
Creating web-based interactive public display applications

with the PuReWidgets toolkit

Jorge C. S. Cardoso

1,2

1
CITAR - Universidade Catolica Portuguesa

Rua Diogo Botelho, 1327

4169-005 Porto, Portugal

jorgecardoso@ieee.org

Rui Jose

2
Centro Algoritmi

Campus de Azurem

4800-058 Guimaraes, Portugal

rui@dsi.uminho.pt

ABSTRACT
Interaction is repeatedly pointed out as a key enabling ele-
ment towards more engaging and valuable public displays.
Still, most digital public displays today do not support any
interactive features. We believe that this is mainly due
to the lack of e�cient and clear abstractions that devel-
opers can use to incorporate interactivity into their applica-
tions. In this demo we present PuReWidgets, a toolkit that
developers can use in their public display applications to
support the interaction process across multiple display sys-
tems, without considering the specifics of what interaction
modality will be used on each particular display. PuReWid-
gets provides high-level widgets to application programmers,
and allows users to interact via various interaction mecha-
nisms, such as graphical user interfaces for mobile devices,
QR codes, SMS, etc.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Software libraries, Modules and interfaces

General Terms
Human Factors, Design

Keywords
interactive public displays, mobile applications, toolkits

1. INTRODUCTION
Although public digital displays have become increasingly

ubiquitous artefacts, most of the displays we encounter to-
day still do not o↵er any interactive feature. A key reason
behind this apparent paradox is the lack of e�cient and clear
abstractions for incorporating interactivity into public dis-
play applications. While interaction can be achieved for a

Copyright is held by the author/owner(s).

MUM ’12, Dec 03-06 2012, Ulm, Germany

ACM 978-1-4503-1815-0/12/12.

specific display system with a particular interaction modal-
ity, the lack of proper interaction abstractions means that
there is too much specific work that needs to be done out-
side the core application functionality to support even basic
forms of interaction. This is an e↵ort that must be repli-
cated by each developer, representing a wasted e↵ort. This
also leads to inconsistent interaction models across di↵erent
displays and, as a result, people are not able to develop,
based on previous experiences, any expectations and prac-
tices regarding their interaction with public displays.

In our work [2, 3], we have studied what kinds of ab-
stractions would be useful for public displays and we have
developed a toolkit which incorporates those abstractions.
PuReWidgets allows application developers to focus on the
core functionality and input data needs of the application,
giving them high-level abstractions (widgets) that hide the
details of the multitude of interaction mechanisms that can
be used to interact with a public display. We believe this
to be an important step in the vision of open networks of
interactive public displays [4].

2. PuReWidgets
PuReWidgets is a widget toolkit for the development of

web-based interactive public display applications. A widget
is an interaction abstraction that: provides applications with
high-level interaction data, is independent of the underlying
input mechanism; can have di↵erent graphical representa-
tions in di↵erent platforms (including the public display it-
self); and provides system-level input feedback to users.

The development process of a public display application
that uses PuReWidgets is similar to the development of a
regular web application1: the developer includes the PuReWid-
gets external code library in his project and uses the avail-
able functions of the library to code the application, instan-
tiating widgets and registering interaction event callbacks.
The developer then deploys the set of HTML, CSS, and
Javascript files on a web server. The PuReWidgets system
is composed of a widget library that programmers include
in their application’s code, and a web service that handles
interaction events (Figure 1). When the application is run-
ning, the PuReWidgets library receives input events from
the PuReWidgets service, and triggers the appropriate high-
level event on the application.

1PuReWidgets is implemented for Google’s Web Toolkit
(http://code.google.com/webtoolkit) and Google’s Ap-
pengine (http://code.google.com/appengine) web devel-
opment frameworks.



Figure 1: PuReWidgets architecture.

2.1 Widgets
PuReWidgets provides widgets that support the most com-

mon input types for public displays. Widgets have a default
graphical representation that can be shown on the public dis-
play, but it can be overridden by applications to provide a
better integration their own “look and feel”. Figure 2 shows
a sample of widgets that have been restyled in our demo
applications (Public YouTube Player and Everybody Votes
applications, described later).

(a) Button, in the context of a
video item in the Public YouTube
Player application

(b) Listbox, in the Everybody
Votes application

(c) Textbox, in the Everybody
Votes application

Figure 2: Graphical representations for widgets used in the
sample applications.

The currently available widgets are:

Action button A button widget allows applications to pro-
vide actions that users can trigger at any moment. The
button widget generates a simple trigger event identi-
fying the action to be executed. Figure 2a show an

example of a button.

Listbox A list widget allows applications to provide a list
of items that users can choose from. The list widget
triggers an event identifying the option selected by the
user. Figure 2b shows an example of a listbox (in this
particular case, the listbox was styled to show the title
on the side, instead of the default on top position).

Textbox A textbox widget allows applications to receive
text from users. A textbox widget generates an event
containing the input text. Figure 2c shows an example
of a textbox.

Upload An upload widget allows applications to receive
media files. The input event carries the URL of the
media file.

Download A download widget allows applications to spec-
ify external locations where content items can be ac-
cessed and downloaded. Applications specify the lo-
cation of the file when instantiating the widget. The
download widget triggers an event with a simple indi-
cation that a user has asked for the file.

Checkin A checkin widget allows applications to receive
notifications when users check-in in the place where the
display is. In this case, the input event the application
receives carries the identification of the user that has
just checked-in.

2.2 Interaction mechanisms
Users can interact with the widgets created by an applica-

tion using a variety of input mechanisms: using a graphical
user interfaces for mobile (and desktop) devices, scanning
a QR code associated with a particular widget, or send-
ing a specially formatted text message via SMS or email.
(We have focused on remote interaction mechanisms, but
the widgets can also be used with a touch-screen, or stan-
dard mouse and keyboard platform.)

2.2.1 Generated GUI

The Interaction Manager (IM) server (see Figure 1) is ca-
pable of generating a web-based graphical user interface for
every application that uses PuReWidgets. Figure 3 shows
an example of the interface generated for the Everybody
Votes application in both a desktop and a mobile device.

These interfaces are generated by inspecting the widget
descriptions stored at the IM, associated with a particular
application. These descriptions are automatically sent to
the IM by the PuReWidgets library when a widget is in-
stantiated.

(a) Desktop (b) Mobile

Figure 3: Generated GUI interfaces.



2.2.2 QR Codes

The IM also provides display owners with the possibility
of obtaining QR codes for any widget that has been created
by any application. This allows, for example, the creation
of flyers or posters for particular features of an application
that can then be distributed near the display. These flyers or
posters can be used to raise awareness about an application
or a particular feature, and entice users to interact. Figure 4
shows an example of a flyer created for a poll about the
winner of a national football championship.




   

Figure 4: Sample flyer with QR codes for a poll. The
QR codes are generated automatically by the PuReWidgets
toolkit.

2.2.3 Text-based mechanisms

An I/O module in the IM handles text messages from
SMS and email (which can also contain attachment files),
and parses them using a predefined command syntax that
allows users to address specific widgets in an application.

For SMS messages, uses can address a specific widget with
a <place id>.<reference> <parameters> message, where
<place id> is a string defined by the display owner that
uniquely identifies that place in the PuReWidgets system,
<reference> is a 3-character code that is shown inside the
widget in the public display, and <parameters> is an op-
tional list of space separated strings which are interpreted
di↵erently by di↵erent widgets. For example, in Figure 2, to
select the “Everyday” option of the listbox for a display in
the place identified by “UCP”, users would write “ucp.ti0”;
to send a poll suggestion, users would write “ucp.u10 sug-
gestion text.”. The SMS message would then be sent to a
phone number announced near the display.

Email messages follow a similar mechanism. PuReWid-
gets assigns a unique email addresses to each place, and
parses the subjects and attachments of emails sent to that
address. The subject follows the format <reference> <pa-
rameters> (there is no need to specify the place id because
that is implicit in the email address). In case the widget
accepts files (e.g. an upload widget), the attachments are
extracted and stored and their URLs are made available to
the widget.

Other mechanisms such as Bluetooth naming and Instant
Messaging could easily be integrated as an I/O module in
the Interaction Manager server.

2.3 Asynchronous interaction
PuReWidgets’ widgets are capable of receiving input even

if the application is o↵-screen (i.e., not being rendered on
the public display), however they do no generate events or
graphical feedback in this situation. The IM maintains an
input queue for every widget. When the application is put
on-screen, the PuReWidgets library requests all input that
was sent while the application was o↵-screen, and delivers it
to the application.

2.4 Input feedback
An important aspect of desktop widgets is the system-

level feedback they provide and that helps users understand
the response of the system, independently of how the appli-
cation will react. Our approach is to provide a base mecha-
nism for presenting feedback on the public display, that con-
sists of a panel that pops up on top of the corresponding wid-
get. This feedback allows not only the interacting users to
get a confirmation of their actions, but also non-interacting
users to get a better understanding of what is going on the
public display. The information displayed in the panel is
defined by each widget but, generally, it identifies the user
(a masked version of the user id if the identification is con-
sidered sensible information, such as the phone number for
SMS interactions) and the action that the user performed.
The toolkit provides slightly di↵erent feedback information
on the public display, depending on whether the widget that
is receiving the input is currently visible on-screen, or if it is
not. For on-screen widgets, the widget itself provides con-
text to the feedback information, so the feedback panel con-
tains, generally, less information (Figure 5a). For o↵-screen
widgets, the feedback panel must provide information that
helps users identify the widget itself (Figure 5b).

The feedback also helps users understand the asynchronous
nature of the interaction by providing time information when
the input which is causing the feedback on the display is
older than a configurable amount of time (1 minute by de-
fault). In this case the feedback includes the age of the
feedback, e.g., “about 10 minutes ago...”.

The toolkit provides default feedback messages for all wid-
gets, but programmers can customize those messages with
their own text.

(a) Feedback for on-screen
widgets

(b) Feedback for o↵-screen
widgets

Figure 5: Input feedback on the public display.

3. DEMO SETUP
In this demo, we will setup a public display running two

interactive applications (Public YouTube Player, and the
Everybody Votes applications) that can be interacted with
using SMS, Email, QR codes, or a web interface. The ac-
companying video [1] shows some of the interactions that
will be possible during the demo.

3.1 Public YouTube Player
The public video player is an application that searches

for, and plays youtube videos. The application plays videos
from a set of youtube users specified by the place owner,
and videos that result from searches based on tags. The
search tags are taken from a tag cloud that is built using
tags defined by the display owner, and tags extracted from
the previously played videos.



(a) Recently played videos

(b) Tag cloud (c) Videos to play next

Figure 6: Screens in the Public YouTube Player application.

The application is composed of four screens that iterate
over time: (6a), a screen that shows the three most recently
played videos, and acts as an activity stream for the applica-
tions; (6b), a screen that shows the current tag cloud, giving
users an indication of the topics that have been played; (6c),
a screen which shows a set of alternative videos that can be
played next; and finally, the screen which plays the selected
video in fullscreen.

Users can interact with the application at any time (in-
cluding when the application is o↵-screen) to: “like” a video
that has already been played; get the URL of a recently
played video;select a video to play from the list of search
results;report an innapropriate video.

3.2 Everybody Votes

(a) Open poll

(b) Closed poll (c) Suggestion box

Figure 7: Screens in the Everybody Votes application.

The Everybody Votes application is a polls application
composed of three screens, depicted in Figure 7: (7a), an
open polls screen which iterates through the open polls,
showing the poll question, possible answers, and time left

before the poll closes; (7b), a closed polls screen which iter-
ates through the closed polls and shows their voting results;
(7c), a suggest box screen enticing users to suggest their
own polls (which will go through a moderation process by
the display owner).

As with the Public YouTube Player, users can interact
with this application at any time to vote on the various
open polls, or to suggest a poll to the display owner. Dis-
play owners receive the poll suggestions in an email address
configured in the application’s administration interface.

4. CONCLUSIONS
Interactive public display applications need to be easier to

develop and need to start providing consistent interaction
models to its users. For this we need programming tools
anchored on the study of interaction with public displays,
that programmers can incorporate in their applications. The
PuReWidgets demo shows an initial version of such a toolkit,
demonstrating its features and applicability.

5. ACKNOWLEDGMENTS
Jorge Cardoso has been supported by “Fundacao para a

Ciencia e Tecnologia” (FCT) and “Programa Operacional
Ciencia e Inovacao 2010” (POCI 2010), co-funded by the
Portuguese Government and European Union by FEDER
Program and by FCT training grant SFRH/BD/47354/2008.
This research has also received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement no. 244011 (PD-Net).

6. REFERENCES
[1] J. C. S. Cardoso. PuReWidgets toolkit demo video for

MUM2012. doi:10.6084/m9.figshare.94598, 2012.
[2] J. C. S. Cardoso and R. Jose. A Framework for

Context-Aware Adaptation in Public Displays. In
R. Meersman, P. Herrero, and T. Dillon, editors, On
the Move to Meaningful Internet Systems: OTM 2009
Workshops, volume 5872/2009 of Lecture Notes in
Computer Science, pages 118–127, Vilamoura,
Portugal, 2009. Springer Berlin / Heidelberg.

[3] J. C. S. Cardoso and R. José. PuReWidgets: a
programming toolkit for interactive public display
applications. In S. R. José Creissac Campos, Simone D.
J. Barbosa, Philippe Palanque, Rick Kazman, Michael
Harrison, editor, Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing
systems - EICS ’12, page 51, New York, New York,
USA, June 2012. ACM Press.

[4] N. Davies, M. Langheinrich, R. Jose, and A. Schmidt.
Open Display Networks: A Communications Medium
for the 21st Century. Computer, Mar. 2012.


