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Abstract
Tiling array and novel sequencing technologies have made available the transcription profile of
the entire human genome. However, the extent of transcription and the function of genetic
elements that occur outside of protein-coding genes, particularly those involved in disease, are still
a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are
involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some
tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest
to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and
the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as
current and potential future applications of lncRNA research in the treatment of cancer.
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INTRODUCTION
Non-protein-coding RNAs (ncRNAs) are gaining the attention of researchers in many fields,
and the number of published articles is exponentially growing.1 MicroRNAs (miRNAs)
belong to a small ncRNA group and are the most studied among ncRNAs; however, many
more types of ncRNAs exist. In fact, tiling array and novel sequencing technologies have
made available the transcription profile of the entire human genome, which showed a
widespread transcription activity.2 However, the extent of transcription (that is, whether
ncRNAs are mainly localized in close proximity to protein-coding genes (PCGs) or
widespread throughout the genome) and the function of genetic elements that occur outside
of PCGs are still a matter of debate.3–5 Moreover, by more traditional means, several
researchers have cloned RNA transcripts whose nature is probably not to code proteins and
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that have a longer sequence than miRNAs do. These can be grouped under the classification
of long ncRNAs (lncRNAs).

The human genome census reveals a striking predominance of non-coding regions (http://
www.ncrna.org/statgenome/index.html?view=class&gid=hg18). In fact, PCG exons
represent about 1.6% of the 3 × 109 base pairs of the human genome. Moreover, the number
of PCGs is quite steady during evolution in metazoa (G value paradox), whereas the size of
genomes tends to increase.6 Conservation among genomes also occurs within intergenic
regions, suggesting that these regions are important in the fundamental processes involved in
life. Finally, the largest part of the human genome, about 46%, is made up of repetitive
elements (such as transposons) that probably have been one of the driving forces of
evolution.7 It is worth mentioning that in most cases transposons do not code for proteins,
and recently they have been found to be related to cancer processes.8,9

In this review, we focus our attention on lncRNAs that are involved in cancer. First, we will
define lncRNA and present a cancer-oriented list of lncRNAs. Second, we will list some
tools (for example, public databases) that classify lncRNAs or that scan genome spans of
interest to find whether known lncRNAs reside there. Some of the databases can also be
used to search for lncRNAs that are involved in a process or disease of interest (for example,
cancer). Finally, we will describe some of the functions of lncRNAs, possible genetic
mechanisms that underlie lncRNA expression changes in cancer, and current and potential
future applications of lncRNA research in the treatment of cancer.

DEFINITION OF lncRNA
The most commonly used definition of lncRNA is an RNA molecule that is longer than 200
nucleotides and that is not translated into a protein. However, this definition may be too
simple and does not take into account certain issues. First, the cutoff of 200 nucleotides was
arbitrarily chosen and it was set more on the basis of RNA binding to silica columns during
RNA purification rather than for its functional meaning.2 Second, a PCG is usually defined
as a transcript that contains an open reading frame (ORF) longer than 100 amino acids.10

However, lncRNAs can contain ORFs longer than 100 amino acids and not necessarily
synthesize polypeptides; plus, polypeptides shorter than 100 amino acids can be functional
in organisms and are not by-products of canonical proteins.11 Finally, and even more
confounding, the same RNA can contain both PCGs and non-coding functions.12–14 These
issues demonstrate how little we currently know about ncRNAs (particularly lncRNAs) and
how difficult it is to form a definition.

One updated definition that we agree with takes into account some of the aforementioned
issues15 and defines lncRNAs as RNA molecules that may function as either primary or
spliced transcripts and do not fit into known classes of small RNAs, such as miRNAs, piwi-
interacting RNAs and small nucleolar RNAs, or into classes of structural RNAs (for
example, transfer RNAs, small nuclear RNAs and spliceosomal RNAs). The strengths of
this definition are the absence of ORF restriction, given the fact that a RNA molecule can
possess both coding and non-coding activities, and the absence of length restriction that was
arbitrarily set. Other investigators have proposed bioinformatic tools to clarify or adjust the
100-amino acid ORF length cutoff to determine whether an RNA molecule codes for a
protein (reviewed in Dinger et al.).10 The strengths of Mercer’s definition are the absence of
ORF restriction, as a matter of fact a RNA molecule can possess both coding and non-
coding activities, and the absence of length restriction that was arbitrarily set.

Additionally, we must point out that in this review we use the abbreviation lncRNA, which
should not be confused with long intergenic ncRNAs (lincRNAs)16,17, which are a subtype
of lncRNAs.
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CLASSIFICATION OF LNCRNAS AND PUBLIC DATABASES
Generating comprehensive classifications of lncRNAs is not an easy task. In fact, many
lncRNA classifications are annotations from larger databases or projects (for example,
GeneBank, Fantom3), and information about the real nature (protein-coding, non-protein-
coding or mixed) and function of lncRNAs cannot be gleaned from these sources. Similarly,
some lncRNAs have been described in only one published study and no further reports
exist.18,19 Some lncRNAs have been grouped on the basis of their position relative to host
PCG (for example, overlapping RNA, cis-antisense RNA, antisense RNA, bidirectional
RNA, intronic RNA, promoter- or enhancer-correlated RNA).15 As it usually happens for all
classifications, the same lncRNA may be listed under different groups. For example,
lncRNAs predicted by computational models (for example, RNAz or Evofold) are often
listed under different names in databases obtained from sequencing projects.

To facilitate the difficult task of organizing lncRNAs, we have listed the current online
databases that include ncRNAs (Table 1). These databases collect lncRNAs originated from
GenBank annotations or from published articles. Some of these databases list both ncRNAs
that have been experimentally proven and those that are purely computational predictions
(based on RNA Z or Evofold) or have been annotated as ncRNAs on the basis of the
predicted size of their ORFs.

We found the functional RNA project database (fRNA) worth visiting. It uses a University
of California Santa Cruz genome browser interface that contains many ncRNA tracks that
have already been set up in a Genome Browser graphic interface, which allows the user to
search for specific ncRNAs along with other features in the genomic context of interest.
Although both fRNA and the Noncode project allow the user to search for functional classes
or processes (for example, find all known ncRNAs that are involved in the cell cycle or in
DNA replication or transcription), fRNA allows the user to search by disease (for example,
cancer) as well. The ncRNA expression database, on the other hand, contains a large data set
of ncRNA expression profiles that were obtained from three different experiment sets: Allen
Brain Atlas (mouse), GNF Atlas (mouse and human) and V1.0 Compugen array (mouse).
Although these expression data sets are not cancer-oriented, we foresee that eventually the
ncRNA expression database, as well as others that are listed in Table 1, will be matched
with other data sets that are more cancer-oriented (for example, Oncomine; https://
www.oncomine.org). For now, the genomic positions of several lncRNAs can be matched to
databases that collect lists of single-nucleotide polymorphisms (SNPs) associated with
cancer (http://cistrome.dfci.harvard.edu/CaSNP/; Hindorff et al.)172 or cancer-associated
genetic regions (for example, http://cancergenome.nih.gov, http://decipher.sanger.ac.uk, the
Cancer Workbench at https://cgwb.nci.nih.gov/cgi-bin/heatmap and National Center for
Biotechnology Information Gene Expression Omnibus at http://www.ncbi.nlm.nih.gov/
geo/).14,27

CANCER-RELATED LNCRNAS
In this review, we focused our efforts on developing a list of lncRNAs that have been linked
to cancer by various means. We mainly used three of the online databases to retrieve
lncRNAs (that is, the LncRNA database, Noncode and the RNA Database), and we searched
Pubmed for articles linking these lncRNAs to cancer. In Table 2, we report our findings.

In some cases the link between the lncRNA and cancer was obvious, and cancer was
actually the model where these lncRNAs were first described for the first time (for example,
MALAT-1, PCA3/DDR3 and HOTAIR). However, we also found some lncRNAs for which
a link to cancer has not yet been fully elucidated, but preliminary findings indicate that it
could be worthwhile to investigate the possible connection (these lncRNAs are marked with

Spizzo et al. Page 3

Oncogene. Author manuscript; available in PMC 2012 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

https://www.oncomine.org
https://www.oncomine.org
http://cistrome.dfci.harvard.edu/CaSNP/
http://cancergenome.nih.gov
http://decipher.sanger.ac.uk
https://cgwb.nci.nih.gov/cgi-bin/heatmap
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


an asterisk in Table 2). For example, the lncRNA Air (antisense to Igf2r RNA) is involved
in the imprinting of the Igfr2 locus.31 Despite the association of Igfr2 with cancer138 and the
association of Air with Igfr2,139 we did not find any articles that directly examine the
relationship between Air and cancer in humans. Moreover, although alpha 250/alpha 280
lncRNA regulates RPS14 transcription, which has been shown in short hairpin RNA screens
to be a causal factor in 5q- syndrome,33 no studies have yet examined the direct involvement
of alpha 250/alpha 280 lncRNA in 5q-syndrome.140

Some lncRNAs that we included contain small ncRNA (for example, miRNA and small
nucleolar RNA). Although these lncRNAs host small RNAs, this may not be their exclusive
function. For example, the knockout model of LEU2, which includes miR-15/16 as well,
showed a more aggressive phenotype than did the miR-15/16 knockout model, which may
indicate that LEU2 can participate in chronic lymphocytic leukemia development.80

Some lncRNAs have been associated with cancer but are not listed in the public data sets
that we used to prepare Table 2. For example, regions that are extremely conserved among
human, mouse and rat genomes141 are expressed in cancer tissue differently than in normal
tissues and are regulated by methylation as well.142–146 The extremely high level of
conservation among these lncRNAs, which are referred to as ultraconserved genes or
transcribed UCRs, is their most peculiar feature.

LNCRNA FUNCTION
The function of ncRNAs is the most difficult and least understood aspect of ncRNA
research. Better understanding ncRNA function will help clarify the real impact of genomic
pervasive transcription on cell biology and evolution.147 As we gathered information about
the lncRNAs involved in cancer, we also collected examples of lncRNA function (Figure 1).

The first example that we describe is for lincRNAs. LincRNAs were first described using
histone mark signatures, specifically trimethylation in lysine 4 and lysine 36 of histone 3
(H3K4m3, H3K36m3 or simply K4K36). The K4K36 mark detects active transcription units
of both PCGs and ncRNAs. After excluding known genes (PCGs and ncRNAs), researchers
have been able to retrieve novel transcriptional units. The first reports analyzed mouse and
human cell lines, uncovering about 3000 lincRNAs.16,148 However, many more lincRNAs
may remain to be discovered in other settings.149 Certain, lincRNAs were discovered before
the use of the K4K36 signature such as MALAT-182 and HOTAIR, which was the first
lncRNA ever described to interact with polycomb proteins and suppress gene
transcription.64 Moreover, other histone signatures might reveal new lncRNAs.150

About 20% of lincRNAs bind to polycomb repressive complex 2, indicating that lincRNAs
might regulate gene expression by directing the polycomb protein group to target DNA
regions, inducing changes in histone marks and chromatin structure and ultimately
suppressing transcription activity.148,151 The current model proposes that lincRNAs directly
bind to the polycomb proteins and direct them to specific DNA segments in the human
genome. However, how the lincRNA-polycomb complex recognizes the target DNA is not
currently known.152 We do not currently know whether transcription factors bind lincRNAs
as well, and whether RNA-binding proteins regulate lincRNAs as they do with miRNAs.153

Another class of lncRNAs that seems to regulate gene expression by changes in chromatin
status includes antisense transcripts (reviewed in Morris and Vogt).154 Antisense ncRNA
transcripts overlap PCG but are transcribed in the opposite direction. Although one would
expect small interfering RNA (siRNA) machinery to degrade messenger RNA after the
sense–antisense pairing, the mechanism in act instead seems to be the modifications of
histone marks at the promoter region of the sense transcript (that is, PCGs). Apparently,
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antisense lncRNAs drive (cytosine-5)-methyltransferase 3A (DNMT3A) to the DNA of the
host PCG to methylate histones at lysine 9 and 27 or CpG islands and ultimately silence
transcription.

Several oncogenes or tumor-suppressor genes exhibit antisense transcription and consequent
transcription gene silencing (for example, p21, c-Myc, p15, p53, TIE1 and PU.1).35

Interestingly, exogenous siRNAs that are in antisense orientation compared with PCG
promoters are also effective at silencing transcription.155 However, how the antisense
lncRNAs are regulated has not yet been explored.

LincRNAs, antisense lncRNAs, and other lncRNAs44,156 can be classified among the
chromatin-associated RNAs (CARs) because their function apparently relies on the ability of
the RNA to somehow bind to genomic DNA and consequently regulate chromatin states
(euchromatin versus heterochromatin).44,156 Mondal et al.43 performed a thorough
investigation of CARs throughout the genome of a human skin fibroblast cell line by deep
sequencing of DNA-associated RNA after micrococcal nuclease treatment. They identified
several CARs and reported that one CAR can activate transcription of neighboring genes.

Another class of lncRNAs that seems to regulate the transcription activity of host PCGs
comprises the promoter upstream transcripts (PROMPTs). PROMPTs are localized
upstream of promoters of some PCGs and they can be transcribed in both the sense and
antisense orientations. PROMPTs seem to be a byproduct of RNA pol II activity; however,
preliminary findings suggest that PROMPTs control promoter methylation.45 When Preker
et al. first described PROMPT existence, they used a peculiar approach: they inhibited
exosome key proteins by using siRNA to prolong the half-life of short-lived RNA
transcripts. In this way, they were able to identify a plethora of PROMPTs. However, the
function and impact of PROMPTs in cell biology have not yet been explored.

It is possible that lincRNAs, PROMPTs, and antisense RNAs, or CARs in general, have
interdependent functions. For example, antigene RNAs are synthetic RNA molecules that
when designed to be complementary to PCG promoters can either repress or activate gene
expression. Antigene RNAs rely on RNA–RNA interaction with antisense transcripts that
are generated nearby targeted promoters and on Ago proteins binding.157 It is possible that
PROMPTs, lincRNAs and antisense lncRNAs interact and recapitulate antigene RNA
mechanism; it is known that PROMPTs and antisense lncRNAs can interact with each other
to trigger the antigene RNA pathway.158 In another example of lncRNA interdependent
function, lincRNAs can interact with PROMPTs or antisense lncRNAs to ultimately direct
polycomb protein complexes to targeted promoters of PCGs.36 Further examples of lncRNA
function are discussed in other reviews.159,160

LNCRNA NETWORKS
Another interesting lncRNA function is target decoy or mimicry: lncRNAs can deceive
another RNA or protein away from its natural target. For example, Poliseno et al.14

described pseudogenes as decoys for miRNAs. They reported that the PTEN gene and the
PTEN pseudogenes (PTENP1) share a high degree of sequence homology and are targeted
by the same miRNAs (that is, miR-17, -21, -214, -9 and -26 families). Thus, changes in
PTENP1 expression levels indirectly affect PTEN expression levels by sequestering PTEN-
targeting miRNAs. For instance, if PTENP1 expression levels decrease, miRNAs will be
able to target PTEN and ultimately downregulate PTEN expression levels. Poliseno et al.14

also noted a similar mechanism for RAS pseudogenes. Another example of a lncRNA that
acts as a miRNA decoy is the highly upregulated liver cancer transcript (HULC), which
binds to and inhibits miR-372.76
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Target decoys occur not only in cancer but also in infectious diseases: two studies reported
that virus-encoded transcripts can act as miRNA decoys; in this case the net effect was to
sequester and downregulate the miRNAs of the host organism.161,162 A similar example
exists in plants for endogenous pseudogene transcripts that share a high degree of sequence
homology with PCG transcripts, although in this case the pseudogenes contain point
mutations within the miRNA-binding sites. Apparently, these pseudogenes not only
sequester miRNAs from their PCG target, but also reduce miRNA expression levels.163

One particular type of lncRNA decoy involves proteins. PROMPTs, such as GAS5, can bind
to transcription-factor proteins that would otherwise bind to the DNA promoters; thus, the
RNA transcript decoy sequesters the transcription factor, which is no longer able to affect
downstream target genes.164 GAS5 accomplishes this with a stem-loop structure in its
sequence resembling the glucocorticoid receptor DNA-binding element. GAS5 seems to
regulate other receptors (that is, androgen, mineralcorticoid and progesterone) by the same
means. Interestingly, the interaction between GAS5 and the glucocorticoid receptor is
modulated by dexamethasone, a glucocorticoid receptor agonist.164 At the same time, GAS5
has been shown to be regulated by mammalian target of rapamycin pathway and to mediate
rapamycin effect on cell cycle in T cells (reviewed in Williams et al.).165

NcRNA decoys can target not only ncRNA–mRNA or DNA–protein interactions, but also
interactions between ncRNAs. For example, miRNAs can target other ncRNAs as they do
with messenger RNA; Calin et al.144 showed that miR-155 targets transcribed UCRs in both
in vitro models and chronic lymphocytic leukemia patients. These findings support the
existence of networks among ncRNAs and between ncRNAs and PCGs that are involved in
cancer.

LNCRNA EXPRESSION IN CANCER
In cancer biology, one of the first evidences that researchers seek is gene expression
differences between tumor and normal samples. The breadth of knowledge concerning
lncRNA expression profiles in tumor and normal samples is quite modest at this time. It is
likely that commercial gene expression arrays that have been used for PCGs contain probes
that hybridize to lncRNAs, and it may be possible to retrieve cancer-related lncRNA
expression profiles from public, tumor-specific gene-expression data sets (for example,
Oncomine, Gene Expression Omnibus). However, to our knowledge this has not yet been
done.

To identify novel transcripts, some investigators have used the Affymetrix tiling array,
which can test for lncRNA gene expression.166,167 Others have performed custom array
profiling on large sample sets of a few lncRNAs.144,168 Most articles concerning lncRNA
expression in cancer have shown a selected number of lncRNAs probed in tumor samples
(Table 2 lists tumor types that have been tested for lncRNA expression). We also found a
few articles (not included in Table 2) reporting the existence of transcriptionally active
regions that are located outside known PCGs and are differentially expressed between
normal and tumor tissues or are expressed under stress conditions.166,167 Gibb et al. used
SAGE library generation to compare lncRNA expression in normal and dysplastic oral
mucosa.169

Cancer biologists also seek to uncover genetic mutations (for example, amplifications,
deletions and sequence mutations) in the lncRNA sequence. For example, sequence
mutations in RNA component of mitochondrial RNA processing endoribonu-clease (RMRP)
lncRNA are responsible for cartilage-hair hypoplasia syndrome, which is also known to
increase the risk of developing several types of tumors.170,171 Some investigators have
already sequenced select classes of lncRNAs to find mutations.166,172
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In recent years, using SNP arrays to study very large populations (in the thousands),
researchers have discovered several SNPs that are associated with certain traits or diseases,
such as cancer (http://www.genome.gov/gwastudies contains a list of SNPs associated with
several diseases).173 In some cases, disease-associated SNPs are in genomic spans outside of
PCG transcripts;174,175 these genomic spans would be good candidates regions to search for
novel transcripts. Some researchers have already found SNPs that are located within
lncRNA transcripts and are associated with cancer. For example, Yang et al. showed that
among six SNPs that are located within the boundaries of UCRs, two of them (that is,
rs2056116 and rs9572903) were significantly associated with familial breast cancer.176

Cabili et al.,27 while reporting on a census of 8195 lincRNAs in 24 different human tissues,
noted that the genomic positions of 414 lncRNAs were related to SNPs that have been
associated with several diseases.173

DIAGNOSTIC AND THERAPEUTIC APPLICATIONS OF LNCRNAS
The relatively new field of lncRNA research is expanding quickly, but many gaps still need
to be filled. Only recently has the number of lncRNAs in the human genome become
clear.27 Moreover, researchers have not extensively investigated lncRNA expression in large
and clinically controlled tumor data sets, nor is lncRNA function well understood.149 Few
examples of transgenic models of lncRNA have been published to date.80,177

We foresee potential uses of lncRNAs in the clinical setting for oncology or for other fields.
LncRNAs may be useful as novel biomarkers for diagnosis, prognosis and prediction of
response to therapy. The lncRNA PCA3/DD3, for example, has already been assayed in
controlled clinical settings. PCA3/DD3 was originally discovered in a differential display
analysis comparing normal and tumor prostate samples.178 The features that make PCA3/
DD3 a promising biomarker are its unique expression profile in prostate tumors compared
with normal prostate and other tissues, its highly increased expression levels (that is, about
60 times) in prostate tumors compared with normal tissues, its expression in early-stage
tumors and detectability in urine. PCA3/DD3 has been tested as a biomarker in clinical trials
and compared with standard prostate markers (that is, prostate-specific antigen). However,
the effectiveness of PC3/DD3 as a biomarker was about the same as that of prostate-specific
antigen.106,179

The marked increase or decrease in lncRNA expression levels in tumors compared with
normal tissues seems to be a feature shared among lncRNAs. Indeed, HOTAIR was found to
be upregulated by hundreds or thousands of times in metastatic breast cancer tissue
compared with normal breast tissue.64 Such a large difference in lncRNA expression levels
in tumors compared with normal tissues is a topic for future clinical research, although
lncRNAs must be assayed in larger clinical data sets. Other lncRNAs might be promising
biomarkers as well.106,179

Another potential avenue of lncRNA research relates to the discovery of circulating
miRNAs in serum, plasma and other body fluids, demonstrating that miRNAs may act not
only within cells, but also at other sites within the body.180 It is highly probable that other
types of ncRNAs, including lncRNAs, can be present in body fluids, as suggested by, for
example, their presence in the secreted exosomes. LncRNAs found in numerous quantities
in body fluids could be detected using simple quantitative reverse transcriptase polymerase
chain reaction. This could represent an unexpected and yet unexplored gold mine of
potential biomarkers predictive of survival or response to therapy.

LncRNAs might also be useful as therapeutic agents. The small size of miRNAs offers an
intrinsic advantage in their use as therapeutic bullets by in vivo administration.181 However,
because lincRNAs are much longer than miRNAs, they could not be used directly as
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therapeutic bullets but would require gene therapy delivery systems (for example, viruses),
which would carry potential risks. On the other hand, lncRNAs could be targeted with
synthetic siRNAs or miRNAs. Another way to target lncRNAs would be with drugs
designed specifically to interact with lncRNAs, as vault RNAs naturally do. Vault RNAs
belong to the largest ribonucleoprotein complex in eukaryotic cells (that is, vault), and they
are involved in multidrug resistance.182 Gopinath et al. showed that vault RNAs directly
bind to chemotherapeutic agents, indicating that it would also be possible to design small
molecules that interact with lncRNAs. Of course, vault RNAs are technically short RNAs,
ranging from 80 to 90 nucleotides; however, examples of longer RNAs involved with drug
interaction exist, such as aptamers.183–186

Targeting transcripts the size of lncRNAs may seem like a daunting task, but there is a
precedent for fragmenting large ribonucleoprotein complexes into more manageable sizes.
This strategy has been applied in the design of ligands that can bind to expanded rCUG and
rCAG repeat RNAs that are expressed in myotonic dystrophy type 1 and interact with the
Muscleblind-like 1 protein.187 Moreover, systematic evolution of ligands by exponential
enrichment (SELEX) approach can be used to identify chemicals that interact with
lncRNAs.160

As well as being potential markers or therapeutic targets, lncRNAs could be used as models
to develop novel strategies to target tumor cells. For example, synthetic RNA molecules that
form hairpin structures simulating DNA transcription factor-binding elements can be
generated to target and regulate transcription factor activity as GAS5 does.164 Synthetic
lncRNAs that contain mutant miRNA-binding sites can sequester and reduce expression
levels of miRNAs, as it happens in plants.163

Finally, small molecule compounds could be used to target lncRNAs. Indeed, small
molecule compounds have already been tested for other uses in clinical trials to determine
toxicity, body distribution and pharmacokinetics, and in some cases, their use in humans is
already approved by the US Food and Drug Administration. Their use with lncRNAs
requires only identifying, either by in silico predictions or by large library screens, the small
molecules that target lncRNA or ribonucleoprotein complexes. If such compounds exist, the
transition time from lab to clinic would be very short, which would be good news not only
for scientists, but especially for patients with cancers and other diseases.
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Figure 1.
LncRNA categories and functions. Several classes and functions of lncRNAs are depicted.
The main function of lncRNA seems so far to regulate PCG transcription; indeed, lncRNA
can either enhance or repress PCG transcription by changes in the chromatin state of the
PCGs (for example, by histone methylating or acetylating). Enhancer RNAs derive from
transcription of enhancer elements that can be located several kilobases upstream of target
genes. Enhancer DNA can both regulate gene expression by DNA looping and direct DNA–
DNA interaction with the target promoter, and they also transcribe non-polyA RNAs (that is,
eRNA). The function and the role of eRNAs is at this moment unknown. Overall, both long
ncRNAs (lincRNA, a-ncRNAs and AS-ncRNAs) and small ncRNAs (for example, siRNA
and miRNA) regulate transcription and post transcription steps of protein synthesis,
respectively. At the bottom of coding and non-coding transcription units that are shown in
picture, the reader can find the peak diagram for CHIP-seq experiments concerning histone
modifications: H3K4Me1, mono methylation at lysine 4 of histone 3 (often found near
regulatory elements); H3K4Me3, tri methylation at lysine 4 of histone 3 (often found near
promoters); H3K36Me3, tri methylation at lysine 36 of histone 3 (often found near active
transcripts).
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