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The knee is the largest and one of the most complex synovial joint in the human 

body. It is comprised of many elements including articular cartilage, menisci, muscles 

and ligaments, which are capable of bearing and transferring load during daily activities. 

The knee joint bears a majority of body weight, and, hence, is quite susceptible to 

trauma and overuse injuries (Hirokawa, 1993; McGinty et al., 2000). Mechanical 

loading, particularly dynamic loading, is believed to play a major role in the 

development and progression of knee joint Osteoarthritis (OA), which is characterized 

by cartilage degeneration (Tetsworth and Paley, 1994). Motion and loads are also 

important in artificial knees, influencing wear, which can lead to osteolysis and, 

ultimately, implant failure (Bei and Fregly, 2004). Therefore, knowledge of in vivo joint 

contact forces during dynamic activities would be valuable for preventing and treating 

joint injuries and for improving the longevity of joint replacements (Lin et al., 2010). 

While dynamic X-ray imaging advances permit accurate measurement of in vivo knee 

joint motion (Lu et al., 2008), a non-invasive and clinically feasible approach for 
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experimental measuring in vivo knee joint loading does not exist (Lin et al., 2010). 

Thus, joint contact loads must be predicted by computational models (Lin et al., 2010). 

In this Chapter, a two-dimensional multibody model of the knee joint for predicting 

the articular contact forces is presented. Firstly, the techniques utilized to define the 

geometric features of the knee joint are depicted. The contact methodologies adopted to 

develop this model are described. The mathematical formulation utilized to characterize 

the nonlinear behavior of the ligaments is also expounded. Computational simulations 

were performed using the proposed knee model, being their results also discussed. A 

study about the influence of contact modeling features, such as the geometric 

conformality, the constitutive contact force law and the contact materials, on the dynamic 

response of the knee joint is also included in this Chapter. 

5.1 Multibody knee model 

A two-dimensional model of the human knee joint developed under the 

framework of multibody system dynamics is presented in this Section. Figure 5.1 shows 

a generic configuration of this system, which consists of two rigid bodies, i and j, that 

represent femur and tibia, respectively. Body-fixed coordinate frames  are attached to 

each body, while xy-coordinate frame represents the global coordinate system. The 

femur coordinate system is located at the femoral intercondylar notch and is coincident 

with the global reference frame. The tibia coordinate system is located at the center of 

mass of the tibia, with the local -axis directed proximally and -axis directed 

posteriorly. The rotation angles of the local frames of bodies i and j are denoted by i 

and j, respectively. The absolute coordinates of centers of mass and inertia properties 

of the femur and tibia are listed in Table 5.1, which are assigned to the segments on 

values derived for a similar model of a 76 kg, 1.8 m tall male by Yamaguchi (2001). 

Table 5.1 Absolute coordinates and inertia properties of the femur and tibia bodies. 

Body name x [mm] y [mm]  [rad] Mass [kg] Moment of inertia [kg.m
2
] 

Femur 0.0 0.0 0.0000 7.58 0.126 

Tibia -201.6 -174.9 0.6145 3.75 0.065 

In the present work, the femur and tibia are modeled as two contacting bodies, 

being their dynamics affected by the contact forces. Thus, the equations of motion that 

govern the dynamic response of this multibody system incorporate these contact forces. 

The knee joint elements are considered to be rigid and describe a general planar motion 
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in the sagittal plane. The femur is considered to be stationary, while the tibia does not 

have any kinematic constraint. The tibia is connected to the femur by four knee 

ligaments, namely anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), 

lateral collateral ligament (LCL) and medial collateral ligament (MCL). These 

ligaments are represented in Figure 5.1. 

 
Figure 5.1 Two-dimensional multibody model of the human knee joint. 

Since the knee kinematics is not prescribed, a force constraint is to be introduced 

into the system in order to avoid the separation of the tibia due gravitational action. 

Thus, an external force is applied at the center-of-mass of the tibia directed proximally, 

as illustrated in Figure 5.1. The aim of this force is to promote the tibiofemoral contact 

and also to provide the knee motion on the anterior–posterior direction, from an initial 

position of 54.79 degrees of flexion to a final position of -5.00 degrees of extension 

(hyperextension). The external applied force, Fe, is expressed as 
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which is an exponentially decaying sinusoidal pulsed function with a duration td and an 

amplitude A (Machado et al., 2010). The same type of applied external force has been 

used in computational simulations of other biomechanical models, such as in modeling 

and simulation of the force of the quadriceps muscle group in knee extension 

(Moeinzadeh et al., 1983; Abdel-Rahman and Hefzy, 1998) and of human head neck 

studies (Engin and Akkas, 1978).  

5.1.1 Geometric description 

With the intent to develop a dynamic model of the human knee joint that allows 

the performance of contact analysis, it is necessary to accurately define the shapes of the 

femur and tibia profiles. In this work, a magnetic resonance imaging (MRI) of the knee 

articulation, online available at the DICOM sample image sets (DICOM, 2009), is 

utilized to obtain those profiles. Based on this MRI, two sets of points were considered 

on the articular cartilages of the femur and tibia bones. The outlines were discretized 

and described in polar coordinates at the selected points, as depicted in Figure 5.2. The 

points were selected by manual segmentation, 28 from the femur and 18 from the tibia. 

  
(a) (b) 

Figure 5.2 Knee contact profiles within a: (a) MRI at the sagittal plane; (b) Knee joint model. 

In order to mathematically describe the geometric outlines of the bodies, the use 

of curve fitting techniques based on interpolation schemes is required. There are many 

types of interpolation methods, being popular the Lagrange interpolation and the 

Hermite interpolation (Chapra and Canale, 1989). The Lagrange interpolation fits a 

polynomial, with the lowest possible degree, through a set of given points. In turn, the 

Hermite interpolation forces the interpolant to fit not only the function at each point, but 

the derivative as well. Therefore, the Hermite approach is employed when smoothness 

greater than that provided by Lagrange interpolation is required. Nonetheless, some 

limitations of the Lagrange and Hermite interpolation techniques can be pointed out: (i) 
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these methods can be difficult to compute when the number of data points is large; (ii) 

they are rather inflexible in the measure that adding points requires recomputing 

everything; (iii) the piecewise versions may have discontinuous derivatives at the knots 

depending on their multiplicity. Hence, these interpolation schemes are useful for 

deriving numerical methods, but are not appropriate for the type of curve fitting 

required in this work. As a result, cubic spline interpolation techniques were applied, 

which consist of polynomial pieces on subintervals joined together according to certain 

smoothness conditions (Chapra and Canale, 1989; Ferziger, 1998).  

A cubic spline interpolating function relies on three fundamentals: (i) the curve is 

piecewise cubic, that is, the coefficients are different on each interval (xi, xi+1); (ii) the 

curve passes through the given data points; (iii) the first and second derivatives are 

continuous at the node points xi. Thus, these methods construct curves that consist of 

polynomial pieces of the same degree and that are of a prescribed overall smoothness. 

The advantage of this type of interpolating procedures is that they exhibit local 

geometric control, i.e., the variation of the position of a control point only affects the 

neighborhood of that point maintaining the rest of the curve unchanged. Their drawback 

is that they still present some unwanted oscillations in regions where the curve 

concavity varies (Pombo and Ambrósio, 2008). For a detailed discussion of spline 

interpolation, the reader is referred to Chapra and Canale (1989) and De Boor (2001). 

To address the femur-tibia contact interaction, it is important to develop an 

effective strategy to determine the accurate location of the contact points on the femur 

and tibia profiles. The methodology proposed here requires that the profiles be convex 

or flat curves. Figure 5.3 shows the general configuration of a portion of the contacting 

bodies, in which the relative distance between them is exaggerated in order to represent 

all the necessary vectors utilized on the contact detection formulation. Let the contact 

points on bodies i and j be represented by Pi and Pj, respectively. It is considered that 

the segment of curve between points A and B on bodies i and j are defined by two cubic 

spline functions si and sj as 

 01

2

2

3

3 aaaas iiii  qqq
 (5.2) 

 01

2

2

3

3 bbbbs jjjj  qqq
 

(5.3) 



5-6 A multibody approach to the contact dynamics: a knee joint application 

where a0, a1, a2, a3, b0, b1, b2 and b3 are the cubic spline polynomial coefficients and qi 

and qj represent the polar parameters that define the splines employed (De Boor, 2001). 

These angles qi and qj are measured relative to the local -axes, as shown in Figure 5.3. 

 
Figure 5.3 Two contacting bodies, in which the distance between them is exaggerated with the purpose 

to represent all the necessary vectors. 

The first derivative of Equations (5.2) and (5.3) with respect to qi and qj result 
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In a similar way, the second derivative of Equations (5.2) and (5.3) yield 

 23 26 aas ii  q
 (5.6) 

 23 26 bbs jj  q
 

(5.7) 

It is worth noting that with this approach it is ensured that polynomial functions used to 

define the femur and tibia profiles are continuous for each interval considered. 

5.1.2 Contact modeling formulation 

The contact detection between freeform profiles consists of a two-step procedure, 

as described in Chapter 4. The first step comprises the identification of the coordinates 

of the potential contact points. Thus, the second step consists of calculating the distance 
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between the potential contact points and evaluating the indentation condition in order to 

check whether the points are in contact or not (Pombo, 2004). The local coordinates of 

potential contact points can be expressed in terms of polar coordinates as, 

 cos ( , )P

k k ks k i j q 
 (5.8) 

 sin ( , )P

k k ks k i j q 
 (5.9) 

The global position of the potential contact points, P

kr , can be given by 

 ( , )P P

k k k k k i j  r r A s
 (5.10) 

where Ai and Aj denote the rotational transformation matrices of bodies i and j, ri and rj 

are the global coordinates of points Oi and Oj, and P

i
s  and P

j
s  are the local components 

of points Pi and Pj with respect to  coordinate system.  

The velocities of the potential contact points, Pi and Pj, expressed in terms of the 

global coordinate system are evaluated by differentiating Equation (5.10) with respect to 

time, yielding 

 ( , )P P

k k k k k i j  r r A s
 (5.11) 

The relative normal and tangential velocities are determined by projecting the relative 

contact velocities onto the respective directions 

  
T

P P

N i jv  r r n
 

(5.12) 

  
T

P P

T i jv  r r t
 

(5.13) 

where n is the normal vector to the direction of contact and t is the tangential vector 

obtained by rotating vector n by 90º clockwise direction, as shown in Figure 5.3. Since 

the contacting bodies have been defined by polynomial functions, the first problem that 

arises is the accurate prediction of the location of the potential contact points. This 

problem has to be solved at every time step during the dynamic analysis. 

From Figure 5.3, it can be observed that the distance between the potential contact 

points on bodies i and j is given by vector d, and can be written as 
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P P

i i i j j j
    d r A s r A s

 (5.14) 

The first geometric condition, commonly known as proximity query, for contact 

between points Pi and Pj is that the vector d corresponds to the minimum distance. 

Another geometric contact condition is that the vector d and normal vectors of the 

curves, ni and nj, have to be collinear. The first derivatives of Equations (5.8) and (5.9), 

which correspond to the local coordinates of potential contact points with respect to θi 

and θj, give the local components of the tangent vectors to the curves si and sj at points 

Pi and Pj, respectively, as illustrated in Figure 5.3. Therefore, these tangent vectors can 

be expressed in local coordinates as  
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For points Pi and Pj, the normal vectors can be expressed in local coordinates as 
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The tangent and normal vectors can be easily expressed in the global form by 

multiplying the local coordinates, given by Equations (5.15) - (5.18), by the respective 

rotational transformation matrix. Figure 5.4 illustrates the two possible scenarios that 

may occur in the contact problem: (i) contact at a single point without indentation, and 

(ii) contact at a multiple points with indentation.  

  
(a) (b) 

Figure 5.4 Two possible contact scenarios: (a) Contact at a single point without indentation; (b) 

Contact at a multiple points with indentation. 
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The minimum distance condition given by (5.14) is not enough to find the possible 

contact points between the two contact profiles, since it does not cover all contact 

scenarios, as Figure 5.4 shows. Therefore, the contact points are defined as those that 

correspond to maximum indentation, i.e., the points of maximum elastic deformation, 

measured along the normal direction. The geometric condition equations for contact rely 

on the common-normal concept and are defined as 

(i) The distance between the potential contact points, Pi and Pj, given by vector 

d corresponds to the minimum distance; 

(ii) The vector d has to be collinear with the normal vector ni; 

(iii) The normal vectors ni and nj at the potential contact points, Pi and Pj, have 

to be collinear, which means that nj has null projection onto the tangent 

vector ti. 

Conditions (ii) and (iii) can be written as 

 0i j n n
     

or      
0T

j i n t
 (5.19) 

 0i d n
     or      

0T

i d t
 (5.20) 

The geometric conditions given by Equations (5.19) and (5.20) are two nonlinear 

equations with two unknowns, namely the two profile curve parameters θi and θj, which 

can be solved using a Newton-Raphson iterative procedure. These equations provide the 

solution for the location of the potential contact points. Once the potential contact points 

are found, the next step is the evaluation of the contact indentation given by 

 Td  d d
 

(5.21) 

The indentation condition states that the contact between the profiles of the bodies 

exists and, the potential contact points are real contact points when the following 

relation is verified 

 0T

j d n
 (5.22) 

By introducing the curve parameters that describe the geometry of the contact 

profiles, the components of the contact points can be predicted during the dynamic 
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analysis. Since the profiles of the bodies have complex geometries, the position of the 

contact points cannot be predicted a priori. Therefore, during simulations, the 

calculation of the curve parameters requires the solution of a preliminary system of 

nonlinear equations. The computational implementation of this methodology is quite 

efficient since the information of the previous time step is used as initial guess or 

estimate to find the solution of the nonlinear Equations (5.19) and (5.20). 

When a contact is detected, a continuous contact force law is applied which allow 

for the calculation of the contact forces developed at the interface as a function of the 

relative indentation between the two contacting bodies. The external applied force Fe 

and the forces produced in the ligaments, together with the contact forces, are 

introduced into the system equations of motion as external generalized forces. The 

proposed contact methodology is implemented in a computational algorithm, presented 

in Figure 5.5. This computational algorithm, developed under the framework of 

multibody system dynamics, can be summarized as 

1. Start at instant of time t
0
 with given initial conditions for positions q

0
 and 

velocities 
0

q ; 

2. Define initial guess for the curve parameters θi and θj of the contacting 

outlines; 

3. Solve a system of nonlinear equations to obtain the curve parameters that 

define the components of the potential contact points, Pi and Pj; 

4. Compute the local coordinates of the potential contact points, Pi and Pj; 

5. Check for contact. If there is contact, evaluate the contact forces; 

6. Add the contact forces to the generalized force vector of the equations of 

motion; 

7. Obtain the new generalized positions and velocities of the system for time 

step tt  ; 

8. Update the system time variable; 

9. Go to step 3 and proceed with the whole process for the new time step, until 

the final time for the analysis is reached. 
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Figure 5.5 Flowchart of the developed algorithm for contact dynamics of planar multibody systems, 

which was implemented in a multibody code named MUBODYNA (Flores, 2010). 

It should be noted that the identification of the contact point at the time that the 

indentation is null is of importance. Numerically, the control of the time step that 

ensures the identification of the time of contact for which an acceptable indentation is 

verified is fundamental. For a practical discussion of this issue, which is taken into 

account in this work, see the reference by Flores and Ambrósio (2010). 

5.1.3 Physical models for ligaments and cartilage 

It is known that ligaments are composite and anisotropic structures exhibiting a 

time-dependent behavior, characteristic of a viscoelastic solid, and are nonlinear in their 

stress–strain response. The time-dependent behavior means that, during daily activities, 

ligaments are subjected to a variety of load conditions that influence their physical 

properties. Thus, ligaments become softer and less resistant after some minutes of 

running, returning to normal hardness when the exercise is interrupted. The history 

dependence, in turn, means that frequent intense activities changes the tissue properties 

in a medium term basis. For example, the ligaments of an athlete, after 6 months of 

daily training, become softer and thus more adapted to the intense exercise, even when 

the athlete is not training. Likewise, if the activities are interrupted for some months, the 

ligament properties go back to normal levels of hardness (Hawkins and Bey, 1997). 
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A typical stress-strain relation for a general ligament is illustrated in Figure 5.6. 

This stress-strain curve is typically divided in three different zones, which can be 

analyzed and understood in terms of microarchitecture of ligament (Butler et al., 1978). 

Zone I corresponds to the geometric rearrangement of microstructural network, that is, 

uncoiling of the coiled collagen fibers. At this zone, with initial lengthening of 

ligamentous tissue, the stress-strain curve is hardening. This portion of the curve is 

named “toe-in region” and is often described as having the shape of an exponential or 

polynomial relation (Wismans, 1980; Moeinzadeh, 1981). The elongation reflected at 

this zone is believed to be the result of a change in the wavy pattern of the relaxed 

collagen fibers. The tissue stretches easily, without much force, and the collagen fibers 

become straight and lose their wavy appearance as the loading progresses (Nordin et al., 

2001). In zone I, the ligament stiffness is determined mainly by the stiffness of the 

elastin network. As loading continues, additional fibrils were recruited, being greater 

force required to produce equivalent amounts of elongation. At higher loads, all the 

fibrils are loaded and the ligament stress–strain curve becomes linear (Weiss et al., 

2005). At this stage, i.e., at the end of the zone I, all collageneous fibers are assumed to 

be fully uncoiled. In zone II, also called linear region, the stiffness of ligaments is 

reported to correspond mainly to the stiffness of the collagen fibers and is found to be 

almost constant. Finally, in zone III, the rupture of some collagen fibers is observed. In 

this region, at large strains, the stress-strain curve can end abruptly or curve downward 

as a result of irreversible changes, i.e., a complete failure of the ligament itself (Nordin 

et al., 2001; Weiss and Gardiner, 2001). 

 
Figure 5.6 Typical ligament stress-strain relationship (Butler et al., 1978). 
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Crowninshield et al. (1976) tested human knee ligaments and observed that a 

quadratic stress-strain relation is a good approximation for the elastic behavior of the 

ligaments. Therefore, in the present study, the following quadratic force-elongation 

relation is considered for each knee ligament  

  
2

0 0, ifl lF k l l l l    (5.23) 

where kl is the ligament stiffness, l and l
0
 are the actual and the unstrained lengths of the 

ligament, respectively (Moeinzadeh et al., 1983; Abdel-Rahman and Hefzy, 1993; 

Engin and Tumer, 1993; Abdel-Rahman and Hefzy, 1998). Furthermore, it is assumed 

that ligaments cannot carry any compressive force, that is,  

 
00, iflF l l   (5.24) 

The direction of the force exerted by ligament on the articulating body coincides 

with the direction of the line segment through the insertion points of the ligaments. 

These insertion points represent the end points of the ligaments and are connected to the 

femur and tibia articular surfaces. The distance between the insertion points defines the 

length of the ligament. All ligaments carry force if their actual lengths are longer than 

their unstrained lengths. The unstrained lengths were determined when femur and tibia 

are positioned at about 55 degrees of knee flexion, since this value corresponds to a 

particular position where the ligaments are in a relaxed condition, and therefore the knee 

contact forces can be neglected (Moeinzadeh et al., 1983). The local coordinates of the 

ligament insertion points, as well as their physical properties, i.e. the unstrained length 

and stiffness, are listed in Table 5.2. These values are determined from the information 

available in literature and are similar to a anatomical study of human knee joint 

(Wismans, 1980; Engin and Tumer, 1993). 

Table 5.2 Local coordinates of the insertion points and physical properties of the ligaments. 

Ligament ACL PCL MCL LCL 

f [mm] -33.0 -19.0 -23.0 -25.0 

f [mm] -17.0 -14.0 -14.0 -19.0 

t [mm] 213.0 210.0 163.0 178.0 

t [mm] -9.0 35.0 8.0 25.0 

l
0

 [mm] 43.8 33.2 78.4 56.2 

kl [N/mm
2
] 35 30 15 15 
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In this study, the bone portions of the distal femur and proximal tibia are 

considered as perfectly rigid, due to their higher stiffness when compared with the 

hyaline cartilage, which is considered to be a deformable material. The hyaline cartilage 

is structurally non-homogeneous and presents anisotropic and nonlinear mechanical 

behavior. However, for sake of simplicity, in the present study, as in other analytical 

models (Korhonen et al., 2002), the hyaline cartilage is modeled as an homogeneous 

and isotropic material. 

5.2 Global dynamic results 

Computational simulations were carried out in order to validate the developed  

2D-model of the human knee and the proposed contact methodology. The purely elastic 

Hertz contact law was applied to compute the normal contact forces, being considered a 

generalized contact stiffness of 3260513 N/m
1.5

. It is worth noting that this parameter 

was calculated based on the material properties of the articular cartilage, namely a 

Young’s modulus of 24 MPa and Poisson’s ratio of 0.38 (Herman, 2007). In this 

computational study, the amplitude of external force was set to 50 N. The simulations 

were performed for 0.4 s of duration with a time step of 110
-4

 s. For the contact 

detection process, the contacting profiles obtained by interpolation were considered.  

With the purpose of determining which spline interpolation technique is more 

appropriate and accurate to define the geometry of contacting profiles, three different 

interpolation approaches were investigated, namely cubic splines, Akima splines and 

shape preserving splines. These three spline interpolation methods are available in the 

IMSL Fortran numerical libraries, being their acronyms, respectively, CSINT, CSAKM 

and CSCON. The CSAKM and CSCON were selected because they impose the 

matching of the data and therefore are considered to be appropriate methods to define 

geometric shapes. The Akima splines (CSAKM) are characterized by attempting to 

minimize oscillations, being the shape preserving schemes (CSCON) known for 

preserving the convexity of the data. The CSINT is a simple cubic spline interpolation 

scheme based on the “not-a-knot” condition that was chosen for sake of comparison 

with the other two interpolation methods (Akima, 1970; Visual Numerics, 1997; 

Kvasov, 2000). Figure 5.7 depicts the xy-coordinates of the tibia center of mass and the 

tibia contact points obtained by using each spline interpolation scheme. Other numerical 

results are plotted in Figure 5.8. 
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(a) 

 
(b) 

Figure 5.7 xy-Coordinates of the Tibia obtained using different spline interpolation techniques: (a) 

Tibia center of mass; (b) Tibia contact points. 

  
(a) (b) 

  
(c) (d) 

Figure 5.8 Knee contact response using shape preserving splines: (a) Indentation versus knee flexion 

angle; (b) Velocity of indentation versus knee flexion angle; (c) Normal contact force 

versus knee flexion angle; (d) Force-indentation relation. 

From the analysis of Figure 5.7, it can be observed that the choice for the spline 

interpolation scheme does not have significant influence on the resulting motion. 
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However, it is possible that such differences arise when the profile geometries are more 

complex. According to Pombo and Ambrósio (2008), the shape preserving cubic splines 

are more appropriate for defining the shape of the body outlines compared with other 

two interpolating curves, because this approach do not introduce spurious oscillations 

on the curves and is consistent with the concavity of the data. Based on these 

observations, the shape preserving splines were selected as interpolation technique for 

the description of the contacting bodies within the proposed methodology. For more 

information, the reader is referred to Micchelli et al. (1985) and Irvine et al. (1986).  

The evolution of the relative indentation, velocity of indentation and normal 

contact forces along the knee flexion angle is reported in Figure 5.8. Moreover, the 

force-indentation relation is plotted in Figure 5.8d. The curves of the relative 

indentation and the normal contact force present similar shapes. This is a reliable result 

since the Hertz law does not take into account the energy dissipation during impact, 

which strongly depends on impact velocities. Figure 5.8 reveal also the continuous 

nature of the knee motion in the sense in which the contact indentation of the knee joint 

after the second impact takes always positive values. This outcome means that from a 

position of 26 to -5 degrees of flexion, the tibia and the femur are in continuous contact. 

5.3 Influence of the geometric conformality 

According to Koo and Andriacchi (2007), the femoral condyles present convex 

curvatures in medial and lateral compartments and the tibial plateaus have concave 

curvatures in medial compartment and convex curvature in lateral compartment. The 

MRI images of the human knee joint presented in Figure 5.9 support these observations. 

Figure 5.9a shows a knee lateral compartment, where it is possible to fit both bones to 

convex spheres. Figure 5.9b illustrates a knee medial compartment. In this case, the 

femoral condyle assumes a convex spherical configuration and the tibial plateau is fitted 

to a concave sphere. Figure 5.9c depicts the knee at the intercondylar notch, where the 

femur exhibits a convex spherical shape and the tibia is planar. 

In order to investigate if the geometric conformality has or not a significant 

influence on the knee contact problem, particularly in what concerns with the contact 

detection process, three geometric configurations were considered for dynamic 

simulations. Since three distinct geometric models are used, different methodologies to 
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deal with the contact detection have to be also applied. Figure 5.10 shows a 

representation of each contact scenario.  

 

 

 
(a)  (b) 

 
(c) 

Figure 5.9 Knee MRI images: (a) lateral, (b) medial and (c) intercondylar views {Adapted from Koo  

et al., (2005) with Elsevier permission}. 

   
(a) (b) (c) 

Figure 5.10 Representation of the different contact scenarios: (a) convex-convex spheres, (b)  

convex-concave spheres and (c) convex sphere-plane. 
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The computational simulations are performed for 0.4 s of duration with a time 

step of 110
-4

 s, and with an amplitude of external force equal to 50 N. For sake of 

comparison, the contact forces are evaluated by employing the Hertz contact law. The 

values of the adopted radii for femur and tibia as well as the generalized stiffness for 

each contact scenario are listed in Table 5.3. 

Table 5.3 Femur (Ri) and tibia (Rj) radii as well as the generalized stiffness parameter (K) used in 

each contact scenario, namely convex-convex spheres, convex-concave spheres and convex 

sphere-plane (Martelli et al., 2006; Koo and Andriacchi, 2007). 

 Convex-convex spheres Convex-concave spheres Convex sphere-plane 

Ri [mm] 26.40 30.40 30.40 

Rj [mm] 36.02 75.00 ∞ 

K [N/m
1.5

] 2750403 5879434 3260513 

In what concerns with the convex-convex spheres model of Figure 5.10a and the 

convex-concave spheres model of Figure 5.10b, the first step consists of determining 

the vector d that connects the centers of the spheres. Vector d for the convex-convex 

spheres model and the convex-concave spheres model is, respectively, expressed as 

 
C C

j i d r r
 (5.25) 

 
C C

i j d r r
 (5.26) 

where C

ir  and C

jr  are the global coordinate vectors of center points 
iC  and 

jC . For both 

models, the magnitude of the vector d can be computed as 

 Td  d d  (5.27) 

To check if the bodies are in contact or not, it is necessary to evaluate the 

indentation condition. For the contact scenario in which the femoral condyle and the 

tibial plateau are considered as convex spheres, as seen in Figure 5.10a, the indentation 

condition is expressed as 

 
 

0

i jR R d



 

 
    

if

if

i

i j

d R

d R R



 
 (5.28) 

For the contact between a spherical convex femoral condyle and a spherical concave 

tibial plateau (Figure 5.10b), the indentation condition is given by 
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 
 (5.29) 

Regarding to the contact between a spherical femoral condyle and a planar tibial plateau 

(see Figure 5.10c), the first step of the contact detection procedure deals with the 

evaluation of the minimal distance between the bodies. Since the location of the points 

Aj, Bj and Ci is known, the vectors vb and vc can be defined, as well as the angle θA 

between these two vectors. Thus, the distance between the plane and the center of the 

sphere can be given by 

 sinb Ad v q  (5.30) 

The second and last step is to check if the bodies are in contact by evaluating the 

indentation δ by 

 
0

iR d



 


             

if

if

i

i

d R

d R




 (5.31) 

The results obtained are reported in Figures 5.11 and 5.12. Figure 5.11 depicts the 

evolution of the contact indentation and forces along the knee extension. Figure 5.12 

presents the force-indentation relations for the first impact and for the whole simulation 

(i.e. from an initial position of 55 degrees flexion to a final pose of hyperextension). 

  
(a) (b) 

Figure 5.11 (a) Indentation versus knee flexion angle using three different geometric models;  

(b) Normal contact force versus knee flexion angle using three different geometric models. 
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(a) (b) 

Figure 5.12 Normal contact force versus indentation using three different geometric models: (a) First 

impact; (b) Whole simulation. 

Analyzing Figures 5.11 and 5.12, it can be observed that the conformality of the 

contacting bodies has a significant influence on the global contact results, namely in 

terms of indentation and, hence, on the contact force. Figure 5.12 depicts that the  

convex-concave spheres model exhibits the highest level of indentation and contact 

force. This observation can be explained by the dynamic nature of the formulation used 

in this work, in which the contact force is an explicit function of the system 

configuration and the contact properties. In particular, the higher radius of the medial 

femur (Ri = 30.4 mm) compared with the radius of the lateral femur (Ri = 22.0 mm) also 

contribute for this result. This outcome is also visible in Figure 5.12, where the highest 

and the lowest slopes of the force-indentation relations correspond to the  

convex-concave spheres and convex-convex spheres models, respectively. These results 

can help to understand the major incidence of OA at the medial compartment of the 

knee joint, which exhibits a conformal contact scenario in the anterior-posterior 

direction (Koo and Andriacchi, 2007). It should be highlighted that other relevant 

parameters, neglected in the present study, may also contribute to the knee OA 

evolution, such as menisci and muscles. In addition, the general gait parameters (stride 

length, cadence, etc.) and daily activities, such as labour tasks and sport practice, can 

also influence the knee joint dynamic response (Andriacchi and Dyrby, 2005).  

In brief, the influence of the geometrical configuration of the contacting bodies on 

the dynamics of the knee joint system is depicted and the importance of the use of an 

appropriate geometrical representation to describe the contacting bodies is confirmed. 

However, it is not possible to elect the geometrical configuration that best fits the 

tibiofemoral joint, because it depends on the application purposes. Nevertheless, this 

study served to highlight the significance of geometrical configuration of the tibia and 

the femur on the contact dynamics of the knee joint. 
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5.4 Influence of the constitutive contact force law 

With the intention to assess the influence of the contact force law on the dynamic 

response of the knee joint model, computational simulations were performed using 

different contact force laws, which are listed in Table 5.4. Figures 5.13 and 5.14 depict 

the contact indentations and forces as a function of the knee flexion angle for the first 

impact and for the whole simulation, respectively. The force-indentation relations for 

the first impact and for the whole simulation are plotted in Figure 5.15. 

Table 5.4 Some contact force laws and its correspondent mathematical expressions. 

Authors Expression 

Hertz (1881) 
n

NF K  

Hunt and Crossley (1975) 
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(a) (b) 

Figure 5.13 Indentation versus knee flexion angle of a healthy knee model analyzed by different contact 

force laws: (a) First impact; (b) Whole simulation. 
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(a) (b) 

Figure 5.14 Normal contact force versus knee flexion angle of a healthy knee model analyzed by 

different contact force laws: (a) First impact; (b) Whole simulation. 

  
(a) (b) 

Figure 5.15 Force-indentation relation of a healthy knee model analyzed by different contact force laws: 

(a) First impact; (b) Whole simulation. 
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is also visible in the diagram of Figure 5.15, where the curve for the Hertz law does not 

present a hysteresis loop, meaning that the energy stored during the loading phase is 

exactly the same that is restored during the unloading phase. 

By observing the plots of Figures 5.13-5.15, it can be concluded that the use of the 

model proposed by Flores et al. (2011) gives a contact response similar to the 

application of the Gonthier et al. (2004) model or the Zhiying and Qishao (2006) 

approach. Figure 5.15a depicts that these models allow higher values of energy 

dissipation during the impact, because their hysteresis loops exhibit the largest area. 

Herbert and McWhannell (1977) model is the contact force law that produces a 

contact response closer to the Flores et al. (2011) model, among the Gonthier et al. 

(2004) and Zhiying and Qishao (2006) approaches. In turn, Lee and Wang (1983) force 
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less amount of energy loss. The smallest hysteresis loop reported for Lee and Wang 

(1983) model in Figure 5.15a justifies this idea. Lankarani and Nikravesh (1990) model 

and Hunt and Crossley (1975) approach exhibit intermediate behaviors between Herbert 

and McWhannell (1977) force model and Lee and Wang (1983) contact laws. 

Figure 5.15a shows the force-indentation relations for the first impact of the knee 

joint that result of the application of each contact force law listed in Table 5.4. Except 

for the Hertz’s law, all the hysteresis curves plotted describe closed-loops, which is 

typical of the force-indentation relation modeled by a dissipative force model. Indeed, a 

dissipative force law usually describes the contact phenomenon into two distinct 

periods, namely the loading phase and the unloading phase. Nevertheless, this 

characteristic of closed-shape is not observable in the hysteresis loops of Figure 5.15b, 

which illustrates the same results for the whole simulation. This outcome is due to the 

continuous motion of knee that leads to long contacts, meaning that the unloading 

phases do not occur totally. Figure 5.13b confirms also this observation, where it is 

visible that from the second impact the contact indentation never returns to zero values. 

In summary, significant differences were reported on the dynamic response of the 

knee joint using distinct contact force models. This outcome emphasized the necessity 

of using a suitable contact force law to evaluate the knee contact forces. As mentioned 

previously, the distal femur and the proximal tibial are covered by cartilage, which is a 

biological soft-tissue with nonlinear damping properties. Therefore, a contact force law 

that characterize in a realistic way this material response should be employed. From 

these reasons, the Flores et al. force model is recommended and used for knee contact 

analysis because this contact force law is able to provide accurate contact responses for 

moderate coefficients of restitution as the coefficient of restitution of the cartilage. 

5.5 Influence of the contact material properties 

The materials properties of the contacting bodies play a crucial role on the 

dynamic response of the system, since they directly affect the magnitude of the contact 

forces, the amount of energy dissipated during the contact and, hence, the motion of the 

bodies. The contact material between the femur and the tibia, in a healthy natural knee 

articulation, is composed by a hyaline cartilage layer with approximated 4.15 mm of 

thickness, i.e. 2.45 mm on femur and 1.70 mm on tibia (Martelli et al., 2007). However, 

in several cases, the subject can present a knee pathology that significantly changes the 
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contact material properties. For example, Osteoarthritis is the most common cause of 

musculoskeletal pain and disability at the knee joint. In a broad sense, OA can be 

defined as mechanically induced cartilage loss, which is characterized by a decrease in 

cartilage volume and thickness that could ultimately lead to the exposition of the 

underlying bone (Wilson et al., 2005; Moskowitz, 2007). Nevertheless, OA diseases 

may be initiated by multiple factors, not only mechanical factors, but also biological, 

genetic, metabolic, and traumatic. The knee OA entails not only cartilage loss, but also 

bony remodeling, with capsular stretching and weakness of the muscles that surround 

the knee joint. With a large enough area of cartilage loss or with bony remodeling, the 

joint becomes tilted, and the misalignment develops, which is the most powerful risk 

factor for structural deterioration of the joint (Felson, 2006). Therefore, in OA severe 

stage, the contact material started to be composed by bone, whose mechanical behavior 

is quite different from the cartilage. In a similar way, for patients with Osteoporosis 

(OP), which is characterized by the loss of bone mechanical properties, the material 

properties can vary significantly (Dickenson et al., 1981). In order to examine how the 

dynamic response of the knee is affected by the intrinsic material properties, five 

different contact situations are considered: (i) a healthy knee with a homogeneous 

contact interface of hyaline cartilage; (ii) an artificial knee with a tibial insert made of 

ultra-high molecular weight polyethylene (UHMWPE) and a femoral component 

composed by a chromium-cobalt alloy (Cr-Co); (iii) a pathologic knee with a double 

contact interface composed by hyaline cartilage and normal bone (90%OA knee); (iv) a 

pathologic knee with a double contact interface composed by hyaline cartilage and 

osteoporotic bone (90%OA+OP knee); (v) a pathologic knee with a homogeneous 

contact interface of osteoporotic bone (100%OA+OP knee). The material properties 

necessary to characterize these five contact interfaces are listed in Table 5.5. 

Table 5.5 Mechanical properties of the contact materials (Dickenson et al., 1981; Piazza and Delp, 

2001; Kurtz, 2004; Herman, 2007; Burgin and Aspen, 2008; Heijink et al., 2008). 

Material Young’s modulus [MPa] Poisson’s Ratio Coefficient of restitution 

Hyaline cartilage 24 0.38 0.616 

Normal bone 17200 0.39 0.620 

Osteoporotic bone
 

12000 0.39 0.620 

UHMWPE 800 0.46 0.790 

Cr-Co alloy 200000 0.30 0.790 

As mentioned above, OA initiation and its progression can be associated with 

multiple factors, such as mechanical, biological, genetic, among others. Since it is 

extremely difficult to model a pathologic knee that accounts for all these issues, 



A two-dimensional multibody model of the human knee joint 5-25 

simplified models are considered. In this work, only the cartilage loss effect 

mechanically induced is considered, being the remaining OA factors neglected. To 

model the cartilage loss a reduction on the original thickness of the cartilage layer is 

made. This reduction is considered proportional to the percent of OA severity. Thus, the 

pathologic knee labeled as 90%OA knee simulates a knee joint that had lost 90% of the 

original cartilage layer. In turn, the knee model referred as 90%OA+OP knee, is similar 

to the previous one, only has a 10% of the original cartilage layer and furthermore the 

bony tissue is osteoporotic. The 100%OA+OP knee model represents an osteoporotic 

knee that lost 100% of the original cartilage layer. It is important to mention that is 

more difficult to simulate a 90%OA model than the 100%OA model, since the former 

has a double contact layer. To keep the analysis simple, the first layer of the 90%OA 

knees is modeled as a layer with uniform thickness that is located along the geometric 

profile. As far as the contact force model is concerned, a few adjustments have to be 

done in order to account for two contact layers. Thus, for sake of simplicity, in double 

layer scenarios the contact force corresponds to the sum of the contact forces in each 

layer, which can be given by 
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where NF  is the total normal contact force, 1F  and 
1

maxF represent the normal contact 

force resultant from a partial or total indentation of the thickness of the first contact 

layer, and F2 is the normal contact force at the second contact layer that is null when the 

relative indentation is smaller than or equal to the thickness of the first layer, 
1s

h . For 

instance, for Hertz contact law the Equation (5.32) can be written as 
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(5.33) 

where K1 and K2 represent the generalized stiffness of first and second contact layers, 

respectively, having the remaining parameters the same meaning as described above.  
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Computational simulations using the five knee models are performed, being the 

normal contact forces evaluated by employing the Hertz contact law. The results 

obtained are plotted in in Figures 5.16-5.19. The force-indentation relations of each 

knee model for the first impact and for the whole simulation are illustrated in Figure 

5.16. The evolution of the contact indentation and forces along the knee extension is 

depicted in Figures 5.17-5.19. By observing the plots of Figures 5.16-5.19, it is visible 

that the healthy knee model presents the highest values of indentation and the lowest 

values of normal contact force. This outcome is associated with the material properties 

of the contact interface, namely its stiffness and damping characteristics. The hyaline 

cartilage, that the healthy contact interface is made of, is the bearing material with a 

lower value for the stiffness parameter. Due to the soft nature of the healthy knee, this 

model extends the contact period for a longer time and allows higher contact 

indentations than the other knee models. Moreover, the cartilage produces lower contact 

forces due to its compliance and ability to absorb the impact energy. This observation 

highlights the key role played by the cartilage as shock absorber and load spreader. 

  
(a) (b) 

Figure 5.16 Force-indentation relation of the five knee models: (a) First impact; (b) Whole simulation. 

  
(a) (b) 

Figure 5.17 Contact response of the five knee models along the knee flexion angle during the first 

contact (from 27.5 to 22.5 degrees of flexion): (a) Indentation; (b) Normal contact force. 
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(a) 

 

(b) 

Figure 5.18 Contact response of the five knee models along the knee flexion angle during the whole 

contact period (from 28 to -5 degrees of flexion): (a) Indentation; (b) Normal contact force. 

 
(a) 

 

(b) 

Figure 5.19 Dynamic response of the five knee models during the knee hyperextension (from 0 to -5 

degrees of flexion): (a) Indentation versus knee flexion angle; (b) Normal contact force 

versus knee flexion angle. 
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Observing Figures 5.16, 5.17 and 5.18a, it can be concluded that the healthy knee 

model and the pathologic models 90%OA knee and 90%OA+OP knee exhibit the same 

response for indentation up to 0.415 mm, which corresponds to a 10% of the original 

thickness of the cartilage. However, when the indentation is greater than 0.415 mm, the 

contact forces developed in these pathologic models increase significantly. This 

behavior is associated with the contact material that changes from cartilage to bone, 

which is stiffer. Analyzing the two pathologic knees with cartilage, namely 90%OA 

knee and the 90%OA+OP knee, it can be stated that they present a similar behavior. 

Although, it can be observed that, for the same indentation, the 90%OA knee produces 

higher contact forces when compared to the 90%OA+OP knee case. This outcome, also 

reported by Dickenson et al. (1981), sounds reasonable because OP is a metabolic 

disease characterized by a general reduction of bone mass, which reduces its stiffness. 

As far as the Cr-Co-UHMWPE prosthesis is concerned, the results obtained show 

that artificial knee model promotes longer contacts and lower contact forces than the 

pathologic knees, as it can be seen in Figures 5.17b and 5.18b. This outcome can be 

justified by the moderate stiffness of the artificial contact interface that is due to the 

UHMWPE, which is a material with elastic properties closer to the hyaline cartilage. 

This assumption can explain why clinicians prescribe knee arthroplasties, i.e., knee 

replacements, to patients who present severe Osteoarthritis and practically do not have 

cartilage coating on their knee bony structures.  

In order to study the influence of the contact material interface together with the 

contact force model, several simulations were performed using different contact force 

laws. In these simulations, elastic and dissipative force approaches were considered. As 

a result, the pathologic knee models with cartilage, namely 90%OA and 90%OA+OP, 

were excluded from the simulations since these models rely on the initial velocity of 

indentation that is a parameter difficult to predict when a double contact layer is used. 

The force-indentation relations of the pathologic model (100%OA+OP knee) and the 

artificial model are shown in Figures 5.20 and 5.21, respectively. Analyzing Figures 

5.15, 5.20 and 5.21, it can be concluded that the contact force model affects the knee 

joint dynamics, regardless the nature of its contact interface. The obtained results 

revealed that the influence of the contact force law is less noticeable in the artificial 

knee than in the other two remaining models. This outcome is due to the value of 

coefficient of restitution that is higher at the artificial knee (cr  0.790) than at the 
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pathologic knee (cr = 0.620) and at the healthy knee (cr = 0.616). Some of the applied 

dissipative laws, such as Lankarani-Nikravesh model, are not able to account for high 

amounts of energy loss, which are generally associated with low values of coefficient of 

restitution. Hence, this statement can also be used to justify the obtained results. 

  
(a) (b) 

Figure 5.20 Force-indentation relations for the pathologic model (100%OA+OP knee) analyzed by 

different contact force laws: (a) first impact; (b) whole simulation. 

  
(a) (b) 

Figure 5.21 Force-indentation relations for the artificial knee model analyzed by different contact force 

laws: (a) first impact; (b) whole simulation. 
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cartilage. The simulations were performed for 0.4 s of duration with a time step of  

110
-4

 s. Figures 5.22 and 5.23 depict the ligament forces along the knee flexion angle 

for two different values of amplitude of the external applied force, respectively, 50 N 

and 150 N. Figures 5.24, 5.25 and 5.26 show the evolution of the indentation, the 

velocity of indentation and the normal contact force along knee flexion angle for 

amplitude A of 50 N and 150 N. The tibia contact points for amplitude A of 50 N and 

150 N are plotted in Figure 5.27. Figures 5.22a-5.27a show the results obtained when 

the Hertz law is utilized to compute the contact forces, while the plots of Figures  

5.22b-5.27b are the result of the use of the Flores et al. model on the evaluation of the 

contact forces. Figure 5.28 illustrates the force-indentation relations obtained using the 

Flores et al. model for amplitude A of 50 N and 150 N.  

  
(a) (b) 

Figure 5.22 Ligament forces along flexion angle for an amplitude of external force equal to 50 N, when 

the contact forces are computed by: (a) Hertz law; (b) Flores et al. model. 

  
(a) (b) 

Figure 5.23 Ligament forces along flexion angle for an amplitude of external force equal to 150 N, 

when the contact forces are computed by: (a) Hertz law; (b) Flores et al. model. 
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internal-external rotational stability, which are knee movements that do not occur in 

sagittal plane, used for this study, but in the frontal and transverse planes, respectively 

(Hirokawa, 1993). The increase of ACL and PCL forces with the increase of the 

amplitude of the external force was also predictable since these ligaments have the key 

role of balancing the knee motion in the sagittal plane. This dynamic response of the 

cruciate ligaments justifies why these ligaments are commonly injured, especially 

during sport activities and motor vehicle accidents that generally involve high dynamic 

forces caused by twisting or hyperextending the knee joint (Limbert et al., 2004). 

By analyzing Figures 5.22 and 5.23, it can be concluded that the ligament forces 

are higher when the contact forces are evaluated using the Hertz contact law. This 

outcome is explained by the purely elastic nature of the Hertz law that computes the 

contact forces based only on the generalized stiffness parameter and the relative 

distance between the femur and the tibia, which is constrained by the ligaments. When 

the amplitude of external force is set to 50 N, the ligament forces produced when the 

contact forces are calculated by the Hertz law are similar to the ones obtained when the 

Flores et al. model is applied (see Figure 5.22). Nonetheless, for an amplitude of 

external force of 150 N, the ligament forces are much higher when the Hertz law is used 

to compute the contact forces (see Figure 5.23). This outcome emphasizes the 

dependence of the ligament forces on the contact forces and the importance of taking 

into account the relative velocity of indentation and the coefficient of restitution of the 

articular cartilage on the computation of the knee contact forces.  

  

(a) (b) 

Figure 5.24 Indentation along flexion angle for two different values of amplitude of external force, 

when the contact forces are computed by: (a) Hertz law; (b) Flores et al. model. 
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(a) (b) 

Figure 5.25 Velocity of indentation along flexion angle for two different values of amplitude of external 

force, when the contact forces are computed by: (a) Hertz law; (b) Flores et al. model. 

  
(a) (b) 

Figure 5.26 Normal contact forces along flexion angle for two different values of amplitude of external 

force, when the contact forces are calculated by: (a) Hertz law; (b) Flores et al. model. 

  
(a) (b) 

Figure 5.27 Tibia contact points for two different values of amplitude of external force, when the 

contact forces are computed by: (a) Hertz contact law; (b) Flores et al. model.  

  
(a) (b) 

Figure 5.28 Normal contact force versus indentation for two different values of amplitude of external 

force using the Flores et al. contact force model: (a) First impact; (b) Whole simulation. 
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Figures 5.24a-5.26a show that the increase of the amplitude of the external force 

has a great influence on the contact response of the system when the contact is 

considered purely elastic, increasing significantly the indentation, the velocity of 

indentation and the normal contact force. The higher indentations reported in Figure 

5.24a for amplitude of external force of 150 N are also noticeable in Figure 5.27a, 

where the trajectory of the tibia contact points is plotted. 

When the tibiofemoral contact is modeled as inelastic and the Flores et al. model 

is used to compute the normal contact forces, the increase of the amplitude of the 

external force does not affect significantly the contact response of the system, as it can 

be seen in Figure 5.24b-5.26b. This behavior is also visible in Figure 5.27b, where the 

trajectories of the contact points for amplitude A of 50 N and 150 N are practically 

coincident. In the inelastic contact scenario, the major effect of the increase of 

amplitude of the external force is on the energy dissipation due to internal damping, as 

it can be seen in Figure 5.28. The force-indentation relations of the first impact for 

amplitude A of 50 N and 150 N are depicted in Figure 5.28a. By analyzing Figure 5.28a, 

it can be concluded that the area of the hysteresis loop for an amplitude A of 150 N is 

approximately 844 times greater than the hysteresis loop resultant of the use of an 

external force with an amplitude A of 50 N.  

In a broad sense, the computational results presented and discussed in this Section 

highlight the outstanding damping properties of the cartilage and its key role as shock 

absorber, as well as the importance of using a nonlinear dissipative contact law to 

evaluate the contact forces at the human knee. 

5.7 Summary and discussion 

A two-dimensional model of the knee joint was presented throughout this Chapter. 

The model was formulated under the framework of multibody dynamics, as a system of 

two rigid bodies, femur and tibia. The femur was considered to be stationary, while the 

tibia rolls and slides in relation to the femur in the sagittal plane. The tibia was connected 

to the femur by four knee ligaments, which were modeled as nonlinear spring elements. 

The mechanical behavior of the ligaments was described by a quadratic stress-strain 

relation that is a function of the ligament stiffness and its unstrained length, being 

considered that the ligaments cannot carry any compressive force. The articular 

cartilages were considered to be deformable structures with specific material 
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characteristics. The motion of the tibia relative to the femur was not modeled with 

conventional kinematic joint (such as a revolute joint), but rather in terms of the action 

of the knee ligaments and potential contact between the bones. In order to avoid the 

separation of the tibia due gravitational action and to promote the tibiofemoral contact, 

an external force was applied to the tibia center of mass, which provides the knee 

motion from an initial position of flexion to a final pose of hyperextension.  

Several methodologies were proposed to model the human knee as a free contact 

joint. Firstly, an approach to define the knee geometric outlines was presented, which 

consisted of extracting points from an MRI image and described it using cubic spline 

interpolation functions. For the contact detection process, a mathematical formulation 

that relies on the common-normal concept was expounded. This method states that two 

points are the potential contact points if the normal vectors at these points are collinear 

to each other and perpendicular with the tangential vector. To guarantee that a pair of 

points is an actual contact pair, an indentation condition has also to be checked. When a 

contact is detected and indentation is greater than zero, a continuous force law is applied 

which allows for calculation of the contact forces generated at the contact interface as a 

function of the relative indentation between the two bodies. The contact forces, together 

with the external applied force and the forces produced by the ligaments, were 

introduced into the system’s equations of motion as generalized forces.  

Dynamic computational simulations were performed using the developed knee 

multibody system in order to validate the model and to study the influence of some 

important parameters on its dynamic response, namely (i) the spline interpolation 

method used to describe the contact geometry of the bodies, (ii) the geometric 

conformality of contacting bodies, (iii) the constitutive contact force law, (iv) the 

contact material properties and, (v) the amplitude of the external applied force.  

The effect of the use of different spline interpolation techniques was evaluated 

and none significant differences were reported. Even so, the use of shape preserving 

splines is recommended because it preserves the geometric convexity that is very 

important for contact detection purposes.  

The proximal tibia presents a concave shape in knee medial compartment and a 

convex shape in knee lateral compartment, while the distal femur have a convex shape 

in both sides of the knee. Based on this scenario, computational simulations were 
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performed considering three distinct geometric contact scenarios in order to study the 

influence of the geometric conformality on the dynamic response of the knee model. 

The results depicted that the knee medial compartment, which has a conformal 

configuration, presents higher contact forces when compared with the knee lateral 

compartment. This observation can explain the major incidence of Osteoarthritis at the 

medial compartment of the human knee joint. 

In what concerns with the constitutive contact force law, the approaches proposed 

by Gonthier et al. (2004), Zhiying and Qishao (2006) and Flores et al. (2011) 

demonstrated to be reasonable options to compute the knee contact forces, since they 

describe the nonlinear behavior of the hyaline cartilage and also take into account its 

damping properties typical of soft and inelastic materials. The remaining contact 

formulations underestimated the contact forces and overestimated the maximal contact 

indentations and the duration of the contact events. These outcomes highlight the 

importance of the constitutive contact force methods on the prediction of the dynamic 

response of multibody biomechanical systems. 

Regarding the materials of the knee contact interface, it was shown that the 

presence of the hyaline cartilage reduces the contact force and extends the period of 

contact due to its elastic and damping properties that made the cartilage an outstanding 

shock absorber and load spreader. This cartilage role is of paramount importance during 

walking, since the ground reaction force typically rises to a peak after heel strikes and 

during this phase the loads across the human knee joint have been calculated to be about 

three times the body weight (Andriacchi and Dyrby, 2005). In turn, the presence of 

Osteoporosis does not increase the knee contact forces, which means that this disease 

does not contribute to the Osteoarthritis progression.  

As far as the artificial knee model is concerned, the results obtained revealed that, 

for higher contact indentations, the artificial knee model produces lower contact forces 

than the pathologic models, which are destitute of almost all of the coating of articular 

cartilage. This suitable dynamic response of the artificial knee model is due to the 

outstanding elastic and damping properties of the UHMWPE that makes it the most 

used bearing material in joint replacement systems (Kurtz, 2004). 

The ligament forces were also analyzed in this work, being the forces produced by 

the collateral ligaments lower than those of the cruciate ligaments. The higher forces of 
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cruciate ligaments are justified by its biomechanical role of stabilizing the knee joint 

while allowing a very large range of motion. The smaller resistance of the collateral 

ligaments is due to the fact that the main function of these ligaments is to offer  

varus-valgus and rotational stability, which are knee movements that do not occur in 

sagittal plane, used for this study.  

Furthermore, the numerical results demonstrated that the increase of the amplitude 

of the external applied force has a great influence on the contact response of the knee 

system when the contact is considered purely elastic, increasing significantly the 

indentation, the velocity of indentation and the normal contact force. This outcome is 

due to the fact that the evaluation of the contact forces using an elastic contact law, such 

as Hertz law, is based only on the generalized stiffness parameter and the relative 

distance between the femur and the tibia, which is constrained by the ligaments. In turn, 

when a dissipative force law, such as the Flores et al. model, is applied to compute the 

contact forces the relative velocity of indentation and the coefficient of restitution of the 

cartilage are considered. As a result, an increase of the amplitude of the external force 

does not affect significantly the contact response of the knee system, but only the 

amount of energy loss due to internal damping. This study demonstrates the importance 

of using an appropriate nonlinear dissipative contact law (i.e., able to provide an 

accurate contact response for moderate coefficients of restitution such as the coefficient 

of restitution of the cartilage) to evaluate the contact forces at the human knee joint. 
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The finite element method (FEM) is an accurate approach for modeling and 

analyzing contact problems and it can calculate unique contact forces in statically 

indeterminate conditions, such as when contact occurs in two or more regions between 

the same pair of contacting bodies regardless of any assumption for the distribution of 

the contact stresses. Nonetheless, the high computational cost of FEM-based contact 

analyses, particularly due to extensive repeated geometry evaluations, significantly 

limits their use in dynamic simulations (Lin et al., 2010). The efficiency of the 

computational models is a primary concern for a contact formulation as it has been 

recognized by many researchers, who demonstrate that most of the time consumed in 

simulating contact phenomena is spent on the contact detection phase (Bei and Fregly, 

2004; Machado et al., 2010). Multibody system (MBS) methodologies have been 

widely used to develop dynamic models for contact analysis. The issue related to the 

computational efficiency motivated this work that aims to develop a contact 

methodology for the simulation of the dynamic response of multibody systems with 

freeform contact pairs that have real-time computation demands. The human knee, 

which is a six degrees-of-freedom joint with complex articular surfaces that has to 
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withstand high loading forces during dynamic activities, is the motivation/application 

case used to develop the procedures proposed here in their general form. 

In this Chapter, a three-dimensional multibody model of the human knee joint for 

contact dynamics is proposed. Firstly, a generic methodology to represent and generate 

freeform contact surfaces is presented. Then, the process of geometric modeling of the 

knee articular surfaces, namely femoral condyles and tibial plateaus, is explained. A 

contact modeling procedure to deal with 3D-contact problems is described, giving special 

emphasis to the contact detection approach. Several computational simulations using the 

methodology proposed are performed and the results discussed. 

6.1 Fundamentals of spatial multibody modeling 

An overview of the mathematical formulation and numerical methods used to 

model and analyze planar multibody systems is presented in Chapter 3. In a broad sense, 

the equations of motion that govern a multibody system in a 2D-space are the same in the 

3D-space. The principal difference between the formulations for spatial and planar 

kinematics is the set of coordinates. Figure 6.1a illustrates a body k in the 2D-space, 

which can be located by specifying the global translational coordinates  
T

k k
x yr  of the 

origin of the body-fixed k k   reference system and the angle k  of rotation of this system 

relative to the global xy axes. In turn, six coordinates are required to define the 

configuration of a body k in the 3D-space, as Figure 6.1b depicts. Three global 

translational coordinates  
T

k k
x y zr  locate the origin of the body-fixed k k k    

reference system relative to the global xyz axes, and three rotational coordinates 1k , 2k  

and 3k  specify the angular orientation of the body (Nikravesh, 1988). 

 

 

(a) (b) 

Figure 6.1 Schematic representation of a rigid body: (a) 2D-space; (b) 3D-space. In the 2D-space, 3 

independent coordinates are needed to define the location of the body, while in the  

3D-space it is required six independent coordinates (Nikravesh, 1988). 
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The analytical procedure in spatial kinematics is the same as in the planar case 

however spatial kinematic analysis requires more powerful mathematical techniques than 

planar kinematics, particularly for describing the angular orientation of a body in a global 

coordinate system. The angular orientation of a given body-fixed coordinate system can 

be projected to be the result of three successive rotations. The sequence of rotations used 

to define the final orientation of the coordinate system is to some extent arbitrary. A total 

of twelve conventions is possible in a right-hand coordinate system. Both, Euler angles 

and Bryant angles, are extensively utilized in multibody formulations to describe the 

orientation of a 3D-body by means of three rotational coordinates. Euler angles used the 

x-convention, while the Bryant angles are associated with the xyz-convention. The three 

angles of rotation can also be expressed in terms of Euler parameters. The Euler 

parameters are four rotational coordinates (e0, e1, e2, e3) that describe a finite rotation 

about an arbitrary axis, w . According to the Euler’s rotation theorem, there exists a 

unique axis that if the xyz-coordinate frame is rotated about it by an angle  it becomes 

parallel to the ζ-coordinate frame. This axis is called the orientational axis of rotation 

and is denoted by w  in Figure 6.2 (Nikravesh, 1988). 

 

Figure 6.2 Schematic representation of an orientational axis of rotation w  (Nikravesh, 1988). 

The Euler parameters can be written as 

  0 1 2 3

T
e e e ep  (6.1) 

in which  0 cos 2e   and  1 2 3 sin( / 2)
T

e e e  e w . Because Euler's theorem 

states that an arbitrary rotation may be described by only three parameters, a relation 

must exist between the four Euler parameters, that is  

 
2 2 2 2

0 1 2 3 1e e e e     (6.2) 

Using Euler parameters, the rotational transformation matrix of a body k is 
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Let now consider a body k to which a body-fixed (ζ)k frame is attached at its 

center of mass, as depicted in Figure 6.1b. The position of the body with respect to 

global xyz coordinate system is defined by the position vector  
T

k k
x y zr  that 

represents the location on the body-fixed (ζ)k frame The orientation of the body is 

described by means of Euler parameters, given by Equation 6.1. Thus, the vector of 

generalized coordinates 
kq  that completely describes the 3D-body position is given by 

 
T

TT

k k k
k

 
 

q r p  (6.4) 

Regarding the velocities and accelerations of body k, the angular velocities 'k

and accelerations 'k are utilized instead of the time derivatives of the Euler parameters. 

This procedure simplifies the mathematical formulation and does not require the use of 

mathematical constraints for Euler parameters. The relation between the Euler 

parameters 0 1 2 3 0e e e e     is implied in the angular velocity and, therefore, is not 

used explicitly (Nikravesh and Chung, 1982). When Euler parameters are employed as 

rotational coordinates, the relation between their time derivatives and the angular 

velocities is expressed by 

 
1

'
2

T

k kp L  (6.5) 

where the auxiliary 3 4  matrix L is a function of Euler parameters (Nikravesh, 1988)  

 

1 0 3 2

2 3 0 1

3 2 1 0

k

e e e e

e e e e

e e e e
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 

  
 
   

L  (6.6) 

The velocities and accelerations of body k are given by (Nikravesh, 1988) 

 '
T

T T

k k k k
   q r  (6.7) 



A three-dimensional multibody model of the human knee joint 6-5 

 '
T

T T

k k k k
   q r  (6.8) 

In this work, Euler parameters are utilized to define the angular orientation of 

bodies. The quadratic nature of the transformation matrix, the absence of trigonometric 

functions, and the singularity-free aspect of the Euler parameters make them more 

attractive than other sets of rotational coordinates. Another advantage of Euler parameters 

formulation is that it allows kinematic relationships for different pairs to be written in 

compact matrix form, so that compact and efficient computational algorithms can be 

developed. Though, it is worth noting that the methodology remains the same if other 

sets of rotational coordinates are applied (Nikravesh, 1988). The interested reader in the 

details on the spatial formulation for kinematic and dynamic analysis of general 

multibody systems is referred to the work by Nikravesh (1988). 

6.2 Geometric modeling of contacting surfaces 

The efficiency of a contact detection process relies upon the geometric description 

of the contact surfaces, which can be represented by means of polygonal or non-

polygonal models (Ericson, 2005). Polygonal models are frequently applied to model 

complex shapes. Nonetheless, when the contact detection method demands a continuous 

representation, non-polygonal models are utilized. The non-polygonal models can be 

classified into three main groups, namely constructive solid geometry (CSG), implicit 

methods and parametric functions.  

The use of CSG models is easy and straightforward, but it is restricted because the 

CSG representations have to be described by a set of Boolean operations instead of a 

mathematical expression. Regarding the implicit method, a generic 3D surface is 

represented by an implicit mathematical function that defines the location of the points 

belonging to a surface, and can be written as 

 ( , , ) 0f x y z   (6.9) 

where x, y and z are the Cartesian coordinates of a generic point located on the surface. 

By analyzing Equation (6.9), it can be stated that within an implicit function the three 

Cartesian coordinates are not independent. This is a disadvantage of the implicit method 

because it does not allow for generating, in a systematic manner, a set of consecutive 

points located on a surface. Furthermore, efficient rendering and accurate modeling of 
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sharp edges is usually a hard task whenever implicit representations are utilized (Pauly 

et al., 2003). Finally, the parametric surface representation can be expressed as 

 

( , )

( , ) ( , )

( , )

x x u v

u v y y u v

z z u v




 
 

s  (6.10) 

in which x, y and z are the Cartesian coordinates of a generic surface point and u and v 

denote the corresponding parametric coordinates. In other words, s(u,v) represents the 

parametric position vector of a surface. The major advantage of parametric 

representation is that it allows for the reduction of a three-dimensional problem to the 

bi-dimensional domain, avoiding the use of complex and timing consuming numerical 

solutions. Nevertheless, a parametric surface is difficult to ray-trace in the sense that 

there is no direct and appropriate approach to check if a given point in the 3D-space 

belongs to a surface. Even so, parametric representations have been broadly utilized in 

computer-aided design (CAD) for surface modeling purposes. Farin et al. (2002) 

pointed out two main reasons for the wide application of the parametric representations: 

(i) parametric surface patches can be pieced together with any desired degree of 

continuity and (ii) there are many intuitively meaningful techniques for controlling their 

shape. A comparison between implicit and parametric surface functions is offered in 

Table 6.1 (Campbell and Flynn, 2001). 

Table 6.1 Comparison between the geometrical properties of implicit and parametric surface 

functions (Campbell and Flynn, 2001). 

Property Implicit Surface Parametric Surface 

General expression f(x,y,z)=0
 

s=f(u,v)
 

Accuracy yes yes 

Intuitive specification no yes 

Local support no yes 

Arbitrary topology yes no 

Guaranteed continuity yes yes 

Efficient display no yes 

Efficient intersections yes no 

Efficient rendering no yes 

In the present work, parametric functions are used to represent freeform contact 

surfaces like, for instance, the articular surfaces of the human knee. A freeform surface 

can be described parametrically by a single patch, such as in the case of a spherical 

surface, or by an assembly of multiple patches, as for instance those used to define ship 
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hulls. For contact analysis purposes, it is crucial and desirable to have continuity 

between adjacent patches (i.e., the patches have to be fitted in such way that their 

boundaries are imperceptible) in order to ensure numerical stability and computational 

efficiency to the contact algorithm. From the mathematical point of view, these 

properties are related to the concept of geometric continuity (G) at different levels, 

namely positional (G
0
), tangential (G

1
) and curvature (G

2
) (Lai and Ueng, 2001). 

In the particular case of parametric surface representation, the derivatives of the 

surface with respect to the parametric coordinates can be easily studied. This 

mathematical procedure is usually denominated as parametric continuity. The 

parametric continuity of first and second levels, C
0
 and C

1
, can be considered as 

identical to the positional and tangential continuities. In turn, the third level of 

parametric continuity, C
2
, differs from the curvature continuity in the measure that its 

parameterization is also continuous (Hohmeyer and Barsky, 1989). In short, the 

parametric method allows for efficient contact search algorithm for generating and 

representing arbitrary surfaces which offers great flexibility and precision for handling 

freeform shapes. It should be highlighted that the implicit and parametric approaches 

can exhibit complementary characteristics and it may be convenient to convert from one 

form to another or combined both representations in a hybrid surface model (Pauly et 

al., 2003). The conversion from parametric to implicit form, known as implicitization, is 

in general feasible. In turn, the parameterization is not always possible because the class 

of implicit surfaces is much larger than those of parametric surfaces. The interested 

reader in the details on the implicit and parametric surface representations is referred to 

the works by Barr (1981) and Velho et al. (2002). 

6.2.1 Surface generation and representation 

In the parametric method, the points that belong to a surface are given by a 

collection of mappings, which relate the space parameters to the object surface. As 

mentioned before, a parametric surface maps a 2D-domain that contains a 3D-space. 

With the purpose to better understand how the fundamental ingredients necessary to 

generate and represent a surface by parametric method are handled, consider one eighth 

of a spherical surface, as shown in Figure 6.3. This surface can be described by a single 

patch and the spherical polar coordinates can be considered to be the u and v 

parameters. The surface radius is denoted by R. A surface-fixed coordinate system is 
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attached at the surface geometric center. The normal, tangent and binormal vectors to 

the surface at points P32, P42, P43 and P33 are also depicted in Figure 6.3.  

The parametric surface of Figure 6.3 can be expressed as a u-v mapping as follows 
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 (6.11) 

which allows for the determination of the Cartesian coordinates of the points located on 

the spherical surface. A dataset with a total of fourteen quantities is necessary to fully 

characterize each point located on this surface, namely the parametric point coordinates 

(u, v), the Cartesian coordinates (x, y, z), the Cartesian components of the normal vector 

(nx, ny, nz), and the Cartesian components of the tangent and binormal vectors (
u

xt ,
u

yt ,

u

zt ,
v

xt ,
v

yt ,
v

zt ). This geometric information plays a key role in the contact detection 

algorithm, because the contact between two generic convex surfaces can be established 

by solving a set of nonlinear equations that represent the collinear orthogonality 

between the normal and the distance vectors (Pombo and Ambrósio, 2008).  

 
Figure 6.3 Representation of one eighth of a spherical surface using the parametric method. 
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After describing the contact surface by parametric functions, it is necessary to 

store this geometric representation into a file. Some of the most common formats of 

geometry files, such as STEP (standard for the exchange of product), IGES (initial 

graphics exchange specification) and STL (stereolithography), require large memory 

size at central processing unit (CPU) for storage. As a result, the reading procedure of 

these files is memory consuming and, hence, significantly penalizes the computational 

efficiency of a contact algorithm. This drawback is even more evident in contact 

analysis that usually requires the computation of normal, tangent and binormal vectors 

in each instant of simulation. In order to overcome these difficulties and achieve 

reasonable computation times, a surface preparation is proposed. This is a preprocessing 

procedure and it can be condensed in the following steps: 

1. A regular and representative surface collection of points is extracted from 

the 3D-parametric surface that has been generated analytically, or modeled 

in appropriate CAD software. This step is usually denominated as regular 

surface sampling and is schematically represented in Figure 6.4. 

2. For each point surface, the tangent vectors (tangent and binormal) to the u 

and v directions, and the normal vector are evaluated according to the 

following mathematical relations 

 
( , )

( , )u u u v
u v

u
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where the tilde (~) placed over a vector indicates that the components of the 

vector are used to generate the skew-symmetric matrix (Nikravesh, 1988). 

3. Once the regular 3D-points surface collection has been established, the 

geometric information on each point is saved in the form of a lookup table 

organized as Table 6.2 shows. This lookup table is composed by fourteen 

columns, being the number of rows equal to the number of points utilized to 

represent the surface. The information considered here includes the 
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parametric point coordinates, the corresponding Cartesian coordinates and 

the Cartesian components of the normal, tangent and binormal vectors. It is 

important to note that extra columns can be easily added to the lookup table 

to include, for instance, local geometric and material properties necessary to 

the evaluation of the contact forces, such as the curvature radius, the 

generalized stiffness and the coefficient of restitution. 

4. The last step of the surface preparation, named lookup table reshuffle, deals 

with the rearrangement of the lookup table in which the u-v mapping is 

transformed into a 3D-matrix form, as depicted in Figure 6.5. In this 

process, the surface data is split in equal-sized record elements and saved as 

a direct access file. In contrast to the sequential file, the direct file permits to 

read the surface information in any order, which is quite convenient for 

contact point searching. It is worth noting that line and record are the 

reading units of the sequential and direct access files, respectively. 

 
Figure 6.4 Schematic representation of the regular surface sampling. 
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Table 6.2 Lookup table of the surface represented in Figure 6.4, which contains geometric data 

relative to the 3D-point sample extracted from the surface, namely parametric coordinates 

(u, v), Cartesian coordinates (x, y, z), Cartesian components of normal vector (nx, ny, nz), 

Cartesian components of tangent vector (tx, ty, tz), Cartesian components of binormal vector 

(bx, by, bz). This lookup table is presented in its sequential access form and the listed points 

are the ones bordered by a square in Figure 6.4. 

Pi, j u v x Y z nx ny nz tx ty tz bx by bz 

P1,1 0.000 -3.142 -0.006 0.000 0.000 1.000 0.000 0.000 0.000 0.907 0.421 0.000 0.421 -0.907 

P2,1 0.098 -3.142 -0.006 0.000 0.001 0.995 0.000 -0.098 0.000 1.000 0.000 -0.098 0.000 -0.995 

(…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) 

P1,2 0.000 -2.945 -0.006 -0.001 0.000 0.981 0.195 0.000 0.195 -0.981 0.000 0.000 0.000 1.000 

(…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) 

P1,5 0.000 -2.356 -0.004 -0.004 0.000 0.707 0.707 0.000 0.707 -0.707 0.000 0.000 0.000 1.000 

(…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) 

P1,9 0.000 -1.571 0.000 -0.006 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 

P2,9 0.098 -1.571 0.000 -0.006 0.001 0.000 0.995 -0.098 0.995 0.010 0.098 -0.098 0.098 0.990 

(…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) 

P8,9 0.687 -1.571 0.000 -0.005 0.004 0.000 0.773 -0.634 0.773 0.402 0.490 -0.634 0.490 0.598 

(…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) (…) 

P17,9 1.571 -1.571 0.000 0.000 0.006 0.000 0.000 -1.000 0.000 1.000 0.000 -1.000 0.000 0.000 

 

 
Figure 6.5 Schematic representation of the lookup table reshuffle of a surface defined with 100 points 

that is stored in 25 equal-sized records. 

In short, the proposed methodology to generate and represent a freeform surface is 

quite straightforward and simple to implement in any general-purpose multibody code. 

Moreover, the way how the surface data is organized and stored in the preprocessing 

scheme allows for reading partially the surface data, i.e., only the surface data 

correspondent to the contact region is read and stored in CPU memory. This surface 

portion is named storage window and is discussed in detail in Section 6.3. It is worth 

mentioning that density of the points considered during sampling is arbitrary and, 

therefore, a user-decision based on the geometry that is being represented. 
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6.2.2 Knee contact geometries 

The knee joint presents a complex shape that involves the distal femur, the 

proximal tibia and the patella. The distal femur comprises two large and asymmetric 

convex surfaces named femoral condyles. The proximal tibia has two tibial plateaus, 

distinct in shape and in conformality. The medial plateau is nearly flat, while the lateral 

side is convex. For sake of simplicity, several authors modeled the femoral condyles as 

spheres and fit the tibial plateaus to planes (Abdel-Rahman and Hefzy, 1998; Martelli et 

al., 2006; Koo and Andriacchi, 2007). This assumption is adopted in this work with the 

intention to validate the proposed contact methodology. The medial and femoral 

condyles were modeled as spheres with radius equal to 21 mm and 20 mm, respectively. 

In turn, the tibial plateaus were fitted to square planar surfaces with area equal to 

5535.36 mm
2
. The femoral contact surfaces were represented using Equation (6.11), 

while the tibial contact surfaces were described using a parametric function as follows 

  
0 [m]

,
0 [m]

0


 

 
  

s
max

max

x u
u x

u v y v
v y

z

 (6.15) 

where xmax and ymax are the edge size of the plane on the x and y directions, respectively. 

Figure 6.6 shows a schematic representation of the knee contact surfaces, namely the 

spherical femoral condyles and the planar tibial plateaus. It is important to mention that 

the geometric data used to describe these contact surfaces (radii and edge size) were 

adapted from the work done by Abdel-Rahman and Hefzy (1998), who also modeled 

the tibiofemoral joint as a sphere-plane contact system. 

After the geometrical description of the contact surfaces using parametric 

functions, the pre-processing task is initiated. Firstly, a regular and representative 

collection of points is extracted from each surface of 110889 points (333 points in  

u-direction and 333 points in v-direction). Then, for each collected point, the tangent 

vectors to the u and v directions, and the normal vector are computed. In third place, the 

geometric data relevant for the contact detection process, this is, parametric  

point-coordinates, Cartesian point-coordinates, normal vector, tangent vector and 

binormal vector, is stored into the lookup table. Finally, the u-v mapping form of the 

lookup table is rearranged into a 3D-matrix, being the lookup table saved as a direct 

access file (Metcalf and Reid, 1999).  
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Figure 6.6 Representation of the contact surfaces and ligaments included within the 3D-knee model. 

In this work, spheres and planes are employed to define the geometry of the knee 

articular surfaces. Nonetheless, sophisticated CAD models can be used within the 

proposed contact methodology as long they have been modeled with parametric 

functions. Figure 6.7 shows examples of CAD models of natural and artificial knees that 

have been represented by non-uniform rational B-splines (NURBS) surfaces. The 

modeling procedure of these CAD models can be summarized in four general steps: (i) 

image data acquisition, such as magnetic resonance imaging (MRI) and computer 

tomography (CT) scan data from a subject and laser scans from the implants; (ii) image 

segmentation using an image processing software, for instance the sliceOmatic™ 

(Tomovision, Montreal, Canada); (iii) conversion of MRI and CT point cloud data into 

polygonal models using a reverse engineering software, such as Geomagic Studio
®
 

(Geomagic, Inc., Durham, NC); (iv) fit the polygonal models into parametric surfaces 

(e.g. NURBS surfaces) using a surface modeling software, for instance Rhinoceros
®
 

(Robert McNeel & Associates, Seattle, WA). In the case of artificial knee models, it is 

normally required to align the bone surface with the implant, which can be performed in 

Geomagic Studio
®
 (Geomagic, Inc., Durham, NC). Then, the procedure of transforming 

the CAD models into a lookup table as direct access file is identical to the described for 

the sphere and the plane (Bei and Fregly, 2004; Fregly et al., 2012). 
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(a) (b) (c) 

 

 

 
(d) (e) (f) 

Figure 6.7 Examples of CAD models of knee contact surfaces: (a) femoral articular cartilage; (b) tibial 

articular cartilage; (c) tibiofemoral articular cartilage; (d) femoral component; (e) tibial 

insert; (f) tibiofemoral artificial joint (Fregly et al., 2012). 

6.3 Methodology for contact detection 

A general methodology to deal with 3D-impact problems within multibody systems 

is described, giving a special attention to the detection and location of the contact point. 

The key task of a contact methodology is to check whether a potential contact pair of 

points is in contact or not. When the contact surfaces include simple and regular 

geometries, such as planes, spheres or cylinders, the actual contact pair of points can be 

determined analytically (Tian et al., 2011). Nonetheless, when the contact surfaces 

present complex shapes, a more sophisticated numerical procedure to determine the 

contact pair of points is required (Bei and Fregly, 2004).  

In what follows, a straightforward formulation for the contact detection of 

generalized surfaces is presented. For this purpose, let consider two moving surfaces 

belonging to bodies i and j that move with absolute velocities ir  and jr , respectively. 

Figure 6.8 shows these two moving surfaces, which are represented by means of 

parametric functions. Both contacting surfaces are assumed to be convex at least in the 

neighborhood of the potential contact points. The surface parameters u and v are ordered 

such that the vector n becomes the outward normal. The center of mass of bodies i and j 

are Oi and Oj, while the origin of the surfaces are denoted by Qi and Qj. Local 

coordinate systems 
O O O    and 

Q Q Q    are attached at the center of mass of each 

body and to the origin of each surface, respectively. Pi and Pj represent the potential 
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contact points. The geometric and positional vectors relevant for the contact detection 

process are depicted in Figure 6.8. 

 
Figure 6.8 Representation of two generalized contact surfaces (Glocker, 1999). 

With reference to Figure 6.8, the minimum distance vector d, which connects the 

potential contact points, is calculated as 

 
P P

j i d r r  (6.16) 
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P
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P

jr  are described in global coordinates with respect to the inertial 

reference frame (Nikravesh, 1988) 
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body-reference frame does not change during the analysis. The magnitude of the 

distance vector is evaluated as 

 T  d d  (6.18) 

Similarly to the 2D-contact case, the minimum distance condition is not enough to 

guarantee that a pair of points is effectively the actual contact pair of points. In order to 

ensure that Pi and Pj are the actual contact points, the surface normal vectors, ni and nj, 

have to be collinear with the distance vector, d, as Figure 6.8 depicts. These geometric 

conditions can be expressed by two cross-products between vectors d and ni, and d and 

nj. Because the dot products are more convenient for computations, the collinear 

geometric conditions previously described can be written by a set of dot-products as 
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(6.20) 

where tk and bk (k=i, j) denote the tangent and binormal vectors illustrated in Figure 6.8. 

The geometric conditions given by Equations (6.19) and (6.20) constitute four nonlinear 

equations with four unknowns, i.e., the parametric coordinates ui, vi, uj and vj. This 

system of nonlinear equations, which can be solved using an iterative method such as 

the Newton-Raphson method (Atkinson, 1989), provides the solution for the location of 

the potential contact points. Once the potential contact points are determined, the next 

step deals with the evaluation of their relative distance using Equation (6.18). Finally, it 

is necessary to verify the indentation condition, which ensures that contact exists, i.e., 

the potential contact points are actual contact points. This conditions is given by 

 0T

j d n  (6.21) 

In short, the positions of an actual contact pair of points between two freeform 

surfaces cannot be predicted a priori due to the influence of the kinematic constraints 

and other interactions on the bodies of the complete system. Therefore, during dynamic 

simulation the evaluation of the actual contact pair of points requires the resolution of 

the system of nonlinear equations, given by (6.19) and (6.20). For this purpose, an 
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initial estimate of the contact points on both surfaces needed to be provided. Then, the 

information obtained from the previous time step is used as initial guess to find the 

actual contact point at the current instant of time. With this procedure, only a few 

iterations are required to achieve the desired solution. 

Within the proposed contact approach, the contacting surfaces are described by a 

set of points that is stored into a lookup table. As a result, geometric data of the actual 

contact point has to be evaluated whenever this point does not belong to the regular 

sample of points stored into the lookup table during pre-processing. The geometric data 

that need to be computed is the data relevant for the contact detection process, that is, 

Cartesian point-coordinates, normal vector, tangent vector and binormal vector. The 

evaluation of this geometric data is carried out by means of bilinear interpolation, which 

is depicted in Figure 6.9 and can be expressed as (Gribbon and Bailey, 2004) 
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 (6.22) 

where u and v are the parametric coordinates of the interpolating point, and f(u1,v1), 

f(u2,v1), f(u1,v2) and f(u2,v2) denote the interpolating functions.  

 

 
Figure 6.9 Graphical representation of the bilinear interpolation for a surface described by four points. 
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A total of twelve bilinear interpolations are performed in each instant of 

simulation in order to evaluate all the relevant geometric information for the contact 

detection process. Since the bilinear interpolation is an extension of linear case for 

interpolating functions of two variables on a regular grid, it is considered that this 

numerical procedure does not penalize the computational efficiency of the proposed 

contact approach (Gribbon and Bailey, 2004). It is worth mentioning that a more 

accurate solution for the location of the contact points is achieved when a higher surface 

discretization is utilized, i.e. a higher number of points are used to describe the surfaces.  

During the pre-processing, the geometric data of each surface are organized and 

stored into a direct access file. Within a direct access file, the dataset is organized and 

divided into equal-sized records, as Figure 6.10 illustrates. Each record is identified by 

an index number and all records have the same length, which is defined when the file is 

opened. As the name suggests, the direct access files permit a direct access to a 

particular record of the file and facilitate the operations of reading, deleting, updating 

and inserting records into the file. The main differences of a direct access file and a 

sequential access file are illustrated in Figure 6.10. The direct access files allow for a 

partial reading of the surface data, i.e., the reading of only a surface portion that 

includes the potential contact point and some points nearby. This characteristic avoids 

storing the complete surface data into CPU memory and, hence contributes to the 

computational efficiency of the proposed contact methodology.  

 
Figure 6.10 Illustration of the main differences between a sequential access file and a direct access file. 

Figure 6.11 shows how the dataset of a parametric representation of a contact 

surface is organized and stored into a direct access file. The point dataset is saved in the 

record number two and subsequent records. The record number one stores some 
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(u-Npts), the number of points per surface on v-direction (v-Npts), the number of point 

per record on u-direction (u-pts), the number of points per record on v-direction (v-pts), 

the lower bound of surface on u-direction (u0), the lower bound of surface on  

v-direction (v0), the u-increment (∆u), the v-increment (∆v) and the record length 

(lrecord). The record length recordl  is given by 

   record pr d bitl n n n  (6.23) 

where prn  is the number of points per record (i.e., u-points  v-points), dn  is equal to 

14 that corresponds to the number of surface data associated with a point that is stored 

into the lookup table, and bitn  is assigned to 8 and is associated with the memory space 

required to store each value (datum size). 

 
Figure 6.11 Structure of a direct access file of a parametric representation of a surface with 100 points. 

The partial reading of a surface file is suitable for contact point searching, in 

particular when the surface file is very large. In these cases, the storage window must be 

located at the potential contact zone, that is, it should contain the records to which the 

potential contact points belong. Figure 6.12a shows one eighth of a spherical surface, 

previously illustrated in Figure 6.3, with a storage window that includes the contact 

point at the instant of time t. If at the next instant of time, t+t, the contact point 

remains in a region close to the previous contact point, the storage window does not 

need to be updated. In contrast, when the next contact point is distant from the previous 

contact point, the storage window has to be updated, as Figure 6.12b depicts. 
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(a) (b) 

Figure 6.12 Schematic representation of an update of a storage window. 

The necessity for updating the storage window is checked in each contact 

calculation. This process can be summarized and condensed by the following steps: 

1. Locate contact record, i.e., the record that contains the initial guess (u0,v0); 

2. Check if contact record belongs to storage window. If not, go to step (4); 

3. Check if contact record is a border record. If not, go to step (7); 

4. Locate storage window considering the contact record the center of the new 

storage window; 

5. Store the index of the records of the new storage window, namely the first 

record and the border records; 

6. Read and store the data of the records that belong to the new window; 

7. Proceed with the contact computation. 

With the purpose to better understand the advantages of the proposed approach, 

let take a closer look at the surface represented in Figure 6.13. During the first eight 

impacts, the storage window does not need to be updated, because the contact record 

belongs to the storage window and is not a border record. In the ninth impact, the 

contact record still belongs to the storage window, but is now a border record. As a 

result, the storage window is updated for the next instant of contact, considering the 

current contact record as center record of the new window. After that, the contact 

calculations proceed for at least more three impacts without needing a window update. 

Storage window

Contact point at instant t

Contact point at instant t+t

Updated window

t+tt+t

t t
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(a) 

 

(b) 

Figure 6.13 Schematic representation of a contact surface with a storage window: (a) Eight impacts 

without needing a window update; (b) Update of the storage window in the ninth impact. 

The possibility to read partially the surface is useful in the cases where the contact 

point moves slightly and smoothly and, therefore, it remains in the vicinity of the 

previous contact point, as Figure 6.13a shows. Thus, the amount of memory used is 

significantly reduced and the contact detection process is more efficient. The presented 

methodology is recommended for analyzing continuous contact scenarios that are 

characterized by smooth variations in the location of the contact points, because it 

implies only a limited number of window updating operations. 
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6.4 Computational algorithm for contact in multibody dynamics 

As presented in Chapter 3, the equations of motion for a dynamic multibody 

system can be written in the Hessenberg matrix form as (Nikravesh, 1988) 

 

T     
     

      

q

q

M Φ q g

Φ 0 λ γ
 (6.24) 

where M is the system mass matrix, Φq is the Jacobian matrix of the constraint 

equations, the vector q  contains the generalized state accelerations, λ is the vector that 

contains the Lagrange multipliers, g is the vector of generalized forces that contains all 

external forces and moments applied on the system (including contact forces) and γ is 

the vector of quadratic velocity terms that is used to describe Coriolis and centrifugal 

terms in the acceleration equations (Nikravesh, 1988). 

During a dynamic simulation of a multibody system, when a contact event is 

detected, the force produced at the contact interface has to be computed. For this 

purpose, a continuous contact force (such as Hertz contact law) is utilized, being the 

normal contact forces evaluated as a function of the relative indentation between the 

two contacting bodies. Then, the contact forces, together with other applied forces, are 

introduced into the system of equations of motion as generalized forces.  

Figure 6.14 presents the flowchart of the computational algorithm of multibody 

approach proposed here for analysis of contact problems with 3D-freeform surfaces. 

This computational algorithm can be summarized and condensed by the following steps: 

1. Run the pre-processing unit, which corresponds to the surface generation 

and preparation described in Section 6.2.1. 

2. Set the initial conditions of the system: initial time t
0
, initial positions 

0
q , 

initial velocities 
0

q , storage window dimensions and initial guesses for 

surface contact point 
0 0 0 0, , ,i i j ju v u v . 

3. Load window: read and store surface data. 

4. Check if the surface point 
0 0 0 0, , ,i i j ju v u v belongs to the lookup table; if it does 

not belong, a bilinear interpolation is performed to determine its geometric 

properties. 
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5. Solve the system of nonlinear equations (6.19) and (6.20) that expresses the 

geometric conditions that a surface point has to fulfill to be considered a 

potential contact point. 

6. Store the parametric coordinates of the potential contact points ( , , ,t t t t

i i j ju v u v ) 

as initial guesses (
0 0 0 0, , ,i i j ju v u v ) of the next time step. 

7. Evaluate indentation condition (6.21) and check for contact; if there is 

contact, evaluate contact forces using a continuous contact force law. 

8. Add contact forces to the vector of generalized forces. 

9. Apply a multibody formulation in order to obtain the new generalized 

positions and velocities of the system for time step t+∆t. 

10. Increment the system time variable. 

11. Check if the storage window needs to be updated. If so, go to step (3). 

12. Go to step (4) and proceed with the whole process for the new time step, 

until the final time of the analysis is reached. 

 
Figure 6.14 Algorithm proposed to deal with 3D-contact problems in multibody systems. 

6.5 Dynamic simulations of 3D-contact problems 

With the intention of validating the presented contact methodology, several 

computational simulations were performed using a bouncing ball example. The first set 

of simulations was aimed to assess the accuracy of the contact response of the proposed 

approach. Following, a study on the influence of the surface discretization on the 
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contact response was carried out. The advantage of using a storage window in terms of 

computational efficiency was also investigated by using the bouncing ball model. 

Finally, the proposed contact approach was utilized to evaluate the dynamic response of 

the knee joint, which was modeled as a simple sphere-plane system. 

6.5.1 Bouncing ball demonstration example 

Figure 6.15 shows the bouncing ball model, which consists of a ball with a mass 

of 0.092 kg, a moment of inertia equal to 1.47210
-4

 kgm
2
, a radius of 20 mm, 

animated by an initial horizontal velocity of 0.15 m/s and acted upon by gravitational 

force. The motion of the ball is such that during its falling trajectory it strikes the 

ground. The ground was modeled as a plane with 200 mm length and 100 mm width.  

 
Figure 6.15 Schematic representation of the bouncing ball model. 

The contacting surfaces, sphere and plane, are described by a set of points 

extracted from the corresponding parametric representation, as Figure 6.4 shows. A total 

of 333 points in u-direction and 333 points in v-direction were considered to represent 

both contacting surfaces, the sphere and the plane. Regarding the organization of the 

two data sets, direct access files with a record length of 9072 (81148) are used. 

Therefore, each record includes 81 points.  

In these simulations, the Hertz contact law is utilized to evaluate the normal 

contact forces, being the relative contact stiffness parameter equal to 95.5 10  N/m
3/2

. 

The obtained results were compared with those obtained by using MUBODYNA code 

(Flores, 2010). Within MUBODYNA code, the sphere is defined by the center point and 

the radius, while the plane is described by a point and a vector. In contrast, the proposed 

methodology uses always a set of points extracted from a parametric representation to 

describe each contact surface independently of its shape. Figure 6.16 depicts the 

obtained results in both simulations. 

R
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By analyzing Figure 6.16, it can be observed that the bouncing ball hits the 

ground four times in the 0.4 s of simulation, reaching always the same value of maximal 

indentation because no energy dissipation is accounted in the contact process. As 

expected, the behavior of the bouncing ball is the same in both approaches. This 

observation confirms the accuracy of the proposed contact methodology on predicting 

the dynamic response of multibody systems with 3D contact problems.  

  
(a) (b) 

  

(c) (d) 

Figure 6.16 Bouncing ball response using different contact approaches: (a) ball position on zOy plane; 

(b) normal contact force versus contact indentation; (c) contact indentation versus time; (d) 

contact indentation versus time for the first impact. 

In order to study the influence of the level of surface discretization on the contact 

response of a 3D-multibody system, additional simulations were carried out. Besides the 

parametric model of the sphere described above and represented by 110889 points (333 

points in both directions, u and v), three other models were considered, namely 

parametric spheres discretized in (i) 81 points (9 points in both directions, u and v), (ii) 

1089 points (33 points in both directions, u and v) and (iii) 998001 points (999 points in 

both directions, u and v). Figure 6.17 illustrates of these four parametric models.  

The dynamic results of computational simulations using different parametric 

representations for the sphere are plotted in Figure 6.18 where it can be observed that 

the level of surface discretization does not affect the dynamic response of the bouncing 
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ball system. Hence, it can be concluded that the level of surface discretization should 

not be a concern when the contacting surfaces present regular geometries similar to 

primitive shapes, such as spheres, planes, etc. Regarding contacting surfaces with  

non-regular shapes, no conclusions can be drawn from this set of simulations. However, 

a similar study on the influence of the level of surface discretization can be performed 

whenever complex contact surfaces are used. 

    
(a) (b) (c) (d) 

Figure 6.17 Schematic representation of four models of spheres discretized in: (a) 81 points; (b) 1089 

points; (c) 110889 points; (d) 998001 points. 

  
(a) (b) 

Figure 6.18 Bouncing ball response using different levels of surface discretization: (a) contact 

indentation for whole simulation; (b) contact indentation for the first impact. 

With the intent of checking if the use of a storage window speeds up the 

simulation, additional set of simulations was performed. Within these simulations, the 

parametric model of the sphere with the highest level of surface discretization (with 

998001 points stored in 81 records) is considered. Storage windows with different sizes 

were utilized throughout this set of simulations. The size, shape and location of the 

storage windows used in each simulation are depicted in Table 6.3. The size of a 

window is indicated in number of records, since the record is the smallest reading unit 

of a direct access file. It is worth mentioning that a 100 percent storage window 

corresponds to a storage window that has the same size of the surface file.  

In order to evaluate the advantage of using a storage window, a ratio of the 

obtained CPU times with and without storage window ( CPUratio ) is calculated by 
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w

CPU CPU CPUratio t t  (6.25) 

where CPUt  and 
w

CPUt  are the computational time consumed without and with storage 

window, respectively. The computational time consumed to run each simulation 

together with the CPUratio  are presented in Table 6.3.  

Table 6.3 Dimensions of the storage windows and respective 
CPU

wt and ratioCPU. 

 
Storage window (u_record  v_record) 

CPU

wt  [s] ratioCPU (%) 
Sphere (i) Plane (j) 

1 

81 records (99) 

 

1369 records 

(3737) 

 

397 100.00 

2 

9 records (33) 

 

1369 records 

(3737) 

 

390 98.34 

3 

81 records (99) 

 

69 records (323) 

 

369 93.02 

4 

9 records (33) 

 

69 records (323) 

 

362 91.20 

5 

9 records (33) 

 

27 records (39) 

 

357 89.93 

The storage window of the sphere did not need to be updated in either of the five 

simulations, because the spherical contact point (Pk) is the same for the four impacts 

(Pk={0,0,-R}) and, hence, is located always in the same record.  

Regarding the storage window of the plane, the storage window utilized in the 

fifth simulation (39 records) is too small and does not encompass all the records of the 

contact points of the four impacts. Therefore, an update of this storage window is 

performed during the fifth simulation. Figure 6.19 illustrates the update of storage 

window of the contact plane during a bouncing ball simulation. 
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By analyzing Table 6.3, it can be concluded that the use of a storage window 

increases the computational efficiency even when an update of the storage window 

during the simulation is required. The computational time consumed in each simulation 

is not significantly different. However, small differences can be decisive in long-time 

simulations. Moreover, the use of the storage window is more appropriate for 

continuous contact scenarios that are characterized by smooth variations in the location 

of the contact points, which means that the contact is confined to a small area.  

 
Figure 6.19 Illustration of the update of the storage window during a bouncing ball simulation. 

6.5.2 Human knee model demonstration example 

A simple 3D-model of the human knee joint is also used to attest the proposed 

contact methodology. Figure 6.20 illustrates the initial configuration of this 

biomechanical multibody system, which consists of two bodies i and j that represent the 

femur and tibia, respectively. Body-fixed coordinate systems  are attached to each 

body, while XYZ-coordinate frame represents the global coordinate system.  

 
Figure 6.20 Initial configuration of the three-dimensional model of the knee joint. 
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The femur coordinate system is located at the femoral intercondylar notch and it is 

coincident with the global reference frame. The tibia coordinate system is located at the 

center of mass of the tibia, with the local -axis directed laterally, -axis directed 

anteriorly and -axis directed superiorly. The coordinates of centers of mass and inertia 

properties of the bodies are listed in Table 6.4. These properties were derived from 

literature data of a similar model of a male subject with 76 kg and 1.8 m tall 

(Yamaguchi, 2001). The femur and tibia are modeled as two free contacting bodies, in 

which their dynamics is controlled by contact forces, together with ligament and 

gravitational forces. The equations of motion that govern the dynamic response of this 

multibody system incorporate these forces. The femur is fixed, while the tibia is 

considered to move relative to the femur. The tibia is connected to the femur by eight 

nonlinear springs (Abdel-Rahman and Hefzy, 1998), which represent the main ligament 

fibers that surround the knee. The local attachment coordinates of the knee ligament, the 

respective strain at full extension and ligament stiffness are listed in Table 6.5. The 

ligament fibers included in this knee model are represented in Figure 6.21.  

 
Figure 6.21 Representation of the eight ligament fibers on the knee joint model. 

Table 6.4 Global coordinates and inertia properties of the femur and tibia bodies. 

Body 

name 

Cartesian coordinates 

[mm] 

Euler 

parameters 

Mass 

[kg] 

Moment of inertia 

[kg.m
2
] 

x y z e1 e2 e3 m Ix Iy Iz 

Femur 0.0 0.0 0.0 0.0 0.0 0.0 11.1836
 

0.2250
 

0.2250
 

0.0462
 

Tibia 0.0 0.0 -213.5 0.0 0.0 0.0 3.3794 0.0412 0.0432 0.0070 

pACL

aMCL

oMCL

dMCL

pPCL

O

i

O
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(i)

O

j
O

j

O

j

LCL

aPCL
pACL aACL

O
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Oi

(j) Oj
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Table 6.5 Local attachment coordinates, strain at full extension and stiffness of the knee ligaments. 

Ligament 

Femur  

[mm] 

Tibia  

[mm] 

Strain  

(full extension) 

Stiffness  

[N/mm
2
] 

f f ζf t t ζt l kl 

1. ACL, ant. fibers 7.3 -15.6 21.3 -7.0 5.0 211.3 1.000 83.15 

2. ACL, post. fibers 7.3 -20.3 19.6 2.0 2.0 212.3 1.051 83.15 

3. PCL, ant. fibers -4.8 -11.2 14.1 5.0 -30.0 206.3 1.004 125.00 

4. PCL, post. fibers -4.8 -23.2 15.7 -5.0 -30.0 206.3 1.050 60.00 

5. MCL, ant. fibers -34.8 -1.0 26.3 -20.0 4.0 171.3 0.940 91.25 

6. MCL, obl. fibers -34.8 -8.0 24.3 -35.0 -30.0 199.3 1.031 27.86 

7. MCL, deep fibers -34.8 -5.0 21.3 -35.0 0.0 199.3 1.049 21.07 

8. LCL 35.3 -15.0 21.3 45.0 -25.0 176.3 1.050 72.22 

The acceleration due to gravity is taken as acting on the posterior direction 

(negative y-direction), in order to provide the knee motion from an initial position of 

knee extension to a final position of knee flexion. The bone portions of the distal femur 

and proximal tibia are considered as perfectly rigid, due to their higher stiffness when 

compared to the articular cartilage, which is modeled as a deformable material 

(Machado et al, 2010). The cartilage of the knee is considered to be linear elastic and 

isotropic with a Young’s modulus equal to 24 MPa and a Poisson’s ratio equal to 0.38 

(Herman, 2007). The coefficient of restitution for the cartilage is set to 0.616 (Burgin 

and Aspen, 2008). Two sphere-plane contact pairs were considered to represent the 

medial and lateral contact at the knee joint, as previously described in Section 6.2.2. The 

location and orientation of each contact surface are depicted in Figure 6.6.  

Within the 3D knee model, computational simulations were performed using an 

integration step equal to 10
-5

 s and the Gear multistep integration method. For sake of 

simplicity, the Hertz contact law is applied to evaluate the normal contact forces at the 

medial and lateral compartment of the knee joint. During the simulation, the knee joint 

flexes by the action of the gravity, which affects the stability of the biomechanical 

system and promotes the tibia posterior motion. Figure 6.22 shows the contact 

indentations and forces of each side of the knee along its flexion angle. By observing 

Figure 6.22, it can be drawn that the first contact occurs at the medial condyle (that has 

a larger radius), and then jump to the lateral side. Afterwards, femoral and tibial 

articular surfaces remain in contact during the whole simulation. Note that, a loading 

phase occurs at the lateral side of the knee whenever an unloading phase occurs at the 

medial compartment, and vice versa. With the increase of the knee flexion angle, the 

magnitude of contact forces raises as the system becomes more instable. 
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(a) (b) 

Figure 6.22 Contact response of the 3D-model of the knee joint using the Hertz contact law: (a) 

indentation versus knee flexion angle; (b) normal contact force versus knee flexion angle. 

Figure 6.23a plots the 3D-trajectory of the center of mass of the tibia along time. 

The medial and lateral contact points are illustrated in Figure 6.23b at the corresponding 

femoral surfaces for 9 positions of knee (from 0 to 80 degrees of flexion in intervals of 

10 degrees). From Figure 6.23, it can also be observed an internal rotation of the tibia 

with the increase of the flexion angle. The internal rotation of the tibia was expected, 

because it is the natural response of this bone segment whenever the knee flects under 

non-weight bearing conditions (Hamill and Knutzen, 2009). Figure 6.23a shows that the 

maximal tibia internal rotation, i.e. the maximal displacement of the tibia center of mass 

for the lateral side, is reached when the knee is in 70 degrees of flexion. This outcome is 

also visible in Figure 6.23, where the highest peak of the lateral contact forces occurs at 

70 degrees of flexion. Figure 6.24 shows the dynamic response of the knee ligaments. 

  

(a) (b) 

Figure 6.23 Kinematic response of the 3D-model of the knee joint using the Hertz contact law: (a)  

3D-Position of tibia center-of-mass (in mm); (b) Femur contact points for 9 different 

positions of the tibia, namely 0, 10, 20, 30, 40, 50, 60, 70 and 80 degrees of knee flexion. 
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(a) (b) 

Figure 6.24 Dynamic response of the knee ligaments using the Hertz contact law: (a) Ligament force 

versus knee flexion angle; (b) Ligament force versus ligament strain. 

The anterior fibers of MCL produce the higher forces, especially when the knee 

flexion angle is superior to 30 degrees and the knee internal rotation begins. This 

outcome can be explained by the biomechanical role of the MCL on restraining the 

internal rotation of the knee joint. PCL (anterior fibers) reports also high ligament 

forces, which is an acceptable result because PCL limits 95 percent of posterior 

movement of the tibia. Figure 6.24 shows also that both collateral ligaments are taut in 

full extension (Hamill and Knutzen, 2009). 

6.6 Summary and discussion 

With the purpose of predicting the dynamic response of contact at the human knee, 

a multibody approach to deal with 3D contact problems was presented. This approach 

includes four main steps: (i) surface generation and representation, (ii) contact detection, 

(iii) contact forces evaluation and, (iv) solution of the dynamic equations of motion.  

A generic methodology to generate and represent freeform contact surfaces was 

introduced. This approach utilizes parametric functions to define the contact geometries, 

which allow for the reduction of a three-dimensional problem to a bi-dimensional 

domain and comprises a set of suitable properties for geometric modeling, such as 

accuracy, local support, guaranteed continuity and efficient rendering. The 

computational efficiency is of paramount importance on dynamic analysis of multibody 

system with 3D contact problems. A modeling strategy to reduce the CPU time was 

outlined. This strategy consisted in developing a preprocessing technique to prepare 

contact surfaces for dynamic contact simulations. The application of this pre-processor 

unit allows for reading only the surface portion in the vicinity of the contact area, which 

was denominated as storage window. This approach avoids the necessity of reading all 
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surface data to the CPU memory and, hence, speeds up the contact simulations. The 

storage window is suitable for contact point searching, in particular when the surface 

file is very large and the contact point moves slightly and smoothly in the same area. 

A mathematical formulation for contact detection based on the common-normal 

concept was presented. This method states that two points in space, belonging to 

different surfaces, are potential contact points if the normal vectors at these points are 

collinear to each other and perpendicular to the tangential vectors. This evaluation 

requires the resolution of a system of nonlinear equations. To check if a pair of points is 

an actual contact pair, an indentation condition has also to be verified. When contact is 

detected and a relative indentation greater than zero is reported, a continuous contact 

force law is applied to evaluate the contact forces. 

In order to verify the accuracy and efficiency of the proposed contact approach, 

three sets of computational simulations were performed using a bouncing ball system as 

application example. The first set of simulations aimed to check the accuracy of the 

contact formulation presented on estimating the dynamic response of multibody systems 

with contact. The obtained results were corroborated by those obtained in MUBODYNA. 

In second place, the influence of the surface discretization on the contact response of the 

bouncing-ball system was studied. Within this set of simulations, surfaces with different 

levels of surface discretization were utilized, being the dynamic behaviors resultant of its 

application compared. None significant differences were reported, which mean that the 

level of surface discretization does not affect the dynamic response of the bouncing ball 

system. This outcome suggests that the level of surface discretization should not be a 

concern when the contacting surfaces present regular geometries similar to primitive 

shapes, such as spheres, planes, etc. As far as the contacting surfaces with non-regular 

shapes are concerned, no conclusions are taken. A third set of simulations was 

performed in order to check the advantage of using an updatable storage window. The 

obtained results depict that the use of the storage window speeds up the simulation, 

even when an update of the storage window is required. 

With the intent to study the dynamic behavior of the human knee joint, 

computational simulations using a simple 3D-model of the knee joint were carried out. 

This biomechanical model is composed by two contacting bodies, the femur and the 

tibia, which are connected by eight nonlinear springs that represent some of the 

ligament fibers that surround the human knee. Two sphere-plane contact pairs were 
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considered to model the medial and lateral contact at the knee joint, being the contact 

loads evaluated by using the Hertz contact force law. The dynamic motion considered 

for simulation was the knee flexion from 0 to 80 degrees of flexion. During this 

simulation, six articular contacts were detected, three on the lateral side and other three 

on the medial compartment. The first impact occurs at the medial condyle and then 

jump to the lateral side. Afterwards, the tibia remains in contact with femur during the 

whole simulation, or at lateral compartment, or at medial side or at both. An internal 

rotation of the tibia was also depicted, which is typical of a non-weight bearing situation 

of knee flexion such as the scenario of the simulation. Regarding the dynamic response 

of the knee ligaments, the outcomes depicted that the anterior fibers of the MCL 

produce high forces, especially when the knee internal rotation begins. This can be 

explained by the biomechanical role of MCL that consists in restraining the internal 

rotation of the knee joint. Moreover, the anterior fibers of PCL reported also high 

forces. This result was expected because at the human knee the PCL limits the 

movement of the tibia in the posterior direction in 95%. 
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