B,C; Nemhauser et 

al., 2006; Catala et al., 2007). The microarray data was validated by analyzing by qPCR the 

expression of four up-regulated and two down-regulated genes including drought-related genes 

RD20 and GOLS1 (Fig. 4.3D). 

Genes with identical expression patterns are normally controlled by the same transcription 

factor, thus sharing common cis-elements in their promoters. Since sumoylation is a known 

modulator of transcriptional regulators, we used the online database and bioinformatics tool Athena 

(O'Connor et al., 2005) to identify statistically over-represented cis-elements in the promoters of 

ulp1c/d DEGs (Table 4.2). Interestingly, all the identified TF-binding site motifs (DREB1A/CBF3, 

ABRE-like, G-box and ATHB6) have been previously associated to ABA/drought-dependent 
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ABA-related phenotypes. Long-term drought stress was imposed to three-week-old wild-type (Col), 

ulp1c, ulp1d and ulp1c/d plants by withholding water for two weeks.  

 

Table 4.1. Genes constitutively deregulated in ulp1c/d in comparison to the wild-type. Categories were considered 
based on gene ontology (GO) term enrichment, BAR Classification SuperViewer (bar.utoronto.ca/ntools/cgi-
bin/ntools_classification_superviewer.cgi) and TAIR (www.arabidopsis.org/).  
     

AGI ID Gene name Log2 ratio p-value Description 
     

     

Development     
At5g10140 FLC, FLF, AGL25 -1,72 0,00E+0 Transcriptional repressor of floral transition  
At5g63420 EMB2746  -1,31 4,70E-6 Embryo defective at globular stage 
At1g53230 TCP3 -1,28 1,22E-5 TF involved in leaf differentiation 
At3g15030 TCP4, MEE35 -1,17 3,67E-4 TF involved in leaf differentiation 
At4g03190 AFB1, GRH1  -1,11 1,85E-3 Auxin binding and ubiquitin-protein ligase 
At2g37630 MYB91, PHAN, AS1  -1,05 8,90E-3 TF involved in leaf development 
At4g23750 CRF2, TMO3  -0,98 4,57E-2 Cytokinin response TF 
At5g65870 PSK5  1,01 2,06E-2 Growth factor 
At1g53160 SPL4  1,16 4,42E-4 TF involved in flowering transition 
At1g69490 ANAC029, NAP 1,34 2,14E-6 TF regulator of leaf senescence  
At4g20140 GSO1 1,39 4,18E-7 Embryonic epidermal surface development 
At1g52920 GCR2, GPCR  2,45 0,00E+0 G-protein coupled receptor involved in ABA 

signalling 
     

Stress responses    
At2g30520 RPT2  -1,50 8,60E-9 Root phototropism 
At4g16990 RLM3  -1,13 9,90E-4 Resistance to L. maculans 
At2g21050 LAX2 -1,02 1,65E-2 Auxin influx carrier 
At1g09350 GOLS3 -1,02 1,74E-2 Galactinol synthase  
At2g33380 RD20, CLO-3 1,07 4,57E-3 Response to desiccation 
At2g30020 AP2C1 1,18 2,65E-4 Protein phosphatase 2C modulator of innate 

immunity 
At5g50720 HVA22E 1,18 2,35E-4 ABA- and stress inducible 
At2g30360 CIPK11, PKS5, 

SNRK3.22, SIP4 
1,22 8,06E-5 Kinase inhibitor of plasma membrane H+ATPase; 

response to salt 
At3g16470 JR1, JAL35 1,40 2,89E-7 Jasmonate responsive gene 
At2g47180 GOLS1 1,41 2,18E-7 Galactinol synthase 
At3g16460 JAL34 1,58 5,19E-10 Jacalin lectin family protein 
At1g45145 ATH5, LIV1 1,65 3,96E-11 Cytosolic thioredoxin 
At2g34930  1,65 3,96E-11 LRR family protein 
At3g47340 ASN1, DIN6 2,15 0,00E+0 Glutamine-dependent asparagine synthetase; N-

assimilation 
     
Cell Wall     
At4g28250 EXPB3 -1,05 9,10E-3 Putative beta-expansin / allergen protein 
At1g32170 XTH30, XTR4 1,55 1,36E-9 Xyloglucan endotransglucosylase / hydrolase 
At1g10550 XTH33 1,71 4,95E-12 Xyloglucan endotransglucosylase / hydrolase 
     

TF - Transcription factor 
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Table 4.2. Cis-elements over-represented in the promoter region of genes differentially expressed in ulp1c/d. The 

subset of genes was submitted to Athena scanning analysis (O'Connor et al., 2005) for binding site enrichment. Only 

up-regulated genes showed significant differences.  
      

Cis-element 

name 

(conserved 

sequence*) 

No. 

of 

genes 

Frequency 

prediction in the 

genome vs 

observed in the 

genes 

(p-value) 

Corresponding 

TFs 

Description References 

      

      

DREB1A/CBF3 

binding site 

motif 

(RCCGACNT) 

12 7% vs 21% 

(<10e-4) 

DREB1A/CBF3 Drought, salinity 

and freezing 

response 

Maruyama et al. 

(2004) 

ABRE-like 

binding site 

motif 

(BACGTGKM) 

21 20% vs 37% 

(< 10e-3) 

bZIPs 

(AREB/ABF) 

ABA responsive 

element 

Fujita et al. 

(2013)  

CACGTG motif, 

G-box 

(CACGTG) 

20 15% vs 35% 

(< 10e-3) 

bHLHs, bZIPs 

(AREB/ABF) 

ABA-inducible 

element  

Shen and Ho 

(1995); Toledo-

Ortiz et al. 

(2003); Fujita et 

al. (2013)  

ATHB6 binding 

site motif 

(CAATTATTA) 

9 3% vs 16% 

(< 10e-3) 

ATHB6 ABA signalling Himmelbach et 

al. (2002) 

      

 * R (A/G), M (A/C), K (G/T), B (C/G/T), N (A/C/G/T) 

 

As shown in Fig. 4.4A, wild-type and ulp1c plants started to wilt and to accumulate 

anthocyanins, while ulp1d and ulp1c/d plants remained equivalent to that of plants that were 

watered. Early flowering was also observed in ulp1c/d as previously reported (Conti et al., 2008). 

The involvement of ULP1c/d in drought tolerance was confirmed by a second long-term drought 

stress assay using perlite as the growth matrix; perlite retains more water than the normal soil 

mixture, enabling water loss to occur more gradually. Once again, after three weeks of water 

deprival, the fitness of Col plants was reduced when compared to ulp1c/d plants (Fig. 4.4B). 
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that imposed by 100 mM NaCl). A parallel assay was performed with MS medium containing 200 

mM mannitol, a low molecular weight solute used to confer low ψw. Six-day-old Col and ulp1c/d 

seedlings grown in MS agar plates were transferred to osmoticum-containing plates and root 

growth was monitored for seven days. As shown in Figure 4.4C-F, wild-type seedlings showed 

increased root growth compared to ulp1c/d. Complementation efficiently recovered ulp1c/d in 

vitro sensitivity to low ψw.  

 

The ulp1c/d mutant shows altered stomatal response and density 

Stomata are key regulators of the plant water status, they respond to ABA and play a 

crucial role in avoiding low ψw stress and dehydration (Schroeder et al., 2001). Stomatal opening 

was investigated in the ulp1c/d double mutant, after application of exogenous ABA (Fig. 4.5A,B). 

Under light and stomata-opening solution, aperture was ~10% higher in ulp1c/d than in wild-type 

plants. Addition of ABA proportionally closed the stomata in both genotypes, maintaining the higher 

aperture in ulp1c/d (Fig. 4.5A,B). This was not consistent with our previous results indicating an 

increased tolerance of ulp1c/d to prolonged drought, therefore, stomata size and density were 

determined. While size was similar between wild-type and ulp1c/d, the ulp1c/d double mutant 

displayed less stomata per unit area than the wild-type (Fig. 4.5C,D). Because the rate of water 

loss is mainly determined by stomatal conductance (Schroeder et al., 2001), we analyzed the 

influence of the observed stomatal phenotypes in the ulp1c/d response to rapid dehydration. The 

aerial part of each plant was detached from roots and exposed to dehydration while the decline in 

fresh weight was monitored for six hours. Surprisingly, the rate of water loss was identical between 

Col and ulp1c/d (Fig. 4.5E), suggesting that no net change in water loss is registered via a 

combination of increased stomatal aperture and reduced stomata density. 

Since ABA levels are also fundamental for seed dormancy and maintenance (Finkelstein et 

al., 2008) and the ulp1c/d mutant displayed a delay in germination, we analyzed its phenotype in 

the presence of ABA (Fig. 4.5F,G). This hormone induced a 6-day delay in germination for both 

genotypes, and the 1-day-late germination phenotype of ulp1c/d, previously observed in ABA-free 

medium, was maintained in this assay. Similarly, in vitro-grown seedlings did not display 

differences in root growth inhibition between mutant and wild-type when ABA was incorporated into 

the medium (data not shown). Overall results indicate that differential ulp1c/d phenotypes (delayed 

seed germination and increased stomatal aperture) are observed independently of the application 

of exogenous ABA.  
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proteases are bound to play a fundamental role in the homeostasis of a target’s 

conjugated/deconjugated form and be a source of specificity within the pathway. Studies 

implicating ESD4 in development and nuclear trafficking (Murtas et al., 2003; Xu et al., 2007), and 

ULP1c/d in the control of salt stress tolerance (Conti et al., 2008), now help us grasp the 

importance of plant SUMO proteases. In the present study we were able to extend our knowledge 

on the role ULP1c/d play in both development and drought stress tolerance. 

 

ULP1c/d control growth and seed germination 

Our data support a role for ULP1c/d in development. We observed that ULP1c and ULP1d 

expression was prevalent in initial developmental stages, particularly in the vasculature of several 

tissues (Fig. 4.1), and results were consistent with existing systematic microarray transcript 

profiling of Arabidopsis development (Appendix IV - Fig. S4.1). GO terms also implicated ULP1c/d 

in the positive regulation of organ morphogenesis (Fig. 4.3A), and most significantly, we show that 

various genes related to shoot development are down-regulated in ulp1c/d (Table 4.1). These 

include AS1/MYB91, which is associated with leaf development (Byrne et al., 2002), and 

TCP3/TCP4, two genes essential for the correct morphogenesis of several shoot organs (Koyama 

et al., 2007). The negative flowering time regulator FLC was also down-regulated in ulp1c/d. 

Previous reports showed that FLC is transcriptionally repressed by FLOWERING LOCUS D (FLD), 

and FLD is rendered inactive by SIZ1-dependent SUMO conjugation (Jin et al., 2008). Besides 

ulp1c/d, FLC was equally down-regulated in siz1 and esd4 (Reeves et al., 2002; Catala et al., 

2007), and all three SUMO pathway mutants display early-flowering. Thus, present results reinforce 

a role for sumoylation in the control of flowering time.  

Generally, ULP1d was significantly more expressed in seedlings and displayed growth 

defects that imply a predominant role over ULP1c (Fig. 4.1 and 4.2). Compromised growth was 

subsequently observed in ulp1c/d adult plants, suggesting that later development defects are a 

consequence of earlier events.  Phylogeny, synteny and co-expression analysis (Appendix IV – Fig. 

S4.2) confirmed our experimental data and the previous literature (Chosed et al., 2006; Colby et 

al., 2006; Conti et al., 2008; Lois, 2010) for the existence of redundancy in the ULP1c/d gene 

pair. Curiously, an inversion in expression levels seemed to occur in specific tissues of later 

developmental stages, namely flower organs and siliques (Fig. 4.1), giving indication of 

subfunctionalization within the gene pair. This is consistent with the fact that ULP1d localizes in the 

nucleoplasm whereas ULP1c is mainly confined to speckle-like bodies (Conti et al., 2008). 
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It is believed that modulation of SUMO-target function lies in the balance that SUMO E3 

ligases and SUMO proteases maintain between a target’s conjugated/deconjugated forms (Kurepa 

et al., 2003; Golebiowski et al., 2009). Developmental defects observed in the ulp1c/d double 

mutant were similar (yet substantially attenuated) to those described in the loss-of-function mutants 

for the major E3 ligase SIZ1 (Catala et al., 2007), hinting to their involvement in common 

mechanisms. However our genetic and molecular data suggests that, to some extent, separate 

mechanisms may be involved in SIZ1 and ULP1c/d control of development, since the triple  

mutant siz1 ulp1c/d presented accumulative phenotypes concerning shoot size and seed 

germination (Fig. 4.7A-C), and differentially expressed genes in siz1 and up1c/d did not overlap 

significantly (Fig. 4.7D).  

 

ULP1c/d affect SUMO conjugation and play a role in drought tolerance 

We have shown that ulp1c/d accumulates higher SUM1/2 conjugate levels than wild-type 

plants under non-stressed conditions (Fig. 4.6). Even though in vitro studies have attributed both 

endo- and isopeptidase activities to ULP1c/d (Chosed et al., 2006; Colby et al., 2006), results 

support previous indications  (Conti et al., 2008) that ULP1c/d act predominantly as 

isopeptidases, with the mutant displaying a lower rate of SUMO deconjugation. Alas, free 

(unconjugated) SUM1/2 levels, corresponding to the ~16 kDa band, allowed no distinction 

between processed and unprocessed SUMO forms. Meanwhile, we could observe that SUM1/2 

conjugate levels increased following rapid dehydration (Fig. 4.6). SUMO conjugate accumulation 

during stress imposition is ubiquitous in eukaryotes (Kurepa et al., 2003; Zhou et al., 2004; 

Golebiowski et al., 2009), and has been consistently observed in plants stressed by rapid 

dehydration, heat, cold and salt, among other challenges (reviewed by Castro et al., 2012). 

Conjugation is linked to a decrease in the free SUMO pool, and matches the duration and intensity 

of the stress (Kurepa et al., 2003; Miller and Vierstra, 2011). However, free SUM1/2 levels did not 

change considerably with the exception of the HS treatment, indicating that dehydration induces 

only a moderate change in the sumoylation profile.  

Since SUMO conjugate levels were constitutively increased in ulp1c/d double mutants, 

stress imposition did not render significant differences in SUMO conjugate levels in comparison to 

non-stressed mutants (Fig. 4.6). One can hypothesize that, under standard growth, the ulp1c/d 

SUMO conjugate profile mimics that of drought-stressed plants, triggering a sumoylation-dependent 

stress-like response. In support, we showed that ulp1c/d deregulated genes under normal growth 
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conditions displayed a drought stress transcriptional signature  (Fig. 4.3; Table 4.1), and used 

qPCR to prove the up-regulation in ulp1c/d of several drought-inducible genes such as the drought 

marker gene RD20 (Aubert et al., 2010), HVA22E (Chen et al., 2002), GOLS1 that has an 

important role in the synthesis of raffinose during drought stress (Taji et al., 2002), and CIPK11, 

an ABA-induced protein kinase associated with stomatal movement (Fuglsang et al., 2007). 

Moreover, we demonstrated that all transcriptional regulators likely to drive up-regulation in 

ulp1c/d could be associated to the drought-stress response (Table 4.2).  

Subsequent analysis showed that adult ulp1c/d soil-grown plants were resistant to 

prolonged drought (Fig. 4.4A,B). Analysis also revealed slightly increased stomatal aperture in 

ulp1c/d, yet no differences in the rate of water loss were detected in ulp1c/d during rapid 

dehydration assays (Fig. 4.5), indicating that stomata-dependent water loss is unlikely to influence 

the long-term drought response in ulp1c/d. In support, we showed that ulp1c/d mutants displayed 

less stomata per unit area than wild-type plants (Fig. 4.5C). It is possible that sumoylation operates 

at various levels in the control of stomatal density, as known SUMO targets include ICE1, a TF that 

controls the basal pathway of stomatal lineage (Miura et al., 2007; Kanaoka et al., 2008), and 

GTL1, which negatively regulates water use efficiency by modulating stomatal density (Miller et al., 

2010; Yoo et al., 2010). Even though stomatal closure is an important component of short-term 

drought avoidance, in the long term, factors such as increased root/shoot ratio, tissue water 

storage capacity, cuticle thickness, water permeability and cell wall hardening become important 

(Verslues et al., 2006). Cell wall loosening and tightening traditionally involves xyloglucan 

endotransglucosylase/hydrolases (XTH), and expansins (EXP; Moore et al., 2008), and both types 

of enzymes were identified as ulp1c/d DEGs (Table 4.1), which could account for both 

development and drought-related phenotypes in this mutant. In fact, deregulation of XTHs was 

already associated with reduced leaf cell expansion in the siz1 mutant (Miura et al., 2010).  

Sumoylation has been implicated in the response to long-term drought via the E3 ligases 

SIZ1 and MMS21; however, studies on SIZ1 have been inconclusive since siz1 mutants have 

shown both sensitivity and tolerance to different drought treatments (Catala et al., 2007; Miura et 

al., 2012; Zhang et al., 2012). Current phenotypical and transcriptional data suggest that ULP1c/d 

globally act as negative regulators of long-term drought responses. In this context, ULP1c/d-

dependent transcriptional regulators (Table 4.2) constitute prime candidates for the identification of 

novel SUMO targets that will help clarify the molecular mechanisms associated to the ULP1c/d 

mode-of-action.  
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ULP1c/d influence responses to low water potential 

Overall results support opposing functions for ULP1c/d and SIZ1 in the control of 

physiological traits that can be associated to water shortage. We demonstrate that ULP1c/d 

positively regulates in vitro root growth in response to low water potential, as ulp1c/d seedlings 

were more sensitive to incorporation of both PEG and mannitol in the medium (Fig. 4.4C-F). 

Consistently, loss of ULP1c/d function was previously shown to result in hypersensitivity to salt 

(Conti et al., 2008). Meanwhile, the siz1 mutant displayed resistance to low ψw and the siz1 

ulp1c/d triple mutant displayed a siz1-like response in the presence of mannitol (Fig. 4.7). Also, 

stomata displayed higher aperture in ulp1c/d (Fig. 4.5A,B), while siz1 mutants were recently 

shown to have reduced stomatal aperture (Li et al., 2012; Miura et al., 2012). In this context, a 

likely model is that ULP1c/d operate strongly as isopeptidases, acting downstream of SIZ1 to 

promote SUMO-target deconjugation that opposes the E3 ligase activity of SIZ1. 

Stomata respond very quickly to ABA and represent a simplified system to screen for 

possible defects in ABA signaling pathways (Schroeder et al., 2001). Interestingly, the siz1 

stomatal closure phenotype seems to involve SA-dependent reactive oxygen species (ROS) 

production, rather than ABA-dependent ROS production (Miura et al., 2012). In the present case, 

the increased stomatal aperture phenotype of ulp1c/d was observed independently of exogenous 

application of ABA (Fig. 4.5A,B). Similarly, exogenous ABA did not promote either hyper- or 

insensitivity in ulp1c/d seed germination time and in vitro root growth (Fig. 4.5F,G; data not 

shown). A great amount of evidence suggests that both ABA-dependent and -independent 

mechanisms are involved in the SUMO-abiotic stress association (reviewed by Castro et al., 2012). 

Even though overall results place ulp1c/d phenotypes as independent of exogenous ABA, 

alterations in endogenous ABA levels or ABA-dependent signaling (as suggested by the ulp1c/d 

transcriptional signature) are not to be excluded.  

Present results of ulp1c/d in vitro sensitivity to low water potential and adult stage drought 

tolerance suggest dual roles for ULP1c and ULP1d in drought tolerance and avoidance responses. 

However, it is known that in vitro osmoticum treatments present a set of potential problems that 

are enhanced when these treatments are compared with soil drying experiments (Verslues et al., 

2006). Also, responses to low ψw are controlled by intricate regulatory networks that integrate 

external stimuli (e.g. loss of turgor and reduced water content) and internal stimuli (e.g. 

developmental status, hormones, ROS; Verslues and Zhu, 2005). Exemplifying this complexity, in 
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Arabidopsis, ZAT10 loss- and gain-of-function lines both display tolerance to in vitro salt and 

osmotic stresses, and the ABA overly sensitive 3 (abo3) mutant displays hypersensitivity to ABA in 

seed germination and root elongation assays but not in ABA-induced stomatal closure, resulting in 

reduced drought tolerance (Mittler et al., 2006; Ren et al., 2010). Such an underlying complexity to 

the role of ULP1c/d in drought tolerance should be the focus of future studies. 

 

Final considerations 

Given the predicted existence of hundreds of SUMO targets, it is paradoxical to realize that, 

unlike the ubiquitination pathway, only a reduced number of components of the SUMO conjugation 

pathway exist in plant genomes. The relative abundance of ULPs makes them natural candidates 

for specificity within the pathway (Chosed et al., 2006; Colby et al., 2006; Lois, 2010), also 

because new classes of SUMO de-conjugating enzymes have recently emerged in non-plant models 

(Hickey et al., 2012). Characterization of plant ULPs at the molecular level poses several 

challenges since ULPs (1) must discriminate between SUMO isoforms, (2) are likely to contribute 

differently to total isopeptidase and endopeptidase activities, (3) present different expression 

patterns, and (4) display different subcellular/subnuclear localizations (Murtas et al., 2003; 

Chosed et al., 2006; Colby et al., 2006; Conti et al., 2008; Lois, 2010; Hermkes et al., 2011). In 

addition, biological redundancy between SUMO proteases above the canonical redundant pairs is 

not to be excluded. This complexity certainly urges further research on SUMO protease function. 

We were able to report that Arabidopsis SUMO proteases ULP1c and ULP1d form an unequally 

redundant gene pair that is broadly expressed and controls developmental traits such as plant 

growth and seed germination. Microarray analysis in the ulp1c/d mutant showed a transcriptional 

signature typical of drought stress responses, prompting us to assign a functional role for ULP1c/d 

in drought tolerance, stomatal aperture and the response to low water potential. Baring in mind the 

dynamics of SUMO conjugation/deconjugation cycles, we used genetic evidence to address the 

interplay between ULP1c/d and the major E3 ligase SIZ1. 
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4.4. MATERIALS AND METHODS 

 

Plant material and growth conditions 

T-DNA insertion mutants were used to evaluate the effect of Arabidopsis thaliana ULP1c 

(At1g10570) and ULP1d (At1g60220) loss-of-function. Ecotype Columbia-0 (Col) was used as the 

wild-type control. Mutants were identified using SIGnAL (signal.salk.edu); all consisted of SALK 

lines: SALK_050441 (ulp1c-2), SALK_151423 (ulp1c-3), SALK_029340 (ulp1d-2) and 

SALK_065397 (siz1-2; Miura et al., 2005). Genotypes were ordered through the NASC European 

Arabidopsis Stock Centre (arabidopsis.info) or the Arabidopsis Biological Resource Stock Center 

(www.biosci.ohio-state). Homozygous insertion mutants were genotyped based on SIGnAL T-DNA 

Primer Design (signal.salk.edu/tdnaprimers.2.html), using the primers in Table S4.1 (Appendix IV).  

Synchronized seeds were stratified for 3 days at 4ºC in the dark. Surface sterilization was 

performed in a horizontal laminar flow chamber by sequential immersion in 70% (v/v) ethanol for 5 

min and 20% (v/v) commercial bleach for 10 min before washing five times with sterile ultra-pure 

water. Seeds were resuspended in sterile 0.25% (w/v) agarose, sown onto 1.2% agar-solidified MS 

medium (Murashige and Skoog, 1962) containing 1.5% sucrose, 0.5 g L-1 MES, pH 5.7, and grown 

vertically in culture rooms with a 16 h light/8 h dark cycle under cool white light (80 μE m-2 s-1 light 

intensity) at 23ºC. For standard growth, 7-day-old in vitro-grown seedlings were transferred to a soil 

to vermiculite (4:1) mixture, and maintained under identical growth conditions, with regular 

watering. Developmental characterization of the mutants was based on the developmental map of 

Boyes and co-workers (2001). For germination assays, seeds were sterilized as detailed, sown onto 

0.8% agar MS medium and grown horizontally under identical conditions. Each replica plate 

contained >30 seeds per genotype.  

  

Drought stress and ABA-related experiments 

To assay soil-based long-term drought stress, ~100 seeds per pot were sown directly onto 

soil and stratified in the dark at 4°C for three days. Pots were watered every two days with 20 mL 

of ultra-pure H2O for three weeks. Watering was then discontinued for two weeks, except for control 

plants. For perlite-based long-term drought stress, 10-day-old in vitro-grown seedlings were 

transferred to perlite and watered every two days with 20 mL of 0.5x MS for one week. Watering 

was then interrupted (except for control plants), and plants were observed for three weeks. For 

rapid dehydration, the rosette of 3-week-old soil-grown plants was detached from roots and air-dried 
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at room temperature. Fresh weight was measured with an analytical balance at different time 

points. 

To measure root growth, seedlings were grown in vitro for seven days, and subsequently 

transferred to 0.5x MS 1.2% agar plates. Plates were supplemented with either 10 μM ABA, 200 

mM mannitol or PEG-infusion; in the latter, control plants were transferred to mock-infused 0.5x 

MS agar plates. PEG-infused MS agar plates were prepared as follows: under sterility conditions, 

20 mL of fused agarised 0.5x MS media were poured into petri plates, left to cool and then covered 

with 30 mL of PEG or mock overlay solution; plates were covered and the media was allowed to sit 

for 12-15 h. PEG overlay solution (-0.7 MPa strength) consisted of 0.5x MS basal salt mixture, 1.2 

g L-1 MES and 400 g L-1 PEG 8000. Excess overlay solution was poured just before seedling transfer 

and immediately sealed with parafilm to avoid water loss. Vertical root growth was measured every 

two days for up to 10 days. 

Analysis and ABA inhibition of stomatal opening was performed on isolated epidermal 

strips from rosette leaves of 3- to 4-week-old plants, as previously described (Lozano-Duran et al., 

2011). Briefly, leaves were detached from the rosette and submerged in a stomata-opening 

solution (50 mM KCl; 10 μM CaCl2; 0.01% Tween 20; 10 mM MES-KOH pH 6.15) under cool white 

light (80 μE m-2 s-1) for three hours. Subsequently, 5 μM ABA or mock solution was added to the 

buffer and the samples were incubated for one hour under identical light conditions. Epidermal 

peels were obtained with the help of double-sided adhesive tape and subsequently stained with a 

0.2% (w/v) toluidine blue solution and observed under the microscope (Leica DM 5000). Stomata 

size, aperture and density were measured using ImageJ (rsb.info.nih.gov/ij/). ABA germination 

assays were performed as detailed, in an MS medium supplemented with 1 μM ABA.  

 

Plasmid construction and plant transformation 

Plasmids were constructed using standard DNA cloning techniques, and confirmed by DNA 

sequencing. For promoter::GUS constructs, ULP1c and ULP1d promoter regions were amplified by 

PCR from Arabidopsis genomic DNA (Edwards et al., 1991). Incorporated restriction sites (EcoRI 

and NcoI) were used to clone fragments into the pCAMBIA 1303 vector 

(www.cambia.org/daisy/cambia/585). For complementation purposes, the ULP1d open reading 

frame was amplified from cDNA by PCR with incorporated restriction sites (EcoRI and ClaI). The 

amplification product was sub-cloned into the pGEM-T Easy vector (Promega) and subsequently 

cloned into the pHANNIBAL vector (Wesley et al., 2001) to create a pro35S::ULP1d-NOS 
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terminator fusion. The construct was excised using NotI and finally cloned into the plant expression 

vector pGREEN II 0229 (www.pgreen.ac.uk/). Agrobacterium tumefaciens strain EHA105 was used 

for plant transformation. Arabidopsis thaliana (Col ecotype) plants were transformed by the floral 

dip method (Clough and Bent, 1998). A resistance marker (Kanamycin) strategy was employed to 

select for homozygous transformants.  

 

Histochemical GUS staining 

GUS histochemical staining of transgenic Arabidopsis (Col) plants containing 

proULP1c::GUS and proULP1d::GUS constructs was performed as previously described (Posé et 

al., 2009). Briefly, plants were vaccum  infiltrated with a GUS staining solution, containing 100 mM 

sodium-phosphate buffer (pH 7.0), 20% (v/v) methanol, 0.5 mM potassium ferrocyanide, 0.5 mM 

potassium ferricyanide and 0.3% (v/v) Triton X-100. Blue-coloration of whole plants in different 

developmental stages was recorded with a bright field microscope (Leica DM 5000) or a 

magnifying glass (Wild Heerbrugg) coupled to a CCD color camera (Leica DFC 320). GUS stained 

tissues and plants shown in this paper represent the typical results of at least three independent 

lines for each construct.  

 

Microarray analysis and quantitative RT-PCR 

Genome-wide transcription studies were performed using the ATH1 Affymetrix microarray 

chip with three independent pools per genotype, each pool representing RNA from nine different 5-

week-old plants. Plants were grown in culture chambers with a 16 h dark/8 h light cycle under cool 

white light (80 μE m-2 s-1 light intensity) at 23ºC. Three rosette leaves were sampled from each 

plant. RNA was extracted using a standard TRIzol protocol (Invitrogen), including treatment with 

Recombinant DNase I (Takara Biotechnology), followed by RNeasy Plant Mini kit (QIAGEN) column 

cleaning. Microarray execution and differential expression analysis were conducted at Unité de 

Recherche en Génomique Végétale (Université d’Evry Val d’Essonne, France), and data was 

deposited in ArrayExpress (www.ebi.ac.uk/arrayexpress/). GO term functional categorization was 

performed in VirtualPlant 1.2 (virtualplant.bio.nyu.edu/cgi-bin/vpweb/), using the BioMaps 

function with a 0.05 p-value cutoff (Katari et al., 2010). Redundancy exclusion and scatterplot 

analysis were performed using REVIGO (revigo.irb.hr/), with a 0.9 C-value. Venn diagrams were 

obtained using Venn Diagram Generator (www.pangloss.com/seidel/Protocols/venn.cgi). 
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For quantitative Real-Time PCR (qPCR) analysis, RNA from plant tissue was extracted using 

an RNeasy Plant Mini kit (QIAGEN), and RNA quantity and quality were assessed using both a 

Nanodrop ND-1000 spectrophotometer and standard agarose-gel electrophoretic analysis. The RNA 

samples were treated with Recombinant DNase I (Takara Biotechnology) and, cDNA was 

subsequently generated using a SuperScript II Reverse Transcriptase kit (Invitrogen). SsoFast 

EvaGreen Supermix (BioRad) was used in the qPCR reaction mixture as per the manufacturer’s 

indications. The reaction was performed in a Rotor Gene Q system (QIAGEN) or a MyiQ Single-Color 

Real-Time PCR Detection system (Bio-Rad).  

Primers for qPCR (Appendix IV - Table S4.2) were designed using NCBI Primer-BLAST 

(www.ncbi.nlm.nih.gov/tools/primer-blast/; Ye et al., 2012), to ensure specific amplification within 

the Arabidopsis transcriptome, 100-250 bp PCR amplification product sized, 50-60% GC content 

and ~60ºC Tm. When possible, one of the primers was designed to span an exon junction. ACT2 

(At3g18780) was used as a reference gene (Lozano-Duran et al., 2011).  

 

Protein extraction and Immunoblotting 

 Plant tissue was grinded in a microtube in liquid nitrogen with the help of polypropylene 

pestles. Protein extracts were obtained by adding extraction buffer [50 mM Tris; 150 mM NaCl; 

0.2% (v/v) Triton X-100] supplemented with Complete Protease Inhibitor Cocktail (Roche) as per 

the manufacturer’s instructions. Following incubation for 1 h at 4°C with agitation, microtubes 

were centrifuged two times for 30 min at 16000 g. The supernatant was subsequently recovered 

and stored at -80°C. Protein was spectrophotometrically quantified using Bradford reagent (Sigma; 

Bradford, 1976). Equal amounts of protein were resolved by standard SDS-PAGE in a 10% (w/v) 

acrylamide resolving gel, using a Mini-PROTEAN Cell (Bio-Rad) apparatus.  For immunoblotting, 

proteins were transferred to a PVDF-membrane using a Mini Trans-Blot Cell (Bio-Rad). The 

membrane was blocked for 1 h at 23ºC in blocking solution (5% dry milk powder in PBST). The 

primary antibody Anti-AtSUMO1 (ABCAM) was added in a 1:2000 dilution and incubated for 3 h. 

The membrane was washed three times with 10 mL of PBST for 10 min, and incubated with the 

secondary antibody (anti-rabbit, Santa Cruz; 1:5000 in blocking solution) for 1 h. The membrane 

was washed as previously detailed and developed by a chemiluminescence reaction using the 

Immune-Star WesternC Kit (Bio-Rad) and a ChemiDoc XRS system (Bio-Rad) for image acquisition. 

PVDF membranes were incubated for 15 min with Ponceau S solution [0.1% (w/v) Ponceau S; 5% 

(v/v) acetic acid] to stain total protein levels.  
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regulates Arabidopsis thaliana defence against 
Pseudomonas syringae pv. tomato DC3000 
____________________________________________________________ 
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5.1. INTRODUCTION 

Plants are constantly subjected to a variety of external challenges that compromise growth 

and therefore limit crop yield. To counteract stress-imposing agents in a fast and reversible way, 

plants have recruited post-translational modification (PTM) mechanisms to modulate protein 

activity. One such PTM involves ubiquitin and small peptides resembling ubiquitin, appropriately 

designated Ubiquitin-like modifiers (UBLs), which include Autophagy (ATG), Related to Ubiquitin 

(RUB) and Small Ubiquitin-like Modifier (SUMO; Miura and Hasegawa, 2010). Sumoylation is the 

mechanism by which SUMO is conjugated to a target’s lysine residue, often in the core consensus 

ΨKxE (Ψ, large hydrophobic residue; K, lysine; x, any amino acid; E, glutamic acid). This pathway 

implies a cooperation of four enzymatic steps: SUMO protease-dependent maturation,  

E1-activation, E2-conjugation, the latter normally aided by an E3-dependent ligation (Gareau and 

Lima, 2010).  

The model plant Arabidopsis thaliana expresses four main SUMO isoforms, SUM1, -2, -3 

and -5 (Saracco et al., 2007; Budhiraja et al., 2009). The redundant SUM1 and -2 peptides 

(SUM1/2) are essential for plant development: the double knockout mutant is impaired in 

embryogenesis and sum1 amiR-SUM2 (SUM2 knockdown in sum1 background) has pleiotropic 

effects on plant development (Saracco et al., 2007; van den Burg et al., 2010). In contrast, the 

SUM3 knockout mutant only shows late flowering (van den Burg et al., 2010). While SUM1/2 are 

capable of forming SUMO chains, SUM3 is not (Colby et al., 2006; Saracco et al., 2007; van den 

Burg et al., 2010). SUMO chains are an important structural feature, since SUMO can also interact 

non-covalently with proteins containing SUMO-interacting motifs (SIMs). For instance, SUMO chains 

were found to be recognized by SUMO-Targeted Ubiquitin Ligases (STUbLs), targeting sumoylated 

proteins for degradation via the Ubiquitin Proteasome System (Geoffroy and Hay, 2009). In 

contrast, SUMO may compete for the same lysine as ubiquitin, resulting in an antagonism between 

these two PTMs for the same lysine (Hay, 2005). SUMO may also affect the target’s activity by 

controlling its conformation, or creating/blocking interacting interfaces (Wilkinson and Henley, 

2010). 

In eukaryotes, sumoylation is essential for cell viability, and has been associated with 

stress response mechanisms (Castro et al., 2012). In plants, SUMO-conjugate levels increase in 

response to oxidative stress, heat, ethanol, drought and salt (Castro et al., 2012). Recent 

systematic approaches to map the Arabidopsis sumoylome indicate that SUMO targets cover a 

wide range of cellular processes and molecular mechanisms, with emphasis on nuclear processes 
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like gene expression regulation (Elrouby and Coupland, 2010; Miller et al., 2010; Castro et al., 

2012; Miller et al., 2013). Interestingly, many of the sumoylated transcription regulators are 

involved in biotic stress responses (van den Burg and Takken, 2010), and it is not surprising that 

many pathogens are capable of controlling essential cellular functions or shutting down defences 

by exploiting the host’s sumoylation machinery (Wimmer et al., 2012). 

Plants have several levels of defence against pathogen invasion (Spoel and Dong, 2012). 

As a first layer of protection, plants have reinforced cell walls that function as constitutive barriers 

(Nuhse, 2012). Furthermore, plants have pattern-recognition receptors capable of detecting 

pathogen-associated molecular patterns (PAMPs), such as Flagellin-Sensitive 2 (FLS2) and EF-Tu 

Receptor (EFR), triggering a set of defence responses named PAMP-triggered immunity (PTI; 

Monaghan and Zipfel, 2012). Bacteria have developed sophisticated ways of neutralizing PTI and 

overruling the host cell by injecting effectors through the type III secretion system (T3SS; Cunnac et 

al., 2009). These effectors can deregulate and perturb crucial cellular processes. Meanwhile, 

plants evolved ways of recognizing these effectors by resistance proteins (R-proteins) that directly 

interact with pathogen effectors or, in most cases, guard effector-targeted proteins, thus activating 

a second level of resistance designated as effector-triggered immunity (ETI; Jones and Dangl, 

2006; Block and Alfano, 2011). In the site of infection, the plant cell triggers a hypersensitive 

response (HR) that keeps pathogens, especially biotrophs, from feeding from the cell. In addition, a 

mobile signal spreads throughout the plant, immunizing the tissues against secondary infections, a 

process designed as systemic acquired resistance (SAR; Fu and Dong, 2013). Part of these 

responses and signaling mechanisms rely on hormone regulation. The two major defence 

hormones are salicylic acid (SA) and jasmonic acid (JA), but many others contribute for the tight 

regulation of plant immunity (Pieterse et al., 2012). Auxins, for instance, attenuate defence 

responses in plants by antagonizing SA signaling, while cooperating with JA signaling (Kazan and 

Manners, 2009). 

In plants, few studies have addressed the association between sumoylation and pathogen 

challenge. Sumoylation was shown to be a negative regulator of basal immunity against the 

hemibiotrophic pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 (Lee et al., 2007; van 

den Burg et al., 2010). In Arabidopsis, SUM1/2 and the major E3 ligase SIZ1 were shown to 

negatively regulate the biosynthesis of the important biotic stress hormone salicylic acid and 

consequently the expression of Pathogen-Related (PR) genes (Lee et al., 2007; van den Burg et al., 

2010). SUM3 seems to be part of a later response to Pst DC3000, promoting defence downstream 
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of SA (van den Burg et al., 2010). Meanwhile, some pathogens seem to have developed 

mechanisms that target sumoylation components and deregulate their activity. These include 

bacterial effectors like XopD and AvrXv4 that have de-sumoylation activity, or viral particles that 

inhibit SUMO modification by controlling the SUMO E2 conjugating enzyme (SCE; Castillo et al., 

2004; Roden et al., 2004; Chosed et al., 2006; Kim et al., 2008; Sanchez-Duran et al., 2011; Kim 

et al., 2013). Although targeting of SUMO protease activity seems to be a common strategy 

employed by phytopathogen effectors (Hotson and Mudgett, 2004), endogenous SUMO proteases 

have never been characterized concerning their role in the host response to infectious agents.   

In contrast to the relatively small number of sumoylation components, plants display a 

fairly large number of SUMO proteases called Ubiquitin-Like Proteases (ULPs). The Arabidopsis 

genome encodes at least seven ULPs (ESD4, ULP1a-d and ULP2a-b; Chosed et al., 2006; Colby et 

al., 2006; Lois, 2010; Novatchkova et al., 2012). ESD4, ULP1a/ELS1, ULP1c/OTS2 and 

ULP1d/OTS1 were shown to have SUMO deconjugating activity both in vitro and in vivo (Chosed et 

al., 2006; Colby et al., 2006; Conti et al., 2008; Hermkes et al., 2011), but their biological 

relevance is still poorly understood. ESD4 and ULP1a are phylogenetically close but functionally 

different, although both are involved in flowering time and plant development (Murtas et al., 2003; 

Hermkes et al., 2011). ULP1c and ULP1d, in addition to redundantly controlling plant 

development, have also been associated with abiotic stress responses by positively regulating salt 

and drought tolerance (Chapter 4; Conti et al., 2008). 

In the present work we explored the role of the redundant pair ULP1c/ULP1d in the 

response to pathogen attack, using as infectious agent the bacteria Pst DC3000. Results showed 

that the ULP1c/d double mutant (ulp1c/d) was less susceptible to Pst DC3000 comparatively to 

the wild-type, while no obvious phenotype was observed for ULP1c/d overexpression lines. The 

infection process triggered plant immune responses that contributed for the down-regulation of 

ULP1c and ULP1d transcript levels. Concomitantly, an increment was observed in both the overall 

SUMO-conjugate level and in specific SUMO targets. Many SUMO-conjugated targets are associated 

to the regulation of transcription, and in this study we analyzed the transcriptome of ulp1c/d after 

Pst DC3000 challenging. Many deregulated genes were involved in pathogen response as well 

hormonal signaling, including auxin-responsive genes. In addition, ulp1c/d displayed sensitivity to 

exogenous supplementation of auxins. Results implicate ULP1c/d in the modulation of gene 

transcripts associated with the plant defence response.  
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5.2. RESULTS 

 

The double mutant ulp1c/d is less susceptible to Pst DC3000 infection 

Little is known about SUMO protease function in plants. Some virus and bacterial pathogen 

effector proteins have been shown to deregulate SUMO homeostasis by acting as SUMO proteases 

(Roden et al., 2004; Kim et al., 2008; Wimmer et al., 2012; Kim et al., 2013). Therefore it is likely 

that SUMO proteases are also involved in the plant response to bacterial pathogens. We have been 

addressing the role of ULP1c and ULP1d SUMO proteases, and therefore used a T-DNA insertion 

double mutant for SUMO proteases ULP1c (At1g10570; ulp1c-1) and ULP1d (At1g60220; ulp1d-

1), hereafter designated ulp1c/d (Chapter 4), to study the potential involvement of these ULPs in 

plant defence. Pst DC3000 was inoculated by infiltration of a bacterial suspension [5x104 colony 

forming units (CFU) mL-1] and after three days bacterial growth was evaluated through CFU 

quantification. Considering that ULP1c and ULP1d were previously found to function redundantly 

(Chapter 4; Conti et al., 2008), only the double mutant was used in the assays. Results showed 

that the double mutant was significantly less susceptible to Pst DC3000 (Fig. 5.1A) than wild-type 

(Col) plants, while there were no differences in bacteria multiplication in the single mutants (data 

not shown). As a positive control, the transgenic line NahG, that expresses a bacterial SA 

hydroxylase and is therefore SA-depleted, showed more susceptibility to Pst DC3000.   

Our previous results revealed that ULP1c and ULP1d had higher expression levels in 

younger tissues (Chapter 4). Taking this in consideration together with the fact that bacterial entry 

through stomata is a crucial step for bacterial infection, we also performed a Pst DC3000 

inoculation assay by spraying 2-week-old seedlings. Given that SIZ1 was implicated in the Pst 

DC3000 response (Lee et al., 2007), the siz1 mutant was used as a positive control for resistance. 

Results confirmed that the ulp1c/d is consistently less susceptible to Pst DC3000 infection  

(Fig. 5.1B). To determine if SIZ1 and ULP1c/d are operating in different pathways we generated a 

triple mutant siz1 ulp1c/d and checked responses to Pst DC3000 following spraying. The triple 

mutant, was also less susceptible to Pst DC3000 than the wild-type, and it additionally displayed 

yellowish leaves comparatively to ulp1c/d and siz1 (Fig. 5.1B), which might suggest an increased 

hypersensitive response in the triple mutant.  
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n = 3. Asterisks represent statistically significant differences relatively to mock treatment (unpaired t test; ***,  
P < 0.001). D, Expression pattern of proULP1c::GUS and proULP1d::GUS, 6 h after Pst DC3000 infiltration, by 
histochemical β-glucoronidase (GUS) staining. Control and mock treatments are plants untreated or infiltrated with 10 

mM MgCl2, respectively.  E, In silico analysis of ULP1c and ULP1d expression when challenged with Pst DC3000 or the 
bacterial flagellin peptide flg22, carried out using Genevestigator (Hruz et al., 2008).  

 

We subsequently checked the expression of ULP1c and ULP1d six hours after infiltration 

using proULP1c::GUS and proULP1d::GUS lines and quantitative Real-Time PCR (qPCR). Analysis 

by qPCR showed that Pst DC3000 infection resulted in a reduction of both ULP1c and ULP1d 

expression levels by 34% and 24%, respectively (Fig. 5.1C). Meanwhile promoter::GUS lines did not 

resolve changes in expression for both lines, likely due to the low basal expression both genes 

displayed in control conditions in this tissue (Fig. 5.1D). Results were in accordance with public 

microarray data of several P. syringae infection studies that consistently demonstrated a  

down-regulation of ULP1c/d (Fig. 5.1E). Likewise, in silico analysis showed that flg22 treatment, 

that is recognized by FLS2 to trigger PTI (Zipfel et al., 2004), reduces ULP1c and ULP1d 

expression (Fig. 5.1E).    

 

SUMO-conjugate levels are affected by Pst DC3000 

We subsequently addressed whether Pst DC3000 infection was capable of altering the 

plant SUMO-conjugate profile. Therefore, we infiltrated 5-week-old Arabidopsis leaves with Pst 

DC3000 (5x104 CFU mL-1) and harvested samples 6 hours after inoculation. We included untreated 

plants and mock-treatment (infiltration with 10 mM MgCl2) in the assay. A western blot with anti-

NbSUMO1 antibodies allowed the monitoring of the overall changes in AtSUM1/2-specific high 

molecular weight SUMO-conjugates (HMWC) in wild-type and ulp1c/d (Fig. 5.2). In wild-type plants, 

HMWC were intensified in infected plants, and particularly a specific SUMO-conjugate band with 

approximately 70 kDa was resolved. This strongly suggests that Pst DC3000 infection is not only 

capable of changing the overall SUMO-conjugate pattern but also of modulating specific 

sumoylation targets. Interestingly, the increase in HMWC was not observed in ulp1c/d, suggesting 

that it is ULP1c/d-dependent. However, the infection-specific band was present even if it was less 

intense, suggesting that ULP1c/d controls the overall HMWC status following infection, rather than 

specific SUMO targets.  
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Principal component analysis (PCA) was used to translate the behavior of the experimental 

comparisons into a high-dimensional projection (Fig. 5.4B), with adjoining points signifying a 

similar expression profile throughout the whole set of genes covered by the microarray. We were 

able to observe that three principal components explained ~90% of the variance (Fig. 5.4B inset). 

Component 1 resolved infiltrated from non-infiltrated plants, while mock and Pst DC3000 plants 

were resolved in component 2. Finally, genotypes (Col vs ulp1c/d) were clearly resolved by 

component 3 (Fig. 5.4B). For each condition, the three hybridizations/replicas were consistently 

grouped, validating the quality of the experiment.   

To determine differentially expressed genes (DEGs) we employed variance modeling by 

common variance of all genes, as described by Gagnot et al. (2008). Consequently, genes that 

were too variable between replicates, even if in just one experimental condition, were excluded 

from the analysis. We established as differentially expressed genes those with a Bonferroni p-value 

lower than 0.05. DEGs of ulp1c/d for each situation (control, mock and Pst DC3000) were 

established by comparison with the expression values of the corresponding wild-type (Fig. 5.4A). 

The ulp1c/d DEGs in control conditions were previously analyzed in Chapter 4, and therefore we 

will now focus in ulp1c/d DEGs that are specific of the response to Pst DC3000. To identify this 

subset of genes, we subtracted ulp1c/d DEGs in the control and mock treatments to ulp1c/d 

DEGs in Pst DC3000 treatment, as can be visualized by its Venn diagram representation (Fig. 

5.4C). Analysis resulted in 52 down- and 166 up-regulated genes specifically deregulated in 

ulp1c/d in response to Pst DC3000 (Appendix V - Table S5.1). These were the focus of all 

subsequent studies. To validate the microarray, expression of several genes of interest was 

determined by qPCR (Fig. 5.4D). Analysis showed a consistent differential expression tendency 

between the microarray and qPCR data. Genes involved in biotic stress responses (FLS2 and TIR-

NBS-LRR ULP1c/d-regulated 1 gene, TUR1), and the cell wall remodeling gene XTH22 are all up-

regulated in response to Pst DC3000 in the ulp1c/d background, suggesting that ULP1c/d 

contributes to the repression of these genes during infection. In addition, these genes are down-

regulated when comparing Pst DC3000 elicitation with the mock treatment in the ulp1c/d 

background (Fig. 5.4E). Meanwhile, the auxin efflux transmembrane transporter PIN7 is repressed 

in ulp1c/d in both treatments, possibly modulating auxin distribution in the plant.    
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Full annotation of DEGs showed that genes fall mostly onto unknown/uncharacterized 

processes, which suggests a strong involvement of these proteases in unresolved mechanisms of 

the response to pathogen attack (Appendix V - Table S5.2). Still, differentially expressed genes with 

relevant function in known biological processes are summarized in Table 5.1. Results show an 

over-representation of genes involved in auxin signaling, especially by the down-regulation of 

several auxin-responsive genes. Differentially expressed genes were subjected to functional 

annotation according to their gene ontology (GO; Appendix V - Table S5.2). Analysis of the GO 

Biological Processes category showed that down-regulated genes were mainly involved in electron 

transport or energy pathways and developmental processes, while up-regulated genes were 

involved in stress responses, transport and, once more, in developmental processes. In addition, 

up-regulated genes were enriched in protein metabolism-related genes (Appendix V - Table S5.3), 

many involving ubiquitination, which might suggest a strong correlation of ULP1c/d function to 

ubiquitin-mediated protein degradation. Additionally, the SUMO isoform SUM4, which was 

previously singled out as a pseudogene (Saracco et al., 2007), appeared as being down-regulated 

(Appendix V - Table S5.3). Analysis of the GO Molecular Function categorization suggests an over-

representation of nucleotide-binding and transcription factor (TF) activities (Appendix V - Table S5.2 

and S5.4). Also, GO Cellular Component analysis suggests the involvement of these proteases in 

the regulation of chloroplast-targeted genes, which are mostly down-regulated in the mutant 

(Appendix V - Table S5.2). To complement the previous analysis, the MapMan software was used 

to map expression levels of deregulated genes onto metabolic pathways and processes, including 

plant defence. Analysis of the MapMan Metabolism overview pathway, (Fig. 5.5A), which provides a 

birds-eye view of the metabolism, indicated an over-representation of genes involved in secondary 

metabolism and the cell wall, particularly from the xyloglucan endotransglucosylase/hydrolase 

(XTH) family (Table 5.1). XTH genes have been previously associated with sumoylation, with XTH8 

and XTH31 being down-regulated in siz1 due to SA-accumulation (Miura et al., 2010). Since they 

are enriched in ulp1c/d DEGs, we analyzed all annotated XTHs present in the ATH1 microarray 

chip, comparing our experimental data against publically available microarray data of hormone 

supplementation responses (Fig. 5.5B). Hierarchical clustering evidenced how XTH30 and -33 are 

constitutively up-regulated in the mutant. Most significantly, six XTHs were up-regulated after Pst 

DC3000 infection, three of which (XTH11, -19 and -22) were singled out as differentially expressed 

in our microarray (Fig. 5.5B). Analysis also revealed that these XTHs display a similar induction 

pattern when exposed to brassinolide (BL) and the auxin indole acetic acid (IAA). 
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Table 5.1. Genes differentially expressed in ulp1c/d upon Pst DC3000 elicitation that possess a representative 
functional annotation. 

     

AGI ID Gene name Log2 p-value Description 
     
     
Hormone metabolism – auxin 
At1g29430  -1,35 4,81E-5 Auxin-responsive protein 
At4g38850 SAUR15 -1,29 2,28E-4 Small auxin up-regulated 
At1g29450  -1,17 5,13E-3 Auxin-responsive protein 
At1g23080 PIN7 -1,17 5,32E-3 Auxin efflux transmembrane transporter 
At1g29510 SAUR68 -1,11 1,88E-2 Small auxin up-regulated  
At2g45210  1,11 2,07E-2 Auxin-responsive protein 
At4g29080 IAA27, PAP2 1,19 3,33E-3 Transcription factor involved in auxin signaling 
At1g59500 GH3.4 1,19 2,95E-3 Indole-3-acetic acid amido synthetase 
     
Hormone metabolism – ethylene 
At4g37770 ACS8 1,77 9,90E-11 1-aminocyclopropane-1-carboxylate synthase; auxin 

inducible 
     
Hormone metabolism – jasmonate 
At1g76690 OPR2 1,17 4,61E-3 12-oxophytodienoate reductase 
     
Signaling 
At3g18890 TIC62 -1,52 3,76E-7 Coenzyme binding 
At2g47590 PHR2 -1,10 2,60E-2 DNA photolyase, blue-light receptor 
At4g01090  1,14 9,46E-3 Extra-large G-protein-related 
At5g67440 NPY3, MEL2 1,15 6,97E-3 Signal transducer, involved in auxin-mediated 
At3g04110 GLR1.1 1,17 4,48E-3 Glutamate receptor, cation channel 
At5g49480 CP1 1,18 4,17E-3 Calcium ion binding 
At1g62480  1,20 2,31E-3 Vacuolar calcium-binding protein-related 
At4g26470  1,42 6,22E-6 Calcium-binding EF hand family protein 
At5g46330 FLS2 1,45 2,63E-6 Transmembrane receptor protein serine/threonine kinase 
At3g50770 CML41 1,88 0,00E+0 Putative calmodulin-related protein 
     
Response to biotic stress 
At4g04220 RLP46 1,07 4,26E-2 Kinase/ protein binding 
At4g37460 SRFR1 1,14 9,36E-3 Protein complex scaffold 
At1g75030 TLP-3 1,24 9,41E-4 PR5-like protein, thaumatin-like 
At1g19320  1,47 1,84E-6 Pathogenesis-related thaumatin family protein 
At5g64905 PROPEP3 1,52 3,37E-7 Elicitor peptide 3 precursor 
At4g09420  1,62 1,62E-8 Putative disease resistance protein (TIR-NBS class) 
At1g22900  1,82 1,98E-11 Disease resistance response protein  
At2g43590  2,24 0,00E+0 Putative chitinase  
     
Cell Wall 
At5g57560 XTH22, TCH4 1,07 4,54E-2 Xyloglucan endotransglucosylase / hydrolase 
At4g09030 AGP10 1,17 4,78E-3 Arabinogalactan protein 
At3g45970 EXPL1, EXLA1 1,31 1,55E-4 Expansin-like  
At4g30290 XTH19 1,43 4,91E-6 Xyloglucan endotransglucosylase / hydrolase 
At2g22470 AGP2 1,49 8,31E-7 Arabinogalactan protein  
At4g30280 XTH18 1,56 1,09E-7 Xyloglucan endotransglucosylase / hydrolase 
At5g51680  1,63 1,17E-8 Hydroxyproline-rich glycoprotein family protein 
At3g48580 XTH11 2,00 0,00E+0 Xyloglucan endotransglucosylase / hydrolase 
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Sumoylation is generally assumed to play a repressive effect on transcription, by 

modulating the activity of transcriptional regulators or intervening in chromatin remodeling 

components (Garcia-Dominguez and Reyes, 2009; van den Burg and Takken, 2009). We therefore 

highlighted transcriptional regulators that undergo differential expression in ulp1c/d following 

elicitation by Pst DC3000 (Appendix V - Table S5.4). We could observe that most of these 

transcriptional regulators were up-regulated in the mutant after infection, which suggests that 

ULP1c/d is involved in the repression of transcriptional regulators upon pathogen attack.  

 

Analysis of promoter regions for cis-element enrichment 

To search for potential transcription factors involved in gene expression regulation by 

ULP1c/d during infection, we analysed the promoter regions of ulp1c/d DEGs in response to Pst 

DC3000. For that purpose we used the bioinformatics tool Athena (O'Connor et al., 2005) that 

scans the promoter region of a subset of Arabidopsis genes and displays existing cis-element 

enrichments. Results indicated that only one cis-element is enriched in down-regulated genes, the 

Ibox motif (Table 5.2), involved in light-regulated genes (Borello et al., 1993). In contrast, several 

cis-elements were found in the up-regulated subset of genes. Of particular interest was the W-box 

element present in many promoters of up-regulated genes that is known as the binding motif of 

WRKY TFs. Miller et al. (2010) reported that at least 5 WRKYs are modified by SUM1 (Appendix V - 

Table S5.5). We also observed several motifs associated with drought and ABA-signaling are 

enriched in up-regulated DEGs (Table 5.2), pointing strongly to ABA-signaling acting upstream in 

the regulation of the response to Pst DC3000 mediated by ULP1c/ULP1d.  

 

The ulp1c/d mutant displays altered auxin responses  

Auxins are traditionally associated to the regulation of plant growth, but they were recently 

found to attenuate defence responses in plants (reviewed by Bari and Jones, 2009; Kazan and 

Manners, 2009). In our microarray analysis, the ulp1c/d mutant clearly showed deregulation of 

members of traditional auxin responsive gene classes, such as Small Auxin Up-Regulated genes 

(SAURs) and Aux/IAA transcription factors. Deregulation was also observed for PIN7, an auxin 

efflux transporter, and GH3.4 an enzyme involved in auxin conjugation to amino acids (Table 5.1). 

Taking this into consideration, the fact that the mutant displays constitutive developmental defects 

(Chapter 4), and that sumoylation was previously associated to auxin patterning (Miura et al., 

2011) we wanted to analyze whether the ulp1c/d mutant displayed deregulated auxin responses.  
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Table 5.2. Cis-elements over-represented in the promoter region of genes differentially expressed in ulp1c/d upon Pst 
DC3000 infection. The subsets of down- and up-regulated genes were submitted to Athena scanning analysis 
(O'Connor et al., 2005) for binding site enrichment.  

           

Cis-element name 
(conserved sequence*) 

No. of 
genes 

Frequency 
prediction 
in the 
genome 

Frequency 
observed  

p-value Corresponding 
TFs 

           

 
Down-regulated 

     

Ibox promoter motif 
(GATAAG) 

29 40% 56% < 10e-3  

      

Up-regulated      
TATA-box motif 
(TATAAA)  

144 82% 90% < 10e-5  

W-box promoter motif 
(TTGACY) 

118 
 

67% 73% < 10e-4 WRKY 

ATMYC2 BS in RD22 
(CACATG) 

73 35% 45% < 10e-4 MYC, MYB 

MYCATERD1 
(CATGTG) 

73 35% 45% < 10e-4 MYC, MYB 

DRE core motif 
(RCCGAC) 

51 23% 31% < 10e-4  

GARET 
(TAACAAR) 

99 55% 61% < 10e-3  

ABRE-like binding site motif 
(BACGTGKM) 

46 20% 28% < 10e-3  

DREB1A/CBF3 
(RCCGACNT) 

22 7% 13% < 10e-3 DREB1A/CBF3 
 

      

 * R (A/G), M (A/C), Y (C/T), K (G/T), B (C/G/T), N (A/C/G/T)  

 

 

In the presence of exogenous auxin supplementation, in vitro-grown ulp1c/d displayed a 

hypersensitivity phenotype (Fig. 5.6A-D). In ulp1c/d, auxin supplementation produced an inhibition 

of primary root growth and induced secondary root formation (Fig. 5.6A-D). To identify whether 

endogenous auxin levels were constitutively affected in the mutant, we crossed ulp1c/d with 

proDR5::GUS transgenic plants that carry an auxin-inducible promoter driving the expression of the 

GUS reporter gene. No obvious differences were observed between proDR5::GUS in wild-type and 

in the ulp1c/d background, in 10-day-old seedlings or adult plants (Fig. 5.6E). Since inoculation 

with Pst DC300 may cause alterations in auxin levels in the ulp1c/d mutant, we infiltrated Pst 

DC3000 in proDR5::GUS in both wild-type and the ulp1c/d background. Once again, no noticeable 

differences were observed (Fig. 5.6F).  
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pathogens have developed strategies to overcome plant defences by deregulating sumoylation. 

More specifically, it was shown that phytopathogenic bacteria employ a type-III secretion system to 

inject effectors with SUMO protease activity (e.g. AvrXv4 and XopD) into the plant cell as part of 

their infection strategy (Hotson and Mudgett, 2004; Roden et al., 2004; Kim et al., 2008; Wimmer 

et al., 2012; Kim et al., 2013). It is therefore reasonable to assume that endogenous SUMO 

proteases may be implicated in the biotic stress response. To address this question, we studied the 

SUMO protease pair ULP1c and ULP1d, analyzing loss-of-function mutants in the course of 

challenging with the hemibiotrophic bacteria Pst DC3000. We were able to show that the ulp1c/d 

mutant was less susceptible to Pst DC3000 by two different infection methodologies (Fig. 5.1A-B). 

Meanwhile, overexpression lines were not significantly different from wild-type plants, even though 

ULP1c-OE1 showed a tendency for susceptibility to Pst DC3000 that requires further validation 

(Fig. 5.3D). Results support the notion that SUMO protease activity leads to susceptibility to 

infection, since (1) bacteria display SUMO proteases as effectors, and (2) loss of ULP1c/d SUMO 

protease activity lead to resistance to infection by Pst DC3000. 

It has been shown that SIZ1 is a negative regulator of SA synthesis, which controls local 

and systemic-acquired resistance and the expression of PR genes (Lee et al., 2007). The siz1 

mutant has increased resistance to the hemibiotroph Pst DC3000 but not to Botrytis cinerea, a 

necrotrophic pathogen (Lee et al., 2007). Similarly, a combined knockout SUM1 and knockdown 

SUM2 mutant exhibits SA accumulation, high expression of PR1, and increased resistance to Pst 

DC3000 (van den Burg et al., 2010). In an apparent contradiction, when mature SUM1, -2 and -3 

are overexpressed, plants are also SA-accumulators and display increased resistance to Pst 

DC3000. It was suggested that high levels of unconjugated SUMOs may exert an inhibitory effect 

on key SUMO machinery components (van den Burg et al., 2010). Specifically, nonfunctional 

SUMO variants like SUM1(ΔGG) and SUM2(ΔGG) that are conjugation-deficient, have been 

proposed to inhibit SIZ1 function in vivo, by binding to the SIZ1 SIM motif. Therefore, 

overexpression of these variants impacts on SIZ1 function as a repressor of SA-mediated defence 

(van den Burg et al., 2010). This shows that the effect of SUMO levels on plant physiology is 

complex, particularly concerning Pst DC3000 resistance. Having both endo- and isopeptidase 

activities (Chosed et al., 2006; Colby et al., 2006), ULP1c/d may increase the pool of free 

processed SUMO available for conjugation, or modulate the deconjugation of SUMO from targets 

(Fig. 5.7). SUMO-conjugate profiling 6 hours after Pst DC3000 infiltration showed that infection 

triggers the accumulation of high molecular weight SUMO conjugates, while ulp1c/d does not 
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genetically epistatic in innate immunity to Pst DC3000. The triple mutant, as the siz1 and ulp1c/d, 

was less susceptible to Pst DC3000 infection but in addition displayed chlorosis symptoms 

suggesting that SIZ1 and ULP1c/d may be involved in different defence pathways (Fig. 5.1B).     

 

ULP1c/d triggers transcriptional reprogramming in response to Pst DC3000 

Targets for sumoylation are commonly transcription regulators, such as transcription 

factors, chromatin-modifying components and co-repressor complexes (Castro et al., 2012; Mazur 

and van den Burg, 2012), and their regulation could be crucial to trigger and modulate plant 

defence responses. Taking this in consideration, we performed a microarray analysis of ulp1c/d 

inoculated with Pst DC3000 and analyzed the transcriptional signature during infection (Fig. 5.4).  

The number of up-regulated genes in ulp1c/d was three times higher than down-regulated 

genes, and included several transcription factors (Appendix V - Table S5.2 and S5.4). Based on 

these observations, it would seem that ULP1c and ULP1d are mostly implicated in the  

down-regulation of the transcriptional machinery during Pst DC3000 infection. Up-regulated genes 

include several biotic stress-related genes, with special focus for the transmembranne receptor 

FLS2 that recognizes bacterial flg22 (Zipfel et al., 2004; Chinchilla et al., 2006), the mediator of 

effector-triggered immunity Suppressor of RPS4-RLD 1 (SRFR1; Li et al., 2010), and two pathogen-

related genes (At1g75030 and At1g19320; Table 5.1). This up-regulation, particularly of FLS2, 

suggests an increased capacity of ulp1c/d to recognize the pathogen and trigger PTI, which is 

consistent with the observed resistance of ulp1c/d to Pst DC3000. Meanwhile, SRFR1 contributes 

negatively for ETI (Li et al., 2010), suggesting opposing effects of ULP1c/d on PTI and ETI. Many 

XTHs are also up-regulated in ulp1c/d, either constitutively or especially after pathogen challenging 

(Fig. 5.5B). XTHs have been implicated in cell wall remodeling and xylem development (reviewed 

by Cosgrove, 2005). Since there are several cell wall-associated strategies for avoiding pathogen 

infection (Huckelhoven, 2007; Nuhse, 2012), it is expectable that XTHs play a role in pathogen 

response, particularly in the basal resistance characteristic of PTI. As shown by GO analysis 

(Appendix V - Table S5.2), many genes down-regulated in our ulp1c/d infected mutant are 

predicted to be chloroplastic and are enriched in the Ibox motif that is present in light-regulated 

genes. Previous studies have shown that P. syringae effector Hopl1 affects chloroplast structure 

and function, inhibits SA accumulation and ultimately results in the suppression of plant defence 

(Jelenska et al., 2007; Jelenska et al., 2010). It is possible that the ULP1c/ULP1d pair may also 

be involved in chloroplast-signaling. 
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ULP1c/d are implicated in the auxin response 

The most representative group of genes deregulated in ulp1c/d relates to auxin 

metabolism (Table 5.1). Contrarily to what might be expected, no genes are significantly 

deregulated in SA metabolism/signaling, as was shown to occur with other SUMO mechanisms, 

particularly SIZ1 and SUMO peptides (Lee et al., 2007; Jin et al., 2008; van den Burg et al., 2010). 

Auxins are well-known regulators of plant growth, but their role in plant defence is gaining 

significance. Auxin is involved in the attenuation of defence responses in plants, concomitantly, the 

blocking of auxin responses increases resistance to pathogens (reviewed by Kazan and Manners, 

2009). A critical aspect is the regulation by TIR1 of the Aux/IAA family of transcriptional regulators, 

which is mediated by ubiquitin-mediated protein degradation. Infection with Pst DC3000 was 

shown to induce IAA levels in Arabidopsis and the bacterial type III effector AvrRpt2 (a cysteine 

protease) modulates host auxin physiology to promote pathogen virulence in Arabidopsis (Chen et 

al., 2007). Microarray analysis has revealed that Pst DC3000 induces auxin biosynthetic genes and 

represses genes belonging to the Aux/IAA family and auxin transporters, suggesting that it 

activates auxin production, alters auxin movement and de-represses auxin signaling. During 

development, auxins traditionally induce transcription of three groups of genes: Aux/IAA, GH3 and 

SAUR family members (Woodward and Bartel, 2005). In our experiment, the ulp1c/d mutant 

displayed down-regulation of auxin responsive genes, SAUR, and an Aux/IAA (IAA27), and 

displayed up-regulation of GH3.4 gene. GH3 are involved in the conjugation of auxins to amino 

acids, particularly IAA-Asp which promotes disease (Staswick et al., 2005; Gonzalez-Lamothe et al., 

2012), but in the specific case of GH3.4 (which is up-regulated in our experiment), the mutant 

gh4.3 is more susceptible to infection (Gonzalez-Lamothe et al., 2012). The auxin transporter PIN7 

is also down-regulated in ulp1c/d during infection. Results come together to suggest an ULP1c/d-

dependent regulation of the auxin response during infection. This means that the double mutant 

should be more resistant to Pst DC3000 by being incapable of inducing the auxin response which 

is known to be antagonistic to defence (reviewed by Kazan and Manners, 2009). In the event that 

Pst DC3000 effector proteins mimic the action of ULPs, this could explain how Pst DC3000 induce 

auxin responses to its benefit. Even though GUS expression controlled by the auxin inducible DR5 

promoter did not seem affected in ulp1c/d background during development or after infection, 

ulp1c/d seems to display a higher sensitivity to exogenous auxin supplementation (Fig. 5.6A-D), 

which is consistent with an impairment in the auxin response.  
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Identification of ULP1c/d potential targets 

Differentially expressed genes can be used to identify transcriptional regulators whose 

function is being post-transcriptionally modulated by SUMO. Since co-expressed genes tend to be 

controlled by the same transcriptional regulators, and therefore share common cis-elements in 

their promoters, an analysis of cis-element enrichment can help identify potential SUMO targets. In 

many up-regulated genes we observed the presence of W-box motifs, the binding site for WRKY 

transcription factors (Table 5.2). Indeed, five WRKY transcription factors (WRKY3, 4, 6, 33, and 70) 

are some of the targets found to be sumoylated by SUM1 in Arabidopsis (Miller et al., 2010). All of 

them were previously associated to SA and defence mechanisms (Appendix V - Table S5.5). WRKYs 

are also capable of regulating the expression of ABA-signaling genes (Antoni et al., 2011), 

explaining the incidence of many drought and ABA related cis-elements in ulp1c/d DEGs. A specific 

SUMO-conjugate band appeared following Pst DC3000 challenging, with size fitting the WRKY 

sumoylated state, therefore WRKY sumoylation should be evaluated in future analysis. In addition, 

the identification of this band would be of particular interest and, we should not exclude the 

hypothesis of this protein being a bacterial protein.  

Many other TFs should be considered as potential targets. Van den Burg and Takken 

(2010) suggested that Ethylene Response Factors (ERF) and transcription repressors such as 

HDA1 and TPR1 that contribute to chromatin remodeling may be important to modulate biotic 

stress responses. The R-protein RPM1 is also part of the identified SUM1-modified targets (Grant et 

al., 1995; Miller et al., 2010), raising the question whether sumoylation levels are being guarded 

by this protein. 

 

Future perspectives 

Identification of specific ULP1c/d targets will be crucial to understand the mechanism 

behind infection tolerance in the mutant. High-throughput strategies to search for altered SUMO-

conjugate levels, such as that described by Miller et al. (2013), would help us find good 

candidates. Considering that other ULP SUMO proteases contribute for the SUMO cycle and may 

act redundantly in both the endo- and isopeptidase functions of ULPs, it is important to expand this 

study by creating several combinations of ULP mutants and subsequently characterizing the 

infection response. In addition, ULP1c/d endopeptidase activity may contribute negatively to the 

infection response by feeding the SUMO-conjugation pathway with processed SUMOs. One strategy 
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to consider would be to monitor the pathogen response while expressing processed SUMO under 

proULP1c/d control. SIZ1 is a negative regulator of innate immunity by limiting SA biosynthesis. 

Recently, Mutka et al. (2013) proposed that auxin levels enhance the susceptibility to Pst DC3000 

in an SA-independent mechanism. Since ULP1c/d seems to modulate auxin-responsive genes 

expression and control plant development, at least partially, in a SIZ1-independent manner, future 

research should focus on how these two hormones condition plant development and the response 

to pathogen challenging via ULP1c and ULP1d.   

 

 

5.4. MATERIALS & METHODS 

 

Plant material and growth conditions 

The Arabidopsis thaliana T-DNA insertion mutant ulp1c/d in the ecotype Columbia-0 (Col) 

background and transgenic lines proULP1c::GUS and proULP1d::GUS were previously 

characterized in Chapter 4. The ulp1c/d mutant was crossed with siz1-2 (SALK_065397; Miura et 

al., 2005) and proDR5::GUS, kindly provided by Miguel Botella (University of Malaga, Spain), to 

obtain the respective triple mutants. Homozygous insertion mutants were genotyped based on 

SIGnAL T-DNA Primer Design (signal.salk.edu/tdnaprimers.2.html), using the primers in Table 

S5.6 (Appendix V). Homozygous lines for proDR5::GUS ulp1c/d were determined by GUS staining 

using several F3 seedlings. The transgenic line NahG, that expresses a bacterial SA hydroxylase, 

was used as a control for susceptibility.  

Synchronized seeds were stratified for 3 days at 4ºC in the dark. Seeds were surface 

sterilized as described in Chapter 4.  Seeds were sown onto 1.2% agar-solidified MS medium 

(Murashige and Skoog, 1962) containing 1.5% sucrose, 0.5 g L-1 MES, pH 5.7, and grown vertically 

in culture rooms with a 16 h light/8 h dark cycle under cool white light (80 μE m-2 s-1 light intensity) 

at 23ºC. To measure root growth and secondary root formation, seedlings were grown in vitro for 

six days, and subsequently transferred to 0.5x MS 1.2% agar plates with or without the indicated 

indole acetic acid (IAA) supplementation. Vertical root growth was measured every two days for up 

to eight days. 

For standard growth, 7-day-old in vitro-grown seedlings were transferred to a soil to 

vermiculite (4:1) mixture, and maintained under identical growth conditions, with regular watering. 

For the infection assay, seeds were poured in soil and stratified for 3 days. Seedlings with 2.5 
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weeks were transferred to sets of individual pots and grown in short days (8h light /16h dark) at 

21-22ºC. 

 

Bacterial inoculations 

Two different inoculation methods, infiltration and spraying, were used to assess reactivity 

of plants to Pst DC3000 infection. Plants were grown in short days (8 h light/16 h dark) cycle 

conditions in a controlled-environment growth chamber. For the bacteria infiltration assay,  

5-week-old plant leaves were infiltrated, using a blunt syringe, with a Pst DC3000 cell suspension 

(5x104 CFU mL-1) in 10 mM MgCl2. The mock treatment was carried out with 10 mM MgCl2 

infiltration, and control plants were untreated. The treatments were done in the morning and 

samples were taken 6 hours post infiltration for GUS staining, qPCR, microarray, and western blot 

analysis. To evaluate bacterial growth at 3 days post-infection, three leaf discs with 10 mm 

diameters each were homogenized with a pestle in 1 mL of 10 mM MgCl2. The bacterial solution 

was plated in serial dilutions onto LB medium supplemented with 2 mg mL-1 cycloheximide. CFU 

were counted to determine bacterial growth.  For spraying inoculation, 2-week-old seedlings 

growing in Jiffy-7 pots (Jiffy Products) were sprayed with a bacteria suspension 5x107 CFU mL-1 in 

10 mM MgCl2 containing 0.02% Silwet as a surfactant (Macho et al., 2010). Plant infection 

symptoms were evaluated at various time points.  

 

Plasmid construction and plant transformation 

Plasmids were constructed using standard DNA cloning techniques, and confirmed by DNA 

sequencing. To produce ULP1c and ULP1d overexpression lines, the ULP1c and ULP1d open 

reading frames were amplified from cDNA by PCR with incorporated restriction sites (EcoRI and 

ClaI). The amplification product was sub-cloned into the pGEM-T Easy vector (Promega) and 

subsequently cloned into the pHANNIBAL vector (Wesley et al., 2001) to create pro35S::ULP1c-

NOS and pro35S::ULP1d-NOS terminator fusions. The constructs were excised using NotI and 

cloned into the plant expression vector pGREEN II 0229 (www.pgreen.ac.uk/). Agrobacterium 

tumefaciens strain EHA105 was used for plant transformation by the floral dip method (Clough and 

Bent, 1998), and homozygous transformants were selected by resistance to Kanamycin. 
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GUS staining 

GUS histochemical staining was perfomed as described by Posé et al. (2009). The assay 

included transgenic plants proULP1c::GUS and proULP1d::GUS (Chapter 4) and proDR5::GUS 

(Miguel Botella, University of Malaga, Spain) both in wild-type and ulp1c/d background. After 

infiltration treatments (untretaed, mock, Pst DC3000, or auxin), plant leaves were vaccum 

infiltrated with a GUS staining solution, containing 100 mM sodium-phosphate buffer (pH 7.0), 20% 

(v/v) methanol, 0.5 mM potassium ferrocyanide, 0.5 mM potassium ferricyanide and 0.3% (v/v) 

Triton X-100. Leaves were incubated at 37ºC overnight in the dark. In the following day, 

pigmentation was washed using ethanol, and blue tainted leaves were photographed. As a positive 

control for GUS induction in proDR5::GUS plants, leaves were infiltrated with 100 nM auxin 2,4-D 

in 10 mM MgCl2. 

 

RNA isolation and quantitative Real-Time PCR 

Genome-wide transcription studies were performed using the ATH1 Affymetrix microarray 

chip, at an external service provider (Unité de Recherche en Génomique Végétale, Université d’Evry 

Val d’Essonne, France). Significance of differential expression was validated by a Bonferroni test 

with a p-value threshold of <0.05. RNA extraction and cDNA synthesis were performed as 

described in Chapter 4. The qPCR analyses are also described in Chapter 4 and the primers used 

are listed in Table S5.7 (Appendix V). ACT2 (At3g18780) was used as a reference gene (Lozano-

Duran et al., 2011). Three replicas were used per condition. 

 

Plant total protein extraction and western blotting 

Protein extraction, quantification, and immunoblotting were previously described in Chapter 

4. The primary antibody anti-AtSUMO1 (ABCAM) or anti-NbSUMO were added in a 1:2000 and 

1:500 dilution, respectively, and incubated for 3 h. The membrane was washed three times with 

10 mL of PBST for 10 min, and incubated with the secondary antibody (anti-rabbit IgG-HRP, 

Sigma; 1:10,000 in blocking solution) for 1 h.  
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6.1. INTRODUCTION 

Post-translational modifications (PTMs) are able to rapidly and reversibly reprogram protein 

activity and are involved in development and the response to environmental challenges. Among the 

many types of PTMs, one of the most documented mechanisms is the attachment to target 

proteins of small peptides structurally similar to ubiquitin (Ubiquitin-Like peptides, UBLs; Miura and 

Hasegawa, 2010; Vierstra, 2012). Small Ubiquitin-like Modifier (SUMO) is an UBL family member 

that is mainly involved in nuclear-associated functions such as the regulation of transcription, 

chromatin-remodeling, mRNA biogenesis, nuclear-cytoplasm trafficking and DNA repair (Gareau 

and Lima, 2010; Mazur and van den Burg, 2012). Briefly, sumoylation, or SUMO attachment, is 

possible by an enzymatic cascade that sequentially involves peptide maturation by specific SUMO 

endopeptidases, SUMO E1 activation, E2 conjugation and E3 ligation, which drive the transfer of 

the modifying peptide to a specific lysine residue, normally within the consensus ψKXE (ψ, large 

hydrophobic residue; K, lysine; X, any amino acid; E, glutamic acid; Gareau and Lima, 2010). The 

attachment can be reverted by specific SUMO isopeptidases, counteracting sumoylation and 

contributing also for the recycling of the SUMO peptide (Hickey et al., 2012). 

SUMO conjugation can exert different effects on a target protein: (1) changes in 

conformation, (2) aid in protein-protein interactions (PPIs) via SUMO interacting motifs (SIMs), and 

(3) blocking of PPIs by for instance by competing with other PTMs (Wilkinson and Henley, 2010). 

The biological consequences of protein sumoylation are manifold, depending on the modified target 

protein and various other factors, not the least of which resides on SUMO itself. Target proteins can 

suffer modification by one SUMO peptide (mono-sumoylation), yet can also form polymeric chains 

(poly-sumoylation) or even have multiple sumoylated sites (multi-sumoylation; Hickey et al., 2012). 

Moreover, many organisms possess several SUMO isoforms, creating the possibility for mixed 

chains. Recent publications revealed that SUMO chains can serve as anchors for SUMO-targeted 

ubiquitin E3 ligases (STUbLs), therefore acting as facilitators of ubiquitination, consequently 

contributing to protein degradation (Geoffroy and Hay, 2009). This contrasts with another role 

traditionally associated to SUMO: the competition with ubiquitin for the same lysine residues (Hay, 

2005).  

Specificity of sumoylation might be determined by the large number of SUMO proteases, 

rather than being determined by the conjugation machinery, which is traditionally encoded by a 

limited number of genes. SUMO-specific proteases generically belong to the C48 family of Cys 

proteases (van der Hoorn, 2008), annotated as Ubiquitin-Like protein-specific Proteases or 
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Sentrin/SUMO-specific Proteases (ULPs/SENPs). These have been described as modulators of 

sumoylation through their action on SUMO moieties, namely by (1) processing pre-SUMO 

(maturation), (2) removing SUMO from modified target proteins (SUMO deconjugation) or (3) 

editing SUMO chains. ULP/SENP cysteine proteases are a heterogeneous family, which contributes 

to the specificity and complexity of the SUMO machinery (Hickey et al., 2012).  

In plants, sumoylation seems to be essential for embryonic development, organ growth, 

flowering transition and hormone regulation (Saracco et al., 2007; Jin et al., 2008; Miura et al., 

2009; Miura et al., 2010; van den Burg et al., 2010). In addition, SUMO plays a role in stress-

associated responses to stimuli such as extreme temperatures, drought, salinity and nutrient 

assimilation (Castro et al., 2012). During such stresses, the profile of SUMO-modified proteins 

changes dramatically, greatly increasing SUMO-conjugate levels and decreasing the pool of free 

SUMO (Miller et al., 2013). After stress imposition, SUMO-conjugates slowly diminish by the action 

of ULPs. Unfortunately, little is known about the role of ULPs in plant physiology. The Arabidopsis 

thaliana genome includes eight predicted ULPs, and four of them have been shown to function as 

SUMO proteases in vitro (Chosed et al., 2006; Colby et al., 2006; Novatchkova et al., 2012). Each 

of these ULPs is likely to individually contribute to specific functions within the plant, judging from 

the functional characterization available to date. For instance, ESD4 loss-of-function results in a 

pleiotropic phenotype (severe dwarfism), while the closely related ULP1a/ELS1 does not have such 

a severe phenotype (Murtas et al., 2003; Hermkes et al., 2011). Additionally, ULP1c and ULP1d 

act redundantly in flowering transition and plant growth, as well as in salt and drought stress 

responses (Chapter 4; Conti et al., 2008). ULP2s constitute a main branch of SUMO proteases that 

has not been, to the best of our knowledge, functionally characterized in plants.  

In the present study we have addressed the role of ULP2a and ULP2b SUMO proteases in 

Arabidopsis. We first performed a structural and phylogenetic characterization of plant ULPs, 

pointing to ULP2a and ULP2b being reminiscent of ULP2-type proteases. To determine ULP2a and 

ULP2b function, we characterized the developmental and environmental stress responses of 

Arabidopsis T-DNA insertion mutants, which showed diverse developmental defects and 

constitutively displayed increased SUMO-conjugate levels. Moreover, microarray analysis evidenced 

a specific transcriptional signature that suggests the involvement of ULP2s in secondary 

metabolism, cell wall remodelling and nitrate assimilation. The ulp2a/b mutant also displayed an 

antagonistic morphological phenotype in respect to the well characterized SUMO E3 ligase mutant 
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siz1. Most significantly, the triple mutant ulp2a/b siz1 was phenotypically siz1-like, which places 

ULP2a/b as epistatic and downstream of SIZ1.   

 

 

6.2. RESULTS  

 

Phylogenetic reconstruction and topological analysis of ULP2s 

Predictions on Arabidopsis ULP SUMO protease family members have been inconsistent as 

to the relationship between the main existing phylogenetic subgroups, either placing ULP1c/ULP1d 

closer to ESD4/ULP1a/ULP1b or ULP2s (Miura et al., 2007a; Lois, 2010; Novatchkova et al., 

2012). To resolve this issue, we extended the existing characterization to include phylogenetically 

representative plant and non-plant genomes. Plant ULP ortholog search was carried out using 

Plaza (Van Bel et al., 2012), and was based on homology search with the seven consistently 

annotated Arabidopsis ULPs (ULP1a-d, ESD4, ULP2a-b) and the putative family member 

At3g48480. Phylogenetic reconstruction of the ULP family clearly outlined the existence of two 

major branches, and within these, plant ULPs could be categorized into four phylogenetic 

subgroups (Fig. 6.1A). Each major branch encompassed the predicted yeast and human ULP1 and 

ULP2 isoforms and can be considered ULP1- and ULP2-like, respectively. ULP1-like proteins 

contained only one plant ULP subgroup that included Arabidopsis ESD4, ULP1a and ULP1b. ULP2-

like proteins contained the remaining three plant ULP subgroups, including that of annotated plant 

ULP2s. Interestingly, it also included the ULP1c/ULP1d subgroup, traditionally annotated as ULP1-

like. The fourth distinct subgroup was phylogenetically closer to the ULP1c/d subgroup, and 

contained the orthologs of the putative Arabidopsis ULP At3g48480 that was hereafter designated 

ULP1e (Fig. 6.1A).  

To the best of our knowledge no studies have characterized the ULP2s subgroup of ULPs 

in plants. Arabidopsis ULP2a and ULP2b display 30.5% identity, as well as a highly conserved 

region that possesses 46% identity and matches the catalytic domain (Fig. 6.1B,C; Appendix VI - 

Fig. S6.1). For both proteins, topological analysis revealed the catalytic domain to be located in the 

center of the protein, while ULP1-like proteins were located in the C-terminal end (Fig. 6.1B). 

Analysis also demonstrated that ULP1e was restricted to the catalytic domain and lacked both the 

N- and C-terminal ends of ULP2s (Fig. 6.1B).  
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Homozygous lines were selected using diagnostic PCR (data not shown). Considering that 

ULP2a and ULP2b are phylogenetically close (Fig. 6.1A) and functional redundancy has been 

displayed by other gene family members (Chapter 4), we generated a double mutant ulp2a-1 

ulp2b-1 (hereafter designated ulp2a/b). Expression of ULP2a and ULP2b was assessed by semi-

quantitative RT-PCR in single and double mutant backgrounds (Fig. 6.2B), confirming that in both 

cases T-DNA insertion abolishes gene expression. Results also suggest that in wild-type Arabidopsis 

plants, ULP2b is considerably more expressed than ULP2a, which is corroborated by publically 

available microarray data (Appendix VI - Fig. S6.2; Genevestigator;  Hruz et al., 2008).  

Morphological analysis suggested that, in comparison to the wild-type, both the ulp2b and 

ulp2a/b mutants displayed altered growth, different leaf morphology and late flowering time (Fig. 

6.2C). A systematic characterization of morphological/developmental features was subsequently 

pursued. The strategy was based on first-phase measurements for soil-based analysis, selecting 

key stages in Arabidopsis development and measuring morphological features (Fig. 6.3A), 

according to the standard for Arabidopsis thaliana developmental stages previously established by 

Boyes and co-workers (2001). In the earlier stages of development there were no severe 

phenotypic differences between genotypes (Fig. 6.3B,C), however we noticed that in vitro, ulp2a/b 

mutant leaves are bigger and darker than wild-type leaves (Appendix VI - Fig. S6.3; data not 

shown). In soil-grown plants, a differential phenotype started to appear in later stages, with ulp2a/b 

plants showing a clear delay in development that included late flowering and shorter bolt length 

(Fig. 6.3E,F). Although the ulp2a/b rosette displayed a slightly smaller diameter, the most 

interesting aspect was that the ulp2a/b leaves were significantly smaller in width (Fig. 6.2C; 6.3D; 

Appendix VI - Fig. S6.3). Another striking feature of double mutant plants was the darker tonality of 

leaves, therefore we measured pigmentation content in leaves of 1-month-old plants (Fig. 6.3G-I). 

Results indicate that ulp2a/b accumulated relatively more chlorophylls, carotenoids, and 

anthocyanins than the wild-type. Finally, we could observe that ulp2a/b seed production and 

morphology were also severely affected, generating a low number of seeds per silique (Fig. 6.3J), 

yet seeds were bigger compared to the wild-type (Fig. 6.3K-M).  
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In summary, we observed a series of developmental phenotypes in ulp2a/b. Several, less 

pronounced phenotypes were also observed in ulp2b but not in ulp2a single mutants. Specifically, 

the single mutant ulp2b revealed a developmental phenotype in flowering time, leave morphology 

and pigmentation (Fig. 6.2C and 6.3D-I). These results suggest that ULP2a and ULP2b are partial  

yet unequally redundant, with ULP2b having a predominant role. To genetically confirm  

present results, second allele mutants were characterized showing similar phenotypes (Appendix  

VI - Fig. S6.4).  

 

ULP2a and ULP2b have SUMO protease activity 

SUMO proteases may display different activities, breaking endopeptidic bounds important 

for SUMO maturation or having isopeptidic activity for SUMO removal or chain editing (Hickey et 

al., 2012). Phylogenetic analysis indicated that ULP2a and ULP2b were similar to yeast Ulp2 and 

human SENP6/7 (Fig. 6.1), and are therefore potential SUMO-chain editing proteins. To ascertain 

the kind of SUMO protease activity ULP2a and ULP2b have, we checked the sumoylation profile in 

the ulp2a/b mutants. Sumoylation patterns were analyzed by western blot of whole-plant proteins 

extracts using both anti-AtSUMO1 and anti-AtSUMO3 specific antibodies, thus covering the 

predominant SUMO peptides (Saracco et al., 2007; van den Burg et al., 2010). Results clearly 

showed that high molecular weight conjugates for SUM1/2 (the main SUMO peptides in 

Arabidopsis), constitutively accumulated in the double mutant but also to some extent in the ulp2b 

single mutant, with respect to the wild-type (Fig. 6.4A). Overall conjugation levels of SUM3, a 

peptide whose expression is lower and restricted to specific tissues (Saracco et al., 2007; van den 

Burg et al., 2010), seem unaffected in ULP2 mutants. However, specific bands are affected in the 

double mutant (Fig.6.4B).  

SUMO-conjugation increases in response to stress, and this increment can be regulated by 

an altered balance between conjugation and deconjugation, in which ULPs play an important role 

(Pinto et al., 2012). Therefore, we checked the level of SUMO conjugates of the Arabidopsis 

ulp2a/b mutant subjected to heat-shock (HS) stress (Fig.6.4C). Although HS stress induced 

SUM1/2-conjugate accumulation, no major changes were observed in ulp2a/b comparatively to 

the Wt. Analysis of the SUMO-conjugate profile during the HS recovery period is likely to bring 

additional insight into the potential involvement of ULP2s in the heat stress response. As expected, 

these SUMO-conjugates failed to accumulate in the siz1 mutant that was used as a negative 

control. 
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down-regulated and 100 up-regulated genes. Gene ontology (GO) and MapMan analysis were used 

to respectively map differential expression against biological processes and the overall metabolic 

pathways of Arabidopsis (Fig. 6.5A,B). Results revealed that many DEGs were involved in cell wall 

and secondary metabolism, including genes involved in the biosynthesis of phenylpropanoids 

(particularly lignin biosynthesis), glucosinolates and lipids (Fig. 6.5A,B; Table 6.1).  The majority of 

these genes were found to be down-regulated. In contrast, one GO category particularly up-

regulated in ulp2a/b was the response to hormone stimulus, though no specific hormone could be 

highlighted (Table 6.1). We compared genes differentially expressed genes in ulp2a/b against 

genes differentially expressed by exogenous hormone supplementation (data not shown; 

Nemhauser et al., 2006). Results showed that many of the ulp2a/b DEGs, when compared with 

random abundance in the genome, were over-represented within the transcriptional signature that 

follows application of exogenous abscisic acid (ABA) and methyl jasmonate (MJ).  

 

Table 6.1. Genes constitutively deregulated in ulp2a/b comparatively to the wild-type. The categories were chosen 
taken in consideration the gene ontology (GO) terms enrichment and the list of genes was gathered using Classification 
SuperViewer (Toufighi et al., 2005) and The Arabidopsis Information Resource (TAIR; Lamesch et al., 2010).  
 
     
AGI ID Gene name Log2 ratio p-value Description 
 
 
Hormone metabolism 
Auxin     
At1g77690 LAX3 -0,65 2,41E-4 Auxin influx carrier 
At5g35735  0,58 9,44E-3 Auxin-responsive 
At1g56150  0,59 6,19E-3 SAUR-like auxin-responsive 
At4g14560 AXR5, IAA1 0,88 2,49E-10 Aux/IAA protein 
At5g18060 SAUR23 0,96 0,00E+0 SAUR-like auxin-responsive 
Brassinosteroid     
At3g30180 BR6OX2, CYP85A2 1,30 0,00E+0 Brassinosteroid-6-oxidase 
Cytokinin     
At1g22400 UGT85A1 0,64 5,00E-4 UDP-Glycosyltransferase 
Gibberellin     
At2g14900  0,65 2,58E-4 Gibberellin-regulated 
At5g25900 KO1, CYP701A3, GA3 0,71 1,45E-5 Kaurene oxidase 
Jasmonate     
At1g52070  0,61 2,07E-3 Mannose-binding lectin  
At5g42650 AOS, CYP74A, DDE2 0,81 2,26E-8 Allene oxide synthase 
At1g52100  1,09 0,00E+0 Mannose-binding lectin  
Salicylic acid     
At5g38020  0,70 2,23E-5 SAM-Mtases  
At5g37990  0,82 1,61E-8 SAM-Mtases  
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Table 6.1. (Continued) 
 
Secondary metabolism 
Phenylpropanoids (lignin biosynthesis) 
At4g37980 CAD7,ELI3 -1,13 0,00E+0 Cinnamyl alcohol dehydrogenase 
At5g66690 UGT72E2 -0,81 3,20E-8 UDP-Glycosyltransferase 
At4g39330 CAD9 -0,66 1,29E-4 Cinnamyl alcohol dehydrogenase 
At4g36220 CYP84A1, FAH1, F5H -0,56 2,57E-2 Ferulic acid 5-hydroxylase 
Lipids 
At1g06080 ADS1 -1,51 0,00E+0 Acyl-lipid / acyl-CoA desaturase 
At5g14180 MPL1 -1,50 0,00E+0 Myzus persicae-induced lipase 
At5g04530 KCS19 -1,02 0,00E+0 3-ketoacyl-CoA synthase 
At1g06350  -0,91 4,48E-11 Fatty acid desaturase 
At3g08770 LTP6 -0,91 4,48E-11 Lipid transfer protein 
At4g34250 KCS16 -0,62 1,47E-3 3-ketoacyl-CoA synthase 
At3g11670 DGD1 -0,60 2,80E-3 UDP-glycosyltransferase 
At4g38690  -0,56 1,92E-2 PLC-like phosphodiesterase 
Glucosinolates     
At3g14210 ESM1 -1,72 0,00E+0 Epithiospecifier modifier 
At4g13770 CYP83A1, REF2 -0,74 2,35E-6 Cytochrome P450 
At2g43100 LEUD1, IPMI2 -0,68 5,43E-5 Isopropylmalate isomerase 
At5g23010 IMS3, MAM1 -0,64 5,52E-4 Methylthioalkylmalate synthase 
At1g07640 OBP2 -0,60 3,01E-3 DOF transcription factor 
At3g44320 NIT3 0,75 1,26E-6 Nitrilase 
At1g54010 GLL22 0,90 6,97E-11 GDSL-like lipase / acylhydrolase  
Cell Wall     
At5g65730  XTH6 -1,61 0,00E+0 XTH 
At1g67750  -0,66 1,31E-4 Pectate lyase 
At5g47500  PME5 -0,63 8,57E-4 Pectin methylesterase 
At4g28250 EXPB3 -0,59 6,49E-3 Beta-expansin 
At3g23730 XTH16 -0,59 6,24E-3 XTH 
At1g20190  EXPA11 0,57 1,08E-2 Alpha-expansin 
At1g55850 CSLE1 0,57 1,49E-2 Cellulose synthase/ transferase 
At3g29810 COBL2 0,59 4,76E-3 COBRA-like protein precursor 
At2g06850 XTH4, EXGT-A1, EXT 0,63 6,61E-4 XTH 
At3g28180 CSLC4 0,78 1,94E-7 Cellulose synthase/ transferase 
At4g30290 XTH19 0,88 2,09E-10 XTH 
At5g33290 XGD1 0,95 0,00E+0 Xylogalacturonan xylosyltransferase 
At3g44990 XTH31, XTR8 1,29 0,00E+0 XTH 
     
Other 
At2g45660 SOC1, AGL20 -0,83 6,01E-9 AGAMOUS-like transcription factor 
At1g77760 NIA1, GNR1, NR1 -0,83 7,34E-9 Nitrate reductase 
At4g21680 NRT1.8 0,61 1,81E-3 Nitrate transporter 
At5g50200 NRT3.1, WR3 0,62 1,11E-3 Nitrate transporter 
     

XTH - Xyloglucan endotransglucosylase / hydrolase; SAM-Mtases - S-adenosyl-L-methionine-dependent 
methyltransferase 
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Table 6.2. Cis-elements over-represented in the promoter region of differentially expressed genes (DEGs) in ulp2a/b. 
The DEGs were submitted to Athena analysis (O'Connor et al., 2005) scanning for binding sites enrichment.  

       
Cis-element 
name 

Cis-element 
sequence* 

Nr. Of 
genes 

Predicted in 
the genome 

Found in 
the genes 

p-value Corresponding 
TFs 

       
       
Down-regulated       
       
AtMYC2 BS in 
RD22 

CACATG 61 35% 53% < 10e-6 MYC2 

MYCATERD1 
 

CATGTG 61 35% 53% < 10e-6 MYC2 

       
Up-regulated       
       
AtMYC2 BS in 
RD22 

CACATG 47 35% 47% < 10e-3 MYC2 

MYCATERD1 CATGTG 47 35% 47% < 10e-3 MYC2 
CARGCW8GAT CWWWWWWWWG 70 59% 70% < 10e-3 AGL15 
TATA-box Motif TATAAA 91 91% 82% < 10e-4  
       

 * R (A/G), M (A/C), W (A/T), K (G/T), B (C/G/T), N (A/C/G/T)  

 
 
ULP2 mutants do not recover the siz1 phenotype to wild-type 

When we compared ulp2a/b to mutants of the Arabidopsis SUMO conjugation pathway, it 

become clear that ulp2a/b displayed antagonistic phenotypes to those of siz1. SIZ1 is the major 

SUMO E3 ligase and has been the subject of most functional studies in the pathway. Contrary to 

ULP2a/b, loss of SIZ1 function induces diminished SUMO-conjugate accumulation, early flowering, 

and decreased pigment content (Chapter 2; Catala et al., 2007; Jin et al., 2008), suggesting an 

epistatic relationship between SIZ1 and ULP2s. To further address this issue, we generated a triple 

siz1-2 ulp2a-1 ulp2b-1 (siz1 ulp2a/b) mutant, and performed a phenotype characterization. 

Morphologically, the triple mutant resembled siz1 and was similarly affected in the accumulation of 

high molecular weight SUMO conjugates, even after heat shock (HS; Fig. 6.7A-C), suggesting that 

SIZ1 is acting upstream of ULP2s.  

Transcript profiling was extended to the triple mutant siz1 ulp2a/b, and was subsequently 

compared to siz1-2 and ulp2a/b (Fig. 6.7D). We identified DEGs in all three mutant genotypes in 

comparison to the wild-type, and subsequently cross-referenced the three data subsets (Fig. 6.7D). 

A total of 26 genes were similarly differentially expressed in all three mutant backgrounds. These 
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6.3. DISCUSSION 

Sumoylation is essential for eukaryotic organisms, mainly because it regulates the activity 

of vital proteins. Therefore, it is crucial that SUMO homeostasis be tightly controlled, and in recent 

years, some publications have shed light on SUMO protease activity and their essential role in 

many aspects of cellular homeostasis (reviewed by Hickey et al., 2012). In plant genomes, as in 

other organisms, SUMO proteases seem to be more abundant than the E1/E2/E3 components of 

the conjugation machinery, making them prime candidates for the regulation of SUMO 

conjugate/deconjugate homeostasis. In the present study we were able to initiate the functional 

characterization of ULP2a and ULP2b, the two putative ULP2s coded in the Arabidopsis genome. 

Results sustain a redundant role for both proteins in plant growth and development.   

 

ULP2a/b are ULPs with likely isopeptidase activity 

Phylogenetic studies have singled out ULP2a and ULP2b as homologs of yeast Ulp2 and 

mammalian SENP6/7, making them natural candidates for poly-SUMO chain editing proteases in 

Arabidopsis (Hickey et al., 2012). In the present study we were able to highlight the topological 

basis behind this assumption, in that plant ULP2a/b share several features with both yeast and 

mammalian orthologs. The human ULP2-like SENP6 and SENP7 catalytic domains create loops for 

SUMO recognition (Lima and Reverter, 2008; Alegre and Reverter, 2011). More specifically 

SENP6/7 loop 1 is essential for activity and SUMO isoform discrimination, but it is not conserved 

either in yeast or plant ULP2s. The topology of the catalytic domains in Arabidopsis ULPs revealed 

the existence of five internal loops (Fig. 6.1C), but whether they contribute for SUMO recognition is 

still to be determined. Another interesting characteristic is that the catalytic domain in Arabidopsis 

ULP2s is located in the middle of the protein (Fig. 6.1B), a feature shared with yeast Ulp2p. 

Concerning the function of the N- and C-terminal ends, the model proposed for yeast ULP2 is that 

the N-terminal domain acts mainly in nuclear targeting (Kroetz et al., 2009), whereas the  

C-terminal end contains motifs for PTM such as phosphorylation (Baldwin et al., 2009).  

In agreement, the Arabidopsis ULP2b C-terminal end was previously identified as being a 

phosphorylation target (PhosPhAt database; Durek et al., 2010).  

It is important to refer that other ULP2-like proteases were previously proposed by Kurepa 

et al. (2003) and Lois (2010). However these putative ULP-like genes are part of transposon 

elements (Hoen et al., 2006) and were designated Kaonashi ULP-like (KIU) sequences. Though 

they potentially have catalytically functional domains, their SUMO protease activities were never 
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studied. Nevertheless, KIU also belong to a phylogenetic distant branch from the remaining ULP 

family members and are strongly silenced (Hoen et al., 2006), suggesting a minor contribution to 

SUMO regulation in the event they do function as SUMO proteases. In conclusion, phylogenetic and 

topology studies place ULP2a and ULP2b as the most likely Arabidopsis ULP2-type SUMO 

proteases homologues.  

SUMO proteases have a dual function as both maturases of the pre-SUMO peptide and as 

isopetidases removing SUMO conjugates, and it is important to establish the individual contribution 

of the different ULPs to each role. Loss of ULP2a/b function resulted in the constitutive 

accumulation of high molecular weight SUMO-conjugates (Fig. 6.4), which is consistent with 

phylogenetic data that suggests that ULP2s act as major isopeptidases in the sumoylation pathway. 

Another interesting aspect is that immunoblotting against SUM3 revealed an increment in specific 

bands/SUMO targets. This result raises the additional question whether these proteases may also 

act towards SUM3. Previously, only ULP1a showed activity in vitro, though weakly, towards SUM3 

(Colby et al., 2006). This SUMO isoform is involved in late responses to pathogen infection and its 

knockout mutant displays late flowering (van den Burg et al., 2010).  

Results have also shown the existence of unequal redundancy between ULP2a and ULP2b: 

(1) ULP2b seems to be much more expressed than ULP2a as shown by semi-quantitative RT-PCR 

and public transcriptomic data (Fig. 6.2B; Appendix VI - Fig. S6.2); (2) compared to ulp2a, ulp2b 

mutant plants display more prominent phenotypes in leave morphology, flowering time, pigment 

accumulation and increased SUMO-conjugates (Fig. 6.3 and 6.4); (3) we have shown that several 

plant genomes only display one ULP2-like protease, including Physcomitrella patens, Selaginella 

moellendorffii, rice and maize (Fig. 6.1A; Appendix VI - Fig. S6.1), suggesting a recent gene 

duplication event within dicots.  

 

ULP2a/b control plant development downstream of SIZ1 

ULP2a/b control a series of development features, making them potentially strategic for 

the future enhancement of crop yield. The ulp2a/b mutant phenotypes include (1) late flowering, 

indicative of a delay in development, (2) smaller leaves, and (3) severely impaired seed production 

(Fig. 6.3). However, seeds are also bigger which may be an interesting prospect to increase seed 

size in crop species (Fig. 6.3K-M). We have shown that ULP2a/b controls several genes involved in 

secondary metabolism (Fig. 6.5A,B; Table 6.1), which may explain the observed developmental 

defects. For instance, genes involved in glucosinolates and lignin deposition, such as Ferulic acid 5-
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hydroxylase (F5H), are down-regulated in ulp2a/b, suggesting that ULP2a and ULP2b act as 

positive regulators of lignin deposition. Many components of the cell wall remodeling apparatus are 

also affected in ulp2a/b, particularly members of the xyloglucan endotransglucosylase/hydrolase 

(XTH) family like XTH31, which was previously seen to be down-regulated in siz1 (Miura et al., 

2010), and is over-expressed in ulp2a/b (Fig. 6.6). Most significantly, we have provided substantial 

evidence that many phenotypes displayed by ulp2a/b oppose those of siz1, including SUMO-

conjugate accumulation, late flowering, higher pigment content and reduced ROS accumulation 

(data not shown). Interestingly, siz1 ulp2a/b mutant morphologically resemble the siz1 single 

mutant, suggesting that ULP2a/b are epistatic to SIZ1.  

Target sumoylation is greatly under the control of SIZ1 (Miura et al., 2005; Catala et al., 

2007). Though many SUMO machinery components are sumoylated in normal conditions, SIZ1 is 

the only heavily sumoylated protein under stress conditions (e.g. HS, ethanol and H2O2; Miller et al. 

2013). One possibility is that SIZ1 may be one of the major targets of ULP2a/b. In accordance 

with this hypothesis, yeast Siz1 and Siz2 are high-copy suppressors of ulp2 phenotypes, 

suggesting that the requirement for yeast Ulp2 is bypassed by SIZ1 overexpression (Strunnikov et 

al., 2001; Hannich et al., 2005). Nevertheless, plants might display higher complexity, since in the 

current data, ulp2a/b and siz1 revealed opposing phenotypes and their transcriptome was not 

significantly co- or anti-expressed (Fig. 6.7).  

Interestingly, in the comparison between siz1 and siz1 ulp2a/b, two genes appeared as 

anti-expressed that are in fact two different Affymetrix spot IDs for the SIZ1 gene (247630_at and 

247629_at). The opposite signal between these two spots is likely due to the fact that 247629_at 

is located upstream and 247630_at is downstream of the siz1-2 T-DNA insertion site. The 

upstream probes show up-regulation of SIZ1 in the siz1-2 mutant while the downstream probes 

naturally show down-regulation. This suggests that absence of a functional SIZ1 induces SIZ1 

expression in a feedback mechanism. In support, the E2 ligase SCE1 (At3g57870) seems to be 

slightly but significantly up-regulated in the siz1-2 mutant, which suggests that various SUMO 

conjugation components are targeted for up-regulation in the feedback mechanism. 

Another important aspect to consider when addressing the ULP2 role in Arabidopsis is the 

potential for functional redundancy with other ULPs. In agreement, esd4 and ulp1c/d mutants 

have been shown to accumulate high molecular weight SUMO-conjugates under non-stress 

conditions (Chapter 4; Murtas et al., 2003; Xu et al., 2007; Conti et al., 2008), and also ESD4, 

ULP1a, ULP1c and ULP1d have shown SUMO1/2 isopeptidase activity in vitro (Chosed et al., 
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2006; Colby et al., 2006; Conti et al., 2008; Hermkes et al., 2011). On the other hand, the triple 

mutant siz1 ulp1c/d showed accumulative defects, which partially place ULP1c/d and SIZ1 in 

different pathways (Chapter 4). The siz1 esd4 mutant, like siz1 ulp2a/b, resembles siz1 (Castro et 

al. unpublished), but SIZ1 and ESD4 are also likely to function in different pathways since the siz1 

pleiotropic phenotype is greatly reverted in the NahG background (expressing a bacterial SA 

hydroxylase that hydrolyses SA), while esd4 does not (Hermkes et al., 2011). Discriminating de-

sumoylation targets for each ULP will be an important step towards dissecting the circuitry of 

regulation via SUMO removal, and ultimately identify the origin of specificity within the sumoylation 

pathway. Such a goal should come from combining ULPs mutant backgrounds with  

high-throughput sumoylome-identifying strategies such as that described by Miller et al. (2010).   

 

ULP2a/b are nuclear components playing a role in transcription regulation 

Both mammalian SENP and yeast ULP vary in their sub-nuclear localization (reviewed by 

Wilkinson and Henley, 2010), contributing differently to SUMO dynamics within the nucleus. In 

Arabidopsis, ULPs have been shown to display a variety of subcellular localizations: ESD4 in the 

nuclear envelope, ULP1c/OTS2 in speckle-like bodies of the nucleoplasm, ULP1d/OTS1 in the 

nucleoplasm, and ULP1a/ELS1 in the cytoplasm and endomembranes (Murtas et al., 2003; Conti 

et al., 2008; Hermkes et al., 2011). ULP2a and ULP2b are predicted to locate in the nucleus 

(Appendix VI - Fig. S6.5), therefore contributing to the regulation of nuclear SUMO-dynamics. 

Accordingly, plant SUMO-conjugates are mainly nuclear-targeted proteins (Saracco et al., 2007; 

Elrouby and Coupland, 2010; Miller et al., 2010). Among them are several transcription factors, 

co-repressor complexes, histones, mRNA biogenesis, and many other components associated to 

nuclear processes (Mazur and van den Burg, 2012). In addition to previous reports that SIZ1 and 

ULP1c/d significantly influence the plant transcriptome (Chapter 4 and 5; Catala et al., 2007), 

ULP2a/b are also involved in transcription regulation, and seem to mainly influence secondary 

metabolism, N-assimilation and flowering time. Some of the reported DEGs such as NIA1, SOC1 

and XTH31 (Fig. 6.6; Table 6.1) were previously associated to SIZ1-regulation but with opposite 

behavior. As previously stated, the siz1 ulp2a/b mutant phenotypically resembled siz1, and 

accordingly, the transcriptional profile of siz1 ulp2a/b superimposed with that of siz1 but not 

ulp2a/b. Altogether, ULP2a/b function seems to take place downstream of SIZ1. The simplest 

model is that targets of SIZ1-dependent sumoylation are subjected to ULP2a/b de-sumoylation. 

Most bona fide candidates include transcription factors such as PHR1, ICE1, ABI5, HSFA2 and 
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MYB30 (Miura et al., 2005; Miura et al., 2007b; Miura et al., 2009; Cohen-Peer et al., 2010; 

Zheng et al., 2012). Cis-element enrichment analysis also highlighted MYC2 as a potential target 

for ULP2a/b regulation (Table 6.2), and in fact MYC2 was shown to be sumoylated in vitro (Elrouby 

and Coupland, 2010). Another potential target is the mediator complex component MED25/PFT1 

that interacts with various transcription factors, many of which are also SUMO-modified (e.g. ABI5 

and MYC2; Miura et al., 2009; Elrouby and Coupland, 2010; Chen et al., 2012). The Mediator 

Complex is an essential link between RNA polymerase II and transcription factors, prior to the start 

of transcription (Borggrefe and Yue, 2011). The Arabidopsis MED25/PFT1 component, in 

particularly, is a target for sumoylation (Miller et al., 2010; Miller et al., 2013), and could be a link 

between the sumoylation machinery and transcription regulation through TFs. In support, 

MED25/PFT1 mutant plants shares many features with ulp2a/b, such as late flowering, altered 

pigment content, and similar microarray signature pattern (Appendix VI - Fig. S6.6; Kidd et al., 

2009; Elfving et al., 2011). Additionally, Zhu et al. (2011) demonstrated a new role for the 

Mediator complex as influencing telomeric silencing. Uncovering a functional link between 

MED25/PTF1 being a target of ULP2a/b and influencing the distinctive spatial expression pattern 

of ulp2a/b DEGs (Fig. 6.5C) is certainly an interesting prospect.    

 

 

6.4. MATERIALS AND METHODS 

 

Plant material and growth conditions 

T-DNA insertion mutants were used to evaluate loss-of-function in Arabidopsis thaliana 

SUMO proteases ULP2a (At4g33620) and ULP2b (At1g09730). Mutants were ordered through the 

NASC European Arabidopsis Stock Centre (arabidopsis.info) or the Arabidopsis Biological Resource 

Stock Center (www.biosci.ohio-state). All mutants were SALK lines in the background ecotype 

Columbia-0 (Col): SALK_090744 (ulp2a-1), SALK_135907.27.50 (ulp2a-2), SALK_040576 (ulp2b-

1), SALK_022079.54.75 (ulp2b-2), SALK_080083C (ulp2b-3), and also the previously 

characterized line SALK_065397 (siz1-2; Miura et al., 2005). The genotypes were confirmed by 

diagnostic PCR, following the instructions on SIGnAL T-DNA Primer Design 

(signal.salk.edu/tdnaprimers.2.html) and using the primers listed in Table S6.1 (Appendix VI).  

Synchronized seeds were stratified for 3 days at 4ºC in the dark. Surface sterilization was 

performed in a horizontal laminar flow chamber by sequential immersion in 70% (v/v) ethanol for  
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5 min and 20% (v/v) commercial bleach for 10 min before washing five times with sterile ultra-pure 

water. Seeds were resuspended in sterile 0.25% (w/v) agarose, sown onto 1.2% (w/v) agar-

solidified MS medium (Murashige and Skoog, 1962) containing 1.5% (w/v) sucrose, 0.5 g L-1 MES, 

pH 5.7, and grown vertically in culture rooms with a 16 h light/8 h dark cycle under cool white 

light (80 μE m-2 s-1 light intensity) at 23ºC. For standard growth, 7-day-old in vitro-grown seedlings 

were transferred to a soil to vermiculite (4:1) mixture, and maintained under identical growth 

conditions, with regular watering. Mutant lines were morphologically characterized according to the 

developmental map for Arabidopsis thaliana described by Boyes et al. (2001).  

 

Pigment extraction and quantification 

For estimation of the chlorophyll and carotenoid contents, plant leaves were incubated in 

80% (v/v) acetone for 1 h in the dark. The plant material was spinned down and absorbances at 

470, 645, and 663 nm were measured in a microplate spectrophotometer (SpectraMax 340PC; 

Molecular Devices). Pigment contents were determined as follows: total chlorophyll, CTotal = 20.2 A645 

+ 8.02 A663; total carotenoids, Ccarotenoid = [1000 A470 – 1.82 (12.7 A663 – 2.69 A645) – 85.02 (22.90 A645 – 

4.68 A663)]/198 (Arnon, 1949; Lichtenthaler and Buschmann, 2001). 

Anthocyanin extraction and quantification was adapted from Ticconi et al. (2001). Plant 

leaves were weighed (fresh weight, FW) and incubated at 100ºC for 5 min in extraction buffer 

composed of 1-propanol, 37% (v/v) HCl and H2O, in a 18:1:81 ratio. Samples were subsequently 

incubated overnight at room temperature, in the dark. The plant material was spinned down and 

absorbance of the supernatant was measured at 535 and 650 nm in a similar microplate 

spectrophotometer. Total anthocyanins were calculated as Canthocyanins = A535 - A650 g-1 FW. 

 

RNA extraction, cDNA synthesis and RT-PCR 

For quantitative Real-Time PCR (qPCR) analysis, RNA from plant tissue was extracted using 

an RNeasy Plant Mini kit (QIAGEN). RNA quantity and quality were assessed using both a 

Nanodrop ND-1000 spectrophotometer and standard agarose-gel electrophoretic analysis, and RNA 

samples were treated with Recombinant DNase I (Takara Biotechnology). Synthesis of cDNA was 

performed using SuperScript II Reverse Transcriptase kit (Invitrogen). SsoFast EvaGreen Supermix 

(BioRad) was used in the qPCR reaction mixture according to the manufacturer’s indications. The 

reaction was performed in a MyiQ Single-Color Real-Time PCR Detection system (Bio-Rad). Primers 

for semiquantitative RT-PCR and qPCR (Appendix VI - Table S6.2) were designed using NCBI 
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Primer-BLAST (www.ncbi.nlm.nih.gov/tools/primer-blast/; Ye et al., 2012) to ensure specific 

amplification within the Arabidopsis genome, and obeyed the following guidelines: 100-250 bp PCR 

amplification product size; 50-60% GC content; ~60ºC Tm. Primers were designed to span an exon 

junction when possible. ACT2 (At3g18780) was used as a reference gene (Lozano-Duran et al., 

2011). 

 

Microarray analysis 

Genome-wide transcription studies were performed using the ATH1 microarray chip 

(Affymetrix) with three independent replicates per genotype, each replicate represented RNA from a 

pool of four different MS plates containing 10-day-old plants. Plants were grown in a plant growth 

chamber with 16 h light/8 h dark cycle under cool white light (80 μE m-2 s-1 light intensity) at 21ºC. 

RNA was extracted as previously detailed, followed by a column cleaning step using an RNeasy 

Plant Mini kit (QIAGEN). Microarray execution and differential expression analysis were conducted 

at Unité de Recherche en Génomique Végétale (Université d’Evry Val d’Essonne, France). The 

method to determine DEGs was based on variance modelisation by common variance of all genes 

(Gagnot et al., 2008).  

 

Plant protein extraction and western blotting 

Plant tissue was grinded in a microtube in liquid nitrogen with the help of polypropylene 

pestles. Protein extracts were obtained by adding extraction buffer [50 mM Tris; 150 mM NaCl; 

0.2% (v/v) Triton X-100] supplemented with Complete Protease Inhibitor Cocktail (Roche) as per 

the manufacturer’s instructions. Following incubation for 1 h at 4°C with agitation, microtubes 

were centrifuged two times for 30 min at 16000 g. The supernatant was subsequently recovered 

and stored at -80°C. Protein was spectrophotometrically quantified using Bradford reagent (Sigma; 

Bradford, 1976). Equal amounts of protein were resolved by standard SDS-PAGE in a 10% (w/v) 

acrylamide resolving gel, using a Mini-PROTEAN Cell (BIO-RAD) apparatus. For western blotting, 

proteins were transferred to a PVDF membrane using a Mini Trans-Blot Cell (Bio-Rad). The 

membrane was blocked for 1 h at 23ºC in blocking solution [5% (w/v) dry milk powder in PBST]. 

The primary antibody anti-AtSUMO1 or anti-AtSUMO3 (ABCAM) were added in a 1:1000 dilution 

and incubated for 3 h. The membrane was washed three times with 10 mL of PBST for 10 min, 

and incubated with the secondary antibody (anti-rabbit, Santa Cruz; 1:2000 in blocking solution) for 

1 h. The membrane was washed as previously detailed and developed by a chemiluminescence 
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reaction using the Immune-Star WesternC Kit (Bio-Rad) and a ChemiDoc XRS system (Bio-Rad) for 

image acquisition. PVDF membranes were incubated for 15 min with Ponceau S solution [0.1% 

(w/v) Ponceau S; 5% (v/v) acetic acid] to stain total proteins.  

 

Phylogenetic and bioinformatics analysis  

Phylogenetic analysis of the Ubiquitin-Like Protease family was carried out using the 

SeaView v4.4.0 software (Gouy et al., 2010). Sequences were aligned using the MUSCLE algorithm 

(Edgar, 2004). Evolutionary relationships were inferred using Maximum Likelihood (PhyML) based 

on the JTT matrix-based model (Jones et al., 1992), with subsequent Bootstrap analysis (100 

trees). Protein sequence alignment of the catalytic domain of Arabidopsis ULP2s with homologous 

proteins from eukaryotic organisms was performed using PRALINE (Simossis and Heringa, 2005).  

GO term functional categorization was performed in VirtualPlant 1.2 

(virtualplant.bio.nyu.edu/cgi-bin/vpweb/), using the BioMaps function with a 0.05 p-value cutoff 

(Katari et al., 2010). Redundancy exclusion and scatterplot analysis were performed using REVIGO 

(revigo.irb.hr/), with a 0.7 C-value. The scatterplot represents the cluster representatives in a two 

dimensional space (x- and y-axis) derived by applying multidimensional scaling to a matrix of the 

GO terms’ semantic similarities (Supek et al., 2011). MapMan was used to plot ulp2a/b 

deregulated genes in the Metabolism overview pathway map 

(mapman.gabipd.org/web/guest/home; Thimm et al., 2004). Spatial plotting of ulp2a/b 

differentially expressed genes in the five Arabidopsis thaliana chromosomes was performed  

using TAIR Chromosome Map Tool (www.arabidopsis.org/jsp/ChromosomeMap/tool.jsp).  

Venn diagrams were obtained using Venn Diagram Generator 

(www.pangloss.com/seidel/Protocols/venn.cgi). 
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It has become increasingly consensual that SUMO is important for plant development and 

the response to hostile environmental conditions, however there is an underlying complexity to 

SUMO function that remains to be resolved. SUMO controls the homeostasis of several hormones, 

thus impacting on plant growth and development. SUMO is also involved in the transition from 

normal developmental status to a stress responsive mode. Many transcription regulators are 

sumoylated in response to specific conditions, and that reflects on the whole-plant transcriptome. 

The SUMO conjugation and deconjugation cycle has to be tightly regulated, and numerous SUMO 

proteases are fundamental for this equilibrium. In addition, sumoylation may intercept with other 

post-translational modifications (PTMs) such as phosphorylation by MAPKs. In the present work, 

Arabidopsis thaliana served as a model to study the role of SUMO in plants, using functional 

genomics that was based mostly on loss-of-function mutants and reverse genetics. Since SUMO is 

present in all eukaryotes, it is likely that many regulatory mechanisms described in the present 

work find parallel in other biological models. The following sections will discuss the main outputs of 

the current work.  

  

 

7.1. SUMO PROTEASES ARE A SOURCE OF SPECIFICITY 

In contrast to the low number of components involved in each step (E1, E2 and E3) that 

lead to SUMO conjugation, SUMO proteases are more abundant and diverse. The main family of 

SUMO proteases is the Ubiquitin-like protease (ULP) family, although new types were recently 

found in other biological systems and are likely to exist in plants (Hickey et al., 2012). ULPs are a 

highly likely source of specificity within the SUMO pathway, since they display differential SUMO 

isoform discrimination, enzymatic activity, subcellular localization and expression pattern (Fig. 7.1).  

Our phylogenetic studies (Chapter 6) divided plant ULPs into four subgroups: (1) 

ESD4/ULP1a/ULP1b, (2) ULP1c/ULP1d, (3) ULP1e, and (4) ULP2a/b. The ULPs amino acid 

identity is restricted to the catalytic domain, and the proteins’ N- and C-terminal ends that flank the 

catalytic domain may contribute for activity regulation. For instance, ULP2b is predicted to be 

phosphorylated in the C-terminus. With the exception of esd4, ulp1d and ulp2b, single T-DNA 

insertion mutants for the remainder of ULPs revealed no obvious developmental phenotypes. 

Interestingly, within each branch, these three ULPs (ESD4, ULP1d, and ULP2b) are the ones with 
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highest expression (Fig. 7.1D). Expression levels seem to be particularly important, and partial 

redundancy is expected within each subgroup. In Chapter 4 we concluded that ULP1c and ULP1d 

have a similar expression pattern using promoter::GUS lines, while bioinformatic analysis showed 

them to be highly co-expressed. Still, we were able to establish that ULP1d is more expressed and 

plays a dominant role within the ULP1c/d gene pair. Interestingly, in Chapter 5 we noticed that the 

ULP1c overexpression line showed development phenotypes. Overall results indicate that ULP1c/d 

display unequal redundancy in the control of developmental traits and drought responses. 

We also evidenced for the first time that ULP2a and ULP2b display unequal redundancy 

(Chapter 6), while confirming that ULP2b is more expressed than ULP2a. Promoter swap and 

overexpression lines of these proteases in the ulp2a/b background will help clarify whether ULP2b 

is functionally more important because of its increased expression levels, or due to different 

enzymatic properties compared to ULP2a. A similar strategy can be devised to estimate ULP1c and 

ULP1d function. As previously established for other ULPs, subcellular localization is an important 

aspect of their biological function (Fig. 7.1C). ULP2a/b are predicted to be nuclear located 

(Chapter 6), but future characterization of the subcellular and possibly subnuclear localization of 

ULP2s will be a key aspect of their functional characterization. Moreover, a complete 

characterization of ULP2s’ in vitro enzymatic activity and isoform discrimination is necessary for 

their activity classification (Fig. 7.1A,B), especially to establish whether they are SUMO chain 

editing proteases like ULP2-type in yeast and mammals.  

ULPs are a diversified component of the sumoylation pathway, containing many layers of 

regulation and activities. They are likely to be important for the overall dynamics of sumoylation, 

and also natural candidates for the control of specific sets of SUMO targets. New high-throughput 

approaches will be essential to resolve the sumoylome that is modulated by specific sets of ULPs. 

One possibility is the use of the previously described Arabidopsis line His-H89R-SUMO1 sum1-1 

sum2-1 (Miller et al., 2010), introgressed into ULP mutant backgrounds. This strategy will allow a 

stringent affinity purification of SUMO-conjugates by sequential Ni-NTA, anti-SUMO1, and Ni-NTA 

affinity chromatography followed by peptide identification through MS analysis (Miller et al., 2010). 

Furthermore, combinations of loss-of-function mutants are being produced that will help circumvent 

the potential functional redundancy between subgroups of ULPs. This strategy will help us address 

the global contribution of ULPs for plant development and the response to adverse conditions.  
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7.2. SUMO COMPONENTS ARE ESSENTIAL FOR PLANT GROWTH AND DEVELOPMENT 

SUMO-conjugates differ in plant organ expression pattern (data not shown; Saracco et al., 

2007). Arabidopsis SUMO peptides have distinct spatial expression patterns and intensities 

(Saracco et al., 2007; van den Burg et al., 2010), while SIZ1, ULP1a, and ULP1c/d are expressed 

throughout plant development (Chapter 4; Catala et al., 2007; Hermkes et al., 2011). This 

ubiquitous presence of SUMO and sumoylation machinery components in plant organs (Fig. 7.1D) 

is clearly indicative of a central role in development. Previously, it was reported that disruption of 

components of the Arabidopsis SUMO conjugation machinery, more specifically SUM1/2 peptides, 

E1 subunit SAE2 and E2 SCE1, resulted in embryo lethality (Saracco et al., 2007). Loss-of-function 

mutants for the two characterized Arabidopsis E3 ligases (SIZ1 and HPY2) are not lethal, yet they 

are severely dwarfed (Chapter 2; Miura et al., 2010; Ishida et al., 2012). The siz1 dwarfism should 

be considered a conditional phenotype because exposure to certain environmental conditions 

significantly reverts the phenotype. One example is the exogenous ammonium supplementation 

that reverts siz1 plants to wild-type (Park et al., 2011). In Chapter 3 we found that long-term 

exposure to a mild increase in temperature (28-30ºC) produced a similar effect. This reversion is 

likely due to salicylic acid (SA), as many other SA-accumulators are reverted by a mild increase in 

temperature, including mpk4 and mkk1/2 (Chapter 3). In addition, siz1 in the NahG background 

(that enzymatically degrades SA) greatly recovers the wild-type phenotype (Chapter 2) and blocks 

constitutive defence responses (Lee et al., 2007b).  

SIZ1 is involved in the prevention of autoimmunity, controlling SA signaling and reactive 

oxygen species (ROS) homeostasis. We showed that ROS levels are affected in siz1, accumulating 

hydrogen peroxide, superoxide, and singlet oxygen (Chapter 2). This deregulation in ROS 

homeostasis is partially due to SA over-accumulation, and SA and ROS are likely to function in an 

amplification loop (Vlot et al., 2009). One important prospect is to determine whether decreasing 

endogenous ROS in siz1 will contribute for phenotype recovery. One strategy would be to knockout 

the NADPH oxidase RBOHD, an important ROS systemic signal generator (Miller et al., 2009) that 

is up-regulated in siz1 (Chapter 2). Alternatively, siz1 may be introgressed into null mutants of 

major ROS-scavenging enzymes such as CATs and APX1. Although ascorbate peroxidase (APX) 

activity was not affected in siz1 seedlings, APX1 may be an important SUMO-target since it is highly 

sumoylated in response to hydrogen peroxide (Miller et al., 2013). APX1 sumoylation and its effect 

on protein activity is surely an interesting subject for future research. Additionally, several 

chromatin remodeling proteins are particularly sumoylated following oxidative stress, and can be 
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involved in the control of plant development and stress responses trough transcription regulation 

(Chapter 2; also discussed later).    

In the case of SUMO proteases, ULP mutants have a diversity of phenotypes. Indeed, 

ULP1c/d act redundantly to control plant growth and flowering time (Chapter 4). Albeit ulp2b 

showing some defects, the double mutant ulp2a/b has enhanced defects that include altered leaf 

morphology, higher pigment content, late flowering, lower seed production and bigger seeds 

(Chapter 6). The esd4, ulp1c/d and ulp2a/b mutants over-accumulate SUMO-conjugates (data not 

shown; Chapter 4 and 6). In contrast, ULP1c/d overexpression lines accumulate less SUMO-

conjugates (Chapter 5). In plants, a balance between SUMO conjugation and deconjugation is 

expected to take place, and ULPs can contribute to both via their endopeptidase and isopeptidase 

activities, respectively. To genetically test ULP involvement with conjugation components, we 

produced ULP mutants in the siz1 background. While no drastic changes were observed for  

esd4 siz1 and ulp2a/b siz1 relatively to siz1, ulp1c/d siz1 showed enhanced growth defects (Table 

7.1). The intermediate SUMO-conjugation pattern of esd4 siz1 and enhanced dwarfism of ulp1c/d 

siz1 indicates that some targets are not shared with SIZ1. The ulp2a/b double mutant shows an 

antagonistic phenotype to siz1, but the triple ulp2a/b siz1 mutant’s phenotype and SUMO profile is 

siz1-like, placing ULP2a/b epistatically and downstream of SIZ1. Interestingly, some traits are 

common to several SUMO components, such as the fact that mutants show altered flowering 

times, and members of the xyloglucan endotransglucosylase/hydrolase (XTH) family are often 

deregulated, as we demonstrated for siz1, ulp1c/d and ulp2a/b (Chapter 4-6). 

 

 

Table 7.1. Phenotypes of SUMO protease mutants in the siz1 background. 

    
Mutant Phenotype SUMO profile References 
    
esd4 siz1 siz1-like Intermediate between siz1 and esd4 Data not shown 
    
ulp1c/d siz1 Enhanced siz1 dwarfism n.d. Chapter 4 
    
ulp2a/b siz1 siz1-like but slightly bigger at latter 

stages 
 

siz1-like Chapter 6 

n.d. - not determined 
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7.3. SUMO CONTROLS PLANT HORMONE HOMEOSTASIS AND HORMONAL RESPONSES 

Developmental and environmental responses depend on key hormone circuit signaling, 

and many development defects in SUMO mutants are a consequence of hormonal deregulation. In 

Chapter 2 we showed that siz1 developmental defects are significantly driven by SA accumulation, 

creating a state of constitutive immune responses that compromise plant growth. Part of the siz1 

dwarf phenotype can be reverted by the transgene NahG and the mutant pad4 (Chapter 2; Lee et 

al., 2007b; Miura et al., 2010). SIZ1 is upstream of SA, controlling expression of SA-associated 

genes such as EDS1, PAD4, ESD5 and NPR1 involved in the signaling pathway of SA, or 

Isocorismate Synthase 1 (ICS1/SID2), a key enzyme in SA biosynthesis (Wildermuth et al., 2001; 

Catala et al., 2007; Lee et al., 2007a). Analysis of the Arabidopsis sumoylome described in 

Chapter 1 allowed us to conclude that many SUMO targets are also associated to ethylene (ET) 

metabolism and signaling. These include transcription factors such as EIN3, EIL1, and ERFs. EIN3 

is a key transcriptional inhibitor of Isocorismate Synthase 1 (ICS1/SID2) expression (Chen et al., 

2009), making this transcription factor (TF) a good candidate for constitutive SA-regulation by 

SUMO, and ethylene signaling as an upstream component to sumoylation. The SIZ1 mutant 

growing in an ethylene-supplemented medium shows an insensitive phenotype when compared to 

wild-type plants (Table 7.2). This suggests a positive effect of SIZ1-dependent sumoylation on EIN3. 

Interestingly ET biosynthesis components also seem to interplay with SUMO at both the 

transcriptional and PTM levels (data not shown; Miller et al., 2010). The involvement of SUMO in 

ET signaling via TF regulation is surely an interesting topic for future research.  

In addition to these two hormones, jasmonic acid (JA) is normally assumed to be 

antagonist to SA and agonist to ET (Pieterse et al., 2012). The siz1 mutant displays a root 

developmental phenotype characterized by increased root hair formation in the presence of 

exogenous JA. MYC2, a key TF in the JA pathway, was suggested to be a sumoylation target (being 

sumoylated in bacteria), and was shown to interact with two SUMO pathway components, SCE and 

ESD4 (Elrouby and Coupland, 2010). Characterizing MYC2 sumoylation in vivo and establishing its 

consequences will be important, especially in what concerns root hair development. 

Both siz1 and ulp1c/d seem to be involved auxin responses (Chapter 5; Miura et al., 

2011). SIZ1 controls auxin patterning during Pi-starvation (Miura et al., 2011), while we have 

shown that ULP1c/d controls many auxin-regulated genes in response to infection, including PIN7, 

GH3, and SAURs (Chapter 5). Additionally, the ulp1c/d mutant displays root sensitivity to 

exogenously supplemented auxins (Chapter 5). In the future, ULP1c/d involvement in root growth 
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and in response to stress that alters specific patterns of auxin signaling can be visualized using the 

proDR5::GUS ulp1c/d line described in Chapter 5.  

 

Table 7.2. Hormone-related phenotypes in mutants of the SUMO pathway studied in the present work. 

    
Hormone Mutant Phenotype References 
    
    
Ethylene siz1 Root insensitivity to exogenous ACC Not shown 
 ulp1c/d No phenotype observed Not shown 
    
Salicylic acid siz1 SA accumulation; dwarf phenotype partially reverted by 

NahG and in a small extent by sid2 
Chapter 2; not shown 

    
Jasmonic acid siz1 Increased root hair formation Not shown 
 ulp1c/d No phenotype observed Not shown 
    
Auxins ulp1c/d Sensitive to exogenous auxin; auxin-related genes down-

regulated during Pst DC3000 infection 
Chapter 5 

    
Abscisic acid siz1 Hypersensitive to ABA during germination Not shown 
 ulp1c/d Slight sensitivity during seed germination; no root growth 

phenotype; ABA-related genes deregulated 
Chapter 4 

 ulp2a/b No root growth phenotype Not shown 
    

 
 

 

Abscisic acid (ABA), a key hormone in abiotic stress responses, was previously associated 

to sumoylation via the SIZ1-mediated sumoylation of ABI5 (for review see Chapter 1) and more 

recently of MYB30 (Zheng et al., 2012). ABA genes, such as ABA1 involved in ABA biosynthesis, 

are deregulated in the early stages of siz1 development, even before deregulation of SA-related 

genes (Chapter 2). This observation suggests that SA and ABA regulation by SUMO are possibly 

independent. In addition, in Chapter 4 we found that several ABA-regulated genes were deregulated 

in ulp1c/d, but no obvious phenotype for ulp1c/d was seen in response to exogenous ABA 

supplementation.   
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7.4. SUMO DYNAMICS IS IMPORTANT FOR AN ADEQUATE RESPONSE TO STRESS 

Sumoylation is a great example of a PTM that acts rapidly and reversibly in response to 

stress (reviewed in Chapter 1). For instance, plant exposure to heat shock, even for some minutes, 

readily leads to accumulation of high molecular weight SUMO-conjugates (Chapter 6; Kurepa et al., 

2003). In fact, we have shown that SUMO-conjugate increment is partially dependent of SIZ1 in 

response to heat shock, drought, and oxidative stresses (Chapter 2, 4 and 6). Oxidative stress is 

common to various stresses and may be a link between stress perception and sumoylation. In 

Chapter 2 we show that the siz1 knockout mutant is a ROS over-accumulator and, at the same 

time, sensitive to exogenous ROS inducers. SIZ1 may be involved in the sumoylation of  

SA-regulatory proteins or directly regulate ROS scavenging enzymes (Fig. 7.2), although no altered 

ROS scavenger activity was detected in siz1 (Chapter 2). Miller et al. (2013) recently showed that 

in plants, diverse stresses do not generate an increase in the variety of SUMO-conjugated proteins, 

rather they increase the abundance of the sumoylated form of pre-existing SUMO targets. However, 

we concluded that specific sumoylation can occur. For instance, in Chapter 5, specific bands 

appeared in response to Pst DC3000 challenging. The identification of this target would be 

important to understand the involvement of SUMO in biotic stress.  In addition to salt stress, we 

have found that ULP1c/d may be involved in the drought stress response (Chapter 4). The ulp1c/d 

mutant displayed up-regulation of drought and ABA responsive genes under normal growth 

conditions, suggesting an involvement of ULP1c/d in low water availability responses. The double 

mutant ulp1c/d is less susceptible to drought in late developmental stages, but seedlings are more 

sensitive to low water potential media. Moreover, in Chapter 5 we showed that ulp1c/d is less 

susceptible to Pst DC3000, possibly interfering with auxin perception. ULP2a and ULP2b proteases 

lack a functional association to stress, but since they seem to act antagonistically to SIZ1, it is very 

likely that they are involved in multiple environmental stress responses.  

 

7.5. SUMO CONTROLS THE TRANSCRIPTOME BY MODIFYING TRANSCRIPTION 

REGULATORS 

We have been witness to an increase in strategies towards the identification of the total 

pool of SUMO-conjugates (Chapter 1), establishing what can be designated as the sumoylome. 

Recent publications already include the identification of SUMO-conjugates specifically induced by 
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ULP1c/d growing in standard conditions showed many deregulated ABA- and drought-

responsive genes, and we observed an over-representation of cis elements binding ATHB6. ATHB6 

controls ABA responses and was predicted to be SUM1 modified (Miller et al., 2010; Lechner et 

al., 2011). Also the DREB1A/CBF3-binding site was enriched in ulp1c/d DEGs, but as previously 

described, this TF is regulated transcriptionally by SIZ1 via ICE1 (Miura et al., 2007), making ICE1 

the most likely ULP1c/d target. In response to infection, promoters of ULP1c/d DEGs were 

enriched in W-box elements, the binding site for WRKY TFs. Many WRKYs are sumoylated (Chapter 

5), and it is tempting to speculate that the specific band identified in the SUMO pattern following 

pathogen infection (Fig. 5.3) could be a sumoylated WRKY. One important observation reported in 

Chapter 3 is that MAPK mutants and the siz1 transcriptome profiles match. In accordance, many 

targets are common to both PTM cascades, including WRKY TFs. Future research should focus on 

WRKY-SUMO interplay and how PTMs dynamically control the activity of this TF class.  

ULP2a/b-regulated genes were enriched in the MYC2 binding site (Chapter 6), and MYC2 

interacts with SCE1 and ESD4 (Elrouby and Coupland, 2010). The most intriguing aspect of the 

ulp2a/b transcriptional signature is that DEGs display a specific chromosomal distribution (Chapter 

6). Down-regulated genes are located near the telomeric zone, while up-regulated genes are at the 

middle of the chromosomic arms. One plausible hypothesis is that ULP2a/b regulates specific 

telomere gene expression through the Mediator complex. Zhu et al. (Zhu et al., 2011) showed that 

the Mediator complex in yeast influences telomeric silencing, and MED25/PTF1 was found in 

SUM1-modified targets (Miller et al., 2010; Miller et al., 2013). Also the histone H2B was 

previously associated to the telomere, and is thus a good candidate for SIZ1 sumoylation followed 

by ULP2a/b de-conjugation. Techniques such as co-immunoprecipitation (CoIP) and ChIP-on-chip 

analysis would help clarify if ULP2a/b interact with these targets and consequently influence gene 

expression.  

SUMO components are themselves the subject of transcriptional regulation. In Chapter 2 

we noticed that 10-day-old siz1 seedlings showed up-regulation of SIZ1 and SCE1 expression. This 

suggests that the expression of SIZ1 and SCE1 is elevated in an attempt to compensate 

dysfunctional SUMO conjugation. Apart from the sumoylome, SUMO-interacting proteins may be 

just as important for SUMO functioning. Covalent and non-covalent interactions with SUMO are 

involved in assembly complexes, and it has been well established that SUMO works as a recruiting 

protein, for instance of histone deacetylases (Fig. 7.2; Mazur and van den Burg, 2012; Cubenas-

Potts and Matunis, 2013). ULP2a/b may act as SUMO chain editing proteases (Chapter 6), 
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avoiding docking sites for SUMO-interacting proteins. One such example are SUMO-targeted 

ubiquitin ligases (STUbLs) that target poly-sumoylated proteins for degradation in yeast and human 

(Geoffroy and Hay, 2009). SIZ1 is heavily sumoylated during stress imposition (Miller et al., 2013) 

and its activity can be modulated by SUMO and ULP2-type proteases. 

  

In the present work a series of developments were achieved concerning the functional 

characterization of several SUMO pathway components. Implications to the role of SUMO in 

development, hormonal regulation, biotic and particularly abiotic stress responses were 

established, providing an important framework for future studies. The current knowledge ensures 

us that SUMO and the sumoylation pathway will continue to be a highly relevant topic in plant 

physiology in forthcoming years. 
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