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Abstract

For a family of non-autonomous differential equations with distributed delays, we give
sufficient conditions for the global exponential stability of an equilibrium point. This
family includes most of the delayed models of neural networks of Hopfield type, with
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conditions for their global exponential stability. The existence and global exponential
stability of a periodic solution is also addressed. A comparison of results shows that
these results are general, news, and add something new to some earlier publications.
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1 Introduction

In the last decades, retarded functional differential equations (FDEs) have attracted the
attention of an increasing number of scientists due to their potential applications in different
sciences. Differential equations with delays have served as models in population dynamics,
ecology, epidemiology, disease modeling, and neural networks.

Neural network models possess good potential applications in areas such as content-
addressable memory, pattern recognition, signal and image processing and optimization (see
[2], [15], [18], [19], and references therein).

In 1983, Cohen and Grossberg [5] proposed and studied the artificial neural network
described by a system of ordinary differential equations

x′i(t) = −ki(xi(t))

bi(xi(t))− n∑
j=1

aijfj(xj(t))

 , i = 1, . . . , n (1.1)

and, in 1984, Hopfield [9] studied the particular situation of (1.1) with ki ≡ 1,

x′i(t) = −bixi(t) +

n∑
j=1

aijfj(xj(t)), i = 1, . . . , n. (1.2)
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In 1988, Kosko presented a kind of neural networks, which is called bidirectional asso-
ciative memory (BAM) neural network, [13],

x′i(t) = −xi(t) +

n∑
j=1

aijf(yj(t)) + Ii

y′i(t) = −yi(t) +

n∑
j=1

bjif(xi(t)) + Ji

i = 1, . . . , n. (1.3)

The finite switching speed of the amplifiers, communication time, and process of moving
images led to the use of time-delays in models (1.1), (1.2), and (1.3), arising the delayed
neural network models. In the applications of delayed neural networks to some practical
problems, stability plays an important role. It is well known that delays can affect the
dynamic behavior of neural networks (see [1], [14]). For this reason, stability of delayed
neural networks has been investigated extensively. There are many important results on
static (equilibrium-type) attractors of neural networks (see [2], [3], [7], [10], [15], [16], and
the references therein), but it is well known that non-static attractors, such as periodic
oscillatory behavior, are also an important aspect (see [4], [11], [17], [20], [21], and the
references therein).

In the literature, the usual approach to analyze the stability property is to construct a
suitable Lyapunov functional for a concrete n-dimensional FDE and then to derive sufficient
conditions ensuring stability. However, constructing a Lyapunov functional is not an easy
task and, frequently, a new functional is required for each model under consideration. In quite
an unusual way, our techniques (see [6], [7], [15], [16]) do not involve Lyapunov functionals,
and our method applies to general systems.

This paper is organized as follows: In Section 2, we briefly present the phase space for
FDEs written in abstract form as x′(t) = f(t, xt), then we define the global exponential
stability of a FDE, and finally we establish a general condition for the boundedness of
solutions of x′(t) = f(t, xt). In Section 3, we present the results on global exponential
stability of a general class of nonautonomous delay differential equations, which includes
most of neural network models. In Section 4, we prove the existence and global exponential
stability of a periodic solution of a periodic general Hopfield neural network type model.
Finally, in Section 5, we illustrate the results with well-known nonautonomous n-dimensional
neural network models and we compare our results with the literature, showing the advantage
of our method when applied to several different models, such as Hopfield or BAM neural
network models.

2 Preliminaries

For a, b ∈ R with b > a and n ∈ N, we denote by C([a, b];Rn) the vector space of continuous
functions ϕ : [a, b] → Rn, equipped with the supremum norm || · || relative to the max
norm | · | in Rn, i.e., ||ϕ|| = sup

a≤θ≤b
|ϕ(θ)| for ϕ ∈ C([a, b];Rn), where |x| = max

i=1,...,n
|xi| for

x = (x1, . . . , xn) ∈ Rn. For c ∈ R, we use c to denote the constant function ϕ(θ) = c in
C([a, b];Rn). A vector d = (d1, . . . , dn) ∈ Rn is said to be positive if di > 0 for i = 1, . . . , n,
and in this case we write d > 0.

2



In the space Cn := C([−τ, 0];Rn), for τ > 0, consider FDEs,

x′(t) = f(t, xt), t ≥ 0, (2.1)

where f : [0,+∞)×Cn → Rn is a continuous function and, as usual, xt denotes the function
in Cn defined by xt(θ) = x(t+ θ), −τ ≤ θ ≤ 0. It is well-known that, assuming the Banach
space Cn as the phase space of (2.1), the standard existence, uniqueness, and continuous
type results are valid (see [8]). We always assume that f is regular enough in order to
have uniqueness of solutions for the initial value problem. The solution of (2.1) with initial
condition xt0 = ϕ, for t0 ≥ 0 and ϕ ∈ Cn, is denoted by x(t, t0, ϕ). For ω > 0 and ϕ ∈ Cn,
we write xω(ϕ), or just xω if there is no confusion, to denote the function in Cn defined by
xω(ϕ)(θ) = x(ω + θ, 0, ϕ), θ ∈ [−τ, 0].

Definition 2.1. The solution x(t, 0, ϕ̄) of (2.1), with ϕ̄ ∈ Cn, is said globally exponentially
stable if there are ε > 0 and M ≥ 1 such that

|x(t, 0, ϕ)− x(t, 0, ϕ̄)| ≤Me−εt‖ϕ− ϕ̄‖, ∀t ≥ 0, ∀ϕ ∈ Cn.

Definition 2.2. The system (2.1) is said globally exponentially stable if there are ε > 0 and
M ≥ 1 such that

|x(t, 0, ϕ1)− x(t, 0, ϕ2)| ≤Me−εt‖ϕ1 − ϕ2‖, ∀t ≥ 0, ∀ϕ1, ϕ2 ∈ Cn.

In [6], a relevant result on the boundedness of solutions for the general FDE (2.1) was
established. For convenience of the reader, we put the proof here.

Lemma 2.1. [6] Consider equation (2.1) with the continuous functions f = (f1, ...fn) sat-
isfying:

(H) for all t ≥ 0 and ϕ ∈ Cn such that |ϕ(θ)| < |ϕ(0)| for θ ∈ [−τ, 0), then ϕi(0)fi(t, ϕ) < 0
for some i ∈ {1, ..., n} such that |ϕ(0)| = |ϕi(0)|.

Then, all solutions of (2.1) are defined and bounded for t ≥ 0. Moreover, if x(t) =
x(t, 0, ϕ), with ϕ ∈ Cn, is a solution of (2.1), then |x(t)| ≤ ‖ϕ‖ for all t ≥ 0.

Proof. Let x(t) be the solution of (2.1) on [−τ, a), for some a > 0, such that x0 = ϕ with
ϕ ∈ Cn.

Suppose that there exists t1 > 0 such that |x(t1)| > ||ϕ||, and define

T = min

{
t ∈ [0, t1] : |x(t)| = max

s∈[0,t1]
|x(s)|

}
.

We have |x(T )| > ||ϕ|| and

|x(t)| < |x(T )|, for t ∈ [0, T ).

Hence, |xT (θ)| = |x(T+θ)| < |x(T )| for θ ∈ [−τ, 0). By (H), there is i ∈ {1, . . . , n} such that
|x(T )| = |xi(T )| and xi(T )fi(T, xT ) < 0. Suppose that xi(T ) > 0 (the situation xi(T ) < 0 is
analogous). Since xi(t) ≤ |x(t)| < xi(T ) for t ∈ [−τ, T ), then x′i(T ) ≥ 0. On the other hand,
from (2.1) we have x′i(T ) = fi(T, xT ) < 0, which is a contradiction. This prove that x(t) is
extensible to [−τ,+∞), with |x(t)| ≤ ||ϕ|| for all t > 0.

As a finally notation, for a function P : X → X and k ∈ N, we denote the composition
P ◦ · · · ◦ P︸ ︷︷ ︸

k times

by P k.
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3 Global exponential stability

In the phase space Cn, consider the following nonautonomous system of delayed differential
equations

x′i(t) = −ρi(t, xt)[bi(t, xi(t)) + fi(t, xt)], t ≥ 0, i = 1, . . . , n, (3.1)

where ρi : [0,+∞) × Cn → R+, fi : [0,+∞) × Cn → R, and bi : [0,+∞) × R → R are
continuous functions. This model is a small generalization of a model introduced in [7] and
it is particularly relevant in terms of applications, since it includes different types of neural
network models with delays, such as Hopfield, Cohen-Grossberg, and BAM.

For (3.1) the following hypotheses will be considered:

(A1) there exists a x∗ = (x∗1, . . . , x
∗
n) ∈ Rn equilibrium point of (3.1);

(A2) for each i ∈ {1, . . . , n}, there exists a ρ
i
> 0 such that

ρ
i

= inf{ρi(t, ϕ) : t ≥ 0, ϕ ∈ Cn};

(A3) for each i ∈ {1, . . . , n}, there exists a function βi : [0,+∞)→ R+ such that

(bi(t, u)− bi(t, v))/(u− v) ≥ βi(t) > 0, ∀t ≥ 0, ∀u, v ∈ R, u 6= v;

(A4) for each i ∈ {1, . . . , n}, fi : [0,+∞) × Cn → R is a Lipschitz function on the second
variable that is, there exists a function li : [0,+∞)→ R+ such that

|fi(t, ϕ)− fi(t, ψ)| ≤ li(t)‖ϕ− ψ‖, ∀t ≥ 0, ∀ϕ,ψ ∈ Cn;

(A5) there exist ε > 0 and a continuous function λ : [−τ,+∞) → R+ such that, for each
i ∈ {1, . . . , n},

ρ
i

(
βi(t)− li(t)e

∫ t
t−τ λ(s)ds

)
> λ(t) and

∫ t

0
λ(s)ds ≥ εt, for all t ≥ 0. (3.2)

In the following Lemma, we show that the solutions of (3.1) are defined and bounded on
[−τ,+∞).

Lemma 3.1. For (3.1) assume hypotheses (A1), (A3), and (A4), and suppose that

βi(t)− li(t) > 0 for all t ≥ 0, and i = 1, . . . , n. (3.3)

Then, each solution x(t) = x(t, 0, ϕ) (with ϕ ∈ Cn) of (3.1) is defined and bounded on
[0,+∞) and it satisfies |x(t)− x∗| ≤ ‖ϕ− x∗‖ for all t ≥ 0.

Proof. Let x∗ = (x∗1, ..., x
∗
n) ∈ Rn be an equilibrium point of (3.1), that is,

bi(t, x
∗
i ) + fi(t, x

∗) = 0, for all t ≥ 0, i = 1, . . . , n.

By the translation x̄(t) = x(t)− x∗, the system (3.1) has the form

x̄′i(t) = −ρi(t, x̄t + x∗)[bi(t, x̄i(t) + x∗i ) + fi(t, x̄t + x∗)], t ≥ 0, i = 1, . . . , n. (3.4)
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Clearly, (3.4) has the form (3.1), for which zero is an equilibrium point, and hypotheses (A3)
and (A4) hold with the same functions βi(t) and li(t). Hence, without loss of generality, we
may consider x∗ = 0 in the system (3.1).

Take t ≥ 0 and ϕ ∈ Cn such that |ϕ(θ)| < |ϕ(0)| for θ ∈ [−τ, 0). Let i be such that
‖ϕ‖ = |ϕi(0)| and suppose that ϕi(0) > 0 (the case ϕi(0) < 0 is analogous). Then,

bi(t, ϕi(0)) + fi(t, ϕ) = [bi(t, ϕi(0))− bi(t, 0)] + [fi(t, ϕ)− fi(t, 0)]

≥ βi(t)ϕi(0)− li(t)‖ϕ‖ = βi(t)ϕi(0)− li(t)ϕi(0)

= (βi(t)− li(t))ϕi(0) > 0.

This proves that (H) holds and the result follows from Lemma 2.1.

Now, we state the main result on the global exponential stability of the equilibrium point
x∗ of (3.1).

Theorem 3.1. Consider the FDE (3.1) under the hypotheses (A1)-(A5).
Then, the equilibrium point of (3.1) is globally exponentially stable.

Proof. As in proof of Lemma 3.1, by translation, we may assume that zero is an equilibrium
point, which means, bi(t, 0) + fi(t, 0) = 0 for all t ≥ 0 and i = 1, ..., n.

Since the hypothesis (A5) implies (3.3), then, from Lemma 3.1, we deduce that all
solutions are defined and bounded on [0,+∞), and x = 0 is uniformly stable.

As λ(t) > 0 for all t ≥ 0, the change of variables z(t) = e
∫ t
0 λ(s)dsx(t) transforms the

system (3.1) into

z′i(t) = gi(t, zt), t ≥ 0, i = 1, ..., n, (3.5)

where,

gi(t, ϕ) = λ(t)ϕi(0)− ρi
(
t, e−

∫ t+·
0 λ(s)dsϕ

)
e
∫ t
0 λ(s)ds

[
bi(t, e

−
∫ t
0 λ(s)dsϕi(0)) + fi(t, e

−
∫ t+·
0 λ(s)dsϕ)

]
.(3.6)

Now, take t ≥ 0 and ϕ ∈ Cn such that |ϕ(θ)| < |ϕ(0)| for θ ∈ [−τ, 0). Let i be such that
‖ϕ‖ = |ϕi(0)| and suppose that ϕi(0) > 0 (the case ϕi(0) < 0 is analogous). Then

gi(t, ϕ) = λ(t)ϕi(0)− ρi
(
t, e−

∫ t+·
0 λ(s)dsϕ

)
e
∫ t
0 λ(s)ds

[
bi(t, e

−
∫ t
0 λ(s)dsϕi(0))− bi(t, 0)

+fi(t, e
−

∫ t+·
0 λ(s)dsϕ)− fi(t, 0)

]
≤ λ(t)ϕi(0)− ρi

(
t, e−

∫ t+·
0 λ(s)dsϕ

)
e
∫ t
0 λ(s)ds

[
βi(t)e

−
∫ t
0 λ(s)dsϕi(0)− li(t)e−

∫ t−τ
0 λ(s)ds‖ϕ‖

]
≤ ϕi(0)

[
λ(t)− ρ

i

(
βi(t)− li(t)e

∫ t
t−τ λ(s)ds

)]
,

and, from the hypothesis (A5), we get gi(t, ϕ) < 0 and the hypothesis (H) holds. Conse-
quently, from Lemma 2.1, we deduce that the solution z(t) of (3.5) satisfies |z(t)| ≤ ‖z0‖ for
all t ≥ 0. Thus, again from the hypothesis (A5), we obtain

|x(t, 0, ϕ)| =
∣∣∣e− ∫ t

0 λ(s)dsz(t, 0, e
∫ ·
0 λ(s)dsϕ)

∣∣∣ ≤ e−εt ∣∣∣z(t, 0, e− ∫ 0
· λ(s)dsϕ)

∣∣∣ ≤ e−εt‖ϕ‖ ∀t ≥ 0,

and we have the result.
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Corollary 3.1. Assume that hypotheses (A1)-(A4) are satisfied.
If the functions li(t) are bounded and there exists α > 0 such that

βi(t)− li(t) > α, for all t ≥ 0, i = 1, . . . , n, (3.7)

then the equilibrium point of (3.1) is globally exponentially stable.

Proof. As a consequence of the Theorem 3.1, we just need to find a function λ : [−τ,+∞)→
R+ such that (3.2) holds. As li(t) are bounded functions, there is L > 0 such that li(t) < L
for all t ≥ 0 and i = 1, . . . , n and from (3.7) we conclude that

βi(t)− li(t)(1 +
α

2L
) >

α

2
, t ≥ 0, i = 1, . . . , n,

and consequently, for some d < 0, we have

−ρ
i

(
βi(t)− li(t)(1 +

α

2L
)
)
< d < 0, t ≥ 0, i = 1, . . . , n. (3.8)

Now, considering ε∗ = 1
τ log

(
1 + α

2L

)
> 0 and ε = min{−d, ε∗}, we conclude that

ε− ρ
i
(βi(t)− li(t)eτε) < 0, t ≥ 0, i = 1, . . . , n, (3.9)

and (3.2) holds taking λ(t) = ε, for all t ∈ [−τ,+∞).

Now, considering in (3.1) ρi ≡ 1 for all i = 1 . . . , n, we get the following systems of FDEs

x′i(t) = −bi(t, xi(t)) + fi(t, xt), t ≥ 0, i = 1, ..., n, (3.10)

where bi : [0,+∞) × R → R and fi : [0 +∞) × Cn → R are continuous. The next result
establishes the global exponential stability of (3.10).

Corollary 3.2. Assume that hypotheses (A3)-(A5) are satisfied.
Then the system (3.10) is globally exponentially stable.

Proof. Let x̄(t) = x(t, 0, ϕ̄) be the solution of (3.10) with ϕ̄ ∈ Cn. The change of variables
z(t) = x(t)− x̄(t) transforms the system (3.10) into

z′i(t) = −bi(t, zi(t) + x̄i(t)) + fi(t, zt + x̄t) + bi(t, x̄i(t))− fi(t, x̄t), t ≥ 0, i = 1, . . . , n,(3.11)

which can be written in the form

z′i(t) = −b̄i(t, zi(t)) + f̄i(t, zt) t ≥ 0, i = 1, . . . , n, (3.12)

with b̄i(t, u) = bi(t, u + x̄i(t)) and f̄i(t, ϕ) = fi(t, ϕ + x̄t) + bi(t, x̄i(t)) − fi(t, x̄t) for u ∈ R,
t ≥ 0, and ϕ ∈ Cn. It is easy to see that zero is an equilibrium point of (3.12), b̄i satisfy
(A3) with the same functions βi(t), and, for all t ≥ 0, ϕ,ψ ∈ Cn, we have

|f̄i(t, ϕ)− f̄i(t, ψ)| = |fi(t, ϕ+ x̄t) + bi(t, x̄i(t))− fi(t, x̄t)− fi(t, ψ + x̄t)− bi(t, x̄i(t)) + fi(t, x̄t)|
= |fi(t, ϕ+ x̄t)− fi(t, ψ + x̄t)|
≤ li(t)‖ϕ− ψ‖

which implies that (A4) holds with the same functions li(t). Consequently, from Theorem
3.1, we conclude that |z(t)| ≤ e−εt‖z0‖ which means that

|x(t)− x̄(t)| ≤ e−εt‖ϕ− ϕ̄‖ ∀t ≥ 0, (3.13)

where ϕ := x0. As the constant ε in the hypothesis (A5) is independent of x̄(t), we conclude
that the system (3.10) is globally exponentially stable.
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In applications, nonautonomous neural network models with distributed delays often
take the form

x′i(t) = −ρi(t, xt)

bi(t, xi(t)) +
K∑
k=1

n∑
j=1

gijk(t, xjt)

 , t ≥ 0, i = 1, . . . , n, (3.14)

where, for each i, j = 1, . . . , n and k = 1, . . . ,K, τijk ∈ [0, τ ] and gijk : [0,+∞)×C([−τijk, 0];R)→
R is a continuous function satisfying the Lipschitz condition

|gijk(t, ϕ)− gijk(t, ψ)| ≤ lijk(t)‖ϕ− ψ‖, ∀t ≥ 0, ∀ϕ,ψ ∈ C([−τijk, 0];R), (3.15)

for some function lijk : [0,+∞)→ R+. In what follows, for each ϕ ∈ C([−τ, 0];R), we denote

gijk(t, ϕ) := gijk

(
t, ϕ|[−τijk,0]

)
, for all t ≥ 0, i, j = 1, . . . , n, k = 1, . . . ,K.

For model (3.14), instead of (A5) assume the following hypothesis:

(A5’) there exist ε > 0 and a continuous function λ : R → R+ such that, for each i ∈
{1, . . . , n},

ρ
i

βi(t)− K∑
k=1

n∑
j=1

lijk(t)e

∫ t
t−τijk

λ(s)ds

 > λ(t) and

∫ t

0
λ(s)ds ≥ εt, ∀t ≥ 0.(3.16)

In the following result, a slight improvement of Theorem 3.1 is given when (3.1) has the
form (3.14). In the proof, the same ideas are used.

Theorem 3.2. Consider the FDE (3.14) assuming the hypotheses (A1)-(A3), (A5’), and
(3.15).

Then, the equilibrium point of (3.14) is globally exponentially stable.

Proof. By translation, we may assume that zero is an equilibrium point that is,

bi(t, 0) +
K∑
k=1

n∑
j=1

gijk(t, 0) = 0, t ≥ 0, i = 1, ..., n.

The hypothesis (A5’) implies βi(t) −
K∑
k=1

n∑
j=1

lijk(t) > 0 and, since
K∑
k=1

n∑
j=1

lijk(t) is the

Lipschitz constant with respect to the second argument of

fi(t, ϕ) :=

K∑
k=1

n∑
j=1

gijk(t, ϕj), t ≥ 0, ϕ = (ϕ1, . . . , ϕn) ∈ Cn,

then, from Lemma 3.1, we deduce that all solutions are defined and bounded on [0,+∞),
and that x = 0 is uniformly stable.

As λ(t) > 0 for all t ≥ 0, the change of variables z(t) = e
∫ t
0 λ(s)dsx(t) transforms the

system (3.14) into

z′i(t) = gi(t, zt) t ≥ 0, i = 1, ..., n, (3.17)
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where, for all t ≥ 0 and i = 1, . . . , n,

gi(t, ϕ) = λ(t)ϕi(0)− ρi
(
t, e−

∫ t+·
0 λ(s)dsϕ

)
e
∫ t
0 λ(s)ds

[
bi

(
t, e−

∫ t
0 λ(s)dsϕi(0)

)
+

K∑
k=1

n∑
j=1

gijk

(
t, e−

∫ t+·
0 λ(s)dsϕj

)]
. (3.18)

Now, take t ≥ 0 and ϕ ∈ Cn with |ϕ(θ)| < |ϕ(0)| for θ ∈ [−τ, 0). Let i be such that
‖ϕ‖ = |ϕi(0)| and suppose that ϕi(0) > 0 (the case ϕi(0) < 0 is analogous). Then, from the
hypotheses, we get

gi(t, ϕ) = λ(t)ϕi(0)− ρi
(
t, e−

∫ t+·
0 λ(s)dsϕ

)
e
∫ t
0 λ(s)ds

[
bi

(
t, e−

∫ t
0 λ(s)dsϕi(0)

)
− bi(t, 0)

+
K∑
k=1

n∑
j=1

gijk

(
t, e−

∫ t+·
0 λ(s)dsϕj

)
−

K∑
k=1

n∑
j=1

gijk(t, 0)

]

≤ λ(t)ϕi(0)− ρi
(
t, e−

∫ t+·
0 λ(s)dsϕ

)
e
∫ t
0 λ(s)ds

[
βi(t)e

−
∫ t
0 λ(s)dsϕi(0)

−
K∑
k=1

n∑
j=1

lijk(t)e
−

∫ t−τijk
0 λ(s)ds‖ϕj‖

]

≤ ϕi(0)

λ(t)− ρ
i

βi(t)− K∑
k=1

n∑
j=1

lijk(t)e
−

∫ t−τijk
t λ(s)ds

 ,
and, from the hypothesis (A5’), we conclude that gi(t, ϕ) < 0 and the hypothesis (H)
holds. Consequently, from Lemma 2.1, we deduce that the solutions z(t) of (3.17) satisfy
|z(t)| ≤ ‖z0‖ for all t ≥ 0. Thus, again from the hypothesis (A5’), we obtain

|x(t, 0, ϕ)| =
∣∣∣e− ∫ t

0 λ(s)dsz(t, 0, e
∫ ·
0 λ(s)dsϕ)

∣∣∣ ≤ e−εt ∣∣∣z(t, 0, e− ∫ 0
· λ(s)dsϕ)

∣∣∣ ≤ e−εt‖ϕ‖ ∀t ≥ 0,

and we have the result.

Following the same ideas presented in the proof of Corollary 3.1, we can obtain the
following result.

Corollary 3.3. Consider the FDE (3.14) assuming the hypotheses (A1)-(A3), and (3.15).
If the functions lijk(t) are bounded and there exists α > 0 such that

βi(t)−
K∑
k=1

n∑
j=1

lijk(t) > α, for all t ≥ 0, i = 1, . . . , n,

then the equilibrium point of (3.14) is globally exponentially stable.

Following the same ideas presented in the proof of Corollary 3.2, we also can obtain the
following result.

Corollary 3.4. Assume that (A3), (A5’), and (3.15) are satisfied.
Then the system

x′i(t) = −bi(t, xi(t)) +

K∑
k=1

n∑
j=1

gijk(t, xjt), t ≥ 0, i = 1, . . . , n, (3.19)

is globally exponentially stable.
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4 Existence and exponential stability of periodic solution

In this section, we apply the contraction mapping principle to derive a criterion to ensure
that system (3.10) has a unique periodic solution and all other solutions converge to it with
exponential rates.

Here, we take ω > 0 and, in the phase space Cn, we consider the FDE (3.10) where the
continuous functions bi : [0,+∞) × R → R and fi : [0,+∞) × Cn → R are ω-periodic with
respect to the first argument, that is,

bi(t, u) = bi(t+ ω, u), ∀t ≥ 0, ∀u ∈ R,

and
fi(t, ϕ) = fi(t+ ω, ϕ), ∀t ≥ 0, ∀ϕ ∈ Cn.

Theorem 4.1. Assume that hypotheses (A3) and (A4) are satisfied.
If there is α > 0 such that

βi(t)− li(t) > α, ∀t ∈ [0, ω], (4.1)

then the system (3.10) has a unique ω-periodic solution which is globally exponentially stable.

Proof. As bi(t, u) are continuous and ω-periodic with respect to the first argument then,
from (A3), βi(t) are bounded and consequently li(t) are also bounded. Thus, as in the proof
of Corollary 3.1, the hypothesis (A5) holds and, from Corollary 3.2, we conclude that there
is ε > 0 such that

|x(t, 0, ϕ)− x(t, 0, ϕ̄)| ≤ e−εt‖ϕ− ϕ̄‖, ∀t ≥ 0, ∀ϕ, ϕ̄ ∈ Cn, (4.2)

and consequently

‖xt(ϕ)− xt(ϕ̄)‖ ≤ e−ε(t−τ)‖ϕ− ϕ̄‖, ∀t ≥ τ, ∀ϕ, ϕ̄ ∈ Cn. (4.3)

Now, we can choose k ∈ N such that

kω > τ and e−(kω−τ) ≤ 1

2
, (4.4)

and we define the map P : Cn → Cn by P (ϕ) = xω(ϕ). For ϕ, ϕ̄ ∈ Cn, from (4.3) and (4.4)
we have

‖P k(ϕ)− P k(ϕ̄)‖ = ‖P (P k−1(ϕ))− P (P k−1(ϕ̄))‖ = ‖xω(P k−1(ϕ))− xω(P k−1(ϕ̄))‖

= ‖xω(xω(P k−2(ϕ)))− xω(xω(P k−2(ϕ̄)))‖ = ‖xkω(ϕ)− xkω(ϕ̄)‖

≤ e−ε(kω−τ)‖ϕ− ϕ̄‖ ≤ 1
2‖ϕ− ϕ̄‖,

which implies that P k is a contraction map on Cn. As Cn is a Banach space, we conclude
that there is a unique fixed point ϕ∗ ∈ Cn such that P k(ϕ∗) = ϕ∗. Noting that

P k(P (ϕ∗)) = P (P k(ϕ∗)) = P (ϕ∗),

we have P (ϕ∗) = ϕ∗ which means that xω(ϕ∗) = ϕ∗.
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Finally, as x(t, 0, ϕ∗) is a solution of (3.10) and bi(t, u) and fi(t, ϕ) are ω-periodic with
respect to the first argument, we know that x(t+ ω, 0, ϕ∗) is also a solution of (3.10) and

x(t, 0, ϕ∗) = x(t, 0, xω(ϕ∗)) = x(t+ ω, 0, ϕ∗), ∀t ≥ 0.

Therefore x(t, 0, ϕ∗) is the ω-periodic solution of (3.10) and, from (4.2), all other solutions
converge to it with exponential rates.

Remark 4.1 Observe that, in this setting, (A5) is equivalent to (4.1). In fact, on the
one hand, as bi(t, u) are continuous and ω-periodic with respect to the first argument, we
conclude that βi(t) are bounded and, from (4.1), li(t) are also bounded. Now, from Corollary
3.1 we conclude that (4.1) implies (A5). On the other hand, as βi(t) and li(t) are ω-periodic
and λ(t) is continuous on the compact set [0, ω], it is easy to conclude that (3.2) implies
(4.1), where α := min

t∈[0,ω]
λ(t).

5 Applications

Here, we consider the following generalized nonautonomous Hopfield neural network model
with continuous distributed time varying delays,

x′i(t) = −bi(t, xi(t)) +
K∑
k=1

n∑
j=1

fijk

(
t,

∫ 0

−τijk
hijk(xj(t+ s))dη

(k)
ij (t, s)

)
, t ≥ 0, i = 1, . . . , n,(5.1)

where, for i, j = 1, . . . , n and k = 1, ...,K, τijk are nonnegative numbers, bi, fijk : [0,+∞)×
R → R, hijk : R → R, are continuous functions, and η

(k)
ij : [0,+∞) × [−τijk, 0] → R

are functions such that t 7→
∫ 0

−τijk
ψ(s)dη

(k)
ij (t, s) are continuous real functions, for all

ψ ∈ C([−τijk, 0];R), and η
(k)
ij (t, ·) are non-decreasing and normalized, that is η

(k)
ij (t, 0) −

η
(k)
ij (t,−τijk) = 1, for all t ≥ 0.

Theorem 5.1. Consider (5.1) where hijk are Lipschitz functions with Lipschitz constant
γijk and fijk are Lipschitz functions on the second variable, with Lipschitz constants µijk(t),
for i, j = 1, ...n and k = 1, ...,K. Assume in addition that,

(i) (A3) holds;

(ii) There exist d = (d1, ..., dn) > 0, ε > 0, and λ : R→ R+ continuous such that

βi(t)−
K∑
k=1

n∑
j=1

d−1i djγijkµijk(t)e

∫ t
t−τijk

λ(s)ds
> λ(t), and

∫ t

0
λ(s)ds ≥ εt, ∀t ≥ 0.

Then, the system (5.1) is globally exponentially stable.

Proof. The change yi(t) = d−1i xi(t) transforms (5.1) into

y′i(t) = −d−1i bi(t, diyi(t)) +

K∑
k=1

n∑
j=1

d−1i fijk

(
t,

∫ 0

−τijp
hijk(djyj(t+ s))dη

(k)
ij (t, s)

)
, (5.2)
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which has the form (3.19) with, for each t ≥ 0, i, j = 1, . . . , n, k = 1, . . . ,K, and ψ ∈
C([−τ, 0];R),

gijk(t, ψ) := d−1i fijk

(
t,

∫ 0

−τijk
hijk(djψ(s))dη

(k)
ij (t, s)

)
.

Note that (d−1i bi(t, diu) − d−1i bi(t, div))/(u − v) = (bi(t, diu) − bi(t, div))/(diu − div) ≥
βi(t) for all t ≥ 0, and u, v ∈ R, u 6= v, i.e., condition (A3) is satisfied. As η

(k)
ij (t, ·)

are non-decreasing and normalized functions, for each i, j = 1, . . . , n, k = 1, . . . ,K, and
ϕ,ψ ∈ C([−τijk, 0];R), we have

|gijk(t, ϕ)− gijk(t, ψ)| ≤ d−1i µijk(t)

∣∣∣∣∣
∫ 0

−τijk
hijk(djϕ(s))dη

(k)
ij (t, s)−

∫ 0

−τijk
hijk(djψ(s))dη

(k)
ij (t, s)

∣∣∣∣∣
≤ d−1i µijk(t)

∫ 0

−τijk

∣∣∣∣hijk(djϕ(s))− hijk(djψ(s))

∣∣∣∣dη(k)ij (t, s)

≤ d−1i µijk(t)γijkdj

∫ 0

−τijk
|ϕ(s)− ψ(s)|dη(k)ij (t, s)

≤
(
d−1i djγijkµijk(t)

)
‖ϕ− ψ‖.

Consequently, the condition (3.15) holds and, from the hypothesis (ii), the condition (A5’)
also holds. Now, the result follows from Corollary 3.4.

Example 5.1. If we take K = 2, bi(t, u) = ci(t)u, hijk(u) = u, fij1(t, u) = aij(t)fj(u),

fij2(t, u) = bij(t)fj(u) + Ii(t)
n , η

(1)
ij : [0,+∞)× [−τij1, 0]→ R defined by

η
(1)
ij (t, s) = η

(1)
ij (s) =


0, −τij1 ≤ s < 0

1, s = 0
,

and η
(2)
ij : [0,+∞)× [−τij2, 0]→ R defined by

η
(2)
ij (t, s) =


0, −τij2 ≤ s < −τij(t)

1, −τij(t) ≤ s ≤ 0
,

for t ≥ 0, i, j = 1, . . . , n, k = 1, 2, and u ∈ R, where fj : R→ R, ci, aij , bij , Ii : [0,+∞)→ R,
and τij : [0,+∞)→ [0,+∞) are continuous functions, the model (5.1) becomes the following
Hopfield neural network model:

ẋi(t) = −ci(t)xi(t) +
n∑
j=1

aij(t)fj(xj(t)) +
n∑
j=1

bij(t)fj(xj(t− τij(t))) + Ii(t), t ≥ 0. (5.3)

Applying Theorem 5.1 to model (5.3), we have the following result.

Corollary 5.1. Consider (5.3), where τij(t) are bounded and continuous functions and fj
are Lipschitz functions with Lipschitz constants Lj.
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If there exit d = (d1, . . . , dn) > 0, ε > 0, and λ : R → R+ continuous such that, for all
t ≥ 0 and i = 1, . . . , n,

ci(t)−
n∑
j=1

d−1i dj |aij(t)|Lj −
n∑
j=1

d−1i dj |bij(t)|Lje
∫ t
t−τij

λ(s)ds
> λ(t), and

∫ t

0
λ(s)ds ≥ εt,

with τij := sup
t
τij(t), then the system (5.3) is globally exponentially stable.

Remark 5.1. The particular model (5.3) was recently studied in several papers such as
[21], [22], and [11]. By comparison, for example, we can apply Corollary 5.1 to conclude that
the particular model 

x′1(t) = −2x1(t) + (sin t)x2(t− |sin t|)

x′2(t) = −4x2(t) + (sin t)x1(t)
, (5.4)

is globally exponentially stable. However the Theorem 2 in [21] cannot be applied to get the
same conclusion and, consequently, our previous result presents a different criterion.

Moreover, it is relevant to observe that the model (5.1) is general enough to include, as
particular situations, some BAM neural network models. The following example illustrates
that fact.
Example 5.2. Consider the following nonautonomous BAM neural network model with
discrete time-varying delays

x′i(t) = −c̃i(t)xi(t) +
m∑
j=1

aij(t)fj(yj(t)) +
m∑
j=1

bij(t)fj(yj(t− τij(t))) + Ĩi(t), i = 1, . . . , n,

y′j(t) = −cj(t)yj(t) +
n∑
i=1

ãji(t)f̃i(xi(t)) +
n∑
i=1

b̃ji(t)f̃i(xi(t− τ̃ji(t))) + Ij(t), j = 1, . . . ,m,

.(5.5)

As in the above example, it is easy to see that (5.5) is a special case of model (5.1), thus
from Theorem 5.1 we obtain the following result.

Corollary 5.2. Consider (5.5) where τij(t), τ̃ji(t) are bounded and continuous functions

and fj , f̃i, are Lipschitz functions with Lipschitz constant, Fj , F̃i respectively, i = 1, . . . , n,
j = 1, . . . ,m.

If there exist d̃ = (d̃1, . . . , d̃n) > 0, d = (d1, . . . , dm) > 0, ε > 0, and λ : R → R+

continuous such that, for all t ≥ 0,
∫ t
0 λ(s)ds ≥ εt and

c̃i(t)−
m∑
j=1

d̃−1i dj

(
|aij(t)|Fj + |bij(t)|Fje

∫ t
t−τij

λ(s)ds
)
> λ(t), i = 1, . . . , n, (5.6)

cj(t)−
n∑
i=1

d−1j d̃i

(
|ãji(t)|F̃i + |̃bji(t)|F̃ie

∫ t
t−τ̃ji

λ(s)ds
)
> λ(t), j = 1, . . . ,m, (5.7)

with τij := sup
t
τij(t) and τ̃ji := sup

t
τ̃ji(t), then system (5.5) is globally exponentially stable.

12



Now, we apply the results in section 4 to obtain sufficient criteria for the exponential
stability of periodic neural network models.

Let ω > 0 and consider the system (5.1) where t 7→
∫ 0

−τijk
ψ(s)dη

(k)
ij (t, s) are ω-periodic

continuous real functions for all ψ ∈ C([−τijk, 0];R), and the continuous functions bi, fijk :
[0,+∞) × R → R are ω-periodic with respect to the first argument, that is, bi(t, u) =
bi(t+ ω, u) and fijk(t, u) = fijk(t+ ω, u) for all t ≥ 0 and u ∈ R.

Theorem 5.2. Assume that (A3) holds and, for i, j = 1, ..., n, k = 1, ...,K, hijk are Lips-
chitz functions with Lipschitz constant γijk, fijk are Lipschitz functions on the second vari-

able with Lipschitz constant µijk(t), and η
(k)
ij (t, ·) are non-decreasing and normalized func-

tions. If there exist α > 0 and d = (d1, ..., dn) > 0 such that

diβi(t)−
n∑
j=1

djlij(t) > α, ∀t ∈ [0, ω], ∀i = 1, . . . , n (5.8)

with lij(t) :=

K∑
k=1

µijk(t)γijk, then the system (5.1) has a unique ω-periodic solution which is

globally exponentially stable.

Proof. The change yi(t) = d−1i xi(t) transforms (5.1) into

y′i(t) = −b̄i(t, yi(t)) + f̄i(t, yt), i = 1, . . . , n, t ≥ 0, (5.9)

where b̄i(t, u) := d−1i bi(t, diu) and

f̄i(t, ϕ) :=
n∑
j=1

K∑
k=1

d−1i fijk

(
t,

∫ 0

−τijk
hijk(djϕj(s))dη

(k)
ij (t, s)

)
,

are continuous and ω-periodic functions with respect to the first argument. By one hand, as

hijk are Lipschitz functions, fijk are Lipschitz functions on the second variable, and η
(k)
ij (t, ·)

are non-decreasing and normalized, then it easy to show that each f̄i satisfies (A4) with

li(t) := d−1i

n∑
j=1

dj

K∑
k=1

µijk(t)γijk.

By other hand, as each bi satisfies condition (A3), then each b̄i also satisfies condition (A3)
with the same function βi(t).

Consequently, from (5.8), we have diβi(t)− dili(t) > α which implies that

βi(t)− li(t) > min
j
{αd−1j } > 0, ∀t ∈ [0, ω], i = 1, . . . , n,

and the result follows from Theorem 4.1.

Example 5.3. As we saw in the first example, the Hopfiel neural network model (5.3) is
a particular case of model (5.1). Thus, applying Theorem 5.2 to model (5.3), we have the
following result.
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Corollary 5.3. Consider (5.3), where ci, aij , τij , bij , Ii : [0,+∞) → R are ω-periodic con-
tinuous functions with τij(t) ≥ 0, and fj are Lipschitz functions with Lipschitz constants
Lj.

If there exists d = (d1, . . . , dn) > 0 such that

dici(t)−
n∑
j=1

djLj(|aij(t)|+ |bij(t)|) > 0, ∀t ∈ [0, ω], i = 1, . . . , n, (5.10)

then system (5.3) has a unique ω-periodic solution which is globally exponentially stable.

Remark 5.2. In [17], the existence of a periodic solution and its global exponential stability
of periodic system (5.3) were proved with the additional hypothesis:

dici(t)−
n∑
j=1

djLi(|aji(t) + |bji|) > 0, ∀t ∈ [0, ω], i = 1, . . . , n.

Hence, our Corollary 5.3 improves the main result in [17]. Moreover, as the model (5.3) is a
particular case of system (5.1), then our Theorem 5.2 strongly improves the main result in
[17].

Example 5.4. In [20], the author studied the existence and global exponential stability of
a unique ω-periodic solution of the following ω-periodic BAM neural network model with
time-varying coefficients and distributed delays:



x′i(t) = −c̃i(t)̃bi(xi(t)) +

m∑
j=1

aij(t)fj(yj(t))

+
m∑
j=1

eij(t)

∫ 0

−τ
kij(−s)hj(yj(t− τij + s))ds+ Ĩi(t), i = 1, . . . , k,

y′j(t) = −cj(t)bj(yj(t)) +
k∑
i=1

ãji(t)f̃i(xi(t))

+

k∑
i=1

ẽji(t)

∫ 0

−σ
k̃ji(−s)h̃i(xi(t− σji + s))ds+ Ij(t), j = 1, . . . ,m,

(5.11)

where aij , ãji, Ĩi, Ij : [0,+∞)→ R and c̃i, cj : [0,+∞)→ (0,+∞) are ω-periodic continuous

functions, b̃i, bj , fj , f̃i, hj , h̃i : R → R are continuous functions, and kij : [0, τ ] → [0,+∞),

k̃ji : [0, σ]→ [0,+∞) are piecewise continuous functions, i = 1, . . . , k, j = 1, . . . ,m.
System (5.11) is also a particular case of (5.1), when n = k +m, K = 2,

bi(t, u) =

{
c̃i(t)̃bi(u), i = 1, . . . , k
ci−k(t)bi−k(u), i = k + 1, . . . , k +m

, ∀t ≥ 0, ∀u ∈ R,

fij1(t, u) =


0, i = 1, . . . , k, j = 1, . . . , k
ai(j−k)(t)fj−k(u), i = 1, . . . , k, j = k + 1, . . . , k +m

ã(i−k)j(t)f̃j(u), i = k + 1, . . . , k +m, j = 1, . . . , k

0, i = k + 1, . . . , k +m, j = k + 1, . . . , k +m

, ∀t ≥ 0, ∀u ∈

R,
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fij2(t, u) =



0, i = 1, . . . , k, j = 1, . . . , k

ei(j−k)(t)

(∫ τ

0
ki(j−k)(s)ds

)
u+

Ĩi(t)

m
, i = 1, . . . , k, j = k + 1, . . . , k +m

ẽ(i−k)j(t)

(∫ σ

0
k̃(i−k)j(s)ds

)
u+

I(i−k)(t)

k
, i = k + 1, . . . , k +m, j = 1, . . . , k

0, i = k + 1, . . . , k +m, j = k + 1, . . . , k +m

,

∀t ≥ 0, ∀u ∈ R,

hij1(u) = u, i, j = 1, . . . , k +m, ∀u ∈ R,

hij2(u) =

{
hj−k(u), i = 1, . . . , k, j = k + 1, . . . , k +m

h̃j(u), i = k + 1, . . . , k +m, j = 1, . . . , k
, ∀u ∈ R,

η
(1)
ij (s) =

{
1, s = 0
0, s < 0

, and

η
(2)
ij (s) =


∫ s

−τ−τi(j−k)
k∗i(j−k)(−v)dv, s ∈ [−τ − τi(j−k), 0], i = 1, . . . , k, j = k + 1, . . . , k +m∫ s

−σ−σ(i−k)j
k̃∗(i−k)j(−v)dv, s ∈ [−σ − σ(i−k)j , 0], i = k + 1, . . . , k +m, j = 1, . . . , k

,

with, for i = 1, . . . , k, j = 1, . . . ,m, k∗ij(t) =


0, t ∈ [0, τij)
kij(t− τij)∫ τ
0 kij(v)dv

, t ∈ [τij , τij + τ ]
and k̃∗ji(t) =

0, t ∈ [0, σji)

k̃ji(t− σji)∫ σ
0 k̃ji(v)dv

, t ∈ [σji, σji + σ]
.

Now, applying Theorem 5.2 to model (5.11), we have the following result.

Corollary 5.4. Consider (5.11) where fj , f̃i, hj , h̃i are Lipschitz functions with Lipschitz

constant, Fj , F̃i, Hj , H̃i respectively, and there exist positive numbers Bj , B̃i such that

(̃bi(u)− b̃i(v))/(u− v) ≥ B̃i,

and
(bj(u)− bj(v))/(u− v) ≥ Bj ,

for all u, v ∈ R, u 6= v, i = 1, . . . , k, j = 1, . . . ,m.
If there exist d̃ = (d̃1, . . . , d̃k) > 0 and d = (d1, . . . , dm) > 0 such that, for all t ∈ [0, ω],

d̃iB̃ic̃i(t)−
m∑
j=1

dj

(
|aij(t)|Fj + |eij(t)|Hj

∫ τ

0
kij(s)ds

)
> 0, i = 1, . . . , k, (5.12)

djBjcj(t)−
k∑
i=1

d̃i

(
|ãji(t)|F̃i + |ẽji(t)|H̃i

∫ σ

0
k̃ji(s)ds

)
> 0, j = 1, . . . ,m, (5.13)

then system (5.11) has a unique ω-periodic solution which is globally exponentially stable.
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Remark 5.3. For the ω-periodic BAM neural network model (5.11), R. Wu obtained the
existence and global exponential stability of a ω-periodic solution assuming that, for some
d̃ = (d̃1, . . . , d̃k) > 0 and d = (d1, . . . , dm) > 0,

d̃iB̃ic̃
−
i − (1 + B̃ic̃

+
i ω)

m∑
j=1

dj

(
a+ijFj + e+ijHj

∫ τ

0
kij(s)ds

)
> 0, i = 1, . . . , k, (5.14)

djBjc
−
j − (1 +Bjc

+
j ω)

k∑
i=1

d̃i

(
ã+jiF̃i + ẽ+jiH̃i

∫ σ

0
k̃ji(s)ds

)
> 0, j = 1, . . . ,m, (5.15)

where, for a real function g, we denote g+ := sup
t∈[0,ω]

|g(t)| and g− := inf
t∈[0,ω]

|g(t)|.

Clearly (5.14)-(5.15) implies (5.12)-(5.13) and they are not equivalent. Hence, the above
corollary improves strongly the results in [20] about the global exponential stability of the
periodic BAM neural network with finite delays.

6 Conclusion

We have presented a criterion for the global exponential stability of a general nonautonomous
Hopfield neural network model with delays given here by equations (3.10) and (3.19). We
also have presented a criterion for the existence and global exponential stability of a periodic
solution for the same models.

These criteria are simple to verify, do not involve the use of Lyapunov functionals, and
are directly applicable to most of the nonautonomous Hopfield neural network models with
finite delays investigated in recent literature.

Roughly speaking, in this paper the results on the global exponential stability have been
obtained by assuming that the instantaneous negative feedback terms dominate the delay
effect, so that in spite of the delays, the delay differential equations behaves similarly to an
ordinary differential equations.

As illustration, we have applied our general results to a significant number of concrete
nonautonomous Hopfiel neural network models, and provided immediate sufficient conditions
for their global exponential stability.

In a forthcoming work, we shall exploit the ideas beyond our general method to address
the global exponential stability of nonautonomous neural network models, (3.10) and (5.1),
with unbounded delays.
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