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Abstract. This paper presents an algorithm for distributed garbage

collection and outlines its implementation within the Network Objects
system. The algorithm is based on a reference listing scheme, which is

augmented by partial tracing in order to collect distributed garbage cy-

cles. Processes may be dynamically organised into groups, according to
appropriate heuristics, to reclaim distributed garbage cycles. The algo-

rithm places no overhead on local collectors and suspends local mutators

only brie
y. Partial tracing of the distributed graph involves only objects
thought to be part of a garbage cycle: no collaboration with other pro-

cesses is required. The algorithm o�ers considerable 
exibility, allowing

expediency and fault-tolerance to be traded against completeness.
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1 Introduction

With the continued growth of interest in distributed systems, designers of lan-

guages for distributed systems are turning their attention to garbage collection

[24, 21, 16, 14, 15, 3, 18, 19, 17, 9, 22], motivated by the complexity of memory

management and the desire for transparent object management. The goals of an

ideal distributed garbage collector are

safety: only garbage should be reclaimed;

completeness: all objects that are garbage at the start of a garbage collection

cycle should be reclaimed by its end. In particular, it should be possible to

reclaim distributed cycles of garbage;

concurrency: distributed garbage collection should not require the suspension

of mutator or local collector processes; distinct distributed garbage collection

processes should be able to run concurrently;

e�ciency: garbage should be reclaimed promptly;

expediency: wherever possible, garbage should be reclaimed despite the un-

availability of parts of the system;
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scalability: distributed garbage collection algorithms should scale to networks

of many processes;

fault tolerance: the memory management system should be robust against

message delay, loss or replication, or process failure.

Inevitably compromises must be made between these goals. For example,

scalability, fault-tolerance and e�ciency may only be achievable at the expense

of completeness, and concurrency introduces synchronisation overheads. Unfor-

tunately, many solutions in the literature have never been implemented so there

is a lack of empirical data for the performance of distributed garbage collection

algorithms to guide the choice of compromises.

Distributed garbage collection algorithms generally follow one of two strate-

gies: tracing or reference counting. Tracing algorithms visit all `live' objects

[12, 7]; global tracing requires the cooperation of all processes before it can col-

lect any garbage. This technique does not scale, is not e�cient and requires global

synchronisation. In contrast, distributed reference counting algorithms have the

advantages for large-scale systems of �ne interleaving with mutators, and locality

of reference (and hence low communication costs). Although standard reference

counting algorithms are vulnerable to out-of-order delivery of reference count

manipulation messages, leading to premature reclamation of live objects, many

distributed schemes have been proposed to handle or avoid such race conditions

[2, 11, 20, 23, 3, 18].

On the other hand, distributed reference counting algorithms cannot collect

cycles of garbage. Collecting interprocess garbage cycles is an important issue of

our work: we claim that it is fairly common for objects in distributed systems to

have cyclic connections. For example, in client-server systems, objects that com-

municate with each other remotely are likely to hold references to each other,

and often this communication is bidirectional [27]. Many distributed systems are

typically long running (e.g. distributed databases), so 
oating garbage is partic-

ularly undesirable as even small amounts of uncollected garbage may accumulate

over time to cause signi�cant memory loss [19]. Although interprocess cycles of

garbage could be broken by explicitly deleting references, this would lead to

exactly the scenario that garbage collection is supposed to replace: error-prone

manual memory management.

Systems that use distributed reference counting as their primary distributed

memory management policy must reclaim cycles by using a complementary trac-

ing scheme [14, 16, 13, 17], or by migrating objects until an entire garbage cyclic

structure is eventually held within a single process where it can be collected by

the local collector [24, 19]. However, migration is communication-expensive and

existing complementary tracing solutions either require global synchronisation

and the cooperation of all processes in the system [14], place additional over-

head on the local collector and application [17], rely on cooperation from the

local collector to propagate necessary information [16], or are not fault-tolerant

[16, 17].

This paper presents an algorithmand outlines its implementation for the Net-

work Objects system [4]. Our algorithm is based on a modi�cation of distributed



reference counting | reference listing [3] | augmented by partial tracing in or-

der to collect distributed garbage cycles [13]. We use heuristics to form groups

of processes dynamically that cooperate to perform partial traces of subgraphs

suspected of being garbage.

Our distributed algorithm is designed not to compromise our primary goals

of e�cient reclamation of local and distributed acyclic garbage, low synchro-

nisation overheads, avoidance of global synchronisation, and fault-tolerance. To

these ends, we trade some degree of completeness and e�ciency in collecting dis-

tributed cycles. However, eventually distributed garbage cycles will be reclaimed.

In brief, our aim is to match rates of collection against rates of allocation of data

structures. Objects that are only reachable from local processes have very high

allocation rates, and therefore must be collected most rapidly. The rate of cre-

ation of references to remote objects that are not part of distributed cycles is

much lower, and the rate of creation of distributed garbage cycles is lower still

and hence should have the lowest priority for reclamation.

The paper is organised as follows. Section 2 brie
y describes the overall

design of the Network Objects system and introduces terminology. Section 3

describes how partial tracing works in the absence of failures. Section 4 describes

termination and how the collectors are synchronised. Section 5 describes how

process failures are handled. We discuss related work in Section 6, and conclude

and present some points for future work in Section 7.

2 Terminology and Network Objects Overview

Our algorithm is designed for use with the Network Objects system, a distributed

object-based programming system for Modula-3 [4]. A distributed system is con-

sidered to consist of a collection of processes, organised into a network, that

communicate by exchange of messages. Each process can be identi�ed unam-

biguously, and we identify processes by upper-case letters, e.g. A, B, : : : , and

objects by lower-case letters su�xed by the identi�er of the process to which

they belong, e.g. xA, xB, : : :

From the garbage collector's point of view, mutator processes perform com-

putations independently of other mutators in the system (although they may

periodically exchange messages) and allocate objects in local heaps. The state

of the distributed computation is represented by a distributed graph of objects.

Objects may contain references to objects in the same or another process. Each

process also contains a set of local roots that are always accessible to the local

mutator. Objects that are reachable by following from a root a path of references

held in other objects are said to be live. Other objects are said to be unreachable

or dead, and they constitute the garbage to be reclaimed by a collector. A refer-

ence to an object held on the same process is said to be local; a reference to an

object held on a remote process is said to be an external or remote. A collector

that operates solely within a local heap is called a local collector.

Only network objects may be shared by processes. The process accessing a

network object for which it holds a reference is called the client, and the process



containing the network object is called its owner. Clients and owners may run

on di�erent processes within the distributed system. Network objects cannot

migrate from one process to another.

A client cannot directly access the data �elds of a network object for which

it holds a reference, but can only invoke the object's methods. A reference in

the client process points to a surrogate object (see the dashed circle in �gure

1), whose methods perform remote procedure calls to the owner, where the

corresponding method of the concrete object is invoked. A process may hold at

most one surrogate for a given concrete object, in which case all references in

the process to that object point to the surrogate.

OT

xA
OT   Object table

CS    Client set

Process A

CS(xA)={B}

B

xC

C

Fig. 1. Surrogates, object table and client sets

Each process maintains an object table (see �gure 1). The object table of the

owner of a concrete object xA contains a pointer to xA as long as any other

process holds a surrogate for it. A process's object table also holds entries for

any surrogates held (not represented in the �gure).

The heap of a Modula-3 process is managed by garbage collection. Local

collections are based on tracing from local roots | the stack, registers, global

variables and also the object table. We shall refer to those public network objects

that are referenced from other processes through the table as OT roots. The

object table is considered a root by the local collector in order to preserve objects

reachable only from other processes.

Object table entries are managed by the distributed memory manager. The

Network Objects system uses a variation of reference counting called reference

listing to detect distributed acyclic garbage [3]. Rather than maintain a count

in each concrete object of the number surrogates for it, each object maintains a

client set
2 of the names of all those processes that hold a surrogate for it.

For the purpose of the algorithm there are two operations on references that

are important in the system: transmission of a reference to another process and

deletion of a remote reference.

2 In Network Objects terminology this set is called the dirty set.



References to a network object may be marshalled from one process to an-

other either as arguments or results of methods. A network object is marshalled

by transmitting its wireRep | a unique identi�er for the owner process plus the

index of the object at the owner. If the process receiving the reference is not the

owner of the object, then the process must create a local surrogate. In order for

a process to marshall a wireRep to another process, the sender process needs

either to be the owner of the object or to have a surrogate for that object. This

operation must preserve a key invariant: whenever there is a surrogate for object

xA at client B, then B 2 xA:clientSet.

Suppose process A marshalls a network object xA to process B, as an argu-

ment or result of a remote method invocation. A may be the owner of xA, or it

may be a client that has a surrogate for xA. In either case:

1. A sends to B the wireRep of xA and waits for an acknowledgement.

2. Before B creates a surrogate for xA, it sends a dirty call to xA's owner.

3. Assuming no communication failure, the owner receives the call, adds B to

xA's client set and then sends an acknowledgement back to B.

4. When the acknowledgement is received, B creates the surrogate and then

returns an acknowledgement back to A. If B already has a surrogate for xA,

the surrogate creation step is skipped.

Surrogates unreachable from their local root set are reclaimed by local col-

lectors. Whenever a surrogate is reclaimed, the client sends a clean call to the

owner of the object to inform it that the client should be removed from its client

set. When an object's client set becomes empty, the reference to the object is

removed from the object table so that the object can be reclaimed subsequently

by its owner's local collector.

Race conditions between dirty and clean calls must be avoided. If a clean

call were to arrive before a dirty call, removing the last entry from the client

set, an object may be reclaimed prematurely. To prevent this scenario arising,

an object's client set is kept non-empty while its wireRep is being transmitted.

This scheme also handles messages in transit. Each clean or dirty call is also

labelled with a sequence number; these increase with each new call sent from

the client. This scheme makes the transmission and deletion of references tolerant

to delayed, lost or duplicated messages.

Processes that terminate, whether normally or abnormally, cannot be ex-

pected to notify the owners of all network objects for which they have surrogates.

The Network Objects collector detects termination by having each process pe-

riodically ping the clients that have surrogates for its objects. If the ping is not

acknowledged in time, the client is assumed to have terminated, and is removed

from all client sets at that owner. A more detailed description of these operations,

with a proof of their correctness, is described in [3].

3 Three-Phase Partial Tracing

Our algorithm is based on the premise that distributed garbage cycles exist but

are less common than acyclic distributed structures. Consequently, distributed



cyclic garbage must be reclaimed but its reclamation may be performed more

slowly than that of acyclic or local data. It is important that collectors | whether

local or distributed | should not unduly disrupt mutator activity. Local data

is reclaimed by Modula-3's Mostly Copying collector (slightly modi�ed) [1], and

distributed acyclic structures are managed by the Network Objects reference

listing collector [3]. We augment these mechanisms with an incremental three-

phase partial trace to reclaim distributed garbage cycles. Our implementation

does not halt local collectors at all, and suspends mutators only brie
y. The local

collectors reclaim garbage independently and expediently in each process. The

partial trace merely identi�es garbage cycles without reclaiming them. Conse-

quently, both local and partial tracing collector can operate independently and

concurrently.

Our algorithmoperates in three phases. The �rst, mark-red, phase identi�es a

distributed subgraph that may be garbage: subsequent e�orts of the partial trace

are con�ned to this subgraph alone. This phase is also used to form a group of

processors that will collaborate to collect cycles. The second, scan, phase deter-

mines whether members of this subgraph are actually garbage, before the �nal,

sweep, phase makes those garbage objects found available for reclamation by lo-

cal collectors. A new partial trace may be initiated by any process not currently

part of a trace. There are several reasons for choosing to initiate such an activity:

the process may be idle, a local collection may have reclaimed insu�cient space,

or the process may not have contributed to a distributed collection for a long

time.

The distributed collector requires that each object has a colour | red or

green | and that initially all objects are green. Network objects also have a red

set of process names, akin to their client set.

3.1 Mark-Red Phase

Partial tracing is initiated at suspect objects: surrogates suspected of belonging

to a distributed garbage cycle. We observe that any distributed garbage cycle

must contain some surrogate. Suspects should be chosen with care both to max-

imise the amount of garbage reclaimed and to minimise redundant computation

or communication. At present, we consider a surrogate to be suspect if it is

not referenced locally, other than through the object table. This information is

provided by the local collector | any surrogate that has not been marked is

suspect.

This heuristic is actually very simplistic and may lead to undesirable wasted

and repeated work. For example, it may repeatedly identify a surrogate as sus-

pect even though it is reachable from a remote root. Only measurements of real

implementations will show if this is indeed a serious problem. However, our al-

gorithm should be seen as a framework: any better heuristic could be used. In

Section 6 we show how more sophisticated heuristics improve the algorithms

discrimination and hence its e�ciency.

The mark-red phase paints the transitive referential closure of suspect sur-

rogates red. Any network object receiving a mark-red request also inserts the



name of the sending process into their red set to indicate that this client is a

member of the suspect subgraph (cf. client sets)3.

The second purpose of the mark-red phase is to identify dynamically groups

of processes that will collaborate to reclaim distributed cyclic garbage. A group

is simply the set of processes visited by mark-red. Group collection is desir-

able for fault-tolerance, decentralisation, 
exibility and e�ciency. Fault-tolerance

and e�ciency are achieved by requiring the cooperation of only those processes

forming the group: progress can be made even if other processes in the system

fail. Groups lead to decentralisation and 
exibility as well. Decentralisation is

achieved by partitioning the network into groups, with multiple groups simulta-

neously but independently active for garbage collection. Communication is only

necessary between members of the group. Flexibility is achieved by the choice of

processes forming each group. This can be done statically by prior negotiation

or dynamically by mark-red. In the second case, heuristics based on geography,

process identity, distance from the suspect originating the collection, or time

constraints can be used.

An interesting feature of this design is that it does not need to visit the

complete transitive referential closure of suspect surrogates. The purpose of this

phase is simply to determine the scope of subsequent phases and to construct

red sets. Early termination of the mark-red phase trades conservatism (tolerance

of 
oating garbage) for a number of bene�ts: expediency, bounds on the size of

the graph traced (and hence on the cost of the trace), execution of the mark-

red process concurrently with mutators without need for synchronisation, and

cheap termination of the phase. Section 4 explains how termination of mark-red

is detected.

We allow multiple partial traces, initiated by di�erent processes, to oper-

ate concurrently, but for now we do not permit groups (hence partial tracings)

to overlap. Although inter-group references are permissable, mark-red is not

propagated to processes that are members of other groups. One reason for this

restriction is to prevent a mark-red phase from interfering with a scan phase,

or vice-versa. A second reason is to allow simpler control over the size of any

group: merging groups would add considerable complexity.

The example in �gure 2 illustrates a mark-red process. The �gure contains a

garbage cycle (yA ! yB ! yD ! xC ! yA). Process A has initiated a partial

trace; yB is a suspect because it is not reachable from a local root (other than

through the object table). The mark-red process paints the suspect's transitive

closure red, and constructs the red sets. In the �gure, the red set of an object

xX is denoted by RS(xX); clear circles represent green objects and shaded ones

red objects. Note that objects xD and yC are not garbage although they have

been painted red: their liveness will be detected by the scan phase.

3 Notice that cooperation from the acyclic collector and the mutator would be required
if, instead, mark-red removed references from client sets or copies of client sets (see

[13]). Red sets avoid this need for cooperation as well as allowing the algorithm to

identify which processes have sent mark-red requests.
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Fig. 2. Mark-Red Phase

3.2 Scan Phase

At the end of the mark-red phase, a group of processes has been formed.Members

of this group will cooperate for the scan-phase. The aim of this phase is to

determine whether any member of the red subgraph is reachable from outside

that subgraph. The phase is executed concurrently on each process in the group.

The �rst step is to compare the client and red sets of each red concrete object.

If a red object does not have a red set (e.g. xD in �gure 2), or if the di�erence

between its client and its red sets is non-empty, the object must have a client

outside the suspect red graph. In this case the object is painted green to indicate

that it is live. All red objects reachable from local roots or from green concrete

objects are now repainted green by a local-scan process. If a red surrogate is

repainted green, a scan-request is sent to the corresponding concrete object. If

this object was red, it is repainted green, along with its descendents. The scan

phase terminates when the group contains no green objects holding references

to red children in the group.

Continuing our example, each process calculates the di�erence between client

and red sets for each red concrete object it holds. For instance, xD in process

D has no red set so xD is painted green and becomes a root for the local-scan.

Figure 3 shows the result of the scan phase: the live objects xD and yC have

been repainted green.
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3.3 Sweep Phase

At the end of the scan phase, all live objects are green4. Any remaining red

objects must be part of inaccessible cycles, and can thus be safely reclaimed.

The sweep phase is executed in each process independently. Each object table

is swept for references to red objects. If any are found, any local references held

in the object, including references to surrogates, are deleted, thus breaking the

cycle. The red descendents of these objects are now available for reclamation

by the local collector. Reclamation of a surrogate causes the Networks Objects

reference listing system to send a delete message to the owner of the correspond-

ing concrete object: when its client set becomes empty, that object will also be

reclaimed.

4 Synchronisation and Termination

4.1 Mark-Red Phase

By accepting that the red subgraph may include only a subset of the set of

garbage objects | i.e. a conservative approximation | we gain a number of

bene�ts including the removal of any need for synchronisation with mutators

and cheaper termination.

4 Note that the converse, i.e. that all green objects are live, is not necessarily true.



The solution we have currently adopted is based on that presented by Der-

byshire [7]. A mark-red process is launched by the process initiating the collec-

tion. Subsequent mark-red requests export further mark-red processes. Termi-

nating processes return an acknowledgement, identifying their process and those

visited by any mark-red processes that they have exported. A process terminates

when it has �nished colouring its local subgraph and it has received acknowl-

edgements for all the mark-red requests it has sent. As soon as the initiating

process has received acknowledgements from all the mark-red processes that it

has exported, the mark-red phase is complete and the membership of the group

is known. Members of the group are then instructed by the initiating process to

start the scan phase and informed of their co-members.

4.2 Scan Phase

The scan phase terminates when all members of the group have completed their

scan processes and no messages are in transit. In contrast to the mark-red phase,

the scan phase must be complete with respect to the red subgraph, since it must

ensure that all live red objects are repainted green. As for other concurrent

marking schemes (e.g. Dijkstra et al. [8]), this requires synchronisation between

mutator and collector. Termination detection is also expensive as local-scans

must be able to detect any change to the connectivity of the graph made by a

mutator.

A local mutator may only change this connectivity by overwriting references

to objects. Such writes can be detected by a write barrier [26]. We have adapted

the Mostly Parallel garbage collection algorithm for the scan phase [5]. This

technique uses operating system support to detect those objects modi�ed by

mutators (actually pages that have been updated within a given interval). When

the local-scan process has visited all objects reachable from its starting points,

the mutator is halted while the local-scan retraces the graph from any modi�ed

objects, as well as from the roots. Because most of the scanning work has al-

ready been done, it is expected that this retrace will terminate promptly (the

underlying assumption is that the rate of allocation of network objects, and of

objects reachable from those network objects, is low).

On termination of a local-scan, any red concrete object o and its descendents

must be isolated from the green subgraph held in that process. Thus a red

object cannot become reachable through actions of the local mutator. However

its reachability can still be changed if:

1. a remote method is invoked on o;

2. a new surrogate in some other process is created for o;

3. another object in the same process receives a reference to o.

Notice that this scenario could only occur if the red surrogate were still

alive. Although such mutator activity could be handled by the Mostly Parallel

scan, this would be implementationally expensive. Instead, mutatormessages are

trapped by a dirty-barrier, a `snapshot-at-the-beginning' barrier [26]. If a client



invokes a remote method on a red surrogate, or copies the wireRep held by a

red surrogate to another process, before the client's local-scan has terminated

(including the receipt of acknowledgements for all the scan-requests that it has

made), a scan-request is sent to the corresponding concrete object to arrive

before the mutator message5. How this scan-request is handled depends on the

state of the owner process. If the owner's local-scan has not terminated, the

concrete object is repainted green and becomes an additional root for the local-

scan; the scan-request is acknowledged immediately. If, on the other hand, the

local-scan has terminated, the local mutator is halted and the descendents of

this concrete object are repainted green as well by an atomic-scan process. We

claim that this does not cause excessive delay as it is likely that many of its

descendents will already have been repainted green. In this case, the scan-request

is not acknowledged until all descendents (in the group) of the red surrogate have

been painted green, if necessary by further scan-requests to other processes.

Global scan phase termination is again detected by a distributed termina-

tion detection algorithm based on Derbyshire's algorithm. A local-scan process

noti�es all other members of its group as soon as it has �nished colouring green

all objects reachable from its local roots and local green concrete objects and

has received the acknowledgements for all the scan-requests it has generated (cf.

mark-red phase). However, this account does not take the mutator actions de-

scribed above into consideration. Correct termination of Derbyshire's algorithm

requires that each scan-request (and subsequent scan) has a local-scan respon-

sible for it | scan-requests from atomic-scan processes1 generated by mutator

activity breach this invariant. However, trapping mutator messages with the

snapshot-at-the-beginning barrier preserves the invariant. If the owner's local-

scan has not terminated, it takes over the responsibility for scanning the de-

scendents of the object. If the local-scan has terminated, the scan-request is not

acknowledged until all the descendents have been scanned; the local-scan in the

client process cannot terminate until it has received this acknowledgement. No-

tice that the mutator operation cannot have been made from a red surrogate in

a process which has completed its local-scan. If the local-scan had been com-

pleted, the red surrogate would have been unreachable from the client's local

roots: the action must therefore have been caused by a prior external mutator

action. But in this case the surrogate would have been repainted green by an

atomic-scan process. Thus the barrier su�ces to ensure that any scan-request

has a local-scan process ultimately responsible for it.

As before, each process informs other members of the group as soon as it

has received acknowledgements from all these scan-requests. Termination of the

scan phase is complete once a process has received noti�cation of termination

from each member of the group.

5 In our implementation, we send both messages in the same remote procedure call.



5 Fault-Tolerance

5.1 Network Objects

Our algorithm is built on top of the reference listing mechanism provided by

the Network Objects distributed memory manager, albeit slightly modi�ed. The

Network Objects collector is resilient to communication failures or delays, and

to process failures.

Network Objects uses reference lists (actually reference sets) rather than

reference counts. Furthermore, any given client process holds at most one ref-

erence | the surrogate { to any given concrete object. Communication failures

are detected by a system of acknowledgements. However, a process that sends

a message but does not receive an acknowledgement cannot know whether that

message was received or not: it does not know whether the message or its ac-

knowledgement was lost. Its only course of action is to resend the message. Unlike

reference counting, reference listing is resilient to duplication of messages; the

Network Objects dirty and clean operations are idempotent.

As we showed in Section 2, the dirty call mechanismalso prevents out-of-order

delivery of reference count messages from causing the premature reclamation of

objects.

An owner of a network object can also detect the termination of any client

process. Any client that has terminated is removed from the dirty set of the

corresponding concrete object. Reference listing therefore allows objects to be

reclaimed even if the client terminates without making a clean call. However,

communication delay may be misinterreted as process failure, in which case

an object may be prematurely reclaimed. Such an error will be detected when

and if an attempt is made to use the the surrogate after the restoration of

communication.

Proof of the safety and liveness of the Network Objects reference listing

system is beyond the scope of this paper, but may be found in [3]. In the rest

of this section, we shall informally discuss two aspects of the correctness of our

partial tracing algorithm: safety and liveness.

5.2 Safety

First we shall establish the necessary conditions for our algorithm to be unsafe

and show that these cannot arise. The safety requirement for our algorithm is

that no live objects are reclaimed.

First we note that the system of acknowledgements ensures that marking

requests are guaranteed to be delivered to their destination unless either client

or owner process fail before the message is safely delivered and acknowledged.

Although it is possible that messages might be duplicated, marking is an idem-

potent operation (cf. reference listing, above).

For the safety requirement to be breached, that is, for an object o to be

incorrectly reclaimed in the sweep phase, the conditions below must hold at the

end of the scan phase.



1. o must be red.

2. All members of o's client set must be members of the group.

If this condition does not hold, then o would have been repainted green at

the start of the scan phase, when o's dirty set was compared with the group

membership.

3. All members of o's red set must be members of the group.

Likewise, if this condition does not hold, then o would have been repainted

green at the start of the scan phase, when o's red set was compared with the

group membership.

4. All processes on at least one path of references from a root, possibly in

another process, to o are still active.

If this condition does not hold, then o is no longer reachable. Further more,

the Network Objects reference listing mechanismwould detect the failed pro-

cess and would have deleted it from all client sets. Eventually this mechanism

would reclaim o too.

From this we can conclude that o would only be prematurely reclaimed if no

scan-request has traversed a path of references from a root to o, even though all

processes on that path are still active. The system of acknowledgements implies

that there is at least one scan-request that has not been acknowledged, and hence

that there is at least one responsible local-scan process that has not terminated.

But this means that the scan phase has not yet terminated.

5.3 Termination

We have argued informally above that our algorithm cannot incorrectly reclaim

live objects through communication or process failures. We now show informally

that each phase of the partial trace must terminate in each (non-terminating)

process, and how this is achieved. First, we note that a mark-red or local-scan

process will not terminate until it has received acknowledgements for all the

mark-red (scan) requests that it has made. We note further that communica-

tion failures are handled by acknowledgements and the idempotency of marking

requests and acknowledgements.

However, if a process with a group fails, the current phase may not terminate

unless that failure is detected. If a process fails, its clients know that they need

not wait for an acknowledgement from the failed process of any outstanding

requests. Fortunately, the Network Objects system provides that owners detect

failures of clients, if necessary reclaiming the corresponding concrete objects.

We therefore provide the same system of timeouts to client processes that the

Network Objects provide for owners. Thus a mark-red or local-scan process may

terminate as soon as it has received acknowledgements of requests from all pro-

cesses that are still active.

This leaves the scenario that a client of an object in a process p may fail,

leaving p partially detached from the rest of the group. This process and its de-

scendents may reach two undesirable states. First, any phase of the partial trace

may not terminate in p before the instruction to move to the next phase arrives



(through another concrete object owned by p). In this case, p must abandon this

partial trace by deleting all its red sets and restoring all objects to green.

The second, and at �rst sight more intransigent problem, is that p may be

fully detached from the rest of the group, and thus never receive the instruction

to move to the next phase of the trace. Worse, not only it cannot proceed to the

next phase, but the rule that a process may only collaborate in one group at a

time means that it cannot participate in any group in the future! We resolve this

problem by requiring that all garbage collection messages are stamped with the

identity of the initiating process, Init. If a process has terminated a phase but the

client to which it is to send the acknowledgement has failed, then responsibility

for the request is inherited by Init, i.e. the acknowledgement is sent directly to

Init.

The Init process treats such `unexpected' acknowledgements according to

when they arrive. If the acknowledgement of a request arrives before the end of

the phase for which the request was issued, it is treated like any other acknowl-

edgement: the sending process will continue to collaborate as a member of the

group. If such an acknowledgement arrives at Init out of phase, then the sending

process is e�ectively suspended from group membership: no further instruction

to proceed to the next phase will be issued to it. Instead, at the end of the sweep

phase, it will be instructed by Init to abandon the work that it has done, before

passing this instruction on to the owners of any surrogates it holds.

If the initiating process itself fails, then the objects originally suspected of be-

ing garbage certainly are. The reference listing mechanism will propagate knowl-

edge of Init's death to all other members of the group.

6 Related Work

Distributed reference counting can be augmented in various ways to collect dis-

tributed garbage cycles. Some systems, such as Juul and Jul [14], periodically

invoke global marking to collect distributed garbage cycles. With this technique,

the whole graph must be traced before any cyclic garbage can be collected.

Even though some degree of concurrency is allowed, this technique cannot make

progress if a single process has crashed, even if that process does not own any

part of the distributed garbage cycle. This algorithm is complete, but it needs

global cooperation and synchronisation, and thus does not scale.

Maeda et al. [17] present a solution also based on earlier work by Jones and

Lins using partial tracing with weighted reference counting [13]. Weighted ref-

erence counting is resilient to race conditions, but cannot recover from process

failure or message loss. As suggested by Jones and Lins, they use secondary refer-

ence counts as auxiliary structures. Thus they need a weight-barrier to maintain

consistency, incurring further synchronisation costs.

Maheshwari and Liskov [19] describe a simple and e�cient way of using

object migration to allow collection of distributed garbage cycles, that limits the

volume of the migration necessary. The Distance Heuristic6 estimates the length

6 This idea was also discussed by Fuchs [10].



of the shortest path from any root to each object. The estimate of the distance

of a cyclic distributed garbage object keeps increasing without bound; that of a

live object does not. This heuristic allows the identi�cation of objects belonging

to a garbage cycle, with a high probability of being correct. These objects are

migrated directly to a selected destination process to avoid multiple migrations.

However, this solution requires support for object migration (not present in

Network Objects). Moreover, migrating an object is a communication-intensive

operation, not only because of its inherent overhead but also because of the

time necessary to prepare an object for migration and to install it in the target

process [25]. Thus, this algorithm would be ine�cient in the presence of large

objects.

The total overhead performed by our algorithm depends on how frequently it

is run. A very simplistic heuristic may led to wasted and repeated work. However,

even with a simplistic heuristic, a probability of being garbage can be assigned to

each suspect object that has survived a partial tracing. For example, we could

take a round-robin approach by tracing only from the suspect that was least

recently traced. Better still, the Distance Heuristic should increase the chance of

our algorithm tracing only garbage subgraphs. The more accurate this heuristic

is, the more likely that its use would:

1. decrease the number of times a partial trace is run;

2. limit the mark-red trace to just garbage objects;

3. reduce the number of messages for the scan phase to the best case (in which

no atomic-scans would be generated);

4. avoid suspension of mutators to handle scan-requests.

Lang et al. [16] also presented an algorithm for marking within groups of

processes. Their algorithm uses standard reference counting, and so inherits its

inability to tolerate message failures. It relies on the cooperation from the local

collector to propagate necessary information. Firstly, they negotiate to form a

group. A initial marking marks all concrete objects within the group depending

on whether they are referenced from inside or from outside the group. Marks of

the concrete objects are propagated locally towards surrogates. Finally marks

of surrogates are propagated towards the concrete objects within the group to

which they refer. When there is no more information to propagate, any dead

cycles can be removed.

This algorithm is di�cult to evaluate because of the lack of detail presented.

However, the main di�erences between this and our algorithm is that we trace

only those subgraphs suspected of being garbage and that we use heuristics to

form groups opportunistically. In contrast, Lang's method is based on Christo-

pher's algorithm [6]. Consequently it repeatedly scans the heap until it is sure

that it has terminated. This is much more ine�cient than simply marking nodes

red. For example, concrete objects referenced from outside the suspect subgraph

are considered as roots by the scan phase, even if they are only referenced inside

the group. In the example of �gures 2 and 3 our algorithm would need a total

of 6 messages (5 for mark-red phase and 1 for scan phase), against a total of 10



messages (7 for the initial marking and 3 for the global propagation) for Lang's

algorithm. Objects may also have to repeat traces on behalf of other objects (i.e.

a trace from a `soft' concrete object may have to be repeated if the object is

hardened). Their `stabilisation loop' may also require repeated traces. Finally,

failures cause the groups to be completely reorganised, and a new group garbage

collection restarted almost from scratch.

7 Conclusions and Future Work

This paper has presented a solution for collecting distributed garbage cycles.

Although designed for the Network Objects system, it is applicable to other

systems. Our algorithm is based on a reference listing scheme [3], augmented

by partial tracing in order to collect distributed garbage cycles [13]. Groups of

processes are formed dynamically to collect cyclic garbage. Processes within a

group cooperate to perform a partial trace of only those subgraphs suspected of

being garbage.

Our memory management system is highly concurrent: mutators, local col-

lectors, the acyclic reference collector and distributed cycle collectors operate

mostly in parallel. Local collectors are never delayed, and mutators are only

halted by a distributed partial tracing either to complete a local-scan or, after

that, to handle incoming messages to garbage-suspect objects; if all suspects are

truly garbage, the latter event will never occur.

Our system reclaims garbage e�ciently: local and acyclic collectors are not

hindered. The e�ciency of the distributed partial tracing can be increased by

restricting the size of groups, thereby trading completeness for promptness. Ap-

propriate choice of groups ensures completeness: eventually all cyclic garbage is

reclaimable. The use of the acyclic collector and groups also permits some scal-

ability, although our strategy could be defeated by pathological con�gurations

in which a single garbage cycle spans a large number of processes.

Finally, our distributed collector is fault-tolerant: it is resilient to message

delay, loss and duplication, and to process failure. Expediency is achieved by the

use of groups.

Our algorithm is presently being implemented and measured. In particular,

some choices for cooperation with the mutator require further study and depend

mainly on experimental results and measurements. We are also interested in

heuristics for suspect identi�cation and group formation. Aspects of the concur-

rency and termination should be supported by formal proof and formal analysis

of costs.

The management of overlapping groups is a further area for study. Currently,

we prevent groups from overlapping. The distributed partial traces never dead-

lock, but continue their work without the cooperation of any process refusing

a mark-red request. This can lead to wasted work, mainly if subgraphs span

groups. We are currently exploring avenues to improve this, based on merging

of groups and partitioning of work. We believe that this may also improve the

algorithm's handling of failures.
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