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Abstract 

 

 

Title: A multibody approach to the contact dynamics: a knee joint application. 

 

In this thesis, a general approach for dynamic analysis of multibody systems with 

contact is presented, being a special attention given to the articular contact at the human 

knee joint. Two methodologies, in two- and three-dimensions, for knee contact modeling 

are proposed under the framework of multibody systems using generalized Cartesian 

coordinates. The development of the planar multibody knee model encompasses four steps: 

(i) geometrical representation of contacting profiles by means of curve fitting techniques 

based on spline interpolation functions; (ii) location of contact points and evaluation of the 

contact indentation; (iii) calculation of the contact forces by using an appropriate 

constitutive law; (iv) description of the ligament behavior by a quadratic stress-strain 

relation. The motion of the tibia relative to the femur is modeled combining the action of 

the knee ligaments with the potential contacts between the bones. The contact forces, 

together with the forces produced by the ligaments, are introduced into the Newton-Euler 

equations of motion as external generalized forces. Within the three-dimensional 

methodology, the contact surfaces are described by means of point-clouds extracted from 

parametric representations. The spatial formulation presents a pre-processing unit. This 

preprocessor allows for a significantly reduction of the amount of memory required for data 

storage and an improvement of the computational efficiency of the contact detection 

process. Computational simulations were performed with the aim of validating both 

proposed approaches, two-dimensional and three-dimensional. The behavior of the planar 

knee model resultant of the application of different contact force laws was studied. 

Moreover, the influence of the geometric and material properties on the dynamic response 

of the knee joint model was investigated. In a broad sense, the proposed methodologies 

demonstrated to be suitable for the analysis of the dynamic behavior of multibody models 
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with contact, especially those biological systems such as the knee joint that involve 

complex geometries, a large range of motion and high dynamic loads. 
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Resumo 

 

 

Título:  Uma abordagem baseada em sistemas de corpos múltiplos para a análise dinâmica 

de problemas de contacto: uma aplicação à articulação do joelho. 

 

Nesta tese é proposta uma abordagem genérica para a análise dinâmica de sistemas de 

corpos múltiplos com contacto, dando um especial enfoque ao contacto articular no joelho 

humano. No âmbito da dinâmica de sistemas de corpos múltiplos são apresentadas duas 

metodologias, bidimensional e tridimensional, para a modelação do contacto no joelho 

usando coordenadas cartesianas generalizadas. O desenvolvimento do modelo 

bidimensional do joelho engloba quatro etapas: (i) representação geométrica dos perfis de 

contacto por meio de técnicas de ajuste de curva com base em funções de interpolação por 

splines, (ii) localização dos pontos de contacto e avaliação da indentação de contacto, (iii) 

cálculo das forças de contacto usando uma lei constitutiva apropriada, (iv) descrição do 

comportamento dos ligamentos através de uma relação quadrática de tensão-deformação. O 

movimento da tíbia em relação ao fémur é modelado como uma acção combinada entre os 

ligamentos do joelho e os potenciais contactos entre os ossos. As forças de contacto, 

juntamente com as forças produzidas pelos ligamentos, são introduzidas nas equações de 

movimento de Newton-Euler como forças externas generalizadas. Na metodologia 

tridimensional, as superfícies de contacto são descritas por meio de nuvens de pontos 

extraídas de representações paramétricas. No âmbito da formulação tridimensional é 

apresentada uma unidade de pré-processamento. Este pré-processador permite uma redução 

significativa da quantidade de memória necessária para o armazenamento de dados e, desta 

forma, melhora a eficiência computacional do algoritmo de deteção de contacto. Com o 

objetivo de validar as metodologias propostas, realizaram-se várias simulações 

computacionais. Os comportamentos do modelo bidimensional do joelho resultantes da 

aplicação de diferentes leis de força de contacto foram estudados. A influência das 
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propriedades geométricas e de material na resposta dinâmica do modelo bidimensional do 

joelho foi investigada. De uma forma geral, as metodologias propostas demonstraram ser 

adequadas para a análise do comportamento dinâmico de modelos de corpos múltiplos com 

contacto, especialmente sistema biológicos, como o joelho humano, que envolvem 

geometrias complexas, uma grande amplitude de movimentos e elevadas cargas dinâmicas.  

 

 

Palavras-chave:  Biomecânica 

Dinâmica de corpos múltiplos 

Detecção de contacto 

Leis de força de contacto 

Modelação da articulação do joelho 

Eficiência computacional 
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Nomenclature 

 

All matrices and vectors are written in boldface. 

All scalars are written in italic face. 

LATIN SYMBOLS 

Symbol SI-Unit Eq. Description 

A - 3.6 Rotational transformation matrix 

A - - Auxiliary point 

A N 5.1 Amplitude of sinusoidal pulsed force applied to the knee model 

a m 4.32 Distance between the body center of mass and its contact profile  

a0, a1, a2, a3 - 5.2 Cubic spline polynomial coefficients of si 

ia
 

- 7.2 Activation level of muscle at a discrete time step 

As m
2
 4.10 Area of the spring element on normal direction 

ay m/s
2
 7.7 Vertical acceleration (i.e., gravitational acceleration) 

b - 6.13 Binormal vector 

B - - Auxiliary point 

b0, b1, b2, b3 - 5.3 Cubic spline polynomial coefficients of sj 

C - - Auxiliary point 

cr - 4.13 Coefficient of restitution 

D Ns/m 4.11 Damping coefficient 

d - 5.14 Distance vector 

d m 5.21 Magnitude of distance vector 

dm - 4.24 Dimensionless factor 

∆E J 4.19 Dissipated energy 

E N/m
2
 4.4 Young’s modulus of elasticity 

e0, e1, e2, e3 - 6.1 Euler parameters 

Ew N/m
2
 4.6 Winkler modulus of an elastic layer 

f - 3.47 Integration function 

F1
 

N 5.32 
Normal contact force resultant from a partial indentation of the 

first contact layer 
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LATIN SYMBOLS (continued) 

Symbol SI-Unit Eq. Description 

1

maxF  N 5.32 
Normal contact force resultant from a total indentation of the first 

contact layer 

F2 N 5.32 Normal contact force at the second contact layer 

Fe N 5.1 External applied force 

0

iF  N 7.2 Maximum isometric force 

Fl N 5.23 Ligament force 

FN N 4.1 Normal contact force 

 0 , ,i i if F l v
 

- 7.3 Force-length-velocity surface 

g  N, Nm 3.33 Generalized force vector 

g - 3.46 Integration function 

)(c
g  N, Nm 3.34 Vector of constraint reaction equation 

h - 3.45 Integration step size 

hs m 4.6 Thickness of a contact layer 

1s
h  m 5.32 Thickness of the first contact layer 

I kgm
2
 - Moment of Inertia 

J - 7.4 Objective function of static optimization 

k N/m 4.1 Linear stiffness parameter 

K N/m
1.5

 4.2 Generalized stiffness parameter 

K1 N/m
1.5

 5.33 Generalized stiffness of the first contact layer 

K2 N/m
1.5

 5.33 Generalized stiffness of the second contact layer 

kl N/m
2
 5.23 Ligament stiffness 

kp - 7.5 Feedback gain on the position error 

kv - 7.5 Feedback gain on the velocity error 

L - 6.5 Auxiliary 3 4  matrix that is function of Euler parameters 

l m 5.23 Current ligament length 

l
0
 m 5.23 Unstrained ligament length 

li 
m 7.3 Muscle fiber length 

0

il  m - Optimal muscle fiber length 

lrecord - 6.23 Record length 

0

il  m - Tendon slack length 

M  kg, kgm
2
 3.33 System mass matrix 
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LATIN SYMBOLS (continued) 

Symbol SI-Unit Eq. Description 

m kg 7.8 Mass 

n - 5.12 Normal unit vector 

nb - - Number of rigid bodies in a multibody system 

nc - - Number of generalized Cartesian coordinates 

nbit - 6.23 Memory space required to store each value in a record 

nd - 6.23 
Number of surface data associated with a point that is stored into 

the lookup table 

ni 
- 7.2 Number of muscles included into the model 

npr - 6.23 Number of points per record 

O - - Auxiliary point 

p - 6.1 Euler parameter vector 

P - - Auxiliary point 

p  - 6.5 Vector of time derivatives of Euler parameter 

ps N/m
2
 4.6 Spring contact pressure 

q - 3.1 
Vector that contains the state of positions, or vector of 

generalized coordinates 

Q - - Auxiliary point 

q  - 3.14 Vector that contains the state of velocities 

q  - 3.15 Vector that contains the state of accelerations 

*
q  - 7.5 Desired acceleration 

exp
q  - 7.5 Experimentally-derived coordinates 

exp

jq
 

- 7.1 Experimental value for coordinate j 

r - 3.8 Global position vector 

R m 4.3 Radius 

ri,k 
m 7.2 Muscle i moment arm about the k-th joint axis 

CPUratio  - 6.25 Ratio between 
w

CPUt  and CPUt  

s - 3.8 Local position vector 

s(u,v) - 6.10 Parametric position vector of a surface 

si - 5.2 Spline function of profile of body i 

sj - 5.3 Spline function of profile of body j 

is  - 5.4 First time derivative of spline function of profile of body i 

js  - 5.5 First time derivative of spline function of profile of body j 
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LATIN SYMBOLS (continued) 

Symbol SI-Unit Eq. Description 

is  - 5.6 Second time derivative of spline function of profile of body i 

js  - 5.7 Second time derivative of spline function of profile of body j 

''Pks  - 6.17 
Local component of Pk with respect to the surface reference 

frame 
Q Q Q

k k k    

t - 5.13 Tangential unit vector 

t s 3.13 Time 

T
-
 J 7.9 Ball energy at the instant of maximum indentation 

t  s 7.7 Instant of time when a ball hits the ground for the first time 

T
0
 J 7.8 Ball energy at the initial instant of simulation 

CPUt  s 6.25 Computational time consumed without surface window 

w

CPUt  s 6.25 Computational time consumed with surface window 

td s 5.1 Duration of sinusoidal pulsed force applied to the knee model 

T
max

 J 7.9 Kinetic energy of the system at the end of the compression phase 

( )kt t  - 3.29 Trajectory of a guiding constraint of body k as a function of time 

u - 3.3 Unit vector 

U
max

 J 7.9 Maximum elastic strain energy stored 

u, v - 6.10 Parametric coordinates 

v - - Velocity vector 

va, vb, vc - - Auxiliary vectors 

vb - 5.30 Magnitude of vector vb 

vi 
m/s 7.3 Muscle shortening velocity 

vN m/s 5.12 Normal velocity 

vT m/s 5.13 Tangential velocity 

w - - Arbitrary axis 

iw
 

- 7.1 Weighting factors of markers i 

x m 3.2 x-Cartesian coordinate 

xi(q)
 

- 7.1 Position of marker i on the model 

exp

ix
 

- 7.1 Experimental position of marker i 

xmax m 6.15 Edge size of the plane on x-direction 

XY, xy - - 2D-global coordinate system 
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LATIN SYMBOLS (continued) 

Symbol SI-Unit Eq. Description 

XYZ, xyz - - 3D-global coordinate system 

y m 3.2 y-Cartesian coordinate 

y  m, m/s 3.39 System position and velocity 

y  m/s, m/s
2
 3.39 System velocity and acceleration 

y0 m 7.7 Initial y-coordinate of the ball center of mass 

yb m 7.6 y-coordinate of the ball center of mass 

ymax m 6.15 Edge size of the plane on y-direction 

GREEK SYMBOLS 

Symbol SI-Unit Eq. Description 

 - 3.37 Baumgarte stabilization coefficient 

i - - Pennation angle 

 - 3.37 Baumgarte stabilization coefficient 

 Ns/m
2.5

 4.12 Hysteretic damping factor 

 m 4.1 Contact indentation 

  m/s 4.11 Relative normal contact velocity 

(-)  m/s 4.13 Initial impact velocity 

max m
2.5 

4.29 Maximal contact indentation 

g - 3.43 Global error 

l - - Ligament strain 

 rad 3.2 Angular coordinate 

Φ  - 3.13 Vector of kinematic constraints 

Φ  - 3.37 Constraint velocity equation 

Φ  - 3.37 Constraint acceleration equation 

qΦ  - 3.14 Jacobian matrix of the kinematic constraint equations 

tqΦ  - 3.15 Time derivative of Jacobian matrix 

tΦ  - 3.14 Time derivative of kinematic constraint equations 

ttΦ  - 3.15 Double time derivative of kinematic constraint equations 
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GREEK SYMBOLS (continued) 

Symbol SI-Unit Eq. Description 

γ  - 3.15 
Right hand side vector of acceleration equations, or vector of quadratic 

velocity terms 

λ  - 3.34 Vector of Lagrange multipliers associated with constraints 

 - 4.4 Poisson’s ratio 

 rad - Knee flexion angle 

A rad 5.30 Angle between vector vb and vc 

i rad 5.2 Polar parameter that define spline function si 

j rad 5.3 Polar parameters that define spline function sj 

 m
2
/N 4.3 Material parameter 

k  N, Nm 7.2 Generalized force acting about the k-th joint axis 

υ  - 3.14 Right hand side vector of velocity equations 

  rad/s 6.5 Angular velocity 

  rad/s
2
 6.8 Angular acceleration 

j
 - 7.1 Weighting factors of coordinates j 

 - - 2D Body-fixed coordinate system 

 - - 3D Body-fixed coordinate system 

SUBSCRIPTS 

Symbol Description 

i Relative to element i 

j Relative to element j 

k Relative to element k 

l ligament 

n Relative to n elements 

n, N Normal direction 

P Relative to point P 

t Time 

t, T Tangential direction 

u Parametric u-direction 

v Parametric v-direction 
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SUBSCRIPTS (continued) 

Symbol Description 

x global x-direction 

y global y-direction 

z global z-direction 

 local -direction 

 local -direction 

ζ local ζ -direction 

SUPERSCRIPTS 

Symbol Description 

0 Initial conditions 

C, O, P, Q Relative to points C, O, P, Q 

(g) Guiding constraint 

i Index 

n Nonlinear power exponent 

p
 

Power exponent defined by the user 

(r) Revolute joint 

u parametric u-direction  

v parametric v-direction 

x global x-direction 

y global y-direction 

z global z-direction 

 Angular direction 

OPERATORS 

Symbol Description 

( )
T
 Matrix or vector transpose 

( ' ) Components of a vector in a body-fixed coordinate system 

( 

 ) First derivative with respect to time 



xxxvii 

OPERATORS (continued) 

Symbol Description 

( 
 
) Second derivative with respect to time 

( .
 
) Scalar or internal product 

( ×
 
) Cross or external product 

( 
 
) Partial derivative 

( ~
 
) Skew-symmetric matrix or vector 

 Increment 

ABBREVIATIONS 

Symbol Description 

2D Two-Dimensional 

3D Three-Dimensional 

AABBs Axis-aligned Bounding Boxes 

ACL Anterior Cruciate Ligament 

ADAMS Automatic Dynamic Analysis of Mechanical Systems 

AK Artificial Knee 

AP Anterior-Posterior 

API Application Programming Interface 

BSP Binary Space Partitioning 

CAD Computer-aided Design 

CAM Computer-aided Manufacturing 

CE Contractile Element 

CMC Computed Muscle Control 

COMPAMM Computer Analysis of Machines and Mechanisms 

CPU Central Processing Unit 

CSG Constructive Solid Geometry 

CT Computed Tomography 

CULLIDE 
Interactive Collision Detection between Complex Models in Large Environments 

Using Graphics Hardware 

D Dynamic 

DADS Dynamic Analysis and Design System 
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ABBREVIATIONS (continued) 

Symbol Description 

DAE Differential Algebraic Equation 

DAP Dynamic Analysis Program 

DE Damping Element 

DEEP Dual-space Expansion for Estimating Penetration Depth 

DEFORMCD Collision Detection for Deforming Objects 

DICOM Digital Imaging and Communications in Medicine 

DIM Direct Integration Method 

DOF Degrees-of-freedom 

DOPs Discrete Orientation Polytopes 

DVD Discrete Voronoi Diagrams 

E Experimental 

EFM Elastic Foundation Model 

EMG Electromyography 

FD Forward Dynamics 

FEM Finite Element Method 

FFD Freeform Deformation 

FORTRAN Formula Translation 

GPUs Graphics Processing Units 

GRF Ground Reaction Forces 

GUI Graphical User Interface 

HAT Head-Arms-Trunk 

HCM Hunt and Crossley Model 

H-COLLIDE Framework for Fast and Accurate Collision Detection for Haptic Interaction 

HM Hertz Model 

HYB Hybrid 

IC Instant Center or Instantaneous Center of Rotation 

I-COLLIDE Interactive and Exact Collision Detection for Large-Scaled Environments 

ID Inverse Dynamics 

IGES Initial Graphics Exchange Specification 

IK Inverse Kinematics 

IMMPACT Interactive Massive Model Proximity and Collision Tester 

K Kinematic 



xxxix 

ABBREVIATIONS (continued) 

Symbol Description 

LCL Lateral Collateral Ligament 

LCP Linear Complementarity Problem 

LL Lower Limb 

MADYMO Mathematical Dynamical Models 

MBS Multibody System 

MCL Medial Collateral Ligament 

mEFM modified Elastic Foundation Model 

mH modified Hertzian Theory 

ML Medial-Lateral 

MRI Magnetic Resonance Imaging 

MSC MacNeal-Schwendler Corporation 

MUBODYNA Multibody Dynamic Analysis 

NEWEUL / 

NEWEUL-M
2
 

Software package for the dynamic analysis of mechanical systems 

NK Natural Knee 

NURBS Non-Uniform Rational B-Splines 

OA Osteoarthristis 

OBBs Oriented Bounding Boxes 

OP Osteoporosis 

OPCODE Optimized Collision Detection 

OPT Optimization 

P Planar 

PCL Posterior Cruciate Ligament 

PCM Polygonal Contact Model 

PD Proportional Derivative 

PE Parallel Elastic Element 

PF Patellofemoral joint 

PGs Proteoglycans 

PIVOT Proximity Information from Voronoi Techniques 

PQP Proximity Query Package 

QS Quasi-Static 

RAPID Robust and Accurate Polygon Interference Detection 
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ABBREVIATIONS (continued) 

Symbol Description 

S Spatial 

SE Series Elastic Element 

SELF-CCD Continuous Collision Detection for Deforming Objects 

SES Simplified Elastic Solution 

SIMM Software for Interactive Musculoskeletal Modeling 

SO Static Optimization 

SOLID Software Library for Interference Detection 

SPG Stereophotogrammetric 

STEP Standard for the Exchange of Product 

STL Stereolithography 

SWIFT Speedy Walking Via Improved Feature Testing 

SWIFT
++

 Speedy Walking Via Improved Feature Testing for Non-convex Objects 

TF Tibiofemoral joint 

TKR Total Knee Replacement 

UHMWPE Ultra-High Molecular Weight Polyethylene 

V-Clip Voronoi Clip 

V-COLLIDE Accelerated Collision Detection for VRML 

SOFTWARE 

Application Field Software 

Finite Element Analysis ABAQUS, Inc.; ANSYS, Inc. 

Musculoskeletal Modeling AnyBody Modeling System™; APOLLO; LifeModeler™; OpenSim; SIMM 

Computer Graphics and 

Geometric Modeling 
Autodesk®; Blender; Geomagic Studio®; Maya®; Rhinoceros® 

Multibody System 

Simulation 

COMPAMM; DAP; LMS® DADS; MADYMO®;  

MSC Software
TM

 ADAMS; MUBODYNA; NEWEUL/NEWEUL-M
2
;  

PC Crash™; SIMPACK 

Collision Detection 

CULLIDE; DEEP; DVD; DEFORMCD; H-COLLIDE; I-COLLIDE; 

IMMPACT; OPCODE; PIVOT; PQP; RAPID; SELF-CCD; SOLID; SWIFT/ 

SWIFT++; V-Clip; V-COLLIDE 

Medical Image Analysis sliceOmatic™ 
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Multibody-based methodologies have been developed in such a way that, besides 

the representation of mechanical systems made only of rigid bodies, they also allow for 

the description of deformable bodies. Along with the theoretical developments in recent 

years, several powerful and reliable multibody commercial programs have been put on 

the market allowing for the study of human body motion as a multibody system (MBS) 

to undergo significant developments. Among others, these computational tools allow for 

the geometrical and physical properties of soft-tissue structures that constitute the 

biomechanical models to be taken into account in their full detail. Under the framework 

of multibody dynamics, the treatment of contact-impact is of particular importance and, 

so, it is introduced into the equations of motion either by using unilateral constraints or 

by applying a continuous contact force law (Ambrósio, 2005). By introducing the 

ability to handle contact in the internal structures of the biomechanical models quite a 

good number of physiological issues can be addressed with a better physical insight. 

Within this study, a multibody approach to the contact dynamics is proposed, 

aiming to contribute for the efficiency of the computational methods dealing with  

3D-contact events between freeform surfaces. The present work focuses on the analysis 

of biomechanical models, such as the human knee, which can undergo moderate and 
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high loading forces, depending on its dynamic condition. This approach allows for the 

prediction of intra-joint forces during daily activities, which serves as one of the basis 

for the design of implants and prosthetic devices (Machado et al., 2010). 

In this Chapter, the motivation for this work is presented and an extensive 

literature review on the biomechanical models of the knee joint is provided. The scope 

and objectives of this study are described, being the structure and organization of this 

thesis also explained. To finish, the main contributions of this work are emphasized. 

1.1 Motivation 

Knee joint pain is a very common musculoskeletal pathological condition that 

affects 6 percent and 25 percent of population over the age of 30 and 55, respectively 

(Howe et al., 2012). According to World Health Organization (2003), 40 percent of the 

population over the age of 70 suffers from osteoarthritis of the knee. Among patients 

with osteoarthritis, 80 percent have some degree of limitation of movement, and 25 

percent cannot perform major daily activities of life (World Health Organization, 2003). 

The prevalence of knee osteoarthritis is projected to increase due to population ageing 

and rising obesity rates (Bennell and Hinman, 2011).  

Osteoarthritis is a chronic localized joint disease characterized by progressive 

deterioration and loss of articular cartilage and by reactive bone changes at the margins 

of the joints and in the subchondral bone (Felson, 2006). Clinical manifestations are 

characterized by slowly developing joint pain, stiffness, and joint enlargement with 

limitations of motion (Bennell and Hinman, 2011). Treatments such as weight loss, 

braces, orthotics, steroid injections, and physical therapy may also help to alleviate pain 

and to restore function. If the pain or immobility becomes too severe and other therapies 

do not alleviate the symptoms, a joint replacement becomes necessary (Sarzi-Puttini et 

al., 2005). The etiology of knee osteoarthritis is not entirely clear. Nonetheless, its 

progression has been associated with multiple factors including: (i) age and gender, (ii) 

genetics, (iii) hormonal and metabolic factors, (iv) obesity, (v) acute joint injury and 

joint deformity, (vi) occupational factors and sports, (vii) muscle weakness and physical 

disability (Sarzi-Puttini et al., 2005). Among these, it is believed that the mechanical 

factors play a major role in the development and progression of knee osteoarthritis (Bei 

and Fregly, 2004; Andriacchi and Mündermann, 2006). For instance, large external 

knee adduction moments during walking may increase the proportion of the load 
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sustained by the medial compartment, and may be large enough to completely unload 

the lateral compartment (Winby et al., 2009).  

Identifying and quantifying the joint loads placed on the surrounding structures of 

the knee is of paramount importance for understanding and studying realistic knee 

mechanics and to evaluate the true efficacy of any biomechanical intervention (Yang et 

al., 2010). The knowledge of in vivo forces acting at the human knee and in vivo torques 

acting across the tibiofemoral joint is of great value to clinicians, researchers and 

implant designers (Komistek et al., 2005; Lanovaz and Ellis, 2009). The value of 

determining in vivo forces and torques could lead to three key outcomes: (i) prediction 

of how new designs will perform; (ii) simulation of orthopedic surgery procedures and 

prediction/optimization of clinical outcome based on surgical parameters under 

consideration; and (iii) investigation of loading mechanisms that contribute to 

degenerative joint disease, as well as movement modifications or clinical interventions 

to reduce these effects (Komistek et al., 2005). While dynamic X-ray imaging advances 

permit accurate measurement of in vivo knee joint motion (Lu et al., 2008), a non-

invasive and clinically feasible approach for experimental measuring in vivo knee joint 

loading does not exist. Thus, joint contact loads must be predicted by computational 

models (Lin et al., 2010).  

Computational models are becoming an important tool for investigating 

biomechanical variables that are difficult to address experimentally (Lanovaz and Ellis, 

2009). In a broad sense, there are two main computational approaches to model the 

human body, or a subsystem of it, as a biomechanical system. These methods are either 

based on the finite element analysis, or the multibody systems methodologies. The finite 

element methods (FEM) provide the system state of stress and deformation at any time. 

Although FEM are most accurate and versatile they tend to be very time consuming and 

require a high level of information on the system, which may not be accessible to the 

common analyst or designer, and hence remain confined to research and development. 

Based on simplifying premises, engineers and designers prefer to use simpler and, still, 

accurate methods, such as those based on the formulation of multibody systems. 

By and large, finite element models are applied in cases where localized structural 

deformations or soft tissues need to be described and analyzed in detail, while 

multibody models are usually applied in cases where gross-motions are involved and 

when complex interactions with the surrounding environment are expected (Machado et 
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al., 2010). For instance, finite element analyses have been performed to predict with 

accuracy surface and subsurface implant stresses under quasi-static loading conditions 

(Halloran et al., 2005). In turn, the human gait as a gross-motion simulation has been 

studied by means of MBS formulations. Moreover, when a modeling system is under 

dynamic loading conditions, MBS methodologies are also usually employed due to its 

simplicity and computationally efficiency (Landon et al., 2009).  

The knee joint has the key role of promoting movement between thigh and calf in 

order to allow the human subject to walk. It presents a large amplitude of motion, in the 

range 0-67 degrees during level walking. The knee joint, being the intermediate joint of 

the lower limb, has to bear the majority of the body weight and to provide stability to 

the whole body (Nordin and Frankel, 2001). Thus, physiologic loads, produced by 

muscles, ligaments, articular contact and external forces, have to be taken into account 

during dynamic simulations, because they may affect the motion characteristics of the 

knee, as well as the integrity of its surrounding biologic structures (Landon et al., 2009). 

Multibody-based models are useful and reliable to represent natural and artificial knee 

joints under realistic dynamic loads.  

The current demand and interest in developing mathematical models of the knee 

joint for studying the dynamic behavior of this biomechanical system, mainly in what 

concerns with its articular contact response, have motivated this research work. Being 

the contact-impact problem common in several dynamic systems besides the knee joint, 

a general methodology for contact analysis is proposed throughout this thesis. 

1.2 Literature review 

Over the last decades, a number of theoretical and experimental works have been 

devoted to the simulation of human knee joint. As a rough classification, these knee 

joint models can be divided into kinematic and dynamic. The purely kinematic models 

try to describe the motions between femur and tibia, without considering the forces and 

the torques which act during these motions. Dynamic models have been developed for 

estimating the forces on ligaments and muscles and between the articular surfaces. 

The work of Strasser (1917) was a pioneer in the field of knee joint modeling. The 

knee model presented by Strasser was a purely kinematic model based on a four-bar 

linkage, in which two links represent the cruciate ligaments, while the other links 
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represent the femur and tibia bones. Figure 1.1 shows a schematic representation of the 

knee joint modeled as a four-bar linkage. Afterwards, this modeling concept introduced 

by Strasser (1917) was improved by Menschik (1974), who included two curves 

representing the femur and tibia articular surfaces and investigated the location of the 

insertion areas of the collateral ligaments.  

  

Figure 1.1 Schematic representation of the knee joint as a four-bar linkage, showing posterior 

displacement of the point of tibiofemoral contact point with flexion {Adapted from Smith 

et al. (2003) with Elsevier permission}. 

Freudenstein and Woo (1969) proposed a knee joint model based on a planar 

mechanism alternative to the classical four-bar linkage, which is illustrated in Figure 

1.2. In this work, the relative motion between upper and lower legs at the knee joint has 

been analyzed as a planar motion, and logarithmic-spiral centrodes have been proposed 

as representative of this motion. 

 
Figure 1.2 Mechanical guidance of log-spiral and rack motion proposed by Freudenstein and Woo 

(1969) for modeling the knee joint {Adapted from Freudenstein and Woo (1969) with 

Springer permission}. 

Mathematical models with the aim to determine the forces and torques at the knee 

joint were developed by Morrison (1969, 1970), Kettelkamp and Chao (1972), Smidt 

(1973), Perry et al. (1975), Seedhom and Terayama (1976) and Crowninshield et al. 

(1976). Morrison (1969, 1970) developed a synthetic model analysis incorporated with 

several experiments that dealt with force actions transmitted by the knee joint during 

P P P

Centerline of straight slot

Origin of log spiral

log spiral

rack
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several activities, such as level walking, walking up and down a ramp, and walking up 

and down stairs. In this study, the human knee is modeled as a simple hinge joint for 

sake of simplicity. Kettelkamp and Chao (1972) described a method of determining 

force distribution on the tibial plateaus of a standing subject and studied the effect of the 

angle of the tibiofemoral mechanical axes on force distribution. Smidt (1973) performed 

mathematical analyses for the sagittal plane using data obtained from roentgenograms 

and a load cell. Within this study, the displacement of the axis of rotation for the human 

knee joint was evaluated, as well as the moment arm of the knee extensors and knee 

flexors. Figure 1.3 illustrates the free-body diagram of the human knee joint adopted by 

Smidt (1973) in his analysis.  

 
Figure 1.3 Forces and moment arms for knee flexion and extension considered in the analysis 

performed by Smidt (1973) {Adapted from Smidt (1973) with Elsevier permission}. 

Perry et al. (1975) measured the forces in the quadriceps, patella and tibia during 

knee stance flexion by using an instrumented cadaver lower limb. Seedhom and 

Terayama (1976) performed preliminary analysis of the knee joint forces during the 

activity of raising from a chair, with and without the aid of arms, by utilizing a planar 

quasi-static model of the knee joint. Crowninshield et al. (1976) presented an analytical 

model to study the biomechanics of the knee that accounts for the geometry, 

characteristics of motion and material properties of this joint. In this work, the so-called 

inverse method was considered, in which the ligament forces caused by a set of 

translations and rotations in specific directions are determined by comparing the 

geometries of the initial and displaced configurations of the knee joint. Within this 

model, the main ligaments of the knee are represented by spring elements that 

interconnect rigid bodies, which represent the femur and tibia. Figure 1.4 depicts the 

FQt

FPf

FPl Fs

Fc

Fre Frh

FHams

DPl
DHams

Dr

FQt – Tension along quadriceps tendon

FPl – Tension along patellar ligament

DPl – Moment arm for patellar ligament

Fre – External force for knee extension

Dr – Moment arm for external force

FHams – Tension along hamstring muscles

DHams – Moment arm for hamstrings

Frh – External force for knee flexion

FPf – Compression force at patellofemoral joint

Fc – Compression force at tibiofemoral joint

Fs – Anterior-posterior shear force at tibiofemoral joint
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locations of ligaments adopted by Crowninshield et al. (1976). The internal spring 

forces were calculated by displacing the femur or tibia about a fixed axis and computing 

the resulting force in the ligament. The relative effect of a given ligament was also 

investigated by eliminating it in the model and comparing the result to an actual test 

where the ligament was transected. The knee model proposed by Crowninshield et al. 

does not account for viscoelastic nature of the knee and, thus is valid only for short-term 

quasi-static analyses. To overcome this limitation, the model was extended by Pope, 

Crowninshield and co-workers (1976). This updated version was a rheological model 

that uses linear viscoelasticity theory to model the knee joint using a Kelvin body 

idealization. Within this model, Pope et al. (1976) studied the behavior of the human 

knee by means of dynamic, static and creep tests. 

    
(a) (b) (c) 

Figure 1.4 Position of ligaments adopted by Crowninshield et al. (1976): (a) Medial view; (b) 

Posterior view; (c) Lateral view. Twelve ligament fibers are represented in this scheme, 

namely deep (dMCL), oblique (oMCL), anterior (aMCL) and posterior fibers (pMCL) of 

the medial collateral ligament; medial (mPCL), lateral (lPCL), oblique (oPCL), anterior 

(aPCL) and posterior fibers (pPCL) of the posterior cruciate ligament; anterior (aACL) and 

posterior fibers (pACL) of the anterior cruciate ligament; lateral collateral ligament (LCL) 

{Adapted by Crowninshield et al. (1976) with Elsevier permission}. 

The first models of the knee joint that can describe forces as well as motions have 

been presented by Andriacchi et al. (1977) and Wismans (1980). Andriacchi et al. 

developed a knee joint model by employing finite element methods. This model is 

quasi-static and comprises a representation of the proximal tibia, the distal femur, soft 

tissue structures and contacting surfaces of the medial and lateral condyles. The 

ligaments and capsule are represented by nonlinear springs, while the joint surfaces are 

modeled by a number of flat surfaces. Later, Andriacchi et al. (1983) proposed an 

updated version of this model, which includes a representation of the menisci. Within 

this study, the contact surfaces were modeled by ten hydrostatic elements, while the 

menisci were represented by using shear beam elements.  

dMCL

aMCL

pMCL

oMCL mPCL

oPCL

lPCL LCL pPCL
aACL

pACL
aPCL
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Figure 1.5 depicts the knee joint model proposed by Wismans et al. (1980). This 

model is a 3D-representation that takes into account the geometry of the joint surfaces 

as well as the geometry and material properties of the ligaments and capsule. In this 

study, the geometry of joint surfaces was fitted to polynomials in space with a least-

squares method. The ligaments and capsule are represented by seven nonlinear springs 

and their mechanical behavior is approximated by a quadratic force-elongation function. 

The solution method proposed by Wismans (1980) is quasi-static and, hence, a 

particular flexion angle and an arbitrary system of external forces must be prescribed. 

Knee sagittal activity is simulated as a series of flexion steps. After each step, the 

equilibrium positions of the bones are determined from the quasi-static equilibrium 

equations and the equations describing the contact conditions between the condyles. 

Thus, for a given loading at various flexion-extension angles, the location of contact 

points, magnitude and direction of contact forces, magnitude of ligament elongation and 

ligament forces can be calculated. It is worth noting that the artificial restrictions of the 

quasi-static inverse method, such as the necessity to specify the preferred configuration, 

can be eliminated if the dynamic parameters of the problem were included into the 

model, as it is in the case proposed by Machado et al. (2010). 

  
Figure 1.5 Medial and lateral articular surfaces of the 3D-model of the knee joint proposed by 

Wismans et al. (1980) {Adapted from Wismans et al. (1980) with Elsevier permission}. 

Besides the models presented by Andriacchi et al. (1977) and Wismans (1980), 

other relevant knee models were proposed between 1977 and 1980. Menschik (1977) 

extended his previous work (1974) by combining the crossed four-bar linkage with a 

Burmester curve, which is used to define the collateral ligaments. Later, Goodfellow 

and O'Connor (1978) utilized the idea of the four-bar cruciate linkage to explain the 

movements of the meniscal bearings in knee prostheses and to justify the use of 

spherical femoral components for tibiofemoral articulation.  
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Using static optimization techniques, Hardt (1978) addressed the problem of 

obtaining individual force histories of all important muscles of the lower limb during 

normal level walking. The biomechanical model utilized by Hardt, which is composed 

by the pelvis and the lower limb system. The hip and ankle joints are represented by 

spherical joints, while the knee is modeled as a simple revolute joint. Wahrenberg et al. 

(1978a, 1978b) utilized also revolute joint models for predicting impulsive reaction 

forces and moments into the knee joint at the sagittal plane. Within these studies, a 

theoretical model regarding the lower limb as a double pendulum was used and the 

kicking motion was studied (Wahrenberg et al., 1978a, 1978b). 

Moeinzadeh and Engin dedicated some of their research on the dynamic modeling 

of human joint structures with special focus on the knee joint (Moeinzadeh, 1981; Engin 

and Moeinzadeh, 1983; Moeinzadeh and Engin, 1983; Moeinzadeh et al., 1983). Within 

these studies, a mathematical 2D-model of the human knee joint was developed. Figure 

1.6 illustrates this model of the knee joint, which comprises two rigid bodies (femur and 

tibia) connected by nonlinear springs that represent the ligaments. The contact profiles 

were described by polynomial functions. Within this model, numerical analyses were 

performed in order to estimate ligament and contact forces when two kinds of dynamic 

loads were applied on the tibia, namely a rectangular pulse and an exponentially 

decaying sinusoidal pulse (Moeinzadeh, 1981; Moeinzadeh and Engin, 1983; 

Moeinzadeh et al., 1983; Moeinzadeh and Engin, 1988). Moeinzadeh and Engin (1988) 

extended this dynamic model to the 3D-space, although the dynamic calculations were 

performed relative only to the sagittal plane (Huiskes, 1992). Numerical solutions for 

differential algebraic equations (DAE) were employed in both approaches (2D and 3D). 

 
Figure 1.6 Schematic representation of the 2D-model of the knee joint developed by Moeinzadeh 

{Adapted from Moeinzadeh (1981) with author’s permission}. 
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Grood and Suntay (1983) proposed a convenient coordinate system for describing 

3D-joint position with special application to the knee joint. This work was of paramount 

importance as still is adopted for joint modeling purposes. Other relevant work was 

performed by Hefzy and Grood (1983) on the dynamic response of the knee ligaments. 

In this study, the ligaments are modeled as tensile bands running in a straight line and 

two forms of geometric nonlinearities are introduced and analyzed: ligaments wrapping 

around bone surfaces and wrapping of ligaments around each other. 

Wongchaisuwat et al. (1984a, 1984b) demonstrated the key role of the ligaments 

on the stability of the knee joint throughout their investigation. These authors studied 

the motion of the human knee in the sagittal plane through an analytical model, which 

accounts for the geometry of the joint surface, ligaments and some muscle groups. 

Within these studies, the reaction forces at the contact point between the tibia and the 

femur were considered to be constraint forces due to three different surface motions, 

namely gliding, rolling and combined gliding and rolling.  

In order to obtain accurate geometrical representations of the joint surfaces, 

Huiskes et al. (1985) introduced an analytical stereophotogrammetric (SPG) technique 

to measure the 3D-geometry of articular surfaces in vitro. This procedure uses a set of 

two cameras and a slide projector that projects a regular grid on the articular surface to 

be measured. Later, Ateshian et al. (1991) enhanced this method in accuracy and 

efficiency by proposing an approach to map the cartilage thickness over the entire 

articular surface. Kurosawa et al. (1985) also focused their research on knee geometry 

and its relation to joint motion. These authors studied the 3D-knee motion by using the 

center of the posterior femoral condyles as reference points and by analyzing sections of 

distal femurs in the computer. Within their study, Kurosawa et al. (1985) depicted that 

the posterior femoral condyles can be closely fitted to spherical surfaces.  

The work of van Eijden and co-workers (1986) was one of the pioneer studies on 

dynamic modeling of the patellofemoral joint. They proposed a mathematical model of 

the patellofemoral joint taking into account movements and forces in the sagittal plane. 

Figure 1.7 shows this patellofemoral joint model, which enables the calculation of the 

relative position of the patella, patellar ligament and quadriceps tendon, the location of 

the patellofemoral contact point and the magnitude of the patellofemoral compression 

force and the force in the patellar ligament. Within this study, van Eijden et al. (1986) 
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investigated the ratio between patellar ligament force (FPl) and quadriceps tendon force 

(FQt) as a function of knee flexion angle.  

 
Figure 1.7 3D-model of the patellofemoral joint proposed by Van Eijden et al. (1986) {Adapted from 

van Eijden et al. (1986) with Elsevier permission}. 

Mikosz et al. (1988) developed a mathematical muscle model of the knee joint, 

which comprises the proximal tibia, the distal femur, the patellar mechanism and 13 

muscles crossing the knee joint. This 3D-model accounts for the rolling and gliding 

movement of the tibiofemoral articulation. The computational technique involves 

equilibrating three components of external moments at the knee joint to the internal 

moments generated by muscular forces and soft tissue. In this work, the variables 

contained in the moment equilibrium equation are randomly chosen based on the choice 

of the tibiofemoral contact point.  

An extensive review of mathematical models of the knee joint was published by 

Hefzy and Grood in 1988 and, later, updated by Hefzy and Cooke (1996). These authors 

classified the mathematical knee models into two types: phenomenological and 

anatomically based models. The phenomenological models are gross models, describing 

the overall response of the knee without considering its real substructures, such as 

articular surfaces and ligaments. These models are further categorized into simple hinge 

models and rheological models (i.e., knee is modeled as a viscoelastic joint). Examples 

of simple hinge models are the ones proposed by Morrison (1969, 1970), Hardt (1978) 

and Wahrenberg et al. (1978a, 1978b). The models presented by Crowninshield et al. 

(1976) and Pope et al. (1976) are examples of rheological models. In turn, anatomically 

based models are developed to study the behaviors of the various structures forming the 

knee joint. These models require accurate description of the geometry and material 

properties of knee components. Hefzy and Grood (1988) classified the anatomically 

based models into kinematic and kinetic models. Kinematic models describe and 

establish relations between motion parameters of the knee joint. They do not relate these 

motion parameters to the loading conditions. Since the knee is a highly compliant 
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structure, the relations between motion parameters are heavily dependent on loading 

conditions making each of these models valid only under a specific loading condition. 

Kinetic models relate the motion parameters to the joint loading condition. These 

models fall into two groups: quasi-static and dynamic. Quasi-static models determine 

forces and motion parameters of the knee joint through solution of the equilibrium 

equations, subject to appropriate constraints, at a specific knee position. This procedure 

is repeated at other positions to cover the range of motion of the knee joint. Quasi-static 

models are unable to predict the effects of dynamic inertial loads which occur in many 

locomotion activities. Examples of quasi-static models are the ones proposed by 

Andriacchi et al. (1977, 1983) and Wismans (1980). In turn, dynamic models solve the 

differential equations of motion, subject to relevant constraints, to obtain the forces and 

motion parameters of the knee joint under dynamic loading conditions (Hefzy and 

Abdel-Rahman, 2000). An example of a dynamic formulation used to model the knee 

joint is the one proposed by Moeinzadeh and his co-workers (Moeinzadeh, 1981; 

Moeinzadeh et al., 1983; Moeinzadeh and Engin, 1988). 

Huson et al. (1989) described a kinematic model of the human knee by using a 

four-bar linkage, giving emphasis to the functional relation between several 

morphological characteristics concerning the shape of the articular surfaces and the 

constellation of the cruciate ligaments. Six combined configurations of the ligaments 

and articular surfaces were investigated by Huson et al. (1989). Zavatsky and O'Connor 

(1992a, 1992b) presented a mathematical model of the knee ligaments in the sagittal 

plane, where the cruciate ligament fibers were represented as isometric links in a 

kinematic mechanism that controls passive knee flexion. The proposed model was used 

to analyze the shape and fiber length changes of the cruciate and collateral ligaments in 

response to passive motion of the knee.  

Chittajallu and Kohrt (1996) described also a planar model of passive knee motion 

that includes the four major ligaments of the knee, namely anterior cruciate ligament 

(ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL) and lateral 

collateral ligament (LCL). This model comprised two four-bar linkages as Figure 1.8 

depicts. The ACL and PCL formed one four-bar linkage while the MCL and LCL 

formed the second one. Tibia and femur were the ground and coupler links, 

respectively, in both linkages.  
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Figure 1.8 Knee joint model based on two four-bar linkages presented by Chittajallu and Kohrt (1996) 

{Adapted from Chittajallu and Kohrt (1996) with Elsevier permission}. 

Lu and Lu (2006) described also the mobility of the tibiofemoral joint by means 

of a four-bar linkage, formed by the isometric fibers of the ACL and PCL and the lines 

joining their attachments on the femur and tibia. In this study, the forces transmitted by 

the force-bearing structures of the knee joint during normal stair ascent and descent 

were analyzed and their mechanical differences were evaluated. The 2D-model of the 

human locomotor system proposed by Lu et al. (1998) was adopted in this work, which 

is comprised by four rigid bodies, namely the pelvis, thigh, shank and foot. Eight 

muscles were incorporated into the lower limb model. A knee extensor mechanism 

composed of the patellofemoral joint, patellar ligament and quadriceps tendons was also 

included into the model (Gill and O’Connor, 1996).  

Farhat et al. (2010) proposed a dynamic model for the lower extremity capable of 

estimating forces in the cruciate and collateral ligaments and those normal to the 

articular cartilage generated in the knee. Within this study, the knee is modeled, once 

again, as a four-bar linkage. The pelvis is represented by a spherical joint, while the 

ankle is approximated to a revolute joint. Figure 1.9 shows the four-bar linkage used by 

Farhat et al. (2010) to simulate the knee joint motion, which was obtained by a 

kinematic synthesis process. This model includes also the main knee muscles, being 

their forces estimated by static optimization. 

 
Figure 1.9 Knee joint model based on a four-bar linkage proposed by Farhat et al. (2010) {Adapted 

from Farhat et al. (2010) with Taylor & Francis permission}. 
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As far as the prosthetic knees are concerned, Essinger et al. (1989) developed a 

quasi-static knee model to evaluate the mechanical behavior during flexion of knee 

prosthesis. The tibial and femoral surfaces are defined as deformable and rigid, 

respectively. The model includes also a simplified patellofemoral joint. In this work, the 

3D-shape of the articular surfaces is mathematically described, as well as the ligaments 

and capsule structures. Later, Garg and Walker (1990) focused their study on the 

geometry of the knee prosthesis and investigated the influence of the congruency of the 

contact surface on the dynamic response of the knee. Therefore, a mathematical model 

of the knee joint is utilized to quantify the effect of tibia surface geometry and 

prosthetic component placement on ligament length change and maximum achievable 

range of motion. In this work, three configurations for the surfaces of total knee 

replacements (TKR) are considered, namely flat, laxity and conforming.  

The contributions of Abdel-Rahman and Hefzy on the development of 

mathematical models of the knee joint for dynamic analysis are worthy to highlight. As 

a first step, Abdel-Rahman and Hefzy (1991) presented a 2D-dynamic model of the 

knee joint similar to the work proposed by Moeinzadeh et al. (1983). This model 

comprised two rigid bodies, namely a fixed femur and a moving tibia, connected by ten 

nonlinear springs, which represent the different fibers of the ACL, PCL, MCL, LCL, 

and the posterior part of the knee capsule. Within this formulation, part of a circle is 

used to represent the profile of the femur and, the tibia is described by means of a 

parabolic polynomial function. Abdel-Rahman and Hefzy (1991) evaluated the dynamic 

response of the knee joint undern a sudden impact, which was simulated by a posterior 

forcing pulse in the form of a rectangular step function applied to the tibial center of 

gravity. Later, this planar model of the knee joint was updated (Abdel-Rahman and 

Hefzy, 1993). In the new version of the model, the joint profiles are described by 

polynomial functions and a single point contact is assumed to exist at all times. As in 

the previous work (Abdel-Rahman and Hefzy, 1991), the knee response was determined 

under sudden rectangular pulsing posterior forces applied to tibia, being considered 

different amplitudes and durations (Abdel-Rahman and Hefzy, 1993).  

Abdel-Rahman et al. (1996) proposed a 3D-dynamic model of the knee joint, 

which was later enhanced by Abdel-Rahman and Hefzy (1998). This model is 

composed by two body segments in contact, the femur and the tibia, performing a 

general spatial motion within the constraints of the ligamentous structures, which are 
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modeled as nonlinear elastic springs. The femoral articular surfaces are approximated 

by spherical surfaces, while the tibial plateaus are considered to be planar surfaces. 

These articular surfaces are depicted in Figure 1.10. In this work, the dynamic response 

of the tibiofemoral joint when subjected to sudden external loads was analyzed. 

Afterwards, Caruntu and Hefzy (2004) included the patellofemoral joint into this model. 

Instead of modeling the articular surfaces as spheres or planes, Caruntu and Hefzy used 

Coons’ bicubic surfaces. Two joint coordinate frames were applied to describe the six 

degrees-of-freedom motions of the tibiofemoral and patellofemoral joints using twelve 

kinematic parameters. The contact forces were evaluated using a linear elastic 

foundation model, which was formerly used on knee by Blankevoort et al. (1991). 

 
 

(a) (b) 

Figure 1.10 3D-model of the knee joint proposed by Abdel-Rahman and Hefzy (1998), showing the 

articular surfaces and 12 ligaments: (a) Anterior view; (b) Posterior view. The represented 

ligaments are: (1) anterior fibers of ACL, (2) posterior fibers of ACL, (3) anterior fibers of 

PCL, (4) posterior fibers of PCL, (5) anterior fibers of MCL, (6) oblique fibers of MCL, (7) 

deep fibers of MCL, (8) LCL, (9) medial fibers of posterior capsule, (10) lateral fibers of 

posterior capsule, (11) oblique popliteal ligament and (12) arcuate popliteal ligament 

{Adapted from Abdel-Rahman and Hefzy (1998) with Elsevier permission}. 

Blankevoort et al. (1991) focused their study on the effect of articular contact on 

the passive motion characteristics of the knee joint by using a mathematical 3D-model, 

which is illustrated in Figure 1.11. In this analysis, two distinct mathematical contact 

descriptions are compared, namely rigid and deformable contact approaches. The 

methodology adopted for deformable contact is based on the simplified theory of 

contact developed by Kalker (1990) for thin layers of isotropic and linear-elastic 

material bonded to a rigid foundation. Blankevoort et al. (1991) investigated the 

consequences of a deformable contact formulation in their model by varying cartilage 

stiffness values in both linear and nonlinear elastic models. The ligament properties are 

described as nonlinear and time-dependent. Blankevoort et al. (1991) depicted that the 

incorporation of deformable contact did not alter the motion characteristics in a 

qualitative sense, and that the quantitative changes were small. Moreover, it was also 

concluded that the deformable contact is a valid approach when aiming to study of the 
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passive motion characteristics of the knee joint under moderate loading conditions. 

Blankevoort and Huiskes (1991) proposed a model for wrapping of a ligament around 

bone within a mathematical 3D-model of the human knee. The bony edge is described 

by a curved line in which the contact point of the line element representing a ligament is 

located. Five years later, this formulation was updated by the same authors 

(Blankevoort and Huiskes, 1996). This enhanced version includes a geometrical 

description of the articular surfaces, which are covered by a thin layer of deformable 

cartilage and connected by an arbitrary number of nonlinear elastic elements that 

represent the ligaments. The femur is assumed to move relative to the tibia and the 

constraint forces and moments respond to the prescribed degrees-of-freedom. This 

quasi-static model relies upon the equilibrium of forces and moments on the knee joint 

from externally applied loads, ligament forces, contact forces and/or constraint loads.  

 
Figure 1.11 Knee model proposed by Blankevoort et al. (1991). The coordinate axis (x1, x2, x3) is 

associated with the tibia and is space-fixed, while the coordinate axis (x’1, x’2, x’3) is 

related to the femur and is body-fixed. A material point P’ is described by the vector p, 

relative to the space-fixed system, and by the vector R.p’, relative to body-frame. The 

vector a describes the translation of the body-fixed origin relative to the space-fixed origin 

{Adapted from Blankevoort et al. (1991) with Elsevier permission}. 

In 1995, Blankevoort and Huiskes collaborated also with Mommersteeg and other 

three co-workers on the development of a novel concept for modeling the ligaments as 

multi-bundle structures with non-uniform mechanical properties and zero force lengths. 

The proposed novel concept for modeling the ligaments was validated within a  

3D-model of the human knee joint, which is illustrated in Figure 1.12. This model 

describes the position of the femur relative to the tibia for a given configuration of 

external loads and kinematic constraints (Mommersteeg et al., 1995).  
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Figure 1.12 Representation of the 3D-model of the knee joint proposed by Mommersteeg et al. (1995) 

{Adapted from Mommersteeg et al. (1995) with Elsevier permission}. 

Following the work of van Eijden et al. (1986), Hirokawa (1991) presented one of 

the first three-dimensional models of the patellofemoral joint. Figure 1.13 illustrates this 

model, which takes into account the geometry of the articular surfaces and the 

mechanical properties of the patellar ligament. Within this study, several variables, such 

as patellofemoral contact force and tensile force of the patellar ligament, were computed 

for various knee flexion angles. The patellar contact stress was evaluated by using the 

Hertz contact law. In 1993, this author published a comprehensive literature survey 

concerning kinematic and kinetic studies on the knee joint (Hirokawa, 1993). 

Loch et al. (1992) developed a mathematical 3D-model of the human knee joint in 

order to examine the role of single ligaments on joint motion and tissue forces. The 

proposed model relies on a linear approach and is valid for the analysis of small motions 

about an equilibrium position. Figure 1.14 illustrates this model, which comprises two 

rigid bodies (femur and tibia) interconnected by deformable structures, including 

ligaments and articular cartilage.  

  

(a) (b) 

Figure 1.13 Patellofemoral joint model proposed by Hirokawa (1991): (a) Sagittal view at 90 degrees of 

knee flexion; (b) Close-up of the tendofemoral contact portion {Adapted from Hirokawa 

(1991) with Elsevier permission}. 
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Figure 1.14 Anterior view of the theoretical model of the right knee proposed by Loch et al. (1992) 

{Adapted from Loch et al. (1992) with Elsevier permission}. 

Hefzy et al. (1992) carried out a study with the purpose of to determine the effect 

of tibial rotations on the patellofemoral motion and contact areas during a physiological 

loading condition. In this work, a commercially available device, named the 3-SPACE 

digitizer and tracker system, was used to collect the motion data, utilizing cadaveric 

human lower limbs, and the geometric measurements describing the articular surfaces of 

the patellofemoral joint. The articular surfaces are mathematically represented by 

piecewise continuous parametric Coons' bicubic surface patches. Later, Hefzy and Yang 

(1993) presented a mathematical 3D-model of the patellofemoral joint, which comprises 

two rigid bodies representing a moving patella and a fixed femur, as Figure 1.15 

depicts. The femoral and patellar surfaces are mathematically represented using Coons 

bicubic surface patches, as in author previous work (Hefzy et al., 1992). The model 

included eleven constraints, namely six contact conditions, four geometric conditions, 

and the condition of a rigid patellar ligament. The forces acting on the patella comprise 

the medial and lateral patellofemoral contact and the patellar ligament force, all of 

which were represented as ratios to the quadriceps tendon force.  

 
Figure 1.15 Patellofemoral forces considered by Hefzy and Yang (1993): quadriceps tendon force (FQt), 

patellar ligament force (FPl), patellofemoral contact forces at the medial (Fmed) and lateral 

(Flat) side of the knee {Adapted from Hefzy and Yang (1993) with Elsevier permission}. 
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Tümer and Engin (1993) introduced a 2D-dynamic model of the human knee, 

comprising three body segments: femur, tibia and patella. These rigid bodies are 

connected by five ligaments, namely ACL, PCL, MCL, LCL, and patellar ligament. 

Both knee articulations, tibiofemoral and patellofemoral, are considered. According to 

Tümer and Engin (1993), this model permits to analyze the dynamic response of the 

knee for any one or combination of quadriceps femoris, hamstrings, and gastrocnemius 

muscle actions, as well as any externally applied forces on the lower leg. Within this 

study, dynamic simulations were performed for knee extension under the impulsive 

action of the quadriceps femoris group in order to simulate a lower limb activity such as 

kicking motion. Patellofemoral contact force was also evaluated in this work.  

Bendjaballah et al. (1995) developed a 3D-nonlinear FEM model of the knee, 

which is shown in Figure 1.16. This model is composed by three bony structures (tibia, 

femur and patella) and corresponding cartilage layers, medial and lateral menisci, and 

five principal ligaments (ACL, PCL, MCL, LCL and patellar ligament). The menisci are 

represented as a non-homogeneous composite of a solid matrix reinforced by radial and 

circumferential collagen fibers. The articular cartilage is modeled as a frictionless 

contact material. For simulation purposes, the tibia is considered to be fixed while the 

femur is set free to translate in medial-lateral, anterior-posterior, and proximal-distal 

directions. Also, scenarios of knee total meniscetomy were considered for simulation.  

 
Figure 1.16 FE-mesh of 8-node solid elements proposed by Bendjaballah et al. (1995) for knee cartilage 

layers and menisci {Adapted from Bendjaballah et al. (1995) with Elsevier permission}. 

Heegard et al. (1995) performed a study oriented toward an accurate and reliable 

determination of the human patella biomechanics during passive knee flexion. For this 

purpose, a FEM-based model of this joint was developed, which is depicted in Figure 

1.17. This model is able to compute simultaneously joint kinematics, ligament forces 

and articular contact pressures and stresses. The knee joint components (bone, cartilage, 

tendons) are modeled using objective forms of nonlinear elastic material laws. Within 
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this study, a unilateral contact law allowing for large slip between the patella and the 

femur was implemented using an augmented Lagrangian formulation. 

  
Figure 1.17 Patellofemoral 3D-model proposed by Heegard et al. (1995) and its corresponding  

FE-mesh {Adapted from Heegard et al. (1995) with Elsevier permission}. 

O’Connor and co-workers dedicated some of their research on knee modeling 

based upon multibody system methodologies (Gill and O’Connor, 1996; Wilson and 

O'Connor, 1997; Wilson et al., 1998). Gill and O’Connor (1996) proposed a 

biarticulating 2D-model of the patellofemoral joint for estimating the proximal rolling 

of the patella on the femur during flexion. This model included two separate 

articulations on the patella, representing the medial ridge and lateral facets, in order to 

allow for the prediction of transfer of contact from the trochlea to the femoral condyles 

at high knee flexion angles. Within this study, Gill and O’Connor (1996) related the 

kinematics and mechanics of the patella to the geometry and mechanics of the cruciate 

ligaments and the tibiofemoral joint. Furthermore, the incongruity of the patella is 

explained by the necessity of the patella to roll on the femur to ensure the mechanical 

equilibrium of the joint. Figure 1.18 shows the biarticulating 2D-model of the knee joint 

proposed by Gill and O’Connor (1996), where it is represented the normal direction of 

the patellofemoral contact force for 10, 90 and 140 degrees of knee flexion. 

 
Figure 1.18 Knee joint model proposed by Gill and O’Connor (1996). The normal direction of the 

patellofemoral contact force (FPf) is depicted for 10, 90 and 140 degrees of knee flexion 

{Adapted from Gill and O’Connor (1996) with Elsevier permission}. 
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Wilson and O'Connor (1997) proposed a model for the human knee with two main 

purposes: (i) to estimate the lines of action of the forces through the ACL, PCL, MCL 

and at articular contact in the medial and lateral compartments; (ii) to predict the 

changing position and orientation of the axis of rotation of the knee. In this model, the 

ligaments act as constraints to the motion between tibia and femur, which are 

considered as rigid bodies. Also, it is assumed that there is an isometric fascicle in the 

ACL, in the PCL and in the MCL, but that there is no isometric fascicle in the LCL. 

Each isometric fascicle is represented as an inextensible constraint on the motion 

between the tibia and the femur. The posterior femoral condyles are modeled as 

spherical surfaces, while the tibial condyles are considered to be flat. The articular 

surfaces in both compartments are assumed to remain in contact through the range of 

flexion of the knee. Wilson et al. (1998) extended their previous work (Wilson and 

O'Connor, 1997) and investigated the hypothesis that the coupled features of passive 

knee flexion are guided by articular contact and by the ACL, PCL and MCL. Therefore, 

a mathematical 3D-model of the knee was developed, in which the articular surfaces in 

the lateral and medial compartments and the ACL, PCL and MCL are represented as 

five constraints in a one DOF parallel spatial mechanism. The femur and tibia are 

modeled as rigid bodies and a single point contact is assumed to exist at all times in 

both compartments. Medial and lateral articular constraints are each represented by a 

spherical pair at the center of the femoral condyle connected by a rod to a planar pair at 

the point of contact on the tibial plateau, as Figure 1.19 shows. Each ligament is 

represented by a rod connecting a spherical joint on the tibia to a spherical joint on the 

femur. The resulting configuration is a parallel spatial mechanism similar to a Stewart 

platform robotic manipulator that allows for rolling and sliding at the contact point. 

  
Figure 1.19 Frontal view of the parallel spatial mechanism model of the knee joint proposed by Wilson 

et al. (1998) {Adapted from Wilson et al. (1998) with Elsevier permission}. 
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Ling et al. (1997) used a planar model of the knee joint in the sagittal plane to 

investigate some biomechanical features of knee mechanics, such as the joint surface 

contact point, ligament forces, instantaneous center and slide/roll ratio between the 

femur and tibia. In this study, the profile of the femur is described with two segments, 

namely a four-order polynomial and other analytical function. A second-order 

polynomial is also generated to describe the 2D-profile of the tibia in the sagittal plane. 

The articular surfaces are considered frictionless and five knee ligaments are included in 

the model, namely ACL, PCL, MCL, LCL and patellar ligament (Ling et al., 1997).  

Pandy and co-workers devoted some of their research to knee and muscle 

modeling (Pandy et al., 1997; Shelburne and Pandy, 1997; Pandy and Sasaki, 1998). 

Pandy et al. (1997) developed a 3D-model of the knee joint to study the interactions 

between the muscles, ligaments, and bones during physical activity. Elastic elements are 

used to describe the geometry and mechanical properties of the cruciate ligaments, the 

collateral ligaments, and the posterior capsule. The model is actuated by 

musculotendinous units, being each of them composed by a Hill-type contractile 

element, a series-elastic element, and a parallel-elastic element. The tendons are 

assumed to be elastic. The femoral condyles are described by high-order polynomials 

and the tibial plateaus and patellar facets are fitted to flat surfaces. The contacting 

surfaces of the femur and tibia are modeled as deformable, while those of the femur and 

patella are assumed to be rigid. Tibiofemoral indentation is determined by modeling 

cartilage as a thin, linear elastic layer, mounted on rigid bone, as Figure 1.20 shows.  

 
Figure 1.20 The elastic foundation model used by Pandy et al. (1997) to calculate the pressure 

distributions at the tibiofemoral joint. The transverse section of the deformed elastic layer is 

assumed to be an ellipse. The pressure at any point within the contact area depends on the 

normal displacement (uz). The stiffness of the contact layer is denoted as h. The profile of 

the pressure distribution is assumed to be paraboloidal {Adapted from Pandy et al. (1997) 

with Taylor & Francis permission}. 
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Shelburne and Pandy (1997) analyzed the forces in the ligaments induced by 

isometric contractions of the extensor and flexor muscles within a 3D-knee model. 

Figure 1.21 illustrates the knee joint model utilized by Shelburne and Pandy (1997), 

which is an updated version of the model presented by Pandy et al. (1997). In this 

enhanced version, the patella is included and assumed to be rectangular. Furthermore, 

2D-splines are considered to describe the lateral femoral condyle and the femoral 

groove, while the tibial plateau is modeled as a flat surface sloped 8 degrees posteriorly 

in the sagittal plane (Shelburne and Pandy, 1997). 

 
Figure 1.21 Schematic representation of the musculoskeletal knee model proposed by Shelburne and 

Pandy (1997) {Adapted from Shelburne and Pandy (1997) with Elsevier permission}. 

After his contribution on the development of the 3D-model of the knee presented 

by Pandy et al. (1997), Kim (1998) utilized this model to study the interactions between 

the articular surfaces and the geometrical and mechanical properties of the ligaments. 

Figure 1.22 illustrates the eight contact surfaces considered in this knee joint model. 

The tibial plateaux and the surface of each patellar facet were approximated as flat 

surfaces, while the femoral condyles and the surfaces of the femoral groove were 

modeled by fitting polynomials to cadaver data. Within this model, the common normal 

concept is applied to detect contact, while the elastic foundation model is used to 

calculate the contact forces at the medial and lateral compartments of the knee joint. 

Twelve elastic elements are used to describe the function of the ligamentous and 

capsular structures of the knee. In order to assess the accuracy of the model calculations, 

some cadaveric experiments were carried out. An experimental setup was used to 

perform leg raise tasks by means of cadaveric knee specimens. In these experiments, the 

intact knee was extended by a known force applied to the quadriceps tendon, with and 

without weights attached to the ankle. The response of the model to both  

anterior-posterior drawer and axial rotation suggested that the geometrical and 

mechanical properties of the model ligaments approximate the behavior of real 
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ligaments in the intact knee. By comparing this response with experimental data 

obtained from cadaveric knee extension, it was concluded that the 3D-model reproduces 

the response of the real knee during movement.  

  
(a) 

 

(b) 

Figure 1.22 Representation of the knee articular surfaces proposed by Kim (1998): (a) Tibiofemoral 

joint; (b) Patellofemoral joint {Adapted from Kim (1998) with Springer permission}. 

Regarding TKR systems, the studies of Sathasivam and Walker (1997) and 

Wimmer and Andriacchi (1997) should be highlighted. Sathasivam and Walker (1997) 

introduced a TKR model that could determine the displacements and rotations as a 

function of condylar geometry, compressive force, soft tissue restraints and surface 

friction. The validity of this model was determined by comparing the results with 

experimental data from a knee simulator machine. The model was used to investigate 

the effect of friction and soft tissue restraint on the motion and contact point locations 

for a range of input forces and moments. In turn, Wimmer and Andriacchi (1997) 

analyzed the tractive forces during the rolling motion at the knee joint in order to 

determine which factors cause these forces to increase in TKR systems. With the aim of 

calculating these traction forces, Wimmer and Andriacchi (1997) utilized the knee joint 

model that is illustrated in Figure 1.23. The curvature of the femoral condyle is modeled 

as a cylinder, with a radius of 55 mm, while the tibial component is considered to be 

planar with a 10 degrees slope. The inputs for this model are: the shape of the 

articulating surface, coefficient of friction, contact path, muscle anatomy and gait 
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kinetics common to patients with a TKR. Within this model, the effects of variations in 

the coefficient of friction, gait characteristics, antagonistic muscle contraction and 

patellofemoral mechanics were evaluated. Furthermore, the implications of the tractive 

forces to polyethylene wear were investigated. 

 
Figure 1.23 Sagittal view of artificial knee model of Wimmer and Andriacchi (1997). The muscle 

groups crossing the knee are represented. Patellar ligament angle (β) changes with flexion 

angle (α) {Adapted from Wimmer and Andriacchi (1997) with Elsevier permission}. 

Zhu et al. (1999) proposed a framework for modeling subject-specific knee joint 

systems. This framework is divided in four steps: (i) development of a subject-specific 

3D-model of the knee joint; (ii) calculation of contact stresses; (iii) integration of knee 

kinematics and pressure distribution within a human gait model; (iv) virtual examination 

with interactive visualization. Within this work, surface fitting methods are used to find 

accurate mathematical representations of the articular surfaces, while the contact forces 

are computed by using Hertz contact law (Zhu et al., 1999). In 2001, Chen et al. applied 

this modeling framework to develop a biomechanical model of the knee joint. This 

model comprises two rigid bodies (femur and tibia), ligaments, articular surfaces and 

menisci. Ligaments and capsule are modeled by seven nonlinear springs, while the 

tibiofemoral contact areas are reduced to contact points. The articular surfaces are 

described by fitting a parametric surface (a n-degree bivariable parametric polynomial 

surface) to the points of the tibial plateau and the femoral condyle in the 3D polygon 

mesh of the knee model. The menisci are modeled by elastic springs, being Hook’s law 

applied to calculate the forces generated by these springs. Figure 1.24 depicts the 

biomechanical model presented by Chen et al. (2001). Later, Zhu and Chen (2004) 

proposed a new method for simulating and visualizing femur-menisci contact in human 

knee joint using computer generated 3D-models. The development of these 3D-models 

followed the framework proposed in author’s previous work (Zhu et al., 1999). Femur 
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and tibia are considered to be rigid and continuously in contact at one or two points. In 

this work, the deformation of menisci was explained throughout four steps: (i) 

acquisition of the feature curves; (ii) definition of the internal forces on each feature 

point; (iii) deformation of the feature curves by using a physically-based deformation 

method; (iv) deformation of the remaining points of the model by using a spatial 

deformation method. Within this study, the contact area between menisci and femur is 

computed by applying the collision detection library RAPID (Zhu and Chen, 2004).  

 

Figure 1.24 Schematic diagram of the biomechanical model of Chen et al. (2001) during a walking 

simulation {Adapted from Zhu et al. (1999); Chen et al. (2001) with IEEE permission}. 

A quasi-static formulation for modeling diarthrodial joints using MBS 

methodologies was presented by Kwak et al. (2000). Figure 1.25 represents a general 

3D-model of diarthrodial joint that allows for the inclusion of articular surfaces, 

muscles, tendons, ligaments, and the wrapping of soft tissues around bone and cartilage. 

The geometry of the articular surfaces is represented by parametric functions. Within 

this model, the computational efficiency is enhanced by the use of analytical Jacobians.  

 
Figure 1.25 Three-dimensional multibody model of a diarthrodial joint proposed by Kwak et al. (2000) 

{Adapted from Kwak et al. (2000) with Taylor & Francis permission}. 
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Piazza and Delp (2001) develop a six-segment model of the human body for use 

in a forward dynamic simulation of a step-up task. It is worth noting that this is one of 

the first models of whole body that did not consider the knee as a hinge joint. In this 

study, the knee is modeled as two free articular systems: the tibiofemoral and 

patellofemoral joints. This model is utilized to predict the motions of knee implants by 

means of the action of thirteen muscles crossing the joint. The collateral and patellar 

ligaments are modeled as purely elastic tensile springs with quadratic force-strain 

relations. The femoral, tibial, and patellar components are represented by 3D-polyhedral 

meshes. The locations of contact points are determined using RAPID, while implant 

contact forces are computed as a solution of a linear complementarity problem (LCP).  

A similar work to the published by Piazza and Delp (2001) was performed by 

McLean et al. (2003), who presented also a subject-specific 3D-model of the lower 

limb. The aim of this work was to predict neuromuscular control effects on knee joint 

loading during movements that can potentially cause injury to the ACL. The inputs of 

the forward dynamic model were the initial position and velocity of the skeletal 

elements, and the muscle stimulation patterns, while the outputs were movement and 

ground reaction forces (GRF), as well as resultant forces and moments acting across the 

knee joint. An optimization method was utilized to find muscle stimulation patterns that 

best reproduced the subject’s movement and GRF during a sidestepping task. 

Donahue et al. (2002) investigated how the variables associated with a meniscal 

replacement affect tibiofemoral contact by utilizing a 3D-finite element model of the 

knee joint. This model includes the cortical and trabecular bone of the femur and tibia, 

articular cartilage of the femoral condyles and tibial plateaus, the medial and lateral 

menisci with their horn attachments, the transverse ligament, the ACL, and the MCL. 

The main goals of this study were: (i) to determine to what extent bony deformations 

affect contact behavior; and (ii) to verify whether constraining rotations affect the 

contact behavior of the joint during compressive loading (Donahue et al., 2002). 

Penrose et al. (2002) presented also a detailed FEM model of the human knee. These 

authors utilized the FEM model to validate the gross kinematic response of the human 

knee. For this purpose, four scenarios of daily activities were considered, namely gait 

cycle, stair descent, frontal car crash and pedestrian impact. Godest et al. (2002) utilized 

finite element methodologies to study both the knee kinematics and its internal stresses. 

In this work, a wear analysis of a TKR within a knee simulator machine was performed 
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for a single gait cycle. Later, Halloran et al. (2005) presented and experimentally 

validated an explicit FEM-model of a TKR that incorporates tibiofemoral and 

patellofemoral articulations, as Figure 1.26 shows. For computational efficiency, 

Halloran et al. (2005) developed rigid body analyses that can reasonably reproduce the 

kinematics, contact pressure distribution, and contact area of a fully deformable system. 

Results from the deformable model showed that the patellofemoral and tibiofemoral 

kinematics were in good agreement with experimental measurements. Moreover, 

kinematic results from the rigid body analyses were nearly identical to those from the 

fully deformable model, and the contact pressure and contact area correlation was 

acceptable given the great reduction in analysis time (Halloran et al., 2005). 

   
(a) (b) (c) 

Figure 1.26 FEM-based model of a total knee replacement proposed by Halloran et al. (2005): (a) Solid 

model; (b) FEM mesh; (c) Transparent view showing contact pressures {Adapted from 

Halloran et al. (2005) with Elsevier permission}. 

Dhaher and Kahn (2002) proposed a 3D-mathematical model of the 

patellofemoral joint, which includes soft tissues and bone surfaces. In this study, a 

basis-function based method was used to model the articular surfaces. Cohen et al. 

(2003) presented twenty subject-specific MBS models of the patellofemoral joint based 

on MRI data with the intent to demonstrate that these patient-specific computer models 

can be generated in a routine fashion and, can be utilized to support clinical choices and, 

hence, to improve clinical outcomes of patellofemoral joint reconstructions.  

Elias et al. (2004) utilized a computational model to determine how loading 

variations alter the patellofemoral force and pressure distributions for individual knees. 

Triangular elements are used to describe each articular surface. Compression-only 

springs are placed at each element centroid to model the cartilage, while tension-only 

springs are positioned between the patella and the femur to represent the remaining joint 

capsule. Using a discrete element analysis technique, the motion of the patella with 

respect to the femur was determined by minimizing the potential energy stored within 
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the springs. The force and pressure distributions were quantified based on the 

deformation of each spring. Later, Elias and Cosgarea (2007) extended this work by 

introducing a method for simulating knee function in computational models 

representing patients with patellofemoral disorders.  

Besier et al. (2005) presented a modeling pipeline to estimate in vivo cartilage 

stress in the patellofemoral joint. This modeling pipeline can be described in three steps: 

(i) to create subject-specific geometry and finite element mesh; (ii) to obtain  

subject-specific joint orientation and muscle forces; and (iii) to perform simulations and 

to test the model. NURBS surfaces are used to create a uniform mesh of quadrilateral 

elements for the bone of the patella, femur, and tibia, as Figure 1.27 depicts. The 

femoral and patellar cartilage is represented by 3D-hexahedral elements. Quasi-static 

loading simulations were performed using a nonlinear FEM solver (ABAQUS, Inc.). 

  

(a) (b) 

Figure 1.27 Patellofemoral joint model proposed by Besier et al. (2005). The surfaces of the bone and 

cartilage are fitted to (a) NURBS surfaces, which are used to generated (b) quadrilateral and 

hexahedral meshes of the bones and cartilage {Adapted from Besier et al. (2005) with 

Wolters Kluwer Health permission}. 

Fernandez and Hunter (2005) published an important work on patellofemoral 

modeling. Within this study, a quasi-static analysis of the patellofemoral joint was 

carried out in order to examine the main features of patella biomechanics, namely 

patella tracking, quadriceps extensor forces, surface contact and internal patella stresses. 

For this purpose, a 3D-anatomically FEM-based model of patellofemoral articulation 

using high-order cubic Hermite elements was developed, which is illustrated in Figure 

1.28. This model is customized to patient MRI using a variant of freeform deformation 

(FFD), called ‘host-mesh’ fitting. The contact problem is addressed by constraining the 

three primary constraints of frictionless contact known as Signorini conditions, which 

describe a standard linear complementary problem.  
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Figure 1.28 Patellofemoral joint model proposed by Fernandez and Hunter (2005). The patella (a) is 

discretized with (b) contact points and defined as the slave surface. Each contact point on 

the slave (c) is projected to the closest target point on the master surface with a unit normal 

n. The interpenetration is constrained by contact springs (d) placed between the patella and 

the femur. The master surface is defined as the shaded blue region (e) on the femoral 

condyles {Adapted from Fernandez and Hunter (2005) with Springer permission}. 

With the intent of reproducing desired 3D-knee net loading or motion on a 

dynamic knee simulator, Guess and Maletsky (2005) developed a 3D-computational 

model that translates 3D-knee net loading estimated in a gait lab into control profiles 

that drive the actuators of the dynamic simulator. The main goals of this study were: (i) 

construct a constrained and simplified analog knee instrumented to measure joint forces; 

(ii) develop a 3D-computational model of a dynamic knee simulator and the analog 

knee; (iii) verify the capability of the computational model to predict knee loading by 

comparing predicted and measured analog knee forces through squat and laxity tests 

performed on the simulator; (iv) verify the capability of the model to generate control 

profiles to the controllable axes of the simulator by reproducing the loading and motion 

of a 3D-walking profile on the analog knee. This work was later extended by Guess and 

his collaborators (Guess et al., 2010; Mishra et al., 2011; Guess et al., 2011; Stylianou 

et al., 2012; Guess, 2012).  

Guess et al. (2010) included a multibody model of the menisci into a  

subject-specific computational model of the knee joint. In this work, meniscus 

geometries are divided into 61 discrete elements, being 29 medial and 32 lateral, that are 

connected through 6×6 stiffness matrices. An optimization and design of experiments 

approach was used to determine parameters for the 6×6 stiffness matrices. Similarly, 
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parameters for compliant contact models of tibio-menisco-femoral articulations were 

derived from FEM solutions. As a final step, a multibody knee model was developed 

and placed within a dynamic knee simulator model and the tibiofemoral and 

patellofemoral kinematics compared to an identically loaded cadaver knee. The main 

goal of this work was to develop dynamic anatomical knee models with a computational 

efficiency sufficient for incorporation in 3D-movement simulations. This work revealed 

that menisci have a significant effect on the distribution of tibiofemoral contact forces 

and a beneficial, but statistically insignificant, effect on tibiofemoral kinematics during 

the walk cycle simulated in the dynamic knee simulator.  

Guess et al. (2011) presented a method for modeling the tibiofemoral cartilage 

contact mechanics within a dynamic 3D-multibody framework for use in 

musculoskeletal simulations. This method is computationally efficient, capable of 

modeling contact friction and predicting cartilage shear forces, and allows inclusion of 

multiple articulating surfaces required for inclusion of menisci. The effects of contact 

model parameters on kinematics, contact pressure prediction and shear forces were 

explored throughout this work. The knee model utilized in this project is based on 

author’s previous work (Guess et al., 2010) and is represented in Figure 1.29a. This 

model includes a representation of the tibial plateau cartilage as discrete bodies, which 

are fixed to the tibia bone. The tibial cartilage is related to the femoral cartilage via 

deformable contacts. Parameters for the compliant contact law defined between each 

tibia cartilage element and the femur were derived using three methods: simplified 

Hertzian contact theory, simplified elastic foundation contact theory and parameter 

optimization from a FEM solution. Likewise in Guess et al. (2010), the predicted 

kinematics from different model formulations were compared to measured kinematics 

from the identically loaded cadaver knee during a simulated gait. By means of this 

work, Guess et al. (2011) proved that the developed multibody knee model is 

computationally efficient and 283 times faster than a FEM simulation using the same 

geometries and boundary conditions. With the intent of to optimize the computationally 

efficiency of 3D-multibody models, Mishra et al. (2011) introduced data-driven 

surrogate models that could successfully capture realistic and complex 3D-behavior of 

tibiofemoral joint interactions, while maintaining a reduced computational time. 

Training, validation, and test datasets were obtained from the experimentally validated 

multibody model of a cadaver knee previously developed by Guess et al. (2010). Inputs 

to the surrogate models are positions and orientations of the tibia relative to the femur, 
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while the outputs are resulting forces and torques at the tibia with respect to the femur. 

Three different nonlinear dynamic families of models (Hammerstein–Wiener, nonlinear 

autoregressive, and time delay neural network models) were identified, and variations of 

their structures were ranked using normalized mean squared error on validation and test 

data. Within this work, Mishra et al. (2011) observed that individually, time delay 

neural network models performed better than other models. 

Stylianou et al. (2012) developed an anatomically correct canine stifle joint model 

with discrete cartilage and menisci under a multibody framework, and validate it against 

experimental measurements. The effect of including discrete representation of the 

cartilage and menisci structures on the accuracy of the model was investigated 

throughout this work. At the same year, Guess (2012) combined some of his previous 

works and performed a study that associates a cadaver-based validated natural 

multibody knee model with a muscle driven forward dynamics simulation from a 

subject of similar height and weight for prediction of joint contact mechanics. The knee 

joint model was constructed within a previously developed MBS computational model 

of the dynamic knee simulator (Guess and Maletsky, 2005). The ligaments are 

represented by nonlinear spring-damper elements, while the cartilage on the medial tibia 

plateau is sectioned into discrete hexahedral elements (71 elements) because of the 

major incidence of osteoarthritis in the medial compartment. The menisci are modeled 

as 17 discrete elements each, being its geometry elements connected to neighboring 

elements by 66 stiffness matrices (Guess et al., 2010). The contact model used for all 

articulating surfaces in the knee is based on a nonlinear damping approach defined by 

default in the software MSC Software
TM

 ADAMS (MSC Software Corporation, Santa 

Ana, CA). A total of 248 deformable contacts are defined at the knee: (i) femur 

bone/cartilage and patella bone/cartilage, (ii) femur bone/cartilage and lateral tibia 

cartilage, (iii) femur bone/cartilage and all 71 medial tibia cartilage elements, (iv) femur 

bone/cartilage and all 17 lateral meniscus elements, (v) femur bone/cartilage and all 17 

medial meniscus elements, (vi) lateral tibia cartilage and all 17 lateral meniscus 

elements, and (vii) each medial meniscus elements and all medial tibia plateau elements 

that may come in contact with it. To validate the subject-specific multibody knee model, 

walking and dual-limb squat profiles were simulated on both the cadaver knee and 

virtual knee and the resulting bone kinematics compared. Figure 1.29b shows the virtual 

knee model performing a dual-limb squat task. The resulting tibiofemoral contact forces 

were compared to versions of knee joint model with and without menisci (Guess, 2012). 
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(a) (b) 

Figure 1.29 (a) Multibody model of the knee joint with menisci proposed by Guess et al. (2010, 2011). 

(b) Virtual model of the human body performing a dual-limb squat task, including a 

multibody knee with menisci {Adapted from Guess (2012) with Springer permission}. 

The knee contact problem has been studied for a long time (Wismans, 1980). 

Nonetheless, a special emphasis is given to this research topic in the last decade, in 

particular in what concerns with the efficiency of the computational approaches 

developed to predict joint loading response. Bei and Fregly (2004) is one of the most 

cited papers on the issue of knee contact mechanics. This paper consists in a technical 

note, in which a four-step methodology for incorporating deformable contact models of 

the tibiofemoral joint into a multibody dynamics framework is proposed. These four 

steps entail: (i) the preparation of the articular surface geometry, which is illustrated in 

Figure 1.30; (ii) the development of efficient methods to calculate distances between 

contact surfaces; (iii) the implementation of an efficient contact solver that accounts for 

the unique characteristics of human joints; and (iv) the specification of an application 

programming interface (API) that will work within any multibody dynamic simulation 

environment. The articular surfaces are fitted to NURBS surfaces, while the contact 

forces are evaluated by applying the elastic foundation model. This implementation 

accommodates natural or artificial tibiofemoral joint models, small or large strain 

contact models, and linear or nonlinear material models.  

 
             (a)        (b)            (c)     (d) 

Figure 1.30 Contact surface preparation proposed by Bei and Fregly (2004) for an artificial knee model. 

(a) CAD model of the knee prosthesis; (b) Trimmed NURBS surfaces removed from the 

CAD model; (c) Untrimmed NURBS patches fitted to the contact surfaces and then merged 

into a single patch; (d) Reduced number of parametric B-spline curves used to represent the 

surface maintaining the level of surface accuracy {Adapted from Bei and Fregly (2004) 

with Elsevier permission}. 

(a)                                (b)                                              (c)                                        (d)
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Regarding the distance calculations, Bei and Fregly (2004) presented four 

strategies to minimize the number of distance calculations. The first strategy is to 

perform a geometry initialization in a pre-processing phase prior to beginning the 

simulation. This includes reading the contact surfaces of the tibia and femur, detecting 

connectivity between the NURBS patches of each contact surface, constructing contact 

pairs and associated data structures, and determining whether the surfaces are from a 

natural or artificial knee. A second strategy is to calculate distances from one contact 

surface directly to the other. For any element on a fixed-body contact surface, the 

distance to the corresponding moving-body contact surface is calculated directly and 

then corrected, cutting the number of distance evaluations in half. The correction uses 

trigonometry to approximate the distance along the local midsurface normal regardless 

of the method used for calculating distances. If minimum distance is used, i.e., the 

distance vector is perpendicular to the point found on the moving body, the correction 

grows the distance slightly. If ray firing is used, i.e., the distance vector is perpendicular 

to the starting point on the fixed body, it shrinks the distance slightly. Another strategy 

for minimizing distance calculations is to copy previous contact solutions whenever the 

relative kinematics changes little. A final strategy for minimizing distance calculations 

is to use the previous contact solution as an initial guess for the current solution.  

Mun and Lee (2004) proposed a 3D-knee model, which comprises two rigid 

bodies, namely femur and tibia, and twelve ligaments represented by nonlinear spring 

elements. The articular geometry is represented using two cam profiles obtained from 

the extrusion of the sagittal plain view of a representative computed tomography (CT) 

image of the knee. The curves of the condyles represent a spiral of a spiral and are 

defined using cubic interpolation spline functions. Within this model, the ligaments 

carry load only when they are in tension and exhibit two-piece force-elongation relation: 

a nonlinear relation in the initial stage of ligament strain and a linear relation in later 

stages. This model allows for sliding and rolling motions and utilizes inverse dynamics 

and least-square methods for computing the lateral and medial contact forces. 

Likewise Stylianou et al. (2012), Shahar and Banks-Sills (2004) presented a  

3D-mathematical model of a canine knee. The aim of this study was to determine the 

forces in the knee ligaments and the knee joint reaction forces during the stance phase 

of a slow walk. This quasi-static model considers two articulations, namely tibiofemoral 

and patellofemoral. Bones are modeled as rigid bodies, while the ligaments are 



Introduction 1-35 

represented by nonlinear springs. The patellar ligament is considered inextensible, since 

it is much stiffer and thicker than the other knee ligaments. The patella is assumed to 

rotate in the sagittal plane only. Fourth-order polynomials are used to describe the 

articular surfaces. Three pairs of contact are considered, namely medial tibiofemoral, 

lateral tibiofemoral and patellofemoral. Muscle forces acting on the femur and the hip 

joint reaction force were determined by numerical optimization. The effects of the 

menisci and friction were ignored (Shahar and Banks-Sills, 2004). 

Küçük (2006) utilized the software Working Model 2D
TM

 to perform dynamic 

simulation within a knee joint model. Figure 1.31 shows this model, which comprises 

two rigid bodies, femur and tibia, undergoing general planar motion in the sagittal 

plane. The femur is considered to be fixed while the tibia glides and rolls over femur 

without losing contact. The femoral profile is described by a circular arc polynomial as 

Abdel-Rahman and Hefzy (1993) suggested. In turn, the tibia profile is represented as a 

parabolic curve as that of employed by Moeinzadeh et al. (1983). The ligaments and the 

posterior capsule are approximated by ten bundles of nonlinear springs, while the 

deformable cartilage layer is modeled by eighteen linear springs (Küçük, 2006).  

 
Figure 1.31 Planar model of the knee joint proposed by Küçük (2006). Lc represents the current length 

of the active cartilage layer, which is modeled by a set of linear springs {Adapted from 

Küçük (2006) with Elsevier permission}. 

Fukunaga et al. (2008) proposed a 3D-model of the knee joint for analyzing the 

kinetics and kinematics of knee prosthesis during deep flexion. Both knee articulations, 

tibiofemoral and patellofemoral, are incorporated into the model. The femur is 

described with the fixed coordinate system, while the tibia and patella are modeled as 

moving systems. This model includes three muscles groups (quadriceps, hamstrings and 
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gastrocnemius) and three ligaments (MCL, LCL and patellar ligament). The shapes of 

prosthetic articular surfaces are represented by parametric polynomial functions. 

Akalan et al. (2008) presented a knee joint model comprising ligament bundles 

and contact surfaces for simulation of passive knee motion. It is worth noting that these 

authors adopted a different strategy to model the articular surfaces. Instead of assuming 

a spherical shape for the femur condyles, experimentally obtained contact points were 

included into the model, as it can be observed in Figure 1.32. The output rotations, 

translations and contact forces are compared to a reference model (Abdel-Rahman and 

Hefzy, 1998), showing a close accordance. Within this study, Akalan et al. (2008) 

demonstrated that isometric ligament bundles play an important role in understanding 

the femur shape from contact points on tibia. 

  
Figure 1.32 Mathematical 3D-model of the knee proposed by Akalan et al. (2008). The numbers 

denoted the knee ligaments: (1) LCL; (2) Anterior fiber of MCL; (3) Deep fiber of MCL; 

(4) Oblique fiber of MCL; (5) Medial capsule of popliteal ligament; (6) Lateral capsule of 

popliteal ligament; (7) Oblique popliteal ligament; (8) Arcuate popliteal ligament; (9) 

Anterior fiber of PCL; (10) Posterior fiber of PCL; (11) Anterior fiber of ACL; (12) 

Posterior fiber of ACL {Adapted from Akalan et al. (2008) with Elsevier permission}. 

Yao et al. (2008) studied the sensitivities of tibio-menisco-femoral joint contact 

behavior to variations in knee kinematics using a FEM model. Cartilage and menisci 

were smoothed using thin-plate splines imported into HyperMesh 7.0 software. 

Furthermore, Lu et al. (2008) measured the in vivo 3D-motion and surface kinematics of 

normal knee during active knee extension under unloaded and loaded conditions by 

using single-plane fluoroscopy with a voxel-based 2D to 3D registration method. 

Guo et al. (2009) presented spatial FEM-based model of the human knee joint. 

Hexahedral block-structures meshes of the bones and soft tissues were used to construct 
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the FEM model at software ANSYS, Inc. Bones are assumed to be a linear elastic and 

isotropic material, while cartilage, menisci and ligaments are considered viscoelastic 

tissues. Contacts are assumed to be frictionless and nonlinear. Within this model, 

nineteen potential contact zones are defined: two at the medial zone, namely the femoral 

cartilage-medial meniscus and medial meniscus-tibia cartilage; two at the lateral zone, 

namely the femoral cartilage-lateral meniscus and lateral meniscus-tibia cartilage; five 

between femur and ligaments, which are ACL, PCL, MCL, LCL and quadriceps tendon; 

five between tibia and ligaments, which are ACL, PCL, MCL, LCL and quadriceps 

tendon; one between cruciate ligaments; two between patella and ligaments, which are 

quadriceps tendon and patellar ligament; one between femoral cartilage and the 

retropatellar articular cartilage; one between tibial cartilage and fibular cartilage.  

Lin et al. (2010) introduced a novel surrogate modeling approach for performing 

computationally efficient 3D-contact analyses within multibody dynamic simulations. 

This approach fits a computationally cheap surrogate contact model to data points 

sampled from a computationally expensive elastic contact model (e.g., finite element 

model or elastic foundation model). An overview of the process of creating this 

surrogate contact models is presented in Figure 1.33. The proposed methodology was 

applied to dynamic wear simulation of a commercial knee implant tested in a Stanmore 

knee simulator machine. Dynamic simulations performed with the surrogate contact 

models were highly accurate compared with simulations performed with the elastic 

foundation contact model used to create the surrogates. Even including the 6 h of 

computational time required for surrogate model creation, computational time required 

to perform five Monte Carlo analyses, taking about 13 h, was over 100 times less than if 

an elastic foundation approach has been used, taking about 1420 h. Despite of its 

computational benefits, the surrogate contact approach presented by Lin et al. (2010) 

possesses at least five limitations: (i) the determination of sensitive directions is 

influenced by how coordinate systems are embedded in the master and slave bodies; (ii) 

sensitive directions could change with model pose for some shapes; (iii) a new surrogate 

contact model must be generated any time the geometries or material properties of the 

contacting bodies are changed; (iv) the evaluation of surrogate contact model accuracy 

currently requires performing the same dynamic simulation with the computationally 

expensive contact model; (v) the proposed approach does not account for friction forces. 
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Figure 1.33 Diagram presented by Lin et al. (2010) to illustrate the process of developing a surrogate 

contact model. This process entails 8 steps: (a) n points are sampled in the x, Fy, z, Ta, b,  
design space; (b) Static analyses are performed for the first m sample points using an elastic 

foundation model (EFM); (c) Coarse surrogate models are created based on static analysis 

results for these m sample points; (d) Coarse surrogate models are used to predict static 

analysis results for the remaining n-m sample points; (e) Sample points are screened and 

eliminated if their predicted outputs are outside the desirable ranges defined by one or more 

nominal dynamic simulations; (f) Additional static analyses are performed with the EFM 

for sample points that pass the screening process; (g) Final surrogate contact models are 

created using static analysis results from all retained sample points; (h) During a dynamic 

simulation, surrogate contact models calculate contact forces and torques applied to both 

bodies given the pose of the femoral component relative to the tibial insert{Adapted from 

Lin et al. (2010) with Elsevier permission}. 

Machado et al. (2010) presented a dynamic model of the human knee for contact 

analysis. This multibody model comprises two rigid bodies: the fixed femur and the 

moving tibia. The tibia is connected to the femur by four ligaments, which are ACL, 

PCL, MCL and LCL, modeled as nonlinear springs. The mechanical behavior of the 

ligaments is described by a quadratic stress-strain relation that is a function of the 

ligament stiffness and its unstrained length. The cartilage is characterized as a 

deformable structure with specific material properties. The motion of the tibia relative 
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to the femur is not modeled with conventional kinematic joint, but rather in terms of the 

action of the ligaments and potential contact between the condyles. Based on medical 

images of the human knee, the geometry of the articular profiles is fitted to spline 

interpolation functions. Within this model, constitutive laws based on the Hertzian 

theory augmented with a dissipative term are used to compute knee contact forces. 

Argatov (2012) proposed a new methodology for modeling tibiofemoral contact 

based on asymptotic model of frictionless elliptical contact interaction between thin 

biphasic cartilage layers. This approach requires smooth contact geometries and 

efficient contact detection methods. Within this study, the tibia is considered to be 

rigidly fixed, while the articular surfaces are modeled using polynomial functions.  

In order to get an overview of the survey of knee models described above, the 

most relevant knee models and their characteristics were summarized in Table 1.1. Each 

knee model is described as planar or spatial, being the type of analysis utilized in each 

simulation characterized as kinematic (K), quasi-static (QS) or dynamic (D). Within 

Table 1.1, the model approach is distinguished between multibody system (MBS), finite 

element method (FEM), optimization (OPT) or hybrid (HYB). The modeling joints are 

also indicated in Table 1.1; some models represent only the tibiofemoral joint (TF), 

others authors focused their research on modeling the patellofemoral joint (PF); besides, 

there are works that account for both joints (TF and PF). Three types of biomodels were 

considered, namely natural knee (NK), artificial knee (AK) and lower limb (LL). The 

presence of ligaments, tendons, muscles, menisci and cartilage is reported in Table 1.1. 

The geometrical representation of the articular surfaces and the evaluation of the contact 

forces were completed in some of these studies, which is also point out in Table 1.1. 

Table 1.1 Survey of knee joint models. Symbols appearing in this table are: P (planar), S (spatial), K 

(kinematic), QS (quasi-static), D (dynamic), O (optimization), MBS (multibody system), 

FEM (finite element method), E (experimental), H (hybrid), LL (lower-limb), NK (natural 

knee), AK (artificial knee), TF (tibiofemoral) and PF (patellofemoral). 
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Strasser (1917) P K MBS NK TF        

Freudenstein and Woo (1969) P K MBS NK TF        

Smidt (1973) P QS MBS NK TF, PF        

Menschik (1974) P K MBS NK TF        
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Table 1.1 (continued) 
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Crowninshield et al. (1976) S QS MBS NK TF        

Andriacchi et al. (1983) S QS FEM NK TF        

Goodfellow and O'Connor (1978) P K MBS NK TF        

Hardt (1978) S D OPT LL TK        

Wismans (1980) S QS MBS NK TF        

Moeinzadeh (1981) 

Moeinzadeh and Engin (1988) 

P 

S 
D MBS NK TF        

Van Eijden et al. (1986) P D MBS NK PF        

Huson et al. (1989) P K MBS NK TF        

Essinger et al. (1989) S QS MBS AK TF, PF        

Garg and Walker (1990) P K MBS AK TF        

Blankevoort et al. (1991) 

Blankevoort and Huiskes (1991) 
S QS MBS NK TF        

Hirokawa (1991) S D MBS NK PF        

Abdel-Rahman and Hefzy (1993) P D MBS NK TF        

Loch et al. (1992) S QS MBS NK TF        

Hefzy and Yang (1993) S QS MBS NK PF        

Tümer and Engin (1993) P D MBS NK TF, PF        

Bendjaballah et al. (1995) S QS FEM NK TF, PF        

Heegard et al. (1995) S QS FEM NK PF        

Mommersteeg et al. (1995) S QS MBS NK TF        

Gill and O’Connor (1996) P D MBS NK TF, PF        

Blankevoort and Huiskes (1996) S QS MBS NK TF        

Chittajallu and Kohrt (1996) P D MBS NK TF        

Abdel-Rahman et al. (1996) 

Abdel-Rahman and Hefzy (1998) 
S D MBS NK TF        

Ling et al. (1997) P D MBS NK TF        

Pandy et al. (1997) S D MBS NK TF, PF        

Wimmer and Andriacchi (1997) P D MBS AK TF        

Sathasivam and Walker (1997) S QS EXP AK TK        

Shelburne and Pandy (1997) P QS MBS NK TF, PF        

Wilson and O'Connor (1997) 

Wilson et al. (1998) 

P 

S 
QS MBS NK TF        

Kim (1998) S QS MBS NK TF, PF        

Zhu et al. (1999) 

Chen et al. (2001) 

Zhu and Chen (2004) 

S QS MBS NK TF 
 

 

 

  

 

 

 

   

Kwak et al. (2000) S QS MBS NK TF        
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Table 1.1 (continued) 
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Piazza and Delp (2001) S D MBS LL TF, PF        

Donahue et al. (2002) S QS FEM NK TF        

Dhaher and Kahn (2002) S QS MBS NK TF, PF        

McLean et al. (2003) S D MBS LL TF        

Bei and Fregly (2004) S D MBS NK, AK TF        

Caruntu and Hefzy (2004) S D MBS NK TF, PF        

Mun and Lee (2004) S D MBS NK TF        

Elias et al. (2004) 

Elias and Cosgarea (2007) 
S QS FEM NK PF        

Fernandez and Hunter (2005) S QS FEM NK PF        

Halloran et al. (2005) S QS FEM AK TF, PF        

Besier et al. (2005) S QS FEM NK PF        

Küçük (2006) P D MBS NK TF        

Fukunaga et al. (2008) S D MBS AK TF, PF        

Akalan et al. (2008) S D MBS NK TF        

Guo et al. (2009) S QS FEM NK TF, PF        

Farhat et al. (2010) S D OPT LL TF        

Lin et al. (2010) S D MBS AK TK        

Machado et al. (2010) P D MBS NK TK        

Guess et al. (2010, 2011); Guess 
(2012); Stylianou et al. (2012). 

S D HYB NK TF, PF        

It is worth noting that some researchers dedicated their investigation on 

comparing and/or validating existing models and modeling approaches, instead of 

developing new models of the knee joint. Some examples of these studies are the works 

by Li et al. (1997), Koo and Andriacchi (2007), Halloran et al. (2008), Pérez-González 

et al. (2008) and Machado et al. (2011). Li et al. (1997) performed a comparative study, 

where the pressure distribution along the contact surface of an articulating joint model 

was analyzed using different numerical and analytical methods, namely (i) the rigid 

body spring model (also known as EFM); (ii) the finite element method; (iii) the 

simplified elasticity solution (SES); and (iv) the modified Hertz model (mHM). Figure 

1.34 shows a simplified articular joint model introduced by Li et al. (1997), in which it 

is visible the differences on articular joint model when this system is modeled with 

distinct contact approaches. The FEM and mHM methods model an articular joint as 
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interposing elastic layers, while the EFM and SES methods assume a simplified joint 

with a rigid convex indenter on an elastic concave surface. Within this study, Li et al. 

(1997) concluded that the EFM, in comparison with the other three methods, is 

relatively simple and effective in predicting joint contact pressure under symmetric and 

non-symmetric loading, and is also computationally efficient.  

    

(a) (b) (c) (d) 

Figure 1.34 Simplified articular joint model presented by Li et al. (1997) {Adapted from Li et al. 

(1997) with Elsevier permission}. (a) A rigid ball covered by an elastic layer in contact 

with an elastic layer supported by a rigid foundation; (b) A ball in contact with a single 

elastic layer; (c) EFM model of the ball-socket joint; (d) An axisymmetric FEM-mesh for a 

non-conforming joint model. 

Koo and Andriacchi (2007) developed a comparative study to evaluate the 

influence of the global functional loads and the local contact anatomy on articular 

cartilage thickness at the knee. In this study, the articular surfaces are modeled as two 

semi-ellipsoids and the medial/lateral contact pressure ratio was calculated using 

elliptical Hertzian contact stress theory. The results reported by Koo and Andriacchi 

(2007) revealed that contact pressure is higher in the lateral than medial compartments 

and cartilage thicker in the lateral than medial compartments. Within this work, Koo 

and Andriacchi (2007) measured the radii of femoral and tibial surface of medial and 

lateral compartments in a weight-bearing position by means of 3D-models, which were 

built based on bilateral knee MRI obtained from eleven young healthy adults with no 

history of knee injury. Figure 1.35 depicts the average radii in mm, of femoral and tibial 

cartilage in the medial-lateral (ML) and anterior-posterior (AP) direction in the lateral 

and medial compartments. In this study, Koo and Andriacchi (2007) concluded that the 

femoral cartilage had convex surfaces in the medial and lateral compartments in both 

AP and ML directions, while the tibial cartilage had mostly concave surfaces, except for 

the AP direction in the lateral compartment. According to these authors, tibiofemoral 

contact surfaces conformed best (convex-concave surfaces contact with similar radii) in 

the ML direction in the medial compartment and worst (convex-convex surfaces 

contact) in the AL direction in the lateral compartment.  
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(a) (b) (c) 

Figure 1.35 Average radii in mm of femur and tibia articular surfaces: (a) Coronal view; (b) Lateral 

view; (c) Medial view {Adapted from Koo and Andriacchi (2007) with Elsevier 

permission}. 

Also in 2008, Pérez-González et al. realized that different models have been used 

in the literature for the simulation of articular contact in knee joint models, but that there 

was a lack of systematic comparisons of the models applied to simulate a common 

contact scenario. According to Pérez-González et al. (2008), these kinds of studies are 

of paramount importance and provide relevant information about the accuracy and 

suitability of the contact approaches for application in models of the artificial knee. 

Therefore, these authors performed a comparative study using the Herz model (HM), 

the EFM, and the FEM models to evaluate the contact forces at an artificial knee. In this 

work, it was concluded that EFM offers some advantages when compared with that of 

the HM for its application to realistic prosthetic surfaces and when compared with the 

FEM in computational time. Nonetheless, Pérez-González et al. (2008) proved also that 

EFM-based predictions can differ from FEM-based estimations in certain 

circumstances. To overcome this issue a new modified elastic foundation model 

(mEFM) was proposed. This novel approach maintains basically the simplicity of the 

original model while producing much more accurate results. According to Pérez-

González et al. (2008), mEFM offered a good settlement between computation time and 

accuracy for applications where FEM models become cumbersome as a consequence of 

the preprocessing or computation times. 

Machado et al. (2011) presented other comparative study with the purpose to 

evaluate the influence of the contact approach on the dynamic response of the knee 

joint. For this purpose, a multibody knee model was utilized, which was previously 

developed by the same research group (Machado et al., 2010). Hertz, Hunt and 

Crossley, and Lankarani and Nikravesh force models were compared for equivalent 

contact conditions. Later, Machado et al. (2012) extended this comparative study by 
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simulating the dynamic response of the same knee model with a different contact force 

law proposed by Flores et al. (2011). In their work, Machado et al. (2011) did not 

consider only the contact force law as a study variable, but also the contact geometry 

and material properties. Regarding the contact geometry, since the tibial plateaus do not 

exhibit the same conformality in both knee compartments, three contact scenarios were 

tested, namely convex-convex contact, convex-concave contact, and convex  

sphere-plane contact. Furthermore, in order to examine healthy, pathological, and 

artificial knee response to the same contact loads, the contact material properties and 

surfaces thickness were considered as variables (Machado et al., 2011).  

1.3 Scope and objectives 

The main objective of this work is to develop a computational multibody model 

able to describe how the biologic structures of the knee joint interact to generate 

movement and, at the same time, provide stability to the whole body. For this purpose, 

specific goals related to the process of modeling biologic systems for multibody 

dynamics have been established. These specific goals are listed as follows: 

(i) To study the multibody system formulation, especially the issues associated 

with the dynamic simulation of human motion; 

(ii) To understand the general issues on contact modeling and analysis, in 

particular the geometrical features and the constitutive force laws; 

(iii) To develop a multibody 2D-model of the human knee for dynamic analysis, 

giving special attention to the process of modeling the ligaments and the 

articular contacts. 

(iv) To investigate the influence of contact modeling features on the dynamic 

response of the knee multibody model;  

(v) To develop an efficient computational algorithm for contact analysis of 

general multibody system with contact, such as the human knee joint. 
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1.4 Structure of the thesis 

The present thesis is organized in eight Chapters: (1) Introduction; (2) Human 

knee joint: anatomy and function; (3) Multibody dynamics methodology for 

biomechanical modeling; (4) Contact modeling and analysis; (5) A multibody  

2D-model of the human knee joint; (6) A multibody 3D-model of the human knee joint; 

(7) Knee joint modeling using OpenSim software; (8) Concluding remarks. It is 

important noting that each Chapter comprises its own references. 

In Chapter One, the general motivation for this research work is presented and a 

literature review of the biomechanical models of the knee joint is provided. The 

objectives and contributions of the present study are also offered.  

Chapter Two focuses on the human knee joint, starting with an overview of the 

terminology used for human movement. The structural anatomy of the human knee joint 

is widely described in this Chapter, as well as the principal movements of this human 

articulation. Chapter Two provides a brief explanation of the ultrastructure and 

mechanical behavior of the principal biologic tissues that surround the knee, namely 

bone, articular cartilage, menisci, ligaments, tendons and muscles. Knee joint 

pathologies and replacement systems are also revised in this Chapter. 

In the third Chapter, the multibody system formulation used for biomechanical 

modeling is described. First of all, the concept of multibody system and its applications 

is presented. Then, the different types of coordinates that can be employed in multibody 

system approaches are summarized. The kinematic constraints that compose a 

multibody system are revised throughout this Chapter. Within Chapter Three, the 

overall mathematical formulation associated with constrained multibody system is 

provided, namely the equations of motion and their numerical solutions. In this Chapter, 

a human multibody model is considered as a demonstrative example of application. 

Using this biomechanical model, the influence of the Baumgarte stabilization method 

on keeping the constraint violations under control is considered. 

Chapter Four deals with the contact-impact phenomena and the methodologies 

utilized in multibody dynamics to solve and analyze these problems. An overview of the 

existing techniques for geometric detection of contact events is provided throughout this 

Chapter. The most common elastic and dissipative laws used to evaluate normal contact 
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forces are also revised. Within this Chapter, a slider-crank mechanism experiencing two 

frictionless impacts with an external free sliding block is used as application example.  

In the fifth Chapter, a multibody 2D-model of the knee joint is proposed. Firstly, 

the techniques utilized to define the geometric features of the knee joint are presented. 

The contact methodologies adopted to develop this model are explained. The 

mathematical formulation utilized to characterize the nonlinear behavior of the 

ligaments is also described. Computational simulations were performed using the 

proposed knee model, being the obtained results included in this Chapter. Within 

Chapter Five, a study about the influence of contact modeling features on knee 

dynamics is also presented. 

Chapter Six describes a multibody 3D-model of the human knee joint for contact 

dynamics. Firstly, a generic methodology to represent and generate freeform contact 

surfaces is offered. Then, the process of geometric modeling of the knee articular surfaces 

is explained. An efficient methodology to deal with spatial contact problems is proposed 

throughout this Chapter. Some computational simulations using this methodology were 

performed and some of the results are discussed.  

Chapter Seven presents a modeling framework explaining how to build a knee joint 

model in OpenSim software. The limitations of using this software to contact modeling 

and analysis are highlighted throughout Chapter Seven.  

Finally, the main conclusions of the present work and some suggestions for future 

research are offered in Chapter Eight.  

1.5 Contributions of this work 

Within this work, a multibody approach to the contact dynamics is presented and 

applied to the knee joint. Two models of the human knee are developed: a 2-D and a  

3-D model. Moreover, specific formulations are implemented into the multibody 

dynamics algorithm in order to account for all relevant physical phenomena inherent to 

biomechanical systems with contact problems, such as the human knee. 

In what concerns with 2D-model, it can be highlighted five modeling procedures: 

(i) geometrical representation of contacting outlines by the use of curve fitting 

techniques; (ii) development of a methodology for locate the contact points between 
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two contacting bodies with freeform convex profiles; (iii) mathematical description of 

the nonlinear behavior of ligaments (iv) application of distinct formulations for the 

contact detection between two spherical bodies with conformal and non-conformal 

configurations; (v) implementation of a double layer-based contact model that permits 

force calculations on the contacting surface and subsurface. 

Regarding the 3D-model, some novel formulations can be pointed out: (i) 

geometrical description of contacting surfaces by means of parametric functions; (ii) 

organization of the geometric data into a lookup table for improving the contact point 

searching and computational efficiency; (iii) development of a contact approach that 

allows keeping and updating the small part of the geometric data that stores in memory, 

reducing thereby the amount of computational memory utilized and, enhancing the 

efficiency of the contact detection. 

In a broad sense, the main features that characterize and distinguish the proposed 

model of the knee joint are: (i) the system is a dynamic one, since it relates the body 

forces with the motion produced, and hence it is more appropriate for studying human 

daily activities compared with quasi-static models; (ii) it does not contain any 

conventional kinematic joint and, hence, is capable of representing all modes of knee 

motion; (iii) the model explicitly relates the knee mechanical properties and the contact 

forces produced; (iv) the system is simple and easy to implement in other types of 

biomechanisms, such as those that consider whole-body gross motion. Furthermore, the 

procedure for defining contact geometries and detecting contacts is rather general and 

could be used for modeling any MBS system encountering a contact. It is worth noting 

that throughout this work several modeling features associated with contact-impact 

events are investigated, namely the constitutive contact law used to evaluate the contact 

forces, the convexity of the contact geometries, and the presence of a second contact 

layer. The study of the influence of these modeling variables on the dynamic response 

of the knee joint model is an original contribution of this thesis. The developed coding 

strategies to enhance the computational efficiency of the proposed methodologies 

represent also an added value of this work.  
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The knee joint (latin: articulatio genus) is the largest synovial joint in the human 

body, and of all joints possesses the most voluminous synovial cavity. It is a 

complicated system that interconnects four bones with ligaments, muscles and  

intra-articular structures, such as menisci and hyaline cartilage. These elements are 

generally capable of bearing and transferring load during various physical activities. 

Being the intermediate joint of the lower limb, the knee has to support the body weight 

and to provide stability to the whole body. Nevertheless, the knee joint has also to 

promote movement between thigh and shank in order to allow the human subject to 

walk. From a mechanical viewpoint, the knee ensures two almost mutually exclusive 

conditions: stability and mobility (Wismans, 1980; Hirokawa, 1993; Yang et al., 2010). 

The present Chapter includes an overview of concepts and terms used in 

biomechanics, as well as a description of knee anatomy. The principal movements of 

this articulation and some biomechanical features are revised. The mechanical behavior 

of human knee joint and its surrounding tissues are also presented. Finally, some 

attention is given to the knee joint pathologies and to knee implant models.  
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2.1 Basic terminology for human movement 

In biomechanics, specific terms are employed to describe spatial relations between 

different parts of the body. This terminology is based on the anatomical position in 

which a person is standing upright, with the feet together and the arms by the sides of 

the body with the palms forward. Figure 2.1 illustrates this standing configuration, as 

well as the three primary planes and the terms describing relations between different 

parts of the body. The sagittal plane is the only plane of symmetry. This plane divides 

the human body into left- and right-hand sides. As it can be observed in Figure 2.1, the 

transverse plane passes through the hip bone, dividing it into superior and inferior 

sections. The frontal plane, also called coronal plane, divides the human body into 

anterior and posterior sections (Tözeren, 2000; Whittle, 2007). Within a single part of 

the body, four additional terms are utilized to describe relations, which are depicted in 

Figure 2.2. Medial means towards the midline of the body, while lateral means away 

from the midline of the body. Proximal means towards the rest of the body, while distal 

means away from the rest of the body (Whittle, 2007).  

 
Figure 2.1 The anatomical position, with three reference planes and six fundamental directions 

{Adapted from Whittle (2007) with Elsevier permission}. 
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(a) (b) (c) (d) 

Figure 2.2 Four anatomical directions: (a) Medial; (b) Lateral; (c) Proximal; (d) Distal {Adapted from 

Hannon (2005) with Elsevier permission}. 

Standard terminology is also used to classify movement configurations of the 

various parts of the human body. Most joints can only move in one or two of the three 

primary planes. The directions of these motions for the knee are shown in Figure 2.3. 

According to Evans (1986), the movements of the human joints can be described as 

active, conjunct or passive. The active joint motion is voluntary, while the conjunct 

movements are the consequence of other movements and are due to the geometry of the 

articulating surfaces and the presence of surrounding ligamentous structures. The 

passive movements are those that are performed by an examiner with the purpose of 

evaluating the laxity of the joint.  

  
(a) (b) 

Figure 2.3 Movements about the knee joint: (a) Frontal view; (b) Lateral view {Adapted from Whittle 

(2007) with Elsevier permission}. 

Flexion and extension movements are considered active movements that take 

place in the sagittal plane. Flexion is a rotational motion that brings two adjoining long 

bones closer to each other, such as occurs in the flexion of the leg. Extension denotes 

rotation in the opposite direction of flexion. If the movement of extension continues 

past the anatomical position, it is called hyperextension (Tözeren, 2000; Whittle, 2007).  
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Internal-external rotation takes place in the transverse plane and are also called 

medial and lateral rotation, respectively. These movements are influenced by the 

position of the joint in the sagittal plane and generally can occur only with the joint in 

some amount of flexion (Tözeren, 2000; Mader, 2005; Whittle, 2007).  

Abduction and adduction are the movements of the limbs in the frontal plane, 

which are similarly affected by the amount of joint flexion. Abduction is movement 

away from the longitudinal axis of the body whereas adduction is moving the limb back, 

as Figure 2.3 depicts (Tözeren, 2000; Whittle, 2007). 

Furthermore, other terms are used to describe the motions of the joints or body 

segments, namely pronation-supination, varus-valgus, among others. The pronation and 

supination movements correspond to the rotations about the long axis of the forearm or 

foot. The pronation of both hands brings the thumbs together, while the supination 

brings the little fingers together (Whittle, 2007). In turn, the varus-valgus describes an 

angulation of a joint towards or away from the midline of the body, respectively.  

Varus-valgus is an example of a passive movement. For more information on the 

anatomical classification of human movement, the interested reader is referred to the 

work by Mader (2005) and Whittle (2007). 

2.2 Structural anatomy 

Human body has different types of articular joints, which according to its mobility 

can be divided in three main groups: synarthroses (or fibrous joints), amphiarthroses (or 

cartilaginous joints) and diarthroses (or synovial joints). The synarthroses, such as the 

skull sutures, are immovable. The amphiarthroses are connected by fibrocartilage, as in 

the intervertebral discs, or by hyaline cartilage, as in the costal cartilages that join the 

ribs to the sternum. These joints are slightly movable. Finally, the diarthroses are 

separated by a cavity and are freely movable. The joint cavity or capsule is lined by a 

synovial membrane, which produces synovial fluid, a lubricant for the joint. The knee 

joint is an example of a diarthrose or synovial joint. The synovial joints can be also 

classified in subcategories based on the architecture and topology of the surfaces 

involved, and on the types of movement permitted. These subcategories of synovial 

joints include ball and socket joints, ellipsoidal joints, pivot joints, hinge joints, saddle 

joints, planar joints and condyloid joints (Mader, 2005). 
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The knee is a synovial joint composed by four bones, namely femur, tibia, patella 

and fibula. The femur is the thigh bone and is the longest bone of the human body. The 

tibia is the second longest bone of the human body and is a shank bone, as well as the 

fibula. The tibia is located medially and the fibula is situated in the lateral side. The 

patella, also called kneecap, has a triangular shape and is the largest sesamoid bone in 

the human body. It is supported superiorly by the quadriceps tendon and inferiorly by 

the patella ligament. The patella is located anteriorly to the trochlear groove of the 

femur with the apex oriented inferiorly (Mason et al., 2008). The four bones articulate 

with each other forming three joints: the tibiofemoral, the patellofemoral and the 

superior tibiofibular. These three articulations are illustrated in Figure 2.4. 

   
(a) (b) (c) 

Figure 2.4 Three joints of the human knee articulation: (a) Tibiofemoral joint; (b) Patellofemoral joint; 

(c) Superior tibiofibular joint {Adapted from Hamill and Knutzen (2009) with Lippincott 

Williams & Wilkins permission}. 

Figure 2.5a shows the distal end of the femur that composes the tibiofemoral joint. 

This bony structure exhibits two large convex surfaces named condyles. The medial and 

lateral condyles are separated by the trochlear (or patellar) groove and the intercondylar 

notch (or fossa) in the anterior and posterior sides, respectively. The femoral condyles 

are asymmetric and present some geometrical differences. The lateral condyle has a 

larger surface area and projects more posteriorly. This condyle is flatter and more 

prominent in the anterior direction in order to hold the patella in the right place. The 

medial condyle is longer in the anterior-posterior direction and projects more distally 

and medially. Instead of being aligned with the femur as the lateral condyle, the medial 

condyle is in alignment with the tibia (Hamill and Knutzen, 2009). 

The femoral condyles lie on the tibial plateaus, which are divided by a ridge of 

bone named the intercondylar eminence, as Figure 2.5b illustrates. The intercondylar 

eminence has a key role of centering the joint and stabilizing the bones during the 

weight bearing (i.e., when a single lower limb supports all the body weight). The tibial 

plateaus are distinct in shape and conformality. On one hand, the lateral tibial plateau 
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Patellofemoral joint
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exhibits a circular and convex surface. On the other hand, the medial tibial plateau is 

slightly concave being therefore conformal with the convex medial condyle of the 

femur. Moreover, the medial plateau presents an elliptical shape, larger and longer in 

the anterior-posterior direction as the medial femoral condyle. Thus, the medial tibia 

and femur fit perfectly together and the lateral tibia and femur do not. These 

geometrical differences are some of the features that make the knee articulation a 

unique joint, hard to model and replace. For example, the non-conformality of the 

lateral femur and tibia is one of the determinants of rotation because it lets the lateral 

condyle to undergo a greater excursion (i.e. movement from and back to the midline) 

with the flexion and extension motion (Hamill and Knutzen, 2009).  

  
(a) (b) 

Figure 2.5 (a) Distal femur; (b) Proximal tibial {Adapted from Dargel et al. (2011) with Elsevier 

permission}. 

Similarly to other articulating bone ends of diarthroses, the distal femur and the 

proximal tibia are covered by a thin (1-6 mm) dense, translucent, white connective 

tissue designated hyaline articular cartilage. The articular cartilage is a very specialized 

tissue precisely suited for withstanding high joint loads without failure during an 

average individual's lifetime. In synovial joints, articular cartilage has two primary 

functions: (i) to distribute joint loads over a wide area, thus decreasing the stresses 

sustained by the contacting joint surfaces, and (ii) to allow relative movement of the 

opposing joint surfaces with minimal friction and wear (Nordin and Frankel, 2001). 

Besides the hyaline articular cartilage, two c-shaped structures lie between the 

tibia and the femur, as depicted in Figure 2.6. These structures are named menisci and 

are composed by fibriocartilage. The lateral meniscus occupies a larger percentage of 

area than the medial meniscus and is capable of moving more than twice the distance of 

the medial meniscus in the anterior-posterior direction (Hamill and Knutzen, 2009). The 

primary functions of the menisci are: (i) to improve joint stability by extending the 

contact surface on the tibia, (ii) to participate in shock absorption by transmitting half of 
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Medial condyleLateral condyle
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the weight-bearing load in full extension and a significant portion of the load in flexion, 

(iii) to protect the underlying hyaline articular cartilage and subchondral bone, (iv) to 

reduce the stresses on the contact sites, and (v) to enhance lubrication of the joint by 

acting as a space-filling mechanism and allowing dispersal of more synovial fluid to the 

surface of the tibia and the femur bones (Hamill and Knutzen, 2009).  

The distal femur and the proximal tibia are connected by ligaments, which prevent 

the excessive motion and augment the mechanical stability of the joint (Nordin and 

Frankel, 2001). These ligaments guide the knee motion by maintaining the relative 

position of the tibia and femur so that contact is appropriate and at the right time. The 

ligaments support the joint passively as they are loaded in tension only, and serve as a 

backup to muscles (Hamill and Knutzen, 2009). In Figure 2.6a, the primary ligaments of 

the tibiofemoral joint are represented, namely the anterior cruciate ligament (ACL), the 

posterior cruciate ligament (PCL), the medial collateral ligament (MCL) and the lateral 

collateral ligament (LCL). It is important to mention that the MCL and the LCL are also 

named as tibial collateral ligament and fibular collateral ligament, respectively. 

 
Figure 2.6 Knee joint and its surrounding ligaments and intra-articular structures {Adapted from 

Kamekura et al. (2005) with Elsevier permission}. 

The collateral ligaments run along the sides of the knee and limit the sideways 

motion of the knee. MCL support the knee against any valgus force providing 78 

percent of total valgus restraint, while LCL offers the main resistance to varus force, 

about 69 percent of the varus restraint. Both collateral ligaments are taut in full 

extension even though the anterior portion of the MCL is also stretched in flexion. In 

full flexion, MCL and LCL reduce their lengths by approximately 17 and 25 percent, 

respectively. Furthermore, MCL offers some resistance to both internal and external 

rotation (Woo et al., 1999; Hamill and Knutzen, 2009).  
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The cruciate ligaments are intrinsic, lying inside the joint in the intercondylar 

space. These ligaments control both anterior-posterior and rotational motions of the 

human knee. The ACL is 40 percent longer than the PCL. Both cruciate ligaments 

stabilize, limit rotation, and cause sliding of the condyles over the tibia in flexion. They 

both also offer some stabilization against varus and valgus forces. The cruciate 

ligaments offer the main resistance to the movement of the tibia relative to the femur on 

the sagittal plane. The ACL restrains 85 percent of the anterior movement of the tibia. 

The PCL limits 95 percent the movement of the tibia on the posterior direction (Woo et 

al., 1999; Hamill and Knutzen, 2009).  

As far as the ACL length is concerned, it elongates by about 7 percent as the knee 

moves from extension to 90 degrees of flexion and maintains the same length up 

through maximum flexion. If the joint is internally rotated, the insertion of the ACL 

moves anteriorly, elongating the ligament slightly more. Different parts of the ACL are 

taut in different knee positions. Nonetheless, as a whole, the ACL is considered to be 

taut in the extended position (Woo et al., 1999; Hamill and Knutzen, 2009).  

The PCL decreases in length and slackens by 10 percent at 30 degrees of knee 

flexion and then maintains that length throughout flexion. The PCL increases in length 

by about 5 percent with internal rotation of the joint up to 60 degrees of flexion and then 

decreases in length by 5 to 10 percent as flexion continues. The ligament is not affected 

by external rotation in the joint, maintaining a fairly constant length. It is maximally 

strained through 45 to 60 degrees of flexion. As with the ACL, the fibers of the PCL 

participate in different functions. However, as a whole, the PCL is taut in maximum 

knee flexion (Woo et al., 1999; Hamill and Knutzen, 2009). 

Another important support structure surrounding the knee is the joint capsule, 

which is present in all human diarthroses. The joint capsule of the knee joint, also 

designated as capsular ligament, consists of an external fibrous layer, or fibrous capsule, 

and an internal synovial membrane or synovium, separated by fatty deposits anteriorly 

and posteriorly. The femur, the tibia and the patella are kept together by the fibrous 

capsule, which enclose a single, large joint cavity between the bones, as depicted in 

Figure 2.7. The synovial membrane, which lines inside of the joint capsule, produces an 

oily fluid named synovial fluid.  



Human knee joint: anatomy and function 2-9 

 
Figure 2.7 Longitudinal cross-section view of the human knee joint {Adapted from Gerwin et al. 

(2006) with Elsevier permission}. 

The synovial fluid plays as a lubricant in order to keep the articular surfaces as 

frictionless as possible. This fluid is normally pale yellow and viscous and is only 

present in small amounts, being its composition similar to blood plasma. The synovial 

membrane is attached to the margins of the articular surfaces and to the superior and 

inferior outer margins of the menisci. The cruciate ligaments, which are attached to the 

intercondylar region of the tibia below and the intercondylar fossa of the femur above, 

are outside the joint cavity, but enclosed within the fibrous capsule (Mader, 2005).  

The muscles that surround the knee are responsible for the movements and 

stability of the joint. These muscles are illustrated in Figure 2.8 and listed in Table 2.1. 

 
Figure 2.8 Principal muscles involved with the knee joint {Adapted from Teiz and Graney (2003) with 

the permission of University of Washington}. 
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Most muscles are attached to different bones at their two ends and cross over 

one joint, the monarticular muscles, or two joints, the biarticular muscles, or even 

several joints, the polyarticular muscles. In many cases, the attachment to one of the 

bones covers a broad area, whereas at the other end it narrows into a tendon. Ligaments 

and tendons are similar and frequently confused. As a general rule, ligaments connect 

two bones together, whereas tendons connect muscles to bones (Whittle, 2007). 

Table 2.1 Muscles acting on the knee (Whittle, 2007). The meaning of the abbreviations is as follows: 

anterior (ant), posterior (post), superior (sup), inferior (inf), medial (med) and lateral (lat). 

 Muscles Origin Insertion Functions 

 Tensor fascia lata 

(biarticular) 

Pelvis close to the ant. sup. 

iliac spine. 

Iliotibial tract Hip and Knee 

abductor. 
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Rectus femoris 

(biarticular) 

Ant. inf. iliac spine of the 

pelvis. 

Quadriceps 

tendon 

Hip flexor; Knee 

extensor. 

Vastus medialis 

(monoarticular) 

Upper part of the femur on 

the med. side. 

Quadriceps 

tendon 

Knee extensor. 

Vastus intermedius 

(monoarticular) 

Upper part of the femur on 

the ant. side. 

Quadriceps 

tendon 

Knee extensor. 

Vastus lateralis 

(monoarticular) 

Upper part of the femur on 

the lat. side. 

Quadriceps 

tendon 

Knee extensor. 
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Biceps femoris 

(biarticular) 

Long head – ischial 

tuberosity; 

Short head – middle of the 

femur shaft. 

Lat. tibial plateau Hip extensor; 

Knee flexor. 

Semitendinosus 

(biarticular) 

Ischial tuberosity of the 

pelvis. 

Med. tibial 

plateau 

Hip extensor; 

Knee flexor. 

Semimembranosus 

(biarticular) 

Ischial tuberosity of the 

pelvis. 

Med. tibial 

plateau 

Hip extensor; 

Knee flexor. 

P
es
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n
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st
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Gracilis  (biarticular) Pubis at the med. side of 

the thigh. 

Back of the tibia 

on its med. side. 

Hip adductor; 

Knee flexor. 

Sartoris (biarticular) Ant. sup. iliac spine of the 

pelvis and winding around 

the front of the thigh. 

Front of the tibia 

on its med. side. 

Hip flexor. 

 
Popliteus Lat. condyle of femur and 

lat. meniscus. 

Post. surface of 

tibia, sup. to 

soleal line. 

Unlock the knee by 

internally rotating. 

 
Gastrocnemius 

(biarticular) 

Back of the med. and lat. 

condyles of the femur. 

Achiles tendon Knee flexor; 

Plantarflexor. 
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At the knee joint, three muscle groups can be distinguished: the quadriceps, the 

hamstrings and the pes anserinus. The quadriceps comprises four distinct muscles, 

namely the rectus femoris, vastus medialis, vastus lateralis and vastus intermedius, 

being responsible for the knee extension. The muscle group that contributes to knee 

flexion is the hamstrings, consisting of the biceps femoris, semimembranosus and 

semitendinosus. In turn, the pes anserinus muscles, that is, the sartorius, gracilis and 

semimembranosus are dynamic medial stabilizers, which contribute for knee flexion and 

internal rotation (Margo et. al., 2010). 

The quadriceps muscle group is one of the strongest muscle groups in the human 

body, being three times stronger than its antagonistic muscle group, the hamstrings. The 

quadriceps femoris contributes to the stability of the patella via the patellar tendon. 

Furthermore, the quadriceps muscle group pulls the menisci anteriorly in extension via 

the meniscopatellar ligament. When the quadriceps muscles contract, they reduce the 

strain in the MCL and work with the PCL to prevent posterior displacement of the tibia. 

The quadriceps muscles are antagonistic to the ACL (Hamill and Knutzen, 2009). 

The only biarticular muscle of the quadriceps group is the rectus femoris. This 

muscle does not significantly contribute to knee extension force unless the hip joint is in 

a favorable position. It is limited as an extensor of the knee if the hip is flexed and is 

facilitated as a knee extensor if the hip joint is extended. In walking and running, the 

rectus femoris contributes to the extension force in the toe-off phase when the thigh is 

extended. Likewise, in kicking, the rectus femoris activity is maximized in the 

preparatory phase as the thigh is brought back into hyperextension with the leg in 

flexion (Hamill and Knutzen, 2009; Margo et. al., 2010).  

The vastus lateralis is the largest and strongest muscle of the quadriceps group. It 

applies a lateral force to the patella and pulls medially the vastus medialis. The vastus 

medialis may be divided into the vastus medialis obliquus and the vastus medialis 

longus. The vastus medialis obliquus fibers arise more distally and are more oblique in 

orientation, varying from 55 to 70 degrees relative to the longus fibers (Margo et. al., 

2010). Although the vastus medialis as a whole is an extensor of the knee, the vastus 

medialis obliquus is also a medial stabilizer of the patella (Hamill and Knutzen, 2009). 

The action of the hamstrings can be quite complex because they are biarticular 

muscles that work to flex the knee and to extend the hip as well. The hamstrings operate 
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most effectively as knee flexors from a position of hip flexion by increasing the length 

and tension in the muscle group. Therefore, the hamstring group is very active with the 

limb off the ground, working frequently to slow a rapidly extending leg. The greatest 

force of the hamstrings is generated at 90 degrees of flexion. The hamstrings work with 

the ACL to restraint anterior tibial displacement. These muscles are also knee rotators 

because of their insertions on the sides of the knee joint (Hamill and Knutzen, 2009). 

The biceps femoris has two heads connecting on the lateral side of the knee, 

namely the long head and the short head. This muscle offers lateral support to the joint 

and also produces external rotation of the lower leg. In turn, the semimembranosus pulls 

the meniscus posteriorly in flexion and also contributes to the production of internal 

rotation in the joint (Hamill and Knutzen, 2009).  

The other medial hamstring, the semitendinosus, is part of the pes anserinus 

muscular attachment on the medial surface of the tibia. It is the most effective flexor of 

the pes anserinus muscle group, contributing 47 percent to the flexion force. The 

semitendinosus works with both the ACL and the MCL in supporting the knee joint and 

also contributes to the generation of internal rotation (Hamill and Knutzen, 2009).  

The two remaining pes anserinus muscles, the sartorius and the gracilis, contribute 

in 19 and 34 percent to the flexion strength, respectively. The popliteus is a weak flexor 

that supports the PCL in deep flexion and draws the meniscus posteriorly. Finally, the 

two-joint gastrocnemius contributes to knee flexion, especially when the foot is in the 

neutral or dorsiflexed position. The pes anserinus muscles, along with the 

semimembranosus and the popliteus, contribute also for the internal rotation of the tibia. 

Only one muscle, the biceps femoris, contributes significantly to the generation of 

external rotation of the tibia. Both internal and external rotations are necessary 

movements associated with function of the knee joint (Hamill and Knutzen, 2009). 

Figure 2.4b shows the patellofemoral joint, which corresponds to the articulation 

of the posterior patella with the trochlear groove of the distal femur, and is considered a 

saddle joint. As depicted in Figure 2.9, the patella is held in place by the quadriceps 

tendon that continues as a ligament, i.e. the patellar ligament, which attaches to the 

tibial tuberosity. A vertical ridge of bone separates the underside of the patella into 

medial and lateral facets, each of which can be further divided into superior and inferior 

facets. A fifth facet, the odd facet, lies on the far medial side of the patella, as Figure 2.9 
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illustrates. The main functions of the patella are: (i) to improve the efficiency of the 

extensor forces through the entire knee flexion range, (ii) to centralize the forces of the 

different quadriceps muscle bellies, and (iii) to provide a smooth sliding mechanism for 

the quadriceps muscle with little friction due to its cartilage cover. The patella offers 

also a protecting shield to the knee (Heegaard et al., 1995; Hamill and Knutzen, 2009). 

 
Figure 2.9 Patella and its five facets {Adapted from Hamill and Knutzen (2009) Lippincott Williams 

& Wilkins permission}. 

The third articulation of the knee is the superior tibiofibular joint, represented in 

Figure 2.4c, which is a small joint between the head of the fibula and the lateral tibial 

plateau. Radakovich and Malone (1982) referred to this joint as “the forgotten joint”, 

because it had been ignored by clinicians and anatomist for a long time. According to 

these authors, flexion and extension of the knee do not occur without tibial rotation and 

this motion is quite restricted. Therefore, to accommodate internal and external rotatory 

movements of the tibia, the superior tibiofibular joint provides a compensatory motion 

(Radakovich and Malone, 1982). The superior tibiofibular articulation is a gliding joint 

that moves anterior-posteriorly, inferior-superiorly, and rotates in response to 

movements of the tibia or the foot. The primary functions of this joint are: (i) to 

dissipate the torsional stresses applied at the ankle joint and (ii) to dissipate the lateral 

tibial bending movements (Radakovich and Malone, 1982; Hamill and Knutzen, 2009). 

2.3 Principal movements and its characteristics 

Knee joint motion is a result of the bony geometry, the soft-tissue structures (such 

as ligaments and menisci), the joint loading and the muscle activation. The intrinsic 

anatomy of the human knee provides for movement with six degrees-of-freedom. 
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Normal knee function is achieved in various combinations of rotation and translation of 

the femur with respect to the tibia. The primary motions of the knee are the flexion and 

extension movements on the sagittal plane. The knee joint describes also secondary 

motions, including internal-external rotation and abduction-adduction, which play an 

key role in overall function (Dyrby and Andriacchi, 2004). The flexion and extension 

movements at the knee joint involve a combination of rolling and sliding called 

“femoral roll back”. The full extension generally occurs at 0 degrees, full flexion at 140 

degrees and the average limit of hyperextension is 5 degrees. In full flexion, the 

posterior, more curved surfaces of the femoral condyles are located towards the 

posterior periphery of the tibial plateaus. As the joint moves from flexion to extension, 

the femoral condyles roll forwards or slide in the menisci as the menisci themselves 

slide across the tibial plateaus until full extension is reached (Ramson, 1995).  

The instant center technique is a simpler method that can be utilized to analyze 

planar joint motions. As a body rotates about other body, at any instant there is a point 

that does not have relative motion, that is, a point that has zero relative velocity. This 

point constitutes an instantaneous center of rotation, or instant center (IC). The instant 

center technique can be applied to the tibiofemoral joint in order to determine the 

pathway of the IC in the sagittal plane at this articulation. The normal pathway of the IC 

at the tibiofemoral joint during flexion-extension movement is a semi-circle trajectory, 

as Figure 2.10a depicts. Nonetheless, any internal derangement may influence the IC 

trajectory and, hence, it will be easily identified by the instant center technique. An 

abnormal IC pathway for a 35-year-old man with a bucket-handle derangement is 

illustrated in Figure 2.10b (Nordin and Frankel, 2001; Completo, 2006).  

  
(a) (b) 

Figure 2.10 (a) Semicircular instant center pathway for the tibiofemoral joint in a 19-year-old man with 

a normal knee; (b) Abnormal instant center pathway for a 35-year-old man with a bucket-

handle derangement {Adapted from Completo (2006) with Author’s permission}. 

IC pathway IC pathway
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The knee motion in the sagittal plane during level walking is ranged from 0 to 

approximately 67 degrees. At the beginning of the stance phase, i.e. at heel strike, the 

knee is in full or nearly full extension, as well as at the end of this phase of the gait 

cycle, that is, before the toe-off. The maximum knee flexion is observed during the 

middle of the swing phase (Nordin and Frankel, 2001). 

With the knee in full extension, rotation is almost completely restricted by the 

interlocking of the femoral and tibial condyles. The range of rotation increases as the 

knee is flexed, reaching a maximum at 90 degrees of flexion. With the knee in this 

position, external rotation ranges from 0 to approximately 45 degrees and internal 

rotation ranges from 0 to approximately 30 degrees. During gait, total rotation of the 

tibia with respect to the femur ranged from approximately 4 to 13 degrees. External 

rotation began during knee extension in the stance phase and reached a peak value at the 

end of the swing phase just before heel strike. In turn, internal rotation is reported 

during flexion in the swing phase (Nordin and Frankel, 2001; Completo, 2006). 

Beyond 90 degrees of flexion, the range of internal and external rotation 

decreases, mainly because the soft tissues restrict rotation (Ramson, 1995). The rotation 

occurring in the last 20 degrees of extension has been termed the “screw-home 

mechanism”. The screw-home mechanism is the point at which the medial and lateral 

condyles are locked to form the close-packed position for the knee joint. The  

screw-home mechanism moves the tibial tuberosity laterally and produces a medial shift 

at the knee. Some of the hypothetical causes of the screw-home movement are that the 

lateral condyle surface is covered first and a rotation occurs to accommodate the larger 

surface of the medial condyle or that the ACL becomes taut just before rotation, forcing 

rotation of the femur on the tibia. Finally, it is speculated that the cruciate ligaments 

become taut in early extension and pull the condyles in opposite directions, causing the 

rotation (Nordin and Frankel, 2001; Hamill and Knutzen, 2009).  

When the knee is in full extension, almost all motions in the frontal plane are 

precluded. Passive abduction and adduction increase with knee flexion up to 30 degrees, 

but each reaches a maximum of only a few degrees. With the knee flexed beyond 30 

degrees, motion in the frontal plane again decreases because of the limiting function of 

the soft tissues. During gait, the maximal abduction of the tibia is observed at heel strike 

and at the beginning of the stance phase, while maximal adduction occurs when the 

knee is flexed during the swing phase (Nordin and Frankel, 2001).  
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Values for the range of motion of the tibiofemoral joint in the sagittal plane during 

several common activities are presented in Table 2.2. It is worth noting that any 

restriction of knee motion can be compensated for by increases motion in other joints. 

An increased speed of movement requires a greater range of motion in the tibiofemoral 

joint. As the pace accelerates from walking slowly to running, progressively more knee 

flexion is needed during the stance phase (Nordin and Frankel, 2001; Completo, 2006). 

Table 2.2 Range of tibiofemoral joint motion in the sagittal plane during common activities (Nordin 

and Frankel, 2001). 

Activity Range of motion (knee flexion angle in degrees) 

Walking 0-67 

Climbing stairs 0-83 

Descending stairs 0-90 

Sitting down 0-93 

Tying a shoe 0-106 

Lifting an object 0-117 

The patellofemoral joint presents a gliding motion. From full extension to full 

flexion of the knee, the patella glides caudally approximately 7 cm on the femoral 

condyles. The medial and lateral condyles of the femur articulate with the patella from 

full extension to 140 degrees of flexion. Beyond 90 degrees of flexion, the patella 

rotates externally, and only the medial femoral condyle articulates with the patella. At 

full flexion, the patella sinks into the intercondylar groove (Nordin and Frankel, 2001). 

The patella is free to move in the extended position and can be shifted in multiple 

directions. Patellar movement is restricted in the flexed position because of the 

increased contact with the femur (Hamill and Knutzen, 2009).  

The patella enhances the effects of the quadriceps muscles regarding knee 

extension by increasing the moment arm of the quadriceps, as Figure 2.11a shows, 

especially in the earlier degree of flexion, from 30 percent near extension to 15 percent 

at 30 degrees of flexion (Grelsamer and Weinstein, 2001). Therefore, the patella is of 

paramount importance for the extensor apparatus because its presence minimizes the 

force differential generated by the quadriceps (Grelsamer and Weinstein, 2001). Also, 

the patella contributes indirectly to the global stability of the knee. If the patella is 

surgically removed (i.e., patellectomy), the patellar ligament lies closer to the center of 

motion of the tibiofemoral joint, as can be observed in Figure 2.11b. Acting with a 

shorter moment arm, the quadriceps muscles must produce even more force than is 

normally required. This increase in force may be beyond the capacity of the quadriceps 
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muscles in some patients, particularly those who have intra-articular disease or are 

advanced in age. Thus, a patellectomy leads to quadriceps atrophy and loss of extension 

force in proportions (Heegaard et al., 1995). 

The forces and moments acting on the knee rely on the body-weight, the muscle 

action, the soft-tissue restriction, the externally applied loads, the physical activity of 

the human subject and the health condition of the articular joint. The flexion-extension 

moments during stance phase are approximately 20 to 30 times larger than the moments 

produced in the frontal (abduction-adduction) and transverse (internal-external) planes. 

During the gait cycle, the joint reaction force shifts from the medial to the lateral tibial 

plateau. In the stance phase, when the force reaches its peak value, it is sustained mainly 

by the medial plateau (adduction moment). In the swing phase, when the force is 

minimal, it is sustained primarily by the lateral plateau (Nordin and Frankel, 2001).  

  
(a) (b) 

Figure 2.11 Moment arm of the quadriceps muscles of a knee joint with: (a) Normal patella;  

(b) Patellectomy (Completo, 2006). 

In a normal knee, joint reaction forces are sustained by the menisci as well as by 

the articular cartilage, which allow for a stress distribution over a wide area of the tibial 

plateau. The menisci restrain the motion of the knee joint. In flexion and extension, the 

menisci move with the femoral condyles. As the knee flexes, the menisci move 

posteriorly because of the rolling of the femur and the action of the muscles. At the end 

of flexion, the menisci fill up the posterior portion of the joint, acting as a space-filling 

buffer. The reverse occurs in extension (Hamill and Knutzen, 2009). 

The menisci are of paramount importance for the human knee joint and their 

absence increases the susceptibility to injury and lesion. For example, the menisci 

removal (i.e. meniscectomy) reduces the contact area in two thirds, increasing the 

pressure on the contacting surfaces (Hamill and Knutzen, 2009). Hence, the stresses are 

no longer distributed over a wide area but instead are limited to a contact area in the 

center of the plateau as Figure 2.12 depicts. Moreover, a meniscectomy not only 
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increases the magnitude of the stresses on the cartilage and subchondral bone at the 

center of the tibial plateau, but also diminishes the size and changes the location of the 

contact area and increases 20 percent the joint friction. Over the long term, the high 

stresses placed on the smaller contact area may be harmful to the exposed cartilage 

(Nordin and Frankel, 2001; Completo, 2006).  

  

(a) (b) 

Figure 2.12 Stress distribution in: (a) Normal knee; (b) Knee with the menisci removed {Adapted from 

Completo (2006) with Author’s permission}. 

The menisci are thought to carry up to 70 percent of the load across the knee. 

Movement during knee flexion of the menisci would therefore protect the articulating 

surfaces while avoiding injury to it. Figure 2.13 shows the movements in the transverse 

plane of the medial and lateral menisci from full extension to 90 degrees of flexion.  

 
Figure 2.13 Schematic representation of the main movements of the medial and lateral menisci from 

full extension to 90 degrees of knee flexion in a weight-bearing standing condition 

{Adapted from Completo (2006) with Author’s permission}. 

The menisci movements are significantly greater in weight-bearing that in  

non-weight bearing for both lateral and medial menisci. Therefore, it can be concluded 

that the menisci not only protect the articular cartilage and subchondral bone, but also 

they contribute actively to knee joint stability (Nordin and Frankel, 2001). The absence 

of the lateral meniscus is more critical than the medial meniscus, because the lateral 

meniscus carries a greater percentage of the load (Englund et al., 2001). 
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2.4 Mechanical response of knee surrounding tissues 

The human knee presents a bony structure enclosed by biological soft tissues, 

namely cartilage, ligaments and muscles. The bone offers sustenance and resistance to 

compressive loads and the cartilage works as a binder or a bearing surface between 

bones (Mansour, 2008). The ligaments support the joint passively as they are loaded in 

tension only, while the muscles support the joint actively. Thus, the functional stability 

of the knee joint relies on the passive restraint of the ligaments, the joint geometry, the 

active muscles and the compressive forces pushing the bones together (Lieber and 

Burkholder, 2008; Hamill and Knutzen, 2009). Indeed, either to provide joint mobility 

or to ensure the static stability, the tissues surrounding the knee joint are continuously 

withstanding and transferring high loading forces. Therefore, the knowledge of the 

mechanical behavior of these tissues is crucial for the understanding of the realistic knee 

mechanics, and also for the biomechanical modeling of the knee, as a natural or an 

artificial joint (Yang et al., 2010). 

2.4.1 Bone: ultrastructure and mechanical behavior 

Bone is a hard tissue composed by a matrix of collagen and inorganic salts. The 

inorganic minerals, calcium and phosphate, along with the organic collagen fibers, make 

up approximately 60 to 70 percent of bone tissue. Water constitutes approximately 25 to 

30 percent of the weight of bone tissue. Collagen fibers offer bone tensile strength and 

flexibility, while bone minerals provide compressive strength and rigidity (Hamill and 

Knutzen, 2009). Bone is an anisotropic, heterogeneous, inhomogeneous, nonlinear, 

thermorheologically complex viscoelastic material. According to Currey (1984), the 

most relevant material property of the bone tissue is its stiffness that makes it ideal for 

its biological role of body sustenance under static and dynamic conditions (Katz, 2008). 

Two tissue layers can be distinguished from a typical long bone as the femur, as 

Figure 2.14 shows. The hard outer layer is the cortical bone, also referred as compact or 

dense bone, and is the responsible for bone strength. The internal layer consists in a 

porous mesh of trabeculae that can absorb shock and is denominated as trabecular bone, 

cancellous bone or spongy bone (Herman, 2007). 
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Figure 2.14 Longitudinal cross-section view of the proximal femur {Adapted from Boyle and Kim 

(2011) with Elsevier permission}. 

The cortical bone and the trabecular bone have different porosity, as well as very 

different properties. On one hand, compact bone has a large Young’s modulus, about 

17.9 GPa, and it can withstand more stress in compression than in tension, despite it has 

a fairly large ultimate tensile stress, in the order of 120 MPa. On the other hand, 

trabecular bone is more porous and has a very small Young’s modulus of 76 MPa. It is 

worth noting that the bone is a tissue that is continuously being modified, reshaped, 

remodeled, and overhauled (Herman, 2007; Hamill and Knutzen, 2009). 

2.4.2 Cartilage and Menisci: ultrastructure and mechanical behavior 

At the human body, there are three types of cartilage: elastic cartilage, hyaline 

cartilage, also known as articular cartilage, and fibrocartilage. Hyaline cartilage is the 

most common cartilage in adults and is found in the ventral ends of ribs and covering 

the joint surfaces of long and sesamoid bones. This type of cartilage is glassy smooth, 

glistening, and bluish-white in appearance. The meniscus is an example of a biological 

structure composed by fibriocartilage (Mansour, 2008; Mow and Ratcliffe, 1997). 

Articular cartilage and menisci can be characterized as multiphasic materials with 

two major phases: the freely movable interstitial fluid composed of water and 

electrolytes and a porous-permeable solid matrix composed of collagen, proteoglycans 

(PGs), and other proteins (Mow and Ratcliffe, 1997). Figure 2.15 represents the 

ultrastructure of articular cartilage in terms of four zones between the articular surface 

and the subchondral bone: the surface or superficial tangential zone, the intermediate or 

middle zone, the deep or radiate zone, and the calcified zone (Ateshian and Hung, 2006; 
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Mansour, 2008). The interested reader in the details on these four zones of the cartilage 

is referred to the works by Mow and Hung (2001) and Lieber and Burkholder (2008). 

 
Figure 2.15 Layered structure of cartilage collagen network showing four distinct zones: superficial 

tangential zone, middle zone, deep zone and calcified zone {Adapted from Mow and 

Ratcliffe (1997) with Lippincott Williams & Wilkins permission}. 

The fibrous structure of the meniscus also has a layered appearance, as Figure 

2.16 shows, but it differs from that of articular cartilage. The meniscus is composed of 

fine fibrils in a random mesh-like woven matrix. The interested reader in the details on 

this ultrastructure is referred to the works by Mow and Ratcliffe (1997). 

 
Figure 2.16 Meniscus ultrastructure, showing the different fiber orientations {Adapted from Mow and 

Ratcliffe (1997) with Lippincott Williams & Wilkins permission}. 

The layered morphology of the collagen network and the preferred orientation of 

collagen fibers are of paramount importance for distributing the stress more uniformly 

across the loaded regions of the joint tissue. Also, the articular cartilage and the menisci 

compose a smooth, wear-resistant bearing surface with low friction. Regarding 

mechanical properties, both articular and meniscal cartilages are anisotropic and 

nonhomogeneous. Tensile properties of both tissues are nonlinear and their shear 
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properties are viscoelastic. Therefore, Poisson’s ratio of the solid matrix of cartilage 

takes values from 0 to 0.4 (Mow and Ratcliffe, 1997).  

The Young’s modulus of articular cartilage is a strain-rate sensitive ranging from 

0.3 to 1.5 MPa, under static conditions, to 18 MPa, during dynamic loading. This 

apparent mismatch can be explained by the relatively low permeability of cartilage 

typically around 1010
-15

 m
4
/Ns. Interstitial water cannot be squeezed out from the 

tissue during dynamic loading but is pressurized and therefore supports the high 

physiological stresses. Under long-term loading conditions, fluid flow through the 

porous matrix takes place and causes creep or stress–relaxation phenomenon. This 

process is controlled by the cartilage permeability, which is strain dependent. The 

pressurization and flow mechanisms protect articular cartilage against excessive strains 

and mechanical failure (Laasanen et al., 2003; Ateshian and Hung, 2006). 

Various theoretical models have been developed to explain the mechanical 

behavior of articular cartilage (Laasanen et al., 2003). The first models were isotropic 

and linearly elastic and could be applied only to characterize the instantaneous or 

equilibrium responses of cartilage after step-load application (Hayes et al., 1972). 

Afterwards, various viscoelastic models, based on springs and dashpots, were proposed 

to account for creep and stress-relaxation behaviors (Mow et al., 1980; Mak et al., 

1987). Later, advanced solutions were proposed for predicting the dynamic response of 

articular cartilage, such as transversely isotropic biphasic models (Mow et al., 2000), 

poroviscoelastic models (Suh and Bai, 1998), and fibril reinforced poroelastic models 

(Soulhat et al., 1999). In general, the biphasic models are more accurate than the simple 

spring models, since these approaches describe the motion of the hydrating fluid relative 

to the organic matrix (Lieber and Burkholder, 2008).  

The minimal wear of articular cartilage at the knee joint indicates that 

sophisticated lubrication processes are played within the joint and within and on the 

surface of the tissue. These processes have been associated with a lubricating fluid-film 

forming between the articular cartilage surface and to an adsorbed boundary lubricant 

on the surface during motion and loading. Joint lubrication is out of the scope of this 

work, nonetheless the interested reader is referred to the works by Wright and Dowson 

(1976), Mow and Hung (2001) and Furey (2008). 
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2.4.3 Tendons and Ligaments: ultrastructure and mechanical behavior 

Tendons and ligaments are passive structures, i.e., they do not actively produce 

motion, that closely surround, connect, and stabilize the knee articulation. Tendons and 

ligaments are dense connective tissues known as parallel-fibered collagenous tissues. 

These tissues are biological composites consisting of a ground substance matrix 

reinforced by collagen and elastin. The ground substance matrix is composed of PGs, 

glycolipids, and fibroblasts and holds large amounts of water. About two-thirds of the 

weight of normal tissue is water, and 70 to 80 percent of the remaining weight is made 

up by collagen (Nordin and Frankel, 2001; Weiss and Gardiner, 2001). Collagen is the 

main load carrying component in these tissues and its content is somewhat larger in 

tendons than in ligaments. The great mechanical stability of collagen gives the tendons 

and ligaments their typical strength and flexibility (De Vita and Slaughter, 2007). 

Ligaments connect bone to bone, whereas tendons connect bone to muscle. The 

myotendinous junction and the bony attachments are complex and vary considerably. 

Tendons generally have large parallel fibers that insert uniformly into bone. Ligaments 

have smaller-diameter fibers that can be either parallel, as in the collateral ligaments of 

the knee, or branching and interwoven, as in the knee cruciate ligaments. There are two 

types of tendon- and ligament-bone insertions: direct and indirect. For direct insertions, 

such as femoral insertion of MCL, fibers attach directly into the bone and the transition 

of ligament to bone occurs in four zones: ligament, fibrocartilage, mineralized 

fibrocartilage and bone. For an indirect insertion, such as tibial insertion of MCL, 

superficial fibers are attached to periosteum while the deeper fibers are directly attached 

to the bone at acute angles (Woo et al., 1999; Weiss and Gardiner, 2001). 

In parallel-fibered tissues, such as tendons and ligaments, collagen is 

characterized by a hierarchal structure, as illustrates Figure 2.17. Collagen molecules 

are packed together to form collagen fibrils, collagen fibrils aggregate to form collagen 

fibers, and collagen fibers are arranged in fascicles that run parallel to the ligament 

loading direction (De Vita and Slaughter, 2007). The parallel fiber arrangement of 

tendons and ligaments allows early tensile resistance once the “crimp pattern” is 

straightened (Woo et al., 1999).  
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Figure 2.17 Hierarchical microarchitecture of tendons and ligaments (Herman, 2007). 

Tendons and ligaments are well suited to the physiological functions that they 

perform. They are pliant and flexible, allowing natural movements of the bones to 

which they attach, but are strong and inextensible to offer suitable resistance to applied 

forces. Both structures, tendons and ligaments, sustain chiefly tensile loads during 

normal and excessive loading. Their load-deformation or stress-strain behaviors are 

anisotropic, oriented primarily for the resistance of tensile loads (Woo et al., 1999; 

Nordin and Frankel, 2001). Indeed, collagen provides the primary resistance to tensile 

loading but offers negligible resistance to compression. Also, tendons and ligaments 

offer little resistance to bending. The parameters describing the structural properties of 

the bone–tendon and bone-ligament complexes include stiffness, ultimate load, ultimate 

elongation, and energy absorbed at failure (Weiss and Gardiner, 2001). 

Tendons and ligaments display time- and history-dependent viscoelastic 

properties (Weiss and Gardiner, 2001). As a result of internal energy dissipation, the 

tendon or ligament fibers allow the material to return to its original shape and size after 

being deformed during loading and unloading between two limits of elongation. 

Meanwhile part of the energy is stored and what is left represents the energy loss during 

the cycle and is called hysteresis. The loading and unloading curves of these tissues do 

not follow the same path but instead form a loop. The area enclosed by the hysteresis 

loop represents the energy dissipated (Nordin and Frankel, 2001).  

Other important features associated with the viscoelastic properties of tendons and 

ligaments are creep and stress relaxation (Woo et al., 1999). The creep rate depends on 

the applied stress, while the relaxation rate depends on the applied stretch (Peña et al., 
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2008). The viscoelastic behavior of tendons and ligaments has an important clinical 

significance. During walking, the applied strains and strain rates are nearly constant. 

Cyclic stress relaxation will effectively soften tissue substance with continuous 

decreases in peak stress as cycling proceeds. This phenomenon may help to prevent 

fatigue failure of ligaments and tendons. Similarly, deformation increases slightly 

during cycles to a constant load demonstrating creep behavior of tendons and ligaments. 

These changes have been noted clinically with temporary softening of all these tissues 

and thus increase of test excursion, i.e., laxity, in exercised joints. After a short recovery 

period, there is a return to normal joint stiffness and apparent length (Woo et al., 1999). 

2.4.4 Muscles: ultrastructure and mechanical behavior 

The functional unit that produces motion at the knee joint consists of two discrete 

components: the muscle belly and the tendon. The muscle belly consists of muscle 

fibers and connective tissues that surround the fibers (Mansour, 2008). The level of 

complexity in the organization of the skeletal muscle is illustrated in Figure 2.18. 

 
Figure 2.18 Level of complexity in the organization of a skeletal muscle {Adapted from Meiss (2003) 

with Lippincott Williams & Wilkins permission}. 

The muscle fiber is a long cylindrical cell that is encompassed by a loose 

connective tissue called the endomysium. The endomysium is a very fine sheath 

carrying the capillaries and nerves that nourish and innervate each muscle fiber. 

Directly underneath the endomysium is the sarcolemma, which is a thin plasma 

membrane surface that branches into the muscle. The muscle fibers are organized into 
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various-sized bundles, or fascicles, which are in turn encased in a dense connective 

tissue sheath known as the perimysium. The perimysium protects the muscle fibers and 

provides pathways for the nerves and blood vessels (Hamill and Knutzen, 2009). The 

muscle is composed of several fascicles surrounded by a fascia of fibrous connective 

tissue called the epimysium. The epimysium plays a vital role in the transfer of 

muscular tension to the bone. The endomysium, sarcolemma, perimysium and 

epimysium act as parallel elastic components (Nordin et al., 2001). 

A muscle fiber is composed by a set of myofibrils, which are aligned in order to 

create a band pattern. Each repeat of this pattern is called sarcomere. The sarcomere is 

the smallest contractile unit of a myofibril, and the events that take place in one 

sarcomere are duplicated in the others. Various sarcomeres build a myofibril, various 

myofibrils build the muscle fiber and various muscle fibers build the muscle. The 

myofibril are composed of thin filaments of the protein actin and thick filaments of the 

protein myosin, and the intramyofibrillar cytoskeleton is composed of the elastic 

filaments of titin and the inelastic filaments of nebulin. The sarcomere, illustrated in 

Figure 2.19, is a nearly crystalline structure, composed of a dark A-band and two 

adjacent I-bands. Myosin filaments are rigidly fixed at the M-line and are the principal 

constituents of the A-band (anisotropic, light bending). Actin filaments are rigidly fixed 

at the Z-line, comprising the I-band (isotropic, light transmitting). In the center of the  

A-band, in the gap between the ends of the actin filaments, is the H-zone, a light band 

containing only myosin filaments and that part of titin that is integrated in the myosin 

filaments (Nordin et al., 2001; Lieber and Burkholder, 2008). 

Concerning the arrangement of the muscle fibers, it varies significantly among 

muscles and has marked effects on a muscle’s ability to produce movement and to 

generate force. Fiber arrangements have different names but fall into two major 

categories: parallel and pennate (Mansour, 2008). In the parallel fiber arrangement, the 

fascicles are parallel to the long axis of the muscle and all the fibers contract the same 

amount (Herman, 2007). During muscular contraction, these muscles get shorter and, 

hence, the diameter of the muscle belly increases in order to keep the muscle volume 

constant (Tözeren, 2000). Figure 2.20 illustrates the five different shapes of parallel 

fiber arrangements, namely flat, fusiform, strap, convergent, and circular. 
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Figure 2.19 Arrangement of the actin and myosin chains in the sarcomere within a muscle fiber 

{Adapted from Meiss (2003) with Lippincott Williams & Wilkins permission}. 

 
Figure 2.20 Illustration of the different shapes of muscles with parallel fiber arrangements (fusiform, 

flat, circular, convergent and strap), and pennate fiber arrangements (unipennate, bipennate 

and multipennate) {Adapted from Hamill and Knutzen (2009) with Lippincott Williams & 

Wilkins permission; Adapted from Moore and Agur (2007) with Lippincott Williams & 

Wilkins permission}. 

In a pennate muscle, one or more tendons run through the body of the muscle, 

with fibers attached to them at an angle (Tözeren, 2000). This angle is referred as 

pennation angle. Pennate muscles fall into subcategories according to the number of 

tendons penetrating the muscle. There are unipennate, bipennate, and multipennate 

muscles, as Figure 2.20 depicts. Fibers of unipennate muscles run parallel to each other, 
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but at an angle to the muscle axis. Bipennate muscle fibers run in two distinct directions. 

Multipennate muscles have one distinct attachment and one broad attachment, and the 

pennation angle is different for every fiber (Lieber and Burkholder, 2008; Mansour, 

2008). In contrast to the parallel muscles in which all the force of the fibers is 

transmitted through the tendon, in the pennate muscles the fibers are attached to the 

tendon at a pennation angle, and so only part of the force of each fiber is effectively 

transmitted. While this is a distinct disadvantage of the pennate design, it has other 

relative advantages. Because the geometry allows fibers to attach along part of the 

length of the tendon, many more fibers can be attached to the tendon. Also, this 

geometry allows the central tendon to move a longer distance than in the parallel 

scheme, so the bones attached to the tendon can move more (Herman, 2007).  

Muscles may contract concentrically, eccentrically, or isometrically depending on 

the relationship between the muscle tension and the resistance to be overcome. 

Concentric and eccentric contractions involve dynamic work, in which the muscle 

moves a joint or controls its movement, respectively. The isometric muscle contraction 

is used to stabilize a segment (Hamill and Knutzen, 2009; Nordin et al., 2001). Besides 

muscle length, other parameters may influence the contraction conditions. When the 

velocity of contraction and also the angular speed of the joint are constant, the 

contraction is referred as isokinetic. When a tension is constant throughout a range of 

joint motion, the contraction scenario are defined as isotonic (Herman, 2007). 

The total force that a muscle can produce is influenced by its mechanical 

properties, which can be described by examining the force-length and the force-velocity 

relationships of the muscle and the skeletal muscle architecture (Nordin et al., 2001). 

The relation between the maximal fiber force and its length is described by a force-

length curve. Figure 2.21a shows the force-length relationship illustrated for an 

individual muscle fiber. If this relationship is measured in a whole muscle contracting 

isometrically and tetanically, the force produced by both active components and passive 

components must be taken into account and the force-length relationship will be as 

illustrated in Figure 2.21b (Nordin et al., 2001). The curve labeled “active tension” 

represents the tension developed by the contractile elements of the muscle, and it 

resembles the curve for the individual fiber (Figure 2.14a). The curve labeled “passive 

tension” reflects the tension developed when the muscle surpasses its resting length and 

the non-contractile muscle belly is stretched (Nordin et al., 2001). Under conditions of 
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constant load, the relationship between force and velocity is nearly hyperbolic, as Figure 

2.22a shows (Lieber and Burkholder, 2008). The velocity of shortening of a muscle 

contracting concentrically is inversely related to the external load applied. The velocity 

of shortening is greatest when the external load is zero, but as the load increases the 

muscle shortens more and more slowly. When the external load equals the maximal 

isometric force that the muscle can exert, the velocity of shortening becomes zero and 

the muscle contracts isometrically. When the load is increased still further, the muscle 

contracts eccentrically (Nordin et al., 2001). Muscles usually do not maintain a zero 

speed or a constant length and therefore, its response depends both on its length and the 

velocity of contraction. The combination of these two relations results in the force-

length-velocity relationship illustrated in Figure 2.22. 

  
(a) (b) 

Figure 2.21 Force-length curve: (a) Individual fiber; (b) Whole muscle {Adapted from Mansour (2008) 

with Lippincott Williams & Wilkins permission}. 

  

(a) (b) 

Figure 2.22 Muscle force relations: (a) Force-velocity curve; (b) Force-length-velocity curve {Adapted 

from Ackermann (2007); Adapted from Mansour (2008) with Lippincott Williams & 

Wilkins permission}. 

From a biomechanical point of view, skeletal muscle exhibits a very complex 

mechanical behavior which is active, incompressible, transversely isotropic, and 

hyperelastic. A number of mathematical skeletal muscle models have been developed 

over the past two decades and they can be classified as belonging to one of two 

categories: Huxley-type and Hill-type muscle models. Huxley-type or crossbridge 

models describe the muscle behavior at the molecular level and are mainly used to 
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understand the properties of the microscopic contractile element. Thus, the Huxley-type 

models are frequently utilized to interpret mechanical and biochemical outcomes of 

experiments with isolated muscles. However, these models are inadequate to studies of 

muscle coordination tasks involving many muscles, since their high complexity 

compromises the interpretation and computational tractability. Moreover, these models 

require a series of parameters that are difficult to assess accurately. Hence, these models 

are rarely used to study muscle coordination (Ackermann, 2007). In turn, Hill-type 

muscle models are phenomenological models based on the interpretation of the input-

output behavior of muscles obtained experimentally. There are many different levels of 

complexity, but in movement simulation the three-component Hill-type muscle model is 

almost exclusively used. The three-component Hill-type muscle model, illustrated in 

Figure 2.23a, is composed by a contractile component representing the muscle fibers, a 

parallel elastic element (PE) representing the nonlinear stiffness of connective tissue in 

parallel to the contractile elements, and a series elastic element (SE), representing the 

nonlinear stiffness of tissue in series with the contractile elements. The contractile 

element (CE) proposed by Hill consists in a force generator working in parallel with a 

velocity dependent damping element (DE), as Figure 2.23 shows.  

 
 

(a) (b) 

Figure 2.23 (a) Hill type muscle model; (b) Modified Hill type muscle model {Adapted from 

Ackermann (2007) with Author’s permission}. 

The DE must be placed in parallel with the CE so that the velocities of the CE and 

the DE maintain the same direction. The contractile element is described by 

independent isometric force–length (Figure 2.21a) and isotonic force–velocity relations 

(Figure 2.22a) and its force is modulated by an activation state (Lieber and Burkholder, 

2008). Thus, the contractile component is the one responsible for to convert the 

stimulation of the nervous system into a force, and to reflect the shortening of the 

muscle through the actin and myosin structures. The elasticity inherent in muscle is 

represented by the SE and the PE. Because the SE is in series with the CE, any force 

produced by the CE is also applied to the SE. The SE is a highly nonlinearly elastic 

structure. Muscle displays elastic behavior even when the CE is not producing force. An 
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external force applied to a muscle causes the muscle to resist, but the muscle also 

stretches. This passive elastic response is produced by structures that must be in parallel 

with the CE rather than in series. The PE is highly nonlinear and increases in stiffness as 

the muscle lengthens. SE and PE also behave like springs when acting quickly (Hamill 

and Knutzen, 2009). In some model variations, the inclusion of tendon as an elastic 

element distinctly separate from the SE of the muscle model has been shown to be 

important for physiologically realistic models of muscles crossing the knee and ankle 

(Hoy et al., 1990; Zajac, 1989). This modified Hill type is illustrated in Figure 2.23b. 

2.5 Joint pathologies and replacement systems 

The knee is the largest and possibly the most complex synovial joint in the body 

as it comprises a combination of three articulations. Furthermore, the knee joint is 

located between the two longest lever arms of the body and bears a majority of body 

weight. These issues make the human knee vulnerable to trauma and overuse injuries 

that can lead to significant functional limitations and disability (McGinty et al., 2000). 

2.5.1 Overview of primary knee injuries 

The cause of an injury to the knee can often be related to poor conditioning or 

training or to an alignment problem in the lower extremity. Injuries in the knee have 

been attributable to hindfoot and forefoot varus-valgus, tibial or femoral varus-valgus, 

limb length differences, deficits in flexibility, strength imbalances between agonists and 

antagonists muscles, and improper technique or training (Hamill and Knutzen, 2009). 

Whenever a patient has a painful or swollen knee, the first diagnosis step is to evaluate 

whether there is trauma or not. In case there is trauma, it can happen that the pain is 

recognized as a mechanical disorder (Silva, 2007). In this situation, the most likely 

diagnosis in population over the age of 40 is Osteoarthritis (OA), with or without 

meniscal or ligamentous pathology (Hamill and Knutzen, 2009).  

Osteoarthritis, or degenerative joint disease, is characterized by the breakdown of 

articular cartilage. Particles of articular cartilage may break off and cause pain or 

inflammation in the joint. Over time, the cartilage may wear away entirely, resulting in 

bone-on-bone contact. Since bones, unlike cartilage, have many nerve cells, direct bone 

contact can be very painful to the OA patient. In addition to the pain and swelling, the 

OA sufferer can experience a progressive loss of mobility (i.e., stiffness) at the knee 
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joint. This is due to loss of the joint space, where the articular cartilage has completely 

worn away. The exact cause of OA is unknown. It is a progressive disease that is due to 

cartilaginous, bony, synovial, mechanical, and other factors operating independently, as 

well as in combination. Treatments such as weight loss, braces, orthotics, steroid 

injections, and physical therapy may also help alleviate pain and restore function. 

However, since articular cartilage is avascular, or lacks a blood supply, repair and 

growth of adult cartilage is minimal. If the pain or immobility becomes too severe and 

other therapies do not alleviate the symptoms, a joint replacement becomes necessary 

(Altman, 1987; Nordin and Frankel, 2001; Sarzi-Puttini et al., 2005, Felson, 2006). 

Traumatic injuries to the knee usually involve the ligaments. Ligaments are 

injured as a result of application of a force causing a twisting action of the knee.  

High-friction or uneven surfaces are usually associated with increased ligamentous 

injury. Any movement fixing the foot while the body continues to move forward, such 

as often occurs in skiing will likely produce a ligament sprain or tear. Simply, any turn 

on a weight-bearing limb leaves the knee vulnerable to ligamentous injury. Likewise 

ligaments, menisci can be torn through compression associated with a twisting action in 

a weight-bearing position, as well as in kicking and other violent extension actions. 

Tearing the meniscus by compression is a result of the femur grinding into the tibia and 

ripping the menisci (Hamill and Knutzen, 2009).  

Patellofemoral pain syndrome is pain around the patella and is often seen in 

individuals who exhibit valgum alignments or femoral anteversion in the extremity. 

Patellofemoral pain is aggravated by going down hills or stairs or squatting. Stress on 

the patella is related to a greater Q-angle because of increased stress on the patella. 

Some patellofemoral pain is associated with cartilage destruction, in which the cartilage 

underneath the patella becomes soft and fibrillated (Hamill and Knutzen, 2009). This 

pathological condition is also known as chondromalacia patellae.  

In a broad sense, knee surgical treatments include tissue-repair approaches, 

arthroscopic lavage and debridement, and arthroplasty (Silva, 2007). An arthroplasty, 

i.e., joint replacement, is a surgical orthopedical procedure in which the arthritic or 

dysfunctional joint surface is replaced with something better or by remodeling or 

realigning the joint by osteotomy or by some other approach. The main objective of an 

arthroplasty is to expand the envelope of function of symptomatic arthritic joint as 

safely and predictably as possible. An arthroplasty is capable of substantial increases in 
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the functional capacity of a given arthritic joint, but it is not designed to restore the full 

physiological function of a normal, uninjured adult joint. Whenever there is a joint 

replacement, the primary mechanical factor that limits its long-term outcome is the 

implant wear, which is critically influenced by the joint kinematics. Therefore, a special 

attention has been given to knee wear analysis in the last decade with the intent to find 

and/or develop the best solutions in terms of materials and processes that can lead to the 

construction of optimized prosthesis (Fregly et al., 2005; Li et al., 2011; Sawyer et al., 

2008). Furthermore, knowledge of the flexion angle, the anterior-posterior sliding 

distance, and the angle of tibial rotation is also crucial in replicating normal human 

activities in total knee replacement systems (TKR) and TKR materials wear testing. 

2.5.2 Knee replacement systems: materials and design 

Knee implants are designed to replace biological materials that have been 

damaged. In most cases, cartilage and bone are removed from the articulating surfaces 

of the joint and synthetic materials are used. When only one compartment of the knee is 

affected, a unicompartmental (or partial) knee arthroplasty can be performed. In cases 

where two or three knee compartments are affected, a total knee arthroplasty is 

indicated. There are three types of uni-compartmental knee implants, namely medial 

unicondylar implants, lateral unicondylar implants and patellofemoral implants. 

Moreover, when the medial and patellar compartments are compromised and a TKR is 

not required or desired, bi-compartmental knee implant can be utilized. These solutions 

replace the medial and patellar compartments and allows for the ACL and PCL to be 

retained. Figure 2.24 displays different types of knee implants, namely a TKR, a medial 

unicondylar implant, a patellofemoral implant and a bi-compartmental knee implant.  

    

(a) (b) (c) (d) 

Figure 2.24 Knee implants: (a) Total Knee Replacement {Adapted from Murnaghan and Hamer (2010) 

with Elsevier permission}; (b) Unicompartmental Knee Replacement {Adapted from Jung 

et al. (2008) with Elsevier permission}; (c) Patellofemoral Joint Replacement {Adapted 

from Donell and Glasgow (2007) with Elsevier permission}; (d) Bicompartmental Knee 

Replacement {Adapted from Palumbo et al. (2011) with Elsevier permission}. 
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The earliest model of knee implant, named tibial plateau prosthesis, was 

developed by McKeever, in the late 1950s, consisting in a single metal component. 

Afterwards, several new designs of knee implants were proposed. Figure 2.25 gives a 

historical perspective of the progression of knee implant designs. Currently there are 

more than 150 different knee implants. These designs comprise multiple components 

made of polymer, ceramic and metal, that attempt to mimic the natural knee. The tibial 

articulating surface and the patellar component tend to be made of polymers such as 

ultra-high molecular weight polyethylene (UHMWPE) or cross-linked polyethylene. 

The femoral component and the tibial tray are usually made of titanium alloys, cobalt-

chromium-molybdenum (CoCrMo) or stainless steel (Carr and Goswami, 2009).  

 
Figure 2.25 Knee implants history {Adapted from Carr and Goswami (2009) with Elsevier permission}. 

In order to assess the performance of the knee implant models, some 

biomechanical factors are analyzed throughout experimental and numerical studies. 

These biomechanical factors include: (i) contact stresses, (ii) kinematics for different 
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degrees of congruency and (iii) fatigue to validate the quality of knee implants under 

specific loading conditions. The interested reader in the details on these biomechanical 

studies is referred to the work by Carr and Goswami (2009) and Grupp et al. (2009). 

The materials used for knee implants are selected with the purpose to balance strength 

requirements with biocompatibility needs. While use of materials such as titanium 

alloys, cobalt-chrome and UHMWPE have led to improved implant designs, wear, 

loosening and other factors continue to limit the performance of knee implants (Carr 

and Goswami, 2009). Indeed, the main type of failure observed clinically is due to 

UHMWPE (Collier et al., 1991). The UHMWPE wear is of considerable concern 

because it can lead to the generation of debris that may cause synovitis (i.e., joint 

swelling) and osteolysis (i.e., bone resorption) of the surrounding bone (McEwen et al., 

2005). In extreme cases, wear debris migration can cause bone necrosis (i.e., bone 

death) and loosening of the tibial tray. Wear can also lead to misalignment or instability 

of the joint and can initiate fracture of the tibial component (Walker et al., 2000). 

Implant failure often leads to revision surgery. In cases of absence of osteolysis or 

implant loosening, only the UHWMPE needs be replaced. Unfortunately, aseptic (i.e., 

non-toxic) loosening is the most common reason for revision, in which case, an entirely 

new TKR must be implanted. In these revisions, more bone must be removed from the 

patient and a larger TKR is inserted. Revision surgery is much more complex and 

technically more difficult than the first-time knee replacement. Furthermore, with this 

surgical intervention the range of motion in the knee is generally compromised, 

decreasing greatly in comparison with the initial replacement (Lavernia et al., 1995). 

2.6 Summary and discussion 

An overview of the knee joint, namely its anatomy, mechanobiology, kinematics 

and biomechanics, was presented throughout this Chapter. The human knee is a 

synovial joint composed by four bones, which articulate with each other forming three 

joints: the tibiofemoral, the patellofemoral and the superior tibiofibular. The 

understanding of the knee structure and function is fundamental not only for the 

construction of meaningful biomechanical models but also for the design of corrective 

or replacement measures. 

The tibiofemoral joint is the principal knee articulation as it is responsible for the 

flexion and extension movements of the knee in the sagittal plane. The tibiofemoral 
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joint comprises the distal end of the femur with the proximal tibia. The distal femur 

exhibits two large convex surfaces, namely the medial and lateral condyles. The femoral 

condyles lie on the tibial plateaus that are distinct in shape and conformality. The lateral 

plateau exhibits a convex surface, while the medial plateau is slightly concave. The 

patellofemoral joint corresponds to the articulation of the posterior patella with the 

trochlear groove of the distal femur. This joint improves the efficiency of the extensor 

forces through the entire knee flexion range by increasing the moment arm of the 

quadriceps. Also, the patella provides a smooth sliding mechanism and plays as a 

protecting shield to the knee joint. The third articulation of the knee is the superior 

tibiofibular joint, which is a small joint between the head of the fibula and the lateral 

tibial plateau. The primary functions of this joint are the dissipation of lateral tibial 

bending movements and torsional stresses applied at the ankle joint. 

Besides the flexion and extension movements, the knee joint describes also 

secondary motions, namely internal-external rotation and abduction-adduction. The 

flexion-extension motion ranges from 0 to 140 degrees, being the average limit of 

hyperextension 5 degrees. Regarding the secondary motions, the range of rotation 

increases as the knee is flexed, reaching a maximum at 90 degrees of flexion. Passive 

abduction and adduction increase with knee flexion up to 30 degrees, but each reaches a 

maximum of only a few degrees. In what concerns with the patellofemoral joint, it 

presents a gliding motion. The medial and lateral femoral condyles articulate with the 

patella from full extension to 140 degrees of flexion.  

The human knee presents a bony structure enclosed by biological soft tissues. The 

bone is a hard tissue that presents two tissue layers. The outer layer is named cortical 

bone is the responsible for bone strength. The internal layer consists in a porous mesh of 

trabeculae that can absorb shock. Bone tissue is an anisotropic, heterogeneous, 

inhomogeneous, nonlinear, viscoelastic material. At the human knee, the primary 

function of the bone is to offer sustenance and resistance to compressive loads. 

The femoral condyles and tibial plateau are covered by articular cartilage. Besides 

the hyaline articular cartilage, two c-shaped structures lie between the tibia and the 

femur, namely the menisci. These structures extend the contact surface on the tibia and 

participate in shock absorption. Articular cartilage and menisci can be characterized as 

multiphasic materials with two major phases: the freely movable interstitial fluid and a 

porous-permeable solid matrix. Regarding mechanical properties, both are anisotropic 
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and nonhomogeneous, being their tensile and shear properties are nonlinear viscoelastic. 

The joint capsule is also an important structure that surrounds the knee joint. It consists 

in an external fibrous layer and an internal synovial membrane. The synovial membrane 

produces the synovial fluid that plays as a lubricant and, hence, contributes for a 

minimal wear of articular cartilage.  

Femur and tibia are connected by ligaments that prevent excessive motion. The 

four main ligaments are: anterior cruciate ligament, posterior cruciate ligament, medial 

collateral ligament and lateral collateral ligament. Ligaments connect bone to bone, 

whereas tendons connect bone to muscle. Tendons and ligaments are dense connective 

tissues known as parallel-fibered collagenous tissues. These tissues are pliant and 

flexible, allowing natural movements of the bones to which they attach, but are strong 

and inextensible so as to offer suitable resistance to applied forces. Their stress-strain 

behaviors are anisotropic, oriented mostly for the resistance of tensile loads. Tendons 

and ligaments display time- and history-dependent viscoelastic properties.  

The muscles that are responsible for the movements and the stability of the knee 

fall into three groups: quadriceps, hamstrings and pes anserinus. The quadriceps is 

responsible for the knee extension, while the hamstrings assist knee flexion. The pes 

anserinus contributes for knee flexion and internal rotation.  

Muscles may present two types of fiber arrangements: parallel and pennate. In the 

parallel fiber arrangement, the fascicles are parallel to the long axis and all the fibers 

contract the same amount. In contrast to the parallel muscles in which all the force of 

the fibers is transmitted through the tendon, in the pennate muscles the fibers are 

attached to the tendon at a pennation angle, and so only part of the force of each fiber is 

effectively transmitted. Muscles usually do not maintain a zero speed or a constant 

length and thus, its response depends both on its length and the velocity of contraction. 

The combination of these two relations results in the force-length-velocity relationship. 

From a mechanical point of view, skeletal muscle exhibits a very complex behavior 

which is active, incompressible, transversely isotropic, and hyperelastic.  

Mathematical muscle models fall into two categories: Huxley-type and Hill-type. 

Huxley-type models describe the muscle behavior at a molecular level, while Hill-type 

muscle models are phenomenological models. The three-component Hill-type model is 

almost exclusively used and is composed by a contractile component, a parallel elastic 
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element and a series elastic element. The contractile component consists in a force 

generator working in parallel with a velocity dependent damping element.  

The human knee is quite susceptible to trauma and overuse injuries as it has to 

bear the majority of body weight. Ligaments and menisci are frequently damaged by 

traumatic injuries as result of application of a force causing a twisting action of the 

knee. In turn, Osteoarthritis is the most likely diagnosis at the knee in population over 

the age of 40. This is a degenerative joint disease characterized by the breakdown of 

articular cartilage. It is a progressive disease and in severe clinical scenarios, an 

arthroplasty (i.e. joint replacement) becomes necessary. Some patellofemoral pain is 

also associated with cartilage destruction, and in these cases, an arthroplasty of the 

patellofemoral joint may be also performed. Presently there are more than 150 different 

knee implants. Regarding the geometrical configuration, there are uni-comparmental, 

bi-compartmental and total replacement systems. As far as the material is concerned, the 

current designs of knee implants comprise multiple components made of polymer, 

ceramic and metal. Whenever there is a joint replacement, the primary mechanical 

factor that limits its long-term outcome is the implant wear. An implant failure leads to 

revision surgery, which generally decreases even more the range of motion. 
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The dynamic analysis of the human body motion and of the interactions among its 

skeletal structures can provide relevant information on the mechanical behavior of this 

system (Machado et al., 2010). The biomechanical studies of the human body motion 

are mostly carried out using computational methods, due to the complexity and non-

linearity of the equations typically involved in dynamic simulations of human activities 

(Silva, 2003). The computational approaches utilized in biomechanics have been 

enhanced along with the advances of faster computers and currently it is possible to 

efficiently evaluate the kinematics and dynamics of complex biomechanical systems by 

modeling those as multibody systems (Ferreira, 2008). In a broad sense, a multibody 

system (MBS) is a set of interconnected bodies that may undergo large displacements 

and/or rotations (Nikravesh, 1988). The multibody system methodologies comprise the 

study of a multibody system as a function of a set of initial conditions, external applied 

forces and/or prescribed motion. This mathematical formulation enables the simulation 

and analysis of system motion, as well as the evaluation of the internal and interaction 

forces that develop during the period of simulation (Pombo, 2004).  
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In this Chapter, the fundamental issues of the multibody system formulation used 

to support the methodologies developed here are revised. The equations of motion for 

multibody systems are derived using the Newton-Euler approach together with an 

augmentation method. The Newton-Euler equations represent the translational and 

rotational motions of the bodies, while the augmentation method is used to adjoin the 

constraint equations of the multibody system. The kinematic constraints and force 

elements that compose a multibody system are also discussed in the framework of their 

application to the development of biomechanical models suitable to the study of human 

mobility tasks. Additionally, the equations of motion are solved using the Baumgarte 

stabilization technique with the intent of keeping the constraint violations under control. 

Finally, a human body model is considered as a demonstrative example of application. 

3.1 Multibody system concept and applications 

In a broad sense, a multibody system (MBS) embraces two main features, namely: 

(i) physical components that describe large translational and rotational displacements 

and (ii) kinematic joints that impose some restrictions on the relative motion of the 

bodies. In other words, a multibody system encompasses a collection of bodies 

interconnected by kinematic joints and possibly acted by some force elements 

(Nikravesh, 1988; Haug, 1989). The kinematic joints constrain the relative motion 

between the bodies connected by them, while the force elements represent the internal 

forces that are produced in the system. Driving elements and prescribed trajectories for 

given points of the system components, often called guiding constraints, can also be 

represented under this general concept of MBS (Silva, 2003; Flores et al., 2008). 

The bodies that belong to a multibody system can be considered as rigid or 

flexible. A body is said to be rigid when the distance between any two points belonging 

to the body remain unchanged regardless of its motion. In practice, the rigidity 

assumption is accepted when its deformations are so small that they can be neglected. In 

the two-dimensional space, the motion of a free or unconstrained rigid body can be fully 

described using three generalized coordinates associated with the three  

degrees-of-freedom (DOF). In turn, when a body has some amount of flexibility, it has 

three rigid degrees-of-freedom plus the number of generalized coordinates necessary to 

describe the deformations (Shabana, 1989). The expression flexible multibody system 
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refers to a system holding deformable bodies with internal dynamics. In fact, rigid 

bodies are a representation of reality because bodies are not absolutely rigid in nature. 

However, in a good number of common applications, the bodies are soft enough to 

experience significant local deformations during contact events and at the same time 

they are significantly stiff to behave as rigid and, consequently, their flexibility can be 

neglected. Within the scope of this work, only rigid bodies are considered. The 

interested reader in the details on flexible multibody systems is referred to the works by 

Shabana (1997b), Ambrósio and Nikravesh (1992), Dias and Pereira (1995), Wasfy and 

Noor (2003), Ambrósio et al. (2007), Gerstmayr et al. (2008) and Tian et al. (2011). 

Multibody system dynamics was identified with its own particularities as a branch 

of mechanics in 1977 during the IUTAM symposium on multibody dynamics organized 

by Magnus (1978). In a simple manner, multibody systems methodologies include the 

following two phases: (i) development of mathematical models of systems experiencing 

large motions and (ii) implementation of computational procedures to perform the 

analysis of the global motion produced. The equations of motion of a multibody system 

can be solved using either forward or inverse methods, depending on the purpose of the 

dynamic analysis. The forward dynamics analysis is aimed at predicting the dynamic 

response of the system when subjected to external forces, while the inverse dynamics 

approach is intended to estimate the internal and external forces that are claimed to 

produce an observed dynamic behavior (Silva, 2003; Meireles et al., 2009).  

The multibody methodologies enable the study of the kinematics and dynamics of 

a wide range of systems in a large number of engineering fields of application, such as 

(i) robotics and control (Zhu et al., 2006; Kecskeméthy et al., 2009), (ii) heavy 

machinery and mechanisms (Sugiyama and Suda, 2009; Flores, 2009), (iii) vehicles and 

railway dynamics (Sharp et al., 2004; Pombo and Ambrósio, 2008), (iv) space systems 

(Ambrósio et al., 2007), (v) efficient methods and real-time applications (Cuadrado et 

al., 2004), (vi) contact mechanics (Dopico et al., 2011), (vii) biomechanics (Silva and 

Ambrósio, 2002), just to mention a few. Figure 3.1 illustrates some multibody system 

applications, which result from the association of structural and mechanical subsystems 

with the purpose to transmit or transform a given motion.  
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There are different coordinates and formalisms that lead to suitable descriptions of 

multibody systems, each of them presenting relative advantages and drawbacks 

(Wittenburg, 1977; Nikravesh, 1988; Haug, 1989; Huston, 1990; Schiehlen, 1990b). 

The fundamental methodologies of analytical and recursive dynamics for rigid and 

flexible bodies have been summarized and discussed in several review papers published 

over the last two decades, such as those by Schiehlen (1990a; 2006), Shabana (1997b), 

Eberhard and Schiehlen (2006), Jálon (2007) and Nikravesh (2008b). In turn, many 

multibody computational programs capable of automatic generation and integration of 

the differential equations of motion have been developed, namely NEWEUL/ 

NEWEUL-M
2
 (Schiehlen and Kreuzer, 1978; Kurz et al., 2010), DAP (Nikravesh, 

1988), MSC Software
TM

 ADAMS (MSC Software Corporation, Santa Ana, CA), LMS
®
 

DADS (LMS
 
International, Leuven, Belgium), COMPAMM (Jiménez et al., 1990), 

SIMPACK (Rulka, 1990), AnyBody Modeling System™ (AnyBody Technology, 

Aalborg, Denmark), MADYMO
®

 (Tass, Rijswijk, Netherlands), PC Crash™ (MEA 

Forensic, Vancouver, Canada), LifeModeler™ (LifeModeler, Inc., San Clemente, CA), 

SIMM (Delp et al., 1990), APOLLO (Silva, 2003) and MUBODYNA (Flores, 2010). 

The various formulations of multibody systems used in these programs differ in the 

principle used, types of coordinates adopted and the method selected for handling 

constraints in systems characterized by closed loop topology.  

  
(a) (b) 

 
 

(c) (d) 

Figure 3.1 Examples of application of multibody systems: (a) Vehicle dynamics; (b) Lumbar vertebrae 

model; (c) Railway dynamics; (d) slider-crank model with clearance revolute joint. 

wheel-rail contact

clearance



Multibody dynamics methodology for biomechanical modeling 3-5 

Multibody models are usually used in cases where gross-motions are involved and 

when complex interactions with surrounding environment are expected. For instance, 

the human gait as a gross-motion can be described using multibody system 

formulations. In the field of biomechanics, the multibody system methodologies have 

been extensively used in the analysis of the human body motion as well as in the study 

of the interaction of its structures with the surroundings for several physical activities. 

Biomechanical studies based on multibody formulations are performed to achieve a 

variety of purposes: (i) to identify and quantify the loads placed on the biological tissues 

that surround the human articulations with the intention of to understand joint disorders 

and associated pathologies (Bei and Fregly, 2004; Guess et al., 2010; Li et al., 2011; 

Machado et al., 2011); (ii) to investigate how the musculoskeletal structures work 

together to generate motion in order to help in the diagnosis and clinical treatments 

(Pandy, 2001; García-Vallejo and Schiehlen, 2011; Gonçalves et al., 2011); (iii) to 

analyze the actions of top athletes to improve different sporting performances 

(Fintelman et al., 2011); (iv) to optimize the design of sportive equipment (Hoyos and 

Martínez, 1999); (v) to assess operating and labor conditions in an ergonomic 

perspective (Rasmussen et al., 2002; Barroso et al., 2005; Castellucci et al., 2010); (vi) 

to improve the design and analysis of medical and orthotic devices (Silva et al., 2010; 

Moreira et al., 2010; Cuadrado et al., 2011; Font-Llagunes et al., 2011); (vii) to analyze 

the occupant dynamics for crashworthiness and vehicle safety related research and 

design (Ma and Lankarani, 1997; Carvalho and Ambrósio, 2011). 

3.2 Types of coordinates and kinematic constraints 

Prior to establishing the equations of motion that govern the dynamic behavior of 

MBS, it is first necessary to select the way how to describe them. The description 

variables must be able to characterize the system configuration, that is, the position of 

the material points of the bodies. The description variables, also called generalized 

coordinates, must uniquely define the position of the system components at any instant 

of time during the multibody system analysis. The expression generalized coordinates is 

employed to include both linear and angular coordinates (Huston, 1990). 
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The minimum number of variables necessary to fully describe the configuration of 

a system is named as degrees-of-freedom of the system, or simply mobility (Müller, 

2009). Different sets of coordinates may be chosen to describe the configuration of the 

bodies. A general and broad embracing rule to group the different sets of coordinates is 

to divide them into independent and dependent coordinates (Wehage and Haug, 1982). 

The independent coordinates are free to vary arbitrarily, while the dependent 

coordinates are required to satisfy the equations of constraints. Additionally, the 

dependent coordinates can be classified as absolute coordinates (Orlandea et al., 1977), 

relative coordinates (Chace, 1967) and natural coordinates (Jálon and Bayo, 1994). 

Figure 3.2 summarizes the different types of coordinates most frequently used to 

describe the configuration of multibody systems. Another possible manner to classify 

the coordinates is to split them into Lagrangian and Eulerian coordinates. According to 

Nikravesh (1988), the general distinction between Lagrangian and Eulerian coordinates 

is that the former allows the definition of the body position relative to a moving 

coordinate system, whereas the later normally requires that the position of each rigid 

body in space be defined relative to a fixed global coordinate system. In view of that, 

the Eulerian formulation requires the definition of a larger number of coordinates in 

order to specify the position of each rigid body of a multibody system. 

 
Figure 3.2 Types of coordinates frequently used in multibody systems. 

For the case in which a multibody system is modeled with independent 

coordinates, the number of variables used to describe the system configuration is equal 

to the number of DOF. Furthermore, the use of independent coordinates produces 

constraint equations with a high degree of nonlinearity that require a complex 

computational implementation. Moreover, in some cases, the independent coordinates 

do not define the system configuration in a univocal manner. For the dependent 

coordinates, besides the variables associated with the system degrees-of-freedom, it is 

also required to consider other set of coordinates and the necessary constraint equations 

that relate the independent and dependent coordinates (Nikravesh, 2008a).  

TYPES OF
COORDINATES

Independent coordinates

Dependent coordinates

Absolute coordinates

Relative coordinates

Natural coordinates
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In the absolute coordinates, also called reference point coordinates or Cartesian 

coordinates, the generalized coordinates define the position of each body, typically the 

location of the center of mass, and the orientation of the body in the system. In the 

planar case, this situation corresponds to three variables, namely two Cartesian 

coordinates, x and y, and one angle, ϕ, all defined with respect to a global coordinate 

system. The formulation of multibody systems with absolute coordinates has a simple 

and straightforward computer implementation and handless naturally the existence of 

closed-loop systems. Additionally, the constraint equations necessary to describe the 

system constraints are generally easy to obtain and implement computationally. 

Furthermore, this approach exhibits good computational efficiency and the degree of 

nonlinearity of the resulting equations is lower than that exhibited when using 

independent coordinates. In addition, with absolute coordinates, the configurations of 

the systems are defined in a univocal manner. The major drawback associated with the 

absolute coordinates formulation is the large number of variables and constraint 

equations involved (Nikravesh, 1988; Shabana, 1989; Jálon and Bayo, 1994; Nikravesh, 

2008a). Figure 3.3a illustrates a human body model developed in the AnyBody 

Modeling System
TM

, which is an example of a MBS code that utilize absolute 

coordinates to model and simulate biomechanical systems (Rasmussen et al., 2003). 

The relative coordinates, also referred as joint coordinates or state variables, 

define the position and orientation of a body with respect to a preceding body in a 

multibody system. In general, this type of coordinates is directly related to the relative 

degrees-of-freedom allowed by joints that connect bodies. The relative coordinates are 

used to formulate a minimum number of equations of motion of multibody systems. 

When the system is an open kinematic chain, the number of relative coordinates is equal 

to the number of DOF. In these circumstances, the relative coordinates are, in fact, the 

independent variables used to define the configuration of the system. For closed 

kinematic chains a preprocessing analysis of the system is required to deal with the 

assembling constraints, and then the system topology has to be analyzed to find how to 

write them properly. Therefore, it can be said that relative coordinates are not 

convenient when the system topology can be changed during the global motion 

produced. In sharp contrast to the absolute coordinates, the incorporation of general 

force functions, constraint equations and prescribed trajectories in the system 
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formulation are not trivial tasks when relative coordinates are utilized. Another 

disadvantage associated with this type of coordinates is that they generate equations of 

high level of nonlinearity and, hence, their computational implementation is hard. 

Nevertheless, the use of relative coordinates presents a good computational efficiency 

and defines the system in a univocal manner. The free and open-source software 

OpenSim, which enables the construction of musculoskeletal models and the 

visualization of their motion, is an example of a computational code, developed under 

the framework of multibody systems, that utilizes relative coordinates in its formulation 

(Delp et al., 2007; Seth et al., 2011). An example of a musculoskeletal model developed 

using OpenSim is shown in Figure 3.3b. 

Finally, the natural coordinates, also designated as point coordinates or fully 

Cartesian coordinates, are an interesting alternative to absolute or relative coordinates 

when describing multibody systems (Jálon, 2007). The natural coordinates are 

composed by the Cartesian coordinates of some points and by the Cartesian coordinates 

of some unit vectors distributed on the different bodies of the system. The points are 

typically located in relevant positions of the system components, such as joints and 

extremities of the bodies. In turn, the vectors are generally used to define rotational and 

direction axes for kinematic joints. The code APOLLO is an example of a dynamic 

computational program that uses natural coordinates to model biomechanical multibody 

systems has been developed by Silva (2003). A biomechanical model developed in the 

APOLLO code is depicted in Figure 3.3c. 

 

 

 

 

 

(a)  (b)  (c) 

Figure 3.3 Examples of human body models: (a) AnyBody modeling system
TM

; (b) OpenSim;  

(c) APOLLO {Adapted from Silva (2003) with Author’s permission}. 
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The natural coordinates have the great advantage that there is no need for any 

angular variables (Jálon and Bayo, 1994), as it is the case of absolute and relative 

coordinates. In two-dimensional space, the natural coordinates can be seen as an 

extension of the absolute coordinates when the reference points are moved to relevant 

points of the multibody system, in which they represent important features. Thus, the 

configuration of each body is described by at least two points properly located. Figure 

3.4 shows a schematic representation of the transition from absolute to natural 

coordinates. Natural coordinates are especially appropriate to sensitive analysis and 

optimization procedures, because the lengths, for instance, appear explicitly in the 

constraint equations. Furthermore, when using natural coordinates there is no need for 

preprocessing, as in the case of the closed kinematic chain systems described by relative 

coordinates. The natural coordinates are not independent but they are related by the 

natural rigid body conditions, that is, the condition of keeping constant distances and 

angles. Thus, the constraint equations can be formulated by the scalar product of the 

vectors, leading to quadratic constraint equations and constant or linear terms in the 

Jacobian matrix (Jálon, 2007).  

 

  
(a) (b) 

Figure 3.4 Transition from (a) absolute coordinates to (b) natural coordinates. 

The process of selecting a type of coordinates to describe a multibody system is 

not a minor task, because the use of either type of coordinates brings a few associated 

limitations that will restrict the applications or will demand additional efforts of 

computation and/or implementation. Hence, the type of coordinates to be used must 

focus on the type of problem to be analyzed and should be a tradeoff between the 

advantages and drawbacks of each type of coordinates. In the present study, due to their 

simplicity and computational implementation easiness, absolute coordinates are 

employed to formulate the equations of motion of multibody systems. It is worth noting 

f

(x,y)

(x1,y1)

(x2,y2)

From absolute coordinates …                … to natural coordinates

f

(x,y)

(x1,y1)

(x2,y2)

From absolute coordinates …                … to natural coordinates
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that the absolute coordinates have the great merit to be straightforward, even for 

systems with high level of complexity.  

When a multibody system is made of nb rigid bodies, the vector of generalized 

coordinates can be written as 

  1 2 ...
T

T T T

nbq q q q  (3.1) 

When absolute coordinates are used, the position and orientation of the body i are 

defined by a set of translational and rotational coordinates. Figure 3.5 shows that body i 

is uniquely located in the plane by specifying the global position, ri, of the body-fixed 

coordinate system origin, Oi, and the angle ϕi of rotation of this system of coordinates 

with respect to the x-axis of the global coordinate system.  

 
Figure 3.5 Global and local components of a point Pi on body i. 

The vector of coordinates of the body i is denoted by 

  
T

i i i ix y fq  (3.2) 

Let ux and uy be unit vectors along the global x and y-axes, respectively, and let 

i
u and 

i
u be unit vectors along the body-fixed axes ξi and ηi, respectively. With regard 

to Figure 3.5, the unit vector components ux and uy of vector u can be written as 

 cos sin
i ix i i f f u u u  (3.3) 

 sin cos
i iy i i f f u u u  (3.4) 

In matrix form, Equations (3.3) and (3.4) take the form of 

x
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cos sin

sin cos

i

i

x i i

y i i





f f

f f

      
    
      

uu

u u
 (3.5) 

which in a compact form can be expressed as 

 i i
u A u  (3.6) 

where u is the unit vector expressed in terms of global coordinates, i
u  is the unit vector 

expressed in the local coordinate system and Ai represents the planar transformation 

matrix for body i, which defines the orientation of body-fixed coordinate system ξiηi 

with respect to the global coordinate system xy, being given by 

 
cos sin

sin cos

i i

i

i i

f f

f f

 
  
 

A  (3.7) 

In the present work, each point in a rigid body is located by its constant position 

vector expressed in the body-fixed coordinate system. For instance, a point Pi can be 

described by the position vector P

is  and by the global position of the body center of 

mass ri, resulting that 

 
P P P

i i i i i i
   r r s r A s  (3.8) 

where Ai represents the transformation matrix given by Equation (3.7) and P

i
s  refers to 

the local components of point Pi. The location of point Pi with respect to body-fixed 

coordinate system is 

  
T

P P P

i i i  s  (3.9) 

In the expanded form, Equation (3.8) is expressed as 

 cos sinP P P

i i i i i ix x  f  f    (3.10) 

 sin cosP P P

i i i i i iy y  f  f    (3.11) 

It should be noted that 

 
P P

i i i
s A s  (3.12) 



3-12 A multibody approach to the contact dynamics: a knee joint application 

is the relation between local and global components of the position of point Pi with 

respect to the body-fixed coordinate frame origin.  

In what follows, the formulation of the most common types of kinematic 

constraints used in multibody systems associated with the application foreseen here will 

be presented, along with their contributions to the Jacobian matrix of the constraints and 

to the right-hand side of the velocity and acceleration constraint equations. These terms 

form the basis of the kinematic analysis of multibody systems. The kinematic analysis is 

of a preliminary nature and plays a key role in the understanding of the dynamics of 

moving bodies within a multibody system (Silva and Ambrósio, 2002). 

Let the configuration of a multibody system be described by n absolute 

coordinates. Then a set of m algebraic kinematic independent holonomic constraints Φ 

can be written as (Nikravesh, 1988; Roberson and Schwertassek, 1988) 

 ( , )t Φ q 0  (3.13) 

where q is the vector of generalized coordinates and t is the time variable. 

The velocities and accelerations of the system components can be determined using 

the velocity and acceleration constraint equations. Thus, the first time derivative of 

Equation (3.13) provides the velocity constraint equations as 

 t  
q

Φ q Φ υ  (3.14) 

where Φq is the Jacobian matrix of the constraint equations, that is, the matrix of the 

partial derivatives of Φ with respect to q,  Φ q , q represents the vector of generalized 

velocities and υ denotes the right-hand side of velocity constraint equations, which 

contains the partial derivatives of Φ with respect to time, t Φ . Notice that only 

rheonomic constraints, typically associated with driving or guiding elements, contribute 

with non-zero entries to the vector υ (Nikravesh, 1988). 

A second differentiation of Equation (3.13) with respect to time leads to the 

acceleration constraint equations, yielding 

 ( ) 2 t tt    
q q q q

Φ q Φ q q Φ q Φ γ  (3.15) 
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where q  is the vector of generalized acceleration and γ denotes the right-hand side of 

acceleration constraint equations, i.e., the vector of quadratic velocity terms, which are 

exclusively functions of velocity, position and time. In the case of scleronomic 

constraints, that is, when Φ is not explicitly dependent on the time, the terms Φt in 

Equation (3.14) and Φqt and Φtt in Equation (3.15) vanish. 

The terms included in Equations (3.13) through (3.15) appear in a general form, 

that is, they do not reflect the type of dependent coordinates considered. Moreover, the 

constraint equations represented by Equation (3.13) are nonlinear in terms of q and are, 

usually, solved by employing the iterative Newton-Raphson method. In turn, Equations 

(3.14) and (3.15) are linear in terms of q  and q , respectively, and can be solved by any 

method adopted for the solution of linear systems (Atkinson, 1989). The treatment of 

redundant constraints is out of the scope of this work. The interested reader in this topic 

is referred to the work by Wehage and Haug (1982) or to Arabyan and Wu (1998). 

The kinematic analysis is the study of the motion of a multibody system, 

independently of the causes that produce it. Since in the kinematic analysis the forces 

are not considered, the motion of the system is specified by driving or guiding elements 

that govern the motion of certain degrees-of-freedom of the system during the analysis. 

The position, velocity and acceleration of the remaining elements of the system are 

defined by kinematic constraint equations that describe the system topology (Paul and 

Krajcinovic, 1970a; Paul and Krajcinovic, 1970b; Shigley and Uicker, 1995). It is clear 

that in the kinematic analysis, the number of driving and guiding constraints must be 

equal to the number of degrees-of-freedom of the multibody system.  

The kinematic analysis of a multibody system can be carried by solving the set of 

Equations (3.13)-(3.15). The necessary steps to perform this type of analysis, sketched 

in Figure 3.6, can be summarized as follows (Flores, 2004) 

1. Specify initial conditions for positions q
0
 and initialize the time t

0
;  

2. Evaluate the position constraint equations (3.13) and solve them for q; 

3. Evaluate the velocity constraint equations (3.14) and solve them for q ;  

4. Evaluate the acceleration constraint equations (3.15) and solve them for q ;  

5. Increment the time. If the time is smaller than final time, go to step 2, 

otherwise stop the kinematic analysis. 
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Figure 3.6 Flowchart of computational procedure for kinematic analysis of a multibody system. 

Figure 3.7 shows two bodies i and j connected by a revolute or pin joint, which is 

one of the most common kinematic joints used in multibody models. A revolute joint 

constrains the relative translation of the bodies, allowing only the relative rotation. 

 
Figure 3.7 Revolute joint connecting bodies i and j. 

The kinematic conditions for the revolute joint require that two different points, 

each one belonging to a different body, share the same position in space all the time. 

This means that the global position of the point Pi on body i is coincident with the 

global position of the point Pj on body j. Such condition is expressed by two algebraic 

equations that can be obtained from the following vector loop equation 
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( ,2)r P P

i i i j j j
     Φ r A s r A s 0  (3.17) 

where the superscripts r and 2 refer to a revolute joint constraint and the number of 

equations involved, respectively (Nikravesh, 1988).  

In a more explicit form, Equation (3.17) can take the form of 

 
( ,2)

0

0

P P

i jr

P P

i j

x x

y y

    
    

    

Φ  (3.18) 

Expanding Equation (3.18) yields two constraint equations as 

 
( ,1st) cos sin cos sin 0r P P P P

i i i i i j j j j jx x f  f  f  f      Φ  (3.19) 

 
( ,2nd) sin cos sin cos 0r P P P P

i i i i i j j j j jy y f  f  f  f      Φ  (3.20) 

Therefore, it can be stated that there is only one relative degree-of-freedom 

between two rigid bodies that are connected by a revolute joint. In other words, the two 

kinematic constraint equations (3.19) and (3.20) reduce the number of degrees-of-

freedom of the multibody system by two. 

In order to perform the kinematic analysis, it is necessary to evaluate the Jacobian 

matrix of the constraint equations for positions and the right-hand side of the velocity 

and acceleration constraint equations. Thus, the Jacobian matrix associated with the 

revolute joint is, by definition, the partial derivatives of Equations (3.19) and (3.20) 

with respect to generalized coordinates. For the revolute joint shown in Figure 3.7, the 

column vector of generalized coordinates is written as 

  
T

i i i j j jx y x yf fq  (3.21) 

Then, the Jacobian matrix is given by 
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 (3.22) 
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The evaluation of the partial derivatives that appear in Equation (3.22) yield the 

corresponding values of the Jacobian terms as 

 
( ,2) 1 0 sin cos 1 0 sin cos

0 1 cos sin 0 1 cos sin

P P P P

r i i i i i i i i

P P P P
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q

Φ  (3.23) 

Alternatively, Equation (3.23) can be written in an explicit form as  
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In turn, the right-hand side of the velocity constraint equations is given by 

 
( ,2)r

t  υ Φ 0  (3.25) 

or, alternatively 
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 (3.26) 

In fact, Equation (3.25) represents a scleronomic constraint, that is, the revolute 

joint constraints do not depend explicitly on time. Consequently, the right-hand side of 

the acceleration constraint equations reduce to 

 
( ,2) ( )r  

q q
γ Φ q q  (3.27) 

which results in 
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γ  (3.28) 

The kinematic constraint equations presented for the revolute joints are functions of the 

generalized coordinates of the system only, i.e., they do not depend on time. Examples 

of kinematic constraints, besides the revolute joints, are the simple constraints, the 

ground constraints and the driving constraints (Nikravesh, 1988).  
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The guiding constraints are a type of rheonomic constraints that are frequently 

used in the formulation of biomechanical system, mainly in modeling and analysis of 

the human motion. The role of these constraints is to impose prescribed trajectories to 

certain points on the bodies, as it is the case of the human arm model depicted in Figure 

3.8 (Meireles et al., 2009). In general, this type of trajectories is obtained 

experimentally using a complete data acquisition system, being the data points 

expressed as functions of time variable (Silva, 2003).  

 
Figure 3.8 Human arm multibody model composed by three bodies: hand (1), forearm (2) and arm (3). 

The motions of forearm and arm are prescribed by the trajectories t2(t) and t3(t), 

respectively. 

Considering, for instance, the trajectory of the center of mass of body 2, then three 

constraints can be written as 
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where 
2 ( )kt t , (k=x, y, ϕ), denotes the trajectory coordinates of the body 2 center of mass.  

The contributions of the guiding constraint equations (3.29) to the Jacobian matrix 

of the constraints and to the right-hand side of the velocity and acceleration constraints 

can be evaluated as follows, respectively 

 

( ,1 ) ( ,1 ) ( ,1 )

2 2 2

( ,2 ) ( ,2 ) ( ,2 )
( ,3)

2 2 2

( ,3 ) ( ,2 ) ( ,3 )

2 2 2

g st g st g st

g nd g nd g nd
g

g rd g nd g rd

x y

x y

x y

f

f

f

   
 

   
   

  
   

   
 

    

q

Φ Φ Φ

Φ Φ Φ
Φ

Φ Φ Φ

 (3.30) 

x

y

2

3

2( )t t

3( )t t

1



3-18 A multibody approach to the contact dynamics: a knee joint application 

 
( ,1 ) ( ,2 ) ( ,3 )

( ,3)

T
g st g nd g rd

g

t t t

   
  

   

Φ Φ Φ
υ  (3.31) 

 
2 ( ,1 ) 2 ( ,2 ) 2 ( ,3 )

( ,3)

2 2 2

T
g st g nd g rd

g

t t t

   
  

   

Φ Φ Φ
γ  (3.32) 

Since the trajectory of body center of mass is typically discrete and obtained 

experimentally, in general, the data collected are used to derive the mathematical 

expressions by interpolating the coordinates in time. In the present work, this procedure 

is obtained by employing cubic splines interpolation, because higher order polynomials 

are known for exhibiting oscillations in the vicinity of curvature changes, whereas cubic 

splines provides much more smooth transitions (Chapra and Canale, 1988; Späth, 1995; 

Meireles et al., 2009). Furthermore, the use of cubic spline is quite useful to ensure the 

continuity of the first and second derivatives, i.e., velocity and acceleration, property 

that is very important in kinematic and dynamic analysis.  

3.3 Equations of motions for constrained systems 

The formulation of the equations of motion for constrained MBS adopted here 

follows closely the formulation presented by Nikravesh, in which the generalized 

absolute coordinates are used to describe the system configuration (Nikravesh, 1988). 

Thus, for a constrained MBS the kinematic constraints can be described by a set of 

holonomic algebraic equations (3.13). Differentiating Equation (3.13) with respect to 

time yield the velocity constraint equations (3.14) and after a second differentiation with 

respect to time the acceleration constraint equations (3.15) are obtained. 

The translational and rotational equations of motion for a unconstrained 

multibody system made of rigid bodies are written as 

 Mq g  (3.33) 

where M is the global system mass matrix, containing the mass and moments of inertia 

of all bodies, and g is the generalized force vector that contains all external forces and 

moments applied on the system.  
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The forces applied over the multibody system components can be the result of 

springs, dampers, actuators or external forces. Figure 3.9 illustrates a biomechanical 

model where some of these forces are represented.  

  
Figure 3.9 Different types of forces that can be present in a biomechanical multibody system. 

External applied forces, of different nature and level of complexity, can act on a 

multibody system representing the interactions among the system components and 

between them and the surrounding environment. Gravitational forces, inertia forces, 

spring-damper-actuator forces, normal contact forces, tangential or frictional forces, 

external applied forces, forces due to elasticity of bodies, and thermal, electrical and 

magnetic forces are some of the actions over the system bodies that can be represented 

as external forces. 

When a multibody system comprises kinematic constraints, the corresponding 

reaction forces and moments have to be included in the formulation. The forces and 

moments developed at the kinematic joints can be expressed in terms of the Jacobian 

matrix of the constraint equations and the vector of Lagrange multipliers as 

(Greenwood, 1965; Jálon and Bayo, 1994)  
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where λ  is the vector that contains m unknown Lagrange multipliers associated with m 

holonomic constraints. The Lagrange multipliers are physically related to the reaction 

forces and moments between the bodies interconnected by kinematic joints. 

Introducing now Equation (3.34) into Equation (3.33) yields 

 
T 
q

Mq Φ λ g  (3.35) 

It is well known that in dynamic analysis, a unique solution of Equation (3.35) is 

obtained when the acceleration constraint equations are considered simultaneously with 

the differential equations of motion, for a proper set of initial conditions. Equation 

(3.15) is appended to Equation (3.35) and written in the Hessenberg matrix form as 
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M Φ q g

Φ 0 λ γ
 (3.36) 

Equation (3.36) is formed as a combination of the equations of motion and second 

time derivatives of the kinematic constraint equations, often referred to as a mixed set of 

differential and algebraic equations (DAE). This linear system of equations is solved for 

the variables q  and λ. Then, in each integration time step, the accelerations vector, q , 

together with velocities vector, q , are integrated in order to obtain the system velocities 

and positions for the next time step. This procedure is repeated up to final time of 

analysis is reached. A set of initial conditions, positions and velocities, is required to 

start the dynamic simulation. Usually, the initial conditions are obtained from a 

previous kinematic simulation of the multibody system under analysis in order to ensure 

kinematic consistency for the initial positions and velocities. The subsequent initial 

conditions for each time step in the simulation are obtained in the usual way from the 

final conditions of the previous time step (Nikravesh, 2007). 

It is clear that the system of the motion equations (3.36) does not use explicitly the 

position and velocity constraints, that is, Equations (3.13) and (3.14). For moderate or 

long simulation times, the original constraint equations start to be violated due to the 

numerical approximations on the integration process and/or to inaccurate initial 

conditions. Special procedures must be followed to avoid or minimize this effect. 

Several methods to solve this problem have been suggested and tested, being the most 
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common among them the augmented Lagrangian formulation (Bayo et al., 1988), the 

coordinate partitioning method (Wehage and Haug, 1982) and the Baumgarte 

stabilization method (Baumgarte, 1972). An overview of the pros and cons of these 

methods is given by Neto and Ambrósio (2003). 

In a simple way, the augmented Lagrangian formulation is based on Hamilton’s 

principle and the constraint equations are taken into account using a penalty approach. 

This method consists of solving the system’s equations of motion using an iterative 

process. The form of the constraint equations is similar to the Baumgarte approach, but 

it enables to handle redundant constraints in the process (Neto and Ambrósio, 2003). 

In the coordinate partitioning method, the generalized coordinates are partitioned 

into independent and dependent sets. The numerical integration is carried out for 

independent generalized coordinates. Then, the constraint equations are solved for 

dependent generalized coordinates using the position and velocity constraint equations. 

The advantage of this method is that it satisfies all the constraints to the level of 

precision specified and maintains good error control. However, it suffers from poor 

numerical efficiency due to the requirement for the iterative solution for dependent 

generalized coordinates in the Newton-Raphson method. During integration, numerical 

problems may arise due to inadequate choice of independent and dependent coordinates 

that lead to poorly conditioned matrice (Arabyan and Wu, 1998).  

Due to its simplicity and easiness for computational implementation, the 

Baumgarte stabilization method is probably the most popular and attractive technique to 

overcome the drawbacks of the standard resolution of the equations of motion. 

Baumgarte’s method can be looked upon as an extension of feedback control theory. 

The principle of this method is to damp out the acceleration constraint violations by 

feeding back the violations of the position and velocity constraints. The choice of the 

feedback parameters depends on several factors, namely, the integrator used and the 

model of the multibody system (Flores et al., 2011). However, this method does not 

solve all possible numerical instabilities such as, for instance, those that arise near 

kinematic singularities. Furthermore, the major drawback of the Baumgarte’s method is 

the ambiguity in choosing feedback parameters. As pointed out by Baumgarte (1972), it 

seems that the choice of these coefficients usually involves a trial and error procedure. 
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In any case, it must be clearly noted that this method does not correct constraint 

violations but, simply, keeps then under control. 

In the present work, the Baumgarte approach is used as stabilization method and, 

therefore, the fundamentals of this approach to control the violation of constraints are 

analized in the following paragraph. The Baumgarte stabilization method allows 

constraints to be slightly violated before corrective actions can take place, in order to 

force the violation to be reduced to a tolerant level. The objective of Baumgarte method 

is to replace the differential Equation (3.15) by the following equation 

 22   Φ Φ Φ 0  (3.37) 

which is a differential equation for a closed-loop system in terms of kinematic 

constraint equations in which the terms 2Φ  and 2 Φ  play the role of control terms. 

The principle of the method is based on the damping of acceleration of constraint 

violation by feeding back the position and velocity of constraint violations, as illustrated 

in Figure 3.10, which shows open-loop and closed-loop control systems.  

In the open-loop systems Φ and Φ  do not converge to zero if any perturbation 

occurs and, therefore, the system is unstable. Thus, using the Baumgarte approach, the 

equations of motion for a system subjected to constraints are stated as follows 

 22
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q

q

M Φ q g

Φ 0 λ γ Φ Φ
 (3.38) 

If α and β are chosen as positive constants, the stability of the general solution of 

Equation (3.38) is guaranteed. Baumgarte (1972) highlighted that the suitable choice of 

the parameters α and β is performed by numerical experiments. Hence, the Baumgarte 

method has some ambiguity in determining optimal feedback gains. Indeed, it seems 

that the value of the parameters is purely empiric, and there is no reliable method for 

selecting the coefficients α and β. The improper choice of these coefficients can lead to 

unacceptable results in the dynamics of the multibody systems (Nikravesh, 1984). The 

effect of the Baumgarte stabilization method on the dynamic response of a 

biomechanical system is presented in Section 3.5 throughout a demonstrative example 

of application. The reader interested in detailed information about the influence of the 
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Baumgarte stabilization method, and on the techniques to select the Baumgarte 

parameters, is referred the work by Flores and the co-authors (2011). 

 
Figure 3.10 Open loop and closed loop control systems. 

In addition to the three basic approaches presented above, many research papers 

have been published on the stabilization methods for the numerical integration the 

equations of motion of multibody systems. Yoon and the co-authors (1994) presented a 

direct correction method to eliminate the violation of the constraints in numerical 

simulation of constrained multibody systems. However, this method is formulated on 

the positions level only. Blajer (1995) considered the projection method to obtain the 

dynamic equations of motion for constrained multibody systems in the form of ordinary 

differential equations. Then, a standard solver is used to integrate the resulting system. 

Fisette and Vaneghem (1996), based on the coordinate partitioning method, used the 

LU-factorization of constraint Jacobian matrix to identify the dependent and 

independent coordinates. This aspect is of paramount importance since during the 

integration process, numerical problems may arise due to inadequate choice of the 

independent coordinates that lead to poorly conditioned matrices. This problem was 

also considered by Arabyan and Wu (1998) to study multibody mechanical systems 

with both holonomic and nonholonomic constraints. Weijia and the co-authors (2000) 

used the Taylor’s expansion series to present a methodology to deal with the violation 

of the constraints. Neto and Ambrósio (2003) used different methodologies to handle 

the constraint violation correction for the integration of differential algebraic equations 

in the presence of redundant constraints. Tseng and the co-authors (2003) used the 

Maggi’s equations with perturbed iteration to develop an efficient approach to 
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numerically solve constrained multibody systems. Nikravesh (1984) comparatively 

studied the direct integration of the equations of motion of multibody systems, the 

Baumgarte stabilization method and the coordinate partitioning method, and concluded 

that the implementation of the Baumgarte stabilization approach is twice as efficient as 

the integration of the mixed system. 

3.4 Numerical solution of the equations of motion 

In this Section, the main numerical aspects related to the numerical integration of 

the equations of motion of a multibody system are reviewed. The standard integration of 

the equations of motion, here called direct integration method (DIM), converts the n 

second-order differential equations of motion into 2n first-order differential equations. 

Then, a numerical integration scheme is used to solve the initial value problem 

(Shampine and Gordon, 1975; Gear, 1971b). 

The 2n differential equations of motion are solved without considering the 

integration numerical errors and, consequently, during the simulation the propagation of 

these types of errors results in constraint violations. The two error sources that lead to 

constraint violations for any numerical integration step are truncation and round-off 

errors. Truncation or discretization errors are caused by the nature of the techniques 

employed to approximate values of a function. Round-off errors are due to the limited 

numbers of significant digits that can be retained by a computer. The truncation errors 

are composed of two parts: the first is a local truncation error that results from the 

application of the method over a single step, and the second is the propagated error that 

results from the approximation procedure applied in the previous step. The sum of the 

two is the total or global truncation errors (Chapra and Canale, 1988). 

The commonly used numerical integration algorithms are useful in solving  

first-order differential equations that take the form (Gear, 1971b) 

 ( , )f ty y  (3.39) 

Thus, if there are n second-order differential equations, they are converted to 2n 

first-order equations by defining the y and y  vectors, which contain, respectively, the 

system positions and velocities and the system velocities and accelerations, as 
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The reason for introducing these new vectors y and y  is that most numerical 

integration algorithms deal with first-order differential equations (Gear, 1971a; 

Shampine and Gordon, 1975). The following diagram can interpret the process of 

numerical integration at instant of time t 

 ( )ty
Integration ( )t ty  (3.42) 

In other words, velocities and accelerations at instant t, after integration process, yield 

positions and velocities at next time step, t=t+∆t. Figure 3.11 presents a flowchart that 

shows the algorithm of direct integration method of the equations of motion. At t=t
0
, the 

initial conditions on 0
q  and 0

q  are required to start the integration process. These values 

cannot be specified arbitrarily, but must satisfy the Equations (3.13) and (3.35). The 

algorithm depicted in Figure 3.11 can be summarized in the following steps: 

1. Start at instant of time t
0
 with given initial conditions for positions q

0
 and 

velocities 0
q ;  

2. Assemble the global mass matrix M, evaluate the Jacobian matrix Φq, 

construct the constraint equations Φ, determine the right-hand side of the 

accelerations γ and calculate the force vector g; 

3. Solve the linear set of the equations of motion (3.38) for a constrained 

multibody system in order to obtain the accelerations q  at instant t and the 

Lagrange multipliers λ; 

4. Assemble the vector ty  containing the generalized velocities q  and 

accelerations q  for instant of time t; 

5. Integrate numerically the q  and q  vectors for time step t+∆t and obtain the 

new positions and velocities; 

6. Update the time variable, go to step 2 and proceed with the process for a 

new time step, until the final time of analysis is reached. 
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Figure 3.11 Flowchart of computational algorithm for dynamic analysis of multibody systems based on 

the direct integration method. 

In what follows, the most widely used methods to the numerical integration of the 

equation of motion of multibody system are briefly described, namely Euler method, 

Rung-Kutta methods and Adams predictor-corrector methods. These explicit methods 

involve a step-by-step process in which a sequence of discrete points 0 1 2, , ,..., nt t t t  is 

generated. The discrete points may have either constant or variable spacing defined as 

h
i
=t

i+1
-t

i
, where h

i
 is the step size for any discrete point t

i
. At each point t

i
, the solution 

y(t
i
) is approximated by a number y

i
. Since no numerical method is capable of finding 

y(t
i
) exactly, the global or total error at t=t

i
 is given by 

 ( )i i iy t y    (3.43) 

The integration methods are called single step methods when they only require 

information on the current time step to advance to the next time step. The Euler and 

Runge-Kutta methods are single-step methods. When information of the previous steps 

is used, the algorithm methods are called multi-step methods, as it is the case of Adams 

predictor-corrector schemes. The single-step methods are self-starting and they need a 

minimum amount of storage requirements. However, these methods require a larger 

number of function evaluations, for instance, four for the fourth-order Runge-Kutta 

method. Function evaluation is the name of the process by which, given t and y, the 

value of y  is computed. The multi-step methods require a small amount of function 

evaluations, particularly if the time step is chosen so that the number of  
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predictor-corrector iterations per step is kept below two or three. Moreover, error 

estimates are easily provided and step size adjustments can be performed with no 

difficulties. The multi-step methods are not self-starting and require the help of a  

single-step scheme to start the integration process (Atkinson, 1989). Regardless of the 

numerical method used, the numerical task deals with the integration of an initial-value 

problem that can be written as (Shampine and Gordon, 1975) 

  1 ,y f y t  (3.44) 

with the initial condition y(t
0
)=y

0
 and where y is the variable to be integrated and 

function f (t,y) is defined by the computational sequence of the algorithm selected. 

Equation (3.44) has a solution y(t). The initial value y
0
 can be defined for any value of 

t
0
, although it is often assumed that a transformation has been made so that t

0
=0. This 

does not affect the solution or method used to approximate the solution.  

The Euler integration method is one of the simplest integrators available. This 

approach may be sufficient in giving a very rough idea of the motion of multibody 

systems. This method solves differential equations in a single step as 

  1 ,i i iy y hf y t    (3.45) 

where h is the integration step size h=t
i+1

-t
i
, for i a non-negative integer. This method 

implies that the next step of the state variable can be evaluated by using the current state 

variable. The intuitive basis of the Euler method is illustrated in Figure 3.12, in which 

the curve labeled y=y(t) is the solution of the differential equation (3.44), which passes 

through point P(t
0
,y

0
). It is desired to find the value of y

1
=y

0
+∆y corresponding to t=t

1
. 

In other words, the height RQ  needs to be determined. Although the position of the 

curve at every point is not known, its slope is equal to f (t ,y), which is simply the 

geometric interpretation of the differential equation. Thus, the slope of the tangent at 

point P is y
0
=f (t

0
,y

0
), which can be computed since y

0
 and t

0
 are both known. If h is 

reasonable small, the tangent line PS  should not deviate too much from the curve PQ , 

hence, the height RS  (which by simple geometry is equal to 0hy ) should be an 

approximation to the required height RQ . Therefore, a first approximation to ∆y is 

given by the expression ∆y
1
=RS=hf  (t

0
,y

0
) (Shampine and Gordon, 1975; Atkinson, 

1989). 
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Figure 3.12 Geometric interpretation of the Euler integration method. 

For larger time steps and for greater accuracy, the fourth-order Runge-Kutta 

integration method is most popular and widely used. This method is stable and, as a 

computer program, occupy relatively small amount of core storage. The fourth-order 

Runge-Kutta integration algorithm can be expressed by (Pina, 1995) 

 1i iy y hg    (3.46) 

where 
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This method is explicit because all fi depend only on previous values already 

calculated. This algorithm is easy to implement in the measure that it only requires 

function evaluations, and it is self-starting integrator scheme, which means that there is 

no need for any other algorithm or technique to start the integration process. Figure 3.13 
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illustrates the geometric interpretation of the fourth-order Runge-Kutta integration 

method. In this method four tangents are determined, being their average weighted 

according to Equations (3.47)-(3.51). 

The standard fourth-order Runge-Kutta method does not provide an estimate of 

the local error, so that the user does not have way of knowing whether the time step 

being used is adequate. The local error of this method is of order h
5
, which is relatively 

small even for larger time steps. The major drawback of this method is that the function 

f (t ,y) needs to be evaluated four times at each time step. This method is less efficient 

than the multi-steps such as the Adams predictor-correctors. On some problems,  

Runge-Kutta method requires almost twice as much computing time as other multi-steo 

methods (Conte and Boor, 1981). 

 
Figure 3.13 Geometric interpretation of the fourth-order Runge-Kutta method. 

For the Euler and Runge-Kutta methods the next step value y
i+1

 is computed by 

using solely the current value y
i
 and time t

i
, over a time range of h=t
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. Multi-step 

methods utilize information about the solution at more than one point. The aim of the 

multi-step methods is to automatically select the proper order and the proper time step 

size, which minimizes the amount of computer time required to achieve the specified 

accuracy for a given problem. The multi-step algorithms require only two function 

evaluation per step compared with four function evaluations with the fourth-order 

Runge-Kutta method, being, therefore, considerably faster. Predictor-corrector methods 

provide an automatic error estimate at each time step, thus allowing the algorithm to 

select an optimum value of h for a required accuracy. This type of approach exhibits 
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better performance with respect to the propagation of error that it can use time steps 

more than twice as large. 

In Adams predictor-corrector methods an explicit method is used to predict a 

value of y
i+1

, while an implicit method corrects that value. The implicit corrects appear 

to be more stable and accurate than the explicit predictors and are both chosen to be of 

equal order. The Adams-Bashforth predictor algorithm of fourth-order can be written as 

 
1 1 2 3(55 59 37 9 )

24

i i i i i ih
y y f f f f         (3.52) 

where 

 ( , )i i if f t y  (3.53) 

 ( , ), ( 1,2,3)i j i j i jf f t y j     (3.54) 

The corresponding Adams-Moulton corrector algorithm can be expressed by 

 
1 1 1 2(9 19 5 )

24

i i i i i ih
y y f f f f         (3.55) 

where 

 ( , )i i if f t y  (3.56) 

 ( , ), ( 1,2)i j i j i jf f t y j     (3.57) 

The major disadvantage of multi-step methods is that they are not self-starting. 

Thus, in the fourth-order Adams predictor-corrector method four successive values of 

function evaluation at equally spaced points before instant of time t
i
 must be known. 

These starting values must be obtained by some independent method, such as the 

Runge-Kutta method. On the other hand, Adams predictor-corrector algorithms are 

more complicated to program in the measure that they require special techniques for 

starting and for doubling and halving the time step, and they be subject to numerical 

instability (Conte and Boor, 1981; Pina, 1995; Flores and Ambrósio, 2010).  
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An alternative numerical schemes frequently adopted in multibody dynamics are 

based on the Newmark method (Newmark, 1959), also referred as the average 

acceleration method. This method constitutes a special category of the finite difference 

methods that has been widely used in solving the multi-DOF second-order differential 

equations that appear in structural dynamics (Alonso et al., 2010; Tian et al., 2011). The 

Newmark method is an implicit single-step integrator that is easy to implement and has 

good stability properties. Similarly to the multi-step methods, this implicit algorithm 

can be used in a predictor-corrector fashion, with fixed point iteration, although it is 

commonly introduced in the equations of motion of the system and solved through the 

Newton-Raphson iteration (Jálon and Bayo, 1994). It is important to mention that the 

implicit approaches are particularly suitable and convenient for real-time simulations 

(Cuadrado et al., 2004). The interested reader in the details on the Newmark method is 

referred to the work by Newmak (1959) and Bathe (1982). 

Finally, the choice of the integration time step is an important issue, since time 

steps too small lead to high computational time, and large time steps induce a reduced 

accuracy instabilities on the computation. Therefore, it is important to select a 

appropriate time step to obtain accurate results without unnecessarily increasing the 

computation time (Nikravesh, 2008a). In the present work, the integrators used are of 

the explicit type with both constant and variable time steps. The former are utilized for 

the simulations without contact events, while the later are considered when the 

simulations include contact or impact. The integrators with variable order and time step 

have all the ingredients for efficiency and accuracy (Flores and Ambrósio, 2010). 

3.5 Demonstrative example of application 

A human body model is here used as a numerical example to study the influence 

of the Baumgarte stabilization method on the control of the constraint violations. Figure 

3.14 shows a schematic representation of this biomechanical model developed under the 

framework of multibody methodologies. The model is composed by seven rigid bodies, 

being six of them relative to the locomotor system, i.e., the two lower-limbs, and one 

that represents the main upper body segments here denominated by HAT, acronym for 
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head, arms and trunk. In the present study only the skeletal structure is taken into 

account, being the effect of muscles, tendons and ligaments neglected.  

 
Figure 3.14 Biomechanical multibody model of a human body on the sagittal plane. 

The anthropometric description of the seven anatomical segments considered and 

their corresponding body numbers are listed in Table 3.1 (Meireles et al., 2009). In this 

biomechanical model, the anatomical segments are connected by six revolute joints, 

which results in twelve kinematic constraints in the system. These six revolute joints 

corresponds to the principal articular human joints, namely right hip, right knee, right 

ankle, left hip, left knee and left ankle. These six revolute joints reduce the DOF of the 

system to nine, which correspond to six rotations about revolute joints axis, plus two 

translations and one rotation of the main body (HAT). Therefore, nine guiding 

constraints are included to drive the system according to the DOF mention previously. 

Note that by guiding all degrees-of-freedom of the system the direct dynamic analysis 

has some equivalence to a kinematic analysis of the same system. Thus, the case studied 

here cannot be confused with the dynamic simulation by the same system solely driven 

by the internal and contact forces which leads to an unstable motion if not corrected. 
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Three guiding constraints are associated with the HAT body to guide the x, y and 

ϕ coordinates of its center of mass. Additionally, a guiding constraint is allocated to 

each relative DOF of the locomotor system in order to restrain the relative rotation of 

the adjacent bodies. The kinematic trajectories associated with the guiding constraints 

are obtained using cubic spline interpolation techniques. The motion data utilized to 

derive the mathematical expressions by interpolating the coordinates along time is based 

on the data published by Winter (2009). These data represent a time period of 0.957 

seconds related to a human gait cycle of normal cadence. The first 0.4 seconds of 

simulation corresponds to the swing phase of gait cycle, and the remaining period of 

simulation corresponds to stance phase. 

Table 3.1 Anthropometric data for each anatomical segment of the biomechanical human model. 

Segment Description Length [m] 
Proximal location of 

the center of mass [m] 
Mass [kg] 

Moment of 

inertia [kg.m
2
] 

1 HAT 0.2575 -0.0355 19.221 1.0392 

2 Right Thigh 0.3141 0.1360 5.6700 0.0583 

3 Right Shank 0.4081 0.1840 2.6365 0.0400 

4 Right Foot 0.1221 0.0610 0.8221 0.0027 

5 Left Thigh 0.3141 0.1360 5.6700 0.0583 

6 Left Shank 0.4081 0.1840 2.6365 0.0400 

7 Left Foot 0.1221 0.0610 0.8221 0.0027 

Besides the kinematic constraints, external applied forces that act at the feet are 

also considered in this study as input data. These forces are included to simulate the 

reaction forces between the feet and the ground. The kinetic data presented in Winter 

(2009), namely the force magnitude and the coordinates of the point of application, is 

utilized in this study. In each instant of simulation, the components of the external 

applied forces, designated by Fx and Fy, are transferred to the center of mass of the foot. 

These transferred forces and moments are then added to the generalized force vector. 

The rheonomic constraints, such as the guiding constraints, are not susceptible to 

be violated during a dynamic simulation, since they define explicitly the position of the 

bodies at each time step. In turn, the scleronomic constraints, such as the revolute joints, 

are usually subjected to constraint violations when moderate or long time simulations 

are performed. The first cause of constraints violations in multibody dynamics relies on 

the set of the initial conditions. In fact, the initial configuration given to the system can 

be inaccurate or not well-defined. These inconsistences lead to constraint violations 
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even during the first instant of the simulation, and tends to increase with the time. 

Hence, prior to run dynamic simulations is recommended to perform a previous 

kinematic analysis in order to correct the initial conditions of the system, namely the 

positions and velocities of the bodies (Silva and Ambrósio, 2002). In this study, a pre-

kinematic analysis was performed with this purpose. Thus, the risk of having constraint 

violations due to the inaccuracy of the initial conditions is avoid or at least minimized. 

The effect of the application of the Baumgarte stabilization method is 

demonstrated throughout this work using the developed biomechanical model. For this 

purpose, two forward dynamic simulations are performed using the fourth-order Runge-

Kutta method as numerical integrator, being the time step equal to 0.00145 s. The first 

simulation corresponds to the direct integration method, which means that the 

stabilization method is not considered. In the second simulation, the Baumgarte 

stabilization method is used, being the Baumgarte parameters, α and β, both equal to 5. 

The results obtained for these two computational simulations are also compared with 

the data provided by Winter (2009). These results are plotted in Figure 3.15, where it is 

visible the effect of the Baumgarte stabilization method on the control of the violations 

of the position constraints of the four bodies, namely HAT, thigh, shank and foot.  

From the analysis of Figure 3.15, it can be observed that when the direct 

integration method is used the violation of constraints grows significantly with time. 

This growth produces unacceptable results, even for a relatively short simulation, 

because of the inherent instability of the equations used and the rapid constraint 

violations that occur during the computation. This behavior can be related to the fact 

that the biomechanical model is an open kinematic chain being more susceptible to 

exhibit constraint violations than those constituted by closed loop systems (Nikravesh, 

1988). In turn, when the Baumgarte method is utilized, the system response is clearly 

different, as it is illustrated in the plots of Figure 3.15. Furthermore, in this last case, the 

outcomes are close to the data published by Winter (2009). 
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(a) (b) 

  
(c) (d) 

Figure 3.15   Influence of the Baumgarte parameters, α and β, on the y-position of the four bodies of the 

human body model: (a) HAT; (b) Thigh; (c) Shank; (d) Foot. 

3.6 Summary and discussion 

The fundamentals of the multibody formulation for the dynamics of 

biomechanical systems have been presented throughout this Chapter. Firstly, the 

concept of multibody system, made of interconnected bodies that undergo large 

displacements and rotations, was introduced, in which different examples, in 

biomechanics and other fields, were also presented. 

The main types of coordinates that can be used in the formulation of the equations 

of motion of constrained multibody systems were analyzed, being their relative 

advantages and drawbacks also discussed. In this work, due to their simplicity and 

easiness for computational implementation, Cartesian coordinates were selected to 

describe the topology of rigid bodies in biomechanical multibody system. Furthermore, 

from the mathematical point of view, Cartesian coordinates are the supporting structure 

for all methodologies and dynamic analysis developed within the multibody systems 

concept. The kinematic constraint equations associated with revolute joints, as well as 
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those related to guiding constraints, were revised. In addition, their contributions to the 

Jacobian matrix of the constraints and to the right-hand side of velocity and acceleration 

constraint equations were presented. These kinematic constraints are the basic and 

fundamental ingredients to perform the kinematic analysis of biomechanical systems.  

The Newton-Euler approach was employed to obtain the translational and 

rotational equations of motion of constrained multibody systems that was augmented 

with the constraint equations that results in the establishment of a mixed set of 

differential resulting to a set of differential and algebraic equations. The great merit of 

this formulation is that it is very straightforward in terms of assembling equations of 

motion and providing all reaction forces. In this process, the fundamental issues related 

to the numerical methods used to solve the equations of motion were briefly analyzed. 

In a simple way, the equations of motion for constrained multibody systems are 

expressed in the Hessenberg form. A set of initial conditions imposed on the positions 

and velocities is required to start the dynamic simulation. The selection of the 

appropriate initial conditions plays a crucial role in the prediction of the dynamic 

response of multibody systems. The subsequent initial conditions, for each time step in 

the simulation, are obtained from the final conditions of the previous time step. Then, 

from the initial values for positions and velocities, the equations of motion are solved 

for accelerations and Lagrange multipliers, using any available numerical algorithm for 

linear equations, for instance, the Gaussian elimination or the LU-factorization. The 

positions and velocities at the next time step are then obtained by integration of the 

velocity and acceleration vectors. This procedure is repeated until the final time of 

simulation is reached. The integration process can be performed using explicit methods, 

with constant step size or a predictor-corrector with both variable step and order. 

In addition, several methods to avoid the constraint violations problem that occur 

during the numerical solution of the standard equations of motion were briefly 

described, namely the augmented Lagrangian formulation, the coordinate partitioning 

method and the Baumgarte stabilization method. Special attention was given to 

Baumgarte stabilization method, because this technique was adopted in this work to 

keep the constraint violations under control. Finally, a biomechanical human model was 

utilized as a demonstrative example of application to demonstrate the influence of the 

Baumgarte stabilization method on the dynamic response of the system. 
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The problem of contact is of paramount importance in the field of multibody 

dynamics because contact events can take place frequently and in many cases the 

function of multibody systems is based on them (Pfeiffer and Glocker, 1996; Tian et al., 

2009; Ambrósio and Veríssimo, 2009; Machado et al., 2010; Choi et al., 2010). The 

impact is a physical phenomenon characterized by its short duration, high force level, 

rapid energy dissipation and large changes in velocities of the bodies, which affects the 

motion characteristics and the dynamic response of the overall systems (Gilardi and 

Sharf, 2002). Contact has a longer duration and the intervenient bodies may change 

their relative configuration while it lasts. The contact modeling and analysis has 

received great attention over the past few decades and still remains an active field of 

investigation (Gonthier et al., 2004; Sharf and Zhang, 2006). Indeed, proper 

representation of the contact phenomenon for multibody dynamics is still a big challenge, 

since it depends on many factors, such as the geometry of the contacting surfaces, the 

material properties of the contacting bodies and the constitutive law considered to 

represent the interaction among the different bodies that comprises the multibody 

systems (Flores and Ambrósio, 2010; Machado and Flores, 2011). 
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In this Chapter, the methodologies utilized in multibody dynamics to deal with 

contact problems are introduced. In addition, an overview of the existing techniques for 

geometric detection of contact events is also presented. The most common elastic and 

dissipative laws used to evaluate normal contact forces are revised. Finally, a slider crank 

mechanism experiencing two frictionless impacts with an external free sliding block is 

considered as demonstrative example of application.  

4.1 Methods to deal with contact problems 

Impact occurs in the collision of two or more bodies, which can be unconstrained 

or may belong to a multibody system (Flores et al., 2006). An impact typically involves 

high force levels, rapid dissipation of energy, large accelerations, and very short 

duration (Gilardi and Sharf, 2002). These characteristics may have a great influence on 

the dynamic response of a system and, they must be considered on the design and 

analysis of mechanical and biological systems. The word contact is often utilized 

interchangeably with impact. The contact corresponds to the physical situation where 

two or more bodies come in touch with each other at some locations. Inherently, contact 

implies a continuous process which takes place over a finite time (Gilardi and Sharf, 

2002). Some effects related to the impact phenomena are those of vibration propagation 

through the system, local elastic and plastic deformations at the contact zone and 

frictional energy dissipation (Haug et al., 1986; Flickinger and Bowling, 2010).  

In a broad sense, a contact mechanics problem can be analyzed by using either the 

finite element method or the multibody systems approach. On the one hand, there is no 

doubt that the finite element analysis is the most powerful and accurate method to solve 

contact problems (Ebrahimi and Eberhard, 2006; Liu et al., 2007). On the other hand, 

the multibody systems formulation is the most efficient approach for the dynamic 

analysis of the gross motion of mechanical systems (Ebrahimi and Kövecses, 2010). 

Regardless of the method utilized to describe contact problems of the colliding 

bodies, it is necessary to model and analyze the contact process. This involves two main 

steps, namely: (i) the contact detection and (ii) the evaluation of the contact forces, 

which are the result of collisions between bodies. The contact detection is an important 

issue in contact modeling of moving bodies, which deals with the determination of 

when, where and which points are in contact. The efficiency and accuracy of this step 



Contact modeling and analysis 4-3 

depend on the complexity of the contacting surfaces, the number of potential colliding 

bodies (Tasora et al., 2008) and the kinematics of the bodies (Hirschkorn et al., 2006).  

In the context of multibody dynamics, the evaluation of the contact forces can be 

performed by considering different approaches introduced over the last decades 

(Lankarani and Nikravesh, 1990; Glocker and Studer, 2005). Two distinct formulations 

can be applied for impact and contact situations, namely the discrete and continuous 

methods. The discrete approach considers an impact as an impulsive phenomenon of 

infinitesimal duration. Within this method, the system configuration is halted during 

impact, and an appropriate model is employed for relating the states of the system 

immediately before and immediately after the event (Bottasso and Trainelli, 2001). This 

approach is recommended for the description of prompt events of very short duration, 

that is, impact analysis. Furthermore, its extension to flexible systems as well as 

extension to more general cases involving multiple contacts and intermittent contact is 

quite complex (Gilardi and Sharf, 2002).  

In turn, the continuous method relies upon the fact that the interaction forces act 

in a continuous manner during the contact event. In this approach, the local 

deformations and normal contact forces are treated as continuous events. The 

implementation of a continuous approach is simple and straightforward in contrast with 

the discrete method that requires the interruption of the numerical resolution of the 

equations of motion when an impact is detected (Bottasso and Trainelli, 2001). From 

the modeling methodology point of view, there are several different continuous methods 

able to model the contact response in multibody systems. As a rough classification, they 

can be divided into contact force based models and methods based on geometric 

constraints, each of them showing advantages and disadvantages for each particular 

application. In other words, there are two main formulations to model multibody 

systems with contact-impact events, namely the regularized models and non-smooth 

approaches (Pfeiffer and Glocker, 1996).  

The regularized approaches, commonly referred as penalty or compliant methods, 

have been gaining significant importance in the context of multibody systems with 

contacts due to their computational simplicity and efficiency (Flores et al., 2011). In 

these methods, there are no impulses at the instant of contact, therefore, there is no need 

for impulsive dynamics calculations and the contact loss can easily be determined from 

position and velocity data (Flores et al., 2008). One of the main drawbacks associated 
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with the penalty methods is the difficulty to select contact parameters such as the 

equivalent stiffness or the degree of nonlinearity of the indentation, especially for 

complex contact scenarios and nonmetallic materials. Another limitation of this 

approach is the possible introduction of highly-frequency dynamics into the system, due 

to the presence of stiff springs in compliant surfaces. The compliant force models can 

be understood as if each contact region of the contacting bodies is covered with spring-

damper elements scattered over their surfaces. The normal force, including elastic and 

damping, prevents indentation. The contact response produced by these force reaction 

terms is computed based on the indentation, material properties and surface geometries 

of the colliding bodies.  

An alternative way to treat the contact-impact problems within multibody systems 

is to utilize the non-smooth dynamics approach, namely the Linear Complementarity 

Problem (LCP) (Pfeiffer and Glocker, 1996). Assuming that the contacting bodies are 

truly rigid, as opposed to locally deformable bodies as in the penalty approach, the 

complementarity formulation solves the contact dynamics problem by using unilateral 

constraints to compute contact impulses or forces to prevent indentation from occurring. 

The basic idea of complementarity in multibody systems can be stated as for a unilateral 

contact either relative kinematics is zero and the corresponding constraint forces are 

zero, or vice versa. Therefore, the product of these two groups of quantities is always 

zero. This leads to a complementarity problem and constitutes a rule which allows for 

the treatment of multibody systems with unilateral constraints (Glocker and Pfeiffer, 

1993; Pang and Trinkle, 1996; Pfeiffer, 2003).  

In summary, the different methods to deal with contact problems in multibody 

systems have inherently advantages and disadvantages for each particular application. 

None of the formulations briefly described above can a-priori be said to be superior 

compared to other for all applications. It is a fact that a specific multibody problem 

might be easier to describe by one formulation, but this does not yield a general 

predominance of this formulation in all situations. The interested reader in the details on 

the LCP approaches is referred to the works by Glocker and Pfeiffer (1993) and Pfeiffer 

and Glocker (1996). 
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4.2 Geometric detection of contact 

From a mechanical point of view, contact detection is a two-step procedure that 

includes the identification of the coordinates of the potential contact points and the 

evaluation of the indentation of the two bodies. In a broad sense, the contact detection 

process is often referred to as collision detection and the associated computational 

algorithms rely on several factors, which can be grouped in six classes (Ericson, 2005):  

(i) Geometric representation: The geometric representations used to describe 

the contact scenario and its objects have a direct influence on the algorithms 

applied.  

(ii) Proximity queries: In the context of collision detection, a proximity query 

corresponds to any computation that produces information about the relative 

configuration or placement of objects. Thus, the computational effort is as 

greater as the query types and results are more detailed.  

(iii) Environment simulation parameters: The simulation itself includes several 

parameters that affect the collision detection process. These include the 

number of contacting bodies, the position of the contacting bodies, if they 

are moving or not, and whether they are rigid or flexible. 

(iv) Performance: In real-time simulations, a trade-off between time and space 

has to be establishing, being some features balanced to meet performance 

demands.  

(v) Robustness: Not all applications require the same level of physical 

simulation. For example, a multibody model of the human knee joint 

requires much more sophistication from a collision detection algorithm than 

a bouncing ball system, since the geometry of the human knee joint is much 

more complex than a sphere.  

(vi) Ease of implementation and use: Decisions regarding straightforward and 

simple implementation are crucial in the process of selection the approach to 

be taken, especially when there are deadlines to accomplish or some lack of 

resources. 
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All these issues affect the modeling process of a system with contact. However, 

the first three are the ones that influence most the dynamics of the system. Hence, these 

three factors will be described in the following Subsections (Lin and Gottschalk, 1998).  

4.2.1 Geometric representation 

There are several types of geometric representations that have been used for 

contact detection purposes. These representations can be distinguished by polygonal 

models and non-polygonal models, as Figure 4.1 illustrates. 

  
Figure 4.1 Taxonomy of geometric models (Lin and Gottschalk, 1998). 

The polygonal models are frequently applied to model complex shapes due to 

their versatility and simpler representation. Polygonal representations may be 

unstructured (such as a polygonal soup), arranged as meshes, or form convex polytopes. 

The “polygonal soup” is the class of polygonal models more often utilized, because it is 

the output format used by default when geometry is exported from a 3-D modeling 

package (such as Autodesk
®
 Maya

®
, Blender, etc.). Hippmann was one of the first 

authors proposing a contact detection algorithm based on polygonal models (Hippmann, 

2004). This approach, named polygonal contact model (PCM), uses body surfaces 

described as polygon meshes and is a robust and well-known method for contact 

detection of complexly shaped bodies. The PCM has been utilized in many research 

studies on contact dynamics (Ebrahimi et al. 2005, Ebrahimi and Eberhard 2006). 

Dopico and co-authors (2011) proposed other contact detection method to be applied to 

machinery and vehicles simulators. This approach relies on to approximate the 

environments and the multibody models by using primitive objects: the complex CAD 

environments by triangular meshes and the multibody systems by spheres or boxes. 

Choi et al. (2010) used also triangular representations to compute the contact between 

freeform surfaces. This approach comprises two parts: a pre-search algorithm and a 

detailed search method. 

GEOMETRICAL
MODELS

Polygonal models

Non-polygonal models

Constructive solid geometry

Implicit surfaces

Parametric surfaces
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The non-polygonal models fall into three main groups: constructive solid 

geometry (CSG), implicit methods and parametric functions, as Figure 4.1 depicts. 

Constructive solid geometry is a solid modeling technique that allows generating a 

complex geometry by using Boolean operators, such as union, intersection, and 

difference, to combine objects. These objects are called primitives and represent, 

generally, solids with simple shapes, such as spheres, cones, cylinders, cuboids, etc. 

Using a CSG representation it is easy to define arbitrary points as being either inside or 

outside the shape created by CSG, which is a very convenient property in collision 

detection procedures (Lin, 1993; Lin and Gottschalk, 1998). Examples of collision 

detection methods based on CSG representations are given in the works of Faverjon 

(1989), Cameron (1991), Keyser et al. (1999) and Su et al. (1999). 

Implicit function defines the location of the points belonging to surface. With this 

type of representation, the boundaries of an object are well-defined as closed manifolds, 

and the evaluation whether a point belongs to the surface, or not, is an easy and trivial 

task, as in a CSG representation (Sigg, 2006). Implicit functions are often utilized as 

primitives in CSG systems. If the function is polynomial in x, y and z, then it is called 

algebraic (Lin and Gottschalk, 1998). A special case of algebraic surfaces are the 

quadrics, which can represent univocally cones, spheres, and cylinders. Lopes et al. 

(2011) proposed a mathematical framework for contact detection between quadric and 

superquadric surfaces based on their implicit formulations. 

Parametric representations are a set of equations that map one or two parameters 

into Euclidean space. One parameter is utilized to define a curve. To describe a 

parametric surface two parameters are demanded, which are usually represented by the 

symbols u and v. With this approach, it is quite easy to generate a set of points 

belonging to a surface, because the Cartesian coordinates are explicit and independent 

functions of the parametric coordinates (Farin, 1995). It is worth noting that parametric 

representations are generally non-unique, so the same quantities may be expressed by a 

number of different parameterizations. Unlike implicit surfaces, parametric surfaces are 

not generally closed manifolds and hence, they do not represent a complete solid model, 

but rather a description of surface boundary. Parametric surfaces are easier to 

polygonalize and render as compared to the implicits (Lin and Gottschalk, 1998). With 

the parametric method, it is possible to define different types of surfaces that can range 

from very simple geometries, such as the spherical examples, to surfaces with high 
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degree of complexity using, for instance, NURBS, acronym for Non-Uniform Rational 

Basis Splines (Farin, 1995). NURBS are very popular in CAD/CAM field due to their 

suitable geometric properties that make them easier to operate on. It is worth noting that 

rational parametric surfaces (like NURBS and Bezier patches) are a proper subset of 

algebraic surfaces (Lin and Gottschalk, 1998). An example of application of using 

parametric surfaces for contact detection purposes is the work by Bei and Fregly (2004). 

In this study, Bei and Fregly (2004) utilize NURBS surfaces to describe the contact 

surfaces of the knee joint. Machado et al. (2010) use also parametric representations to 

define the boundaries of the contacting bodies on their general multibody code. Tasora 

and Righettini (2003) proposed a multibody method for simulation of sliding contact 

between freeform surfaces represented by parametric functions. This approach relies on 

geometric constraints that are defined by a tangential plane which moves between the 

contacting bodies, hence only a simple point-on-plane constraint had to be added to the 

equations of motion. 

4.2.2 Proximity queries 

Regarding the proximity queries, many applications on computer graphics or 

computer simulated environments need to determine spatial or proximity relationships 

between two geometric objects (Larsen et al., 2000). The collision detection query is an 

example of a proximity query that determines the intersection between given objects. 

Table 4.1 listed the five most familiar and easily defined proximity measures, namely 

collision detection, minimum distance (also called separation distance), maximum 

distance (also referred as spanning distance), Hausdorff distance, and penetration depth. 

Furthermore, there are queries applicable to dynamic scenarios, such as finding when 

the next contact between two moving bodies will occur. This query is known as the 

estimated time of arrival or time of impact computation and is used to for instance, 

control the time step in a multibody simulation (Lin and Gottschalk, 1998; Gottschalk, 

2000; Ericson, 2005). 

The subject of contact detection is quite challenging and an actual problem in 

various areas such as, discrete element methods, robotic systems, multibody 

simulations, or video games engines and computer graphics. The diversity of 

application fields demands different approaches and specifications to deal with the 

contact detection problem. For instance, in computer graphics finding any one point in 
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common between the objects might be sufficient, since its main concern is usually to 

ensure a fast and reliable visualization. In contrast, in multibody simulations more 

detailed information is required in order to compute the reactions forces or impulses that 

result from the contact (van den Bergen, 2004). Throughout this work, two of the five 

queries listed in Table 4.1 are employed, namely the separation distance and the 

penetration depth. The separation distance query is used instead of the collision distance 

query since it is necessary to not only check whenever contact occurs, but also to 

identify the set of contacting points (i.e., the contact manifold or the contact locus). In 

turn, the penetration depht query is applied in contact conditions to evaluate the contact 

indentation (van den Bergen, 2004; Lopes et al., 2011).  

Table 4.1 Five proximity queries (Gottschalk, 2000). 

Query Definition Condition 

Collision 

detection 

Checks whether two 

objects overlap in space or 

their boundaries share at 

least one common point 

col( , )P Q P Q   

Separation 

distance 

Length of the shortest line 

segment joining two sets of 

points 

( , ) min minsep
p P q Q

d P Q p q
 

   

Spanning 

distance 

Maximum deviation of one 

set from the other 
( , ) max maxspan

p P q Q
d P Q p q

 
   

Hausdorff 

distance 

Maximum distance 

between the points of two 

sets 

( , ) max minhaus
q Qp P

d P Q p q


   

Penetration 

depth 

Minimum distance needed 

to translate one set to make 

it disjoint from the other 

( , ) min , min min 0pen
p P q Q

d P Q such that
 

   v p q v  

4.2.3 Environmental simulation parameters 

As mentioned, the environmental simulation parameters have also effect on the 

contact detection process. An example of these parameters is the number of objects of 

the system. A larger number of contacting bodies may slow down significantly the 

performance of a contact detection algorithm, since the proximity queries have to be 

checked in every simulation step for each body. To overcome this problem, some 

computational approaches are utilized in order to reduce the number of pairs tested and, 

thus, to speed up the computational simulation. According to Hubbard (1993), these 

computational methods can be classified into two phases: the broad-phase and the 

narrow-phase. The broad-phase and narrow-phase methods are also referred as n-body 

processing and pair processing, respectively (Ericson, 2005; Kockara et al., 2007). The 

broad-phase methods identifies smaller groups of objects that may be colliding and 
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quickly excludes those that definitely are not, either because they are far away from 

each other, or because other features inherent to the system or the application, e.g., 

game rules. In contact mechanics, the broad-phase algorithms are generally utilized to 

check if the bodies are closely enough to be considered contact candidates (Tasora and 

Righettini, 2003). In these cases narrow-phase methods are employed, which test with 

more accuracy the subgroup of possible contacting pairs pointed out by the broad-phase 

algorithms. Narrow-phase approaches usually report more detailed information that is 

afterwards used to compute indentation and contact forces.  

Spatial data structures are usually applied to formulate broad-phase and  

narrow-phase algorithms (Ericson, 2005; Kockara et al., 2007). These structures fall 

into two classes: space partitioning and model partitioning. A space partitioning is a 

subdivision of space into convex regions called cells. Using such a structure several 

pairs of bodies can be quickly excluded from intersection testing, as it is only necessary 

to test the pairs of bodies that share a cell. The most commonly used space partitioning 

structures are the voxel grids, the octrees and k-d trees, and the binary space partitioning 

(BSP) trees. Figure 4.2 illustrates how to generate a BSP tree (van den Bergen, 2004). 

 
Figure 4.2 Four steps to generate a BSP tree (van den Bergen, 2004). 

A model partitioning is often a better choice than space partitioning, because the 

model partitioning structures do not suffer from the problem of having multiple 

references to the same object. The basic strategy is to subdivide a set of objects into 

geometric coherent subsets and compute a bounding volume for each subset of objects. 

A bounding volume of a model is a primitive shape that encloses the model and should 

have the following properties: (i) a bounding volume should fit the model as tightly as 

possible in order to reduce the probability of a given object intersect the bounding 
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volume but not the model; (ii) overlap tests between bounding volumes should be 

computationally cheap; (iii) a bounding volume should be described using a relatively 

small amount of storage, which is preferably smaller than the storage used by the 

model; (iv) the cost of computing a bounding volume for a given model should be low 

(van den Bergen, 2004). The most used bounding volumes are: the bounding spheres, 

the axis-aligned bounding boxes (AABBs), the oriented bounding boxes (OBBs) and 

the discrete-orientation polytopes (k-DOPs). These volumes are illustrated in Figure 4.3. 

Nonetheless, there are some authors that utilized quadric and superquadric 

representations as bounding volumes. These geometric descriptions demand a greater 

computation effort than the bounding spheres, but are more accurate as they fit the 

model tighter than spheres (Lopes et al., 2011; Portal et al., 2009; Jia et al., 2011). 

Examples of libraries and software packages developed for computing proximity 

queries are listed in Table 4.2. Some of these are based on bounding hierarchies, such as 

DEFORMCD, H-COLLIDE, IMMPACT, OPCODE, PQP, RAPID and SOLID.  

    
(a) (b) (c) (d) 

Figure 4.3 Bounding volumes: (a) Sphere; (b) AABB; (c) OBB; (d) 8-DOP. 

With the intention to improve the computational efficiency of some algorithms of 

contact dynamics, some researchers utilize graphical processing units (GPUs) for fast  

image-space-based intersection techniques or as a co-processor for accelerating 

mathematics or geometry calculations, because GPUs have inherently more raw 

processing power than the main CPUs (Ericson, 2005). In multibody dynamics, some 

GPU-assisted algorithms have been used to perform large-scale simulations of ground 

vehicles running on sand, powder composites, and granular material flow (Tasora et al., 

2008; Tasora and Anitescu, 2010; Mazhar et al., 2011; Negrut et al., 2011). 
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Table 4.2 Software packages for collision detection and proximity query. 

Authors Library Description 

Govindaraju et al. 

(2003) 

CULLIDE: Interactive collision detection between complex models 

in large environments using graphics hardware. 

Kim et al. 

(2002) 

DEEP: Dual-space expansion for estimating penetration depth. This 

algorithm estimates the penetration depth between convex polytopes 

along with the associated penetration direction.  

Sud et al. 

(2006) 

DVD: Fast proximity computation among deformable models using 

discrete voronoi diagrams. 

Tang and Manocha 

(2007) 

DEFORMCD: Collision detection for deforming objects. For 

deforming objects, whose vertices are vibrating, AABB refitting 

solution is used for collision detection. 

Gregory et al. 

(2000) 

H-COLLIDE: Fast and accurate collision detection for haptic 

interaction. Within this approach, OBB trees are employed.  

Cohen et al. 

(1995) 

I-COLLIDE: Interactive and exact collision detection for large-

scaled environments. This library only works for models which are 

convex polyhedra. But it exploits the special features of convex 

polytopes to very quickly determine contact status.  

Wilson et al. 

(1999) 

IMMPACT: Partitioning and Handling Massive Models for 

Interactive Collision Detection. Several types of bounding-volume 

hierarchies are utilized within this approach.  

Terdiman 

(2001) 

OPCODE: Optimized Collision Detection. This library works with 

general polygonal models and uses AABBs. It is memory efficient in 

comparison to RAPID, SOLID, or QuickCD. 

Hoff III et al. 

(2001) 

PIVOT: Proximity Information from Voronoi Techniques. It is a 2-D 

proximity engine that computes generalized proximity information 

between arbitrary objects. 

Larsen et al. 

(2000) 

PQP: Fast proximity queries with swept sphere volumes. This library 

supports collision detection, separation-distance computation or 

tolerance verification. It uses OBBs for collision queries and a 

hierarchy of swept-sphere volumes to perform distance queries.  

Gottschalk et al. 

(1996) 

RAPID: Robust and Accurate Polygon Interference Detection. This 

library works with polygonal soups and is based on OBBs. 

Tang and Manocha 

(2010) 

SELF-CCD: Continuous Collision Detection for Deforming Objects. 

It performs both inter- and intra-object collisions.  

van den Bergen 

(2004) 

SOLID: Software Library for Interference Detection. It supports the 

contact detection of multiple 3-D polygonal objects undergoing rigid 

motion. This library works with polygon soups and uses AABBs. 

Ehmann 

(2000) 

SWIFT: Speedy Walking Via Improved Feature Testing. It provides 

collision detection, distance computation, and contact determination 

between 3D polygonal objects undergoing rigid motion. This is 

faster, more robust and memory efficient than I-COLLIDE. 

Ehmann 

(2001) 

SWIFT++: Speedy Walking Via Improved Feature Testing for Non-

convex Objects. It supports intersection detection, tolerance 

verification, distance computation, and contact determination of 

general 3-D polyhedral objects undergoing rigid motion. It uses the 

SWIFT to perform the computations between the bounding volumes. 

Mirtich 

(1998) 

V-Clip (i.e., Voronoi Clip): Fast and Robust Polyhedral Collision 

Detection. This algorithm operates convex or nonconvex polyhedral. 

It supports distance computation, and also reports contact points. 

Hudson et al. 

(1997) 

V-COLLIDE: Accelerated Collision Detection for VRML. This is a 

collision detection library for large dynamic environments that joins 

the broad-phase algorithm of I-COLLIDE with the narrow-phase 

formulation of RAPID. It is designed to operate on large numbers of 

static or moving polygonal objects. 
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Single-phase formulations are also applied in contact detection problems. The 

effort of to implement broad-phase and narrow-phase approaches is only advantageous 

when its application represents an improvement in terms of computational efficiency 

and performance. Thus, single-phase methods are recommended wherever the contact 

simulation only requires a small number of contact calculations in each simulation step, 

such as a system with a few contacting bodies that are located nearby. The solution of 

this type of problems usually relies on the common-normal concept, which states that 

two points are the potential contact points if the normal vectors at these points are 

collinear to each other and perpendicular with the tangential plane of contact. The 

unknown variables of such problem are the coordinates of the potential contact points, 

which are reached by an iterative process when a set of geometric constraints is 

fulfilled. These constraints express collinearity and orthogonality conditions between 

the vectors defining the contacting surfaces at the contact points, namely the normal, 

tangent, binormal and distance vectors. As a result a system of nonlinear equations, 

obtained from equaling both normal vectors and from equaling the normal vector to the 

distance vector, is solved numerically. In general, there are two possible scenarios: (i) 

contact at a single point without indentation, and (ii) contact at a multiple points with 

indentation. The contact is detected when the minimum distance is lesser than or equal 

to zero and positive when surfaces are apart (Pombo et al., 2007). The single-phase 

method for contact detection based on the common-normal concept is adopted 

throughout this work.  

4.3 Elastic contact force models 

The main purpose of this Section is to present some of the pure elastic contact 

force models used in the context of multibody system dynamics. The simplest contact 

force model is represented by a linear spring element, in which the spring embodies the 

elasticity of the contacting surfaces. This linear contact force model, also known as 

Hooke’s law, can be expressed as (Shigley and Mischke, 1989) 

 NF k  (4.1) 

where k is the linear stiffness parameter and δ represents the relative indentation of the 

colliding bodies.  



4-14 A multibody approach to the contact dynamics: a knee joint application 

Figure 4.4 illustrates two externally colliding spheres with the same radius of  

20 mm and the same mass of 0.092 kg. Both spheres have equal and opposite impact 

velocities of 0.15 m/s and a relative contact stiffness parameter equal to 5.5×10
9
 N/m

3/2
. 

Figure 4.5 depicts the contact force-indentation relation given by Hooke’s law for the 

two externally colliding spheres illustrated in Figure 4.4. The assumption of a linear 

relation between the relative indentation and the contact force is at best a rough 

approximation, because the contact force is affected by the shape, surface conditions 

and mechanical properties of the contacting bodies, all of which suggest a more 

complex relation.  

  
Figure 4.4 Schematic representation of two externally colliding spheres. 

  
(a) (b) 

Figure 4.5 Externally colliding spheres modeled by Hooke’s contact law: (a) Normal contact force and 

indentation versus time; (b) Normal contact force-indentation relation. 

The best known contact force model for representing the collision between two 

spheres of isotropic materials is due to Hertz (Hertz, 1881). The interested reader in the 

details on the Hertzian contact theory is referred to the works by Goldsmith (1960) and 

Johnson (1985). The Hertz law relates the normal contact force with a nonlinear power 

function of contact indentation and is expressed as (Hertz, 1881)  

 n

NF K  (4.2) 

where K is the generalized stiffness parameter, δ has the same meaning as defined 

above, and n is the nonlinear power exponent determined from material and geometric 

properties of the local region of the contacting bodies.  
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The contact stiffness parameter K is dependent on the material properties and 

shape of the contact surfaces. For instance, for two spheres of isotropic materials in 

contact, the contact stiffness parameter is a function of the radii of the sphere i and j and 

the material properties as (Goldsmith, 1960) 

 4

3( )

i j

i j i j

R R
K

R R 


 
 (4.3) 

in which the material parameters i  and j  are given by 

 21 k
k

kE





 ,     (k=i, j) (4.4) 

where the quantities νk and Ek are the Poisson’s ratio and Young’s modulus associated 

with each sphere. It is must be noted that, by definition, the radius is negative for 

concave surfaces and positive for convex surfaces. For contact between a sphere i and a 

plane j, the contact stiffness parameter depends on the radius of the sphere and the 

material properties of the contacting surfaces, being expressed as 

 4

3( )
i

i j

K R
 




 (4.5) 

According to Hertz (1881), the power exponent n is equal to 3/2 for the case 

where there is a parabolic distribution of contact stresses. For different materials, the 

value of this exponent can be either higher or lower, leading to a convenient contact 

force expression which is based on experimental work, but that should not be confused 

with the Hertzian contact theory (Shivaswamy and Lankarani, 1997). 

For the contact scenario illustrated in Figure 4.4 of two externally colliding 

spheres, Figure 4.6 shows the contact force, the indentation, the force-indentation 

relation and the phase portrait, obtained utilizing the Hertz contact law. The contact 

indentation and the indentation velocity are the variables used to plot the phase portrait. 

By observing Figures 4.6a and 4.6b, it should be highlighted that the contact force 

varies in a nonlinear and continuous manner and it starts from zero and returns to zero 

while always remains compressive. Figure 4.6c depicts the phase trajectory of the 

impact process, in which point A denotes the initial instant of impact with null 
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indentation and impact velocity equal to 0.3 m/s. The segment AB  corresponds to the 

compression phase that ends at point B, where the maximum relative indentation is 

reached. Finally, the segment BC  represents the restitution phase, which terminates 

with relative velocity equal to -0.3 m/s and null indentation. It is apparent that the Hertz 

contact law given by Equation (4.2) is limited to frictionless contacts with pure elastic 

deformations and does not include energy dissipation.  

  
(a) (b) 

 
(c) 

Figure 4.6 Externally colliding spheres modeled by Hertz contact law: (a) Normal contact force and 

indentation versus time; (b) Normal contact force-indentation relation; (c) Phase portrait. 

According to Gonthier (2007), Hertz law should be utilized to model contact 

mechanics only when contacting geometries can be described by second-order 

polynomials. However, this theory can also be extended to be applied to bodies with 

smooth surfaces as long as the resulting contact area remains small with respect to the 

dimensions of the bodies. Even though the geometric boundary conditions may not be 

exactly fulfilled, the Hertzian assumption that the contact pressure distribution is 

elliptical will still apply, or at least provide a good approximation. Nevertheless, in 

some cases the dimensions of contact areas are significantly large regarding the size of 

the bodies, and in these conditions the assumption of elliptical pressure distribution is 

no longer valid. These situations happen when the contacting bodies present similar 

shapes, that is, are conformal. 
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When the contact area cannot be represented as a single contact point, the use of 

the elastic foundation approach is recommended (Johnson, 1985). This method, also 

referred as Winkler foundation, provides a simple approximation of the distribution of 

the contact pressure in conformal scenarios (Hippmann, 2004; Pérez-González et al., 

2008). Using the Winkler elastic foundation, the deformable part of the contacting 

bodies is modeled as a set of springs (i.e., mattress of springs) spread over the contact 

surface, as illustrated in Figure 4.7. The springs represent the elastic layer and the 

thickness of the layer is composed by the thickness of one or both bodies, depending on 

whether one of the bodies is defined as rigid. The series of discrete and independent 

springs act only in the normal direction of the contact surface, being the shear force 

between the springs neglected (Põdra and Andersson, 1997). As a result, the elastic 

foundation model disregards the effect of a contact pressure on the relative indentation 

of neighboring locations. Figure 4.7 shows two contact scenarios that elucidate this 

problem. In Figure 4.7a, a spherical body collides with an elastic layer, producing a 

contact force FN. The same spherical body is cut in order to give it straight edges. Then, 

the new configuration of the body is put again into contact with the elastic layer, being 

the resultant contact force FN equal to the previous one, as depicted in Figure 4.7b. 

From Figure 4.7, it can be stated that this is a limitation of the elastic foundation model 

since the experienced displacement at one location is a function of the pressure applied 

at other locations (Mukras et al., 2010). Nevertheless, despite this simplifying 

assumption violates the very nature of elastic contact problems, some benefits can be 

derived from its application, namely the computational efficiency and the possibility to 

analyze conformal contacts (Bei and Fregly, 2004).  

  
(a) (b) 

Figure 4.7 Elastic foundation model or Winkler foundation model. 

The contact pressure for any spring s in the elastic foundation can be expressed as 

 
W

s s

s

E
p

h
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where ps is the contact pressure, EW is the Winkler modulus for the elastic layer, hs is the 

thickness of the elastic layer and δs is the relative indentation of the spring s. When both 

bodies are deformable, EW is a function of the Young’s modulus and Poisson’s ratio for 

the two bodies. The procedure used to determine the Winkler modulus EW is discussed 

in detail by Johnson (1985) and by Põdra and Andersson (1997). For the case of only 

one of the bodies in contact is deformable, the Winkler modulus EW can be given by 
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where E and ν are the Young’s modulus and Poisson’s ratio of the deformable body. 

Thus, introducing now Equation (4.7) into Equation (4.6) yields 
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Different forms of the elastic foundation model can be used depending on the 

magnitude of surface indentations. Equation (4.8) can be utilized to calculate the 

pressure ps of any spring element in contact scenarios where only small deformations 

are allowed, such as in artificial human articulations. It is important to mention that in 

cases where both bodies possess an elastic layer of the same material, then the two 

layers are treated as a single layer of combined thickness hs. According to Bei and 

Fregly (2004), for larger deformations as in natural human articulations, the stiffness of 

the elastic layer increases with surface deformation due to geometric nonlinear 

behavior, so Equation (4.8) becomes 
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 (4.9) 

The total force supported by the elastic layer can be computed by summing the 

contact forces on all elements in the normal direction of the contact surface. Thus, the 

magnitude of the resultant force can be expressed as 

 N s sF p A  (4.10) 

where sA  is the element area projected into the normal direction (Mukras et al.,2010). 
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4.4 Dissipative contact force models 

The Kelvin and Voigt approach is one of the first dissipative contact force models 

that combines a linear spring with a linear damper (Goldsmith, 1960). These two 

elements are associated in parallel and the contact force model can be written as 

   NF k D  (4.11) 

in which the first term of the right-hand side is referred to as the linear elastic force 

component, which exhibits a Hooke type behavior, and the second term accounts for the 

energy loss during the contact process. In Equation (4.11), the parameter D represents 

the damping coefficient of the damper element and   represents the relative normal 

contact velocity. The remaining variables have the same meaning described in Section 

4.3. Besides its simplicity and some weaknesses, the Kelvin and Voigt model has been 

used by a wide number of researchers.  

The linear Kelvin and Voigt force model may not be very accurate since it does 

not represent the overall nonlinear nature of an impact, and a number of weaknesses 

restrict its application, mainly for high impact velocities. Dubowsky et al. (1987) 

suggested that the elastic and damping force components must be expressed as 

nonlinear functions of the relative indentation and impact velocity. Furthermore, the fact 

that the contact force at the beginning of the contact is not continuous due to the 

existence of the damping component is also a limitation of the Kelvin and Voigt contact 

force model. This particular issue is not realistic because when the contact begins, both 

elastic and damping force components must be null. Moreover, at the end of the 

restitution phase, the indentation is null, the relative contact velocity is negative and, 

consequently, the resulting contact force is also negative, as Figure 4.8a illustrates. This 

situation does not make sense from the physical point of view, in the measure that the 

bodies can not attract each other. Another drawback of the Kelvin and Voigt model is 

that its damping force component is active with the same damping coefficient during the 

entire impact time interval. This results in a uniform dissipation during the compression 

and restitution phases, which is not fully consistent with reality (Marhefka and Orin, 

1999; Gilardi and Sharf, 2002).  

Hunt and Crossley (1975) have argued that the damping coefficient in the case of 

vibroimpact should be proportional to a power of the spring force. These authors also 
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showed that the linear Kelvin and Voigt approach does not represent the physical nature 

of the energy transferred during the contact process. Therefore, Hunt and Crossley 

(1975) represent the contact force by the purely elastic Hertz’s law combined with a 

nonlinear viscoelastic element, as depicted in Figure 4.8b. 

  
(a) (b) 

Figure 4.8 Schematic diagram of a normal contact force-indentation relation for: (a) Spring-dashpot 

model (e.g., Kelvin and Voight law); (b) Nonlinear damping model (e.g., Hunt and 

Crossley law). 

The Hunt and Crossley contact force law can be expressed as 

 n n

NF K     (4.12) 

where the parameter χ is called hysteresis damping factor that can be written as 
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in which K is the contact stiffness parameter, cr denotes the coefficient of restitution and 

( )   represents the initial impact velocity. The expression for the Hunt and Crossley 

contact force model can be written as 

 

( )

3(1 )
1

2

n r
N

c
F K




 

 
  

 
 (4.14) 

Although the Hunt and Crossley approach is only valid for direct central, it has 

been used by many researchers because of its simplicity and to be straightforward to 

implement (Anderson et al., 2009; Moreira et al., 2010; Silva et al., 2010). For instance, 

Guess et al. (2010) employed the Hunt and Crossley formulation to successfully model 

the interaction between tibia, femur and menisci in a global three-dimensional 

multibody knee model.  

The use of the Hunt and Crossley contact law to evaluate the normal contact 

forces produced during the impact of two externally colliding spheres implies the 

δ

FN

δ

FN
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outcomes depicted in Figure 4.9, where the contact force, the indentation, the  

force-indentation relation and the phase portrait are presented. The impact scenario 

considered here is the same utilized in Section 4.3 to describe the elastic models, which 

is illustrated in Figure 4.4. A contact stiffness parameter of 5.5×10
9
 N/m

3/2
 and a 

coefficient of restitution equal 0.7 have been considered for the calculations.  

  
(a) (b) 

 
(c) 

Figure 4.9 Externally colliding spheres modeled by Hunt and Crossley force law: (a) Normal contact 

force and indentation versus time; (b) Normal force-indentation relation; (c) Phase portrait. 

From the plots of Figure 4.9a, it can be observed that the compression and 

restitution phases of the contact process are not equal due to the differences in the 

energy dissipation that occurs during these two phases. This fact is clear and visible in 

the non-symmetrical nature of the contact force curve. The energy dissipated during the 

contact process is related to material damping of the contacting bodies that is associated 

with the hysteresis loop of the force-indentation curve, shown in Figure 4.9b. Figure 4.9 

shows the continuous nature of the contact forces, which build up from zero upon 

impact and smoothly return to zero upon separation. By comparing the plots of Figures 

4.9b and 4.9c, the main differences between the Hertz approach and the Hunt and 

Crossley model are easily discerned.  

A different formulation to account for the energy loss in contact-impact events 

that has the coefficient of restitution as main parameter was presented by Herbert and 
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McWhannell (1977). In this model, the authors combined the dynamic equations of 

motion of the impacting bodies with the Hunt and Crossley contact force model, being 

the hysteresis damping factor written as 
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and the corresponding contact force expression is given by 
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Lee and Wang (1983) proposed another hysteresis damping factor that is quite 

similar to the one presented by Hunt and Crossley. Their main concern was to satisfy 

the expected hysteresis boundary conditions, that is, zero damping force at zero and 

maximum relative indentation of contact. Lee and Wang developed their work in the 

context of dynamic modeling and analysis of mechanisms with intermittent motion, 

being the hysteresis damping factor given by 
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which results in an expression for the contact force written as 
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Figure 4.10 shows the force-indentation diagram and the phase portrait for the two 

externally colliding spheres illustrated in Figure 4.4, when the Hertz, Hunt and 

Crossley, Herbert and McWhannell, and Lee and Wang contact force laws are utilized. 

Figure 4.10 depicts that the Lee and Wang approach, among the dissipative models, is 

the one that produces the highest magnitude of impact force due to the fact that this 

model allows a lower dissipation of energy during the impact, as displays the smallest 

area of the hysteresis loop. It can also be observed that the Herbert and McWhannell 

law dissipates a higher amount of energy, visible in the larger hysteresis loop of Figure 

4.10a, and also in the lower post-impact velocity seen in Figure 4.10b. In turn, the Hunt 
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and Crossley model gives a contact response in-between the other two dissipative 

models, but closer to the Herbert and McWhannell approach.  

  
(a) (b) 

Figure 4.10 Externally colliding spheres modeled by Hertz, Hunt and Crossley, Herbert and 

McWhannell, and Lee and Wang contact force laws: (a) Normal contact force-indentation 

relation; (b) Phase portrait. 

One of the most popular contact force models used in multibody systems was 

proposed by Lankarani and Nikravesh (1990). In their study, Lankarani and Nikravesh 

obtained an expression for the hysteresis damping factor by associating the kinetic 

energy loss of the impacting bodies with the energy dissipated in the system due to 

internal damping. According to these authors, considering the kinetic energies before 

and after impact, the amount of energy loss, ∆E, can be expressed as a function of the 

coefficient of restitution, cr, and initial impact velocity, ( )  , as 

 2( ) 21
(1 )

2
rE m c     (4.19) 

where m is the equivalent mass. The energy loss can also be evaluated by the integration 

of the contact force around the hysteresis loop. Thus, assuming that the damping force 

characteristics during the compression and restitution phases are the same, the energy 

loss due to the internal damping can be expressed as (Lankarani and Nikravesh, 1990) 

 3( )2

3
E m

K


   (4.20) 

Thus, after substituting Equation (4.19) in Equation (4.20) an expression for the 

hysteresis damping factor is obtained as  
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which is a quadratic function of the coefficient of restitution. Introducing now Equation 

(4.21) into Equation (4.12) results the continuous contact force model due to Lankarani 

and Nikravesh written as 

 2
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This contact force model is satisfactory for general mechanical contacts, in particular 

for the cases in which the energy dissipated during the contact is relatively small when 

compared to the maximum absorbed elastic energy.  

The contact force models presented above, known as point contact models, are 

adequate for the cases where the area of contact is small when compared to the 

dimensions of the contacting bodies, that is, the contact is considered to occur at a 

single point. In the situations of large contact areas, such as those associated with  

non-conformal contacts, other models are required. In line with this concern, Gonthier 

and his co-workers (2004) developed a volumetric contact force model for multibody 

dynamics in which the hysteresis damping factor is given by 
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where the dimensionless factor d is defined as 
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which can be approximated by 

 
21 rd c   (4.25) 

and, finally, the Gonthier et al. (2004) force model can be written as 
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It should be mentioned that this approach gives the exact solution of the dynamic 

contact problem when Equation (4.24) is considered, in contrast with the contact force 

models presented above that are approximate solutions developed with base on different 

simplifications and assumptions. Moreover, by analyzing Equation (4.26), it can be 

concluded that for a perfectly elastic contact, i.e., cr=1, the hysteresis damping factor 

assumes a zero value, while for a purely inelastic contact, i.e., cr=0, the hysteresis 

damping factor is infinite, which is reasonable from the physical point of view. This 

analysis is not true for the hysteresis damping factors given by Equations (4.13), (4.15), 

(4.17) and (4.21), in which this parameter does not assume an infinite value for null 

coefficient of restitution, as it would be expected. Moreover, the Gonthier et al. 

approach provides accurate contact responses for the complete range of coefficient of 

restitution, i.e., in elastic or inelastic contacting conditions.  

More recently, Zhiying and Qishao (2006) described a contact force in which the 

hysteresis damping factor is given by 
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and the force is expressed as 
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The work done by Zhiying and Qishao (2006) was developed in the context of 

impact analysis with the aim of seeking a mathematical relation between the coefficient 

of restitution, the contact parameters and the energy dissipated in the contact process. 

Flores et al. (2011) described another contact force model, which was developed 

under the foundation of the Hertz contact theory, together with a hysteresis damping 

parameter. In the work by Flores et al. (2011), an expression for the hysteresis damping 

factor was derived by evaluating the kinetic energy dissipated in the system due to 

internal damping, likewise in the work by Lankarani and Nikravesh (1990). On one 

hand, the kinetic energy loss can be expressed as a function of the coefficient of 

restitution and initial impact velocity and is given by Equation (4.19). On the other 

hand, the energy dissipated during the contact process can be determined by integrating 
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the contact force around the hysteresis loop. Flores et al. (2011) considered an equation 

for the dissipated energy different from Equation (4.20) proposed by Lankarani and 

Nikravesh (1990). These authors used a single degree-of-freedom system to model the 

contact event and expressed the energy dissipated due to the internal damping as 

 5
2( )1

(1 )
4

r maxE c      (4.29) 

where δmax refers to the maximum indentation. Substituting Equation (4.29) in Equation 

(4.19), which expresses the kinetic energy as a function of the coefficient of restitution 

and initial impact velocity, and taking into account the linear momentum balance, yields 

the following expression for the hysteresis damping factor as 
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and, hence the contact force model is expressed as 
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Figure 4.11 depicts the force-indentation relation and the phase portrait for the 

two impacting spheres illustrated in Figure 4.4, when the contact is model with the 

Hertz, Hunt and Crossley, Lankarani and Nikravesh, Gonthier et al., Zhiying and 

Qishao, and Flores et al. formulations. From Figure 4.11 it can be observed that the 

outcomes of the Hunt and Crossley approach and Lankarani and Nikravesh force model 

do not differ in a significant manner. This fact is not surprising because these two 

models were developed taking into account similar simplifying premises. In addition, 

the results obtained with the Gonthier et al., Zhiying and Qishao, and Flores et al. force 

models present a quite close evolution, in which the compression and restitution phases 

of the contact process are not equal to each other due to the differences in the energy 

dissipation between these two phases. This fact is quite visible by observing the  

non-symmetrical nature of the contact force-indentation plots. 
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(a) (b) 

Figure 4.11 Externally colliding spheres modeled by Hertz, Hunt and Crossley, Lankarani and 

Nikravesh, Gonthier et al., Zhiying and Qishao, and Flores et al. force models:  

(a) Normal contact force-indentation relation; (b) Phase portrait. 

With the purpose to better understand what are the differences between the 

dissipative contact force models presented above, let the evolution of the hysteresis 

damping factor be analyzed for the entire range of the coefficient of restitution, as 

Figure 4.12 illustrates. In order to keep the analysis simple, the contact stiffness 

parameter and the initial impact velocity are equal to each other and equal to unity. By 

observing the plots of Figure 4.12, it can be concluded that the contact force models 

exhibit a similar behavior for high values of coefficient of restitution. Furthermore, the 

Hunt and Crossley, Herbert and McWhannell, Lee and Wang, and Lankarani and 

Nikravesh formulations do not perform adequately for low values of the coefficient of 

restitution. The Lee and Wang approach is the one that dissipates the less amount of 

energy during the contact process. In turn, the Zhiying and Qishao contact force model 

presents a superior response mainly for low values of the coefficient of restitution. The 

force approaches due to Gonthier et al. and Flores et al. have a similar behavior and for 

low values of the coefficient of restitution the hysteresis damping factor increases 

asymptotically with the decrease of the coefficient of restitution, which means that they 

can perform well for perfectly inelastic contacts. From Figure 4.12 it can be observed 

that for moderate and high values of the coefficient of restitution, i.e., for coefficients of 

restitution higher than 0.5, the Gonthier et al., the Zhiying and Qishao, and the Flores et 

al. force models present very close responses. 
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Figure 4.12 Evolution of the hysteresis damping factor as function of the coefficient of restitution. 

4.5 Demonstrative example of application 

In order to better understand the consequences of the use of different contact force 

laws, a slider crank mechanism experiencing two frictionless impacts with an external 

free sliding block is considered (Machado and Flores, 2011). Figure 4.13 shows a 

generic configuration of the system which consists of five rigid bodies representing the 

slider-crank mechanism and the free sliding block. The body numbers and their 

corresponding coordinate systems are also shown in Figure 4.13. The system is 

kinematically constrained by three revolute joints and one translational joint, being 

therefore a multibody model of two degrees-of-freedom. The set of data considered to 

build the model used to perform the dynamic simulations is listed in Table 4.3.  

 
Figure 4.13 Multibody system composed by a slider-crank mechanism and a free sliding block. 

Table 4.3 Geometric and inertial properties of the slider-crank mechanism and the free sliding block. 

Body Description Length [m] 
Mass 

[kg] 

Moment of 

inertia [kg.m
2
] 

2 Crank 0.153 0.038 7.4×10
-5

 

3 Connecting rod 0.306 0.076 5.9×10
-5

 

4 Slider - 0.038 1.8×10
-6

 

5 Free block - 0.190 2.7×10
-5
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The slider-crank mechanism is initialized with a crank angular velocity of 150 

rad/s counter clockwise. At the start of the dynamic analysis, the crank and connecting-

rod links are aligned in the x direction that corresponds to the dead point. Initially, the 

free sliding block is driven at a constant linear velocity equal to 15 m/s to the left. The 

initial position of the sliding block is located at x coordinate equal to 0.914 m. This 

multibody system is acted upon by gravitational force only which is taken as acting in 

the negative y direction.  

The contact surfaces of the sliding bodies have spherical shapes with radius equal 

to 8.5 mm and the contact stiffness parameter is evaluated as 9.5×10
9
 N/m

3/2
. The value 

of the restitution coefficient used in the simulations is equal to 0.7. The geometric 

condition that allows for the evaluation of the relative indentation between the sliding 

bodies can be written as 

 
5 4 2x x a     (4.32) 

where x5 and x4 represent the x coordinate of the sliding bodies and the dimension a, 

shown in Figure 4.13, is equal to 16.93 mm. 

In the present study, the performance of this multibody system is quantified by the 

plots of the position of the free sliding block and the velocity of the constrained slider. 

In addition, the force-indentation relation for the two impacts is also plotted and 

analyzed. For this purpose, seven different contact force laws are utilized, namely Hunt 

and Crossley, Herbert and McWhannell, Lee and Wang, Lankarani and Nikravesh, 

Gonthier et al., Zhiying and Qishao, Flores et al. models.  

The time history of the position of the free sliding block and the velocity of the 

constrained slider are represented in the plots of Figure 4.14. Two impacts between the 

sliders that occur during the dynamic simulation are visible by the discontinuities of 

those plots. By analyzing the curves plotted in Figure 4.14, it can be observed that the 

contact force model proposed by Lee and Wang produces impacts with higher rebounds, 

due to the smaller amount of energy dissipated in the two contact events. Furthermore, 

it is noteworthy that the Gonthier et al., Zhiying and Qishao, and Flores et al. force 

models exhibit similar behaviors, for which rebounds are smaller when compared with 

the other formulations. This phenomenon is quite visible in both position and velocity 

diagrams of Figure 4.14. Finally, the Lankarani and Nikravesh, Hunt and Crossley, and 
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Herbert and McWhannell models present an intermediate response, and the Herbert and 

McWhannell force law the most dissipative one among these last three approaches.  

Figure 4.15 shows the force-indentation plots for the two impacts between the 

slider bodies. Again, it is observed that the Lee and Wang model is the one that 

dissipates less energy, as it is visible by the smaller hysteresis loop. In turn, the 

Gonthier et al., Zhiying and Qishao, and Flores et al. force models dissipate more 

energy, exhibiting larger hysteresis loops. As a consequence, the rebounding velocity is 

lower when compared to the other force models. This analysis is valid for both impacts, 

as it can be seen in Figures 4.15a and 4.15b. The same conclusion can be achieved for 

the Lankarani and Nikravesh, Hunt and Crossley, and Herbert and McWhannell 

approaches. In short, the contact force models can be grouped into two main classes, 

one for the higher dissipative approaches that comprises the Gonthier et al., Zhiying and 

Qishao, and Flores et al. force models, and another one for the remaining formulations. 

  
(a) (b) 

Figure 4.14 (a) Position of the free sliding block; (b) Velocity of the constrained slider. 

  
(a) (b) 

Figure 4.15 Normal contact force-indentation relation for the two impacts: (a) First impact; (b) Second 

impact. 
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4.6 Summary and discussion 

The contact modeling in multibody systems can be divided in contact detection 

and contact response. The contact detection is a two-step procedure that includes the 

identification of the spatial coordinates of the potential contact points and the evaluation 

of the indentation of the two bodies. In turn, the contact response consists of evaluating 

the contact force based on the state variables of the system. The dynamic response of 

the system is obtained by simply including updated forces into the equations of motion. 

The contact detection is a common problem to several areas from mechanical 

engineering to computer graphics. Thus, several software packages and computational 

methods have been developed for contact detection purposes. In general, these 

algorithms rely on six features: (i) geometric representation, (ii) proximity queries, (iii) 

environment simulation parameters, (iv) performance, (v) robustness, and (vi) easiness 

of implementation and use. The geometric representation corresponds to the 

mathematical method utilized to define the geometry of the contact scenario and the 

colliding objects, which can be accomplished by using polygonal models or non-

polygonal models, such as CSG approaches, implicit or parametric functions. In turn, a 

proximity query consists of a computation that produces information about the relative 

configuration or placement of objects. Some examples of proximity queries are: 

collision detection, minimum distance, maximum distance, Hausdorff distance, and 

penetration depth. Environmental simulation parameters affect also the contact detection 

process, such as the number of contacting bodies which may slow down significantly 

the performance of a contact detection algorithm. To speed up the simulation, advanced 

computational methods are used, which are classified as broad-phase and the narrow-

phase approaches. The broad-phase methods identifies smaller groups of objects that 

may be colliding and quickly excludes those that definitely are not. Then, narrow-phase 

methods are employed, which ones test with more accuracy the subgroup of possible 

contacting pairs pointed out by the broad-phase algorithms. There are also single-phase 

formulations that are used when the contact simulation only requires a small number of 

contact calculations in each simulation step. These single-phase solutions usually rely 

on the common-normal concept.  

The process of evaluating contact forces plays a key role in multibody dynamics. 

Therefore, the contact forces must be computed by using appropriate constitutive laws 

that take into account material properties of the contacting surfaces, geometric 
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characteristics of the impacting surfaces and, eventually, the impact velocity. In this 

Chapter, several compliant contact force models were revised from elastic to dissipative 

formulations. Firstly, three elastic contact force models were presented, namely the 

Hooke’s law, the Hertz’s law and the Winkler or elastic foundation model. A similarity 

of these three force formulations is that they do not account for the energy dissipation 

during the contact process. The major difference of the Hertz model in relation to 

Hooke law relies on its physical meaning represented by its nonlinearity.  

The dissipative formulations described in this work are based on the foundation of 

the Hertzian contact theory, which is augmented with a hysteresis damping term that 

reflects the loss of energy that occurs during the contact process. The hysteresis 

damping term distinguishes the contact response of the different dissipative force 

models. For high values of the coefficient of restitution, the contact force models exhibit 

similar behaviors, namely when the coefficient is close to unity, i.e., in almost elastic 

contacts. In contrast, for moderate or low coefficients of restitution, the Gonthier et al., 

Zhiying and Qishao, and Flores et al. approaches present a superior performance, when 

compared to other models. In these three models, the increase in damping reduces the 

indentation because there is less energy to store in the contact process.  

A slider-crank mechanism including a contact-impact block was considered as 

example of application to demonstrate the similarities of and differences between the 

investigated contact force models. The computational results proved that the contact 

force model significantly influences the impacting rebound and the rebounding velocity, 

since these variables are greater the lower the energy dissipated.  
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