
“Explosive” Programming Controlled by Calculation

J.N. Oliveira

Dep. Informática, Universidade do Minho,
Campus de Gualtar, 4700 Braga, Portugal

Tel: 351+53+604470
EMAIL : jno@di.uminho.pt

Abstract. In the design of a functional library in the area of data-mining several
algorithmic patterns have been identified which call for generic programming.
Some of these have to do with flattening functions which arisein a particular
group of hierarchical systems.
In this paper we describe our efforts to make such functionalities generic. We start
by a generic inductive construction of the intended class ofhierarchical types. We
conclude by relating the structure of the relevant base-functors with the algebraic
structure which is required by the generic flattening functionality, in particular
concerning its “deforestation” towards a linearly compleximplementation.
The instances we provide as examples include the widely known bill of materials
“explode” operation.

1 Introduction

The definition of a function f : B �! A (1)

can be regarded as a kind of “contract”: functionf is committed to produce anA-value
provided it is supplied with aB-value.

Such “functional contracts” can be of two kinds: (a)f intentionally loses informa-
tion, becauseB is found too detailed and one wants to capture only theA-aspect ofB-values — so,A is an abstraction ofB (f is non-injective); (b)f faithfully converts
data from theB-format to theA-format — so,f is injective and, in the limit, the two
formats are the same (f is the identity).

Case (a) above is perhaps more interesting than (b) and supports the following apho-
rism about a facet offunctional programming: it is theart 1 of transforming or losing
information in a controlled and precise way. That is, the art of constructing the exact
observation of data which fits in a particular context or requirement.

At the heart of this “data mining” discipline one finds many situations in which
knowledge is extracted from a complex data structure and accumulated via a binary
operator which provides for the intended abstraction (e.g.summing up the elements
of a list). The algebraic structure which accommodates this kind of operation is the

1 Which computer scientists wish to convert — and are converting — intoscience.

ubiquitousmonoid. And, in fact, functional data-mining is nothing but a series of clever,
highly scrutinized monoidal reductions of a complex input structure.

In the design of a CAMILA [2] functional library containing kernel data-mining
operators we have met situations in which slightly more elaborate reduction algebras are
required which resemble (but are less sophisticated than)vector spaces— something
to be expected from the “metric” nature of data-mining.

This paper identifies a generic (polytypic) class of functions which provide for such
metric reductions wherever the observed datatype is a recursive data structure which
embodies a notion of hierarchy, captured by an appropriate class ofbase functorcon-
structions. Instances of the provided functional abstraction are given which put together
algorithms as far apart as, for instance, thebill of materials“explode” operation and the
UNIX tar command. The paper includes a calculation which ports these results from
functional to imperative programming media.

2 Context

Everybody is familiar with the concept of a function since the school desk. The func-
tional intuition traverses mathematics from end to end because it has a solid semantics
rooted on a clear-cut mathematical structure — the categoryFun (also calledSet) of
“all” sets and set-theoretical functions.

Functional programming has a tradition of absorbing fresh results from theoretical
computer science, algebra and category theory. One of the most significant advances
over the last decade has been the so-calledfunctorialapproach to datatypes which orig-
inated mainly from [13], was popularized by [12] and reached the textbook format in
[6]. A comfortable basis for explainingpolymorphism[23], the “datatypes as functors”
moto has proved beneficial at a higher level of abstraction, giving birth topolytypism
[11].

Polymorphism and polytypism are steps of the same ladder, that ofgeneric pro-
gramming[5]. The main target of this fast evolving discipline is to raise thelevel of
abstraction of the programming discourse in a way such that seemingly disparate pro-
gramming techniques, algorithmsetc. are unified into idealized, kernel programming
notions.

Besides polymorphism and polytypism,generic programmingis “polymediatic” in
the sense that the same generic result crosses the boundaries of differentprogramming
media, or paradigms, simply by changing the category in which the resultis interpreted.
The repmin derivation of [7], for instance, is shown to yield a functional program
if interpreted inFun or to yield the “corresponding” logic program if interpreted inRel, a generalization ofFun to set-theoretical relations which has received increasing
attention within the mathematics of program construction community2.

3 Motivation

In this paper we wish to contribute to the “datatypes as functors” trend by identifying
and exploiting a particular way of building complex functional data-structures (induc-

2 Cf. e.g.[4, 6]. See [16] for other categories worth a visit “beyondFun”.

tive datatypes) out of existing ones. To be more specific, we will invest in the structure
of thebase functorwhich underlies the definition of an inductive datatype.

Recall the typical Haskell-like definition ofcons-lists:

data List a = Nil | Cons(a, List a) (2)

According to the sandard semantics of inductive datatypes, this definition declares
List a as a solution to domain equationx = 1 + a� x (3)

which can be abbreviated tox = Fx by introducing functorFx def= 1 + a � x. ForF
to be properly defined,a should be a constant or fixed datatype,e.g.a = IN , the set of
natural numbers. But, for polymorphism we wish (2) to expresscons-lists of any typea; therefore, a binary functorB(a; b) def= 1 + a � b should be used instead, called the
base functorof the definition, whereby (3) rewrites tox = B(a; x).

In general, the definition of an inductive,n-ary parametric datatype will be an equa-
tion of the form X = B(A1; : : : ; An; X) (4)

where base-functorB is of arityn+ 1 andA1 toAn are type parameters.
It is clear that inB resides the “essence” of the datatype, that is to say, thepattern

of recursion which determines its expressive power. A constructive theory of inductive
types should invest in structurally building more and more elaboratepatterns of recur-
sion out of pre-existing ones. In the above terminology, this would mean a discipline
for scaling upbase-functors.

This paper investigates a particular scale-up manœuvre which enables us to con-
structhierarchical extensions to pre-existing types. The purpose of this work, which
still rather experimental, is to find a generic way extending the functionality of the orig-
inal type up to its hierarchical outcome.

With no loss of generality, we will focus our attention to binary or ternary base-
functors, that is, to datatypes of the formTA = B(A;TA)
or T(A;B) = B(A;B;T(A;B))
One of our notation simplifications includes the use of the equality symbol in places
where (as above) the isomorphism symbol “�=” would be more correct. We will preferA? to List A (2) and, concerning functional expression infix operator precedence, we
will assume� (function composition) to bind closer than� (products) and this to bind
closer than+ (coproducts).

4 Illustration

In the personal computer age everybody has become acquainted with the standard file-
system structure ofe.g. UNIX or WINDOWS, which is made of directories (folders)
which are in turn made of sub-directories, and so on. Such a structure, which can be
visualized as a tree, is a form of hierarchical knowledge representation.

But, who still remembers the CPM file system, or the CDS ISIS file system by Intel,
back to the 1970s? It was just aflat structure mapping file names to file attributes. So,
it was clearly non-hierarchical. How do we express the kind of “improvement” on file
system structuring which happened in the meantime?

Let I be a primitive datatype of file names (identifiers) andFile be the datatype
which describes files (e.g.contents, attributes,etc.). A flat file system will be described
by a finite partial function fromI toFile,I * File (5)

(ForA;B two given datatypes, read “A * B” as the datatype offinite partial functions
fromA toB, that is, of relations� � B�A such that� ��� is a subset of identityidB ;
in other words, theAs arekeyswhich uniquely identify theBs 3.)

In a hierarchical file system we have to upgrade (5) to something likeI * (File+Directory)
whereDirectory is again aI * (File + Directory) and so on. So we obtain a
recursive datatype of shape X = I * (File+X) (6)

To “measure” the improvement from to (5) to (6) we go parametric onFile and
specify the flat version as functorFA = I * A. Then (6) becomes equationX =F(File+X) and, turningFile a parameter again, we obtain typeHA = �X:F(A+X)

In short, the generic pattern of the improvement is as follows: the hierarchical ex-
tension of a predefined (type) functorFA is the type functorHA which is obtained as
solution to equationX = F(A+X). In other words, the base functorB ofHA “reuses”

the original functorF, i.e., B(A;X) def= F(A+X).
This hierarchical pattern is very common in practice. For instance, from thecons-

list functorA? we build thegeneralized-list functor which stems from equationX = (A+X)? (7)

that is, the (pseudo) Haskell datatype

data GList a = [a | GList a]

3 In [6], partial functions are calledsimplearrows orimps.

One may wonder about the hierarchical extension of the identity functorFA = A,
which is easily shown to be (isomorphic to)HA = A� IN (a natural number is added
to everya 2 A specifying how deepa happens to occur in the hierarchy determined byX = A+X), or of every constant functorFA = K, which degenerates in itself since,
in this case,F(A +X) = K.

Moving on to more interesting examples, we get hierarchical (nested) sets out of the
powerset functor, X = P (A+X)
or abstract hierarchical type X = (A+X) * B (8)

(for some constant typeB), obtained as a companion of the hierarchical file system
pattern by freezing parameterB in A * B instead of freezingA (which was turned to
constantI in the file system example). The functorial behaviour of (8) requires some
care becauseA * B is contravariant onA. But this is a very expressive datatype on
top of which we will model, in the sequel, thebill of materialsproblem and its “part
explosion” functionality (and thus the “explosive” qualifier in thetitle of the paper).

In the remainder of the paper we will be interested in specifying and calculating
functions which browse hierarchical structures such as illustrated above, and extract
information which will be used elsewhere. Such functions are naturally described as
hylomorphisms[22]. In the section which follows we will review some concepts, def-
initions and notations which will be adopted throughout the paper4. Readers familiar
with [22] or with textbook [6] may choose to skip it with no loss of continuity.

5 An overview of “types as functors”

Recall the declaration of an arbitrary functionf given by expression (1). In many sit-
uations we know thatB happens to be the least fixpoint�F of some given equationX = FX . Intuitively, f is expected to be recursive.

Wherever it exists,�F is the carrier of the initialF-algebra(�F; �F F�F�Foo)
which, in short, we will identify just by writing�F. So it is natural to expressf as anF-catamorphism(or “generic fold”) of someF-algebra� on target typeA:�Ff=([�])F �� F�FF([�])F���FooA FA�oo
Because�F is initial, f = ([�])F is the uniqueF-homomorphism from�F to �. Initiality
provides catamorphisms with the expected (universal) properties,e.g.fusionf � ([�])F = ([�])F if f � � = � � F f (9)

4 Reference [20] contains a detailed account of all this terminology.

reflection, ([�F])F = id�F (10)

and so on. Intuitively,([�])F captures the abstract notion of a�F “browser”, “parser”, or
better: of the abstractF-induced recursion schema. Note that laws such as (9) and (10)
express themselves independently ofF. So we are talking abouthigher-orderpolymor-
phism, — that is, aboutpolytypism[11].

In the same way we identified the source typeB above with�F, for someF, we
may happen to identify the target typeA with �G, for someG:�Ff �� F�FF f���Foo�G F�G�oo (11)

Now, it would be “unnatural” to ignore the initialG-algebra�G, which is the standard
constructor of values of type�G.

Clearly,f analyses input data according to theF-recursive pattern and synthesizes
output data according to theG-recursive pattern — it behaves like a “protocol” between
such patterns of recursion.

How can such a protocol be captured in this setting? AnF to G natural transforma-
tion (and itstheorem for free![23]) seems the most “natural” device for this purpose.
One is tempted to somehow “paste”�G into diagram (11),�Ff �� F�FF f���Foo�G G�G�Goo F�G���oo
leaving it open how to fill the “. . . ” arrow. First, let us illustrate this diagram with a
typical “protocol” function, that which should enable us to compute thelength of a
finite sequence: C?length �� 1 + C � C?1+C�length��[nil;cons]ooIN0 1 + IN0[0;suc]oo 1 + C � IN01+�2oo
wherenil = [] (given a constantc, c means the “everywherec” polymorphic function�x:c [20]), cons is the usual operator andsuc is the successor function.

In this example, the “. . . ” arrow was filled with natural transformation1 + �2,Af �� 1 + C �A(1+�2)A//1+C�f �� 1 +A1+f��B 1 + C � B(1+�2)B// 1 +B

which provides for the required recursion pattern “protocol”. So, the diagram can be
enriched thus, C?length �� 1 + C?1+length �� 1 + C � C?1+C�length��[nil;cons]rr 1+�2ooIN0 1 + IN0[0;suc]oo 1 + C � IN01+�2oo
immediately delivering propertieslength � nil = 0length � cons = succ � length � �2
whatever path is followed up in the right-hand square of the diagram.

A computable definition oflength will pop out by closing the left-hand side square

of the diagram with coalgebraC?
 // 1 + C? , which is fully determined by com-
posing(1 + �2) with the inverse of[nil; cons], i.e. the standard “destructor” of lists,! = [nil; cons]�1= (! + hhead; taili)� =[]? (12)

where! is the unique arrow fromC? to 1, predicate=[] denotes equality test�l:(l = [])
and=[]? is an instance of a guardp? [6]. Then
 = (1 + �2) � != (! + tail)� =[]?
and, therefore, length def= [0; suc � length � tail]� =[]?

What have been the basic building blocks of this specification?Input F-coalgebra
 + outputG-algebra[0; suc] + naturaltransformation1 + �2 : F �! G. These
are precisely the components of a so-calledhylomorphismtriplet, as presented in [22]:

given twoSet (endo)functorsF;G, anF-coalgebra(B; B � // FB), a G-algebra(A; A GA�oo) and a natural transformation� : F �! G, we abbreviate by hylo-
morphism triplet[[�; �; �]]F;G, the morphism fromB to A defined by the least fixpoint
of equationf = � � �A � (F f) � � cf. diagram Bf �� � ,,GBG f �� FBF f���BooA GA�oo FA�Aoo

It is not always the case that we have� as a natural transformation. So, in general,
hylomorphisms are simply defined as pairs[[
; �]] of an algebra
 and a coalgebra� of
the same functor,e.g.
 = � � � concerning triplet[[�; �; �]]F;G. One of the advantages
of reasoning in terms of triplets is the naivedeforestation[22] which arises from�’s
theorem for free!. This is meaningful whereverF andG are polynomial and the degree
of G (e.g. linear lists) is stricly smaller than that ofF (e.g.binary trees). Note that a
catamorphism is a special case of a hylomorphism, for� the inverse of�F.

Many useful programming schemata arise from the hylomorphism construct even
where no initial algebras are involved. For instance, take co-algebra(A * B) � // 1 + (A�B)� (A * B)
of base functorB(A;B;X) = 1 + (A�B)�X , defined by� = (! + get)� =?? (13)

where? denotes the totally undefined partial function andget is defined as follows:get � def= let a 2 dom�in ((a; � a); � n fag)
Heredom� denotes the domain of definition of� and� n fag denotes� “domain-
subtracted” bya 5. Arrow � can be recognized as the standard “parser” for finite partial
functions, and[[
; �]], for some algebra
 = [
1;
2], as the generic finite partial func-
tion “processor”, f � def= � � = ?)
1((a; b); �0) = get �)
2((a; b); f �0)
which we may re-write as follows:f � def= if � = ?then
1else let ((a; b); �0) = get �in
2((a; b); f �0) (14)

Coalgebras! (12) and� (13) will be relevant in the sequel. See [22, 21] for more
about hylomorphism theory and [17, 20] for the application of all this to data refinement.

6 A study of (hierarchical) flattening

Recall the generalized-list datatype which satisfies domain equation (7), thatis, type
functorHA = (A+ HA)? which is the hierarchical extension of thecons-list functor

5 Operators such asdom; n and others to come are typical of specification languages where the
mapping (= finite partial function) datatype is primitive,cf. e.g.CAMILA [2], VDM-SL [8] etc..
In Haskell, this datatype is easily implemented in terms of lists of pairs [15].

Also note that, strictly speaking,get is a relation and one should switch to the broader
categoryRel of [6].

FA def= A? = 1+A�A?. In the followingHA-instantiation of the polytypic functionflatten [10], flatten : HA �! A?flatten l def=++x l� (x = i1 a)) [a](x = i2 l0)) flatten l0 (15)i1 andi2 are coproduct injectionsA i1 // A+B Bi2oo (cf. inl andinr in [6])

and notation++x l : : : indicates the iteration of binary list-concatenation (x++y) to
a sequence of lists, that is, ++ [] = []++ cons(x; l) = x++ (++ l) (16)

hold. Combining (15) with (16) we obtainflatten [] = []flatten (cons(x; l)) = � (x = i1 a)) [a](x = i2 l0)) flatten l0 ++ flatten l
as pointwise version of equationflatten � [nil; cons] = [nil;++ � ([wrap; flatten]� flatten)]
wherewrap a = [a] andnil = [], as earlier on.

This equation is a simplification of the one which arises from commutative dia-
gramHAflatten�� (A+ HA)?�oo 1 + (A+ HA)� (A+ HA)?[nil;cons]oo 1 + (A+ HA)� HA1+(A+flatten)�flatten ��1+id���1ooA? 1 +A? �A?[nil;++]oo 1 + (A+A?)�A?1+[wrap;id]�idoo
where fixpoint isomorphism� can be regarded as the identity, since we have not in-
troduced any abstract syntax forHA. Assuming this simplification, from this diagram
we can expressflatten as either catamorphism([[nil;++ � ([wrap; id]� id)]]) or as
hylomorphism[[[nil;++] � �; !]],HAf �� ! // 1 + (A+ HA)� HA1+(A+f)�f��A? 1 +A? �A?[nil;++]oo 1 + (A+A?)�A?�oo

where! = [nil; cons]�1 is given by (12) and� = 1 + [wrap; id]� id.
This HA-instantiation of polytypicflatten is relevant, for our purposes, in two

ways. First, it works in the opposite direction on the hierarchical enrichment ofA? intoHA, as a kind of attempt to convert hierarchical lists into flat ones, obviously losing
something (the sequence-nesting effect ofHA) but retaining something else (theAs
which can be found as leafs):HA flatten (i.e., compress, reduce)// A?lift = (i1)? (i.e., extend, expand)

oo
Second, it is an instance of the generic functional pattern which captures monoidal
reductions, which are very typical “data-mining” operations. A monoidal reduction is a
hylomorphism whose target algebra is a monoidM ,Tf �� � // FTF f��M 1 +M �M[�;�]oo FM�oo
where� is the unit and� is the binary associative operator.

Let us now speculate about what should happen toflatten in case we use bifunc-
tor F(A;B) = (A�B)? rather thanFA = A? as starting point for the hierarchical
extension. That is to say, the hierarchical type of interest is now defined byX = ((A+X)�B)? (17)

To begin with, is this datatype any useful? Well, if we think of theBs as natural numbers
and of (A� IN)? as a model of lists of votes in the context of electing staff for a
particular position within an organization, each pair(a; n) may indicate that candidatea has obtainedn votes. Then extension (17) will capture the situation in which the
organization is hierarchically structured and, while pairs(i1 a; n) may have the same
meaning as(a; n) above, pairs of the form(i2 x; n) may mean “n is the weight of the
votes to be found inx” (e.g.lecturer votes are twice as strong as those of students, those
of full professors are worth twice those of lecturers,etc.).

In this situation, our guess forflatten is the function which takes weights into
account and computes the final votes:flatten [] = []flatten (cons(x; l)) = � x = (i1 a; b)) [(a; b)]x = (i2 l0; b)) b
 flatten l0 ++ flatten l
where
 : IN � (A� IN)? �! (A� IN)? is given byb
 l def= [(a; b�n) j (a; b) l].
(A pointfree definition of
 can be given more generally in terms of thestrength� [9]
of the list functor,B � (A�B)? swap // (A�B)? �B � // ((A�B)�B)? (18)

followed by ((A�B)�B)? assocr?// (A� (B �B))? (id�(�))? // (A�B)? (19)

where namesswap andassocr denote the same functions as in [6].)
We will denote byH(A;B) the hierarchical type defined by (17) whose base functor

is B(A;B;X) def= ((A+X)�B)?. The diagram which justifies the above guess for
flatten is, after some basic simplifications, as follows:H(A;B)flatten�� !=[nil;cons]�1 // JH(A;B)J flatten ��(A�B)? 1 + (A�B)? � (A�B)?[nil;++]oo J (A�B)?�oo (20)

whereJX = 1+((A+X)�B)�X . Arrow � = 1+ [wrap;
� swap] �distl� id,
the one which prepares things for the monoidal reduction, arises from the composition
which follows (distl means “distribute left” [6]):1 + ((A+ (A�B)?)�B)� (A�B)?1+distl�id��1 + (A�B + (A�B)? �B)� (A�B)?1+(id+swap)�id��1 + (A�B +B � (A�B)?)� (A�B)?1+[wrap;
]�id��1 + (A�B)? � (A�B)?
The only ingredient new in the move fromHA toH(A;B) is the addition of operator

to the target monoidal structureM = (A�B)?; � = [] and� = ++. Note that operator
 is “external” to the monoid — it bears functionality
 : B �M �!M .

Some intuition about this operator will arise next, in the contextof another instanti-

ation offlatten, this time for base functorB(A;B;X) def= (A+X) * B of equation
(8), that is, for hierarchical typeH(A;B) = (A+H(A;B)) * B:flatten : H(A;B) �! (A * B)flatten � def= Lx2dom�8<: (x = i1 a)) � a� x�(x = i2 �0)) (� x)
 flatten �0 (21)

(Notation

�ab� is used instead of pair(a; b) to emphasize the applicative nature of

partial maps.) ForB = IN , A * B becomesA * IN , the type of data structures

which associate numbers to the elements present in their domain. SoA * IN models
multisets, that is, sets in which membership extends to multiplicity. (ForB = 1, we
haveA * 1 �= P A [20] meaning, of course, that “normal” sets can be represented by
“mono” multisets.) Moreover,H(A; IN) models the hierarchical structure of a produc-
tion database, for instance the production tree of some electronic equipment: forA the
datatype of atomic components,(A+ H(A; IN)) * IN tells us about the quantities in-
volved in production, either of atomic components (A) or sub-equipments (H(A; IN)),
and so on.

By inspection,flatten (21) models the “bill of materials” calculation, also called
“part explosion”. We will refer to this instance offlatten as theexplode function. In
this context,� : (A * IN) � (A * IN) �! (A * IN) is easily guessed as multiset
union, v � r = v y r y� av a+ r a�a2(domv)\(domr)
wherev y r means theoverwritingof mapv by mapr, and
 : IN � (A * IN) �!(A * IN) is such that n
 v = v � � � � : : :� v| {z }n times

This brings something else to mind: if we identifyAwith the dimensions of avector
space, then each “multiset”v 2 A * IN may be understood as a vector. For instance, 3-

dimensional vectorv = 2x+3y+z will be described by multisetm = �x y z2 3 1� under

the convention that nullary dimensions are omitted from the multiset, e.g.2x+ 0y + z
simply represented by

�x z2 1�. Under this analogy,� becomes vectorial sum and

becomes external (scalar) multiplication,n
 v = (A * �n)v (22)

where�n denotescurry (�)n. Later calculations in this paper (see section 7) will
require
 to distribute over�, partly justifying the analogy. But, clearly, what we are
asking here from a vector space is far less it can offer (inverses, cancellationetc.).

The diagram which capturesexplode as a hylomorphism is very similar to (20)
provided that(A�B)? is replaced byA * IN , nil becomes?, ++ becomes�, wrap
becomes�(a; b):�ab�,
 is given by (22) and coalgebra! becomes� (13).

To complete ourflattening trip across the hierarchical structures considered in this
paper, we go back to the very first one — the hierarchical file system datatype (6). Let
us first rewrite its definition in a way consistent with the above examplesH(A;B) = B * (A+ H(A;B))
whereB is the “file identifier” datatype — sayB = String — andA abstracts the “file
information” datatype. Intuitively, the compressing effect offlatten : H(A;B) �!

(B * A) is now bound to work overB, thus in the contravariant parameter of the base
functor. So, it will help if we define
 functorially over an injective operator. On the
other hand, the accumulation operator of the target monoid now has nothing to do with
multiset union — the aggregation ofconsistent(e.g.domain disjoint) partial mappings
via the union operator[, which forms a monoid coupled with?, is a possible choice.

TheB = String instantiation provides a hint for
. Strings are sequences of char-
acters in Haskell, for instance. So, why not define
 : String � (String * A) as
follows, b
 � = ((�s:b++ s) * A)� ?
The picture will be complete if we add the conspicuous"/" string to the concatenated
strings,i.e. b++"/" ++s extendingb ++ s. Putting things together, it is easy to see that
what we have just been considering is the UNIX -typical tar command,tar : H(A;B) �! (B * A)tar � def= [b2dom� let x = � bin 8<: (x = i1 a)) � ba�(x = i2 �0)) b
 tar �0
which is justified by diagramH(A;B)tar�� �0=(1+swap�id)�� // 1 + ((A + H(A;B))�B)� H(A;B)1+((A+tar)�B)�tar ��(B * A) 1 + (B * A)� (B * A)[?;[]oo 1 + ((A+ (B * A))�B)� (B * A)�oo
where� = 1 + [wrap;
] � distl � id.

To wrap things up, we are ready to present the generic function of which three
instantiations have been considered. Its pre-requisites are as follows:

1. A “flat” two-parameter datatypeF(A;B) defined as a fixpoint of linear domain
equationX = 1 + (A�B)�X .

2. Its hierarchical extension,H(A;B), which is defined as a fixpoint of domain equa-
tion X = F((A+X); B)

3. A “wrap up” arrow F(A;B) A� Bwrapoo which embeds the productA�B into
the flat datatype.

4. A target monoid algebra whose carrier is the flat type,F(A;B) 1 + F(A;B)� F(A;B)[�;�]oo

enriched with a “scalar multiplication” operator6,F(A;B) B � F(A;B)
oo
which, as we shall see briefly, extends polymorphically toH(A;B).
Then the generic function we have been investigating is given by hylomorphism[[[�; �] � �; �]] depicted byH(A;B)f�� � // JH(A;B)J f ��F(A;B) 1 + F(A;B)� F(A;B)[�;�]oo J F(A;B)�oo (23)

whereJX = 1 + ((A + X) � B) � X , � is the appropriate input “parser” and� = 1 + [wrap;
 � swap] � distl � id.
We observe thatJ is polynomial of degreen = 2, as can be checked by converting

it to canonical form [13], and sof is quadratic in execution time. Our final concern in
this paper will consist of deriving a linear implementation, a program calculation exer-
cise which will but confirm our earlier intuitions about the[�; �;
] algebraic structure
required by the overall “flattening” reduction.

7 Deriving a linear implementation

Our purpose is to try and find an arrow�0 able to provide a linear recursive path alter-
native to� � J f in diagram (23):H(A;B)f�� � ,,1 + F(A;B) � H(A;B)1+F(A;B)�f�� JH(A;B)J f ���0ooF(A;B) 1 + F(A;B)� F(A;B)[�;�]oo J F(A;B)�oo
Natural isomorphismA�B + C �B (A+ C)�Bdistloo will be taken into ac-
count, as well as fact [g; h]� f = [g � f; h� f] � distl (24)

which is easily proved by first expressingdistl in terms ofswap anddistr and then
usingf � [g; h] = [f � g; f � h] � distr (see exercise 3.28 in [6]). In detail, the
reasoning is as follows:

6 Altogether, we might have writtenF(A;B) 1 + F(A;B)� F(A;B) +B � F(A;B)[�;�;
]oo .

f = [�; �] � (1 + [wrap;
 � swap] � distl � id) � (1 + ((id+ f)� id)� f) � �= f bifunctors+ and� g[�; �] � (1 + [wrap;
 � swap] � distl � ((id+ f)� id)� f) � �= f distl is naturalg[�; �] � (1 + [wrap;
 � swap] � (id+ f � id) � distl � f) � �= f +-absorption andswap is naturalg[�; �] � (1 + [wrap;
 � (id� f) � swap] � distl � f) � �= f fact (26) below and identity of compositiong[�; �] � (1 + [wrap; f �
 � swap] � distl � f � id) � �= f bifunctor� g[�; �] � (1 + ([wrap; f �
 � swap]� f) � (distl � id)) � �= f fact (24)g[�; �] � (1 + [wrap� f; f �
 � swap� f] � distl � (distl � id)) � �= f identity of composition and bifunctor� g[�; �] � (1 + [wrap� f; (f � f) � (
 � swap� id)] � distl � (distl� id)) � �= f bifunctor+ g[�; �] � (1 + [wrap� f; (f � f) � (
 � swap� id)]) � (1 + distl � (distl � id)) � �= f +-absorption,+-fusion and fact (27) belowg[�; [� � (wrap� f); f � � � (
 � swap� id)| {z }�]] � (1 + distl � (distl� id)) � �| {z }�0= f introducing abbreviations� and�0 g[�; [� � (wrap� f); �]] � �0= f forcing� in, which is the unit of� g[�; [� � (wrap� f); � � h�; �i]] � �0= f reverse+-fusion followed by exchange lawg[�; � � h[wrap � �1; �]; [f � �2; �]i] � �0= f expansion of� followed by reverse+-fusiong[�; �] � (1 + h[wrap � �1; �]; f � [�2; � � (
 � swap� id)]i) � �0= f reverse�-absorption and bifunctor+ g

[�; �] � (1 + id� f) � (1 + h[wrap � �1; �]; [�2; � � (
 � swap� id)]i) � �0= f expanding�0 and introducing�0 g[�; �] � (1 + id� f) � �0 � �
From this reasoning we extract�0 = (1 + h[wrap � �1; �]; [�2; � � (
 � swap� id)]i) � (1 + distl � (distl � id))
which is equivalent to�0 = 1 + h[wrap � �1 � distl; �]; � � [�;
 � swap]� idi � (distl � id) (25)

and is central to the overall “deforestation” effect. Of the two facts required above,f �
 =
 � (id� f) (26)f � � = � � (f � f) (27)

which can be justified by fixpoint induction arguments [18], the first one is the most
interesting because it bears semantic implications: its proof requires propertiesb
 (x � y) = (b
 x) � (b
 y) (28)

and (n ? b)
 x = n
 (b
 x) (29)

to hold, whereB B �B?oo is theinternal multiplicationoperator which underlies
the generic definition of scalar multiplication, recall (18) and (19):B � F(A;B) swap // F(A;B) �B ' // F(A;B �B) F(id;?) // F(A;B) (30)

For F(A;B) = A * IN , for instance,? is the product of two natural numbers and
strength-like arrow' is given by'(�; n) = (A * �m:m ? n)�.

Facts (28) and (29) can be found in the axiomatization ofvector spacesin Universal
Algebra compendia. Adopting the full axiomatization would turnB into a field (of
scalars) andF(A;B) into a commutative group (of vectors). Another operation would
become available, that of addition of scalars (say+), which, despite being absent from
our reasoning, would make perfect sense in our context, including its axiom(n+m)
 x = (n
 x) � (m
 x) (31)

In thebill of materialscontext, for instance,+ would be natural number addition, while
in thefile systemcontext it would bring us into regular expression algebra.

8 Going imperative

Knowing that�; � form a monoid makes it possible to convert the linear version off
derived in the previous section into awhile -loop, via the technique ofaccumulation
parameterintroduction [6]. We omit the details, which can be found in [18, 20], and
only present the outcome of the reasoning leading to an iterative versionof explodein
thebill of materialscontext, written in a “pseudo-C”-like notation:f Parts r = ?;

Structure ff = y;
while (ff != ?)f Unit x = get(dom ff);

Quantity n = ff x;

r = r �8<: (x== i1 k)) �
kn�

(x== i2 y’)) ? ;

ff = ff nfxg �� (x == i1 k)) ?(x == i2 y’)) n
 y’
;g;g

Datatype identifiersParts , Unit andStructure refer toA * IN , A + H(A; IN)
andA+H(A; IN) * IN , respectively. Variabley contains the input and the result is de-
livered into variabler. A bit of if-then-else logic finally turns this into something
even simpler:f Parts r = ?;

Structure ff = y ;
Quantity n ;
Unit x;
while (ff != ?)f x = get(dom ff) ;

n = ff x;
ff = ff nfxg;
if (x == i1 k) r = r � �

k
n

�
;

if (x == i1 y’) ff = ff � (n
 y’);gg
Report [1] describes the embedding of this code into the (functional) rapid proto-

typing environment of the CAMILA toolkit.

9 Conclusions and current work

Some years ago we asked our students of theFormal Methodscourse at Minho to con-
tribute to the design of adata mininglibrary which should become available in ORACLE

database technology after a series of careful steps: formal specification, rapid prototyp-
ing (in the CAMILA functional language) and calculation following a data refinement
calculus [17].

A group assigned to thebill of materialsfunctionality produced a correct and fairly
compact ORACLE implementation ofpart explosion, despite the fact that their deriva-
tion included false steps (!). Their project report was kept as a good sample of how
cumbersome pointwise reasoning may happen to be in the software designfield, but
also as a sample of good programming intuition.

By reworking and correcting their calculation, this time in the pointfree style, we
became aware of how close they were to other groups calculating seemingly disparate
functionalities, and of the need to redesign the library in a polytypicstyle.

This paper describes part of this later work, covering two main points: first, the
identification and specification of a particular class ofgeneral hierarchical systems[3,
19] as a base-functor construction; second, a study of how polytypicflatten evolves
towardsexplode once one more parameter is added to the hierarchical construction
which, as we have seen, is accompanied by the move frommonoidsto vector spacesas
target reduction algebras.

However, this is work in progress and the results are incomplete and unsatisfactory
in several respects. First of all, we are still far from a truly polytypic characterization
of our hierarchical type construction and of its functionality. Some attention has been
paid to the move towards arbitrary “flat” datatypesF(A;B) but more work is needed
concerning exponentials and contravariance [14]. We have also ignored the key issue
of guaranteeing that our hierarchical arbitrary types do in fact exist as least fixpoints
of their equations. Moreover, other hierarchical “extensors” might be considered (e.g.
based onA+Xn rather than onA+X) and indeed many hierarchical types exist which
are not covered by our constructions. Last but not least, the nondeterminism inherent in
some of the types considered in this paper requires a move fromFun toRel [6].

References

1. J. J. Almeida, L. S. Barbosa, F. L. Neves, and J. N. Oliveira. Bringing CAMILA and SETSto-
gether — thebams.cam andppd.cam CAMILA Toolset demos. Technical report, DI/UM,
Braga, December 1997. Technical Report, 45 p.

2. J. J. Almeida, L. S. Barbosa, F. L. Neves, and J. N. Oliveira. CAMILA : Prototyping and
refinement of constructive specifications. In M. Johnson, editor, Algebraic Methodology and
Software Technology, pages 554–559. Springer LNCS, December 1997. 6th International
Conference, AMAST’97, Sydney, Australia, 13–17 December 1997, Proceedings.

3. Micheal Mac an Airchinnigh. Some reflections on mathematics education for formal meth-
ods. Technical report, University of Dublin, 1996.

4. R. C. Backhouse and P. F. Hoogendijk. Elements of a relational theory of datatypes. In S.A.
Schuman, B. Möller, and H.A. Partsch, editors,Formal Program Development, number 755
in Lecture Notes in Computer Science, pages 7–42. Springer,1993.

5. R. C. Backhouse and T. Sheeard (org.). WGP’98 — Workshop on
Generic Programming, 1998. Marstrand, Sweden, 18th June, 1998
(http://www.cse.ogi.edu/PacSoft/conf/wgp/).

6. R. Bird and O. de Moor.Algebra of Programming. Series in Computer Science. Prentice-
Hall International, 1997. C. A. R. Hoare, series editor.

7. O. de Moor. An exercise in polytypic programming: repmin.Technical report, Oxford
University, September 1996.

8. J. Fitzgerald and P.G. Larsen.Modelling Systems: Practical Tools and Techniques. Cam-
bridge University Press,1st edition, 1997.

9. P. Hoogendijk and O. de Moor. What is a data type? TechnicalReport 96/16, Eindhoven
University of Technology and Oxford PRG, August 1996.

10. P. Jansson and J. Jeuring. Polylib — a library of polytypic functions. InWorkshop on Generic
Programming (WGP’98), Marstrand, Sweden, 1998.

11. J. Jeuring and P. Jansson. Polytypic programming. InAdvanced Functional Programming,
number 1129 in Lecture Notes in Computer Science. Springer,1996.

12. G. Malcolm. Data structures and program transformation. Science of Computer Program-
ming, 14:255–279, 1990.

13. E. G. Manes and M. A. Arbib.Algebraic Approaches to Program Semantics. Texts and
Monographs in Computer Science. Springer-Verlag, 1986. D.Gries, series editor.

14. E. Meijer and G. Hutton. Bananas in space: Extending foldand unfold to exponential types.
In S. Peyton Jones, editor,Proceedings of Functional Programming Languages and Com-
puter Architecture (FPCA95), 1995.

15. P. Mukherjee. Automatic translation of VDM-SL specifications into Gofer. In J. Fitzger-
ald, C. B. Jones, and P. Lucas, editors,FME’97: Industrial Applications and Strengthened
Foundations of Formal Methods, number 1313 in Lecture Notes in Computer Science, pages
258–277. Springer, 1997.

16. D. A. Naumann. Beyond fun: Order and membership in polytypic programming. In J. Jeur-
ing, editor,MPC’98: Mathematics of Program Construction, number 1422 in Lecture Notes
in Computer Science, pages 286–314. Springer, 1998.

17. J. N. Oliveira. Software reification using the SETS calculus. InProc. of the BCS FACS 5th
Refinement Workshop, Theory and Practice of Formal SoftwareDevelopment, London, UK,
pages 140–171. Springer-Verlag, 8–10 January 1992. .

18. J. N. Oliveira.Métodos Formais de Programação. University of Minho,4th edition, 1997.
Textbook (489 p. in Portuguese7). English version under preparation at the time of writing.

19. J. N. Oliveira. University education in Formal Methods -Report on the Minho experience,
1997. Tutorial. Training & Education Workshop, FME’97, Graz, Austria, 15-19 September.

20. J. N. Oliveira. A data structuring calculus and its application to program development, May
1998. Lecture Notes of M.Sc. Course (150 p.8). Maestria em Ingeneria del Software, Depar-
tamento de Informatica, Facultad de Ciencias Fisico-Matematicas y Naturales, Universidad
de San Luis, Argentina.

21. A. Pardo. Monadic corecursion — definition, fusion laws,and applications.Electronic Notes
in Theoretical Computer Science, 11, 1998.

22. A. Takano and E. Meijer. Shortcut to deforestation in calculational form. InProc. FPCA’95,
1995.

23. P. Wadler. Theorems for free! In4th International Symposium on Functional Programming
Languages and Computer Architecture, London, Sep. 1989. ACM.

7 846K gzipped PS file available fromhttp://www.di.uminho.pt/˜jno/ps/mfp.ps.gz .
8 390K gzipped PS file available fromhttp://www.di.uminho.pt/˜jno/ps/sanl98.ps.gz .

