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Abstract. Nowadays, the ability to forecast the future, based only on
past data, leads to strategic advantages, which may be the key to success
in organizations. Time Series Forecasting allows the modeling of complex
systems as black-boxes, being a focus of attention in several research
arenas such as Operational Research, Statistics or Computer Science.
On the other hand, Genetic and Evolutionary Algorithms (GEAs) are a
novel technique increasingly used in Optimization and Machine Learning
tasks. The present work reports on the forecast of several Time Series,
by GEA based approaches, where Feature Analysis, based on statistical
measures is used for dimensionality reduction. The handicap of the evo-
lutionary approach is compared with conventional forecasting methods,
being competitive.
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1 Introduction

Time Series Forecasting (TSF), the forecast of a time ordered variable, turns
on into a decisive tool in problem solving, since it allows one to model complex
systems where the goal is to predict the system’s behavior and not how the
system works. Indeed, in the last few decades an increasing focus as been put
over this field. Contributions from the arenas of Operational Research, Statistics,
and Computer Science as lead to solid TSF methods (e.g., Exponential Smoothing
or Regression) that replaced the old fashioned ones, which were primarily based
on intuition.

An alternative approach for TSF arises from the Artificial Intelligence (AI)
field, where one has observed a trend to look at Nature for inspiration, when
building problem solving models. In particular, studies on the biological evolu-
tion influenced the loom of powerful artifacts, such as Genetic and Evolutionary
Algorithms (GEAs), that enriched the potential use of Alin a broad set of scien-
tific and engineering problems, such as the ones of Combinatorial and Numerical
Optimization [9].



GEAs are suited for combinatorial optimization problems, where the exhaus-
tion of all possible solutions require enormous computational power, heuristically
finding solutions where other methods seem to fail. The use of GEAs in TSF
is expected to increase in importance, motivated by advantages such as explicit
model representation and adaptive evolutionary search, which escapes from un-
satisfactory local minima.

The present work aims at testing several T'SF models, inspired on evolu-
tionary strategies, over a broad range of real T'Ss. The paper is organized as
follows: firstly, the basic concepts for TS analysis, and GEAs are defined; then,
a description of the different models and experiments is given; finally, the results
obtained are presented and compared with other conventional T'SF methods.

2 Time Series Analysis

A Time Series (TS) is a collection of chronologically ordered observations z,
each one being recorded at a specific time ¢ (period). T'Ss can uprise in a wide
set of domains such as Finance, Production or Control, just to name a few. A
TS model (7;), assumes that past patterns will recur in the near future. The
error of a forecast is given by the difference between actual values and what was
predicted:

ey = Ty — Ty (1)

The overall performance of a forecasting model is evaluated by an accuracy
measure, namely the Sum Squared Error (SSE), Root Mean Squared (RMSE),
and Normalized Mean Square Error (NMSE), which are given in the form:

SSE=Y"!_, e
RMSE = /332 (2)
NMSE = —S5E
i (7072

where [ denotes the number of forecasts and T the mean of the T'S.
A common statistical instrument for TS analysis is the autocorrelation coef-

ficient, defined by:
o (00— 7) @k —7) )
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in terms of the k’s lag, where s denotes the TS’ size. Autocorrelations can be
useful for decomposition of the T'S main components (trend and seasonal effects)
(Figure 2).

One quite successful T'SF method is Ezponential Smoothing (ES), which is
based on some underlying patterns (e.g., trend and seasonal ones) that are dis-
tinguished from random noise by averaging the historical values. Its popularity
is due to advantages such as the simplicity of use, the reduced computational de-
mand and the accuracy of the forecasts, specially with seasonal T'Ss. The general
model, also known as Holt- Winters, is defined by the basic equations [10]:




°

5“““““““||| ||| | |
€ 0 ||||| * | I I I I

°
-
—
—
-
-
-
—
—
-
-
—
—
-
-
-
—
—
-

0 15 20 25 0 5 10 15 20 25

s 10
K
1 ““““““““““ |
« o « o || III . [P |

Fig. 1. Autocorrelation coefficients of typical Seasonal and Trended, Seasonal, Trended
and Non-Trended TS
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Ty = (Fry1 +Ti1) X Si—k

where Fy, T; and S; stand for the smoothing, trend and seasonal estimates, K
for the seasonal period, and «, 8 and v for the model parameters.

The AutoRegressive Integrated Moving-Average (ARIMA) is another impor-
tant T'SF methodology, going over model identification, parameter estimation,
and model validation [3]. The main advantage of this method relies on the ac-
curacy over a wider domain of T'Ss, despite being more complex, in terms of
usability and computational effort, than ES. The global model is based on a lin-
ear combination of past values (AR components) and errors (M A components)
This model can be postulated as an ARM A(P, Q) one, given in the form:

P Q
S/L'\t =p+ ZAimt—i + Z Mjet_j
i=1 j=1

where P and ) denote the AR and M A orders, A; and M; the AR and M A
coefficients, being p a constant value. Both the constant and the coeflicients of



the model are estimated using statistical approaches (e.g., least squares meth-
ods). Trended TSs require a differencing of the original values and seasonal TSs
involve a transformation of the model. The methodology also contemplates the
possibility of some kind of transformation in the original data (e.g., logarithmic).

Table 1. Time Series data

Series Type Domain Description

passengers Seasonal Tourism Monthly international airline passengers
paper & Trended Sales Monthly sales of French paper

deaths Seasonal Traffic Monthly deaths & injuries in UK roads
maxtemp Meteorology Maximum temperature in Melbourne
chemical Trended Chemical  Chemical concentration readings

prices Economy  Daily IBM common stock closing prices
lynx . Ecolo Annual number of lynx

k}:)be Nonlinear Geologg};r Seismograph of the }II{Obe earthquake

For the experiments presented in this work, a set of eight T'Ss were selected
(Table 1), taken from different origins, the majority of which are related with
real problems, from different domains, ranging from the financial markets to
natural processes [3][10][8] (Figure 2). All T'Ss were classified into four main
categories that are expected to encompass all major 7T'S types, namely: Seasonal
and Trended, Seasonal, Trended, and Nonlinear.

3 Genetic and Evolutionary Algorithms

The term Genetic and Evolutionary Algorithm (GEA) is used to name a family
of computational procedures where a number of potential solutions to a problem
makes the way to an evolving population. Each individual codes a solution in
a string (chromosome) of symbols (genes), being assigned a numerical value
(fitness), that stands for a solution’s quality measure. New solutions are created
through the application of genetic operators (typically crossover or mutation).
The whole process evolves via a process of stochastic selection biased to favor
individuals with higher fitnesses.

The first GEAs [6], and most of the ones developed so far, make use of a
binary representation; i.e., the solutions to a given problem are coded into a
{0,1} alphabet. However, some authors have argued that when one is faced
with problems where the parameters are given by real values, the best strategy
is to represent them directly into the chromosome, thus using a Real- Valued
Representation (RVR), which allows the definition of richer genetic operators
[11]. In this work, two genetic operators were adopted. Its picture is given below:

Arithmetical Crossover - each gene in the offspring is a linear combination
of the values in the ancestors’ chromosomes in the same positions [11]. If a;
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Fig. 2. The series of Table 1




and b; are the offspring’s genes, and z; and w; the ancestors’ ones, at the
position 4, then a; = A - z; + (1 — A) - w; and b; = A - w; + (1 — X) - 2;, where
A is a random number in the range [0;1] .

Gaussian Perturbation - this is a mutation operator that adds, to a given
gene, a value taken from a Gaussian distribution, with zero mean.

4 Evolutionary Forecasting Models

In spite of its youth, in the Evolutionary Computation arena, a stream of new
models and techniques for problem solving are coming into life, being particularly
useful for numerical or combinatorial optimization processes. It is surprising to
realize that the work in applying these techniques to forecasting is so scarce. In
fact, although there are some publications in this area, these are not numerous
nor noticeable. The existent work focuses mainly in some kind of parameter
optimization, under a conventional model such as Holt- Winters [1] or ARIMA
[7][4]- Recent developments such as Genetic Programming (GP) [2] and GEAs
with RVRs [11], are expected to improve the performances of these approaches.

In this work, two approaches to forecasting, both based on GEAs with RVRs,
were followed. In the former one, the forecasting model is a linear combination of
previous values. Under this scenario, the genes in the chromosome code for the
weights by which previous values are multiplied. With the latter, both previous
values and errors are taken into account, following a strategy inspired on the
ARMA models, where the genes code for the coefficients.

Both models make use of a Sliding Time Window (STW) that defines the
set of time lags used to build a forecast, also defining the number of the model
inputs. A STW will be denoted by the sequence STW =< ky, ks, ..., k, >, for
a model with n inputs and k; time lags. The choice of a given STW is crucial
to set the performance of a given model. A large sliding window can increase
the system entropy, diminishing the learning capacity of the model, while small
windows may contain insufficient information. The selection of the relevant time
lags can improve forecasting (e.g., ARIMA models often use the 1,12 and 13
lags for monthly seasonal trended series).

An empirical approach to the problem is to use information based on the TS
analysis. Four heuristic strategies will be used for STW selection, based on the
autocorrelation values, and stated as follows:

A - a full STW with all time lags from 1 to a given maximum m: STW =<
1,2,....,m > (m was set to 13, a value that was considered sufficient to
encompass monthly seasonal and trended effects);

B - a STW with all lags with autocorrelation values above a given threshold
(set to 0.2);

C - a STW with the four lags with highest autocorrelations (in the case of the
seasonal trended series, these were taken after differencing, since trend effects
may prevail over seasonal ones); and

D - the use of decomposable information; i.e.,

— STW =< 1,K, K +1 > if the series is seasonal (period K) and trended;



— STW =<1, K > if the series is seasonal; and
— STW =<1 > and STW =< 1,2 > if the series is trended.

The two models considered in this work are given, in terms of a predefined
STW, by:

G1 - linear combination based GFA; i.e.,

Ty =go+ Z 9iTt—k;
ie{li“‘in}

where g; stands for the i-th gene of the individuals’ chromosome, and n for
the STW size.
G2 - ARMA based GFEA4;i.e.,

Be=go+ Y. (9i%i—ks + GitnCits)
ie€{l,...,n}

A model is said to overfit when it correctly handles the training data but fails
to generalize. The usual statistical approach to overfitting is model selection,
where different candidate models are evaluated according to a generalization
estimate. Several complex estimators have been developed (e.g., Bootstrapping),
which are computationally burdensome [12]. A reasonable alternative is the use
of simple statistics that adds a penalty that is a function of model complexity,
such as the Bayesian Information Criterion (BIC) [13]:

BIC = N -In(33E) + p- In(N) (5)

where N denotes the number of training examples and p the number of param-
eters (in this case pg1 =1+ n and pgs = 1 + 2n).

5 Experiments and Results

The given models (G1 and G2) were tested on the set of TSs from Table 1,
using all the sliding window heuristics, when applicable. Thirty independent
runs were performed in every case to insure statistical significance, being the
results presented in terms of the mean and 95% confidence intervals. The TSs
are divided into a training set, containing the first 90% values and a test set, with
the last 10%. Only the training set is used for model selection and parameter
optimization. The test set is used to compare the proposed approach with other
methods.

In terms of the GEA’s setup, the initial populations’ genes were randomly
assigned values within the range [—1,1]. The population size was set to 100.
The fitness of each chromosome was measured by the forecasting error (RMSE)
over all the training patterns. The selection procedure is done by converting the
fitness value into its ranking in the population and then applying a roulette wheel
scheme. In each generation, 40% of the individuals are kept from the previous



Table 2. Results of the GEA’s approach to the prices series

Model Sliding Training Forecasting
Window RMSE BIC RMSE
A=B 1213 1673 10.72+0.69
G1 C 9.18 1443 8.2440.32
Di2 835 1372 7.4940.05
Dy 7.68 1312 7.48+0.00
A=B 8.70 1536 8.78+0.33
G2 C 7.73 1357 7.68%0.10
Di2 7.63 1325 7.65+0.02
D: 7.68 1318 7.4940.00

generation, and 60% are generated by the application of the genetic operators
described in Section 3. The crossover operator is responsible for breeding % of
the offspring and the mutation one is accountable for the remaining ones. Finally,
the GEA is stopped after 2000 epochs.

For each TS both models (G1 and G2) were applied, considering all possible
STWs. Therefore, each TS has several forecasting candidates. In order to select
the best one, the BIC criterium was used. As an example, the used methodology
will be explained in detail for the prices series (Table 2). The results of the
last three columns are given in terms of the mean of the thirty runs. The 95%
confidence intervals are also shown for the short term forecasting errors [5]. The
best training RMSE is achieved for the window < 1,2 > and model G2. The
BIC criterium works better, selecting the model that provides the best forecast.
This behavior occurred consistently in all the T'Ss.

Table 3. The selected GEAs forecasting models (with lower BIC).

Series Model Sliding Forecasting
Window RMSE
passengers Gl D=<1,12,13 > 20.9+0.7
paper Gl D=<1,12,13 > 56.3+0.9
deaths Gl D=<1,12,13 > 134+1
maxtemp Gl C=<1,11,12,13 > 0.915+0.008
chemical Gl B=<1,2,3,7> 0.34340.003

prices Gl D=<1> 7.484+0.00
lynx G2 C=<1,9,10,11 > 26246
kobe G2 A=<1,2,..,13> 524+16

Table 3 shows the best GEA models, when adopting the BIC criterium for
model selection. This criterium, which penalizes complexity, selects the G1 mod-
els for the linear series and the G2 for the nonlinear ones, which is a logical
outcome.



A comparison throughout evolutionary and conventional models is given in
Table 4. The error values over the test set are given in terms of two measures,
namely the RMSE and the NMSE ones (in brackets). This last measure is in-
cluded since it makes easier the comparison among the different series and meth-
ods considered. The ES parameters («, 8 and 7) were optimized using a 0.01
grid search for the best RMSE, while the ARIMA models were achieved using a
forecasting package (FORECAST PRO).

Table 4. Comparison between different T'SF' approaches

Series ES ARIMA GEA
passengers 16.7 (0.71%) 17.8 (0.81%) 20.9 (1.12%)
paper 41.0 (3.1%) 61.0 (6.8%) 56.3 (5.8%)
deaths 145 (43%) 144 (42%) 134 (37%)
maxtemp 0.917 (4.1%) 1.068 (5.6%) 0.915 (4.1%)
chemical 0.354 (51%) 0.361 (563%) 0.343 (48%)
prices  7.50 (0.39%) 7.72 (0.41%) 7.48 (0.38%)
lynx 876 (57%) 504 (19%) 262 (5%)
kobe 3199 (105%) 582 (4%) 524 (3%)

The results of the evolutionary approach are very interesting, with the best
forecasting handicaps in 6 of the 8 T'Ss. In terms of the different types of TSs
considered the proposed method seems to have its weakness in the seasonal and
trended series, where the ES prevails. In all other kinds of series the results are
very good, specially in the non-linear T'Ss.

6 Conclusions

The results of the application of GEAs to the T'SF field are, at least, encouraging.
In fact, the methodology proposed presents better results than the traditional
methods used in the majority of the TSs considered. Furthermore, the BIC
criterium showed a good performance in model selection, making the approach
easier to automate. In fact, the proposed system does not require complicated
statistical pre-processing, being easy to use by a beginner in the field.

In the future, it is intended to pursue on the automation of the model selec-
tion stage, namely on the process of selecting the best STW. An alternative is to
enlarge the number of different STWs attempted and to find, within this search
space, the best alternative. Since this is an optimization task, the use of a GEA
could be advantageous, thus creating a two-level architecture. Another area of
interest may rely in the enrichment of the forecasting models, by considering the
integration of nonlinear functions (e.g., logarithmic or trigonometric).
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