
F
ig

u
re

 1

C
li

c
k

 h
e

re
 t

o
 d

o
w

n
lo

a
d

 h
ig

h
 r

e
s

o
lu

ti
o

n
 i

m
a

g
e



F
ig

u
re

 2

C
li

c
k

 h
e

re
 t

o
 d

o
w

n
lo

a
d

 h
ig

h
 r

e
s

o
lu

ti
o

n
 i

m
a

g
e



Figure 3



Figure 4



Figure 5a



Figure 5b



 !"#$% !&"#$% '&&"#$% !&"#(% !&"#$%)*+,)-&)./0)!&"#(%)*+,)1  !"#(%)*+,)-&)./0) !"#$%)*+,)1  !"#$%)*+,)-&)./0) !"#(%)*+,)1

&

 

2

3

4

'&

' 

'2

'3

'4

 &

  

 2

 3

 4

5&

5 

)

 
!
"
#
$
,
)
+
*
)
6
.
7
6
!
7
.
8
9
+
/
:

);<

)= 

)>?

 !"#$%

#'@%

!&"#$%

#'4%

'&&"#$%

# &%

!&"#(%

# '%

!&"#$%(-

&

!&"#(%(1

#  %

 !"#(%(-

&

 !"#$%(1

# 5%

 !"#$%(-

&

 !"#(%(1

# 2%

Figure 6



Figure 7a



Figure 7b



Figure 8a



Figure 8b



Figure 8c



Figure 8d



Figure 8e



Figure 8f



Figure 9a



Figure 9b



Figure 10a



Figure 10b



F
ig

u
re

 1
1

C
li

c
k

 h
e

re
 t

o
 d

o
w

n
lo

a
d

 h
ig

h
 r

e
s

o
lu

ti
o

n
 i

m
a

g
e



F
ig

u
re

 1
2

C
li

c
k

 h
e

re
 t

o
 d

o
w

n
lo

a
d

 h
ig

h
 r

e
s

o
lu

ti
o

n
 i

m
a

g
e



F
ig

u
re

 1
3

C
li

c
k

 h
e

re
 t

o
 d

o
w

n
lo

a
d

 h
ig

h
 r

e
s

o
lu

ti
o

n
 i

m
a

g
e



F
ig

u
re

 1
4

C
li

c
k

 h
e

re
 t

o
 d

o
w

n
lo

a
d

 h
ig

h
 r

e
s

o
lu

ti
o

n
 i

m
a

g
e



Figure 15a

Click here to download high resolution image



F
ig

u
re

 1
5

b

C
li

c
k

 h
e

re
 t

o
 d

o
w

n
lo

a
d

 h
ig

h
 r

e
s

o
lu

ti
o

n
 i

m
a

g
e



Figure 16a



Figure 16b



Figure 17a



Figure 17b



 -O
pt

im
iz

at
io

n 
al

go
ri

th
m

s 
w

er
e 

ap
pl

ie
d 

in
 a

 s
yn

th
et

ic
 g

eo
te

ch
ni

ca
l p

ro
bl

em
. 

T
he

 E
S 

al
go

ri
th

m
 h

as
 in

te
re

st
in

g 
an

d 
co

m
pe

tit
iv

e 
ca

pa
bi

li
ti

es
 in

 b
ac

ka
na

ly
si

s.
 

E
S 

al
go

ri
th

m
 w

as
 te

st
ed

 in
 th

e 
re

al
 c

as
e 

of
 B

em
po

st
a 

hy
dr

oe
le

ct
ri

c 
sc

he
m

e.
 

R
ed

uc
ed

 m
on

it
or

in
g 

da
ta

. 
-O

ne
 a

dd
it

io
na

l e
xt

en
so

m
et

er
 c

ou
ld

 a
llo

w
 th

e 
id

en
ti

fi
ca

ti
on

 o
f 

th
e 

re
al

 p
ar

am
et

er
s.

 

H
ig

h
li
g

h
ts



BACK ANALYSIS OF GEOMECHANICAL PARAMETERS IN 

UNDERGROUND WORKS USING AN EVOLUTION STRATEGY 
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, Pinheiro M3, Fernandes P4, Dias D5, Costa L6, Sena-Cruz, J7

 

 

ABSTRACT 

The purpose of this work is to evaluate the performance of an optimization algorithm from the 

field of evolutionary computation, namely an Evolution Strategy, in back analysis of 

geomechanical parameters in underground structures. This analysis was carried out through a 

parametric study of a synthetic case of a tunnel construction. Different combinations of 

parameters and measurements were carried out to test the performance of the algorithm. In order 

to have a comparison base for its performance also three classical optimization algorithms based 

on the gradient of the error function and a Genetic Algorithm were used. It was concluded that 

the Evolution Strategy algorithm presents interesting capabilities in terms of robustness and 

efficiency allowing the mitigation of some of the limitations of the classical algorithms. 

 

Moreover a back analysis study of geomechanical parameters using real monitoring data and a 

3D numerical model of a hydraulic underground structure being built in the North of Portugal 

was performed using the Evolution Strategy algorithm, in order to reduce the uncertainties 

about the parameters evaluated by in situ and laboratory tests. It was verified that the low 

quantity of monitoring data available hinders the possibility to identify the parameters of 

interest. The existence of information of only one additional extensometer perpendicular to the 

existing one would allow this identification to succeed. 
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1 INTRODUCTION 

 

In underground structures, geologic and geotechnical survey is of utmost importance due to the 

high influence of the geomechanical parameters in the conception, design and construction 

processes. Normally, these parameters are evaluated by means of laboratory and in situ tests. 

However, uncertainties remain about their “real” values, due to factors like the chosen location 

of the testing points, the dimension of the involved volume and heterogeneities of the 

formations. 

 

In design stage numerical models are developed in order to understand with good precision the 

stress/strain state and the changes provided by the excavation. Also, monitoring plans are 
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established to verify if the real behavior of the structure is consistent with predictions. Using the 

model and monitoring data it is possible to carry out, during the construction stage, an inverse 

analysis process to complement the geologic and geotechnical survey and to update the 

geomechanical parameters used in design adapting it to the real in situ conditions. 

 

The procedure of using field measurements in order to obtain input material parameters is called 

back analysis (or inverse analysis) in opposition to the conventional forward approach. A 

forward analysis starts with the definition of a constitutive model and its parameters which is 

normally carried out based on geological-geotechnical survey and in experience. This 

information is used as an input on the numerical models to predict stresses, strains, 

displacements, etc. In the back analysis approach, field measurements are used together with the 

models to calibrate input parameters (geomechanical, stress state, etc...) matching, under a 

defined tolerance, predicted with observed measures. Commercial modelling software is not 

prepared to compute geomechanical parameters from measurement input data, hence, an 

iterative procedure has to be carried out. To minimize the number of iterations and converge to 

the best set of parameters, optimization algorithms are used. 

 

Classical optimization algorithms like the gradient based and the simplex have been extensively 

used in geotechnics to iteratively change the input parameters of the model in order to obtain the 

best match between measured and computed quantities [1-5]. They present a satisfactory 

performance in smooth-shaped error functions, with a clearly defined and unique minimum [6-

9]. However, these problems are normally ill-posed and the uniqueness of the solution cannot be 

guaranteed. Moreover, they only can back analyse a reduced number of parameters (two or 

three) with an important influence on the computed values, i.e. it is difficult to identify 

parameters whose variation does not have a significant impact on the results [10,11]. 
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Therefore, it is advisable to perform sensitivity analysis and use of a priori knowledge before 

the identification process, to reduce the number of parameters and search parameter space to a 

manageable level [1]. However, this study does not hinders the possibility of multiple solutions 

to the problem exist and the question of non-uniqueness remains also due to experimental and 

numerical uncertainties. In this sense, classical optimization algorithms present considerable 

limitations in back analysis of geotechnical parameters and convergence for the optimum set of 

parameters is not assured [6,12,13]. 

 

Recently, global optimization algorithms from the field of Evolutionary Computation have been 

used to overcome the limitations of classical algorithms with special emphasis to the Genetic 

Algorithms (GA) [7-9,12-14]. These algorithms work with populations of potential solutions 

that evolve to better ones through processes that mimic natural selection in biological species. 

 

Most of the works concerning back analysis in underground works use 2D numerical models. 

However, in many cases, important 3D equilibrium develops and should be considered in the 

models. This is especially true in underground caverns where the plain strain considerations 

considerable part from reality. In this sense, it is also important to analyze the performance of 

back analysis algorithms with this type of models for they raise another challenges due to the 

normally high computational cost of each calculation therefore they should be kept within a 

reasonable number to avoid prohibitive calculation times. 

 

This work focuses on the application of a global optimization algorithm that uses an 

Evolutionary Computation approach, namely an Evolution Strategy (ES) in back analysis of 

geomechanical parameters to evaluate its performance in terms of efficiency and robustness. 

This algorithm is based on similar principles as the GA but has some distinctive characteristics 

that can be of significance importance to enhance the optimization procedure. 
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A synthetic case of a tunnel excavation was developed and a parametric study was carried out. 

In a first stage, geomechanical parameters were attributed to the rock mass in order to obtain the 

“real” displacements due to the excavation process. Then, these displacements were used 

together with the algorithm to back analyse the parameters of interest. In order to have a 

comparison base also a GA and three gradient based algorithms were applied in this synthetic 

problem. 

 

The ES algorithm was also used in a real case for the back analysis of geomechanical 

parameters of the rock mass interesting the Bemposta II power station. This is a hydroelectric 

scheme being built in the North of Portugal. The field measurements were provided by a double 

extensometer placed horizontally in a cross section of the power station and a 3D numerical 

model was specially developed for this purpose. The geomechanical parameters evaluated in the 

back analysis process were the deformability modulus and the stress ratio in the perpendicular 

direction of the riverbed because these were the parameters with highest influence in the 

behavior of the rock mass and also the ones with largest uncertainty degree. 

 

2 BACKGROUND 

 

Back analysis was introduced by Gioda [15], Gioda and Maier [16] and Cividini et al. [17] for 

the sophistication of the observational method and constitutes an essential tool for assessing 

design parameters in underground structures. In the broader field of geotechnics, back analysis 

can be found in many applications, such as: underground works [2,15,16,18,19,20-26]; 

laboratory and field tests results [5,9,11,13,16,17,27-31]; excavations [1,2,7,9,12,32,33]; and 

embankments [34-36]. 

 

The most common methodology of back analysis is the direct approach which is characterized 

by three main elements: the error function, the numerical model and the optimization algorithm. 
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The error function evaluates the difference between the computed and monitored values. The 

most common error function is the least square equation (1) which was also used in this study. 
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where, ε is the mean squared error, x̂  is the vector of n components of the parameters to 

estimate, ηj is the j obtained measurement, fj is the computed value correspondent to the j 

measurement and m is the in situ measurement number. 

 

The numerical model simulates the construction process and the geometry of the underground 

structure. Finally, the optimization algorithm carries out an iterative process computing 

solutions for the geomechanical parameters in order to minimize the error function. In 

geotechnics, two main types of algorithms have been used: iterative optimization algorithms 

form the field of classical optimization theory such as the Simplex, the Levenberg-Marquardt, 

the Newton-Raphson or gradient methods [1,2,4,22,23]; and optimization methods from the 

artificial intelligence field like neural networks (ANN), GA, ES, Simulated Annealing, etc [7-

9,12-14,26,28,29,33,37,38]. 

 

The classical optimization algorithms are characterized by the use or not of the first, g(x), and 

second, H(x), derivatives of the error function, f(x). For example: the Simplex, the Gauss 

method and the Rosenbrock algorithm require only the evaluation of f(x); the gradient methods 

require the evaluation of f(x) and g(x); and the Newton's method use the information about f(x) 

and H(x). The performance of the optimization methods is highly dependent on the problem in 

which it is applied. 
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In terms of limitations, these algorithms only determine a set of unique parameters and are 

limited to a reduced number of parameters to optimize [5]. As stated, the uniqueness of the 

solution is not guaranteed and since several local minima may occur the algorithm normally 

converges to the local minimum closer to the initial guess. To mitigate this limitation several 

calculations considering different sets of initial parameters can be carried out, however this 

procedure highly increases the computational cost. Another possible way is to use the 

probabilistic approach presented by Ledesma et al. [22] that considers the experimental 

uncertainties in order to limit the non-uniqueness of the solution. Finally, the derivatives of the 

error function (in relation to the parameters of interest) can be difficult to obtain mainly when 

numerical models are used. In most cases a finite difference technique is used to compute the 

derivative which means that for each iteration n+1 calculations of the model have to be 

performed, being n the number of parameters to identify.  

 

Evolutionary algorithms is a family of stochastic search techniques inspired by Darwin‘s theory 

of natural selection and survival of the fittest. They try to mimic the natural evolution of the 

species in biological systems [39,40] and are characterized by a search of the solution in the 

entire parameter space. These algorithms do not require the derivatives or any continuity of the 

error function, only the information regarding the error function and the constraints. They start 

with a set of points normally generated at random, each point correspond to a possible solution 

(a set of parameters), that evolves over time, rather from individual to individual. These 

algorithms are able to localize a set of optimum solutions in complex problems which is suited 

for typical geotechnical back analysis problems. 

 

Evolutionary algorithms can be divided into three main areas of research: GA, ES and 

Evolutionary Programming [41]. The last, which was firstly created by Lawrence Fogel in 1960, 

as an independent paradigm, has evolved to become very similar to the ES and nowadays they 

are difficult to distinguish. GA are computational models inspired by the processes of natural 
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selection and genetics. They were first developed by Holland [42] at the University of Michigan 

and have since been applied successfully in many areas, particularly in numerical optimization 

problems [43,44]. The basic components of a GA are the population of individuals, where each 

represents a potential solution to the problem, the evaluation mechanism of the individuals in 

the population and the genetic operators that search for new solutions. 

 

GA work on a population of potential solutions, or individuals, in which it is applied the 

principle of survival of the fittest, i.e., individuals compete with each other for survival. After 

being evaluated, the best individuals have a higher probability of being selected (for parents) 

and generate new individuals (offspring). The generation of new individuals is computed 

through mechanisms based on genetics. Thus, the offspring are generated from the 

recombination of the parents by inheriting some of their characteristics. Furthermore, mutation 

is applied with the aim of enabling the appearance of some truly innovative features. The 

generated offspring compete among themselves and with parents. This process is repeated over 

a determined number of generations [39,43]. Over the generations, since the best individuals are 

more likely to be selected to produce offspring and possibly to generate good offspring, the 

population tends to have increasingly better individuals. This genetic search process leads to the 

evolution of the population and the best individuals tend to survive, such as in natural 

adaptation. 

 

GA can provide a set of satisfactory solutions therefore can be implemented to solve different 

types of problem [7-9,13,14]. In these references extensive explanation of the principles of GA 

are presented. Additional information on the theoretical formulation of GA can be found in a 

number of other references (e.g. [41-45]). 
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ES algorithms emerged from Rechenberg's work in the late 1960 in Germany [46] and later 

extended by the work of Schwefel [47-51]. ES are more thoroughly described in the next 

section of the paper. 

 

Both GA and ES are identical with respect to their major working scheme. Both rely upon the 

collective learning paradigm gleaned from natural evolution and implement the principles of 

“population”, “mutation”, “recombination” and “selection”. However, they exhibit significant 

differences with respect to the details of the selection scheme, the encoding of the variables to 

optimize and, especially, the self-adaptation of the strategy internal parameters during the 

optimization process. Detailed information concerning the differences between the algorithms 

can be found in [45]. 

 

The before mentioned applications of these algorithms in geotechnics show that their results are 

very promising, mitigating and in some cases eliminating the drawbacks presented by the 

classical algorithms. The main limitation is that these algorithms need a substantial amount of 

iterations to find acceptable results, which can be, in some cases, prohibitive if large numerical 

models are used. However, the advances in the coding of the algorithms, more powerful and 

cheap computers and parallel and distributed computing can help mitigating this drawback. 

 

3 EVOLUTION STRATEGIES 

 

The ES were initially developed by Rechenberg [46] to solve optimization problems based on 

natural mechanisms of evolution of the species that occur in nature. In each generation, using 

the individuals present in the parent population, new individuals are generated constituting the 

offspring population. 
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Like GA, the ES work with populations of candidate solutions, requiring only data based on the 

objective function and constraints, and no derivatives or other auxiliary knowledge. However, 

ES work directly with the real representation of the decision variables (in this case a set of 

geomechanical parameters) in which an individual is a vector of real numbers (the decision's 

variable) and represents a potential solution for the optimization problem. They search the 

solution from an initial population (a set of points) normally generated at random. 

 

In the first and simpler ES, developed by Rechenberg [46], the selection was made in a 

population composed only by two members, denominated by (1+1)-ES.  In this strategy, at a 

given generation, there are only one parent (µ=1) and one offspring (λ=1) generated by 

mutation. Selection takes place between the two in relation to the error function value, provided 

that it satisfies all constrains. The selected one becomes then the parent of the next generation 

and the process is repeated until the stop criteria is met [39]. Later, the same author developed a 

more complex multi-member strategy where the selection was made on a population of µ>1 

parents and one offspring, denominated (µ+1)-ES. This strategy is not widely used but it led to 

further enhancements [41]. 

 

Rechenberg also developed the (µ+λ)-ES, that in a given generation, a population of µ parents 

generates λ offspring by mutation. Then the µ parents plus λ offspring are sorted according to 

their objective function value and finally the µ parents used in the next generation are the best 

individuals of the µ parents plus the λ offspring (i.e., the selection takes place between the µ+λ 

members) (Figure 1). The (µ,λ)-ES is similar to the (µ+λ)-ES except in the way the selection of 

the µ parents used in the next generation is carried out. In this case, the µ parents are selected 

from the best individuals of λ offspring (i.e., the selection takes place between the λ members). 

 

Mutation is a genetic operator that creates new points by adding random normal distributed 

quantities z(k)
 with mean zero and variance si

2 to the parent (vector of decision variables) in a 
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process called Gaussian mutation. It is important to note that, for each decision variable, an 

individual standard deviation si can be used (controlling the step sizes). 

 

The initial standard deviations for mutation si can be set using equation 2. 

n

x
i

D
=)0(s           [2]  

where Dx is a rough measure of the distance to the optimum and n is the problem dimension. 

However, it can be difficult to estimate Dx, therefore the alternative equation 3 can be used. 

n

ii
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=)0(          [3] 

where αi and βi are the lower and upper bounds of the decision variable i. 

 

During the search, the standard deviations (or step sizes for mutation) are adapted and this is 

one of the most promising features of the ES. They are updated during the process using 

different rules and self-adaptation schemes which enhance the algorithm performance [52]. 

Several self-adaptation schemes are possible. For the non-isotropic mutation, where the adopted 

standard deviations are different for each variable, one possibility is to update these standard 

deviations si according to the equation: 

 

zzk

i

k

i ee i)()1( ss =+                    [4] 

 

where zi ~ N(0, Ds2
), z ~ N(0, Ds’2

) which means zi and z follow a normal distribution with 0 

mean and Ds and Ds’2 representing their variance, are parameters of the algorithm.  

 

Originally, the ES was based only in one operator, mutation, to generate the new individuals. 

Later, Schwefel [50] has reported a remarkable acceleration in the search process, as well as, the 
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facilitation of self-adaptation of parameters by introducing a recombination operator. Basically, 

it consists on, before mutation, to recombine a set of chosen parents to find a new solution 

(Figure 1). A given number ρ (1≤ ρ≤ µ) of parents are randomly chosen for recombination. 

When ρ=1 then there is no recombination. Thus, the nomenclature for the ES can now be 

extended, and ESs with recombination are usually referred as (µ/ρ+λ)-ES or (µ/ρ,λ)-ES.  

 

There are two main types of recombination, namely intermediate and discrete. In the 

intermediate recombination, the components of the offspring are obtained by calculating the 

average of the corresponding components of parents (randomly selected from the population). 

In the discrete recombination, each component of the offspring is chosen from one of the ρ 

parents at random. 

 

In the present study a (µ/ρ+λ)-ES was used. The main characteristics of the algorithm are 

resumed in Table 1. The stopping criterion for both the GA and the ES was set as a maximum 

number of calculations, in this case 300. This criterion was adopted for two main reasons: it was 

intended to check the efficiency of the algorithms, so the maximum number of calculations was 

kept within a reasonable amount to evaluate the quality of the results with a few hundred of 

calculations and also to provide manageable computation times; and as it was intended to obtain 

the topology of the error function with good precision some hundreds of points were needed so 

the calculations should not stop as soon as a certain error was obtained since it could be due to a 

local minimum and the error function would be incomplete.  

 

4 PARAMETRIC STUDY OF BACK ANALYSIS 

 

4.1 Back analysis procedure and numerical model 
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The parametric study of back analysis was carried out through the application of the ES 

algorithm to the identification of geomechanical parameters in a synthetic case of a tunnel 

excavation using a 3D numerical model [26,53]. For comparison sake, also classical 

optimization algorithms based on the gradient of the error function, namely the steepest descent 

(SD), the conjugate gradient (CG) and the quasi-Newton (QN) algorithms, as well as a GA were 

also used. The algorithms were programmed in Matlab 7.9 [54] and connected to the numerical 

model to perform the iterative process. 

 

The numerical model for the synthetic case was developed with FLAC3D [55] and it is a 20 m 

length tunnel composed by a 4 m radius arch and a vertical wall with the same span. It is 

composed by 1110 zones and 1375 grid-points (Figure 2). The support system consists of 0.2 m 

thick shotcrete simulated by shell elements with linear elastic isotropic behaviour, with a Young 

modulus of 20 GPa and a Poisson ratio of 0.2. 

 

The construction process begins with the excavation of the tunnel arch in a 3 m length followed 

by the application of the shotcrete on the arch, then the remaining part of the tunnel is excavated 

and finally the shotcrete is applied in the walls of the tunnel. 

 

The mass surrounding the tunnel was simulated as an equivalent continuous. In a first stage, an 

elastic constitutive model is used. The values of the initial geomechanical parameters used to 

produce the “real values” of the monitoring data were the following: deformability modulus (E) 

of 2 GPa and a Poisson coefficient of 0.1. A gravitational stress state was considered with a 

horizontal to vertical stress ratio (K0) of 0.8 in both horizontal directions. In a second stage, 

calculations were performed to identify the strength parameters of the Mohr-Coulomb failure 

criterion with non-associated flow rule. The adopted values for cohesion (c') and friction angle 

(f’) were, respectively, 50 kPa and 32º. The low values of the strength parameters were set in 
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order to induce considerable yielding zones in the model to check the influence of increased 

non-linearity of the back analysis process in the behaviour of the algorithms. 

 

4.2 Results 

 

4.2.1 Gradient algorithms 

 

As already stated, the analysis started with the definition of a set of geomechanical parameters 

to obtain the “monitored” measures in a reference section. The monitored section is located near 

the middle of the excavation. Then, different perturbations were applied to the parameters to 

check if the algorithms were able to identify the real values. These perturbations were translated 

by summing or subtracting a given quantity to the real values and are represented by the signs 

(+) and (-), respectively. 

 

In the elastic model calculation, a total of five measurements in the reference section were 

considered through different combinations, namely: vertical displacements at the surface, at the 

top of the arch and in the tunnel floor; and horizontal displacement and horizontal stress 

perpendicular to the tunnel axis in the middle point of the wall (Figure 3). In each case, the back 

analysis process was carried out until the value of the error function was below a pre-defined 

threshold that in this case was set to 0.1%  

 

In a first stage, only the SD algorithm was used. In the first calculation two vertical 

displacements (surface and crown) were used in order to identify both E and K0 (cases GB_1 to 

GB_4). Table 2 resumes the overall results. In this case, convergence is reached in a reduced 

number of calculations but not for the correct values. Figure 4 shows the topology of the error 

function for this case where a considerable number of local minima can be observed. Moreover, 
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there are an endless number of possible combinations for the parameters which lead to 

approximately the same error value. The non-uniqueness of the solution is due to the high 

correlation between the two measures (two vertical displacements) so the problem is “ill-posed” 

since this situation is similar to the use of only one measure to identify two unknown parameters. 

 

Calculations were repeated replacing the vertical measurement at the surface by the horizontal 

displacement in the wall of the tunnel (cases GB_5 to GB_8). Table 3 presents the obtained 

results. In three cases convergence was achieved for the correct parameters. The results show 

that it may be possible to proceed with back analysis using only a few displacement 

measurements provided that they do not have a high correlation degree. 

 

Still considering displacement-based back analysis, in cases GB_9 to GB_14 calculations were 

performed using more measurements than parameters to identify. In the process, three measures 

were used, namely the vertical displacements in the arch and floor and the horizontal 

displacement in the wall. A fourth measure was then added - the surface vertical displacement – 

in cases GB_15 and GB_16 to analyse the effect of the input of a highly correlated measure. 

The results are presented in Table 4. 

 

 
The results show that using three displacements, the identification process is stable and 

convergent and the “real” values were identified in a relatively reduced number of calculations. 

Figure 5 shows the topology of the error function for this case (the dots in the Figure represent 

the pairs of parameters tested in all iterations). It is a convex-shaped surface with a clearly 

defined minimum correspondent to the optimum set of parameters. Gradient-based algorithms 

normally show good performance in optimisation problems with these characteristics. 

 

Comparing with cases GB_5 to GB_8, where two displacements were used, the use of more 

measurements leads to a more time consuming process (more calculations needed to match all 
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the displacements). However, the process is more robust since convergence was reached in 

cases GB_12 and GB_16 which were similar to case GB_8 that did not converged. 

 

The performance of the three algorithms was compared through several simulations, considering 

the measurement of one vertical displacement (tunnel arch) and one horizontal stress (tunnel 

wall) with different initial deviations. The results of the simulations are resumed in Figure 6. 

 

With exception of one calculation, every case converged to the “real” parameter values. Only 

for a 100% deviation in both parameters, the identification process with the QN algorithm 

provided a negative value for K0. This problem is not very relevant since so high deviations are 

not expected to happen often in practice.  

 

In relation to performance, i.e., the number of calculation required to achieve convergence, the 

algorithms present slight differences. The CG algorithm showed to be the most efficient in the 

tested cases. In a total of seven, only in two cases the CG algorithms was outperformed. It took 

a mean of 15.6 calculations to converge while the SD and QN algorithms needed 18.1 and 16.5 

calculations, respectively. 

 

In the calculation using the Mohr-Coulomb constitutive model, a total of four measurements 

were used in different combinations, namely two displacements and two stresses (one horizontal 

and one vertical for each). 

 

Several identification processes were carried out to identify the strength parameters of the 

Mohr-Coulomb failure criterion (c' and f’) under different conditions. Using the three 

algorithms, simulations were carried out considering different deviations and a variable number 

of available measurements. Table 5 resumes the results. 
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In five out of twelve calculations the process did not converge and even in the cases 

convergence was obtained, the identified parameters are relatively different from the “real” ones. 

This tendency is more pronounced for c'. This is due to the presence, in the parameter space, of 

local minima and low convexity of the error function. In this situation, it is expected that 

gradient-based algorithms perform poorly. In fact, non-convergence in several cases may be 

related with the flatness of the error function. In the cases where convergence was achieved, the 

identified parameters corresponded to the local minimum nearer the initial solution. The number 

of observations did not change substantially the final values of the parameters. The QN 

algorithm never reached convergence while for the case of the CG only in one case it was 

attained. In conclusion, these algorithms showed a poor performance in elasto-plasticity. 

 

4.3 ES and GA 

 

The monitoring plan set in this theoretical example was composed by the same displacement 

measurement considered in the previous test using the gradient-based algorithms. In the 

parametric study, several cases were analysed in order to evaluate the capabilities of the 

algorithms in different conditions (Table 6). 

 

To use this type of algorithms it is necessary to define a variation range of each geomechanical 

parameter to confine the search space. For the elastic case three variation ranges were set. For 

the elasto-plastic model only one variation range of each geomechanical parameters was 

adopted to limit the computation effort. 

 

For the elastic model the influence of the number and location of measurements was evaluated. 

For case EA_1, correspondent to cases GB_15 and GB_16, four displacement measurements 

were considered and results are shown in Table 7. The ES and the GA converged to the “real 
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values” regardless of the interval range of the parameters and the performance of both 

algorithms is very similar. The topology of the error function presents an almost convex 

configuration, in which the global minimum correspondent to the optimal solution is clearly 

defined (Figure 7). This configuration turns convergence faster and easier for the algorithms. In 

cases GB_15 and GB_16 also convergence to the optimum set of parameters was obtained due 

to the configuration of the error function. 

 

In cases EA_2 to EA_4 only two measurements were considered. Cases EA_2 and EA_3 use 

vertical and horizontal displacements while case EA_4 represents the worst case scenario of 

using two measurements with the same direction. The results are presented in Table 8. 

 

Both algorithms converged for the “real” solution in cases EA_2 and EA_3 for every range of 

the parameters. Case EA_2 corresponds to cases GB_5 to GB_8 and in the last case 

convergence problems were detected, therefore the evolutionary algorithms were able to avoid 

this problem. Case EA_4 corresponds to cases GB_1 to GB_4 and as seen, in these cases, the 

algorithms have to deal with problems concerned with the non-uniqueness of the solution. In 

case EA_4 the solutions slightly parted from the “real” values mostly in the wider ranges. 

However, the computed values can still be considered acceptable in an engineering point of 

view. 

 

The topology of the error function for cases EA_2 and EA_3 are similar to the one obtained in 

case EA_1 and is characterized by a convex configuration in which the global minimum 

correspondent to the optimal solution is clearly defined. On the other hand, in case 4 this 

topology is much more irregular and presents several local minima as observed in Figure 4, 

which explains the higher difficulties of the ES and AG to identify the “real” values. These 

irregularities occur due to the use of two highly correlated measures, so as stated before the 

problem is “ill-posed”. In Figure 4 it can be observed the existence of a range of parameters that 
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practically conduct to the same error function value. Nonetheless, and even though the complex 

topology, the algorithms were able to identify values not far from the correct ones. 

 

Using the elasto-plastic model, the complexity of the study significantly increases due to the 

introduction of the non-linearity given by yielding zones forming in the surrounding formation 

which will affect the displacements. The goal was to identify the E, c’ and f’ (at once or in 

combinations of two) using different number of measurements. 

 

In cases EA_5, EA_9 and EA_11 it was intended to identify the three parameters. Table 9 

shows the results for these cases. The GA converged to the optimal solution in all cases 

demonstrating high robustness. The ES presented similar behaviour excepting for the cohesion 

parameter for which the identified values presented some deviation in relation to the correct one. 

In the worst case an error of approximately 22% was observed. This problem could be solved 

performing a higher number of calculations which would enhance the quality of the solution but 

also increase computational cost. 

 

Due to the number of parameters (three) in these cases the plot of the error function is not 

straightforward because only two parameters can be represented at the same time. The topology 

of the error function is represented using combinations of two parameters for case 5 (Figure 8). 

The error function presents a very complex topology with several local minima regardless the 

chosen combination of parameters. Nonetheless, the algorithms were able to mitigate these 

difficulties in most of the cases.  

 

Cases EA_6, EA_7 and EA_8 consider combinations of the two geomechanical parameters with 

four displacement measurements while in case 10 it was intended to identify f’ and c’ using 

only two measurements. The results of these cases are presented in Table 10. Both algorithms 
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converged to parameter values very near to the “real” ones. The only exception is slight 

deviations for c’ showing that this is the most difficult parameter to identify probably due to a 

lower influence or a more complex relation with the measured displacements that leads to 

higher irregularities in the error function topology. 

 

Figure 9 shows the topologies of the error function for case EA_8 (cases EA_6 and EA_7 are 

similar). It can be observed a linear relation between the two strength parameters corresponding 

to an almost constant error function value. This “valley” in the error function crosses the point 

that represents the optimal solution and in this line several local minima exist which difficult 

convergence. 

 

Figure 10 shows the topology of the error function for case 10. Comparing this topology with 

the ones of the previous cases it can be concluded that the definition of the global minimum 

decreases with the reduction on the number of measurements and the topology presents a higher 

number of local minima increasing the convergence difficulties. This fact explains the higher 

problems in the identification of cohesion in this case. 

 

4.4 Discussion of the results of the synthetic case 

 

As concluded in previous studies (e.g. [12]) the gradient-based algorithms have a satisfactory 

performance, both in terms of convergence and efficiency (i.e. number of iterations needed to 

converge) in elasticity when the error function is strictly convex and presents a single local 

minimum. This issue is related also with the type and number of measurements used in the back 

analysis process since when using a limited number of highly correlated measurements the 

uniqueness of the solution may be compromised. In elasto-plasticity the problem becomes more 

complex due to the increased non-linearity due to yielding zones forming near the excavation. 
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In this situation the algorithms performed poorly since the error functions present very complex 

topologies. 

 

Both algorithms from the field of evolutionary computation showed to be very robust 

algorithms even for highly complex error functions. The results for the elastic case showed that 

the algorithms were able to identify the correct values of the parameters in almost every case 

even for very large interval ranges, translating the situation of high geotechnical uncertainty and 

in a manageable iteration number. The use of four measurements or only two with low 

correlation did not affect the results showing that with these algorithms it is possible to identify 

the elastic parameters with a very small amount of measurements. Only for the case of using 

two highly correlated measures the algorithms converged to slightly different values due to the 

high complexity of the error function but performed much better than gradient-based algorithms 

in the same situation. 

 

Also in the elasto-plastic case both the GA and the ES presented similar behavior in terms of 

robustness and efficiency. More difficulties arose in the identification of cohesion probably due 

to a lower influence or more complex relation with the measured values. However, they were 

able to achieve very good results, regardless the high complexity of the problems, the presence 

of many local minima and the use of a low number of measurements.  

 

Moreover, this was achieved in a manageable number of calculations. This was a major issue in 

the past since evolutionary algorithms normally took thousands of calculations to converge 

which meant that with highly complex numerical models, they could lead to prohibitive 

computation times. These more advanced versions were able to achieve good results in a few 

hundred calculations which make them more suited to be used together with 3D numerical 

models especially when using powerful computers complemented by parallel and distributed 

processing. 
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This type of algorithms allow to obtain a set of solutions with approximate values of the error 

function which in this case form a valley on the error function as seen in Figure 4. This valley, 

which will translate in real cases considerable uncertainties on the definition of the most suited 

set of parameters, can be mitigated with the use of a more thorough monitoring plan or, if this is 

not possible, by a post-treatment of the solutions allowing for a more restrict definition of 

possible sets of values as proposed by [8,9]. 

 

5 BEMPOSTA II POWER STATION - BACK ANALYSIS OF GEOMECHANICAL 

PARAMETERS 

 

5.1 Description of the hydraulic scheme 

 

For the power reinforcement of the Bemposta hydroelectric scheme, located in the North of 

Portugal at the international stretch of Douro river, the EDP (Electricity of Portugal) company 

decided to build a new 191 MW hydroelectric complex named Bemposta II.  

 

The power plant of Bemposta II is composed by a vertical shaft excavated from the surface of 

the slope adjacent to the Bemposta dam [56]. The excavation begins with a rectangular section, 

approximately 11 m depth, followed by an excavation with a circular cross-section with 22 m 

diameter and approximately 60 m deep. The circular cross section has a rectangular extension 

with horizontal dimensions of 16 x 8.75 m2 (Figure 11). 

 

In order to characterize the rock mass in the area of the power station, 26 subvertical boreholes 

(with a total of 1012 m drilled) with 183 Lugeon permeability tests were carried out [57]. The in 

situ campaign consisted on 19 dilatometric tests and 6 small flat jacks tests (SFJ) and 5 stress 

tensor tube (STT) tests for the determination of the state of stress [58]. The results showed that 
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the horizontal stress in the direction AA' (Figure 12) is approximately 2.0 times higher than the 

vertical one. In the direction BB' the stress is approximately equal to the vertical one. 

 

The laboratory tests consisted in 18 shear tests on joints, 31 uniaxial compressive, 64 triaxial, 

106 diametral and 96 ultra-sound tests. The in situ characterization and the laboratory tests 

performed on the recovered samples allowed the identification of four geomechanical zones 

(Table 11). 

 

The Bemposta II repowering scheme is located in highly metamorphosed heterogenous rock 

formations. The most part of the headrace tunnel was excavated in micaschist and migmatite 

while the powerhouse shaft and the tailrace tunnel, in good quality gneissic granite belonging to 

geomechanical zone ZG1 [57]. 

 

Monitoring of the powerhouse shaft construction was carried out by two horizontal double-rod 

extensometers (EV1 and EV2) and 10 m spaced convergence sections throughout the shaft 

height. 

 

EV1 was anchored 11 m and 35 m (extensometers 1.11 and 1.35) into the rock mass from the 

excavation wall and it is located at level 367.5 m (Figure 12). The second rod-extensometer 

(EV2) was installed at elevation (337.00), slightly above the turbine floor. EV2 has fixed points 

10 m and 32 m from the excavation wall. This extensometer was placed almost at the end of the 

excavation process. Therefore, the measured displacements were very low and could not be 

included in the back analysis process. 

 

The measurements of the extensometer EV1 are presented in Figure 13. The maximum 

monitored displacements were 0.33 mm and 1.02 mm respectively for extensometers 1.11 

and 1.35. 
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In order to reduce the uncertainties related to the real values of the parameters, a back analysis 

study of geomechanical parameters was carried out, using a 3D model of the power station, 

together with the ES optimization algorithm and real monitoring data from extensometer EV1. 

Due to the reduced amount of monitoring data, back analysis in this case will raise considerable 

problems of non-uniqueness and the algorithm will be tested in difficult conditions. 

 

5.2 Numerical Model 

 

The 3D numerical model of the power station of Bemposta II was developed using FLAC3D 

[55] and simulates the construction process and the complex geometry of the shaft. The mesh 

was developed with an automatic mesh generator [59] and it is composed by 59184 zones and 

63075 grid-points [60] (Figure 14). 

 

The rock mass surrounding the powerhouse cavern was simulated as an equivalent continuous 

medium. An elastic-perfectly plastic Mohr-Coulomb failure criterion with non-associated flow 

rule was assumed to represent the rock mass behavior. According to the geologic and 

geotechnical survey and the application of the GSI system, the following initial geomechanical 

parameters were set: f’ = 54º; c' = 2.65 MPa; E = 15 GPa and ν = 0.2. 

 

The support system was composed by shotcrete and pre-casted concrete. The shotcrete was 

simulated using shell elements 0.20 m thick and the pre-casted concrete by volume elements. 

For both, a linear elastic and isotropic constitutive model with a Young modulus of 25 GPa and 

a Poisson ratio of 0.2 was adopted. 
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In the numerical model the construction sequence was simplified and a total of 6 excavation 

stages were considered. In the preliminary calculations it was verified that this simplification 

did not affect considerably the results because the rock mass behavior is almost elastic. 

 

The field stress was set considering the results of the tests presented previously. In particular, 

the stress ratio in the direction AA' (see Figure 12) was set to 2.0 and in the perpendicular 

direction to 1.0. 

 

Figure 15 presents the displacements magnitude in the rock mass surrounding the excavation. 

The computed values are low due to its overall good geomechanical quality. The maximum 

displacement is 3.7 mm in the horizontal direction of higher K0. The displacements around the 

excavation of the circular part are smaller than the ones near the rectangular part due to higher 

confinement loss and lower arch effect. This magnitude of displacements and the observation of 

the yielding zones which were almost absent, allowed concluding that the behavior of the rock 

mass is almost elastic. 

 

5.3 Results of back analysis 

 

In order to reduce the computational time of the study it was decided to take advantage of the 

symmetry of the shaft so the model was reduced to an half. This simplification did not 

significantly affect the computed values [60]. 

 

For the back analysis process it was decided to identify E and K0 which were the parameters 

with higher influence on the displacements. To carry out the back analysis with the ES 

algorithm interval ranges for the parameters to identify must be set. The adopted ranges were 

the following: E [10; 60] and K0 [1;4] which obviously include the initial guess for the 

parameters used in the numerical model. 
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Figure 16 represents the topology of the error function. It shows that a linear relation between 

both parameters exists that leads practically to the same error values. Therefore the problem is 

“ill-posed” due to the fact that the two measurements are carried out in the same direction and 

they are highly correlated and compromise the uniqueness of the solution. These results 

corroborate the conclusions obtained previously in the synthetic case. To obtain a better 

definition of the error function it would be necessary to increase the monitoring data.  

 

In order to check the influence of the introduction of an additional extensometer in the back 

analysis process another synthetic study was carried out based on this real case. In this 

theoretical study an additional extensometer was considered, perpendicular to the existing one. 

The “real” displacements measured by the extensometers were calculated using the initial 

parameters E=30 GPa and K0=2.0. These values are the optimal solution that the ES algorithm 

will search during the back analysis process. The ES algorithm was able to converge to the 

correct set of parameters showing high robustness in a few hundred calculations (Table 12). 

 

Figure 17 shows the topology of the error function for this theoretical calculation. Comparing 

the topology of this error function with the previous one (Figure 16) it can be concluded that the 

introduction of one additional extensometer improved the configuration of the error function 

and the definition of the optimal solution. A more accurate definition of the range of possible K0 

values was achieved since in this case the valley of the error function is restricted to the interval 

[1.7; 2.2]. For E this interval is much wider, between approximately 25 GPa to 35 GPa, in 

which the error value is practically constant. However, and in spite the complexity of the error 

function, the ES algorithm was able to identify the global minimum in an acceptable number of 

calculations. 
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6 CONCLUSIONS 

 

The back analysis of geomechanical parameters can raise complex mathematical problems 

mainly concerned with the convergence process due to the high complexity of the error 

function. In fact, mainly when more complex constitutive models are considered, given the 

increased non-linearity of the problem, and when measurements are insufficient, the 

identification of the optimum set of parameters can be very difficult. Algorithms of the 

evolutionary computation field provide global optimization techniques that can avoid some of 

these problems. Normally, GA are used in optimization applications in geotechnics but the ES 

algorithms, another branch of evolutionary computation, have important features however is 

almost unknown in geotechnical applications.   

 

In this work, different types of optimization algorithms were applied in a synthetic problem of a 

tunnel excavation, both in elasticity and elasto-plasticity, for the assessment of their 

performance. Special emphasis was given to the ES algorithm due to its novelty in geotechnics. 

Also classical gradient-based algorithms and a GA were applied under different circumstances 

of available monitoring data and parameters to identify in order to establish a comparison base 

with the ES algorithm. 

 

The used gradient-based algorithms were the steepest descent, conjugate gradient and Quasi-

Newton. It was stated, as in previous studies, that these algorithms have a satisfactory 

performance when the error function is strictly convex and presents a single local minimum. For 

complex topologies of the error function, like the ones existing when yielding in the model 

occurs these algorithms behave poorly. 

 

Both algorithms from the field of evolutionary computation showed to have similar and very 

satisfactory performance in terms of robustness and efficiency in most of the tested cases of the 
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synthetic problem even for highly complex error functions. It was shown that the ES algorithm 

has interesting capabilities and it is a competitive alternative to the use of GA in geotechnical 

applications of back analysis. 

 

For the case study of Bemposta II powerhouse a back analysis process was carried out for the 

identification of E and K0 using the ES algorithm. Due to the low number of parameters to 

identify and the consideration of an elastic model for the rock mass, this calculation could be 

carried out with a gradient-based algorithm. However, the intention was to analyse the 

performance of the ES algorithm.  

 

The back analysis process was not able to identify the set of optimal geomechanical parameters 

due to the fact that the error function presents a constant value for a linear variation of the 

parameters. This was due to the limited available monitoring data. It was shown by a theoretical 

calculation that one additional extensometer would increase the definition of the error function 

topology and could allow the identification of the correct set of parameters. This conclusion 

shows that back analysis calculations can not only provide better knowledge about the involved 

formations during construction but can also provide some guidelines in the definition of 

monitoring plans. 
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Figure Caption 

 

Figure 1 - Evolution stages of the (μ+λ) - ES algorithm (adapted from Costa, 2003). 

Figure 2 - Numerical model used in the parametric study of back analysis. 

Figure 3 - Type and direction of measurements considered in the parametric study of back 

analysis. 

Figure 4 - Topology of the error function for the elastic case with two vertical measurements. 

Figure 5 - Topology of the error function on the identification of E and K0 for the case of using 

three measurements. a) 3D view b) Plan view. 

Figure 6 - Results obtained with the three gradient back analysis algorithms. 

Figure 7 - Topology of the error function for case 1: a) 3D view b) 2D view. 

Figure 8 - Error function topologies for case 5 for the following geomechanical parameters: a, b) 

c' and f’; c,d) E and f’ ; e, f) E and c' . 

Figure 9 - Topology of error function for case 8 a) 3D view b) 2D view. 

Figure 10 - Topology of error function for case 10: a) 3D view b) 2D view. 

Figure 11 - Powerhouse shaft: current section plan view (left) and hydraulic circuit and turbine 

axis vertical section (right). 

Figure 12 - Scheme of the extensometer position. 

Figure 13 - Measurements of the double extensometer. 

Figure 14 - 3D mesh developed for the Bemposta II powerhouse. 

Figure 15 - Displacement magnitude for the last excavation phase: a) Longitudinal section in 

direction AA' b) Horizontal section at 14 m of the shaft base. 

Figure 16 - Topology of error function a) 3D view b) 2D view. 

Figure 17 - Topology of the error function for the theoretical calculation: a) 3D view b) 2D view 
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Table 1 - Main parameters of the used ES algorithm. 

Definition of the parameter Value 
Maximum number of calculations 300 
Size of parents population (µ) 5 
Number of recombinations 5 
Size of offspring population (λ) 50 
Selection type (“+” or “,”) + 
Type of recombination Discrete 
Self-adaptation method Anisotropic 
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Table 2 - Results of the identification process of E and K0 with two displacement measurements. 

Case Deviations 
Number of 
calculations 

Identified values 

E (GPa) K0 

GB_1 25% (+) 7 2.280 0.566 

GB_2 50% (+) 7 2.683 0.233 

GB_3 10% (+) 4 2.085 0.706 

GB_4 50% (+) for E and 50% (-) for K0 4 2.797 0.084 
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Table 3 - Results of the identification process of E and K0 with one horizontal and one vertical 

displacement measurement. 

Case Deviations 
Number of 
calculations 

Identified values 

E (GPa) K0 

GB_5 25% (+) 16 2.012 0.802 

GB_6 50% (+) 10 2.066 0.811 

GB_7 10% (+) 10 2.083 0.810 

GB_8 50% (+) for E and 50% (-) for K0 n.c. - - 
n.c. – no convergence was attained. 
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Table 4 - Results of the identification process of E and K0 with three and four displacements 

Case Deviations 
Number of 
calculations 

Measurements 
Identified values 

E (GPa) K0 
GB_9 25% (+) 16 3 2.058 0.807 
GB_10 50% (+) 25 3 2.025 0.803 
GB_11 10% (+) 13 3 2.038 0.820 
GB_12 50% (+) for E and 50% (-) for 

K0 
37 3 2.061 0.799 

GB_13 25% (+) for K0 and 25% (-) for 
E 

7 3 1.970 0.794 

GB_14 50% (-) 16 3 1.940 0.796 
GB_15 25% (+) 16 4 1.986 0.799 
GB_16 50% (+) for E and 50% (-) for 

K0 
25 4 2.032 0.788 
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Table 5 - Results of the identification processes for c’ and f’ 

Case Algorithm Deviations Number of 
calculations 

Measurements* Identified values 

c’ (kPa) f’ (º) 
GB_25 

SD 

10% (+) 10 3 54.78 31.20 

GB_26 25% (+) 19 2 59.14 30.35 

GB_27 25% (-) 7 2 39.62 33.65 

GB_28 25% (+) 16 3 60.20 30.33 

GB_29 25% (+) 10 4 60.17 30.14 

GB_30 25% (+) for c’ and 25% (-) for f’ 7 3 63.67 29.84 

GB_31 

QN 

25% (+) n.c. 3 - - 

GB_32 25% (-) n.c. 3 - - 

GB_33 25% (+) for c’ and 25% (-) for f’ n.c. 3 - - 

GB_34 

CG 

25% (+) 16 3 58.67 30.35 

GB_35 25% (-) n.c. 3 - - 

GB_36 25% (+) for c’ and 25% (-) for f’ n.c. 3 - - 

* 2 measurements: vertical displacement in the crown and horizontal stress in the wall; 3 measurements: equal to the 
previous plus the horizontal displacement in the wall; 4 measurements: equal to the previous plus vertical stress in the 
crown 
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Table 6 - Cases of the parametric study of back analysis using the GA and ES algorithms 

Model Case 
Geomechanical 

Parameters  
Monitored displacements  

Number Location 

Elastic 

EA_1 E, K0 4 arch, wall, surface and floor 

EA_2 E, K0 2 wall and arch 

EA_3 E, K0 2 wall and surface 

EA_4 E, K0 2 surface and arch 

Plastic 

EA_5 E, c', f' 4 arch, wall, surface and floor 

EA_6 E, c' 4 arch, wall, surface and floor 

EA_7 E, f' 4 arch, wall, surface and floor 

EA_8 c', f' 4 arch, wall, surface and floor 

EA_9 E, c', f' 2 arch and wall 

EA_10 c', f' 2 arch and wall 

EA_11 E, c', f' 2 surface and wall 
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Table 7 - Results for case EA_1 

Algorithm Intervals 
Parameters 

E (GPa) K0 

GA 

E=[1.5 ; 3]x109 

K0=[0.6 ; 1] 
1.999 0.800 

E=[1 ; 4]x109 

K0=[0.6 ; 1.5] 
1.999 0.800 

E=[0.5 ; 10]x109 

K0=[0.3 ; 2] 
2.043 0.779 

ES 

E=[1.5 ; 3]x109 
K0=[0.6 ; 1] 

1.999 0.803 

E=[1 ; 4]x109 
K0=[0.6 ; 1.5] 

1.999 0.817 

E=[0.5 ; 10]x109 

K0=[0.3 ; 2] 
2.035 0.803 
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Table 8 - Results for cases EA_2, EA_3 and EA_4 

Algorithm Intervals 

Case 

2 3 4 

E  

(GPa) 
K0  

E 

(GPa) 
K0  

E 

(GPa) 
K0  

GA 

E=[1.5 ; 3]x109  
K0=[0.6 ; 1] 

2.002 0.800 
 

2.001 0.798 
 

1.994 0.804 
 

E=[1 ; 4]x109 

K0=[0.6 ; 1.5] 
2.031 0.801 

 
2.005 0.790 

 
1.883 0.893 

 

E=[0.5 ; 10]x109 

K0=[0.3 ; 2] 
2.038 0.811 

 
2.017 0.805 

 
1.901 0.871 

 

ES 

E=[1.5 ; 3]x109 
K0=[0.6 ; 1] 

1.998 0.801 
 

1.999 0.800 
 

2.012 0.791 
 

E=[1 ; 4]x109  

K0=[0.6 ; 1.5] 
1.999 0.817 

 
1.992 0.804 

 
1.999 0.817 

 

E=[0.5 ; 10]x109 

K0=[0.3 ; 2] 
2.038 0.794 

 
1.971 0.794 

 
2.196 0.658 
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Table 9 - Results for cases EA_5, EA_9 and EA_11 

Algorithm Intervals 
Parameters 

  E (GPa) f’ c’ (kPa) 

 Case 5 

GA 

E=[1.5 ; 3]x109 

2.028 30.10 47.71 
  f’=[25º;40º] 

c’=[35;60 ] x10
3 

ES 

E=[1.5 ; 3]x109 

2.103 31.74 35.00 
  f’=[25º;40º] 

c’=[35;60 ] x10
3 

 Case 9 

GA 

E=[1.5 ; 3]x109 

1.988 30.28 48.76 
  f’=[25º;40º] 

c’=[35;60 ] x10
3 

ES 

E=[1.5 ; 3]x109 

2.117 30.44 41.93 
  f’=[25º;40º] 

c’=[35;60 ] x10
3 

 Case 11 

GA 

E=[1.5 ; 3]x109 

2.073 29.33 50.32 
  f’=[25º;40º] 

c’=[35;60 ] x10
3 

ES 

E=[1.5 ; 3]x109 

2.134 31.32 35.00 
  f’=[25º;40º] 

c’=[35;60 ] x10
3 
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Table 10 - Results for cases EA_6, EA_7, EA_8 and EA_10 

Algorithms Intervals Parameters 
  

Case 6 - Parameters E (GPa) and c' (kPa) 

GA 
E=[1.5 ; 3] 

1.999 49.99 
  c’=[35;60 ] 

ES 
E=[1.5 ; 3] 

2.028 48.18 
  c’=[35;60 ]  

Case 7 - Parameters E (GPa) and f’ (º) 

GA 
E=[1.5 ; 3] 

2.059 29.40 
  f’=[25º;40º] 

ES 
E=[1.5 ; 3] 

2.013 29.91 
  f’=[25º;40º] 

Case 8 - Parameters c'(kPa) and f’ (º) 

GA 
c’=[35;60 ] 

46.91 30.48 
  f’=[25º;40º] 

ES 
c’=[35;60 ]  

47.46 30.33 
  f’=[25º;40º] 

Case 10 - parameters f’ (º) and c'(kPa) 

GA 
c’=[35;60 ] 30.472 47.09 

  f’=[25º;40º] 

ES 
c’=[35;60 ]  31.06 43.56 

  f’=[25º;40º] 
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Table 11 - Geological and geotechnical zoning of the rock mass of Bemposta II hydroelectric 

scheme [28] 

Geotechnical 

Zone 
Lithology Weathering Fracturing 

RQD 

(%) 
RMR GSI 

Em 

(GPa) 

ZG4 Gnaissic  granite 

Migmatite 

W4 a W5 F4 a F5 <25 <35 <30 <1 

ZG3 Gnaissic  granite 

Migmatite 

W3 a W3-4 F4 a F5 <50 30-56 

32-57 

25-51 

27-52 

1-6 

1-7 

ZG2 Gnaissic  granite 

Migmatite 

W2-3 a W3 F3 a F4 50-90 50-69 

48-70 

45-64 

48-70 

5-17 

5-22 

ZG1 Gnaissic  granite 

Migmatite 

W1 a W2 F1 a F3 90-100 >50 

>60 

>50 

>60 

>11 

>15 
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Table 12 - Results of the theoretical study of back analysis using Bemposta II model. 

Algorithm Intervals 
Parameters Number of 

calculations E (GPa) K0 

Evolution Strategy 
E=[10;60]x109 

K0=[1;4] 
29.32 2.01 220 

 


