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1. Introduction  

 

Nowadays, the largest part of the energy consumption in residential sector 

is associated with heating and cooling. The incorporation of Phase Change 

Materials (PCM) in mortars for the internal coating, have the objective of 

keep temperatures constant. Contributing in that way, for a bigger level of 

comfort in internal buildings and for a biggest energetic efficiency. The 

benefits to the comfort inside buildings appear during the phase change of 

the PCM. There are transferences of energy that occur during the 

transitions solid-liquid through the heat storage and liquid-solid with the 

release of energy previously absorbed. In order that PCM will not disperse 

in material matrix should be microencapsulated. The exterior of the 

microcapsules is made with a polymer (1, 2). 

 

Latent heat thermal energy storage, through the incorporation of PCM, 

presents the following advantages: narrow the gap between the peak and 

off-peak loads, levelling the electricity demand, decreasing the load on the 

network and eventual supply failure; reduce operation costs by shifting the 

electrical consumption from peak periods to off-peak periods; contribute to 

the interior thermal comfort in buildings, by using and storing solar energy 

(for space heating in winter) and storing natural cooling by ventilation at 

night during the summer, thus reducing electricity use for heating and 

cooling (1, 2). 

 

Between all phase change materials possible applications in buildings, the 

most interesting is its incorporation in construction materials with the aim 

of altering these materials thermal properties. There are a series of 

possibilities: the PCM may be used as a mean for thermal storage for 

passive solar heating, by being integrated on the floor, walls or ceilings, as 
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well as being an integrating part of the most complex energetic system, 

such as heat pumps and solar panels (3). 

 

The main objective of this work was the production of a lime and gypsum 

mortar with incorporation of polymeric microcapsules, which must have a 

compromise between workability, mechanical strength and shrinkage. The 

quantification of shrinkage was made since the fresh state until to the 

hardness state. These mortars can be applied not only in the construction of 

new buildings, but also in rehabilitation operations. 

 

2. Phase change material 

 

Phase change materials (PCM) possesses the capability to alter its own 

state as function of the environmental temperature (3). In other words, 

when the surrounding environmental temperature of PCM increases until 

the materials fusion point, the material suffers a change from a solid state 

to a liquid state, absorbing and storing the heat energy from the 

environment. While, when the temperature decreases until the PCM 

solidification point, the material alters its state from the liquid state to solid 

state, releasing the previously storage energy to the environment (Fig. 1). 

This application could be made in coating mortars of buildings, with 

advantage in the passive regulation of internal temperature with increase of 

thermal inertia (4). 
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Fig. 1. Encapsulated phase change material (5) 

 

Passing the melting point, phase change material, alter its state from solid 

to liquid, and if the material is free to move in the matrix material that 

surrounds it, this disperses changing its shape and original position. For 

maintain the PCM without significant changes in time, this can be wrapped 

in other material with capacity to resist to physic and volumetric changes. 

The microencapsulation of phase change material consists in engage the 

material particles in solid or liquid state, that will be core of material, by a 

material in solid state, usually a polymer, commonly known capsule, with 

dimensions between 0.020 µm a 2000 µm (6). The polymer used could be 

polymethylmethacrylate, polyurea, polyurethane, polymethylmethacrylate 

or polivinilacetano and should respond at some demands of operation as 

high heat transfer.  

 

In 1983 emerged the first classification of substances used for thermal 

storage. These are classified as organic, inorganic and eutectic mixtures. 

The eutectic mixtures result from the combination of two or more 

compounds of organic and/or inorganic nature. By this way it is possible 

better correspond to the need of more suitable transition temperatures for 

the demands (4). 

 

Not all the existing PCM can be used for thermal storage. An ideal PCM 

must present certain thermophysics, kinetic, chemical and economic 
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properties. Relatively to thermophysical properties it is necessary that the 

selected PCM has a transition temperature in the operational temperature 

range desired with the intention of reassuring the storage and release of 

heat. Also, an elevated transition heat by volume unit, in order to storage 

the maximum energy possible, incorporating a minimal quantity of PCM; 

high sensitive heat, translated by its calorific capability in order to increase 

its energy storing capability; high thermal conductivity both in the solid 

and liquid state, so that it becomes easier to promote heat transfer with a 

reduced volume variation during the phase transition allowing the 

contention issues reduction (5). 

 

From the kinetically point of view, the chosen PCM must have a high 

velocity for crystal growing, with the main purpose of avoiding the sub 

cooling of the liquid phase and respond to the surroundings demands (5). 

Concerning its chemical properties it should not present degradation after a 

high number of cycles; it must be non-corrosive to construction materials; 

non-flammable; non-toxic and non-explosive, for environmental and 

security concerns (5). Finally, from the economic point of view, it must be 

abundant, available and with a low acquisition cost, in order to become a 

competitive solution compared to other traditional constructive systems 

and thermal storing (5). 

 

3. Materials, compositions and fabrication 

 

3.1. Materials 

 
This research used PCM microcapsules synthesized by polymerization 

process through emulsion and composed by a polymethylmethacrylate and 

a paraffin nucleus. The product is commercialized in powder (dry) or in 

emulsion, being that for this study it was decided to use a dry PCM in 

order to facilitate its incorporation into already prepared mortars. This 

PCM has a fusion temperature of about 23ºC and an enthalpy of 110kJ/kg. 

The superplasticizer used was a polyacrylate, with a density of 1.05g/cm
3
. 

The sand used has an average particle size of 439.9 µm. The lime used in 

the compositions was a hydrated lime, with a purity of 90% and density of 

1100 kg/m3. The gypsum plaster used is a traditional, with high fineness 

and the fibres used are synthetic fibres of nylon. 

 

3.2. Compositions and fabrication 
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We studied five compositions of aerial lime and gypsum mortars from the 

fresh state up to 28 days (Table 1). The L100G0 is the reference mortar 

without any addition. From L100G0 to L100G0PCM is added 20% of 

PCM microcapsules incorporated in polymer. In composition 

L100G0PCMF are added nylon fibres, and in the compositions 

L100G20PCMF and L100G40PCMF is added a gypsum content of 20% 

and 40%, respectively. 

 

Table 1. Composition of mortars (PCM, superplasticizer, water and fibres 

as % of total mass of solid particles; gypsum and sand as % of binders 

mass) 

Compositions PCM Superplasticizer Fibers Gypsum Sand 

L100G0 0.0 0.0 0.0 0.0 561.4 

L100G0PCM 20.0 1.0 0.0 0.0 561.4 

L100G0PCMF 20.0 1.0 0.1 0.0 561.4 

L80G20PCMF 20.0 1.0 0.1 20.0 561.4 

L60G40PCMF 20.0 1.0 0.1 40.0 561.4 

 

The mixture process and specimens manufacturing was performed in 

accordance with the standard EN 1015-11, with slight adaptations due to 

the PCM incorporation (6). To evaluate the behaviour and the mechanical 

properties (compression and flexural strength) of all the different 

compositions, it was moulded 3 prismatic specimens with 40x40x160 

mm
3
. After its manufacturing, all the specimens were preserved during 7 

days in polyethylene bags and subsequently placed into the laboratory at 

room temperature (about 22ºC) during 21 days.   

 

4. Test procedures  

 

The workability tests were performed with the main goal of verifying an 

adequate workability for handling the developed mortars.  The tests were 

performed based on the flow table method stated by the European standard 

EN 1015-3 (7). The resulting value within the test was only considered 

when between 160-180 mm. For evaluate the shrinkage, was developed a 

device capable of performing the measurement of shrinkage from the time 

of placing the mortar in the mould until the demoulding (Figure 2), with 

the possibility of continuing to monitoring the evolution of the shrinkage in 

time with another device after demoulding. The device consists of a base 

for placing the triple mould with dimensions of 25x25x250 mm³ and six 

displacement transducers. Two displacement transducers were used for 
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each specimen in order to enable the measurement of shrinkage on both 

sides further away from the specimen. The transducers are connected to a 

data acquisition system, where point values are removed from the 

shrinkage of mortars in time. The amount of shrinkage is given by the 

following equation: 

 

 
Where: 

ε – Shrinkage value; 

Li – First measurement value; 

Lt – Value of measurements made at time t. 

 

 
Fig. 2. Measuring device for evaluation of shrinkage since the fresh 

state 

 

The flexural and compressive behaviour was evaluated based in EN 1015-

11. The specimens used for the flexural test were prismatic. The flexural 

tests were performed with force control at a speed of 10N/s. Compression 

tests was realized through the application of a load on the specimen with 

resource to a metallic piece, rigid enough to make the vertical charge 

uniform. The specimens used for the test were the flexural test resulting 

half parts. The tests were performed with a force control at a speed of 

50N/s. 

 

5. Results and discussion  

 

5.1. Workability 

 

Table 2 shows the obtained results for the workability tests from the 

experimental results. It is possible to verify a rise in the amount of water 

added to the mixture, with the incorporation of microcapsules PCM. To an 

ε =
�� − ��

250
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increase of 20% of PCM corresponds a rise in the amount of water of about 

26%. This situation can be explained by the thinness of the used PCM and 

by the absorption of the polymeric wall of the microcapsule. The 

incorporation of fibers and gypsum causes a light increase in quantity of 

water. An increase of 20% of gypsum, resulted in a rise of about 3% of the 

water amount added to the mortar. 

 

Table 2. Workability results  

Compositions Water 

L100G0 23.0 

L100G0PCM 29.0 

L100G0PCMF 30.0 

L80G20PCMF 31.0 

L60G40PCMF 32.0 

 

 

 

 

5.2. Shrinkage  

 

With the device described above, it was possible to make an evaluation of 

shrinkage since the fresh state, due to changes caused by the introduction 

of polymer capsules. It was monitored the behaviour of different areal 

mortars from time zero to seven days. The results allowed us to verify that 

there is an increase in the measured value of the shrinkage with the 

incorporation of microcapsules. However, the addition of gypsum and 

nylon fibers, results in a decrease in shrinkage in the first 24 hours of 

monitoring (Figure 3). 
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Fig. 2. Shrinkage test since moulding until 24 hours 

 

 
Fig. 3. Shrinkage test since moulding until 7 days 

 

The analysis of the results up to 7 days of age (Figure 4) allows the 

identification of different behaviors in different aereal mortars. The 

introduction of 20% of microcapsules (L100G0PCM), causes an increase 

in shrinkage of about 4 times compared to the reference mortar (L100G0). 

The addition of nylon fibers (L100G0PCMF), causes a decrease in 

shrinkage to about half compared with the mortar L100G0PCM. With the 

addition of gypsum (L80G20PCMF and L60G40PCMF) is possible to 

observe a decrease in shrinkage. It was performed a practical application of 

mortar developed and subsequently made a comparison with the results 

obtained (Figure 5). For mortar L100G0 was obtained a value of 0.415 

µm/m, showing no cracks in support. The introduction of 20% of 

microcapsules (L100G0PCM) the shrinkage value obtained was increased 

about 5 times, showing cracking in support. With the addition of nylon 

fibers (L100G0PCMF) the value obtained is about half comparatively to 
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the mortar L100G0PCM, with consequently lower cracking the mortar 

before. The subsequent incorporation of 20% gypsum results in a decrease 

in cracking presented in support. With the increase of gypsum content of 

40%, the amount of shrinkage obtained is 0.304µm/m, which is lower than 

the value obtained for the shrinkage of mortar L80G20PCMF (0.475 

µm/m) and also lower than the reference mortar (0.415 µm/m) with no 

cracking in the support.  

 

5.3. Flexural and compressive behaviour 

 

Concerning the mechanical strengths, in general terms and based in the 

obtained results, presented in Table 3, it is possible to find that the 

mechanical properties show an improvement with the addition of PCM 

microcapsules. The addition of 20% of PCM leads to an increase of the 

flexural strength about 450%. For the compression strength, the increase 

observed is about 788%. These values were obtained comparing to the 

composition without the incorporation of phase change materials.  

 

 

 
Fig. 4. Comparison between the values of shrinkage and cracking 

 

Table 3. Flexural and compressive results  

Compositions Flexural strength, MPa 
Compression strength, 

MPa 

L100G0 0.17 [10.98] 0.25 [8.09] 

L100G0PCM 0.93 [11.22] 2.22 [6.09] 

L100G0PCM

F 

0.72 [10.57] 1.79 [5.99] 

L80G20PCM

F 

1.36 [4.52] 2.27 [10.6] 

L60G40PCM 1.01 [12.72] 2.00 [11.7] 
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F 

Note: In parentheses we present the coefficient of variation in 

percentage. 

 

 

6. Conclusion 

 

The experimental work led to the conclusion that it is possible use 

polymeric microcapsules in mortar, obtaining a balance between the 

aesthetic and functional performance. The results obtained from tests for 

shrinkage concluded that the combined use of fibre and gypsum is a good 

solution for solving problems related to cracking caused by the 

incorporation of polymeric microcapsules. The specific devices developed 

at the University of Minho, has proved effective in quantitative evaluation 

of the shrinkage. It was also possible to make a practical application and 

verification of the values obtained in the laboratory. 

 

It was even possible to verify the existence of a clear rise of the water 

necessary to incorporate into the mortar within the increasing of PCM 

percentage, this with the aim of obtaining a suitable workability. The 

compression and flexural resistance measured in each performed test 

allows observing a tendency to its increase, with a greater incorporation of 

PCM microcapsules. The mortar with 60% of aerial lime and 40% of 

gypsum with incorporation of PCM microcapsules, is more interesting 

because it showed an excellent compromise between high mechanical 

strengths and low shrinkage. 
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