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Abstract 

A decade has passed since the first DNA sequences of aquatic hyphomycete species 

have become available. They have illuminated aspects of their phylogeny and evolution 

that were inaccessible by conventional methods. Here we present examples of how the 

resulting information has modified our knowledge of aquatic hyphomycetes. Generating 

more and better DNA sequence data will continue to expand the range of questions we 

can investigate concerning the evolution and ecology of aquatic hyphomycetes. We 

highlight the importance of moving forward with next generation sequencing 

technologies to more accurately determine the true diversity and composition of fungal 

communities on environmental samples. In addition, sequences targeting functional 

genes will offer further insights into the roles of aquatic fungi in ecosystem processes.  
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1. Introduction 

Until the recognition of the crucial role that fungi (Kaushik and Hynes, 1971), and 

specifically aquatic hyphomycetes (Bärlocher and Kendrick, 1974; Suberkropp and 

Klug, 1976), play in plant litter decomposition in streams, limnologists largely ignored 

these organisms. The predominantly multiradiate (often tetraradiate) and sigmoid spores 

of aquatic hyphomycetes were very early assumed to be due to convergent evolution 

and thus providing limited information on phylogenetic relationships. Taxonomy and 

phylogenetic speculation concerning aquatic hyphomycetes began when Ingold (1942) 

first discovered and identified members of this group growing and sporulating on 

allochthonous leaf litter submerged in a stream. Conventional identification of aquatic 

hyphomycetes has been based on the morphology and development of conidia 

(mitospores) produced by anamorphic genera, and spore similarity was interpreted as 

indicator of close phylogenetic relationship. More reliable information was provided by 

the simultaneous appearance of anamorphic (asexual, mitosporic) and teleomorphic 

(sexual, meiosporic) reproduction in pure cultures (Webster, 1992). This traditional 

methodology provided important clues about the relatedness of various aquatic 

hyphomycete species and showed that an overwhelming majority has strong affinities to 

various Ascomycota, with a minority belonging to Basidiomycota (Ranzoni, 1956; 

Ingold, 1959; Webster, 1992). Unfortunately, its success is strongly tied to the 

availability of pure cultures that produce reproductive structures. Isolating pure cultures 

from single conidia is tedious and time-consuming. Not surprisingly, the number of 

aquatic hyphomycetes species in culture collections is low. On the other hand, DNA is 

ubiquitous and present in all stages of the fungal life cycle. Carefully chosen sequences 

are reliable indicators of evolutionary history and therefore phylogenetic relationships. 

Their use circumvents most of the hurdles associated with the conventional culture-
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dependent and microscopic techniques (Berbee and Taylor, 2001). In particular, 

sections of nuclear rDNA are considered to be ideal for the study of evolutionary 

relationships among fungi and many other taxa. Of particular significance are the small 

subunit ribosomal DNA (SSU-rDNA or 18S rDNA), the internal transcribed spacer ITS 

(ITS1 and ITS2), and the large subunit ribosomal DNA (28S rDNA). Ribosomal DNA 

is found in all fungi, allowing a universal phylogeny (though its suitability for 

phylogenetic reconstruction has recently been questioned; Dupuis et al. 2012; Taylor 

and Harris 2012). Lateral transfer of rDNA is rare, ensuring that the evolutionary 

history of rDNA reflects the evolutionary history of the organism. Finally, rDNA 

contains a mixture of highly conserved regions and moderately and highly variable 

regions. Highly conserved regions (18S and 28S rDNA regions) are convenient sites for 

annealing of universal primers for analyses of higher-level phylogenetic classification 

(genera and higher), while moderately (e.g. domain D1/D2 on 18S rDNA) and highly 

variable (ITS) regions are suitable targets for lower level analyses (species and lower; 

Head et al., 1998). Anderson and Shearer (2011) used partial -tubulin sequences to 

examine variation within one (morpho)species. For more accurate and reproducible 

results, comparisons of several loci with multiple alleles are recommended (Taylor et al. 

2006). 

As summarized in this review, the last ten years have been marked by substantial 

advances in our understanding of the evolution, phylogeny and molecular identification 

of aquatic hyphomycetes through DNA sequence analysis (Fig. 1). Nevertheless, their 

representation in genomic databases is still poor. To date, over 300 aquatic 

hyphomycete species have been described (Belliveau and Bärlocher, 2005; Letourneau 

et al., 2010; Shearer et al., 2007), but only ca. 72 species are represented by sequences 

in the National Center for Biotechnology Information (NCBI) 
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(http://www.ncbi.nlm.nih.gov/). We advocate implementing next-generation sequencing 

techniques as a tool for detecting and identifying fungi in environmental samples to 

unravel the phylogenetic and genealogical histories and community ecology of aquatic 

hyphomycetes. 

 

2. Phylogeny of aquatic hyphomycetes 

Phylogenetic studies of aquatic hyphomycetes using DNA sequences go back to the 

study of Nikolcheva and Bärlocher (2002), in which they sequenced complete 18S 

rDNA regions of 5 representative species of the genus Tetracladium. This study resulted 

in well resolved and statistically supported conclusions that Tetracladium species are 

part of a monophyletic group as suggested by traditional, morphology-based taxonomy 

(Roldán et al., 1989). Three years later, partial 18S rDNA sequences were obtained 

from 22 additional species of aquatic hyphomycetes in order to evaluate existing 

taxonomic systems and phylogenetic affinities that had been based mainly on 

morphological features (Belliveau and Bärlocher, 2005). Evidence from this study put 

an end to the debate as to whether aquatic hyphomycetes were monophyletic or 

polyphyletic. Molecular phylogenies of members belonging to the genus Anguillospora 

and Tricladium showed that aquatic hyphomycetes formed mixed groups in 

phylogenetic trees and were dispersed among different orders (Fig. 2). The polyphyletic 

origin of aquatic hyphomycetes has been reinforced by further studies (Baschien et al., 

2006; Campbell et al., 2006, 2009). These studies gave consistent classifications for the 

majority of the species, with the exception of Goniopila monticola. Partial 18S rDNA 

placed this species within the Leotiomycetes (Belliveau and Bärlocher, 2005), while 

partial 28S rDNA placed it among the Dothideomycetes (Campbell et al., 2006) (Fig. 

2). 

http://www.ncbi.nlm.nih.gov/
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DNA sequences also helped connect anamorphic to teleomorphic states. For example, 

the analysis of partial 18S rDNA sequences showed that the anamorph Jaculispora 

submersa was connected with the teleomorph Classicula fluitans (Bauer et al., 2003). 

Furthermore, without DNA sequencing the link between aquatic and endophytic phases 

of Dwayaangam would have gone unnoticed (Sokolski et al., 2006). ITS sequences of 

Tetracladium isolated from endophytic and aquatic environments were interspersed in 

phylogenetic trees, indicating the amphibious nature of aquatic hyphomycetes (Selosse 

et al., 2008). DNA sequencing can provide presumptive evidence for a species’ 

occurrence in multiple ecological niches, and suggests potential pathways of how 

aquatic hyphomycetes evolved from a terrestrial to an aquatic way of life (Selosse et al., 

2008).  

 

3. Molecular identification of aquatic hyphomycetes  

Identification through molecular barcoding has only recently been applied to aquatic 

hyphomycetes (Letourneau et al., 2010; Seena et al., 2010). Barcoding identifies 

biological specimens and assesses biodiversity through the use of short (a few 100 bp) 

DNA sequences or barcodes (Hebert et al., 2003). Barcodes are obtained in a single 

amplification and flanked by conserved regions allowing annealing by universal primers 

(Letourneau et al., 2010). Ideally, they are of low intraspecific and sufficient 

interspecific variability. Only a few studies have compared the suitability of different 

regions for discriminating among aquatic hyphomycete species (Letourneau et al., 

2010). Among published sequences, the ITS region has received most of the attention, 

with 305 records belonging to 42 species. This corresponds to ca. 57% of all aquatic 

hyphomycete sequences published in NCBI (http://www.ncbi.nlm.nih.gov/) (Fig. 3). 

The ITS region is also by far the most commonly sequenced region for systematic and 

http://www.ncbi.nlm.nih.gov/
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taxonomic queries of fungi in general at and below the genus level (Nilsson et al., 

2009). Considerable ITS variation between species was shown in initial studies, 

reinforcing the usefulness of the ITS region as a potential barcode for aquatic 

hyphomycetes (Letouneau et al., 2010; Seena et al., 2010). Based on a 72 % 

identification success rate, the ITS region was formally chosen and declared the best 

barcode marker for fungi at two conferences in 2011 (“Fungi DNA Barcoding 

Symposium” in Amsterdam, Holland and “Fourth International Barcode of Life 

Conference” in Adelaide, Australia; http://www.ecbol.org). Very recently, ITS barcodes 

were also successfully used to assess the intraspecific variation within Articulospora 

tetracladia  (Seena et al., 2012) and to assess for the first time the phylogeography of 6 

aquatic hyphomycete species (Anguillospora filiformis, Flagellospora penicillioides, 

Geniculospora grandis, Lunulospora curvula, Tetrachaetum elegans and Tricladium 

chaetocladium), collected from streams of Southwest Europe and East Australia (Duarte 

et al., 2012). While these studies provided valuable insights into the geographical 

distribution of different phylotypes, the reliance on a single sequence can be 

problematic (Taylor and Harris 2012). NGS approaches may provide a solution.  

We emphasize that a sustained effort is needed to provide public DNA databases with 

additional ITS and other sequences from aquatic hyphomycetes. Having access to larger 

DNA datasets will provide greater opportunities to address phylogeographical questions 

with multiple species, and facilitate insights into the nearest terrestrial relatives of 

aquatic hyphomycetes and the timeline of their transition to the aquatic environment.  

 

4. Community-level sequence data    

Traditional microscopy based techniques are not adequate to fully document the aquatic 

fungal diversity on plant-litter decomposing in streams (Nikolcheva et al., 2003; Seena 

http://www.ecbol.org/
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et al., 2008; Duarte et al., 2008, 2010). The extraction of whole-community DNA, 

followed by amplification with fungal-specific primers and the establishment of 

ribosomal clone gene libraries, showed that the majority of the generated sequences 

from environmental substrates had high affinities to uncultured Ascomycota, which may 

or may not be related to aquatic hyphomycetes (Seena et al., 2008). Other sequences 

were close to Chytridiomycota, Oomycota and Basidiomycota. Although creating 

cloning libraries of aquatic fungi has increased our understanding of the diversity of 

uncultured fungi in environmental samples (Bärlocher et al., 2008; Seena et al., 2008), 

the generation of clone libraries is very time consuming, and cloned sequences can 

rarely be assigned to known species.  

To avoid the tedious detour over clone libraries, we recommend embracing next-

generation sequencing techniques (which, however, does not negate the need to add to 

the databases of reference sequences established from pure cultures). Next-generation 

sequencing offers platforms for directly recovering all the genetic material present in an 

environmental sample (Edwards et al., 2006; Medinger et al., 2010) and is a promising 

molecular approach to assess aquatic fungal diversity. It is now possible to sequence 

entire microbial communities at a lower cost than sequencing 1,000 individual 

specimens a decade ago (Nilsson et al., 2011). Several pyrosequencing efforts have 

reported a great diversity of fungi, but have generally failed to connect sequences to 

known species, genera and orders of fungi (Buée et al., 2009; Jumpponen et al., 2009; 

Ghannoum et al., 2010). To date less than 1% of the estimated fungal species has been 

sequenced (Nilsson et al., 2011), which emphasizes the need of greatly expanding 

reference sequences libraries. The ITS region has been suggested as a prime target for 

pyrosequencing environmental samples of fungi (Nilsson et al., 2009). Next-generation 

sequencing techniques have not yet been applied to fungal communities in streams; 
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their application promises further insights into the diversity of aquatic hyphomycetes, as 

well as contributions of other fungal groups (e.g., zoosporic fungi, Bärlocher et al., 

2012).  

 

5. Functional aspects and conclusions 

Determining identities and frequencies of occurrence of species is an important first step 

in ecological research, but offers limited insight into the roles of the documented 

species and their participation in ecosystem processes. At best, it reveals some broad 

patterns of species (OTU) replacement along environmental gradients (with aquatic 

hyphomycetes, Bärlocher et al., 2008; Duarte et al., 2009; with ectomycorrhizae, 

Jumpponen et al., 2010). Information on the metabolic potential of the microbial 

community can be attained by comparing the pyrosequening dataset against a library of 

modules from an enzyme database (e.g., sequences associated with enzymes involved in 

carbohydrate metabolism in a tropical peat swamp; Kanokratana et al., 2011). Or, 

relevant sequences can be directly targeted and amplified from environmental samples 

(e.g., sequences associated with glycosyl hydrolases, Jacobson et al., 2005). It is also 

possible to characterize currently expressed genes by extracting environmental mRNA 

and reverse transcribing it into complementary cDNA, which is then amplified by PCR 

(reverse transcriptase PCR). The diversity of metabolically active fungi can be 

characterized by RT-PCR of precursor rRNA molecules, which still contain the ITS 

region (Anderson and Parkin 2007). Combining DNA and RNA diversity estimates 

from soil samples showed that the most common fungi (based on diversity of amplified 

DNA) are not necessarily the most active ones (based on diversity of amplified rRNA) 

(Baldrian et al. 2012). A further complication is the weak or missing correlation 

between mRNA levels and synthesis level of the corresponding protein (Gygi et al. 
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1999). Nevertheless, at least in principle, taxonomic composition and metabolic 

pathways in an environmental sample can be connected to determine which taxa are 

present, what metabolic potential they possess, and which of their genes are currently 

transcribed. Evaluation of the enormous amount of data generated by a combination of 

such approaches will present significant challenges (DeLong, 2009; Bärlocher, 2010; 

Purdy et al., 2010). To our knowledge, only one study of aquatic hyphomycetes has 

been done at the transcript level. Solé et al. (2008) investigated the expression of two 

laccase gene fragments in Clavariopsis aquatica.  

Understanding the potential and actual participation in decomposition processes by 

aquatic hyphomycetes is clearly of paramount importance for stream ecologists and it is 

useful when assessing the integrity of aquatic ecosystems. Metabolic capabilities 

circumscribe the fungi’s “nutritional niche”, but are insufficient to fully explain the 

actual presence or absence of a given species in a habitat. Their interactions with other 

fungi, bacteria and invertebrates, as well as preference for, or tolerance of, abiotic 

conditions have to be considered as well.  
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Figure legends 

Fig. 1. Timeline representing major achievements in sequencing of aquatic 

hyphomycete species during the last decade (2002-2012). 

 

Fig. 2. Phylogenetic relationships among aquatic hyphomycetes based on molecular 

studies (18S and 28S rDNA) from 2002 to 2009. 

 

Fig. 3. Percentage of aquatic hyphomycete DNA sequences present in NCBI until 

December 2011. Only sequences linked to species were included in the analysis. 

“Other” includes partial sequences of the following genes: cythocrome oxidase subunit I 

(COXI), β-actin, β-tubulin, laccase, cuticle-degrading serine protease, mitogen-activated 

protein kinase, elongation factor 1-α, RNA polymerase II subunits, gluthatione 

synthetase, ATP citrate lyase, nitrate reductase and microsatellites sequences. 

  



18 
 

 

Sofia Duarte got her graduation in Applied Biology in 2002 

and completed her PhD degree in Sciences (Area of 

knowledge Biology) at University of Minho (Braga, Portugal), 

in 2008. During her doctoral studies, S. Duarte focused on the 

effects of anthropogenic stress, namely eutrophication and 

metals, on the diversity and activity of microbial decomposers 

of plant-litter in freshwaters. Since July 2009 that S. Duarte 

has been developing post-doctoral studies about barcoding 

and biogeography of aquatic fungi, at University of Minho 

(Braga, Portugal), in collaboration with the University of 

Mount Allison (Sackville, Canada). 

  

 

Seena Sahadevan did her doctoral research (2002-2005) in 

Biosciences, Mangalore University India. She was a 

postdoctoral fellow (2006-2008) in Dr. Felix Bärlocher’s lab 

at Mount Allison University, Canada. Currently, she is 

working as an assistant researcher (2008-present) at the 

Centre of Molecular and Environmental Biology (CBMA), 

University of Minho, Portugal. Her research interests 

include, but not limited to the following: (1) Estimating the 

diversity of aquatic fungi both by microscope-based 

conventional and DNA/RNA-based molecular techniques; (2) 

Evaluating the role of microbial decomposers (aquatic 

hyphomycetes and bacteria) and invertebrates in leaf litter 

breakdown; (3) Examining the impacts of anthropogenic 

pollution to leaf litter decomposition and related biodiversity 

concerns; (4) Understanding the potential threats of 

nanoparticles to aquatic food webs. 



19 
 

 

Felix Bärlocher did his first degree at the ETH in Zürich, 

Switzerland, on the cytology of gall midges. In 1973, he 

completed a Ph.D. thesis in Waterloo, Canada, on the 

involvement of aquatic hyphomycetes in the detritus food 

chain of streams. He has continued work on the ecology, 

taxonomy and evolution of aquatic fungi, including some 

work on freshwater and salt marshes, first in Basel, 

Switzerland, and since 1983 at Mt. Allison University in 

Sackville, Canada. Since 2001, he has adapted various 

molecular methods to the study of aquatic fungal ecology. His 

recent interests have included connections between fungal 

diversity and their ecological functions, fungal responses to 

anthropogenic change and barcoding and biogeography of 

aquatic hyphomycetes. 

  

 

Cláudia Pascoal is an Assistant Professor at the Department of 

Biology of the University of Minho (Portugal). She did her 

Graduation in Biology at the University of Coimbra (Portugal) 

and concluded the PhD in Aquatic Ecology at the University 

of Minho by 2004. Her research interests are related to the 

impacts of global change on biodiversity of benthic organisms 

and ecosystem functioning with emphasis on decomposition 

of organic matter in streams. She has given particular 

attention to the ecology of aquatic hyphomycetes and to the 

application of molecular tools to assess microbial biodiversity 

and activity. 

  

 

Fernanda Cássio is Associate Professor at the Biology 

Department of the University of Minho, Portugal. She 

received her degree in Biology from the University of Porto 

(Portugal). She concluded her Ph.D. in Microbiology at the 

University of Minho (Braga, Portugal) in 1994.  She has been 

working in aquatic microbial ecology and ecotoxicology. 



20 
 

Particular attention has been paid to the impacts of persistent 

and emergent contaminants on microbial decomposers in 

freshwaters. Over the last few years, she has been developing 

molecular barcodes to provide a better knowledge on the 

biodiversity and distribution of aquatic hyphomycetes. 

 


