“Explosive” Programming Controlled by Calculation

J.N. Oliveira

Dep. Informatica, Universidade do Minho,
Campus de Gualtar, 4700 Braga, Portugal
Tel: 351+53+604470
EMAIL : jno@di.uminho.pt

Abstract. In the design of a functional library in the area of data-minseveral
algorithmic patterns have been identified which call for e programming.
Some of these have to do with flattening functions which anse particular
group of hierarchical systems.

In this paper we describe our efforts to make such functiteslgeneric. We start
by a generic inductive construction of the intended clagsarirchical types. We
conclude by relating the structure of the relevant basetfus with the algebraic
structure which is required by the generic flattening funwlity, in particular
concerning its “deforestation” towards a linearly complaplementation.

The instances we provide as examples include the widely kinithof materials
“explode” operation.

1 Introduction

The definition of a function
f:B— A Q)

can be regarded as a kind of “contract”: functjbis committed to produce as-value
provided it is supplied with &8-value.

Such “functional contracts” can be of two kinds: (@jntentionally loses informa-
tion, becauseB is found too detailed and one wants to capture onlyAkaspect of
B-values — s0A is an abstraction aB (f is non-injective); (b)f faithfully converts
data from theB-format to theA-format — so,f is injective and, in the limit, the two
formats are the sam¢ {s the identity).

Case (a) above is perhaps more interesting than (b) and supportdahérfglapho-
rism about a facet dunctional programmingit is theart * of transforming or losing
information in a controlled and precise way. That is, the art of congtigithe exact
observation of data which fits in a particular context or requirement.

At the heart of this “data mining” discipline one finds many situatiam which
knowledge is extracted from a complex data structure and accumulated inargt b
operator which provides for the intended abstractiey.(summing up the elements
of a list). The algebraic structure which accommodates this kind of aperat the

1 Which computer scientists wish to convert — and are convgri- intoscience

ubiquitousmonoid And, in fact, functional data-mining is nothing but a series of clever,
highly scrutinized monoidal reductions of a complex input structure.

In the design of a @mILA [2] functional library containing kernel data-mining
operators we have met situations in which slightly more elaboratetiedwalgebras are
required which resemble (but are less sophisticated theetpr spaces— something
to be expected from the “metric” nature of data-mining.

This paper identifies a generigdlytypig class of functions which provide for such
metric reductions wherever the observed datatype is a recursive datusrwhich
embodies a notion of hierarchy, captured by an appropriate cldsasseffunctoicon-
structions. Instances of the provided functional abstraction are gik@twut together
algorithms as far apart as, for instance, tileof materials“explode” operation and the
UNIX tar command. The paper includes a calculation which ports these results from
functional to imperative programming media.

2 Context

Everybody is familiar with the concept of a function since the schodt.dese func-
tional intuition traverses mathematics from end to end because it hasiaspniantics
rooted on a clear-cut mathematical structure — the cateBaty (also calledSet) of
“all” sets and set-theoretical functions.

Functional programming has a tradition of absorbing fresh resuwlts theoretical
computer science, algebra and category theory. One of the most significanicadv
over the last decade has been the so-céilladtorialapproach to datatypes which orig-
inated mainly from [13], was popularized by [12] and reached the textbawkét in
[6]. A comfortable basis for explainingolymorphisnj23], the “datatypes as functors”
moto has proved beneficial at a higher level of abstraction, giving birgolgtypism
[11].

Polymorphism and polytypism are steps of the same ladder, thgeradric pro-
gramming[5]. The main target of this fast evolving discipline is to raise lineel of
abstraction of the programming discourse in a way such that seemirsgigrdie pro-
gramming techniques, algorithna$c. are unified into idealized, kernel programming
notions.

Besides polymorphism and polytypisgeneric programmings “polymediatic” in
the sense that the same generic result crosses the boundaries of diffeggatmming
media, or paradigms, simply by changing the category in which the issalerpreted.
Therepmin derivation of [7], for instance, is shown to yield a functional program
if interpreted inFun or to yield the “corresponding” logic program if interpreted in
Rel, a generalization dFun to set-theoretical relations which has received increasing
attention within the mathematics of program construction commdnity

3 Motivation

In this paper we wish to contribute to the “datatypes as functors” trgridémtifying
and exploiting a particular way of building complex functional dataettres induc-

2 Cf. e.g.[4, 6]. See [16] for other categories worth a visit “beydidn”.

tive datatypepout of existing ones. To be more specific, we will invest in thecitrre
of thebase functomhich underlies the definition of an inductive datatype.
Recall the typical Haskell-like definition @bns-lists:

data List a = Nil | Cons(a, List a) (2)

According to the sandard semantics of inductive datatypes, this ddfirdéclares
List a as a solution to domain equation

r=14+axzx 3)
which can be abbreviated to= F z by introducing functofF x 1+ axa ForF

to be properly defined; should be a constant or fixed datatypay.a = IV, the set of

natural numbers. But, for polymorphism we wish (2) to express-lists of any type

a; therefore, a binary functds(a, b) 41 + a x b should be used instead, called the

base functoof the definition, whereby (3) rewrites o= B(a, z).
In general, the definition of an inductive;ary parametric datatype will be an equa-
tion of the form

X =B(A4y,..., A, X) (4)

where base-functd is of arityn + 1 and A; to A,, are type parameters.

Itis clear that inB resides the “essence” of the datatype, that is to saypaltern
of recursion which determines its expressive power. A constructiveytteéanductive
types should invest in structurally building more and more elabgatierns of recur-
sion out of pre-existing ones. In the above terminology, thisld/omean a discipline
for scaling upbase-functors.

This paper investigates a particular scale-up manceuvre which enables us to con-
structhierarchical extensions to pre-existing types. The purpose of this workchvhi
still rather experimental, is to find a generic way extending the funatity of the orig-
inal type up to its hierarchical outcome.

With no loss of generality, we will focus our attention to binary omtey base-
functors, that is, to datatypes of the form

TA=B(A,TA)
or
T(4,B) =B(4, B, T(4, B))
One of our notation simplifications includes the use of the equafityb®l in places
where (as above) the isomorphism symbasl would be more correct. We will prefer
A* to List A (2) and, concerning functional expression infix operator precedence, we

will assumeo (function composition) to bind closer than(products) and this to bind
closer thant (coproducts).

4 lllustration

In the personal computer age everybody has become acquainted with thedfdedar
system structure oé.g. UNIX or WINDOWS, which is made of directories (folders)
which are in turn made of sub-directories, and so on. Such a structuieh wdn be
visualized as a tree, is a form of hierarchical knowledge representation.

But, who still remembers the CPM file system, or the CDS ISIS fileesydy Intel,
back to the 1970s? It was jusflat structure mapping file names to file attributes. So,
it was clearly non-hierarchical. How do we express the kind of “improvefhmnfile
system structuring which happened in the meantime?

Let I be a primitive datatype of file names (identifiers) afde be the datatype
which describes files(g.contents, attributegtc). A flat file system will be described
by a finite partial function frond to F'ile,

I — File (5)

(For A, B two given datatypes, readl*— B” as the datatype dfnite partial functions
from A to B, that s, of relationg C B x A such that o o° is a subset of identitydg;
in other words, theis arekeyswhich uniquely identify theBs3.)

In a hierarchical file system we have to upgrade (5) to something like

I — (File + Directory)

where Directory is again al — (F'ile + Directory) and so on. So we obtain a
recursive datatype of shape

X =1 = (File + X) (6)

To “measure” the improvement from to (5) to (6) we go parametridibie and
specify the flat version as functérA = I — A. Then (6) becomes equatiot =
F(File + X) and, turningF'ile a parameter again, we obtain type

HA=pX.F(A+X)

In short, the generic pattern of the improvement is as follows: tamhthical ex-
tension of a predefined (type) functer is the type functoH A which is obtained as

solution to equatiotX’ = F(A+ X). In other words, the base funct®rof H A “reuses”

the original functof, i.e, B(4, X) ef F(A+ X).

This hierarchical pattern is very common in practice. For instance, frorothe
list functor A* we build thegeneralizedist functor which stems from equation

X=(A+X) (7)
that is, the (pseudo) Haskell datatype

data GList a = [a | GList a]

% In [6], partial functions are callesimplearrows orimps

One may wonder about the hierarchical extension of the identity fufctior= A,
which is easily shown to be (isomorphic #d)4 = A x IV (a natural number is added
to everya € A specifying how deep happens to occur in the hierarchy determined by
X = A+ X), or of every constant functér A = K, which degenerates in itself since,
in this caseF(4A + X) = K.

Moving on to more interesting examples, we get hierarchical (nested)gaitbe
powerset functor,

X=PA+X)
or abstract hierarchical type
X=A+X)—B (8)

(for some constant typ#), obtained as a companion of the hierarchical file system
pattern by freezing paramet8rin A — B instead of freezing! (which was turned to
constant/ in the file system example). The functorial behaviour of (8) requioeses
care becausd — B is contravariant omd. But this is a very expressive datatype on
top of which we will model, in the sequel, thsll of materialsproblem and its “part
explosion” functionality (and thus the “explosive” qualifier in tiitee of the paper).

In the remainder of the paper we will be interested in specifying and caleglati
functions which browse hierarchical structures such as illustrated abodesxdnact
information which will be used elsewhere. Such functions are naturakgribed as
hylomorphism$22]. In the section which follows we will review some concepts, def-
initions and notations which will be adopted throughout the papBeaders familiar
with [22] or with textbook [6] may choose to skip it with no loskamntinuity.

5 An overview of “types as functors”

Recall the declaration of an arbitrary functigrgiven by expression (1). In many sit-
uations we know thaB happens to be the least fixpoinE of some given equation
X = F X. Intuitively, f is expected to be recursive.

Wherever it exists .F is the carrier of the initiaF-algebra(uF, uF <—— F uF)
which, in short, we will identify just by writinge. So it is natural to expresgas an
F-catamorphisnfor “generic fold”) of someF-algebraa on target typed:

uF <T— F uF

f=([a])Fl quO‘DF

A<a—FA

Becauser is initial, f = («])¢ is the unique--homomorphism frome to «. Initiality
provides catamorphisms with the expected (universal) propegtig$iision

fo(a)g=(B)g if foa=poFf 9)

“ Reference [20] contains a detailed account of all this teotoigy.

reflection,
([LFDF = Z'dNF (10)

and so on. Intuitively{a]) captures the abstract notion of.& “browser”, “parser”, or
better: of the abstraé¢t-induced recursion schema. Note that laws such as (9) and (10)
express themselves independently oo we are talking abotiigher-orderpolymor-
phism, — that is, aboygolytypisn{11].

In the same way we identified the source typebove withuF, for someF, we
may happen to identify the target tygewith uG, for somegG:

uF < F uF (11)

|

pG <—— F uG

Now, it would be “unnatural” to ignore the initidl-algebravg, which is the standard
constructor of values of typeG.

Clearly, f analyses input data according to theecursive pattern and synthesizes
output data according to tierecursive pattern — it behaves like a “protocol” between
such patterns of recursion.

How can such a protocol be captured in this settingFAn G natural transforma-
tion (and itstheorem for free[23]) seems the most “natural” device for this purpose.
One is tempted to somehow “paste”into diagram (11),

uF - F uF
/| |es
MGTG/LG%FMG

leaving it open how to fill the “...” arrow. First, let us illustratieis diagram with a
typical “protocol” function, that which should enable us to computelémgth of a
finite sequence:

[nil,cons |

c* 1+C xC*
lengthl ll—&-Cxlength
Wo%l‘i—ﬂ\/vo%l‘{-CXWO
[0,suc] 1+m2
wherenil = [] (given a constant, c means the “everywher€ polymorphic function
Az.c [20]), cons is the usual operator andc is the successor function.
In this example, the “...” arrow was filled with natural transformation >,
147
A 1+C x A(—2)>A1 +A
fl 1+C><fl l1+f
B 1+CxB——1+B

(1+m2) 5

which provides for the required recursion pattern “protocol”. So, tlagm@im can be
enriched thus,

[nil,cons]
Cr= I+ C 5 1+CxC*

lengthl 1+lengthl ll-‘—Cxlength

Wo%l‘i—ﬂ\/v()?l‘{-CXWO
2

[0,5uc]
immediately delivering properties

lengthonil =0
length o cons = succo length o s
whatever path is followed up in the right-hand square of the diagram.
A computable definition ofength will pop out by closing the left-hand side square

of the diagram with coalgebra'* —2 > 14+ C*,whichis fully determined by com-
posing(1 + m3) with the inverse of nil, cons], i.e.the standard “destructor” of lists,

w = [nil,cons] ™"
= (! + (head, tail))o =[1? (12)

wherel! is the unique arrow frord™* to 1, predicate=[| denotes equality test.(I = [])
and=,7 is an instance of a guag [6]. Then
7=(1+m)ow
= (I + tail)o =]?

and, therefore,
length def [0, suc o length o tail Jo =17

What have been the basic building blocks of this specificatinp@t F-coalgebra
~ + output G-algebra] 0, suc | + naturaltransformationl + 7» : F — G. These
are precisely the components of a so-caligtbmorphisntriplet, as presented in [22]:

given two Set (endo)functors, G, an F-coalgebra(B, B LA F B), aG-algebra

(A, A<2— G A) and a natural transformation: F — G, we abbreviate by hylo-
morphism triplet«, v, 6]]F7G, the morphism fronB to A defined by the least fixpoint
of equation

B
f=aovso(Ff)opB cfdiagram B~ GB<,_>FB

T

A<TGA<TFA

It is not always the case that we havas a natural transformation. So, in general,
hylomorphisms are simply defined as pdiys 3] of an algebray and a coalgebra of
the same functoe.g.y = a o v concerning triplefa, v, 8] ;. One of the advantages
of reasoning in terms of triplets is the naideforestatior{22] which arises from'’s
theorem for free! This is meaningful wherevér andG are polynomial and the degree
of G (e.g.linear lists) is stricly smaller than that &f (e.g.binary trees). Note that a
catamorphism is a special case of a hylomorphismgftire inverse ofg.

Many useful programming schemata arise from the hylomorphism cangven
where no initial algebras are involved. For instance, take co-algebra

(A—B)—">14(AxB)x (A~ B)
of base functoB(A4, B, X) =1+ (A x B) x X, defined by
B=("+get)o=,"7 (13)

where L denotes the totally undefined partial function adis defined as follows:

geto © et a € domo

in ((a,00a),0\{a})

Heredom o denotes the domain of definition efando \ {a} denotess “domain-
subtracted” by: °. Arrow 3 can be recognized as the standard “parser” for finite partial
functions, and~, /3], for some algebra = [v1, 72], as the generic finite partial func-
tion “processor”,

def oc=1 =>m
fo= {((a,b),g') =geto = 72((@}()),']"0')

which we may re-write as follows:

foifo=1 (14)
then v
else let ((a,b),0') = geto
in 72((a,b), fo')

Coalgebrasy (12) andg (13) will be relevant in the sequel. See [22,21] for more
about hylomorphismtheory and [17, 20] for the application of afl thidata refinement.

6 A study of (hierarchical) flattening

Recall the generalized-list datatype which satisfies domain equation (7)s thape
functorH A = (A + H A)* which is the hierarchical extension of thens-list functor

® Operators such atom, \ and others to come are typical of specification languagesenthe
mapping (= finite partial function) datatype is primitie$, e.g.CAMILA [2], VDM-SL [8] etc.
In Haskell, this datatype is easily implemented in termgst$ lof pairs [15].
Also note that, strictly speakingset is a relation and one should switch to the broader
categoryRel of [6].

FAY 4* =1+ 4 x A*. Inthe followingH A-instantiation of the polytypic function

flatten [10],

flatten : HA — A*

def (x =141 a) = [a]
flattenl = —H_m—l { (x = i;l’) = flattenl' (15)

i1 andi, are coproduct injections4 _a A+ B 2 B (cf.inl andinr in [6])

and notation‘H_wH ... indicates the iteration of binary list-concatenation{ y) to

a sequence of lists, that is,
I I [] = [] (16)

—H_ cons(z,l) =z H (—H_ l)

hold. Combining (15) with (16) we obtain
flatten[] =]
_J@=i1a)=q]
flatten (cons(x,1)) = { (x = isl') = flattenl’ + flattenl
as pointwise version of equation

flatten o [nil,cons | = [nil, # o ([wrap, flatten] x flatten) |

wherewrap a = [a] andnil = [], as earlier on.
This equation is a simplification of the one which arises from comnugtatia-
gram

1, L1
HA<"— (A+HA) (A4 HA) x (A+HA Z T L (A4 HA) xHA
lflatten 14+ (A+ flatten) Xflattenl
< * * * *
A*[nil,%]1+A x4 1+[wrap,id | xid 1+(A+A)XA

where fixpoint isomorphism can be regarded as the identity, since we have not in-
troduced any abstract syntax fidrd. Assuming this simplification, from this diagram
we can expresglatten as either catamorphis(nil, +# o ([wrap,id] x id)])) oras
hylomorphism[[nil, #] o v, w],

HA = 1+ (A+HA) xHA
fl l1+(A+f)Xf

A*[W]1+A*XA*<V—1+(A+A*)XA*

wherew = [nil, cons] " is given by (12) and = 1 + [wrap, id | x id.

This H A-instantiation of polytypicflatten is relevant, for our purposes, in two
ways. First, it works in the opposite direction on the hierarchicatbnrent ofA* into
H A, as a kind of attempt to convert hierarchical lists into flat ones, obwdasing
something (the sequence-nesting effectiad) but retaining something else (thts
which can be found as leafs):

flatten (i.e., compress, reduce)
HA A*
lift = (i;)” (i.e., extend, expand)

Second, it is an instance of the generic functional pattern which capturesisgabn
reductions, which are very typical “data-mining” operations. A monoiddiction is a
hylomorphism whose target algebra is a monid

T d FT

/| |es

M<[E—9]1+MXM<V—FM

wheree is the unit and is the binary associative operator.

Let us now speculate about what should happefiteten in case we use bifunc-
tor F(A,B) = (A x B)” rather tharFA = A* as starting point for the hierarchical
extension. That is to say, the hierarchical type of interest is now defined b

X =((A+X) x B)* 17)

To begin with, is this datatype any useful? Well, if we think of BB&as natural numbers
and of (4 x IN)* as a model of lists of votes in the context of electing staff for a
particular position within an organization, each paiyn) may indicate that candidate
a has obtained votes. Then extension (17) will capture the situation in which the
organization is hierarchically structured and, while p&iisz, n) may have the same
meaning aga,n) above, pairs of the forri, z,n) may mean # is the weight of the
votes to be found in” (e.g.lecturer votes are twice as strong as those of students, those
of full professors are worth twice those of lecturert).

In this situation, our guess faoflatten is the function which takes weights into
account and computes the final votes:

flatten[] =]

_ Jz=(1a,0) = [(a,b)]

flatten (cons(z,l)) = {:v — (ixI'.b) = b® flattenl’ + flattenl

where® : IV x (4 x IN)* —s (A x IN)* is given byb @1 %' [(a, b x n) | (a,b) < 1].

(A pointfree definition ofg can be given more generally in terms of gteengthe [9]
of the list functor,

% swap

B x (Ax B 22 (4 x B)* x B—2> (A x B) x B)* (18)

followed by

((A x B) x B)*®*%% (4 x (B x B))* — X&)

(Ax B)* (19)
where nameswap andassocr denote the same functions as in [6].)

We will denote byH(A, B) the hierarchical type defined by (17) whose base functor

isB(4, B, X) ef ((A+ X) x B)*. The diagram which justifies the above guess for

flatten is, after some basic simplifications, as follows:

w=][nil,cons | 7!

H(A, B) JH(A, B) (20)

lflatten Jflattenl

(A X B)*[m]l + (A X B)* X (A X B)* % J (A X B)*

where) X =1+ ((A+X) x B) x X.Arrow v = 1 + [wrap, ® o swap | o distl X id,
the one which prepares things for the monoidal reduction, arises frermamposition
which follows (distl means “distribute left” [6]):

1+ ((A+(AxB)") x B) x (Ax B)*
L4 distlxid

1+(Ax B+ (AxB)"xB) x (AxB)*
1+ (id+swap) xid
1+(Ax B+ B x (AxB)") x(AxB)*

1+[wrap,® | xid

1+ (AxB)" x (AxB)*

The only ingredient new in the move frobhA to H(A4, B) is the addition of operatab
to the target monoidal structufe = (4 x B)*,e = [] andd = +. Note that operator
® is “external” to the monoid — it bears functionality: B x M — M.

Some intuition about this operator will arise next, in the contééxdnother instanti-

ation of flatten, this time for base functd(A4, B, X) def (A+ X) — B of equation

(8), that is, for hierarchical typd(A4, B) = (A + H(A, B)) — B:
flatten : H(A,B) — (A — B)
Flattens @wema{ (z=i1a) = (Uam> (21)
(x =i20") = (0) @ flatten o’
a

(5
partial maps.) FoB = IN, A — B becomesA — IN, the type of data structures

(Notation > is used instead of paif, b) to emphasize the applicative nature of

which associate numbers to the elements present in their domaif.-SalNV models
multisets that is, sets in which membership extends to multiplicity. (Boe= 1, we
haveA — 1 = P A [20] meaning, of course, that “normal” sets can be represented by
“mono” multisets.) Moreoveti(A, INV) models the hierarchical structure of a produc-
tion database, for instance the production tree of some electronic egpiipior A the
datatype of atomic componentsi + H(A, IV)) — IN tells us about the quantities in-
volved in production, either of atomic component§ pr sub-equipmentd(A4, IV)),

and so on.

By inspection,flatten (21) models the “bill of materials” calculation, also called
“part explosion”. We will refer to this instance glatten as theexplode function. In
this context® : (A = IN) x (A = IN) — (A — IN) is easily guessed as multiset
union,

a
va+ra

ver=virt < >
a€(dom v)N(dom r)

wherev { r means theverwritingof mapv by mapr, and® : IV x (A = IN) —
(A — IN) is such that

nYKuv=vdP---...00V
~—_————
n times

This brings something else to mind: if we identifywith the dimensions of eector
spacethen each “multisett € A — IV may be understood as a vector. For instance, 3-
TyYz
231
the convention that nullary dimensions are omitted from the muleésgt2z + Oy + 2
Tz
21
becomes external (scalar) multiplication,

dimensional vector = 2z + 3y + =z will be described by multiset, = under

simply represented b . Under this analogyp becomes vectorial sum argl

n®v=_A— Xpv (22)

where x,, denotescurry (x)n. Later calculations in this paper (see section 7) will
require® to distribute overp, partly justifying the analogy. But, clearly, what we are
asking here from a vector space is far less it can offer (inverses, cancediitjon

The diagram which capturescplode as a hylomorphism is very similar to (20)
provided tha{ A x B)” is replaced byd — IN, nil becomesL, + becomesp, wrap

a

becomes\(a, b). <) ® is given by (22) and coalgebrabecomeg’ (13).

b
To complete ourflattening trip across the hierarchical structures considered in this
paper, we go back to the very first one — the hierarchical file system datdtyde=(
us first rewrite its definition in a way consistent with the above eam

H(A,B) =B —~ (A+ H(A, B))

whereB is the “file identifier” datatype — sap = String — and A abstracts the “file
information” datatype. Intuitively, the compressing effectféfitten : H(A, B) —

(B — A) is now bound to work oveB, thus in the contravariant parameter of the base
functor. So, it will help if we definex functorially over an injective operator. On the
other hand, the accumulation operator of the target monoid now has gadhite with
multiset union — the aggregation cbnsisten{e.g.domain disjoint) partial mappings
via the union operatap, which forms a monoid coupled with, is a possible choice.

The B = String instantiation provides a hint fap. Strings are sequences of char-
acters in Haskell, for instance. So, why not define String x (String — A) as
follows,

bo=(As.bHs)— Ao 7

The picture will be complete if we add the conspicuttis string to the concatenated
strings,i.e. b+"" +s extendingd + s. Putting things together, it is easy to see that
what we have just been considering is theil-typicaltar command,

tar : H(A,B) — (B — A)

taradéf U let t=0b

bedom o . b
in { (x =i1a) = <a>

(x =i20") = b taro’
which is justified by diagram

B'=(14+swapxid)of

H(A, B) 1+ ((A+H(A,B)) x B) x H(A, B)

ltm‘ 1+((A+tar)><B)><tarl

(B=A) x5 14 (B = 4) x (B 4) <5— 1+ (A +(B = 4) x B) x (B~ 4)

wherev = 1 + [wrap, ® | o distl x id.
To wrap things up, we are ready to present the generic function of whiele th
instantiations have been considered. Its pre-requisites are as follows:

1. A “flat” two-parameter datatypE(A, B) defined as a fixpoint of linear domain
equationX =1+ (A x B) x X.
2. Its hierarchical extensiohl(A, B), which is defined as a fixpoint of domain equa-

tion
X=F(4A+X),B)
3. A“wrap up” arrow F(A, B) <—2 4 x B which embeds the produgtx B into
the flat datatype.

4. Atarget monoid algebra whose carrier is the flat type,

F(4,B) <21 1 £ F(4, B) x F(4, B)

enriched with a “scalar multiplication” operatr
F(A,B) <2— B x F(4, B)

which, as we shall see briefly, extends polymorphicallftal, B).
Then the generic function we have been investigating is given by hylomsm
[6] 0v, Q] depicted by

H(A, B) JH(A, B) (23)

! /|

F(A,B) 5 1+ F(4, B) x F(4, B) < — JF(4,B)

whereJ X = 1+ ((A+ X) x B) x X, g is the appropriate input “parser” and
v =1+ [wrap,® o swap | o distl X id.

We observe that is polynomial of degree = 2, as can be checked by converting
it to canonical form [13], and s@ is quadratic in execution time. Our final concern in
this paper will consist of deriving a linear implementation, a programmutation exer-
cise which will but confirm our earlier intuitions about the 6, ®] algebraic structure
required by the overall “flattening” reduction.

7 Deriving a linear implementation

Our purpose is to try and find an arrawable to provide a linear recursive path alter-
native tov o J f in diagram (23):

B
H(A, B) L+ F(4,B) x H(4, B) <= JH(4, B)
lf ll-&-F(A B)Xf Jfl
F(A,B) <7 1+ F(4,B) x F(4, B) <5— JF(4, B)

€0

Natural isomorphismA x B + C' x B <2*L (4 + C) x B will be taken into ac-
count, as well as fact

[9,h]x f=[gxfhxf]odistl (24)

which is easily proved by first expressidgstl in terms ofswap anddistr and then
usingf x [g,h] = [f x g,f x h] o distr (see exercise 3.28 in [6]). In detail, the
reasoning is as follows:

[€,0,0]

& Altogether, we might have writteff (A4, B) <—— 1+ F(A, B) x F(A,B) + B x F(4, B) .

[€,0]0(1+[wrap,® oswap]odistl xid)o (1+ ((id+ f) xid) x f)op
{ bifunctors+ andx }
[6,0]0 (1+[wrap,® oswap]odistl o ((id+ f) x id) x f) o3
{ distlis natural}
[6,0]0(1+[wrap,® oswap]o (id+ f X id)odistl X f)of3
{ +-absorption andwap is natural}
[6,6]0(1+[wrap,® o (id x) oswap]|odistl x f)of
{ fact (26) below and identity of compositign
[6,0]0(1+[wrap, fo®oswap]odistl x foid)of
{ bifunctorx }
[6,0]0(1+ ([wrap, fo®oswap]x f)o (distl x id))o 3
{ fact (24)}
[6,0]0(1+[wrapX f,fo®oswapx f]odistlo (distl x id)) o
{ identity of composition and bifunctor }
[6,0]0(1+[wrapx f,(f X f)o(®oswap x id)] o distl o (distl x id)) o 8
{ bifunctor+ }
[6,0]0(1+ [wrap X f,(f X f)o(®oswap xid)])o (1+ distl o (distl x id)) o
{ +-absorptions-fusion and fact (27) beloy
[€,[00(wrap x f),fobo(® oswap x id)]]o (1+ distl o (distl x id)) o 3

v v

~~

’ g
{ introducing abbreviationgsandj’ }

[&,[60(wrap x f),p]]op
{ forcinge in, which is the unit o }

[&,[00(wrapx f),00(e.p)]] o B
{ reverset-fusion followed by exchange lay

[900 ([wrapoﬂlvﬁ]v[fowbpb] 0/3’
{ expansion of followed by reverser-fusion }

[&0]0(1+ ([wrapom,e], fo[m,b0(®oswap xid)])) o
{ reversex-absorption and bifunctor }

(0] 0 (L+idx f)o(1+ ([wrapom,el,[m,00 (20 swap x id)])) o '
= { expanding?’ and introducing’ }
[e60]o(1+idx flov'ef

From this reasoning we extract

!

v =1+ ([wrapom,el,[72,80 (® oswap X id)])) o (1 + distl o (distl x id))
which is equivalent to

v' =14 ((wrapom odistl,e],0 o[€,® o swap] x id) o (distl x id) (25)
and is central to the overall “deforestation” effect. Of the two facts requiredeggb

fo®=®o(idx f) (26)
fob=00o(fxf) (27)

which can be justified by fixpoint induction arguments [18], the first @ the most
interesting because it bears semantic implications: its proof requivpsies

bR (z0y)=(bx2)0 (bxy) (28)
and

nxb)@z=n® (b®c) (29)

to hold, where B <<— B x B is theinternal multiplicationoperator which underlies
the generic definition of scalar multiplication, recall (18) and (19):

swap F(id,*)

B x F(4,B) 2“5 F(4,B) x B—2>F(A, B x B) — > F(4, B) (30)

ForF(A,B) = A — IN, for instancex is the product of two natural numbers and
strengthlike arrow is given byp(o,n) = (A = Am.m xn) o.

Facts (28) and (29) can be found in the axiomatizatiorector spaces Universal
Algebra compendia. Adopting the full axiomatization would tusninto a field (of
scalars) andf(A, B) into a commutative group (of vectors). Another operation would
become available, that of addition of scalars ($gywhich, despite being absent from
our reasoning, would make perfect sense in our context, includingidamax

m+m)@zx=mnex)ld(me) (32)

In thebill of materialscontext, for instancet would be natural number addition, while
in thefile systentontext it would bring us into regular expression algebra.

8 Going imperative

Knowing thate, # form a monoid makes it possible to convert the linear versioffi of
derived in the previous section intoaile -loop, via the technique aiccumulation
parameterintroduction [6]. We omit the details, which can be found in [18,20]d
only present the outcome of the reasoning leading to an iterative vexsexplodein
thebill of materialscontext, written in a “pseudo-C"-like notation:

{ Parts r= 1
Structure ff = vy;
while (ff 1= 1)

{ Unit x = get(dom ff);
Quantity n = ff x;

o ()

(x==1i2y) = L

_ (l’::ilk):}J_ .
=i Moo\ eosiny)oney °

Datatype identifier®arts , Unit andStructure refertoA — IN, A + H(A, IN)
andA+H(A, IN) — IN, respectively. Variablg contains the input and the result is de-

livered into variable. A bit of if-then-else logic finally turns this into something
even simpler:

{Parts r = 1;
Structure ff = y ;
Quantity n ;
Unit x;
while (ff = 1)
{x = get(dom ff) ;
n = ff x;
ff = \{x}k
if (x == @ukr=r & ﬁ)
fx== ay)ff=ff &0 o)
}
}

Report [1] describes the embedding of this code into the (functioapljiproto-
typing environment of the @vILA toolkit.

9 Conclusions and current work

Some years ago we asked our students ofttenal Methodsourse at Minho to con-
tribute to the design ofdata miningibrary which should become available irR&CLE
database technology after a series of careful steps: formal specification, matoity p-

ing (in the GamILA functional language) and calculation following a data refinement
calculus [17].

A group assigned to thall of materialsfunctionality produced a correct and fairly
compact QRACLE implementation opart explosiondespite the fact that their deriva-
tion included false steps (!). Their project report was kept as a good sawhhlow
cumbersome pointwise reasoning may happen to be in the software diesigiut
also as a sample of good programming intuition.

By reworking and correcting their calculation, this time in the poagfstyle, we
became aware of how close they were to other groups calculating seemisigdy ate
functionalities, and of the need to redesign the library in a polytgpite.

This paper describes part of this later work, covering two main point; fine
identification and specification of a particular clasgeheral hierarchical systeni8,

19] as a base-functor construction; second, a study of how polyfipiten evolves
towardsexplode once one more parameter is added to the hierarchical construction
which, as we have seen, is accompanied by the moveiinonoidgto vector spaceas
target reduction algebras.

However, this is work in progress and the results are incomplete asalisfactory
in several respects. First of all, we are still far from a truly polytygharacterization
of our hierarchical type construction and of its functionality. Somenditbn has been
paid to the move towards arbitrary “flat” datatyg€s4, B) but more work is needed
concerning exponentials and contravariance [14]. We have also ighardé@yhissue
of guaranteeing that our hierarchical arbitrary types do in fact exist as lepstris
of their equations. Moreover, other hierarchical “extensors” might beideres €.g.
based oA + X" rather than o + X') and indeed many hierarchical types exist which
are not covered by our constructions. Last but not least, the nondetemiitherent in
some of the types considered in this paper requires a moveHRairto Rel [6].

References

1. J.J. Almeida, L. S. Barbosa, F. L. Neves, and J. N. Olivé@ranging CamILA and S Tsto-
gether — thdbams.cam andppd.cam CAMILA Toolset demos. Technical report, DI/UM,
Braga, December 1997. Technical Report, 45 p.

2. J. J. Almeida, L. S. Barbosa, F. L. Neves, and J. N. OliveicamILA : Prototyping and
refinement of constructive specifications. In M. Johnsoitpgdhlgebraic Methodology and
Software Technologypages 554-559. Springer LNCS, December 1997. 6th Interrét
Conference, AMAST'97, Sydney, Australia, 13—17 Decemi®97] Proceedings.

3. Micheal Mac an Airchinnigh. Some reflections on matheasagiducation for formal meth-
ods. Technical report, University of Dublin, 1996.

4. R. C. Backhouse and P. F. Hoogendijk. Elements of a relaltibeory of datatypes. In S.A.
Schuman, B. Mbller, and H.A. Partsch, editdfsrmal Program Developmentumber 755
in Lecture Notes in Computer Science, pages 7-42. Sprih§es.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

R. C. Backhouse and T. Sheeard (org.). WGP'98 — Workshop on
Generic Programming, 1998. Marstrand, Sweden, 18th Jun®98 1
(http://lwww.cse.ogi.edu/PacSoft/confiwgp/)

. R. Bird and O. de MoorAlgebra of Programming Series in Computer Science. Prentice-

Hall International, 1997. C. A. R. Hoare, series editor.

. O. de Moor. An exercise in polytypic programming: repmifiechnical report, Oxford

University, September 1996.

. J. Fitzgerald and P.G. LarseModelling Systems: Practical Tools and Techniqu€am-

bridge University Presg,* edition, 1997.

. P. Hoogendijk and O. de Moor. What is a data type? Techieabrt 96/16, Eindhoven

University of Technology and Oxford PRG, August 1996.

P. Jansson and J. Jeuring. Polylib — a library of polytfynctions. InWorkshop on Generic
Programming (WGP’98), Marstrand, Sweddi®98.

J. Jeuring and P. Jansson. Polytypic programmingidiranced Functional Programming
number 1129 in Lecture Notes in Computer Science. Sprid§o6.

G. Malcolm. Data structures and program transformaticience of Computer Program-
ming, 14:255-279, 1990.

E. G. Manes and M. A. ArbibAlgebraic Approaches to Program SemanticBexts and
Monographs in Computer Science. Springer-Verlag, 19865iies, series editor.

E. Meijer and G. Hutton. Bananas in space: Extendingdottiunfold to exponential types.
In S. Peyton Jones, editd?roceedings of Functional Programming Languages and Com-
puter Architecture (FPCA9511995.

P. Mukherjee. Automatic translation of VDM-SL specifioas into Gofer. In J. Fitzger-
ald, C. B. Jones, and P. Lucas, editdf¥JE’97: Industrial Applications and Strengthened
Foundations of Formal Methogdaumber 1313 in Lecture Notes in Computer Science, pages
258-277. Springer, 1997.

D. A. Naumann. Beyond fun: Order and membership in pplgtprogramming. In J. Jeur-
ing, editor, MPC’98: Mathematics of Program Constructiomumber 1422 in Lecture Notes
in Computer Science, pages 286—314. Springer, 1998.

J. N. Oliveira. Software reification using the s calculus. InProc. of the BCS FACS 5th
Refinement Workshop, Theory and Practice of Formal SoftDaxelopment, London, UK
pages 140-171. Springer-Verlag, 8-10 January 1992. .

J. N. Oliveira.Métodos Formais de Programacat/niversity of Minho,4"* edition, 1997.
Textbook (489 p. in Portuguede English version under preparation at the time of writing.
J. N. Oliveira. University education in Formal MethodReport on the Minho experience,
1997. Tutorial. Training & Education Workshop, FME’'97, @rdustria, 15-19 September.
J. N. Oliveira. A data structuring calculus and its aggtibn to program development, May
1998. Lecture Notes of M.Sc. Course (158) pMaestria em Ingeneria del Software, Depar-
tamento de Informatica, Facultad de Ciencias Fisico-Matmas y Naturales, Universidad
de San Luis, Argentina.

A. Pardo. Monadic corecursion — definition, fusion lamrs] applicationsElectronic Notes

in Theoretical Computer Scienckl, 1998.

A. Takano and E. Meijer. Shortcut to deforestation icgi@tional form. InProc. FPCA'95
1995.

P. Wadler. Theorems for free! #th International Symposium on Functional Programming
Languages and Computer Architectukmndon, Sep. 1989. ACM.

7 846K gzipped PS file available frohitp://www.di.uminho.pt/jno/ps/mfp.ps.gz

8 390K gzipped PS file available frohitp://www.di.uminho.pt/jno/ps/sanl98.ps.gz

