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RESUMO 

Desde que Lunh usou, pela primeira vez, em 1958, o termo Business Intelligence (BI), grandes 

transformações se operaram na área dos sistemas e tecnologias de informação e, em especial, 

na área dos sistemas de apoio à decisão. Atualmente, os sistemas de BI são amplamente 

utilizados nas organizações e a sua importância estratégica é largamente reconhecida. Estes 

sistemas apresentam-se como essenciais para um completo conhecimento do negócio e como 

uma ferramenta insubstituível no apoio à tomada de decisão. A divulgação das ferramentas de 

Data Mining (DM) tem vindo a aumentar na área do BI, assim como o reconhecimento da 

relevância da sua utilização nos sistemas de BI empresariais.  

As ferramentas de BI são ferramentas amigáveis, iterativas e interativas, permitindo aos 

utilizadores finais um acesso fácil. Desta forma, é possível ao utilizador final manipular 

diretamente os dados, tendo assim a possibilidade de extrair todo o valor para o negócio neles 

contido. Um dos problemas apontados na utilização do DM na área do BI prende-se com o facto 

de os modelos de DM serem, em geral, demasiado complexos para que os utilizadores de 

negócio os possam manipular diretamente, contrariamente ao que ocorre com as outras 

ferramentas de BI. 

Neste contexto, foi identificado como problema de investigação a não existência de ferramentas 

de BI que possibilitem ao utilizador de negócio a manipulação direta dos modelos de DM e, 

consequentemente, não possibilitando extrair todo o valor potencial neles contidos. Este aspeto 

reveste-se de particular importância num universo empresarial no qual a concorrência é cada vez 

mais forte e no qual o conhecimento do negócio, das variáveis envolvidas e dos potenciais 

cenários representam um papel fundamental para as organizações poderem concorrer num 

mercado extremamente exigente. 

Considerando que os sistemas de BI assentam, maioritariamente, sobre sistemas operacionais 

que utilizam sobretudo o modelo relacional de bases de dados, a investigação efetuada inspirou-

se nos conceitos ligados ao modelo relacional de bases de dados e nas linguagens a ele 

associadas em particular as linguagens Query-By-Example (QBE). Estas linguagens têm uma 

forte componente de interactividade, são amigáveis e permitem iteratividade e são amplamente 

utilizadas em ambiente de negócio pelos utilizadores finais. 

Têm vindo a ser desenvolvidos esforços no sentido do desenvolvimento de padrões e normas na 

área do DM, sendo dada grande relevância ao tema das bases de dados indutivas. No contexto 
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das bases de dados indutivas é dada grande relevância às chamadas linguagens de DM. Estes 

conceitos serviram, igualmente, de inspiração a esta investigação. Apesar da importância destas 

linguagens de DM, elas não estão orientadas para os utilizadores finais em ambientes de 

negócio.  

Ligando os conceitos relacionados com as linguagens QBE e com as linguagens de DM, foi 

concebida e implementada uma linguagem de DM para BI, à qual foi dado o nome QMBE. Esta 

nova linguagem é por natureza amigável, iterativa e interativa, isto é, apresenta as mesmas 

características que as ferramentas de BI habituais permitindo aos utilizadores finais a 

manipulação direta dos modelos de DM e, deste modo, aceder a todo o valor potencial desses 

modelos com todos as vantagens que daí poderão advir. Utilizando um protótipo de um sistema 

de BI, a linguagem foi implementada, testada e avaliada conceptualmente. Verificou-se que a 

linguagem possui as propriedades desejadas, a saber, é amigável, iterativa, interativa. 

Finalmente, a linguagem foi avaliada por utilizadores finais que já tinham experiência anterior na 

utilização de DM em contexto de BI. Verificou-se que na ótica destes utilizadores a utilização da 

linguagem apresenta vantagens em relação à utilização tradicional de DM no âmbito do BI. 

 

 

 

 

Palavras-chave: Business Intelligence, Descoberta de Conhecimento em Bases de Dados, Data 

Mining, Linguagens de Data Mining, Query-By-Example, Bases de Dados Indutivas, Data 

Warehouses Inductivas, Modelo Relacional, Design Science Research.  
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ABSTRACT 

Since Lunh first used the term Business Intelligence (BI) in 1958, major transformations 

happened in the field of information systems and technologies, especially in the area of decision 

support systems. Nowadays, BI systems are widely used in organizations and their strategic 

importance is clearly recognized. These systems present themselves as an essential part of a 

complete knowledge of business and an irreplaceable tool in the support to decision making. The 

dissemination of data mining (DM) tools is increasing in the BI field, as well as the 

acknowledgement of the relevance of its usage in enterprise BI systems.  

BI tools are friendly, iterative and interactive, allowing business users an easy access. This way, 

the user can directly manipulate data, thus having the possibility to extract all the value contained 

into that business data. One of the problems noted in the use of DM in the field of BI is related to 

the fact that DM models are, generally, too complex in order to be directly manipulated by 

business users, as opposite to other BI tools.  

Within this context, the nonexistence of BI tools allowing business users the direct manipulation 

of DM models was identified as the research problem, since that, as a consequence of business 

users not directly manipulating DM models, they can be not able of extracting all the potential 

value contained in DM models. This aspect has a particular relevance in an entrepreneurial 

universe where competition is stronger every day and the knowledge of the business, the 

variables involved and the possible scenarios play a fundamental role in allowing organizations to 

compete in an extremely demanding market.  

Considering that the majority of BI systems are built on top of operational systems, which use 

mainly the relational model for databases, the research was inspired on the concepts related to 

this model and associated languages in particular Query-By-Example (QBE) languages. These 

languages are widely used by business users in business environments, and have got a strong 

interactivity component, are user-friendly, and allow for iterativeness.  

Efforts are being developed in order to create standards and rules in the field of DM with great 

relevance being given to the subject of inductive databases. Within the context of inductive 

databases a great relevance is given to the so called DM languages. These concepts were also an 

inspiration for this research. Despite their importance, these languages are not oriented to 

business users in business environments. 
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Linking concepts related with QBE languages and with DM languages, a new DM language for BI, 

named as Query-Models-By-Example (QMBE) was conceived and implemented. This new 

language is, by nature, user-friendly, iterative and interactive; it presents the same characteristics 

as the usual BI tools allowing business users the direct manipulation of DM models and, through 

this, the access to the potential value of these models with all the advantages that may arise. 

Using a BI system prototype, the language was implemented, tested, and conceptually evaluated. 

It has been verified that the language possesses the desired properties, namely, being user-

friendly, iterative, and interactive. The language was evaluated later by business users who were 

already experienced in using DM within the context of BI. It has been verified that, according to 

these users, using the language presents advantages when comparing to the traditional use of 

DM within BI. 

  

 

 

 

 

Keywords: Business Intelligence, Knowledge Discovery from Databases,  Data Mining, Data 

Mining Standards, Data Mining Languages, Query-By-Example, Inductive Databases, Inductive 

Data Warehouses, Relational Model, Business Users, Design Science Research. 
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PART I – PRESENTATION  

 

 

This thesis presents the key issues of the research developed in the ambit of the Doctoral 

Program in Information Systems and Technologies, held in the University of Minho. It begins 

with the introduction, in chapter 1. This chapter starts with the presentation of the motivation 

that lead to the research, in Section 1.1, continues with the introduction of the research 

objectives and contributions intended to be achieved, in Section 1.2, and with the thesis 

organization, in Section 1.3. 
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1 Introduction 

The project presented in this thesis approaches the issue of using Data Mining (DM) languages 

in the context of Business Intelligence (BI) systems. The aim is to study the viability of 

developing a DM language oriented to business users and oriented to the BI activities. 

1.1 Motivation 

Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) 

discipline and can be defined as the process that transforms data into information and then 

into knowledge (Golfarelli, Rizzi & Cella, 2004). Being rooted in the DSS discipline, BI has 

suffered a considerable evolution over the last years and is, nowadays, an area of DSS that 

attracts a great deal of interest from both the industry and researchers (Arnott & Pervan, 2008; 

Clark, Jones & Armstrong, 2007; Davenport, 2010; Hannula & Pirttimäki, 2003; Hoffman, 

2009; Negash, 2004; Richardson, Schlegel & Hostmann, 2009; Richardson, Schlegel, 

Hostmann & McMurchy, 2008; Sallam, Hostman, Richardson & Bitterer, 2010). A BI system is 

a particular type of system. One of the main aspects is that of user-friendly tools, that makes 

systems truly available to the final business user. 

The term Knowledge Discovery in Databases (KDD) was coined in 1989 to refer to the broad 

process of finding knowledge in data, and to emphasize the “high-level” application of 

particular data mining (DM) methods (Fayyad, Piatetski-Shapiro & Smyth, 1996). The DM 

phase concerns, mainly, to the means by which patterns are extracted and enumerated from 

data. 

DM is being applied with success in BI and several examples of applications can be found 

(Linoff, 2008; Turban, Sharda, Aroson & King, 2008; Vercellis, 2009). Despite that, DM has 

not yet reached to non specialized users and thus it is not yet completely integrated with BI. 

Powerful analytical tools, such as DM, remain too complex and sophisticated for the average 

consumer of BI systems. McKnight supports that bringing DM to the front line business 

personnel will increase their potential to attaining BI’s high potential business value (McKnight, 

2002). Another fundamental issue that is pointed out by McKnight is the capability of DM tools 

to be interactive, visual, and understandable, to work directly on the data, and to be used by 

front line workers for intermediate and lasting business benefits. 
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Currently, DM systems are functioning as separate isles, and hereby it is considered that only 

the full integration of the KDD process on BI can conduct to an effective usage of DM in BI 

(Azevedo & Santos, 2011). Three main reasons can be pointed out for DM to be not completely 

integrated with BI, each one leading to a specific problem that constraints DM usage in BI. 

Firstly, the models/patterns obtained from DM are complex and there is the need of an 

analysis from a DM specialist. This fact can lead to a non-effective adoption of DM in BI, being 

that DM is not really integrated on most of the implemented BI systems, nowadays. Secondly, 

the problem with DM is that there is not a user-friendly tool that can be used by decision 

makers to analyze DM models. Usually, BI systems have user-friendly analytical tools that help 

decision makers in order to obtain insights on the available data and allow them to take better 

decisions. Examples of such tools are On-Line Analytical Processing (OLAP) tools, which are 

widely used (Negash, 2004; Turban, Sharda, Aroson & King, 2008). There are not equivalent 

tools for DM that allow business users to obtain insights in DM models. Finally, but extremely 

important, it has not been given sufficient emphasis to the development of solutions that allow 

the specification of DM problems through business oriented languages, and that are also 

oriented for BI activities. With the expansion that has occurred in the application of DM 

solutions in BI, this is, currently, of increasing importance. 

BI systems are, usually, built on top of relational databases and diverse types of languages are 

involved (Figure 1). As a consequence, DM integration with relational databases is an important 

issue to consider when studying DM integration with BI. Codd´s relational model for database 

systems (Codd, 1970; Codd, 1982) has been adopted long ago in organizations. One of the 

reasons for the great success of relational databases is related with the existence of a standard 

language – Structured Query Language (SQL). SQL allows business users to obtain quick 

answers to ad-hoc business questions, through queries on the data stored in databases. SQL is 

nowadays included in all the Relational Database Management Systems (RDBMS). SQL serves 

as the core above which are constructed the various Graphical User Interfaces (GUI) and user 

friendly languages, such as Query-By-Example (QBE), included in RDBMS (Date, 2004; Elmasri 

& Navathe, 2007). It is also necessary to define a standard language, which can operate 

likewise for data mining. Several approaches have been proposed for the definition of data 

mining languages. In the literature there can be found some language specifications, namely, 

DMQL (Han, Fu, Wang, Koperski & Zaiane, 1996), MINE RULE (Meo, Psaila & Ceri, 1998), 

MSQL (Imielinski & Virmani, 1999), SPQL (Bonchi, Giannotti, Lucchesse, Orlando, Perego & 
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Trasarti, 2007), KDDML (Romei,  Ruggieri &  Turini, 2006), XDM (Meo & Psaila, 2006), RDM 

(De Raedt, 2002), among others. Despite the importance of the referred languages, they are 

not business oriented. To a greater extend, they are not oriented to the diverse BI activities. 

This issue is of increasing importance in organizations nowadays.  

 

 

Figure 1 – Database Languages, DM languages, DM languages for BI 

 

DM integration with BI systems can be tackled from different perspectives. On the one hand, it 

can be considered that the effective integration of DM with BI systems must involve final 

business users’ access to DM models. This access is crucial in order to business users to 

develop an understanding of the models, to help them in decision making. Han and Kamber 

state that the integration (coupling) of DM with database systems and/or data warehouses is 

crucial in the design of DM systems (Han & Kamber, 2006). They consider four possible 

integration schemes, which are, in increasing order of integration: no coupling, louse coupling, 

semi-tight coupling, and tight coupling. They present the concept of On-Line Analytical Mining 

(OLAM), which incorporates OLAP with DM, as a way to achieve tight coupling. On the other 

hand, a different approach can be considered, through the outgrowth of new strategies that 

allow business users and DM specialists developing new communication strategies. Wang and 

Wang introduce a model that allows knowledge sharing among business insiders and DM 

specialists (Wang & Wang, 2008). It is argued that this model can make DM more relevant to 
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The developed research, presented in this thesis, focus on making DM models to be directly 

manipulated by business users. It is considered that this can conduct to an understanding of 

DM models by business users, helping them on the decision making process. The fact that DM 

models can be directly manipulated by business users, can help unblocking the potential 

business value hidden in DM models. With this in mind, a high-level architecture that intends to 

conduct to an effective usage of DM with BI is presented (Azevedo & Santos, 2009b). This 

architecture includes a new DM language, named as Query-Models-By-Example (QMBE) that is 

iterative and interactive in nature, thus allowing business users to directly access and 

manipulate DM models. In this research, it is considered that allowing business users to 

directly manipulate DM models is a fundamental issue. A great amount of business value is 

hidden in DM models. Sometimes this business value can be not discovered during the 

analysis of DM specialists, since they, usually, have an insufficient knowledge of the involved 

business issues. On the other hand, this value can be discovered if business users can be able 

to directly access DM models. This access is considered the privileged way that allows 

business users accessing and exploring all the potential value of DM models. This will surely 

bring advantages to the process of decision making in organizations.   

1.2 Research Objectives and Contribution 

BI is the top level of a complex system (Figure 1). On its foundations lay several databases, 

usually based in the relational model (Codd, 1970) for databases (DB), that can be accessed 

and manipulated using specific database (DB) languages, such as SQL and QBE. On the next 

level, data warehouses (DW) can be manipulated using exactly the same sort of languages. 

Applying DM to data stored on both DB and DW1, knowledge bases (KB) arise on the next level. 

KB store DM models and, traditionally, are not based on the relational model, unlike DB and 

DW. Nevertheless, using the framework of inductive databases (IDB), DM models can be stored 

in databases in the same way as data, thus DM models can be accessed and manipulated at 

the same level than data (De Raedt, 2003; Dzeroski, 2007; Imielinski &  Mannila, 1996). 

Using the framework of IDB, DM models can be obtained and manipulated through the use of 

DM languages, such as MineRule (Meo, Psaila & Ceri, 1998), DMQL (Han, Fu, Wang, Koperski 

& Zaiane, 1996), or MSQL (Imielinski & Virmani, 1999). Despite the importance of these 

                                                 

1 Being aware that a data warehouse is, first of all, a database, the term database is here used as synonym of operational database. 
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languages, they are not business oriented, are not oriented to business users and are not 

oriented to BI activities. This is a crucial issue in organizations that is gaining momentum each 

day. 

In the context of BI there can be said that an IDB contains both the DW and the KB (Figure 2) 

and thus we can refer to this database as Inductive Data Warehouse (IDW). This is an 

important concept in the realm of this research since it focuses on making DM models 

available to business users. In an IDW data and DM models are stored at the same level and 

thus DM models can be accessed by business users in the same way as data.  

 

 

Figure 2 – Inductive Data Warehouse 

 

The importance of allowing final business users to access and manipulate DM models comes 

up from the need of allowing business users to be more autonomous, without the permanent 

necessity to depend on the presence of a DM specialist. Moreover, considering that DM 

specialists do not usually have a complete knowledge of the business issues, making DM 

directly available to business users is the key element that allows obtaining all the potential 

business value hidden in DM models. This can be done by means of a DM language 

developed, above all, to accomplish the necessities of final business users of BI systems.  
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Consequently, it is considered in the research hereby presented the importance of developing 

DM languages for BI, which are oriented to business users and, moreover, to BI activities.  

Considering the above mentioned aspects, the study presented in this thesis, aims to analyze 

the viability of developing a DM language oriented to BI activities as well as oriented to 

business users. The developed DM language is designed so that it can be used by business 

users in order to directly manipulate DM models, thus being able to explore their potential 

value. It is also intended to study possible impacts in the bottom levels of the system and thus 

define requisites in each one of the presented levels.  

Despite that a deeper presentation of the research contributions is developed in chapter 13, 

some of them are now introduced. The main contribution of the research presented in this 

thesis is to allow business users to directly manipulate DM models, thus being able to 

completely explore their potential business value. This is achieved by means of the use of the 

IDB framework in the area of BI, presenting the concept of IDW as a DW storing both data and 

DM models at the same level. The use of the IDB framework in the area of BI can be 

considered a novelty. One important point in IDB is the DM language. The same goes for IDW. 

Hereby it is presented a new data mining language for BI, named as Query-Models-By-Example 

(QMBE), which is oriented to BI activities as well as oriented to business users. QMBE is 

presented as an extension of traditional QBE languages, which are included in most of the 

RDBMS nowadays. As a consequence, this new DM language is iterative and interactive in 

nature. It allows business users to answer to ad-hoc business questions through queries on 

data or/and on DM models. QMBE allows business users to directly access and manipulate 

DM models. The novelty of the QMBE language is that it is oriented to business users and to BI 

activities. This kind of approach allows business users to directly access and manipulate data 

and models. This will bring DM to the business users, alike other BI tools, allowing them to 

completely exploring DM potential value. The research presented in this thesis was developed 

accordingly to the principles of design science research (DSR). Therefore, some insights are 

provided on DSR usage in the Information Systems (IS) discipline.  DSR is a new trend in the IS 

discipline, thus it is important to reflect about it and to develop research based on its 

principles. Consequently the research presented in this thesis can be considered as a 

contributions to a better understanding of the application of DSR in the IS discipline. 
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1.3 Thesis Organization 

The remaining of the thesis is organized as follows. In part II, as a result from the literature 

review, some general concepts related to the thesis fields of study are presented, namely, 

Business Intelligence, in chapter 2, Data mining and Knowledge Discovery in Databases, in 

chapter 3, Data Mining Languages, in chapter 4, and Query-By-Example languages, in chapter 

5. In part III, the research approach and the research outputs are described, starting with the 

research problem, in chapter 6, presenting next the research framework, in chapter 7, and 

describing the research methodology, in chapter 8. Two important research outputs are then 

introduced, namely the concept of inductive data warehouse, in chapter 9, and a proposal for a 

new data mining language named as QMBE, in chapter 10. Part III ends with QMBE 

evaluation, in chapter 11. The thesis ends with part IV, which contains discussion and related 

work, in chapter 12, and closes with conclusion and future research directions, in chapter 13. 
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PART II – BACKGROUND 

 

As a result of the literature review, some general concepts related to the thesis fields of study 

are introduced. It is initiated with an overview of the area of business intelligence, in chapter 2, 

presenting business intelligence roots and associations, in Section 2.1, an overview of research 

on business intelligence, in Section 2.2, a framework for business intelligence, in Section 2.3, 

and an example of a business intelligence system, in Section 2.4. It proceeds, in chapter 3, 

with some concepts related with data mining and the knowledge discovery in databases 

process by, first, clarifying notions, in Section 3.1, next, exploring some applications, in Section 

3.2, and ending by making a summary of Data Mining (DM) tasks, methods/algorithms, and 

models/patterns, in Section 3.3. Next, in chapter 4, DM languages are introduced, being that 

standards for DM, in Section 4.1, are the point of departure that leads to inductive databases 

and data mining languages, in Section 4.2, and to DM integration with relational databases, in 

Section 4.3. Chapter 5 concludes Part I presenting Query-By-Example (QBE) languages. It 

starts with the necessary general notions, in Section 5.1, and then relating QBE languages with 

relational calculus, in Section 5.2. 
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2 Business Intelligence 

Business Intelligence (BI) can be presented as an architecture, a tool, a technology or a system 

that gathers and stores data, analyzes it using analytical tools, and delivers information and/or 

knowledge, facilitating reporting, querying and, ultimately, allowing organizations to improve 

decision making (Clark, Jones & Armstrong, 2007; Kudyba & Hoptroff, 2001; Michalewicz, 

Schmidt, Michalewicz & Chiriac, 2007; Moss & Shaku, 2003; Negash, 2004; Raisinghani, 

2004; Steiger, 2010; Thierauf, 2001; Turban, Sharda, Aroson & King, 2008). To put it shortly, 

Business Intelligence (BI) can be defined as the process that transforms data into information 

and then into knowledge (Golfarelli, Rizzi & Cella, 2004). More recently, in (Michalewicz, 

Schmidt, Michalewicz & Chiriac, 2007) the notion of Adaptive Business Intelligence is 

presented, incorporating Artificial Intelligence (AI) with BI.  

Being rooted in the Decision Support Systems (DSS) discipline, BI has suffered a considerable 

evolution over the last years and is, nowadays, an area of DSS that attracts a great deal of 

interest from both the industry and researchers (Arnott & Pervan, 2008; Clark, Jones & 

Armstrong, 2007; Hannula & Pirttimäki, 2003; Hoffman, 2009; Negash, 2004; Richardson, 

Schlegel & Hostmann, 2009; Richardson, Schlegel, Hostmann & McMurchy, 2008; Sallam, 

Hostman, Richardson & Bitterer, 2010). BI has strong associations with Knowledge 

Management (KM) and Competitive Intelligence (CI) (Clark, Jones & Armstrong, 2007; 

Liebowitz, 2006; Negash, 2004; Turban, Sharda, Aroson & King, 2008; Zeller, 2008). Despite 

being treated as independent areas, the intersections between them must be considered. 

2.1 Business Intelligence Roots and Associations  

The roots for Business Intelligence (BI) can be found in the field of Decision Support Systems 

(DSS), which “is the area of the information systems (IS) discipline that is focused on 

supporting and improving managerial decision-making” (Arnott & Pervan, 2008). DSS can also 

be presented as a computer-based solution that can be used to support complex decision 

making, and solving complex, semi-structured, or ill-structured problems (Nemati, Steiger, Iyer 

& Herschel, 2002; Shim, Warkentin, Courtney, Power, Sharda & Carlsson, 2002). The term BI 

has replaced other terms such as Executive Information Systems (EIS) and Management 

Information Systems (MIS) (Negash, 2004; Turban, Sharda, Aroson & King, 2008). Nowadays 

it is possible to say that BI is an area of DSS that attracts a great deal of interest. BI refers to 
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Information Systems aimed at integrating structured and unstructured data in order to convert 

it into useful information and knowledge, upon which business managers can make more 

informed and consequently better decisions.  

BI is associated with Competitive Intelligence (CI) and Knowledge Management (KM) systems  

(Clark, Jones & Armstrong, 2007; March & Hevner, 2007; Negash, 2004; Thierauf, 2001; 

Turban, Sharda, Aroson & King, 2008). Negash presents CI as a branch of BI, and refers to it 

as “a systematic and ethical program for gathering, analyzing and managing external 

information that can affect company’s plans, decisions and operations” (Negash, 2004 - pp 

186). KM systems refer to “IT-based systems developed to support and enhance the 

organizational processes of knowledge creation, storage/retrieval, transfer, and application.” 

(Alavi & Leidner, 2001 – pp. 114). It can be argued that BI and KM systems are not disparate 

systems, but that they are complementary as they share elements required to support 

managerial decision making (Clark, Jones & Armstrong, 2007; Liebowitz, 2006). It can also be 

argued that “KM and BI, while differing, need to be considered together as necessarily 

integrated and mutually critical components in the management of intellectual capital” 

(Herschel & Jones, 2005 – pp 45). Moreover, BI, KM, CI, and AI should be aggregated so as 

“to provide value-added information and knowledge toward making organizational strategic 

decisions” (Liebowitz, 2006 - pp 22), in order to achieve Strategic Intelligence for businesses 

(Figure 3).  

“Organizational performance often depends more on an ability to turn knowledge into effective 

action and less on knowledge itself” (Alavi & Leidner, 2001 – pp 129). Deeper studies 

involving the associations presented could lead to an understanding of how BI could lead 

decision makers to attain this ability. 
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Figure 3 – BI Associations 

2.2 Research on Business Intelligence 

Despite the wide acceptance that the term BI was coined by Gartner in 1989 (Power, 2007; 

Turban, Aroson, Liang & Sharda, 2007; Turban, Sharda, Aroson & King, 2008; Zeller, 2007), 

the first reference to Business Intelligence was made by Lunh (Lunh, 1958), and several 

publications on BI can be found between 1958 and 1989. Lately, the use of the term BI has 

been growing (Arnott & Pervan, 2008; Hannula & Pirttimäki, 2003), and there can be found a 

significant number of publications that focus on this subject, as well as professional 

associations whose main goal is to disseminate the use of BI throughout organizations. 

Software vendors have defined positions on the market with diversified BI software packages 

and open source platforms are also available. As a result, the market tends to stabilize 

(Richardson, Schlegel & Hostmann, 2009; Richardson, Schlegel, Hostmann & McMurchy, 

2008; Sallam, Hostman, Richardson & Bitterer, 2010).  

Negash, in 2004, refers that Information Systems research in the BI field was, by that time, 

scarce (Negash, 2004). Since then, scientific research is growing at a significant rate, as can 

be confirmed by a search in some of the most popular scientific sources. A great number of 

publications about BI appear in diversified publications and new journals focused specifically 

on BI are arising. The literature presents research that explores several aspects of BI. 

Following, a few will be mentioned: 

• In (Hannula & Pirttimäki, 2003) an empirical study about BI activities in Finnish 

Companies is presented; 
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• In (Arnott & Pervan, 2008; Clark, Jones & Armstrong, 2007), and (March & Hevner, 

2007) the authors include in their research references to the role of BI in the DSS and 

IS disciplines; 

• In (Pervan & Arnott, 2006) an analysis is made on research in data warehousing and 

BI between 1990 and 2004; 

• In (Cheng, Lu & Sheu, 2009), and (Li, Shue & Lee, 2008) the authors develop BI 

applications to specific managerial problems; 

• In (Elbashir, Collier & Davern, 2008), and (Lin, Tsai, Shiang, kuo & Tsai, 2009) the 

authors intend to develop models to evaluate BI systems; 

• In (Hobek, Ariyachandra & Frolick, 2009), and (Watson, 2009) the authors are 

concerned about the role that people play on a BI project.  

It is difficult to be comprehensive on the coverage of such a vast area hence a choice was 

made to highlight the trends and research issues considered most relevant.  One trend is 

Pervasive BI, or BI for the masses (Eckerson, 2008; Lunger, 2008; Negash, 2004). There is a 

concern on delivering BI to all levels of an organization. Another trend is Real-time BI or 

Operational BI, which intends to deliver information based on real time data, as opposed to 

historical data (Brobst &  Pareek, 2009; Klawans, 2008; Negash, 2004). Other point concerns 

on how to deal with the increasing quantities of data available for BI systems (Klawans, 2008; 

Strenger, 2008). Emphasis is also being placed on cultural aspects and on the human side of 

BI (Hobek, Ariyachandra & Frolick, 2009; Lin, Tsai, Shiang, kuo & Tsai, 2009; Watson, 2009). 

Some research issues that have been identified in the literature on DSS could also be explored 

in the BI area, namely, integration issues, analysis of usability, assessment, return on 

investment, and technological issues. A research area could analyze and evaluate technologies 

that are potentially applicable to BI analysis and understanding (Nemati, Steiger, Iyer & 

Herschel, 2002). Powerful analytical tools, such as DM, remain too complex and sophisticated 

for the average consumer, therefore, another area of research could be the development of 

more effective human-computer interfaces (Azevedo & Santos, 2009a; Clark, Jones & 

Armstrong, 2007. 
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2.3 A Framework for Business Intelligence 

As pointed out above, BI refers to information systems aimed at integrating structured and 

unstructured data in order to convert it into useful information and knowledge, upon which 

business managers can make more informed and consequently better decisions. There are 

different approaches to BI: 

• The traditional approach to BI is concerned with data aggregation, business analytics 

and data visualization (Kudyba & Hoptroff, 2001; Raisinghani, 2004; Turban, Sharda, 

Aroson & King, 2008). According to this approach, BI explores several technological 

tools, producing reports and forecasts, in order to improve the efficiency of the 

decision making process. Such tools include Data Warehouse (DW), Extract-Transform 

and Load (ETL), Online Analytical Processing (OLAP), Data Mining (DM), Text Mining, 

Web Mining, Data Visualization, Geographic Information Systems (GIS), and Web 

Portals.  

• On the next level there is a concern with the integration of business processes on BI 

(Eckerson, 2009; Golfarelli, Rizzi & Cella, 2004; Turban, Sharda, Aroson & King, 

2008; Wormus, 2008; Zeller, 2007). According to this approach, “BI is a mechanism 

to bridge de gap between the business process management to the business strategy” 

(Zeller, 2008 - pp 3). In addition to all the tools in traditional BI, tools such as Business 

Performance Management (BPM), Business Activity Monitoring (BAM), Service-

Oriented Architecture (SOA), Automatic Decision Systems (ADS), and dashboards are 

included. 

• Adaptive Business Intelligence is concerned with self-learning adaptive systems, that 

can recommend the best actions, and that could learn with previous decisions, in 

order to improve continuously (Michalewicz, Schmidt, Michalewicz & Chiriac, 2007). 

Artificial Intelligence is, in this manner, incorporated into BI systems. 

A schematic view of the main approaches that are presented in the literature is depicted in 

Figure 4. The presented framework can be used as the basis for subsequent research, since it 

helps to operationalize the current state of the art. Research could be developed along all the 

presented levels since there are open issues in all of them. Research areas on BI could include 

integration issues, analysis of usability, assessment, return on investment, and technological 

issues. 
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Figure 4 – A Framework for Business Intelligence 

 

2.4 An Example of a Business Intelligence System 

The research presented in this thesis focus mainly in traditional BI. A prototype of a BI system 

was developed in order to support the research. The high-level architecture of the implemented 

BI system is presented in Figure 5. The underlying relational databases refer to a Higher 

Education Institution (HEI). Almost all the business processes of the referred HEI are supported 

by an operational information system, built upon relational databases (Pereira, Azevedo & 

Castilho, 2007). The direction board of the institution intends to expand the system with the 

inclusion of a BI system. The architecture includes an ETL module which consolidates data in a 

data warehouse (DW), a BPM module which helps with the definition of business processes 

and respective metrics, and an OLAP module which allows for data manipulation. 
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Figure 5 – High-level architecture of a Business Intelligence System 

 

In a first moment, it is intended to deliver information about students, and plans are being 

done in order to include teachers and employees in consequent phases. Some examples of 

business questions that can be posed to the system by the HEI responsible, and that can be 

answered by the BI system, are presented in Table 1. Data visualization tools can help to 

understand some important issues related with these questions, obtaining answers that 

support the decision process. OLAP tools are also important as a way to obtain answers to the 

wide variety of ad-hoc questions posed to the system by business users, considering different 

dimensions, such as season, time or program. In addition, all these questions can be 

converted into queries in any of the query languages offered by the Relational Database 

Management System (RDBMS), for instance SQL or QBE. 
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Table 1 – Examples of business questions that can be answered by the Business Intelligence System 

Question Dimensions 

Who are the best students? By Season 

By Time 

By Geography 

By Program 

By Course 

… 

Who are the worst students? 

How many students conclude the grades according to initial schedule? 

Which are the courses with higher retention taxes? 

How many students are there? 

… 
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3 Data Mining and Knowledge Discovery in Databases 

The term knowledge discovery in databases or KDD, for short, was coined in 1989 to refer to 

the broad process of finding knowledge in data, and to emphasize the “high-level” application 

of particular DM methods (Fayyad, Piatetski-Shapiro & Smyth, 1996). Fayyad considers DM as 

one of the phases of the KDD process. The DM phase concerns, mainly, the means by which 

the patterns are extracted and enumerated from data. The literature is sometimes a source of 

some confusion because de two terms are indistinctively used, making it difficult to determine 

exactly each of the concepts (Benoît, 2002). Nowadays, the two terms are, usually, indistinctly 

used and so it will be along this text. 

3.1 The Knowledge Discovery in Databases Process 

The KDD process, as presented in (Fayyad, Piatetski-Shapiro & Smyth, 1996), is the process of 

using DM methods to extract what is deemed knowledge according to the specification of 

measures and thresholds, using a database along with any required preprocessing, sub 

sampling, and transformation of the database. There are five stages considered, namely, 

selection, preprocessing, transformation, data mining, and interpretation/evaluation as 

presented in Figure 6:  

• Selection - this stage consists on creating a target data set, or on focusing in a subset 

of variables or data samples, on which discovery is to be performed;  

• Preprocessing - this stage consists on the target data cleaning and preprocessing in 

order to obtain consistent data;  

• Transformation - this stage consists on the transformation of the data using 

dimensionality reduction or transformation methods;  

• Data Mining - this stage consists on the searching for patterns of interest in a particular 

representational form, depending on the DM objective (usually, prediction);  

• Interpretation/Evaluation - this stage consists on the interpretation and evaluation of 

the mined patterns. 
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Figure 6 – The KDD Process 

 

The KDD process is preceded by the development of an understanding of the application 

domain, the relevant prior knowledge, and the goals of the end-user. It must be continued by 

knowledge consolidation, incorporating this knowledge into the system. The KDD process is 

interactive and iterative, involving numerous steps with many decisions being made by the user 

(Brachman & Anand, 1996). 

3.2 Some Applications 

As of the foundations of KDD and DM, several applications were developed in many diversified 

fields. The growth of the attention paid to the area emerged from the rising of big databases in 

an increasing and differentiated number of organizations. Nevertheless, there is the risk of 

wasting all the value and wealthy of information contained in these databases, unless the 

adequate techniques are used to extract useful knowledge (Chen, Han & Yu, 1996; Fayyad, 

1996; Simoudis, 1996). The application of DM techniques with success can be found in a wide 

and diversified range of applications, for instance, bioinformatics, ecology and sustainability, 

finance, industry, marketing, scientific research, telecommunications, and other applications.. 

Being aware that they are not completely covered here, a great variety of examples are 

presented in the following lines.  
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Bioinformatics 

In (Salzberg, 1999) DM techniques are applied to gene discovery in DNA sequences. In (Gao, 

Cao, Qi & Hu, 2005) the authors’ work focus also on DNA sequences. In (Gurbaxani & Mallick, 

2005), and in (Martin,  Gibrat &  Rodolphe, 2005) DM is applied to the study of protein 

structure. In (Wu,  Yu &  Jang, 2005) the authors developed a framework that helps in the 

detection of depressive symptoms in psychiatry. In (Chiang,  Shieh,  Hsu &  Wong, 2005) a 

medical decision support system that can identify the patients who have polyps is presented, 

while in (Fung & Stoeckel, 2007) the presented work helps on the identification of Alzheimer’s 

disease. An intelligent decision support system to support intensive care medical activities is 

presented in (Gago & Santos, 2008; Gago, Fernandes, Pinto & Santos, 2009; Santos, Pereira 

& Silva, 2005). 

Ecology and sustainability 

In (Silva,  Câmara &  Escada, 2009) a study of the deforestation problem in Amazonia is 

presented. In (Nlenanya, 2009) the authors shows the application of a geographical 

information system (GIS) based on a knowledge discovery interface that can be used to 

stimulate sustainable development in the sub-Saharan African region. The work presented in 

(Tadesse,  Wardlow &  Hayes, 2009) focuses on monitoring and predicting drought’s impact 

on vegetation conditions. A system able to determine if an area is going to be contaminated or 

not after an oil spill is presented in (Corchado, Mata, Paz & Pozo, 2008). In (Santos,  Cortez,  

Quintela,  Neves,  Vicente &  Arteiro, 2005) DM techniques are used to do the automatic 

assessment of dam water quality. 

Finance 

Concerning the applications of DM to finance, in (John, Miller & Kerber, 1996) the authors 

refer to stock selection in order to obtain the best stock portfolio for investors. Other type of 

application, concerns the discovery of insurance risks (Apte, Grossman, Pednault, Rosen, Tipu 

& White, 1999). DM techniques can also be used in credit card fraud detection (Chan,  Fan,  

Prodromidis &  Stolfo, 1999). In (Hu, 2005) study, DM is used for analyzing retail banking 

customer attrition. A study involving bankruptcy prediction based on data mining techniques is 

presented in (Santos,  Cortez,  Pereira &  Quintela, 2006). 
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Industry 

DM can be applied in the prediction of the ideal moment to replace aircraft components 

(Létourneau,  Famimi &  Matwin, 1999). In (König &  Gratz, 2005) an application is created in 

order to optimize manufacturing processes in the semiconductor industry. A real-time decision 

support system for civil engineering structures is presented in (Quintela,  Santos &  Cortez, 

2007). There are DM applications even in sports: in (Bhandari, Colet, Parker, Pines, Pratap & 

Ramanujam, 1997) it is described an application used by the National Basketball Association 

(NBA) coaching staffs to discover interesting patterns in basketball game data.  

Marketing 

It can be said that some of the most popular applications of DM are in the Marketing field. 

Applications include market basket analysis and customer segmentation (Ghosh & Strehl, 

2005; Simoudis, 1996). In (Hsu, Chung & Huang, 2004) a real data mining application is 

proposed for personalized shopping recommendation. In (Luck, 2009) DM techniques are 

applied on CRM data. In (Dzieciolowski & Kina, 2008) it is examined how data mining can help 

identify the best geographic areas for customer acquisition campaigns. A KDD approach was 

used to database marketing projects in (Pinto, Gago & Santos, 2006; Pinto, Santos & Marques, 

2009; Santos,  Cortez,  Quintela &  Pinto, 2005). 

Scientific research 

An important application in astronomy is presented in (Fayyad,  Djorgovski &  Weir, 1996). An 

approach to geologic study of remotely sensed images is presented in (Smyth,  Fayyad,  Burl &  

Perona, 1996). In (Bollacker, Lawrence & Giles, 2000) DM techniques are used to help finding 

useful publications on the Web. In (Lin,  Pu &  Lee, 2005) it is presented an application to 

analyze satellite images. Applications on the social sciences area are presented in (Scime, 

Murray, Huang & Brownstein-Evans, 2008). 

Telecommunications 

In (Ezawa & Norton, 1996) DM techniques are applied in order to predict uncollectable 

telecommunications invoices. In (Pan, Yang, Yang, Li, Li & Li, 2007) the authors aim to identify 

customers who might switch to a competitor service provider. The problem of telephone calling 

fraud detection is presented in (Cox, Eick, Wills & Brachman, 1997). The problem of detecting 
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cellular cloning fraud based on a database of call records is made in (Fawcett & Provost, 

1997). 

Other applications 

New applications appear daily. In (Lappas, 2009) several applications are presented to societal 

benefit areas such as helpdesks and recommendation systems, digital libraries, e-learning, 

security and crime investigation, e-government services, e-politics and e-democracy. In 

(Rahman, 2009)  a few areas to data mining applications are highlighted. 

3.3 Data Mining Tasks, Methods/Algorithms, and 

Models/Patterns 

Prediction and description were identified as the two “high-level” primary goals of DM (Fayyad, 

Piatetski-Shapiro & Smyth, 1996). “Prediction involves using some variables or fields in the 

database to predict unknown or future values of other variables of interest. Description focuses 

on finding human-interpretable patterns on finding the data.” (Fayyad, Piatetski-Shapiro & 

Smyth, 1996 - pp 12) 

To achieve these goals some tasks were used and its description can be found in the literature. 

Some of the most common tasks are classification, prediction, clustering, association, and 

summarization: 

• Classification consists in finding a function that associates an instance of the 

independent variables to a specific pre-defined value of the target variable, named as 

class. The target variable should be of nominal type; 

• Prediction consists in finding a function that associates an instance of the independent 

variables to some numerical value of a real-valued target variable, in order to predict 

future unknown values for that target variable; 

• Clustering allows the identification of homogeneous groups containing several 

elements which have high similarity with all the other elements of the same group, and 

that have low similarity to all the elements of the other groups; 

• Association consists in finding a model that describes significant dependencies 

between variables, that is to say, identifying facts that can be directly or indirectly 

associated; 
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• Summarization uses methods to discover a compact description for data, in order to 

find a better description of the data, thus improving its understanding. 

A significant number of methods/algorithms have been developed to accomplish each task, 

and different kinds of models/patterns can be obtained. Classification methods include 

decision trees, classification rules, neural networks, support vector machines, Bayesian data 

analysis, Bayesian networks, and k-nearest neighbor. Prediction methods include linear 

regression, nonlinear regression, neural networks, decision trees, and k-nearest neighbor. 

Clustering methods include partitioning, hierarchical and model-based methods. Association is 

accomplished with association rules. Summarization methods include EDA2 and OLAP3. 

• Decision trees can be defined as a way to represent a group of rules that follow a 

hierarchy. Each node of the tree defines a test for some variable, and each leaf defines 

a class. Three of the most popular algorithms to generate decision trees are ID34, 

C4.5, and CART5 that use a divide-and-conquer approach to generate the rules. ID3 

and C4.5, which can be considered an improvement of ID3, use the concept of 

information gain and CART uses the concept of Gini index as guidance; 

• Classification rules are IF-THEN expressions of the form IF antecedent THEN 

consequent. The antecedent is formed by a group of tests for the target variables, and 

the consequent defines the class that satisfies those conditions. Rules can be obtained 

directly from decision trees. An alternative approach is using a different way to deal 

with the situation, known as covering or separate-and-cover algorithms. Two examples 

of such algorithms are PRISM  and RIPPER6, using coverage and accuracy as 

guidance; 

• Neural networks intend to simulate the human brain. A neural network consists in a 

computational structure based in processing units, the neurons, communicating by 

sending signals through links. Each neuron possesses inputs and outputs each 

associated with a weight. To build the neural network the number of neurons as well 

as the weights of each link must be discovered trough the training of the network. 

Algorithms include multilayer perceptron and back propagation. One of the main 

                                                 

2 Exploratory Data Analysis 

3 On-Line Analytical Processing 

4 Iterative Dichotomiser 3 

5 Classification and Regression Trees 

6 Repeated Incremental Pruning to Produce Error Reduction 
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disadvantages appointed to neural networks are based on that they are similar to black 

boxes since their internal structure is unknown; 

• Support vector machines are originated from research in the area of statistical 

learning. Support vector algorithms “select a small number of critical boundary 

instances called support vectors from each class and build a linear discriminant 

function that separates them from each class and build a linear discriminant function 

that separates them as widely as possible.” (Witten & Frank, 2005 – pp 188). Support 

vector machines are closely related to neural networks; 

• Bayesian data analysis is based on Bayes theorem of conditional probability. It consists 

in obtaining a probability distribution from the observed data, starting with a joint 

probability distribution, and then computing the posterior probability from this prior 

probability, using Bayes theorem. The main disadvantage is that it involves heavy 

calculations; 

• Bayesian networks are used to represent knowledge from an uncertain domain. They 

are direct acyclic graphs whose nodes represent random variables of interest, and 

whose edges represent the conditional dependencies between the variables. K2 and 

TAN7 are two specific algorithms to learning bayesian networks; 

• K-nearest neighbor is a simple and popular classification method. With 

nearest-neighbor “each new instance is compared with existing ones using a distance 

metric and the closest existing instance is used to assign the class to the new one. (…) 

Sometimes more than one nearest neighbor is used, and the majority class of the 

closest k neighbors (or the distance-weighted average, if the class is numeric) is 

assigned to the new instance. This is termed k-nearest-neighbor method.” (Witten & 

Frank, 2005 – pp 78); 

• Linear regression intends to discover a function that represents an approximate 

behavior of numerical variables, by expressing the target or dependent variable as a 

linear combination of the other variables, named as the independent variables. During 

the training the weights are calculated so that the differences between the real values 

and the predicted ones are minimized; 

                                                 

7 Tree-Augmented Naive Bayes 



Data mining languages for business intelligence 

28                                                                                                                                          

• Nonlinear regression is similar to linear regression, but instead of using a linear 

combination of the independent variables to predict the value for the dependent 

variable, it uses a nonlinear function of the independent variables to obtain a prediction 

of the dependent variable; 

• Partitioning methods for clustering, results in a fixed number of mutually exclusive 

groups, named as clusters. Each cluster is represented by one of his members, 

named as centroid. One of the main issues related with this kind of method is the 

determination of the ideal number of cluster. Traditional algorithms include k-means 

and k-medoids; 

• Hierarchical methods, instead of returning an unstructured set of clusters, return a 

hierarchical tree structure, a dendogram, which defines a hierarchy of clusters. A 

measure of dissimilarity is required and it is not necessary to predefine the number of 

clusters. Algorithms include BIRCH8, ROCK9, and Chameleon; 

• Model-based clustering also named as probability-based clustering, are the clustering 

methods most closely to statistics. It is assumed that clusters are represented by a 

mixture of probability distributions and some methods are used to find the parameters. 

This methods aims at overcoming some of the issues related to other clustering 

methods. The EM10 algorithm is one of the most known algorithms using this 

technique; 

• Association rules are IF-THEN expressions of the form IF antecedent THEN 

consequent. They are created by analyzing data for frequent IF/THEN patterns and 

then identifying the most relevant, interesting, and useful ones. To select those most 

relevant, interesting and useful rules from the set of all possible rules, various 

measures of significance and interestingness can be used, usually support and 

confidence. Apriori, GRI11, and FP-growth12 are examples of classical algorithms used to 

generate association rules. 

• EDA, “as the name suggests, the goal here is simply to explore the data without any 

clear ideas of what we are looking for. Typically, EDA techniques are interactive and 
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9 RObust Clustering using linKs 

10 Expectation-Maximization 
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12 Frequent Pattern Growth 
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visual, and there are many effective graphical display methods for relatively small, low-

dimensional data sets.” (Hand, Mannila & Smyth, 2001 – pp 11) 

• OLAP tools provide environments for advanced data analysis, doing the synthesis, 

analysis, and consolidation of big volumes of data, stored in a multi-dimensional 

perspective. This multidimensional perspective allows the analysis of business data 

according to several dimensions. It is very important that OLAP tools provide user 

friendly interfaces, in order to become much more useful to data analysis. 

An outline of this DM tasks, methods/algorithms, models/patterns, and guidance is presented 

in Table 2.  

There are different forms of evaluating models’ interestingness in each case, such as cross-

validation, bootstrapping, bagging and boosting, estimating confidence intervals, or ROC 

curves. There are also a large variety of alternatives to provide guidance, including accuracy 

and error measures. We will not discuss in more detail each one of these issues, since we 

consider it is outside the scope of this text.  Several textbooks can be found that cover these 

topics in more detail, e.g. (Han & Kamber, 2006; Hand, Mannila & Smyth, 2001; Larose, 

2005; Myatt, 2007; Santos &  Azevedo, 2005; Witten & Frank, 2005; Ye, 2003).  

The emergence of more complex types of data led to the development of new methods and 

models to cope with the new task of mining complex data. As examples, we can point out text 

mining (Prado &  Ferneda, 2008), web mining (content, structure, and usage) (Markov &  

Larose, 2007), spatial data mining (Nlenanya, 2009), graph mining (Zhang,  Hu,  Xia,  Zhou &  

Achananuparp, 2008), mining time-series data (Liabotis, Theodoulidis & Saraaee, 2006), 

among others. In (Kumar, 2011) some trends and new domains are explored. 
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Table 2 – Outline of DM tasks, Methods/Algorithms, Models/Patterns, and Guidance 

DM Tasks Methods/Algorithms Models/Patterns Guidance 

Classification Decision trees (ID3, C4.5, CART) Tree Information Gain / 

Gini Index 

Classification rules (PRISM, 

RIPPER) 

Rules Accuracy and Coverage 

Neural Networks (multilayer 

perceptron, back propagation) 

Neural Network Error 

Support Vector Machines Maximum margin 

hyperplane 

Error 

Bayesian data analysis Probability 

distribution 

Conditional Probability 

Bayesian networks (K2, TAN) Directed acyclic graph Conditional Probability 

k-nearest neighbor Pattern space Distance function 

Prediction Linear regression Linear function Error 

Nonlinear regression Nonlinear function Error 

Neural Networks (multilayer 

perceptron, back propagation) 

Neural Network 

 

Error 

Decision trees (ID3, C4.5, CART) Tree Information Gain 

Gini Index 

k-nearest neighbor Pattern space Distance function 

Clustering Partitioning (k-means, k-medoids) Diagram Measure of dissimilarity 

Hierarchical (BIRCH, ROCK, 

Chameleon) 

Diagram Measure of dissimilarity 

Model-based (EM, Kohonen 

networks) 

Diagram Measure of dissimilarity 

Association Association rules (Apriori, GRI, FP-

growth) 

Rules Support and Confidence 

Summarization EDA Tables, Charts ------ 

OLAP OLAP cubes ------ 
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4 Data Mining Languages 

Some efforts are being made seeking the establishment of standards in the DM area, both by 

academics, and by people in the industry field. The main goal is to integrate DM with relational 

databases, thus allowing an easier application of DM to business systems, and making it more 

available to decision making. An important issue in this domain concerns data mining 

languages. 

4.1 Towards Standards for Data Mining 

Examining the primary conferences and journals in the DM field, it can be concluded that the 

main issues for research are related to improving data preparation for data mining, to 

developing better algorithms and methods for specific problems and applications, and to 

measuring the utility of the obtained models. Nevertheless, the necessity to develop a theory 

for DM, similar to the one that was developed by Codd, with the Relational Model for database 

systems, arose (De Raedt, 2003; Imielinski &  Mannila, 1996; Mannila, 2000). Over the past 

few years, some efforts have been made in the development of standards for DM and KDD 

(Dzeroski, 2007; Mannila, 2000). These efforts arise both from academics and from people in 

the industry field. Being aware that they may be not completely covered here, the authors 

present the ones that they consider to be most important. Industrial standards are presented in 

section 4.1.1, and scientific research is presented in section 4.1.2. 

4.1.1 Industrial Standards 

Some of the efforts in the industrial field concern the definition of processes/methodologies 

that can guide the implementation of DM applications. For instance, SEMMA and CRISP-DM 

can be pointed out as such examples. In (Azevedo & Santos, 2008) a comparative study of 

these processes is presented.  

The acronym SEMMA stands for Sample, Explore, Modify, Model, Assess, and refers to the 

process of conducting a DM project. The SAS Institute considers a cycle with 5 stages for the 

process, which are, sample, explore, modify, model, and assess:  

• Sample - this stage consists on sampling the data by extracting a portion of a large 

data set big enough to contain the significant information, yet small enough to 

manipulate quickly;  
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• Explore - this stage consists on exploring the data by searching for unanticipated 

trends and anomalies in order to gain understanding and ideas;  

• Modify - this stage consists on modifying the data by creating, selecting, and 

transforming the variables to focus the model selection process;  

• Model - this stage consists on modeling the data by allowing the software to search 

automatically for a combination of data that reliably predicts a desired outcome;  

• Assess - this stage consists on assessing the data by evaluating the usefulness and 

reliability of the findings from the DM process and estimate how well it performs. 

SEMMA offers an easy to understand process, allowing an organized and adequate 

development and maintenance of DM projects. It thus confers a structure for his conception, 

creation and evolution, helping to present solutions to business problems as well as to find the 

DM business goals (Santos &  Azevedo, 2005). 

CRISP-DM stands for CRoss-Industry Standard Process for Data Mining. It consists on a cycle 

that comprises six phases, which are business understanding, data understanding, data 

preparation, modeling, evaluation, and deployment (Figure 7): 

• Business understanding - this initial phase focuses on understanding the project 

objectives and requirements from a business perspective, then converting this 

knowledge into a DM problem definition and a preliminary plan designed to achieve 

the objectives; 

• Data understanding - the data understanding phase starts with an initial data collection 

and proceeds with activities in order to get familiar with the data, to identify data 

quality problems, to discover first insights into the data or to detect interesting subsets 

to form hypotheses for hidden information; 

• Data preparation - the data preparation phase covers all activities to construct the final 

dataset from the initial raw data;  

• Modeling - in this phase, various modeling techniques are selected and applied and 

their parameters are calibrated to optimal values;  

• Evaluation - at this stage the model (or models) obtained are more thoroughly 

evaluated and the steps executed to construct the model are reviewed to assure it 

properly achieves the business objectives; 
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• Deployment – the creation of the model is generally not the end of the project. Even if 

the purpose of the model is to increase knowledge of the data, the knowledge gained 

will need to be organized and presented in a way that the customer can use it.  

 

 

Figure 7 - The CRISP-DM life cycle (Chapman, Clinton, Kerber, Khabaza, Reinartz, Shearer & Wirth, 2000 - pp 13) 

 

CRISP-DM is extremely complete and documented. All its stages are duly organized, structured 

and defined, allowing  a project to be easily understood or revised (Santos &  Azevedo, 2005). 

By doing a comparison between the KDD and SEMMA stages we would, on a first approach, 

state that they are equivalent: Sample can be identified as Selection; Explore can be identified 

as Pre-processing; Modify can be identified as Transformation; Model can be identified as DM; 

Assess can be identified as Interpretation/Evaluation. Examining it thoroughly, we can state 

that the five stages of the SEMMA process can be seen as a practical implementation of the 

KDD process five stages, since it is directly linked to the SAS Enterprise Miner software. 

Comparing the KDD stages with the CRISP-DM stages is not as straightforward as in the 

SEMMA situation.  Nevertheless, we can first of all observe that the CRISP-DM methodology 

incorporates the steps that, as mentioned above, must precede and follow the KDD process; 

that is to say, an understanding of the application domain, the relevant prior knowledge, and 

the goals of the end-user, which must precede KDD, and knowledge consolidation, which must 

follow KDD. The Business Understanding phase can be identified as the development of an 
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understanding of the application domain, the relevant prior knowledge and the goals of the 

end-user. The Deployment phase can be identified as the knowledge consolidation. Concerning 

the remaining stages, we can say that: The Data Understanding phase can be identified as the 

combination of Selection and Pre-processing; the Data Preparation phase can be identified as 

Transformation; the Modeling phase can be identified as DM; the Evaluation phase can be 

identified as Interpretation/Evaluation. In Table 3 a summary of these correspondences is 

presented. 

Considering the presented analysis we conclude that SEMMA and CRISP-DM can be seen as 

implementations of the KDD process described in (Fayyad, Piatetski-Shapiro & Smyth, 1996). 

At first sight, we can get to the conclusion that CRISP-DM is more complete than SEMMA. 

However, in a deeper analysis, we can integrate the development of an understanding of the 

application domain, the relevant prior knowledge and the goals of the end-user, on the Sample 

stage of SEMMA; this can be done because the data cannot be sampled unless there is a 

truthful understanding of all the presented aspects. With regarding consolidation, by 

incorporating this knowledge into the system, we can assume that it is included, because it is 

truly the reason for doing it. This leads to the fact that standards have been achieved, 

concerning the overall process: SEMMA and CRISP-DM do guide people to know how DM can 

be applied in practice in real systems. 

 

 

Table 3 – Summary of the correspondences between KDD, SEMMA and CRISP-DM 

KDD SEMMA CRISP-DM 

Pre KDD  ------------- Business 

understanding 

Selection Sample 
Data Understanding 

Pre processing Explore 

Transformation Modify Data preparation 

Data mining Model Modeling 

Interpretation/Evaluation Assessment Evaluation 

Post KDD ------------- Deployment 
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Other efforts in the industrial field focus on the development of software suites for 

implementing some selected DM algorithms. Over the past few years several data mining 

suites have been developed (KDNuggets, 2011). These suites deliver user-friendly 

environments that allow users to apply data mining freely and easily. Some of them have 

capabilities to integrate all the KDD process. Nevertheless, if these suites are used without the 

knowledge of a DM expert, the obtained results may not be useful. This is due to the fact that 

all the KDD process must be considered, in spite of just applying DM algorithms without being 

aware of their characteristics. In addition, these suites are oriented to DM specialists and not to 

business users. 

There are some efforts being made that intend to develop standards that will allow model 

representation to be platform independent. Such an example is the Knowledge Discovery 

Metamodel (KDM) (Object Management Group, 2008). Another example is the Predictive 

Model Markup Language (PMML) (Data Mining Group, 2009). OLE DB for Data Mining can also 

be presented as an example (Tang &  MacLennan, 2005). These models mainly seek 

portability among models obtained in different tools, and some of them are included in most of 

the BI tools in the market. 

4.1.2 Scientific Research  

Above all the academic efforts towards a theory for DM and KDD follow closely the theory 

developed by Codd for the Relational Model. According to Codd´s Relational Model (Codd, 

1970; Codd, 1982), a database consists on a set of relations. Each relation is a set of tuples. 

Two formal languages were defined: the Relational Algebra and the Relational Calculus. A 

fundamental property of such languages is closure. A very popular language implemented 

nowadays in all the RDBMS is SQL. Research towards a theory for DM and KDD focuses mainly 

on obtaining a theory, similar to Codd´s theory, giving DM and KDD a database perspective. In 

(Imielinski &  Mannila, 1996) the actual DM systems  are compared to File Systems. Thus, the 

authors refer the aim of developing Knowledge and Data Discovery Management Systems 

(KDDMS), as being similar to the existing RDBMS.  

A promising  research line is that of Inductive Databases, as presented by (De Raedt, 2003) 

and (Imielinski &  Mannila, 1996). According to the Inductive Databases framework, data and 

models are stored on the same database and can be queried at the same level. Based on this 

framework, some theoretical research and prototypes have been developed, as well as some 

research about Data Mining Languages. A different perspective is given in (Catania,  
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Maddalena,  Mazza,  Bertino &  Rizzi, 2004), who present a framework that keeps data and 

patterns separated. An algebra for DM, the K-algebra, is presented by (Gerber & Fernandes, 

2004). A more theoretical approach is the 3W-model presented in (Calders, Lakshmanan, Ng 

& Paredaens, 2006), which  is an extension of the relational algebra. (Nijssen &  De Raedt, 

2007) presents IQL, an extension of the relational calculus. 

4.2 Inductive Databases and Data Mining Languages 

“Inductive databases tightly integrate databases with data mining. The key ideas are that data 

and patterns (or models) are handled in the same way and that an inductive query language 

allows the user to query and manipulate the patterns (or models) of interest” (De Raedt, 2003, 

pp 69).  

Inductive databases research goal is to achieve the entire KDD process by the use of queries to 

an inductive database. Besides the traditional queries of the relational model, there is the 

necessity to consider inductive queries that will be used to generate and manipulate the DM 

models (Dzeroski, 2007). This can be provided in several distinct ways, and thus many 

different research lines can be found. For instance, in (Mielikäinen, 2004) the authors tries to 

clarify what distinguishes traditional databases from inductive databases, arguing that it is the 

ability of the second to rank or to grade queries. According to this line of research, queries 

consist of constraints and the aim is to develop a language of patterns and a set of constraints 

that patterns must satisfy.  

An inductive database should provide the following features (Bonchi, Giannotti, Lucchesse, 

Orlando, Perego & Trasarti, 2007): 

• Coupling with a database management system: 

o Capability for retrieving data of interest; 

o Data and patterns on the same DBMS; 

• Expressiveness of the query language: 

o High-level vision of the pattern discovery system similar to the high-level vision 

of the DBMS; 

• Efficiency of the mining engine: 

o Capability for efficient query response time; 

• Graphical user interface: 

o Capability for pattern visualization and existence of navigation tools. 
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The Inductive query language is a fundamental issue to consider in the research. Two different 

approaches can be found in the literature: 

• Definition of special purpose languages, presented in section 4.2.1; 

• Using just standard SQL, presented in section 4.2.2. 

4.2.1 Special Purpose Languages 

The definition of special purpose languages was the research line chosen by several 

researchers. There is a line of research focusing on the definition of SQL extensions. There are 

also some languages based on XML. Logic-based languages can also be found. Several 

approaches are included in the literature. Following, some examples considered as the most 

relevant are presented, SQL-based languages in section 4.2.1.1, XML-Based languages in 

section 4.2.1.2, and Logic-Based languages in section 4.2.1.3. 

4.2.1.1 SQL-Based Languages 

A Data Mining Query Language, DMQL, is presented in (Han, Fu, Wang, Koperski & Zaiane, 

1996). DMQL has a similar syntax to that of SQL. It allows defining the data to be mined, the 

kind of knowledge to be discovered, the inclusion of background knowledge, and the definition 

of thresholds. The kind of knowledge to be mined concerns different types of rules, for 

instance, association rules and classification rules. 

Another approach is presented  in (Meo, Psaila & Ceri, 1998). The MINERULE operator, which 

is an extension of SQL and has got a similar syntax to that of SQL, is presented. The operator 

mines for association rules, allowing the definition of groups to which mining is applied.  

MSQL is presented in (Imielinski & Virmani, 1999). The language also has got similar syntax to 

that of SQL, and mines for rules. MSQL has got two main commands, namely, GetRules and 

SelectRules. GetRules generates rules from data and SelectRules queries a pre-existing 

database. The problem of providing little support to the pre-processing and pos-processing 

phases of the KDD process is common to all of these languages (Botta,  Boulicaut,  Masson &  

Meo, 2004).  

A language supporting pre- and post- processing phases is presented in (Kramer, Aufschild, 

Hapfelmeier, Jarasch, Kessler, Reckow, Wicker & Richter, 2006), and it is a component of 

SINBAD system. It consists of an extension of SQL, and several operators are defined. For 

instance, the operator extend add as is used to add the results of data mining operations as 

new attributes to a relation, and the operator feature select allows the selection of tuples in a 
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relation by defining specific conditions. The authors sustain that the defined language can 

handle the pre-processing techniques discretization and feature selection, as well as the data 

mining techniques pattern discovery, clustering and classification, but there is no clear 

indication about the supported models. 

SPQL (Simple Pattern Query Language) is presented in (Bonchi, Giannotti, Lucchesse, Orlando, 

Perego & Trasarti, 2007). The language has got similar syntax to that of SQL, while the mining 

is made with the clause TRANSACTION. The language mines for frequent patterns, and 

handles the pre-processing phase. The language serves as the base for a complete constraint 

based querying system, ConQuesSt, which is a human-guided, interactive and iterative system 

for pattern discovery.  

Just to give a glance at the syntax of some of the presented data mining query languages, an 

example is given in Table 4 that allows a comparison between them. The language that is a 

component of the SINBAD system is not included because there is no sufficient information 

about the language syntax. SPQL is not included since this language does not allow 

classification rules.  

Analyzing the presented languages, it can be concluded that all of them have limitations on the 

types of models they support, and that more research is needed in this area. 
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Table 4 – Comparison of SQL-Based languages syntax 

Schema: student(id,gender,age,nenroll,grant,grade) 

Classification Rules for grade in consequent 

Having grade<10; support>0.1; confidence>0.2 

DMQL use database school 

find classification rules as Classification Rules 

according to grade 

Related to gender, age, nenroll, grant 

From student 

Where student.grade<10 

With support threshold > 0.1 

With confidence threshold > 0.2 

MineRule 

 

MINE RULE ClassificationRules AS  

SELECT DISTINCT gender, age, nenroll, grant AS BODY, grade AS HEAD 

FROM student 

WHERE grade<10 

EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2 

MSQL 

 

GetRules (student) 

Into ClassificationRules 

Where consequent is {(grade<10)} 

and body in {( gender=*), (age=*), (nenroll=*), (grant=*)} 

and confidence > 0.2 

and support > 0.1 

 

4.2.1.2 XML-Based Languages 

KDDML, which stands for KDD Markup Language, consists of a middleware language and 

system, as expressed by the authors in (Romei,  Ruggieri &  Turini, 2006). The language is 

entirely based in XML standards, including query syntax, data, and model representations. 

Queries consist of XML documents and operations consist of XML tags. According to the 

presented examples, the kinds of models that are dealt by the system are trees, clusters and 

rules. 

Another example of an XML-based system, named XDM (XML for Data Mining), is presented in 

(Meo & Psaila, 2006). The basic idea consists of definitions of two concepts: Data Item, which 
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is a data/patterns container, and Statement, which is a description of an operator application. 

The aim of the system is the adoption of XML in the inductive database framework. The 

presented examples include association rules and clusters. 

4.2.1.3 Logic-Based Languages 

In (De Raedt, 2002) it is presented a constraint logic programming language, named RDM, 

which stands for Relational Database Mining, developed to support DM. The language is 

embedded within Prolog. In this research, examples are presented for association rules and 

experiments were made on graph structures.  

4.2.2 Languages Using Standard SQL 

Several researchers chose a different approach. Using this approach, the inductive database 

can be queried using standard SQL. This approach has got advantages over the approach of 

using special-purpose DM languages concerning extensibility and flexibility. An example, is the 

research presented in (Boulicaut,  Klemettinen &  Mannila, 1999), where the principle is 

demonstrated for association rules. In (Sarawagi,  Thomas &  Agrawal, 2000) the same 

principle is used considering that association rules and performances of several alternatives 

are compared, by means of distinct SQL versions (SQL92 and SQL-OR). Using only basic SQL3 

constructions and functions, Jamil shows that any object relational database can be mined for 

association rules (Jamil, 2004). In (Rantzau, 2004) approaches based on SQL-92 are 

investigated, and a new approach named Quiver  is presented; this approach employs 

universal and existential quantifiers to find frequent itemsets. In (Calders,  Goethals &  Prado, 

2006) the authors propose extensions of RDBMS and introduce the notion of virtual mining 

views, which can be queried since they are traditional relational relations (views). Using 

association rules and frequent itemsets as an example, they show that the user can query 

mining results by using only SQL. Trying to overcome the burden of the use of a limited type of 

models, in (Fromont,  Blockeel &  Struyf, 2007) the authors investigate how this approach can 

be used for models such as decision trees. 

4.3 Data Mining Integration with Relational Databases 

The presented languages are part of bigger projects that intend to develop a complete system 

in order to incorporate the entire KDD process. The same goes for the projects using standard 

SQL. The common aim of all the presented projects and, in general, of research in the area of 
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inductive databases is, undoubtedly, to achieve the KDDMS referred in (Imielinski &  Mannila, 

1996), that allows the high-level abstraction present on the RDBMS, and that integrates the 

complete KDD process.  

The importance of KDDMS is similar to the importance of RDBMS. RDBMS released users from 

the burden of becoming aware of the technical details of file systems. This was achieved by 

means of physical and logical independence between data and applications. This fact allowed 

final business users to put ad-hoc questions directly to the systems, thus making systems truly 

available for them. 
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5 Query-By-Example Languages 

Codd’s relational model for databases (Codd, 1970) has been adopted long ago in 

organizations. In relational databases, data is stored in tables also named as relations. A set of 

relations forms a database. The description of the database is known as the Database Schema. 

In Figure 8 an example of a database schema is presented. The considered database stores 

data from students’ enrollment in exams and their respective grades in a higher education 

institution. The success of Codd’s relational model for databases led to the development of 

several languages that allow data manipulation and that also allow obtaining quick answers to 

ad-hoc business questions through queries on the data stored in databases.  

Initially, two formal languages were defined for relational databases: Relational Algebra and 

Relational Calculus (Codd, 1970; Codd, 1971). Since that time, several languages were 

developed in order that users could access data stored in databases. Query-By-Example (QBE) 

languages were developed with success. Since the first developments (Zloof &  de Jong, 1977; 

Zloof, 1977; Zloof, 1975), many advances occurred in the area, and the philosophy behind 

QBE is being applied in several distinct areas (Braga, Campi, Ceri & Spoletini, 2007; Ferreira, 

Cruz & Henriques, 2009; Gokhale & Aslandogan, 2003; Malerba, Appice & Vacca, 2002; 

Papadias &  Sellis, 1995; Sweets, Pathak & Weng, 1998). QBE languages are nowadays 

available in several RDBMS. Those languages allow business users to directly manipulate data 

without the need of developing programming skills. It can be said that a QBE language is 

business oriented, and is iterative and interactive in nature since it allows obtaining answers to 

ad-hoc business questions that can be directly converted into QBE queries. Business users 

frequently pose business questions that can be answered through queries to a database. 

Those queries allow the selection of the database’s data that provide the answers to the 

referred business questions. The use of QBE languages by business users in order to directly 

obtain those answers is an usual practice in organizations nowadays.  
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Figure 8 – Relational Database Schema 

 

5.1 General Notions 

Query-By-Example are declarative, also called nonprocedural or very high level languages. By 

using this type of languages the user defines “what s/he wants to do” instead of defining “how 

to do it”, which is typical of imperative languages. According to Zloof, Query-by-Example is: “a 

high-level database management language that provides a convenient and unified style to 

query, update, define, and control a relational database. The philosophy of Query-by-Example is 

to require the user to know very little in order to get started and to minimize the number of 

concepts that s/he subsequently has to learn in order to understand and use the whole 

language.” (Zloof, 1977 – pp 324). In this type of languages, queries are presented in the form 

of skeleton tables showing, as example, the necessary tables and corresponding columns that 

are necessary to answer the business questions linked to each query (Figure 9).  

 

 

 

STUDENT (StudentID, Student Name, Student Gender, ProgramID, IDCard, IDCard Date, 

Birthdate, …) 

PLAN (Plan, ProgramID, CourseID, Program Year, Program Semester, #Theoretical, 

#Practical, …) 

ENROLLMENT (Ref, StudentID, ProgramID, CourseID, Enrollement Date, Year, Season, 

Semester, …) 

GRADE (Ref, Grade, Version, TeacherID, Date, Validation Date, RegistryID, …) 

REGISTRY (RegistryID, CourseID, ProgramID, Exam Type, Exam Date, Print Date, …) 

TEACHER (TeacherID, Teacher Name, Department, Rank, Qualifications, Birth Date, 

Admission Date, …) 

COURSE (CourseID, Course Designation) 

PROGRAM (ProgramID, Program Designation) 
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Table �      

Column �     

Criteria �      

     

Figure 9 – Skeleton table for a QBE language 

 

In the first line of the skeleton table, the user indicates which tables contain the necessary 

data. In the second line of the skeleton table the user indicates which columns, from each of 

the tables indicated in the first line, contain the necessary data. In the third column of the 

skeleton table the user will be able to define different criteria corresponding to constraints on 

the data.  

QBE languages allow obtaining answers to ad-hoc business questions. Those business 

questions are converted into queries to the system, written in QBE language. Following, some 

basic examples of business questions and corresponding queries in QBE are presented, in 

order to a better understanding. The examples are based on the relational schema presented 

in Figure 8. The presented business questions were considered having in mind that different 

types of queries were involved. Query 1 involves data from only one table in the DB. Query 2 

involves data from more than one table in the DB. Query 3 involves only one criterion. Query 4 

involves more than one criterion. 

 

Business Question 1 

Obtaining the list of teachers’ qualifications. 

QBE query 1 

There is only one table containing the necessary data, namely TEACHER. The 

necessary columns are: Teacher name and Qualifications. The query is presented in 

Figure 10 and the obtained result/answer is presented in Figure 11. 
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 Q1:    

Table �  TEACHER TEACHER   

Column � Teacher Name Qualifications   

Criteria �      

     

Figure 10 – QBE query 1 

Obtained Result/Answer 1 

  

Figure 11 – QBE query 1 result/answer 

 

 

Business Question 2 

Obtaining the list of students’ grades for each course. 

QBE query 2 

Tables and corresponding columns containing the necessary data are: column Course 

Designation from table COURSE, column Student Name from table STUDENT, and 

column Grade from table GRADE. There are no criteria to be defined. The query is 

presented in Figure 12 and the obtained result/answer is presented in Figure 13. 

 

 Q2:    

Table �  COURSE STUDENT GRADE  

Column � Course Designation Student Name Grade  

Criteria �      

     

Figure 12 – QBE query 2 
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Obtained Result/Answer 2 

 

Figure 13 – QBE query 2 result/answer 

 

 

 

Business Question 3 

Obtaining the list of students’ grades by course, from Season NM and from semester 

2. 

QBE query 3 

Tables and corresponding columns containing the necessary data are: column Course 

Designation from table COURSE, column Student Name from table STUDENT, column 

Grade from table GRADE, and columns Season and Semester from table 

ENROLLEMNENT. There are two criteria to consider: Season = “NM” and Semester = 

2. The query is presented in Figure 14 and the obtained result/answer is presented in 

Figure 15. 

 

 Q3:     

Table �  COURSE STUDENT GRADE ENROLLEMENT ENROLLEMENT 

Column � Course 

Designation 

Student 

Name 

Grade Season Semester 

Criteria �     = NM = 2 

      

Figure 14 – QBE query 3 
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Obtained Result/Answer 3 

 

Figure 15 – QBE query 3 result/answer 

 

 

Business Question 4 

Obtaining the list of students’ grades by course, from Seasons NM and RE, both from 

semester 1. 

QBE query 4 

Tables and corresponding columns containing the necessary data are: column Course 

Designation from table COURSE, column Student Name from table STUDENT, column 

Grade from table GRADE, and columns Season and Semester from table 

ENROLLEMNENT. The following criteria must be defined: (Season = “NM” and 

Semester = 1) or (Season = “NM” and Semester = 1). The query is presented in 

Figure 16 and the obtained result/answer is presented in Figure 17. 

 

 Q4:     

Table �  COURSE STUDENT GRADE ENROLLEMENT ENROLLEMENT 

Column � Course 

Designation 

Student 

Name 

Grade Season Semester 

Criteria �     = NM = 1 

    = RE = 1 

Figure 16 – QBE query 4 
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Obtained Result/Answer 4 

 

Figure 17 – QBE query 4 result/answer 

 

The simplicity and user-friendliness of QBE languages make them popular languages amongst 

business users of database systems, freeing them from the burden of the technical details. 

QBE languages are widely used across organizations’ information systems and are important 

tools for business users accessing data stored in databases, helping in the decision making 

process. 

5.2 Relational Calculus and Query-By-Example Languages  

QBE languages are connected with relational calculus, which is a nonprocedural language. 

Relational calculus is based in a branch of mathematical logic called predicate calculus (Codd, 

1971). Relational calculus allows the definition of database queries in a declarative way. There 

are two variations of relational calculus, namely, the tuple relational calculus, and the domain 

relational calculus. Both are formally equivalent (Date, 2004). Hereby we will use tuple 

relational calculus. In this context, a relational calculus query (Q) is a set of database tuples (t) 

satisfying some characteristics defined with a proposition (p): 

Q = {t|p(t)}. 

All QBE queries can be converted into relational calculus queries. Following, in Figure 18, are 

presented the relational calculus propositions corresponding to each of the QBE queries from 

Section 5.1. 
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Figure 18 – Relational calculus propositions for Q1 and Q2 

 

Q1: {t.Teacher Name, t.Qualifications | TEACHER(t)} 

Q2: {c.Course Designation, s.Student Name, r.Grade | COURSE(c) AND 

STUDENT(s) AND REGISTRY (r)} 

Q3: {c.Course Designation, s.Student Name, r.Grade, e.Season, 

e.Semester | COURSE(c) AND STUDENT(s) AND REGISTRY (r) AND 

Season = “NM” AND Semester = 2} 

Q4: {c.Course Designation, s.Student Name, r.Grade, e.Season, 

e.Semester | COURSE(c) AND STUDENT(s) AND REGISTRY (r) AND 

((Season = “NM” AND Semester = 1) OR (Season = “RE” AND 

Semester = 1)} 
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PART III – RESEARCH APPROACH AND RESEARCH 
OUTPUTS 

 

 “Science is a convention, related to societal norms, expectations, values, etc. In its most 

conceptual sense, it is nothing more than the search for understanding. It would use whatever 

tools, techniques and approaches that are considered appropriate for the particular subject 

matter under study.” (Hirschheim, 1985 – pp 13). Each scientific discipline has its own 

appropriated and accepted approaches to research. Information systems (IS) is not an 

exception, and several approaches are being used and accepted in the field. In the research 

hereby presented, the approach was made using the framework of Design Science Research 

(DSR) that has a growing acceptance by the IS scientific community. The DSR for IS research 

is presented in Figure 19. 

 

Figure 19 – Information Systems (IS) research framework (Hevner, 2004 – pp 80) 

 

Here, in part III of this thesis, the research approach that has been adopted to conduct the 

research and the obtained research outputs are presented. It will start with the definition of the 

research problem, in chapter 6. Following, it is introduced the research framework that better 
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suits the stated research problem, in chapter 7. In chapter 8, the research methodology is 

presented. Chapter 9 brings in the concept of inductive data warehouse, presenting an 

example of an inductive data warehouse, in Section 9.1, and a generalization, in Section 9.2. 

Query-Models-By-Example language is introduced in chapter 10, presenting queries on data, in 

Section 10.1, queries on models, in Section 10.2, and queries on models and data, in Section 

10.3, and relational calculus and QMBE, in Section 10.4. Part III concludes, in chapter 11, 

with the Query-Models-By-Example evaluation, doing a conceptual evaluation, in Section 11.1, 

and presenting the questionnaire to business users in Section 11.2, and concluding with some 

brief considerations, in section 11.3. 
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6 Research Problem 

Organizations compete in environments whose complexity increases in a daily basis. 

Consequently, there are many demands that organizations must answer in time and 

adequately in order to survive and gain competitive advantage in those complex environments. 

In this context, computerized Decision Support Systems (DSS), in particular Business 

Intelligence (BI) systems, play an important role in order to improve decision making and thus 

conducting organizations’ actions. BI systems are gaining momentum each day in 

organizations and have a fundamental role in these issues (Turban, Aroson, Liang & Sharda, 

2007; Turban, Sharda, Aroson & King, 2008). 

The usage of Data Mining (DM) tools in BI is increasing. The current notion of BI was coined by 

Gartner in 1989. KDD-1989, held in Chicago in August, 20th, is widely recognized as the first 

important event in the area of DM. This event as taken place regularly since then13, and is 

nowadays the most important DM conference worldwide. Also Fayyad’s book “Advances in 

knowledge discovery and data mining”, published in 1996, was a landmark in the emergence 

of DM.  Despite BI and DM having emerged roughly in the same epoch, they have different 

roots and as a consequence have significantly different characteristics (Kriegel, Borgwardt, 

Kröger, Pryakhin, Schubert & Zimek, 2007; Piatetsky-Shapiro, 2007). DM came up from 

scientific environments, thus it is not business oriented. DM tools still demand heavy work in 

order to obtain the intended results, hence needing the knowledge of DM specialists to explore 

its full potential value. On the contrary, BI is rooted in industry and business (Yermish, Miori, 

Yi, Malhotra & Klimberg, 2010), thus it is business oriented. As a result, BI tools are user-

friendly and can easily be accessed and manipulated by business users. 

From the literature review, presented in part II, it is evident that the majority of BI tools are 

directly manipulated by business users, allowing them to explore their potential value in a more 

effective way. The reason for this is related with the fact that BI tools are user-friendly, iterative, 

interactive, business oriented, and oriented to business activities. DM is an exception 

(McKnight, 2002; McKnight, 2003). Despite its usage in BI systems is increasing day by day, 

DM models are not directly manipulated by business users depending on reports from DM 

specialists. This way, business users could be unable to extract the potential business value 

contained in DM models. The complexity of DM models, as opposite to other BI tools, has been 

                                                 

13 Source http://www.sigkdd.org/conferences.php, accessed 2/09/2011 
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identified as the key factor for this. From the literature review, it is also given evidence of the 

necessity to develop tools for DM that present the same characteristics of BI tools, namely 

being user-friendly, interactive, iterative, oriented to business users, and oriented to BI 

activities. Using DM tools possessing these characteristics, it will be possible that those tools 

can be directly manipulated by business users. This is aligned with the roots of DM and 

Knowledge Discovery in Databases (KDD) as stated in (Brachman & Anand, 1996), where KDD 

is presented as an iterative and interactive process, with many decisions being made by the 

user.  

Quoting McKnight:  

“much of data mining has been relegated to the domain of a special breed of expert, 

often holding a Ph.D. in statistics, mathematics or some scientific discipline. The 

mining process currently deployed in many organizations is not only time-consuming 

due to the challenge of the tools and the semantic gap between the front line and the 

statisticians; it is also non iterative in nature. Discovered nuggets flow from the miners 

to the front line and are only selectively interesting and actionable. (…) Mining tools 

that are interactive, visual, understandable, well- performing and work directly on the 

data warehouse/mart of the organization could be used by front-line workers for 

immediate and lasting business benefit.” (McKnight, 2002) 

 

Realizing the importance of the aspects mentioned above, the recognition of this reality 

establishes the foundations for the research presented in this thesis. Binding DM to final 

business users of BI systems is considered a pertinent contribution. Accordingly, and based in 

the literature review presented in chapters 2 to 5, the research problem has been identified as: 

 

Although final business users of BI systems directly access and 

manipulate data through the use of BI tools, thus being able of 

exploring the potential business value contained in databases 

(operational and data warehouses), they do not directly access and 

manipulate DM models and consequently the full potential business 

value hidden in DM models could be not completely explored. 

(Figure 20). 
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Figure 20 – Research Problem 

 

The presented problem arises from the business needs existing in environments where BI 

systems include DM usage. The solution should achieve the following objectives: 

• To allow business users to directly access and manipulate DM models: 

• To be iterative; 

• To be interactive; 

• To work directly on DM models; 

• To be easy to understand. 
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7 Research Framework 

Design science research (DSR) was selected as the most appropriated to be used in the project 

described in this thesis. In (Hevner, March, Park & Ram, 2004; March & Smith, 1995) it is 

stated that DSR is rooted in the work of Simon (Simon, 1981) that presents the epistemological 

principles of the new sciences: The Sciences of the Artificial. DSR consists of two basic 

activities that are BUILD and EVALUATE, and its goal is UTILITY. The research is addressed 

through the building and evaluation of artifacts/outputs designed in order to meet identified 

business needs. The research problem or business needs are identified through the analyses 

of the considered environment, studying the interactions of the three IS components, namely 

people, organizations, and technologies, thus ensuring relevance. Artifacts are built based on 

the knowledge base (foundations and methodologies) of the field of study, and evaluated in 

order to assess, justify, and evaluate their adequacy. In the evaluation phase, two important 

questions concerning the artifact/output should be answered, namely, “Does it work?” and “Is 

it an improvement?”. 

After many years of behavioral science domination in Information Systems (IS) research, 

design science is gaining popularity in the field (Carlsson, 2006; Hevner & Chatterje, 2010; 

Hevner et al, 2004; March & Smith, 1995; March & Storey, 2008; McKay & Marshall, 2005). 

In 2008 a special landmark occurred with the publication, in MIS Quarterly, of a special issue 

on DSR in the IS discipline. This special issue includes five important articles describing the 

application of DSR (Abbasi & Chen, 2008; Adomavicius, Bockstedt, Gupta & Kauffman, 2008; 

Lee, Wyner & Pentland, 2008; Parsons & Wand, 2008; Pries-Heje & Baskerville, 2008). 

Based on the IS research framework presented in (Hevner et al, 2004), it is introduced in 

Figure 21 the research framework that supported the research presented in this thesis. 
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Figure 21 – Research Framework 

 

The research problem, presented in chapter 7, was identified considering the constraints 

involved in an environment of DM specialists and business users of BI systems that include 

DM. The analysis of the knowledge base, formed by relational model for databases, inductive 

databases and DM languages, and Query-By-Example (QBE) languages, led to the selection of 

the Applicable Knowledge. The BUILD phase led to two outputs: Inductive Data Warehouse 

(IDW) concept and Query-Models-By-Example (QMBE) language specification. The EVALUATE 

phase was two-folded: a conceptual evaluation was formulated, and a questionnaire to 

business users was undertaken. The research methodology is presented in chapter 8. 

The Design Science Research Methodology includes six steps/activities (Hevner & Chatterje, 

2010 – pp 28-30):  

• “ACTIVITY 1 

Problem identification and motivation. Define the specific research problem and 

justify the value of a solution”; 

• “ACTIVITY 2 

Definition of the objectives for a solution. Infer the objectives of a solution from the 

problem definition and knowledge of what is possible and feasible”; 

• “ACTIVITY 3 
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Design and development. Create the artifact”; 

• “ACTIVITY 4 

Demonstration. Demonstrate the use of the artifact to solve one or more instances 

of the problem”; 

• “ACTIVITY 5 

Evaluation. Observe and measure how well the artifact supports a solution to the 

problem”; 

• “ACTIVITY 6 

Communication. Communicate the problem and its importance, the artifact, its 

utility and novelty, the rigor of its design, and its effectiveness to researchers and 

other relevant audiences”. 

All of these steps/activities were carried out in the research presented in this thesis. Activities 

1 and 2 came up from the literature review, and are presented in chapter 6. Activity 3 is 

presented in chapter 8. Activity 4 is presented in chapters 9 and 10. Activity 5 is presented in 

chapters 11, 12 and 13. Activity 6 is achieved with this thesis and the publications listed in 

Appendix C. 
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8 Research Methodology 

One of the main aspects of BI systems is that its user-friendly tools make systems truly 

available to final business users. As presented above, powerful analytical tools, such as DM, 

are still too complex and sophisticated for the average consumer of BI systems. In (McKnight, 

2002) it is stated that bringing DM into the front line business personnel will increase their 

potential of attaining BI’s high potential business value. Another fundamental issue that is 

pointed out as important is the capability of DM tools to be interactive, visual, and 

understandable, to work directly on the data, and to be used by front line workers for 

intermediate and lasting business benefits. In this thesis it is considered that the framework of 

inductive databases, introduced in chapter 4 as a way to DM integration with relational 

databases, can also be a way to achieve the goal of a full integration of DM with BI, and 

leading to the end of, the already referred, DM isles in BI systems.  

Taking these issues into consideration, as well as the research problem and the research 

framework, an architecture that allows an effective usage of DM by business users in BI 

systems, in order to conduct to DM integration with BI, was envisaged. This architecture 

should: 

• bring DM into the front line business users; 

• be iterative, visual, and understandable by front line business users; 

• work directly on data. 

It is considered that this can be achieved through a DM language that business users can 

understand and, consequently, use it to manipulate and query both DM models and data. 

Following these guidelines, an architecture for integration of DM with BI is presented in Figure 

22, as an extension of the one that is presented in Figure 5, and intends to conduct to an 

effective usage of DM in BI. As far as we know, there is no similar architecture in the literature. 

This architecture implements the concept of Inductive Data Warehouses (IDW), which is a data 

warehouse storing data and data mining models at the same level, this is to say, both data and 

DM models are stored in the data warehouse tables and can be accessed and manipulated in 

the same way. It includes two additional modules: DM module and a new language named 

Query-Models-By-Example (QMBE). 

The DM module extracts data from the Data Warehouse (DW), generates the DM models, and 

feeds the DW with DM models, storing them in tables of the DW. There is the possibility to 
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include as many models as needed by the user, and new models can be included just by 

adding new tables. 

QMBE was developed and implemented as an extension of QBE languages, presented in 

chapter 5. Using QMBE the user is, thus, able to interact directly with the models, and to 

construct queries, including different criteria. Table 5 presents several business questions 

regarding DM models commonly posed by business users. All the business questions can be 

converted into queries to the system, defined in the QMBE language. The language has two 

important characteristics, which are interactivity, and iterativeness. These characteristics are 

inherited from QBE languages upon which QMBE is extended. The novelty of the QMBE 

language is that it is oriented to business users and to BI processes. This kind of approach 

allows business users to directly access and manipulate data and models, instead of relying in 

reports from DM specialists. This will bring DM to the front line business users, alike the other 

BI tools, thus allowing DM integration with BI. 

 

 

Figure 22 – Architecture for integration of Data Mining with Business Intelligence  
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Table 5 – Examples of business questions involving DM models 

Queries on models Queries on models and data 

What are the characteristics of “good” students? Select the potential students that can be “good” 

students. 

What are the characteristics of “bad” students? Select the potential students that can be “bad” 

students. 

What are the characteristics of the students that do 

not conclude the grades according to initial schedule? 

Select the potential students that cannot conclude the 

grades according to initial schedule. 

Are there different types of students in the school?  

 

 

The project was developed using examples from a Portuguese Higher Education Institution 

(HEI). The presented architecture was implemented as a prototype. It was developed so that it 

is according to the inductive database framework, providing the features indicated in (Bonchi, 

Giannotti, Lucchesse, Orlando, Perego & Trasarti, 2007), and that were already indicated 

above in this thesis. Following, the indicated features and the respective way they were 

achieved in the prototype implementation are presented, namely: 

• coupling with a database management system, since data and DM models are stored 

in the same database (the data warehouse) at the same level, namely in tables of the 

database;  

• expressiveness of the query language, since business questions that can be posed by 

business users to the system can be converted into queries in the query language 

(QMBE); 

• efficiency of the mining engine, which is guaranteed by the selection of the application 

used to generate the DM models; and 

• the existence of a graphical user interface.  

The DW was planned and implemented based on the multidimensional model presented in 

(Kimball & Ross, 2002). According to this model, two types of tables are considered in the DW: 

a fact table, and several dimension tables. The fact table is the main table in the dimensional 

model and stores measures of the business performance. The dimension tables stores the 

relevant business descriptors, and addresses how data will be analyzed. The business process, 

or fact, considered as adequate for the problem under study in this research, was students’ 

enrollment for examination. Several dimensions were also considered as adequate for the 
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problem under study: student, teacher, course, program, season, and level. Each one of these, 

fact and dimensions, gave rise to a table of the DW. Thus, the DW tables are: FACT TABLE, 

DIMENSION STUDENT TABLE, DIMENSION TEACHER TABLE, DIMENSION COURSE TABLE, 

DIMENSION PROGRAM TABLE, DIMENSION SEASON TABLE, AND DIMENSION LEVEL TABLE. 

The DW schema is presented in Figure 23.  

 

 

Figure 23 – DW schema used in the research 

 

Following, selected data was extracted from the DW. This data was processed and transformed 

in order to apply DM. DM was applied, using an open source DM tool, Weka14, in order to 

obtain the DM model. At this point, classification rules were generated using an appropriate 

algorithm. 

The IDW framework was used, thus the obtained DM models were stored on the DW in a 

specific table. More details are given in chapter 9.  

                                                 

14 "Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or 

called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and 

visualization. It is also well-suited for developing new machine learning schemes. Weka is open source software issued under the GNU General 

Public License.", in  http://www.cs.waikato.ac.nz/ml/weka/, accessed 2/09/2011 

FACT TABLE (Season ID, Course ID, Program ID, Level ID, Student ID, Teacher ID, Counter) 

DIMENSION STUDENT TABLE (Student ID, Student name, Student Street, Student Zip code, Student Parish, 

Student Municipality, Student Area, Student Nationality, Student Gender, Student Age, Student 

qualification, Student admission type, Student admission level, Student secondary studies, 

Student secondary level (K12), Student secondary level (K11), Student secondary level (K10), 

Attendance type, Social scholarship?, Erasmus scholarship?) 

DIMENSION TEACHER TABLE (Teacher ID, Teacher name, Teacher rank, Teacher qualification, Teacher 

years on duty, Teacher age) 

DIMENSION COURSE TABLE (Course ID, Course designation, Department, #of theoretic hours, #of practical 

hours, #of theoretical-practical hours, Optional?, ECTS credits, Course semester, Course year) 

DIMENSION PROGRAM TABLE (Program ID, Program designation) 

DIMENSION SEASON TABLE (Season ID, Season description, Season Semester, Season Year) 

DIMENSION LEVEL TABLE (Level ID, Level description) 
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QMBE language, described in chapter 10, was implemented and tested. The database 

management system (DBMS) used for the DW implementation was used to do that. The used 

DBMS contains the implementation of a QBE language that was extended in order to 

implement QMBE. The DBMS engine, including some additional programming code, managed 

the operationalization of the process. 

The language was then evaluated. Firstly, a conceptual evaluation was done (Section 11.1). 

Next, the language was evaluated by business users who already used DM tools in BI systems, 

using a questionnaire. The questionnaire development and the analysis of the results are 

presented in Section 11.2. 
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9 Inductive Data Warehouse 

“Inductive databases tightly integrate databases with data mining. The key ideas are that data 

and patterns (or models) are handled in the same way, and that an inductive query language 

allows the user to query and manipulate the patterns (or models) of interest” (De Raedt, 2003 

– pp 69). Considering that DM models are stored in the database, thus stored in tables, they 

can be accessed and manipulated similarly to data. The inductive databases (IDB) framework 

was used in this research.  

In the context of BI there can be said that an IDB contains both the DW and the knowledge 

base (KB), that is to say, the DM models. This way we can refer to this database as an 

Inductive Data Warehouse (IDW). Thus, an IDW is a DW that includes data and DM models, 

both stored in tables of the DW. This is an important concept in the realm of this research, 

since it focuses on making data mining available to business users. In an IDW data and DM 

models can be accessed by business users in the same way as data. The DM models are 

stored in the DW in specific tables: the model tables. It is possible to include several model 

tables, one for each generated model.  

The presentation of the concept of IDW will be two folded. Firstly, the example presented in the 

previous section will be used. Next, a generalization will be made. 

9.1 An example of an inductive Data Warehouse 

In the presented example, the generated DM model corresponds to rules, since these were 

considered adequate for the problem under study. A rule is an IF-THEN expression of the form 

IF antecedent THEN consequent, written as: 

antecedent => consequent 

where antecedent and consequent are propositions of the form 

V1 cond1 C1  AND … AND VN condN CN 

where V1 , …, VN are variables; C1 , …, CN are constants; and cond1 , …, condN stands for < or > 

or = or <= or >=. 

In the case of classifications rules, the consequent is of the form  

Vi condi Ci 

where Vi is the target variable; Ci is a constant; and condi stands for < or > or = or <= or >=. 
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In this research, the classification rules were generated using Weka’s class named as 

weka.classifiers.rules.JRip. “This class implements a propositional rule learner, Repeated 

Incremental Pruning to Produce Error Reduction (RIPPER), which was proposed by William W. 

Cohen as an optimized version of IREP.” 15 The algorithm is briefly described in appendix D. 

At this point of the research the authors made some decisions. The first one was that only 

classification rules are addressed at that moment. This is due to the fact that the application 

domain focuses mainly on two DM tasks: classification and clustering. Classification can be 

addressed through classification rules, which can be easily understand by business users. 

Thus, classification rules were used in this research. Another decision was that the quality of 

the generated models was not a concern during this research, since this was not considered as 

an important issue to address at the moment.  

The obtained DM model, included in appendix E, was then stored in a table of the database, 

named as MODEL TABLE. Each line of MODEL TABLE contains one rule. The schema for the 

model table considering rules was defined as follows: the first column corresponds to the rule 

identifier; the next two columns are rule confidence and support; the following column 

corresponds to the target DM variable; variables selected for data mining form the rest of the 

table columns, each variable corresponding to one column. The MODEL TABLE schema is 

presented in Figure 24. Joining the DW schema with the MODEL TABLE schema we get the 

IDW schema that is presented in Figure 25. Each rule is introduced into the MODEL TABLE as 

a line of the table. Data is introduced in a cell of the table whenever there is a constraint in the 

rule for the correspondent variable. Figure 26 contains examples of rules and their 

corresponding representation in the MODEL TABLE. This table, which stores DM models, is, in 

this context, similar to any other table belonging to the DW and thus DM models can be 

accessed and manipulated at the same level than data. 

 

                                                 

15 in http://classes.engr.oregonstate.edu/eecs/winter2003/cs534/weka/weka-3-3-4/doc/weka.classifiers.rules.JRip.html, accessed 

2/09/2011 
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Figure 24 – Model Table schema used in the research 

 

 

Figure 25 – IDW schema used in the research 

 

 

MODEL TABLE (Rule ID; Confidence; Support; Level description; Season ID; Season Semester; Season Year; 

Course ID; Department; #of theoretic hours; #of practical hours; #of theoretical-practical 

hours; Optional?; ECTS credits; Student Area; Student Nationality; Student Gender; Student 

Age; Student qualification; Student admission type; Attendance type; Program ID; Teacher 

rank; Teacher qualification; Teacher years on duty; Teacher age) 

FACT TABLE (Season ID, Course ID, Program ID, Level ID, Student ID, Teacher ID, Counter) 

DIMENSION STUDENT TABLE (Student ID, Student name, Student Street, Student Zip code, Student Parish, 

Student Municipality, Student Area, Student Nationality, Student Gender, Student Age, Student 

qualification, Student admission type, Student admission level, Student secondary studies, 

Student secondary level (K12), Student secondary level (K11), Student secondary level (K10), 

Attendance type, Social scholarship?, Erasmus scholarship?) 

DIMENSION TEACHER TABLE (Teacher ID, Teacher name, Teacher rank, Teacher qualification, Teacher 

years on duty, Teacher age) 

DIMENSION COURSE TABLE (Course ID, Course designation, Department, #of theoretic hours, #of practical 

hours, #of theoretical-practical hours, Optional?, ECTS credits, Course semester, Course year) 

DIMENSION PROGRAM TABLE (Program ID, Program designation) 

DIMENSION SEASON TABLE (Season ID, Season description, Season Semester, Season Year) 

DIMENSION LEVEL TABLE (Level ID, Level description) 

MODEL TABLE (Rule ID; Confidence; Support; Level description; Season ID; Season Semester; Season Year; 

Course ID; Department; #of theoretic hours; #of practical hours; #of theoretical-practical 

hours; Optional?; ECTS credits; Student Area; Student Nationality; Student Gender; Student 

Age; Student qualification; Student admission type; Attendance type; Program ID; Teacher 

rank; Teacher qualification; Teacher years on duty; Teacher age) 
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Rule 8: 

(Program ID >= 3200) AND (Course ID >= 2218) AND (Course ID <= 2439) AND (Student Gender = F) AND 
(Teacher rank = Professor Adjunto) AND (ECTS credits >= 6) AND (Student Age >= 28) => Level description=Good 
 
Rule 27: 

(Student Age >= 21) and (Department = Economia) and (ECTS credits <= 4) and (Teacher years on duty >= 22) 
and (Season ID = N) => Level description=Not present 
 
Rule 32: 

(Season ID = R) and (Course ID <= 2355) and (Program ID <= 3100) and (Student Age <= 21) and (Student Area 
= BRAGA) => Level description=Not approved 
 
Model Table: 

Rule 

ID 
Confidence Support 

Level 

description 

Season 

ID 

Season 

Semester 

Season 

Year 
Course ID Department 

… 8 40,91% 66 Good       >=2218 and <=2439   

27 44,04% 109 Not present N       Economics 

32 31,18% 93 Not approved R     <=2355   

      

 

… 

Student 

qualification 

Student 

admission type 

Attendance 

type 

Program 

ID 

Teacher 

rank 

Teacher 

qualification 

Teacher years on 

duty 

Teacher 

age 

      >=3200 
Professor 
Adjunto 

      

            >=22   

      <=3100         
 

… 

#of theoretic 

hours 

#of practical 

hours 

#of theoretical-

practical hours 
Optional? 

ECTS 

credits 

Student 

Area 

Student 

Nationality 

Student 

Gender 

Student 

Age 

… 

 
        >=6     F >=28 

        <=4       >=21 

          BRAGA     <=21 

Figure 26 – Examples of rules and their corresponding representation in the Model Table 

 

9.2 Generalization 

Usually BI systems are supported by special databases, namely data warehouses (DW). For the 

sake of generality, consider a DW with one fact table named FACT_TABLE, and N dimension 

tables named DIMENSION_1, DIMENSION_2, DIMENSION_3, ..., DIMENSION_N. The fact 

table has one ID column, and N columns Dimension1, Dimension2, Dimension3, ..., 

DimensionN, each corresponding to one dimension table, and a column Fact. Each of the 

dimension tables has got several columns, each one corresponding to a variable that can be 

selected for DM. Consider for instance that DIMENSION_J has Mj variables, namely, IDJ, 

VarJ1, VarJ2, .., VarJI, ..., VarJMJ. 

In an IDW, DM models are stored in the database in one, or more, specific table, or tables. In 

this research only rules will be considered. Without losing generality, hereby only one table will 
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be considered and named MODEL_TABLE. The first column of the model table, ID, 

corresponds to the rule identifier. The next two columns, confidence and support, stand 

respectively for the rule confidence and for the rule support. The following column corresponds 

to the selected DM target variable that corresponds to one of the columns of one of the 

dimension tables. The L variables selected for data mining, each one corresponding to a 

column of one of the dimension tables included in the DW, form the rest of the table columns, 

namely, DMVar1, DMVar2, ..., DMVarL. Keep in mind that DMVar1, DMVar2, … DMVarL of 

MODEL_TABLE are selected from all the columns of tables DIMENSION_1, or DIMENSION_2, 

…, or DIMENSION_N. Thus, all the columns of the MODEL_TABLE are the same as some 

column of the dimension tables. In this manner MODEL TABLE is connected to the DW 

tables.The IDW general schema is presented in Figure 27.  

 

 

Figure 27 – IDW General Schema 

 

Each rule is introduced in the MODEL_TABLE as a line of the table. Data is introduced in a cell 

of the table whenever there is a constraint in the rule for the correspondent variable, and is left 

blank (NULL) elsewhere. Consider, for instance, a general rule: 

Rule I:  

DMVar1 cond1 Value1 AND ... AND DMVarK condK ValueK AND ... => DMTarget condT 

ValueT; where cond1, ..., condK, condT stands for < or > or = or <= or >=. 

 

Then the line (tuple) that corresponds to that rule is: 

(I, valueC, ValueS, condT ValueT, cond1 Value1, ..., condK ValueK, ...). 

MODEL_TABLE (ID, confidence, support, DMTarget, DMVar1, DMVar2, …, DMVarL) 

FACT_TABLE (ID, Dimension1, Dimension2, ..., DimensionN, Fact) 

DIMENSION_1 (ID1, Var11, Var12, …, Var1I, …, Var1M1) 

DIMENSION_2 (ID2, Var21, Var22, …, Var2I, …, Var2M2) 

DIMENSION_3 (ID3, Var31, Var32, …, Var3I, …, Var3M3) 

… 

DIMENSION_J (IDJ, VarJ1, VarJ2, …, VarJI, …, VarJMJ) 

… 

DIMENSION_N (IDN, VarN1, VarN2, …, VarNI, …, VarNMN) 
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New models can easily be added to the IDW by the simple introduction of model tables in the 

IDW, one for each model. 
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10  Query-Models-By-Example Language 

In the research described in this thesis, a new language, named Query Models by Example 

(QMBE) was developed as an extension of QBE languages existing in some Relational Database 

Management Systems (RDBMS). Business users are able to interact directly with the models, 

and to construct queries as a way to obtain answers to ad-hoc business questions. Business 

questions can be converted into queries to the system, defined in the QMBE language. Like in 

RDBMS QBE languages, the user will be able to define different criteria, considered significant 

to business. 

Business questions can be converted into queries in the QMBE language. To construct the 

query, the user will have to fill in a skeleton table (Figure 28).  

 

Table �      

Column �     

Criteria �      

     

Figure 28 – Skeleton table for the QMBE language 

 

The user will have to identify which are the tables, in the first line of the skeleton table; the 

corresponding columns that have the necessary data to answer the intended business question 

will have to be identified in the second line of the skeleton table. Specific criteria can be 

defined for each selected column, in the next lines of the skeleton table. More than one line 

can be considered for criteria. If criteria are defined in the same line, they are linked with AND. 

If criteria are defined in different lines, they are linked with OR.  

In this section, QMBE language is introduced. There can be considered three types of QMBE 

queries (Figure 29), namely: 

• queries on data, corresponding to traditional QBE languages; 

• queries on models, corresponding to QMBE extensions; and 

• queries on models and data, corresponding also to QMBE extensions. 

In all these three cases, examples of business questions will be presented based on the IDW 

schema from Figure 25. There will be also presented the correspondent queries in QMBE, as 

well as the answers received from the system, in response to the queries. General cases, 

based on the general IDW schema presented in Figure 27, will also be presented. The chapter 
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will conclude with the presentation of the relational calculus sentences that correspond to each 

one of those QMBE queries. 

 

 

Figure 29 – Types of QMBE queries  

10.1 Queries on data 

This type of queries corresponds to traditional QBE languages. Using this type of queries, 

business users are able to manipulate data stored in databases. The MODEL TABLE is not 

involved in this type of queries. Examples of queries using the IDW schema of Figure 25 are 

presents in section 10.1.1, and a general query using the IDW general schema of Figure 27 is 

presents in section 10.1.2. 

10.1.1 Using an example 

The presented business questions were considered having in mind that different types of 

queries were involved. Query 1 involves data from only one table in the IDW. Query 2 involves 

data from more than one table in the IDW. Query 3 involves only one criterion. Query 4 involves 

more than one criterion. 

 

Business Question 1 

Where are students from? 

QMBE query 1 

In this example, there is one table containing the necessary data, namely DIMENSION 

STUDENT table. The necessary columns are: column Student Name, and column 

Student Zip code from Dimension Student table. There are no criteria to consider. The 

query is presented in Figure 30 and the answer to this query is presented in Figure 31. 

 

 

QMBE 

Traditional QBE: 

queries on data 

Extension 1: 

Queries on models 

Extension 2:  

Queries on models 

and data 
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Table �  DIMENSION STUDENT DIMENSION STUDENT   

Column � Student Name Student Zip code   

Criteria �      

Figure 30 – QMBE Query 1 

Answer 1 

 

Figure 31 – Answer to query 1 

 

Business Question 2 

Which are students’ classifications (levels) in each course? 

QMBE query 2 

In this example, tables and corresponding columns containing the necessary data are: 

column Student Name from DIMENSION STUDENT table, column Course ID from 

DIMENSION COURSE table, and column Level description from DIMENSION LEVEL 

table. There are no criteria to consider. The query is presented in Figure 32 and the 

answer to this query is presented in Figure 33. 

 

Table �  DIMENSION STUDENT DIMENSION COURSE DIMENSION LEVEL  

Column � Student Name Course ID Level description  

Criteria �      

Figure 32 – QMBE Query 2 
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Answer 2 

 

Figure 33 – Answer to query 2 

 

Business Question 3 

Who are the students with the best classification (Level Very Good) in each course? 

QMBE query 3 

In this example, tables and corresponding columns containing the necessary data are 

the same as the ones in example 2. There is one criterion to consider: Level 

description=”Very Good”. The query is presented in Figure 34 and the answer to this 

query is presented in Figure 35. 

 

Table �  DIMENSION STUDENT DIMENSION COURSE DIMENSION LEVEL  

Column � Student Name Course ID Level description  

Criteria �    “Very Good”  

Figure 34 – QMBE Query 3 

Answer 3 

 

Figure 35 – Answer to query 3 

 

Business Question 4 

Which are the names of Not Approved students in Mathematics or Statistics courses? 
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QMBE query 4 

In this example, tables and corresponding columns containing the necessary data are: 

column Level description from DIMENSION LEVEL table, column Student Name from 

DIMENSION STUDENT table, and column Course Name from DIMENSION COURSE 

table. Criteria must be defined for column Level description and for column Course 

Name: (Level description=”Not Approved” AND Course name=”Mathematics”) OR 

(Level description=”Not Approved” AND Course name=”Statistics”). The query is 

presented in Figure 36 and the answer to this query is presented in Figure 37. 

 

Table �  DIMENSION LEVEL DIMENSION STUDENT DIMENSION COURSE  

Column � Level description Student Name Course name  

Criteria �  “Not Approved”  “Mathematics”  

Criteria � “Not Approved”  “Statistics”  

Figure 36 – QMBE Query 4 

Answer 4 

 

Figure 37 – Answer to query 4 

10.1.2 A general query 

Generally speaking, queries on data involve columns from any of the tables of the IDW, except 

the MODEL_TABLE, for instance DIMENSION_J and FACT_TABLE. Similarly, criteria can be 

defined for any column. 

 

Business Question I 

What are the data from Dimension J table that corresponds to Fact (of FACT TABLE) 

equal to a certain value (value)? 
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QMBE query I 

The query is presented in Figure 38. 

Table �  FACT_TABLE DIMENSION_J … DIMENSION_J 

Column � Fact Var11 … Var1N 

Criteria �  value    

Figure 38 – QMBE query I 

 

10.2 Queries on models 

This type of queries corresponds to an extension of traditional QBE languages. With these 

queries, business users are able to manipulate DM models stored on database tables. Example 

of queries using the IDW schema of Figure 25 are presented in section 10.2.1, and a general 

query using the IDW general schema of Figure 27 is presents in section 10.2.2. 

10.2.1 Using an example 

Clearly, only the MODEL TABLE is involved in this type of queries. The obtained answers are 

rules. Query 5 and query 7 involve all the columns from MODEL TABLE. Query 6 involves some 

of the columns from MODEL TABLE. Query 5 and Query 6 criterion involves only the DM target 

variable. Query 7 criterion involves other variable(s) than the DM target variable. 

 

Business Question 5 

What are the characteristics of Good classifications (levels)? 

QMBE query 5 

Since the user needs to know all the characteristics, all the MODEL TABLE columns 

are necessary. Criteria must be defined for column Level description: Level description 

= “Good”. The query is presented in Figure 39 and the answer to this query is 

presented in Figure 40. 
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Table �  MODEL TABLE MODEL TABLE … MODEL TABLE 

Column � Level description Course Name … Student’s Age 

Criteria �  “Good”    

Figure 39 – QMBE Query 5 

Answer 5 

 

Figure 40 – Answer to query 5 

 

Business Question 6 

What are the characteristics of Not Approved students? 

QMBE query 6 

Since the user needs to know only students’ characteristics, only the MODEL TABLE’s 

columns concerning students’ characteristics will be considered. Criteria must be 

defined for column Level description: Level description=”Not Approved”. The query is 

presented in Figure 41 and the answer to this query is presented in Figure 42. 

 

Table �  MODEL TABLE … MODEL TABLE … MODEL TABLE 

Column � Level description … Student Gender … Student’s Age 

Criteria �  “Not Approved”     

Figure 41 – QMBE Query 6 

Answer 6 

 

Figure 42 – Answer to query 6 
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Business Question 7 

Which are the rules concerning female students? 

QMBE query 7 

Since the user needs to know all the characteristics, all the MODEL TABLE’s columns 

are necessary. Criteria must be defined for column Student Gender: Student 

Gender=”F”. The query is presented in Figure 43 and the answer to this query is 

presented in Figure 44. 

 

Table �  MODEL TABLE … MODEL TABLE … MODEL TABLE 

Column � Level description … Student Gender … Student’s Age 

Criteria �    “F”   

Figure 43 – QMBE Query 7 

Answer 7 

 

Figure 44 – Answer to query 7 

10.2.2 A general query 

Generally speaking, queries on models may involve any of the columns of the MODEL_TABLE 

and criteria can be defined for any column. 

Business Question J 

What are the rules of MODEL TABLE that correspond to DM Target equal to a certain 

value (value)? 

QMBE query J 

The query is presented in Figure 45. 

 

Table �  MODEL_TABLE MODEL_TABLE … MODEL_TABLE 

Column � DMTarget DMVar1 … DMVarL 

Criteria �  value    

Figure 45 – QMBE query J 
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10.3  Queries on models and data 

This type of queries corresponds to an extension of traditional QBE languages. By using these 

queries, business users are able to manipulate both data and models stored in databases. All 

the IDW tables are involved in this type of queries. Examples os queries using the IDW schema 

of Figure 25 are presented in section 10.3.1, and a general query using the IDW general 

schema of Figure 27 is presents in section 10.3.2. 

10.3.1 Using an example 

After analyzing models by direct manipulation, the business user can be interested in selecting 

the data that corresponds to the relevant model’s rules. For instance, the business user can be 

interested in selecting new students who have the characteristics of “bad students” (Not 

Approved levels) according to some rule(s), in order to develop a special program to improve 

new students’ classifications (levels). This can be done through the use of both data tables and 

model tables.  

Consider for instance that, through direct manipulation of the rules stored in MODEL TABLE by 

business users, “bad students” have been identified with the characteristics defined by rule 32 

(Figure 26).  

 

Business Question 8 

Who are the new students that correspond to the characteristics defined by rule 32, 

that is to say, that are potentially “bad students”? 

QMBE query 8 

In this example, all the columns from DIMENSION STUDENT table are included. Also 

included are the columns, and correspondent tables, that have criteria defined by rule 

32 namely, Course ID from DIMENSION COURSE table, Student area, and Student age 

from DIMENSION STUDENT table, and Program ID from DIMENSION PROGRAM table. 

Data from the MODEL TABLE that correspond to criteria are passed to the skeleton 

table in the third line and in the corresponding column (Figure 46).  Criteria must also 

be defined for column Enrollment Date from DIMENSION STUDENT table, in order to 

select only new students: Enrollment Date >= season’s start date. The query is 

presented in Figure 46 and the answer to this query is presented in Figure 47. 
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Rule ID Confidence Support 
Level 

description 

Season 

ID 

Season 

Semester 

Season 

Year 
Course ID Department 

… 

32 31,18% 93 Not Approved R     <=2355   

      

 

… 

Student 

qualification 

Student 

admission type 

Attendance 

type 
Program ID 

Teacher 

rank 

Teacher 

qualification 

Teacher years on 

duty 

Teacher 

age 

      <=3100         
 

… 

#of theoretic 

hours 

#of practical 

hours 

#of theoretical-

practical hours 
Optional? 

ECTS 

credits 

Student 

Area 

Student 

Nationality 

Student 

Gender 

Student 

Age …

 
          BRAGA     <=21 

 

Table �  DIMENSION 
STUDENT 

… DIMENSION 
STUDENT 

… DIMENSION 
STUDENT 

… DIMENSION 
STUDENT 

DIMENSION 
COURSE 

DIMENSION 
PROGRAM 

Column 
� Student Id … Student Area … Student Age … 

Student 
Enrolment 
Date  

Course ID Program ID 

Criteria 
�    BRAGA  <=21  

>=Season’s 
start date 

<=2355 <=3100 

Figure 46 – QMBE Query 8 

Answer 8 

 

Figure 47 – Answer to query 8 

 

10.3.2 A general query 

Queries on models and data may involve columns from all the tables of the IDW and criteria 

can be defined for any column. 

 

 

Business Question K 

What are the data from DIMENSION J that corresponds to a pre-selected rule from 

MODEL TABLE, for instance, rule I (section 9.2)? 
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QMBE query K: 

The query is presented in Figure 48. 

 

Table �  DIMENSION_J … DIMENSION_J … DIMENSION_J ... 

Column � VarJ1  VarJI1  VarJIK  

Criteria �    cond1 Value1  condK ValueK  

Figure 48 – QMBE query K 

 

10.4  Relational calculus and QMBE 

QBE languages, presented in chapter 5, are connected to relational calculus and so is QMBE. 

Just like for traditional QBE queries, all QMBE queries can be written as relational calculus 

queries. In the same way as for traditional QBE, if QMBE is considered, a relational calculus 

query (Q) is a set of database tuples (t) satisfying some characteristics defined with a 

proposition (p): 

Q: {t|p(t)}. 

This is also valid for both types of QMBE extensions to QBE. 

Following, relational calculus queries corresponding to each of the QMBE queries previously 

introduced, are presented, queries on data in section 10.4.1, queries on models is section 

10.4.2, and queries on models and data on section 10.4.3. 

10.4.1 Traditional QBE: Queries on data 

Following, are presented the relational calculus propositions corresponding to each of the 

QMBE queries from Section 10.1, which corresponds to this type of QMBE queries. 

Relational Calculus Query 1 

Q1 = {s.Student Name, s.Student Zip Code | Dimension Student(s)} 

Relational Calculus Query 2 

Q2 = {s.Student Name, c.Couse ID, l.Level description | Dimension Student(s) AND 

Dimension Course(c) AND Dimension Level(l)} 
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Relational Calculus Query 3 

Q3 = {s.Student Name, c.Couse ID, l.Level description | Dimension Student(s) AND 

Dimension Course(c) AND Dimension Level(l) AND l.Level description=”Very Good”} 

Relational Calculus Query 4 

Q4 = {l.Level description, s.Student Name, c.Couse ID | Dimension Level(l) AND 

Dimension Student(s) AND Dimension Course(c) AND (l.Level description=”Not 

Approved” AND c.Course name=”Mathematics”) OR (l.Level description=”Not 

Approved” AND c.Course name=”Statistics”)} 

Relational Calculus Query I:  

QI = {f.Fact, d | FACT TABLE(f) AND DIMENSION_J(d) AND f.Fact = value} 

 

10.4.2 QMBE Extension 1: queries on models 

Considering this type of QMBE extension, all QMBE queries can be converted to relational 

calculus because all DM models are stored in a database table. Considering rules, which are 

applied in this research, each rule is a database tuple since it is stored as a line in a database 

table. Following, are the relational calculus propositions corresponding to each of the QMBE 

queries from Section 10.2 that corresponds to this type of extension. 

Relational Calculus Query 5 

Q5 = {m | Model Table(m) AND m.Level description=”Good”} 

Relational Calculus Query 6 

Q6 = {m.Level description, m.Student Area, m. Student Nationality, m.Student Gender, 

m.Student Age, m.Student qualification, m. Student admission type, m.Attendance 

type| Model Table(m) AND m.Level description=”Not Approved”} 

Relational Calculus Query 7 

Q7 = {m | Model Table(m) AND m.Student Gender=”F”} 

Relational Calculus Query J:  

QJ = {m | MODEL TABLE(m) AND m.DMTarget=value} 
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10.4.3 QMBE Extension 2: queries on models and data 

Considering this type of QMBE extension, all QMBE queries can also be converted to relational 

calculus because all DM models are stored in a database table at the same level than data. 

Following, are the relational calculus propositions corresponding to each of the QMBE queries 

from Section 10.3. that corresponds to this type of extension. 

Relational Calculus Query 8 

Q8: {s, c.Couse ID, p.Program ID | Dimension Student(s) Dimension Course(c) AND 

Dimension Program(p) AND Model Table(m) AND s.Student Area=m.Student Area 

AND s.Student Age=m.Student Age AND s.Student Enrolment Date>=Seasons’ Start 

Date AND c.Course ID = m.Course ID AND p.Program ID=m.Program ID} 

Relational calculus Query K: 

QK: {dJ | DIMENSION_J(dJ) AND VarJI1 cond1 value1 AND … AND VarJIK condK 

ValueK AND …} 
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11  Query-Models-By-Example Evaluation 

Design science consists of two basic activities that are BUILD and EVALUATE, and its goal is 

utility. Artifacts are built based on the knowledge base (foundations and methodologies) of the 

field of study, and evaluated in order to assess, justify, and evaluate its adequacy. As stated in 

chapter 7, two important questions must be answered: “Does it work?” and “Is it an 

improvement?” 

Hereby, a two-folded evaluation was undertaken, beginning with a conceptual evaluation and 

following with a questionnaire to business users. 

11.1 Conceptual evaluation 

The architecture presented in Figure 22 is based in two important frameworks: inductive 

databases (De Raedt, 2003; Imielinski &  Mannila, 1996) and query-by-example languages 

(Zloof, 1975; Zloof, 1977). These two, constitute the fundamental kernel of the knowledge 

base that supports this research. 

The IDB framework was used because, according to this framework, DM models are stored in 

databases at the same level than data. This allows DM models access to be made in a way 

that is similar to data access. Therefore, users can directly access and manipulate DM models 

as requested. The IDB framework was adapted to the context of BI trough the introduction of 

the concept of Inductive Data Warehouse (IDW). An IDW includes data and DM models both 

stored in database tables. 

It is also important to consider the inductive language, since it allows the users to access data 

and DM models stored in the IDW. The philosophy of Query-By-Example (QBE) languages was 

used, since those languages present the desired characteristics, namely being user-friendly, 

interactive, iterative, and oriented to business users. A new language named QMBE was 

developed based in this philosophy, thus having the same characteristics. Since this language 

is developed in the context of BI, it is also oriented to BI activities. 

The architecture, including IDW and QMBE language, was implemented as a prototype in the 

considered environment and used in different and controlled situations, proving that the 

concepts are viable and can be applied. So the answer to the first question, referred in chapter 

7, “Does it work?” is “Yes, it works.” In addition, as a consequence of the foundations, the 

proposed solution accomplishes the objectives that were defined for it in chapter 6, namely:  
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• To allow business users to directly access and manipulate DM models; 

• To be iterative; 

• To be interactive; 

• To work directly on DM models; 

• To be easy to understand. 

11.2 Questionnaire to business users 

QMBE was developed to reach, mainly, business users of BI systems incorporating DM, that is 

to say, individuals using BI systems and DM in a BI context but who are not necessarily DM 

specialists. In order to evaluate QMBE language from the perspective of these potential users, 

an online questionnaire was created. The questionnaire is included in Appendix A. Following 

the study premises are presented. The questionnaire structure is presented in section 11.2.1, 

and the analysis of the questionnaire responses is presented is section 11.2.2. 

11.2.1 Questionnaire structure 

The questionnaire was developed intending to achieve the following goals: 

• To determine respondents’ experience using BI and DM; 

• To determine  respondents’ sort of usage of DM; 

• To determine the degree of importance respondents assign to DM usage in the support 

to decision making; 

• To obtain respondents’ general perspective about the language; 

• To ascertain whether QMBE offers advantages for business users analyzing DM 

models; 

• To ascertain whether QMBE achieves the intended features (user-friendliness, 

iterativeness and interactivity, oriented to business users, oriented to BI activities, 

brings benefits to decision making). 

In order to achieve these goals, the questionnaire was structured with the definition of three 

parts: 

• Part 1 intends to check respondents’ experience using BI systems and DM. It also 

intends to determine respondents’ sort of usage of DM and the degree of importance 

they assign to DM usage in the support to decision making. This part of the 

questionnaire includes four questions. The first two questions are closed-ended 
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questions, and intend to check out respondents’ experience on using BI systems and 

DM. Question 3 is a multiple choice question based in a 5-point Likert scale, ranging 

from 1 (Not at all important) to 5 (Very important), and asks about the importance 

respondents assign to DM. Question 4 is an open-ended question that asks about how 

the respondents use DM in their own organizations. 

• Part 2 includes a movie16 presenting a tutorial of the QMBE language, in order to 

present the language to the respondents and let them get aware of the main QMBE 

characteristics. The movie tries to explain how the language works in practice and thus 

it does not present technical characteristics of the language. This part does not include 

any questions. 

• Part 3 tries to obtain respondents’ opinions about QMBE. A twofold approach was 

made. On one hand, it is proposed to obtain respondents’ general perspective about 

the language. On the other hand, it was intended to ascertain whether the respondents 

consider that QMBE offers advantages for business users in analyzing DM models. 

This part of the questionnaire is composed of five questions. Questions 1 and 5 are 

open-ended questions, intended to collect respondents’ personal opinions about the 

language. Question 2 encompasses eight statements about which respondents must 

express their opinion considering two hypotheses: DM models and DM models with 

QMBE. Each case is based in 5-point Likert scale, ranging from 1 (Strongly disagree) to 

5 (Strongly agree). Question 3 intends to determine the respondents’ will to adopt the 

presented language and is based in a 5-point Likert scale from 1 (Not at all) to 5 

(Certainly). Part three of the questionnaire ends by asking the respondents to leave 

their email address if interested in knowing the results of this study. 

Table 6 includes the list of the questionnaire goals and the questions developed in order to 

achieve those goals.  

In order to find respondents to this survey, emails were sent to several mailing lists of 

international associations, and to other contacts. 

 

 

 

                                                 

16 The movie can be accessed at  

  https://skydrive.live.com/?cid=48ca25fbc15d7192&sc=photos&ref=2&id=48CA25FBC15D7192%21119&sff=1 
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Table 6 – Questionnaire goals and associated questions 

Goal Questions 

To determine respondents’ experience using BI and DM 1.1; 1.2 ; 1.4 

To determine  respondents’ sort of usage of DM 1.4 

To determine the degree of importance respondents assign to DM usage in the 

support to decision making 

1.3 

To obtain respondents’ general perspective about the language 3.1; 3.4 

To ascertain whether QMBE offers advantages for business users analyzing 

DM models 

3.2 

To ascertain whether QMBE achieves the intended features (user-friendliness, 

iterativeness and interactivity, oriented to business users, oriented to BI 

activities, brings benefits to decision making) 

3.2 

 

 

11.2.2 Analysis of the questionnaire results 

With this questionnaire 16 valid responses were obtained. Characterization of the respondents 

is presented in section 11.2.2.1, and respondents opinion about QMBE is presented is section 

11.2.2.2. 

11.2.2.1 Characterization of the respondents 

 

Part 1 - Question 1 and Question 2 

 

Table 7 presents a summary of the answers to the first two questions in part 1 of the 

questionnaire, namely, “how long have respondents been using BI” and “how long have 

respondents been using DM”. The means are about 5 and 4 years, respectively. Thirteen of 

the respondents have got three or more years using BI to support decision making, and eleven 

of the respondents have got three or more years using DM to support decision making. Thus, it 

can be considered that the respondents have got enough experience in using BI and DM. 
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 How long using BI 

(in years) 

How long using DM 

(in years) 

Mean 5,24 4,39 

Standard deviation 3,15 3,21 

Maximum 15 10 

Minimum17 0,08 0,08   

Table 7 – Respondents’ experience using BI and using DM 

 

Part 1 - Question 3 

 

Respondents consider that the use of DM to support decision making is Important/Very 

important (question 3, part 1), as can be concluded from the analysis of the graph presented 

in Figure 49. It is important to notice that the only respondent, who answered “1”, had been 

using BI and DM from only a month. 

 

 

Figure 49 – Respondents’ experience about the importance of DM (Graph) 

 

Part 1 - Question 4 

 

Only one of the respondents has not answered question 4 from part 1 of the questionnaire. 

The other respondents were a little vague about how they are using DM. Despite that, it can be 

                                                 

17 These values corresponds to 1 month usage 
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concluded that all of them use DM to help decision making. Thus it can be considered that 

respondents are more likely to be business users. 

The answers to the questions belonging to the first part of the questionnaire allow to conclude 

that the respondents match the intended characteristics for the respondents: business users 

already using DM in BI systems. 

 

11.2.2.2 Respondents opinion about QMBE 

 

Part 3 - Question 1 

 

The general opinion of the respondents about QMBE was positive (question 1, part 3). Only two 

of the respondents do not answer the question. Most of the respondents employ expressions 

like “Excellent”; “Good”, “Effective”, “Positive”, and “Very good”. One of the respondents uses 

“Normal”, and other uses the expression “Not too impressed”. It is also considered by the 

respondents that QMBE is “easy to understand” and is “useful to end-users” and “non-

computer programmers”. There are some answers worthy of being highlighted, which are 

presented in Table 8. 

 

Table 8 – Respondents’ general reaction to QMBE 

“Seems like an intuitive to use interface that could be used to produce 

results quickly” 

“A new approach to DM is highly desired.” 

“Not too impressed …but it looks easy to understand - can perhaps be 

done by many end-users.” 

“It is very good. It seems to be easier to use for non-computer 

programmers.” 

 

Part 3 - Question 2 

 

Table 9 summarizes the answers to question 2 of part 3 of the questionnaire. Analyzing the 

results it is verified that, for all the statements, means are higher in the case of “DM with 

QMBE” thus it can be concluded that with QMBE, DM models: 
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• are easier to understand,  

• are easier to use in practice, 

• are more oriented to business users, 

• are more oriented to BI activities, 

• full potential can be better explored, 

• better help decision making, 

• bring more benefits to higher education institutions, 

• bring more benefits to organizations in general. 

 

Hypothesis tests were performed for all the statements in order to check out if these 

differences are statistically significant. The tests are included in Appendix B.  

For each question, the null hypothesis (H0) was tested against the alternative hypothesis (H1). 

Each one of the respondents were asked to choose the adequate answer in a 5-point Likert 

scale considering for two situations, namely, DM models and DM models with QMBE, thus 

generating two paired samples. The null hypothesis considers that there are no significant 

differences between the means of the two samples, and the alternative hypotheses considers 

that in the case of DM models with QMBE the means are greater. The performed test was the 

t-test for paired samples, which is the adequate test in this situation. If the null hypothesis is 

rejected, then it can be concluded that it can be accepted that the means are higher in the 

case of DM models with QMBE. 

 

Are easy to understand 

 

H0: DM models and DM models with QMBE are equally easy to understand 

H1: DM models with QMBE are easier to understand 

 

Applying the test mentioned above (values in appendix B), H0 is rejected in favor of H1, 

with the statistical evidence being very significant (p-value < 0.01). Thus there is 

statistical evidence that DM models with QMBE are easier to understand. 
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Are easy to use in practice 

 

H0: DM models and DM models with QMBE are equally easy to use in practice 

H1: DM models with QMBE are easier to use in practice 

 

Applying the test mentioned above (values in appendix B), H0 is rejected in favor of H1, 

with the statistical evidence being significant (p-value < 0.05). Thus there is statistical 

evidence that DM models with QMBE are easier to use in practice. 

 

Are oriented to business users 

 

H0: DM models and DM models with QMBE are equally oriented to business 

users 

H1: DM models with QMBE are more oriented to business users 

 

Applying the test mentioned above (values in appendix B), H0 is rejected in favor of H1, 

with the statistical evidence being significant (p-value < 0.05). Thus there is statistical 

evidence that DM models with QMBE are more oriented to business users. 

 

Are oriented to business intelligence activities 

 

H0: DM models and DM models with QMBE are equally oriented to business 

intelligence activities 

H1: DM models with QMBE are more oriented to business intelligence activities 

 

Applying the test mentioned above (values in appendix B), H0 is rejected in favor of H1, 

with the statistical evidence being significant (p-value < 0.05). Thus there is statistical 

evidence that DM models with QMBE are more oriented to business intelligence 

activities. 
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Its full potential could be completely explored 

 

H0: DM models full potential could be equally explored with QMBE and without 

QMBE 

H1: DM models full potential could be better explored with QMBE 

 

Applying the test mentioned above (values in appendix B), H0 is rejected in favor of H1, 

with the statistical evidence being significant (p-value < 0.05). Thus there is statistical 

evidence that DM models full potential could be better explored with QMBE. 

 

Help decision making 

 

H0: DM models and DM models with QMBE equally help decision making  

H1: DM models with QMBE better help decision making 

 

Applying the test mentioned above (values in appendix B), H0 is rejected in favor of H1, 

with the statistical evidence being significant (p-value < 0.05). Thus there is statistical 

evidence that DM models with QMBE better help decision making. 

 

Bring benefits to Higher Education Institutions 

 

H0: DM models and DM models with QMBE equally bring benefits to Higher 

Education Institutions  

H1: DM models with QMBE bring more benefits to Higher Education Institutions 

 

Applying the test mentioned above (values in appendix B), H0 is rejected in favor of H1, 

with the statistical evidence being significant (p-value < 0.05). Thus there is statistical 

evidence that DM models with QMBE bring more benefits to Higher Education 

Institutions. 
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Bring benefits to organizations, in general 

 

H0: DM models and DM models with QMBE equally bring benefits to 

organizations, in general 

H1: DM models with QMBE bring more benefits to organizations, in general 

 

Applying the test mentioned above (values in appendix B), H0 is rejected in favor of H1, 

with the statistical evidence being significant (p-value < 0.05). Thus there is statistical 

evidence that DM models with QMBE bring more benefits to organizations, in general. 

 

From these statistical tests it can be concluded that the means differences are significant (p-

value < 0.05) for all cases, except for the first sentence that is very significant (p-value < 0.01).  

Hence, it can be conclude that, accordingly to the respondents’ answers, DM models with 

QMBE are easier to understand, easier to use in practice, more oriented to business users, 

more oriented to BI activities, its full potential could be completely explored, it could better help 

decision making, could bring more benefits to Higher Education Institutions, and could bring 

more benefits to organizations in general (Table 9). 

 

Table 9 – Comparison of respondents’ opinions about using DM vs using DM with QMBE  

Statement 

Means of 5-point Likert Scale Statistical test 

 
DM models 

DM models with 

QMBE 

Are easy to understand. 3,31 3,94 Very Significant 

Are easy to use in Practice. 3,25 3,75 Significant 

Are oriented to business users. 3,19 3,75 Significant 

Are oriented to Business Intelligence 

Activities. 

3,34 3,94 Significant 

Its full potential could be completely 

explored. 

3,13 3,69 Significant 

Help decision making. 3,75 4,31 Significant 

Bring benefits to Higher Education 

Institutions. 

3,56 4,06 Significant 

Bring benefits to organizations, in 

general. 

3,75 4,19 Significant 
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Part 3 - Question 3 

 

Most of the respondents will consider using QMBE in their organizations (question 3 of part 3) 

as can be concluded from the graph presented in Figure 50. Three of the respondents 

answered “Certainly”, and seven of the respondents answered “Possibly yes”. These 

corresponds to 62,5%. Only one of the respondents answered “Not at all”.  

 

Figure 50 – Respondents’ opinion about adopting QMBE in their organizations (Graph) 

 

Part 3 - Question 4 

 

Some of the respondents presented some comments reinforcing that they consider QMBE and 

the idea useful and interesting. Other respondents presented comments that were not directly 

related with the project, but with DM and BI in general. 

 

Part 3 - Question 5 

 

Ten of the respondents (62,5%) declared to be interested in knowing the evaluation results of 

this study. This can be considered as an additional indicator of the respondents’ interest. 
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11.3  Some brief considerations  

 

The obtained results are considered promising. The questionnaire respondents expressed a 

very positive opinion about QMBE. Highlighting question 2 of part 3 of the questionnaire, 

statistical evidence was given to the fact that the respondents considerer that the use of QMBE 

provide an enhancement to the use of DM models in the context of BI.  

From the analysis of the results obtained with the questionnaire, and from the considerations 

presented in Section 11.1, it can be concluded that the answer to the second question referred 

in chapter 7 “Is it an improvement?” is “Yes, it is.” 
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PART IV – FINAL CONCLUSIONS 

 

 

In part IV final conclusions are presented. It begins with discussion and related work in chapter 

12. In chapter 13 conclusion and future research directions are presented, introducing the 

thesis’ contributions, in Section 13.1, and a critical reflection about the results obtained so far 

and future work in Section 13.2.  
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12  Discussion and Related Work 

The success of Codd’s relational model for databases led to the development of several 

languages that allow data manipulation and that also allow obtaining quick answers to ad-hoc 

business questions through queries on the data stored in databases. In relational databases, 

data is stored in tables that are also called relations. Initially, two formal languages were 

defined: Relational Algebra and Relational Calculus. Since that time, several languages were 

developed in order that users could access the data stored in databases. QBE languages were 

developed with success. Since the first developments (Zloof, 1975; Zloof, 1977), many 

advances occurred in the area, and the philosophy behind Query-By-Example (QBE) is being 

applied in several distinct areas (Braga, Campi, Ceri & Spoletini, 2007; Ferreira, Cruz & 

Henriques, 2009; Malerba, Appice & Vacca, 2002; Papadias &  Sellis, 1995). QBE languages 

are nowadays available in several Relational Database Management Systems (RDBMS). Those 

languages allow business users to directly manipulate data without the need of developing 

programming skills. It can be said that a QBE language is business oriented, and it is iterative 

and interactive in nature, since it allows users obtaining answers to ad-hoc business questions 

that can be directly converted into QBE queries. Business users frequently pose questions that 

can be answered through queries to a database. Those queries allow the selection of the 

database’s data that grant the answer to the referred business questions. The use of QBE 

languages by business users to directly obtain those answers is a usual practice in 

organizations nowadays. The language presented in this thesis, named Query-Models-by-

Example (QMBE) is a Data Mining (DM) language developed as an extension of a QBE 

language, thus being business oriented, interactive and iterative in nature. This language allows 

business users to query the data mining models as well as the data, both stored in database 

tables. As a consequence of being an extension of a QBE language, this new DM language is 

iterative and interactive in nature. It allows business users to answer ad-hoc business 

questions through queries on data or/and on DM models. QMBE allows business users to 

directly access and manipulate DM models. The novelty of the QMBE language is that it is 

oriented to business users and to BI activities. This kind of approach allows business users to 

directly access and manipulate data and models. This will bring DM to the front line business 

users, like other Business Intelligence (BI) tools, allowing them to completely explore DM 

potential value. 
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The Inductive Database (IDB) framework is being used by researchers in order to achieve DM 

standards similar to the ones defined for the relational model for databases. According to the 

IDB framework, data and DM models are both stored in the database and can be accessed 

and manipulated at the same level (De Raedt, 2003; Dzeroski, 2007; Imielinski &  Mannila, 

1996). The research presented in this thesis uses this framework in the context of BI, obtaining 

the concept of Inductive Data Warehouse (IDW), which is a Data Warehouse (DW) storing both 

data and DM models. Data and DM models that are stored in the IDW can be manipulated 

using an inductive DM language. 

Several approaches have been proposed for the definition of DM languages. In the literature 

some language specifications can be found, namely, DMQL (Han, Fu, Wang, Koperski & 

Zaiane, 1996), MINE RULE (Meo, Psaila & Ceri, 1998), MSQL (Imielinski & Virmani, 1999), 

SPQL (Bonchi, Giannotti, Lucchesse, Orlando, Perego & Trasarti, 2007), KDDML (Romei,  

Ruggieri &  Turini, 2006), XDM (Meo & Psaila, 2006), RDM (De Raedt, 2002), among others. 

Despite the importance of the referred languages, they are not business oriented and they are 

not oriented to the diverse BI activities. The language introduced in this thesis differs from the 

ones mentioned above in the way that it is oriented to business users and to BI activities. 

Research developed in (Wang & Wang, 2008) is aligned with our research taking into account 

that they consider that business users have a crucial role in the development and analysis of 

DM models. However, they consider a different approach. They present a model that allows 

knowledge sharing among business insiders and DM specialists. They argue that this model 

can make DM more relevant to BI. The research presented in this thesis focus on making DM 

models to be directly manipulated by business users. It is considered that this can conduct to 

an understanding of DM models by business users, helping them on the decision making 

process. This can be done by means of a DM Language that allows business users to query 

data and models.   

The research presented in this thesis is a step in inducting business users of BI systems into 

DM models and comprises an important contribution towards the goal of binding DM to final 

business users of BI systems. A long road is yet to be covered but we believe that this research 

could be an important contribution since it demonstrates that it is possible for business users 

to directly access, better manipulate and better understand DM models, instead of depending 

on reports from DM specialists.  
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13 Conclusion and Future Research Directions 

The authors introduced the concept of Inductive Data Warehouse (IDW) and presented a new 

DM language, Query-Models-By-Example (QMBE), which is iterative, and interactive in nature.  

An IDW stores both data and data mining models in database tables. This way, both data and 

data mining models are stored at the same level. Thus, data mining models can be 

manipulated at the same level than data, thus allowing business users to manipulate directly 

data mining models, in the same way that is done with data. 

QMBE is a declarative language. This means that the users define “what to do” instead of 

defining “How to do it”. QMBE is also a high level language, since it is closer to natural 

languages. These aspects make the language user-friendly, so it is easily used by business 

users. 

Business questions can be converted into queries in the QMBE language, thus it is oriented to 

BI activities and to BI business users. This will allow business users to directly manipulate DM 

models, as well as data, thus bringing DM into the final business users, allowing to increase 

DM potential to attain BI’s high potential business value. This was achieved through the design 

and implementation of a BI system architecture including DM. 

QMBE language is extensible and flexible because new models can easily be made accessible 

to business users, since it is only necessary to include a new database table for each new 

model obtained from DM application. The concept is also context independent, since it can 

also be applied to business situations other than the ones presented in this thesis (a higher 

education institution). This is due to the fact that the QMBE language is independent from the 

considered database.  

From these considerations, it can be concluded that the research goals were achieved thought 

the introduction of the IDW concept, and the corresponding inductive language, which is 

QMBE. 

13.1 Thesis Contributions 

The main contribution of this thesis is to verify the viability of allowing business users to directly 

manipulate DM models and thus providing the possibility of exploring the potential value of 

applying DM in the context of BI. This was achieved through the development of two new 

important concepts, which are themselves two important contributions of this research: 
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• One of those concepts is the concept of Inductive Data Warehouse (IDW). To put it in a 

simplified way, an IDW is a DW that contains both data and DM models stored in 

tables of the DW; 

• The other concept is a new DM language: QMBE. This language was developed as an 

extension of QBE languages, and allows users access to data and DM models, both 

stored in tables of the DW.  

The application of IDW and QMBE provides the possibility of business users to manipulate 

directly data mining models, thus allowing them to explore the potential value of applying DM 

in the context of BI.  

Another contribution is the design and presentation of an architecture for BI systems that 

includes the use of DM. This architecture incorporates the new concepts of IDW and of the 

correspondent inductive DM language, namely QMBE. 

Another contribution concerns the use of the Design Science Research (DSR) framework. 

Despite the growing acceptance of the use of this framework in IS research, there cannot be 

found many studies using this framework. Therefore, it is considered that the research 

presented in this thesis can help bringing new insights to research based in the DSR 

framework. 

DSR involves two types of contributions. On one hand, the applications to the environment that 

led to the satisfaction of the business needs identified in the problem definition. On the other 

hand the additions to the knowledge base. A summary of both types of contributions that were 

achieved with this research are presented in Figure 51. The contributions concerning the 

applications to the environment are: 

• the design and implementation of an architecture for a BI system including DM usage; 

• allow business users to directly manipulate DM models; 

• providing the possibility of business users to explore the potential value of applying DM 

in the context of BI. 

The contributions concerning the additions to the knowledge base are: 

• the concept of IDW; 

• a new DM language: QMBE. 
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Figure 51 – Research contributions 

13.2 Critical reflection about the obtained results and future 

work 

The presented architecture (Figure 22), which includes the use of an IDW and of an inductive 

DM language, QMBE, was implemented as a prototype. The implementation conducted to 

promising results. Despite the promising results, several limitations can be pointed out. 

Following are presented some of those limitations, and future work that can be developed in 

order to overcome those limitations is pointed out. 
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of BI. 
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One limitation is related with the fact that the system is not completely automated, at the 

moment. There is the need to develop some additional modules that allow the automatic feed 

of the DM models stored in the IDW. Existing standards for DM developed by the industry will 

surely help in this process. The periodicity of this process will be a crucial issue to consider.  

The quality of the generated models was not a concern during this research, since this was not 

considered as an important issue to address at the moment. But it is another crucial issue to 

address in the future, since only relevant DM models incorporates business value to decision 

makers, and consequently, only those allow business users to understand the importance of 

using DM in BI environments to improve decision making. 

Another limitation is that only classification rules are addressed at the moment. The application 

domain focuses mainly on two DM tasks: classification and clustering. Classification can be 

addressed through classification rules, which can be easily understand by business users. 

Thus, classification rules were used in this research. In the future, also clustering can be 

addressed. Like classification, clustering has several important applications in the context of BI 

systems and is, consequently, important to include it in the system. In this case, it will be 

challenging to envisage how to store the models in an IDW table. The use of more than one 

model stored in the same IDW will be considered in this situation. 

User interface is also a concern. At the moment the interface only has basic capabilities, and is 

not very robust. Thus, improvements are planned.  

Performance tests will be implemented, in order to better understand the way business users 

can take advantage of the use of these concepts is concrete situations, allowing to improve 

their application. The tests will allow business users to perform several tasks that will comprise 

the definition of business questions and the acquisition of answers to those business questions 

through the use of the QMBE language, similar to the ones included in this thesis. These 

performance tests will also help in the definition of the interface improvements, because they 

will allow to find out the business users difficulties with the use of the system.  

Future research directions can thus include tests with more than one model table, the 

inclusion of clustering models, the automation of the system, and the development of a more 

robust interface. 

It is also intended to progress with the implementation of the developed prototype in different 

domains. This will surely bring new and important inputs to improve the system.  



Data mining languages for business intelligence 

103 

REFERENCES 

Abbasi, A. & Chen, H. (2008). Cybergate: A Design Framework and System for Text Analysis of 

Computer-Mediated Communication. MIS Quarterly, 32(4), 811-837. 

Adomavicius, G., Bockstedt, J. C., Gupta, A. & Kauffman, R.J. (2008). Making Sense of 

Technology Trends in the Information Technology Landscape: A Design Science Approach. 

MIS Quarterly, 32(4), 779-809. 

Alavi, M. & Leidner, D.E. (2001). Knowledge Management and Knowledge Management 

Systems: Conceptual Foundations and Research Issues. MIS Quarterly, 25(1), 107-136. 

Apte, C., Grossman, E., Pednault, E. P. D., Rosen, B. K., Tipu, F. A. & White, B. (1999). 

Probabilistic Estimation-Based Data Mining for Discovering Insurance Risks. IEEE Intelligent 

Systems, 14(6), 49-58. 

Arnott, D. & Pervan, G. (2008). Eight Key Issues for the Decision Support Systems Discipline. 

Decision Support Systems, 44(3), 657-672. 

Azevedo, A. & Santos, M.F. (2008). KDD, SEMMA and CRISP-DM: a Parallel Overview. In 

Weghorn, H. & Abraham, A. P.  (Eds.), Proceedings of the IADIS European Conference on 

Data Mining 2008, IADIS MUlti Conference on Computer Science and Information Systems, 

182-185. Amsterdam, Holland: IADIS Press. 

Azevedo, A. & Santos, M.F. (2009a). Business Intelligence: State of the Art, Trends, and Open 

Issues. In Liu, K.  (Ed.), Proceedings of the International Conference on Knowledge 

Management and Information Sharing (KMIS 2009), International Joint Conference on 

Knowledge Discovery, Knowledge Engineering, and Knowledge Management (IC3K), 296-

300. Funchal, Portugal: INSTICC. 

Azevedo, A. & Santos, M.F. (2009b). An Architecture for an Effective Usage of Data Mining in 

Business Intelligence Systems. In Soliman, K. S.  (Ed.), Knowledge Management and 

Innovation in Advancing Economies: Analyses & Solutions, Proceedings of 13th IBIMA 

Conference, 1319–1325. Marrakech, Morocco: IBIMA. 

Azevedo, A. & Santos, M.F. (2011). A Perspective on Data Mining Integration with Business 

Intelligence. In Kumar, A.  (Ed.), Knowledge Discovery Practices and Emerging Applications 

of Data Mining: Trends and New Domains (pp.109-129). Hershey, NY: IGI Publishing. 

Benoît, G. (2002). Data Mining. Annual Review of Information Science and Technology (ARIST), 

36(1), 265-310. 



Data mining languages for business intelligence 

104                                                                                                                                          

Bhandari, I., Colet, E., Parker, J., Pines, Z., Pratap, R. & Ramanujam, K. (1997). Advanced 

Scout: Data Mining and Knowledge Discovery in NBA Data. Data Mining and Knowledge 

Discovery, 1(1), 121-125. 

Bollacker, K. D., Lawrence, S. & Giles, C.L. (2000). Discovering Relevant Scientific Literature 

on the Web. IEEE Intelligent Systems, 15(2), 42-47. 

Bonchi, F.; Giannotti, F.; Lucchesse, C.; Orlando, S.; Perego, R. & Trasarti, R. (2007). On 

Interactive Pattern Mining from Relational Databases. In Dzeroski, S. & Struyf, J.  (Eds.), 

Lecture Notes on Computer Science: Vol. 4747. Knowledge Discovery in Inductive 

Databases - 5th International Workshop, KDID 2006 (pp. 42-62). Berlin, Heidelberg: 

Springer-Verlag. 

Botta, M.; Boulicaut, J.; Masson, C. & Meo, R. (2004). Query Languages Supporting 

Descriptive Rule Mining: A comparative Study. In Meo, R. ; Lanzi, P. L. & Klemettinen, M.  

(Eds.), Lecture Notes on Artificial Intelligence: Vol. 2682. Database Support for Data Mining 

Applications - Discovering Knowledge with Inductive Queries (pp. 24-51). Berlin, Heidelberg: 

Springer-Verlag. 

Boulicaut, J.; Klemettinen, M. & Mannila, H. (1999). Modeling KDD Processes Within the 

Inductive Database Framework. In Mohania, M. & Tjoa, A. M.  (Eds.), Lecture Notes on 

Computer Science: Vol. 1676. Data Warehousing and knowledge Discovery - 1st 

International Conferense DaWak99 (pp. 193-202). Berlin, Heidelberg: Springer-Verlag. 

Brachman, R. J. & Anand, T. (1996). The Process of Knowledge Discovery in databases. In 

Fayyad, U. M. , Piatetski-Shapiro, G. , Smyth, P. & Uthurusamy, R.  (Eds.), Advances in 

knowledge discovery and data mining (pp.37-57). Menlo Park, CA: AAAI Press/The MIT 

Press. 

Braga, D., Campi, A., Ceri, S. & Spoletini, P. (2007). XQuery Layers. SIGMOD Record, 36(1), 

25-30. 

Brobst, S. & Pareek, A. (2009). New Trends in Data Acquisition Services for the Real-Time 

Enterprise. Business Intelligence Journal, 14(1), 52-58. 

Calders, T., Lakshmanan, L. V. S., Ng, R. T. & Paredaens, J. (2006). Expressive Power of an 

Algebra for Data Mining. ACM Transactions on Database Systems, 31(4), 1169-1214. 

Calders, T.; Goethals, B. & Prado, A. (2006). Integrating Pattern Mining in Relational 

Databases. In Fürnkranz, J. ; Scheffer, T. & Spiliopoulou, M.  (Eds.), Lecture Notes on 

Artificial Intelligence: Vol. 4213. Knowledge Discovery in Databases - 10th European 



Data mining languages for business intelligence 

105 

Conference on Principles and Practice of Knowledge Discovery in Databases - PKDD2006 

(pp. 454-461). Berlin, Heidelberg: Springer-Verlag. 

Carlsson, S. A. (2006).  Towards an Information Systems Design Research Framework: A 

Critical Realist Perspective. Proceedings of the First International Conference on Design 

Science in Information Systems and Technology - DESRIT 2006, 192-212. 

Catania, B.; Maddalena, A.; Mazza, M.; Bertino, E. & Rizzi, S. (2004). A Framework for Data 

Mining Pattern Management. In Boulicaut, J. ; Esposito, F. & Giannotti, F.  (Eds.), Lecture 

Notes on Artificial Intelligence: Vol. 3202. Knowledge Discovery in Databases - 8th European 

Conference on Principles and Practice of Knowledge Discovery in Databases - PKDD2004 

(pp. 87-98). Berlin, Heidelberg: Springer-Verlag. 

Chan, P. K., Fan, W., Prodromidis, A. L. & Stolfo, S.J. (1999). Distributed Data Mining in Credit 

Card Fraud Detection. IEEE Intelligent Systems, 14(6), 67-74. 

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. & Wirth, R. (2000). 

CRISP-DM 1.0 - Step-by-step data mining guide. Technical Report: 1.0, CRISP-DM 

consortium. 

Chen, M., Han, J. & Yu, P.S. (1996). Data Mining: An Overview from a Database Perspective. 

IEEE transactions on Knowledge and Data Engineering, 8(6), 866-883. 

Cheng, H., Lu, Y. & Sheu, C. (2009). An Ontology-Based Business Intelligence Application In A 

Financial Knowledge Management System. Expert Systems with Applications, 36(2), 3614-

3622. 

Chiang, I., Shieh, M., Hsu, J. Y. & Wong, J. (2005). Building a Medical Decision Support 

System for Colon Polyp Screening by Using Fuzzy Classification Trees. Applied Intelligence, 

22(1), 61-75. 

Clark, T. D., Jones, M. C. & Armstrong, C.P. (2007). The Dynamic Structure of Management 

Support Systems: Theory Development, Research, Focus, and Direction. MIS Quarterly, 

31(3), 579-615. 

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Communications 

of the ACM, 13(6), 377-387. 

Codd, E. F. (1971).  A Data Base Sublanguage Founded on the Relational Calculus. 

Proceedings of the 1971 ACM SIGFIDET (SIGFIDET '71) - Workshop on Data Description, 

Access, and Control, 35-68. 



Data mining languages for business intelligence 

106                                                                                                                                          

Codd, E. F. (1982). Relational Database: a Practical Foundation for Productivity. 

Communications of the ACM, 25(2), 109-117. 

Corchado, J. M., Mata, A., Paz, F. D. & Pozo, D.D. (2008). A Case-Based Reasoning System to 

Forecast the Presence of Oil Slicks. In Weghorn, H. & Abraham, A. P.  (Eds.), Proceedings of 

the IADIS European Conference on Data Mining 2008, IADIS MUlti Conference on Computer 

Sciende and Information Systems, 3-10. Amsterdam, Holland: IADIS Press. 

Cox, K. C., Eick, S. G., Wills, G. J. & Brachman, R.J. (1997). Visual Data Mining: Recognizing 

Telephone Calling Fraud. Data Mining and Knowledge Discovery, 1(2), 225–231. 

Data Mining Group (2009). Predictive Model Markup Language (PMML). Data Mining Group 

Portal, 2009. Retrieved August, 1st 2009, from http://www.dmg.org/. 

Date, C. J. (2004). An Introduction to Database Systems. Upper Sadle River, New Jersey: 

Pearson Education.  

Davenport, T. H. (2010). Business Intelligence and Organizational Decisions. International 

Journal of Business Intelligence Research, 1(1), 1-12. 

De Raedt, L. (2002). Data Mining as Constraint Logic Programming. In Kakas, A. C. & Sadri, F.  

(Eds.), Lecture Notes on Artificial Intelligence: Vol. 2408. Computational Logic: Logic 

Programming and Beyond -  Essays in Honour of Robert A. kowalski - Part II (pp. 526-547). 

Berlin, Heidelberg: Springer-Verlag. 

De Raedt, L. (2003). A perspective on Inductive Databases. SIGKDD Explorations, 4(2), 69-77. 

Dzeroski, S. (2007). Towards a General Framework for Data Mining. In Dzeroski, S. & Struyf, J.  

(Eds.), Lecture Notes in Computer Science: Vol. 4747. Knowledge Discovery in Inductive 

Databases - 5th International Workshop, KDID 2006 (pp. 259-300). Berlin, Heidelberg: 

Springer-Verlag. 

Dzieciolowski, K. & Kina, D. (2008). Data Mining in Marketing Acquisition Campaigns. In 

Weghorn, H. & Abraham, A. P.  (Eds.), Proceedings of the IADIS European Conference on 

Data Mining 2008, IADIS MUlti Conference on Computer Sciende and Information Systems, 

173-175. Amsterdam, Holland: IADIS Press. 

Eckerson, W. W. (2008). Q&A: Pervasive Business Intelligence. Business Intelligence Journal, 

13(3), 48-50. 

Eckerson, W. W. (2009). Performance Management Strategies. Business Intelligence Journal, 

14(1), 24-27. 



Data mining languages for business intelligence 

107 

Elbashir, M. Z., Collier, P. A. & Davern, M.J. (2008). Measuring the effects of business 

intelligence systems: The relationship between business process and organizational 

performance. International Journal of Accounting Information Systems, 9(3), 135-153. 

Elmasri, R. & Navathe, S.B. (2007). Fundamentals of Database Systems. Upper Sadle River, 

New Jersey: Pearson Education.  

Ezawa, K. J. & Norton, S.W. (1996). Constructing Bayesian Networks to Predict Uncollectible 

Telecommunications Accounts. IEEE Expert, 11(5), 45-51. 

Fawcett, T. & Provost, F. (1997). Adaptive Fraud Detection. Data Mining and Knowledge 

Discovery, 1(3), 291–316. 

Fayyad, U. M. (1996). Data Mining and Knowledge Discovery: Making Sense Out of Data. IEEE 

Expert, 11(5), 20-25. 

Fayyad, U. M., Djorgovski, S. G. & Weir, N. (1996). Automating the analysis and Cataloging of 

Sky Surveys. In Fayyad, U. M. , Piatetski-Shapiro, G. , Smyth, P. & Uthurusamy, R.  (Eds.), 

Advances in knowledge discovery and data mining (pp.471-493). Menlo Park, California: 

AAAI Press/The MIT Press. 

Fayyad, U. M., Piatetski-Shapiro, G. & Smyth, P. (1996). From data mining to knowledge 

discovery: an overview. In Fayyad, U. M. , Piatetski-Shapiro, G. , Smyth, P. & Uthurusamy, R.  

(Eds.), Advances in knowledge discovery and data mining (pp.1-34). Menlo Park, California: 

AAAI Press/The MIT Press. 

Ferreira, F. X., Cruz, D. & Henriques, P.R. (2009). A Query by Example Approach for XML 

Querying. In Rocha, Á. , Restivo. Francisco, Reis, L. P. & Torrão, S.  (Eds.), WSIAI'09 - 

Workshop em Sistemas Inteligentes e Aplicações, CISTI'09 - 4ªConferência Ibérica em 

Sistemas e Tecnologias da Informação, 611-614. Póvoa do Varzim, Portugal: AISTI. 

Fromont, É.; Blockeel, H. & Struyf, J. (2007). Integrating Decision Tree Learning into Inductive 

Databases. In Dzeroski, S. & Struyf, J.  (Eds.), Lecture Notes in Computer Science: Vol. 

4747. Knowledge Discovery in Inductive Databases - 5th International Workshop, KDID 

2006 (pp. 81-96). Berlin, Heidelberg: Springer-Verlag. 

Fung, G. & Stoeckel, J. (2007). SVM feature selection for classification of SPECT images of 

Alzheimer's disease using spatial information. Knowledge and Information Systems, 11(2), 

243-258. 

Gago, P. & Santos, M.F. (2008). Towards an Intelligent Decision Support System for Intensive 

Care Units. In Okun, O. & Valentini, G.  (Eds.), Workshop on Supervised and Unsupervised 



Data mining languages for business intelligence 

108                                                                                                                                          

Ensemble Methods and their Applications, Proceedings of the 18th European Conference on 

Artificial Intelligence, 21-25. Patras, Greece: WSEAS. 

Gago, P., Fernandes, C., Pinto, F. & Santos, M.F. (2009).  INTCare: On-line Knowledge 

Discovery in the Intensive Care Unit. INES'09 Proceedings of the IEEE 13th international 

conference on Intelligent Engineering Systems, 143-148. 

Gao, J., Cao, Y., Qi, Y. & Hu, J. (2005). Building Innovative Representations of DNA Sequences 

to Facilitate Gene Finding. IEEE Intelligent Systems, 20(6), 34-39. 

Gerber, L. & Fernandes, A.A.A. (2004). An Abstract Algebra for Knowledge Discovery in 

Databases. In Benczúr, A. ; Demetrovics, J. & Gottlob, G.  (Eds.), Lecturer Notes in 

Computer Science: Vol. 3255. Advances in Database and Information Systems (pp. 83-98). 

Berlin, Heidelberg: Springer-Verlag. 

Ghosh, J. & Strehl, A. (2005). Clustering and Visualization of Retail Market Baskets. In Pal, N. 

R. & Jain, L.  (Eds.), Advanced Techniques in Data Mining and Knowledge Discovery (pp.75-

102). London, UK: Springer-Verlag. 

Gokhale, M. & Aslandogan, Y.A. (2003). A Visualization Oriented Data Mining Tool for 

Biomedical Images. In Smari, W. W. & Memon, A. M.  (Eds.), IEEE International Conference 

on Information Reuse and Integration, 2003, IRI 2003, 219-226. Las Vegas, NV: IEEE 

Press. 

Golfarelli, M., Rizzi, S. & Cella, I. (2004).  Beyond Data Warehousing: What`s Next in Business 

Intelligence. DOLAP '04 Proceedings of the 7th ACM international workshop on Data 

warehousing and OLAP, 1-6. 

Gurbaxani, B. & Mallick, P. (2005). Fiding Protein Domain Boundaries: an Automated, Non-

Homology-Based Method. IEEE Intelligent System, 20(6), 26-33. 

Han, J. & Kamber, M. (2006). Data Mining: concepts and Techniques. San Francisco, CA: 

Morgan Kaufman Publishers.  

Han, J., Fu, Y., Wang, W., Koperski, K. & Zaiane, O. (1996).  DMQL: A Data Mining Query 

Language for Relational Databases. Proceedings of the SIGMOD'96 Workshop on Research 

Issues on Data Minining and Knowledge Discovery (DMKD'96), 27-34. 

Hand, D., Mannila, H. & Smyth, P. (2001). Principles of Data Mining. Cambridge, 

Massachusetts: The MIT Press.  

Hannula, M. & Pirttimäki, V. (2003). Business Intelligence Empirical Study on the Top 50 

Finnish Companies. Journal of American Academy of Business, 2(2), 593-599. 



Data mining languages for business intelligence 

109 

Herschel, R. T. & Jones, N.E. (2005). Knowledge Management and Business Intelligence: the 

Importance of Integration. Journal of Knowledge Management, 9(4), 45-55. 

Hevner, A. & Chatterje, S. (2010). Design Research in Information Systems: Theory and 

Practice. In Sharda, R. & Vob, S.  (Eds.), Integrated Series in Information Systems: Vol. 22.  

(pp. 1-320). Berlin, Heidelberg: Springer-Verlag. 

Hevner, A. R., March, S. T., Park, J. & Ram, S. (2004). Design Science Research in 

Information Systems Research. MIS Quarterly, 28(1), 75-105. 

Hirschheim, R. A. (1985). Information Systems Epistemology: an Historical Perspective. In 

Munford, E. , Hirschheim, R. , Fitzgerald, G. & Wood-Harper, T.  (Eds.), Research Methods 

in Information Systems (pp.13-36). Amsterdam, North Holland: Elsevier Science publishing. 

Hobek, R., Ariyachandra, T. & Frolick, M.N. (2009). The Importance of Soft Skills in Business 

Intelligence Implementations. Business Intelligence Journal, 14(1), 28-36. 

Hoffman, T. (2009). 9 Hottest Skills for '09. Computer World, January 1(1), 26-27. 

Hsu, C., Chung, H. & Huang, H. (2004). Mining Skewed and Sparse Transaction Data for 

Personalized Shopping Recommendation. Machine Learning, 57(1), 35-59. 

Hu, X. (2005). A Data Mining Approach for Retailing Bank Customer Attrition Analysis. Applied 

Intelligence, 22(1), 47-60. 

Imielinski, T. & Mannila, H. (1996). A Database Perspective on Knowledge Discovery. 

Communications of the ACM, 39(11), 58-64. 

Imielinski, T. & Virmani, A. (1999). MSQL: A Query Language for Database Mining. Data Mining 

and Knowledge Discovery, 3(4), 373-408. 

Jamil, H. M. (2004). Declarative Data Mining Using SQL3. In Meo, R. ; Lanzi, P. & Klemettinen, 

M.  (Eds.), Lecture Notes on Artificial Intelligence: Vol. 2682. Database Support for Data 

Mining Applications - Discovering Knowledge with Inductive Queries (pp. 52-75). Berlin, 

Heidelberg: Springer-Verlag. 

John, G. H., Miller, P. & Kerber, R. (1996). Stock Selection Using Rule Induction. IEEE Expert, 

11(5), 52-58. 

KDNuggets (2011). Software Suites for Data Mining, Analytics, and Knowledge Discovery. Data 

Mining Community's Resource, 1. Retrieved April 2011, from 

http://www.kdnuggets.com/software/suites.html. 

Kimball, R. & Ross, M. (2002). The Data Warehouse Toolkit - The Complete Guide to 

Dimensional Modeling. Hoboken, NJ: John Wiley and Sons.  



Data mining languages for business intelligence 

110                                                                                                                                          

Klawans, B. (2008). Embedded or Conventional BI: Determining the Right Combination of BI 

for Your Business. Business Intelligence Journal, 13(1), 30-36. 

Kramer, S.; Aufschild, V.; Hapfelmeier, A.; Jarasch, A.; Kessler, K.; Reckow, S.; Wicker, J. & 

Richter, L. (2006). Inductive Databases in the Relational Model: the Data as the Bridge. In 

Bonchi, F. & Boulicault, J.  (Eds.), Lecture Notes on Computer Science: Vol. 3933. 

Knowledge Discovery in Inductive Databases - 4th International Workshop - KDID2005 (pp. 

124-138). Berlin, Heidekberg: Berlin-Verlag. 

Kriegel, H., Borgwardt, K. M., Kröger, P., Pryakhin, A., Schubert, M. & Zimek, A. (2007). 

Future Trends in Data Mining. Data Mining and Knowledge Discovery, 15(1), 87-97. 

Kudyba, S. & Hoptroff, R. (2001). Data Mining and Business Intelligence: a Guide to 

Productivity. Hershey, NY: IGI Publishing.  

Kumar, A. V. S. (2011). Knowledge Discovery Practices and Emerging Applications of Data 

Mining: Trends and New Domains. Hershey, New York: IGI Publishing.  

König, A. & Gratz, A. (2005). Advanced Methods for the Analysis of Semiconductor 

Manufacturing Process Data. In Pal, N. R. & Jain, L.  (Eds.), Advanced Techniques in Data 

Mining and Knowledge Discovery (pp.27-74). London, UK: Springer-Verlag. 

Lappas, G. (2009). Machine Learning and Web Learning: Methods and Applications in Societal 

Benefit areas. In Rahman, H.  (Ed.), Data Mining Applications for Empowering Knowledge 

Societies (pp.76-95). Hershey, New York: IGI Publishing. 

Larose, D. T. (2005). Discovering Knowledge in Data: an Introduction to Data Mining. 

Hoboken, New Jersey: John Wiley & Sons.  

Lee, J., Wyner, G. M. & Pentland, B.T. (2008). Process Grammar as a Tool for Business 

Process Design. MIS Quarterly, 32(4), 757-778. 

Li, S., Shue, L. & Lee, S. (2008). Business Intelligence Approach to Supporting Strategy-

making of ISP Service Management. Expert Systems with Applications, 35(3), 739-754. 

Liabotis, I., Theodoulidis, B. & Saraaee, M. (2006). Improving Similarity Search in Time Series 

Using Wavelets. International Journal of Data Warehousing and Mining, 2(2), 55-81. 

Liebowitz, J. (2006). Strategic Intelligence: Business Intelligence, Competitive Intelligence, and 

Knowledge Management. Boca Raton, FL: Auerbach Publications.  

Lin, C., Pu, H. & Lee, Y. (2005). Satellite Image Classification Using Cascaded Arquitecture of 

Neural Fuzzy Network. In Pal, N. R. & Jain, L.  (Eds.), Advanced Techniques in Data Mining 

and Knowledge Discovery (pp.211-231). London, UK: Springer-Verlag. 



Data mining languages for business intelligence 

111 

Lin, Y., Tsai, K., Shiang, W., kuo, T. & Tsai, C. (2009). Research on using ANP to establish a 

performance assessment model for business intelligence systems. Expert Systems with 

Applications, 36(2), 4135-4146. 

Linoff, G. S. (2008). Survival Data Mining Using Relational Databases. Business Intelligence 

Journal, 13(3), 20-30. 

Luck, D. (2009). The Importance of Data Within Contemporary CRM. In Rahman, H.  (Ed.), 

Data Mining Applications for Empowering Knowledge Societies (pp.96-109). Hershey, New 

York: IGI Publishing. 

Lunger, K. (2008). Debunking Three Myths of Pervasive Business Intelligence: How to Create a 

Truly Democratic BI Environment. Business Intelligence Journal, 13(4), 38-41. 

Lunh, H. P. (1958). A Business Intelligence System. IBM Journal of Research and 

Development, 2(4), 314-319. 

Létourneau, S., Famimi, F. & Matwin, S. (1999). Data Mining to Predict Aircraft Component 

Replacement. IEEE Intelligent Systems, 14(6), 59-65. 

Malerba, D., Appice, A. & Vacca, N. (2002).  SDMOQL: An OQL-based Data Mining Query 

Language for Map Interpretation Tasks. Proceedings of the EDBT 2002 Workshop on 

‘Database Technologies for Data Mining, 3-18. 

Mannila, H. (2000). Theoretical Frameworks for Data Mining. SIGKDD Explorations, 1(2), 30-

32. 

March, S. T. & Hevner, A.R. (2007). Integrated decision support systems: A data warehousing 

perspective. Decision Support Systems, 43(3), 1031-1043. 

March, S. T. & Smith, G.F. (1995). Design Science and Natural Science Research on 

Information Technology. Decision Support Systems, 15(4), 251-266. 

March, S. T. & Storey, V.C. (2008). Design Science in the Information Systems Dsicipline: An 

Introduction to the Special Issue on Design Science Research. MIS Quarterly, 32(4), 725-

730. 

Markov, Z. & Larose, D.T. (2007). Data mining the Web: uncovering patterns in Web content, 

structure, and usage. Hoboken, New Jersey: Wiley-Interscience.  

Martin, J., Gibrat, J. & Rodolphe, F. (2005). Choosing the Optimal Hidden Markov Model for 

Secondary-Structure Prediction. IEEE Intelligent Systems, 20(6), 19-25. 



Data mining languages for business intelligence 

112                                                                                                                                          

McKay, J. & Marshall, P. (2005).  A Review of Design Science in Information Systems. 

Proceedings of the 16th Australasian Conference on Information Systems - ACIS 2005, 1-

11. 

McKnight, W. (2002). Bringing Data Mining to the Front Line, Part 1. Information Management 

magazine, November(2002), Retrieved on July, 16th 2009 at http://www.information-

management.com/issues/20021101/5980-1.html. 

McKnight, W. (2003). Bringing Data Mining to the Front Line, Part 2. Information Management 

magazine, November(2002), Retrieved on July, 16th 2009 at http://www.information-

management.com/issues/20021101/5980-1.html. 

Meo, R. & Psaila, G. (2006). An XML-Based Database for Knowledge Discovery. In Grust, T. ; 

Höpfner, H. ; Illarramendi, A. ; Jablonski, S. ; Mesiti, M. ; Müller, S. ; Patranjan, P. ; Sattler; 

Kai-Uwe; Spiliopoulou, M. & Wijsen, J.  (Eds.), Lecture Notes in Computer Science: Vol. 

4254. Current Trends in Database Technology - EDTB 2006 Workshops (pp. 814-828). 

Berlin, Heidelberg: Springer-Verlag. 

Meo, R., Psaila, G. & Ceri, S. (1998). An Extension to SQL for Mining Association Rules. Data 

Mining and Knowledge Discovery, 2(2), 195-224. 

Michalewicz, Z., Schmidt, M., Michalewicz, M. & Chiriac, C. (2007). Adaptive Business 

Intelligence. Heidelberg, Berlin: Springer-Verlag.  

Mielikäinen, T. (2004). Inductive Databases as Ranking. In Kambayashi, Y. ; Mohania, M. & 

Wöb, W.  (Eds.), Lecture Notes on Computer Science: Vol. 3181. Data Warehousing and 

knowledge Discovery - 6th International conference DaWak2004 (pp. 149-158). Berlin, 

Heidelberg: Springer-Verlag. 

Moss, L. T. & Shaku, A. (2003). Business Intelligence Roadmap: The Complete Project 

Lifecycle for Decision-Support Applications. Upper Saddle River, NJ: Pearson Education.  

Myatt, G. J. (2007). Making Sense of Data - A Practical Guide to Exploratory Data Analysis and 

Data Mining. Hoboken, New Jersey: John Wiley & Sons.  

Negash, S. (2004). Business Intelligence. Communications of the Association for Information 

Systems, 13(1), 177-195. 

Nemati, H. R., Steiger, D. M., Iyer, L. S. & Herschel, R.T. (2002). Knowledge Warehouse: an 

Architectural Integration of Knowledge Management, Decision Support, Artificial Intelligence 

and Data Warehousing. Decision Support Systems, 33(2), 143-161. 



Data mining languages for business intelligence 

113 

Nijssen, S. & De Raedt, L. (2007). IQL: A Proposal for an Inductive Query Language. In 

Dzeroski, S. & Struyf, J.  (Eds.), Lecture Notes in Computer Science: Vol. 4747. Knowledge 

Discovery in Inductive Databases - 5th International Workshop, KDID 2006 (pp. 189-209). 

Berlin, Heidelberg: Springer-Verlag. 

Nlenanya, I. (2009). Building an Environmental GIS Knowledge Infrastucture. In Rahman, H.  

(Ed.), Data Mining Applications for Empowering Knowledge Societies (pp.262-279). 

Hershey, New York: IGI Publishing. 

Object Management Group (2008). Knowledge Discovery Model (KDM). KDM Portal, 2006-

2008. Retrieved August, 1st 2009, from http://kdmanalytics.com/kdm/index.php. 

Pan, J., Yang, Q., Yang, Y., Li, L., Li, F. T. & Li, G.W. (2007). Cost-Sensitive-Data Preprocessing 

for Mining Customer Relationship Management Databases. IEEE Intelligent Systems, 22(1), 

46-51. 

Papadias, D. & Sellis, T. (1995). A Pictorial Query-by-Example Language. Journal of Visual 

Languages and Computing, 6(1), 53-72. 

Parsons, J. & Wand, Y. (2008). Using Cognitive Principles to Guide Classification in Information 

Systems Modeling. MIS Quarterly, 32(4), 839-868. 

Pereira, R. H., Azevedo, A. & Castilho, O. (2007). Secretaria On-Line From Iscap: A Case of 

Innovation. In Nunes, M. B. , Isaías, P. & Barroso, J.  (Eds.), Proceedings of the IADIS 

International Conference , WWW/Internet 2007, 301-305. Vila Real, Portugal: IADIS Press. 

Pervan, G. & Arnott, D. (2006). Research in Data Warehousing and Business Intelligence: 

1990-2004. In Frédéric, A. ; Brézillon, P. ; Carlsson, S. & Humphreys, P.  (Eds.), Papers 

from the IFIP WG8.3 International Conference on Creativity and Innovation in Decision 

Making and Decision Support,: Vol. 2. Creativity and Innovation in Decision Making and 

Decision Support (pp. 985-1003). London, UK: Ludic Publishing Ltd. 

Piatetsky-Shapiro, G. (2007). Data Mining and Knowledge Discovery 1996 to 2005: 

Overcoming the Hype and Moving from "university" to "business" and "analytics". Data 

Mining and Knowledge Discovery, 15(1), 99-105. 

Pinto, F., Gago, P. & Santos, M.F. (2006). Data Mining as a New Paradigm for Business 

Intelligence in Database Marketing Projects. In Manolopoulos, Y. , Filipe, J. , 

Constantopoulos, P. & Cordeiro, J.  (Eds.), ICEIS 2006 - Proceedings of the Eighth 

International Conference on Enterprise Information Systems, Databases and Information 

Systems Integration, 144-149. Paphos, Cyprus: INSTICC. 



Data mining languages for business intelligence 

114                                                                                                                                          

Pinto, F., Santos, M. F. & Marques, A. (2009). Database Marketing Intelligence Supported by 

Ontologies. WSEAS Transactions on Business and Economics, 6(3), 135-146. 

Power, D. J. (2007). A Brief History of Decision Support System. DSSResources.COM, Version 

4.0. Retrieved March 10, from http://dssresources.com/history/dsshistory.html. 

Prado, H. A. & Ferneda, E. (2008).  Emerging Technologies of Text Mining: Techniques and 

Applications. Retrieved , from http://www.igi-global.com/reference/details.asp?id=6993. 

Pries-Heje, J. & Baskerville, R. (2008). The Design Theory Nexus. MIS Quarterly, 32(4), 731-

755. 

Quintela, H.; Santos, M. F. & Cortez, P. (2007). Real-Time Intelligent Decision Support System 

for Bridges Structures Behavior Prediction. In Neves, J. ; Santos, M. F. & Machado, J.  

(Eds.), LNAI: Vol. 4874. Proceedings of the 13th Portuguese Conference on Aritficial 

Intelligence, EPIA 2007 (pp. 124-132). Berlin Heidelberg, Germany: Springer-Verlag. 

Rahman, H. (2009). Prospects and Scopes of Data Mining Applications in Society Development 

Activities. In Rahman, H.  (Ed.), Data Mining Applications for Empowering Knowledge 

Societies (pp.162-188). Hershey, New York: IGI Publishing. 

Raisinghani, M. (2004). Business Intelligence in the Digital Economy: Opportunities, 

Limitations and Risks. Hershey, NY: IGI Publishing.  

Rantzau, R. (2004). Frequent Itemset Discovery with SQL Using Universal Quantification. In 

Meo, R. ; Lanzi, P. & Klemettinen, M.  (Eds.), Lecture Notes on Artificial Intelligence: Vol. 

2682. Database Support for Data Mining Applications - Discovering Knowledge with 

Inductive Queries (pp. 194-213). Berlin, Heidelberg: Springer-Verlag. 

Richardson, J., Schlegel, K. & Hostmann, B. (2009). Magic Quadrant for Business Intelligence 

Platforms - 2009. Core Research Note: G00163529, Gartner. 

Richardson, J., Schlegel, K., Hostmann, B. & McMurchy, N. (2008). Magic Quadrant for 

Business Intelligence Platforms - 2008. Core Research Note: G00154227, Gartner. 

Romei, A., Ruggieri, S. & Turini, F. (2006). KDDML: A Middleware Language and System for 

Knowledge Discovery in Databases. Data & Knowledge Engineering, 57(2), 179-220. 

Sallam, R., Hostman, B., Richardson, J. & Bitterer, A. (2010). Magic Quadrant for Business 

Intelligence Platforms 2010. Core Research Note: G00173700, Gartner. 

Salzberg, S. L. (1999). Gene Discovery in DNA Sequences. IEEE Intelligent Systems, 14(6), 44-

48. 



Data mining languages for business intelligence 

115 

Santos, M. F. & Azevedo, C.S. (2005). Data Mining - Descoberta de Conhecimento em Bases 

de Dados. Lisboa, Portugal: FCA - Editora de Informática.  

Santos, M. F.; Cortez, P.; Pereira, J. & Quintela, H. (2006). Corporate Bankruptcy Prediction 

Using Data Mining Techniques. In Zanasi, A. ; Brebbia, C. A. & Ebecken, N. F. F.  (Eds.), 

WIT Transactions on Information and Communication Tecchnologies: Vol. 37. Data Mining 

VII: Data, Text and Web Mining and their Business Applications (pp. 349-357). 

Southampton, UK: WIT Press. 

Santos, M. F.; Cortez, P.; Quintela, H. & Pinto, F. (2005). A Clustering Approach for Knowledge 

Discovery in Database Marketing. In Zanasi, A. ; Brebbia, C. A. & Ebecken, N. F. F.  (Eds.), 

WIT Transactions on Information and Communication Tecchnologies: Vol. 35. Data Mining 

VI: Data, Text and Web Mining and their Business Applications (pp. 367-376). Southampton, 

UK: WIT Press. 

Santos, M. F.; Cortez, P.; Quintela, H.; Neves, J.; Vicente, H. & Arteiro, J. (2005). Ecological 

Mining -  A Case Study on Dam Water Quality. In Zanasi, A. ; Brebbia, C. A. & Ebecken, N. 

F. F.  (Eds.), WIT Transactions on Information and Communication Tecchnologies: Vol. 35. 

Data Mining VI: Data mining, Text Mining and their Business Applications (pp. 481-489). 

Southampton, UK: WIT Press. 

Santos, M., Pereira, J. & Silva, Á. (2005). A Cluster Framework for Data Mining Models: an 

applications to intensive medicine. In Chen, C. , Filipe, J. , Seruca, I. & Cordeiro, J.  (Eds.), 

Proceedings of the 7th International Conference on Enterprise Information Systems, ICEIS 

2005, 163-168. Miami, USA: INSTICC. 

Sarawagi, S., Thomas, S. & Agrawal, R. (2000). Integrating Association Rule Mining with 

Relational Database Systems: Alternatives and Implications. Data Mining and Knowledge 

Discovery, 4(2-3), 89-125. 

Scime, A., Murray, G. R., Huang, W. & Brownstein-Evans, C. (2008). Data Mining in the Social 

Sciences and Iterative Attribute Elimination. In Taniar, D.  (Ed.), Data Mining and Knowledge 

Discovery Tecnhologies (pp.308-332). Hershey, New York: IGI Publishing. 

Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R. & Carlsson, C. (2002). 

Past, Present, and Future of Decision Support Technology. Decision Support Systems, 

32(2), 111-126. 



Data mining languages for business intelligence 

116                                                                                                                                          

Silva, M. S., Câmara, G. & Escada, M.I. (2009). Image Mining: Detecting Deforestation 

Patterns Through Satellites. In Rahman, H.  (Ed.), Data Mining Applications for Empowering 

Knowledge Societies (pp.55-75). Hershey, New York: IGI Publishing. 

Simon, H. A. (1981). The Sciences of the Artificial. Cambridge, Massachusetts: Massachusetts 

Institute of Technology.  

Simoudis, E. (1996). Reality Check for Data Mining. IEEE Expert, 11(5), 26-33. 

Smyth, P., Fayyad, U. M., Burl, M. C. & Perona, P. (1996). Modeling Subjective Uncertainty in 

Image Annotation. In Fayyad, U. M. , Piatetski-Shapiro, G. , Smyth, P. & Uthurusamy, R.  

(Eds.), Advances in knowledge discovery and data mining (pp.519-539). Menlo Park, 

California: AAAI Press/The MIT Press. 

Steiger, D. M. (2010). Decision Support as Knoledge Creation: a Business Intelligence Design 

Theory. International Journal of Business Intelligence Research, 1(1), 29-47. 

Strenger, L. (2008). Coping with "Big Data" Growing Pains. Business Intelligence Journal, 

13(4), 45-52. 

Sweets, D. L., Pathak, Y. & Weng, J.J. (1998). An Image Database System with Support for 

Traditional Alphanumeric Queries and Content-Based Queries by Example. Multimedia Tools 

and Applications, 7(3), 181-212. 

Tadesse, T., Wardlow, B. & Hayes, M.J. (2009). The Application of Data Mining for Drought 

Monitoring and Prediction. In Rahman, H.  (Ed.), Data Mining Applications for Empowering 

Knowledge Societies (pp.280-291). Hershey, New York: IGI Publishing. 

Tang, Z. & MacLennan, J. (2005). Data Mining with SQL Server 2005. Indianapolis, IN: Wiley 

Publishing.  

Thierauf, R. J. (2001). Effective Business Intelligence Systems. Westport, CT : Quorum Books.  

Turban, E., Aroson, J. E., Liang, T. & Sharda, R. (2007). Decision Support and Business 

Intelligence Systems. Upper Sadle River, NJ: Pearson Prentice Hall.  

Turban, E., Sharda, R., Aroson, J. E. & King, D. (2008). Business Intelligence: A Managerial 

Approach. Upper Sadle River, NJ: Pearson Prentice Hall.  

Vercellis, C. (2009). Business Intelligence: Data Mining and Optimization for Decision Making. 

West Sussex, UK: John Wiley & Sons.  

Wang, H. & Wang, S. (2008). A Knowledge Management Approach to Data Mining Process for 

Business Intelligence. Industrial Management & Data Systems, 108(5), 622-634. 



Data mining languages for business intelligence 

117 

Watson, H. J. (2009). Bridging the IT/Business Culture Chasm. Business Intelligence Journal, 

14(1), 4-7. 

Witten, I. H. & Frank, E. (2005). Data Mining - Practical Machine Learning Tools and 

Techniques. San Francisco, CA: Morgan Kaufmann Publishers.  

Wormus, T. (2008). Complex Event Processing: Analytics and Complex Event Processing: 

Adding Intelligence to the Event Chain. Business Intelligence Journal, 13(4), 53-58. 

Wu, C., Yu, L. & Jang, F. (2005). Using Semantic Dependencies to Mine Depressive Symptoms 

from Consultation Records. IEEE Intelligent Systems, 20(6), 50-59. 

Ye, N. (2003). The Handbook of Data Mining. Mahwah, NJ: Lawrence Erlbaum Associates.  

Yermish, I., Miori, V., Yi, J., Malhotra, R. & Klimberg, R. (2010). Business Plus Intelligence Plus 

Technology Equals Business Intelligence. International Journal of Business Intelligence 

Research, 1(1), 48-63. 

Zeller, J. (2007). Business Intelligence: The Chicken or the Egg. BI Review Magazine, May 8, 

2007. Retrieved February 15, 2009, from http://www.information-

management.com/bissues/20070601/2600340-1.html. 

Zeller, J. (2008). Business Intelligence: the Road Trip. Information Management Special 

Reports, December 2, 2008. Retrieved February 15, 2009, from http://www.information-

management.com/specialreports/2008_112/10002266-1.html?pg=1. 

Zhang, X., Hu, X., Xia, J., Zhou, X. & Achananuparp, P. (2008). A Graph-Based Biomedical 

Literature Clustering Approach Utilizing Term’s Global and Local Importance Information. 

International Journal of Data Warehousing and Mining, 4(4), 84-101. 

Zloof, M. M. (1975).  Query-by-Example: the Invocation and Definition of Tables and Forms. 

Proceedings of the 1st International Conference on Very Large Databases, 1-24. 

Zloof, M. M. (1977). Query-by-Example: a data base language. IBM Systems Journal, 16(4), 

324-343. 

Zloof, M. M. & de Jong, S.P. (1977). The System for Business Automation (SBA): Programming 

Language. Communications of the ACM, 20(6), 385-396. 

 

  



Data mining languages for business intelligence 

118                                                                                                                                          

  



Data mining languages for business intelligence 

119 

APPENDIX A – QUESTIONNAIRE 

QMBE - Query Models-By-Example  

 

This questionnaire is part of a PhD project. In the research a new language, named  Query Models-By-Example (QMBE), was 

developed as an extension of Query-By-Example (QBE) languages presented in some relational database management systems. 

The goal is to evaluate the new language (QMBE). 

 

 

The questionnaire consists of three parts: 

• Part 1 - General questions 

• Part 2 - QMBE Overview 

• Part 3 - Evaluation of the proposed language 

 

 

Part 1 - General questions  
General questions *  

1.1: How long have you been using a Business Intelligence System to support decision making in higher education 
institutions, or other organizations? Please write your answer here: 

 

 
* 1.2: How long have you been using Data Mining to support decision making in higher education institutions, or other 

organizations? Please write your answer here: 

 

 
* 1.3: In your opinion, how important is the use of Data Mining to support decision making? Please choose *only one* of 

the following: 

Very important 

Important 

Somewhat important 

Not important 

Not at all important 

 
* 1.4: Please, explain briefly how do you use Data Mining in higher education institutions, or other organizations, to 

support decision making. 
(Are there reports from data mining specialists? Do you have direct access to data mining models?...) 

Please write your answer here: 

 

 
Part 2 - Language overview  

A film containing a tutorial of the QMBE language is presented. 
 

Please, click next>>  after watching the movie, so that you can answer to the last group of questions. 

2.1:  

Please click here to watch the movie. 
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Part 3 - Utility of the proposed language  
Evaluating the utility of the proposed language  
* 3.1: What is your general reaction to the proposed language (QMBE)? Please write your answer here: 

 

 
* 3.2: For each of the following sentences express your opinion considering: 

 

1 – Strongly disagree 

2 – Somewhat disagree 

3 – Neutral/no opinion 

4 – Somewhat agree 

5 – Strongly agree 

Please choose the appropriate response for each item: 

 
* 3.3.: Will you consider using the proposed language in your organization to support decision making? Please choose 

*only one* of the following: 

Certainly 

Possibly yes 

Do not know 

Possibly no 

No at all 

 

 
DM models 

 
DM models with QMBE 

 
1 2 3 4 5 

 
1 2 3 4 5 

Are easy to 

understand.           

Are easy to 

use in 

Practice.           

Are oriented 

to business 

users.           

Are oriented 

to Business 

Intelligence 

Activities. 
          

Its full 

potential 

could be 

completley 

explored. 

          

Help 

decision 

making.           

Bring 

benefits to 

Higher 

Education 

Institutions. 

          

Bring 

benefits to 

organization

s, in 

general. 
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3.4: Please, provide additional suggestions/comments. Please write your answer here: 

 

 
* 3.5: Are you interested in the evaluation results? Please choose *only one* of the following: 

Yes 

No 

 
[Only answer this question if you answered 'Yes' to question '3.5 ']  

3.5.1: Please enter your email address. Please write your answer here: 

 

 

Submit Your Survey. 

Thank you for completing this survey..  
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APPENDIX B – STATISTICAL TESTS  

Ho: µ1 - µ2 = 0 (µ1 = µ2) 

H1: µ1 - µ2 > 0 (µ1 > µ2) 

 

Ho: There is no difference between means µ1 and µ2 

H1: µ1 is greater than µ2 

 

Performed test: t-test for paired samples 

 

Question: Are easy to understand. 

Variable 1 Variable 2 

Mean 3,9375 3,3125 

Variance 0,729166667 0,7625 

Observations 16 16 

df 15 

Stat t 2,611164839 

p-value 0,009828517 

t value 1,753050325 

 

Stat t > t value      thus        Reject Ho Accept H1 

 

Question: Are easy to use in Practice. 

  Variable 1 Variable 2 

Mean 3,75 3,25 

Variance 0,866666667 0,6 

Observations 16 16 

df 15 

Stat t 2,070196678 

p-value 0,028054101 

t value 1,753050325 

 

Stat t > t value      thus        Reject Ho Accept H1 
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Question: Are oriented to business users. 

  Variable 1 Variable 2 

Mean 3,75 3,1875 

Variance 0,866666667 1,095833333 

Observations 16 16 

df 15 

Stat t 1,781101839 

p-value 0,047575435 

t value 1,753050325 

 

Stat t > t value      thus        Reject Ho Accept H1 

 

Question: Are oriented to Business Intelligence Activities. 

  Variable 1 Variable 2 

Mean 3,9375 3,375 

Variance 0,729166667 0,516666667 

Observations 16 16 

df 15 

Stat t 2,33418733 

p-value 0,016951796 

t value 1,753050325 

 

Stat t > t value      thus        Reject Ho Accept H1 

 

Question: Its full potential could be completley explored. 

  Variable 1 Variable 2 

Mean 3,6875 3,125 

Variance 0,629166667 0,783333333 

Observations 16 16 

df 15 

Stat t 2,057534806 

p-value 0,028726682 

t value 1,753050325 

 

Stat t > t value      thus        Reject Ho Accept H1 
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Question: Help decision making. 

  Variable 1 Variable 2 

Mean 4,3125 3,75 

Variance 0,495833333 0,866666667 

Observations 16 16 

gl 15 

Stat t 2,182820625 

P(T<=t) uni-caudal 0,022678434 

t crítico uni-caudal 1,753050325 

 

Stat t > t value      thus        Reject Ho Accept H1 

 

Question: Bring benefits to Higher Education Institutions. 

  Variable 1 Variable 2 

Mean 4,0625 3,5625 

Variance 0,595833333 0,529166667 

Observations 16 16 

gl 15 

Stat t 2,236067977 

P(T<=t) uni-caudal 0,020484478 

t crítico uni-caudal 1,753050325 

 

Stat t > t value      thus        Reject Ho Accept H1 

 

Question: Bring benefits to organizations, in general. 

  Variable 1 Variable 2 

Mean 4,1875 3,75 

Variance 0,5625 0,6 

Observations 16 16 

gl 15 

Stat t 2,405701888 

P(T<=t) uni-caudal 0,014747147 

t crítico uni-caudal 1,753050325 

 

Stat t > t value      thus        Reject Ho Accept H1 
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APPENDIX D –RIPPER ALGORITHM 

 

The RIPPER algorithm description, as presented by the authors of the WEKA implementation is hereby included. 

 

Used variables: 

 

p = number of positive examples covered by the rule 

n = number of negative examples covered by the rule 

t = p +  n 

P = number of positive examples of the class 

N = number of negative examples of the class 

T = P + N 

 

Algorithm: 

 

Initialize the Rule Set: RS = {}, and for each class from the less prevalent one to the more frequent one, 

DO:  

 

1. Building stage: 

Repeat 1.1 and 1.2 until the Description Length (DL) of the rule set and examples is 64 bits greater than 

the smallest DL met so far, or there are no positive examples, or the error rate >= 50%.  

 

1.1. Grow phase: 

Grow one rule by greedily adding antecedents (or conditions) to the rule until the rule is perfect 

(i.e. 100% accurate).  The procedure tries every possible value of each attribute and selects 

the condition with highest information gain: p(log(p/t)-log(P/T)). 

 

1.2. Prune phase: 

Incrementally prune each rule and allow the pruning of any final sequences of the 

antecedents;  

The pruning metric is (p-n)/(p+n) -- but it's actually 2p/(p+n) -1, so in this implementation we 

simply use p/(p+n) (actually (p+1)/(p+n+2), thus if p+n is 0, it's 0.5). 

 

2. Optimization stage: 

After generating the initial rule set {Ri}, generate and prune two variants of each rule Ri from randomized 

data using procedure 1.1 and 1.2. But one variant is generated from an empty rule while the other is 

generated by greedily adding antecedents to the original rule. Moreover, the pruning metric used here is 

(TP+TN)/(P+N).Then the smallest possible DL for each variant and the original rule is computed.  The 
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variant with the minimal DL is selected as the final representative of Ri in the ruleset.After all the rules in 

{Ri} have been examined and if there are still residual positives, more rules are generated based on the 

residual positives using Building Stage again.  

 

3. Delete the rules from the rule set that would increase the DL of the whole rule set if it were in it and 

add the resultant rule set to RS.  

 

ENDDO 
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APPENDIX E – THE DATA MINING MODEL OBTAINED 
USING RIPPER 

 

=== Model information === 

Filename:     regras_JRip.model 

Scheme:       weka.classifiers.rules.JRip -F 3 -N 2.0 -O 2 -S 1 

Relation:     DadosParaDM-CSV-weka.filters.unsupervised.attribute.Remove-R2-3,7 

Attributes:   20 

              Season ID 

              Course ID 

              Department 

              #of theoretic hours 

              #of theoretical-practical hours 

              Optional? 

              ECTS credits 

              Student Area 

              Student Nationality 

              Student Gender 

              Student Age 

              Student qualification 

              Student admission type 

              Attendance type 

              Program ID 

              Level description 

              Teacher rank 

              Teacher qualification 

              Teacher years on duty 

              Teacher age 

 

=== Classifier model === 

JRIP rules: 

=========== 
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(Department = Informática) and (Program ID <= 3200) and (Season ID = N) and (Student Age 

>= 24) and (Student Age <= 26) => Level description=ND (5.0/1.0) 

(Teacher years on duty <= 0) and (Optional? = S) and (Season ID = N) and (Student 

qualification = SEC) => Level description=ND (12.0/5.0) 

(Department = Línguas e cultura) and (Student Age >= 29) and (Optional? = S) and (Teacher 

rank = Professor Adjunto) and (Student Age >= 34) => Level description=Muito Bom 

(30.0/13.0) 

(Department = Línguas e cultura) and (Optional? = S) and (Teacher rank = Professor Adjunto) 

and (Student Area = AVEIRO) and (Course ID >= 2232) => Level description=Muito Bom 

(6.0/1.0) 

(Season ID = N) and (Student Age >= 24) and (Attendance type = O) and (Student Age >= 27) 

and (Course ID >= 2370) and (Student Age >= 35) and (Student Gender = F) and (Course ID 

>= 2434) => Level description=Não Inscrito (24.0/5.0) 

(Season ID = N) and (Student Age >= 24) and (Attendance type = O) and (Student Age >= 27) 

and (Student admission type = RI) and (Student Age <= 31) and (Student Area = GUARDA) => 

Level description=Não Inscrito (8.0/0.0) 

(Season ID = N) and (Student Age >= 24) and (Attendance type = O) and (Student Age >= 27) 

and (Student admission type = RI) and (Student Gender = F) and (Program ID >= 3600) => 

Level description=Não Inscrito (8.0/0.0) 

(Program ID >= 3200) and (Course ID >= 2218) and (Student Gender = F) and (Teacher rank 

= Professor Adjunto) and (Course ID <= 2439) and (ECTS credits >= 6) and (Student Age >= 

28) => Level description=Bom (66.0/27.0) 

(Program ID >= 3200) and (Course ID >= 2222) and (Student Gender = F) and (Teacher rank 

= Professor Adjunto) and (Program ID <= 4100) and (Teacher age >= 50) and (Student Age >= 

33) => Level description=Bom (27.0/11.0) 

(Program ID >= 3200) and (Course ID >= 2218) and (Season ID = N) and (Teacher age <= 42) 

and (Student Gender = F) and (ECTS credits <= 3) and (Teacher rank = Equiparado Assistente 

do 2º Triénio) and (Program ID >= 3300) => Level description=Bom (35.0/12.0) 

(Program ID >= 3200) and (Course ID >= 2222) and (Student Gender = F) and (Season ID = 

N) and (Department = Gestão) and (Program ID >= 3800) and (Student Age >= 26) => Level 

description=Bom (27.0/11.0) 
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(Season ID = N) and (Department = Economia) and (Course ID <= 2352) and (ECTS credits <= 

4) and (Student Age <= 24) => Level description=Sem nota mínima (740.0/287.0) 

(Season ID = N) and (Course ID <= 2077) and (Teacher age <= 53) and (Course ID >= 1045) 

and (Course ID <= 1085) and (Student Age <= 22) and (Program ID >= 3600) => Level 

description=Sem nota mínima (471.0/159.0) 

(Season ID = N) and (Department = Economia) and (Course ID <= 2352) and (ECTS credits <= 

4) => Level description=Sem nota mínima (462.0/207.0) 

(Season ID = N) and (Course ID <= 2077) and (Department = Economia) and (Course ID <= 

1085) and (Attendance type = O) => Level description=Sem nota mínima (130.0/62.0) 

(Season ID = N) and (Course ID <= 2077) and (Teacher age <= 53) and (Teacher years on 

duty >= 19) and (Teacher age <= 48) and (Teacher years on duty >= 22) => Level 

description=Sem nota mínima (229.0/113.0) 

(Season ID = N) and (#of theoretical-practical hours >= 6) and (Course ID <= 2346) => Level 

description=Sem nota mínima (784.0/336.0) 

(Season ID = N) and (Course ID <= 2105) and (Department = Direito) and (Course ID <= 

1030) and (Student Gender = M) => Level description=Sem nota mínima (225.0/102.0) 

(Season ID = N) and (Course ID <= 2105) and (Department = Economia) and (Attendance type 

= T) and (Teacher qualification = Mestre) => Level description=Sem nota mínima (182.0/73.0) 

(Season ID = N) and (Department = Direito) and (Course ID <= 2313) and (Teacher years on 

duty >= 22) and (Attendance type = O) and (Course ID >= 2313) => Level description=Sem 

nota mínima (162.0/71.0) 

(Season ID = N) and (Course ID <= 2105) and (Department = Direito) and (Course ID <= 

1030) and (Attendance type = O) and (Student Age >= 20) and (Student Age <= 23) => Level 

description=Sem nota mínima (56.0/23.0) 

(Season ID = N) and (Course ID <= 2105) and (Teacher age <= 53) and (ECTS credits >= 5) 

and (Course ID >= 2021) and (Student Age <= 20) and (Student Gender = M) => Level 

description=Sem nota mínima (63.0/24.0) 

(Season ID = N) and (Course ID <= 2105) and (Course ID >= 2009) and (ECTS credits >= 5) 

and (Teacher qualification = Doutoramento) and (Course ID <= 2021) and (Student Age >= 20) 

and (Student Age <= 24) => Level description=Sem nota mínima (75.0/35.0) 

(Department = Contabilidade) and (Season ID = N) and (Course ID <= 2350) and (Course ID 

>= 2348) => Level description=Faltou (1287.0/520.0) 
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(Student Age >= 23) and (Department = Economia) and (ECTS credits <= 4) and (Teacher rank 

= Equiparado Assistente do 2º Triénio) and (Attendance type = O) and (Teacher age >= 40) => 

Level description=Faltou (113.0/46.0) 

(Student qualification = SEC) and (Student Age >= 23) and (Course ID <= 2369) and (Course 

ID >= 2347) and (Season ID = N) and (Course ID <= 2350) and (Student Age >= 25) => Level 

description=Faltou (275.0/135.0) 

(Student Age >= 21) and (Department = Economia) and (ECTS credits <= 4) and (Teacher 

years on duty >= 22) and (Season ID = N) => Level description=Faltou (109.0/48.0) 

(Student Age >= 23) and (Student qualification = SEC) and (Course ID <= 2369) and (Teacher 

age <= 49) and (Program ID <= 3200) and (Student Age >= 26) and (Attendance type = O) 

and (Student Age >= 39) => Level description=Faltou (46.0/12.0) 

(Student Gender = M) and (Student qualification = SEC) and (Course ID <= 2369) and (Course 

ID >= 2337) and (Teacher age <= 49) and (Teacher age >= 48) => Level description=Faltou 

(154.0/70.0) 

(Season ID = R) and (Program ID <= 3100) and (Course ID <= 2347) and (Course ID >= 

2346) => Level description=Reprovado (581.0/171.0) 

(Season ID = R) and (Program ID <= 3100) and (Course ID <= 2355) and (Department = 

Matemática) => Level description=Reprovado (292.0/80.0) 

(Season ID = R) and (Course ID <= 2355) and (Program ID <= 3100) and (Student Age <= 21) 

and (Student Area = BRAGA) => Level description=Reprovado (93.0/29.0) 

(Season ID = R) and (Course ID <= 2355) and (Program ID <= 3100) and (Teacher age >= 44) 

and (Teacher years on duty <= 21) and (Course ID <= 2348) and (Attendance type = T) and 

(Teacher age <= 51) and (Student Age <= 28) => Level description=Reprovado (64.0/21.0) 

 => Level description=Suficiente (21322.0/14832.0) 

 

Number of Rules : 34 
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