Evolutionary Neural Network Learning

Miguel Rocha!, Paulo Cortez?, and José Neves!

! Departamento de Inform4tica - Universidade do Minho
Campus de Gualtar, 4710-057 Braga - PORTUGAL
2 Departamento de Sistemas de Informacio - Universidade do Minho
Campus de Azurém, 4800-058 Guimardes - PORTUGAL
mrocha@di.uminho.pt pcortez@dsi.uminho.pt jneves@di.uminho.pt

Abstract. Several gradient-based methods have been developed for Ar-
tificial Neural Network (ANN) training. Still, in some situations, such
procedures may lead to local minima, making Evolutionary Algorithms
(EAs) a promising alternative. In this work, EAs using direct represen-
tations are applied to several classification and regression ANN learning
tasks. Furthermore, FAs are also combined with local optimization, un-
der the Lamarckian framework. Both strategies are compared with con-
ventional training methods. The results reveal an enhanced performance
by a macro-mutation based Lamarckian approach.

1 Introduction

In MultiLayer Perceptrons (MLPs), one of the most popular Artificial Neural
Network (ANN) architectures, neurons are grouped in layers and only forward
connections exist [2]. The interest in MLPs was stimulated by the advent of the
Backpropagation algorithm and since then several variants have been proposed,
such as the RPROP [7]. Yet, these gradient-based procedures are not free from
getting trapped into local minima when the error surface is rugged, being also
sensitive to their parameter settings and to the network initial weights.

An alternative approach comes from the use of Ewvolutionary Algorithms
(EAs), where a number of potential solutions to a problem makes an evolv-
ing population [5,4]. EAs are appealing for ANN training since [8]: a global
multi-point search is provided; no gradient information is required; and they are
general purpose methods (the same FA may be used in different types of ANNs).

Following this trend, this work aims at exploring the use of EAs for MLP
training, when applied to classification and regression tasks.

2 Experimental Setup

A set of ten benchmarks was considered in this work (Table 1), endorsing two
main types (column T) of problems: Classification (C) and Regression (R) tasks.
Six real-world problems were chosen from the UCI machine learning repository
[3]. The PRA is based on a realistic simulation of the dynamics of a robot arm.

The artificial tasks include the famous N Bit Parity [7], the TCC which consists
on assigning one of three colors to each block of a 3x3x3 grid cube and the ST,
a regression task where the output is given by: y = sin(8z) x sin(6z).

Table 1. The MLP learning benchmarks.

Task T Description C IHOW
6BP C Six Bit Parity 64 6 6 1 49
TCC C Three Color Cube 27 3 8 3 59
SMR C Sonar: Rocks vs Mines 10460 6 1373
PID C Pima Indians Diabetes 200 7 71 64
IPD C Iris Plant Database 150 4 3 3 27
WBC C Wisconsin Breast Cancer 499 9 3 1 34
STS R Sin Times Sin 80 1 8 1 25
PRA R Pumadyn Robot Arm 128 8 8 1 81
RTS R Rise Time Servomechanism 167 4 4 1 25
PBC R Prognostic Breast Cancer 198 32 4 1137

FEach problem will be modeled by a fully connected MLP, with one hidden
layer and bias connections, being the topology given in Table 1, where columns
I, H and O denote the number of input, hidden and output nodes, while column
‘W shows the number of connections. Classification tasks make use of a single
binary output (if two classes are present) or one boolean value per each class.
In regression problems one real-valued output encodes the dependent variable.
The standard logistic activation function ({74=) was used in all classification
tasks. A different strategy was adopted for the regression problems, since outputs
may lie out of the co-domain ([0, 1]). Thus, the logistic function was adopted on
the hidden nodes, while the output ones used shortcut connections and linear
functions, to scale the range of the outputs. For all training methods, the initial
weights are randomly assigned within the range [—1; 1], being the accuracy of
each MLP measured in terms of the Root Mean Squared Error (RMSE).

3 Experiments with Evolutionary Algorithms

In this study, direct encoding is embraced (one gene per connection weight),
an alternative closer to the phenotype, allowing the definition of richer genetic
operators [5]. Two mutation operators were used, namely:

— Random Mutation, which replaces one weight by a new randomly generated
value, within the range [—1,1]; and

— Gaussian Mutation, which adds to a given gene a value taken from a gaussian
distribution, with a zero mean and 0.25 standard deviation [4].

In both cases, a random number of genes is changed, between 1% to 20% of the
number of ANN weights. The following crossover operators were also tested:

— Two-Point, Uniform, Arithmetical and Sum, standard EA operators [5];

— Input and Output connections, similar to a one-point crossover except that
the set of input (output) connections to a node can not be disrupted [6]; and

— Hidden nodes, that combines the previous two operators; i.e., all connections
to/from a hidden node can not be separated.

The EAs population size was set to 30, being the selection done by converting
the fitness value (RMSE) into its ranking, and then applying a roulette wheel
scheme, being used a substitution rate of 50% and the elitism value set to one.
All tests were conducted using the Java language, running on a Pentium III 933
MHz PC. The termination criteria was set by CPU time (100 seconds).

The results are compiled in Table 2, which shows the quality Q,,, measured
by how far (in percentage) its error (RMSE,, the mean of thirty runs for
the model m and task t) is from the best result (B;), given by: @, = 100 x
(O ter %{5’” —1) where B, = mingem(RMSE}+), and T and M denote the
set of learning tasks and models. In the first row, only the mutation operator
is applied. For the others, each operator breeds 50% of the offspring. The best
performance is achieved by gaussian mutation, being no gain in using a crossover
operator, thus favoring Evolutionary Programming [4]. This may be due to the
permutation problem; i.e., several genomes may encode the same ANN [8].

Table 2. The overall EA’s results for each model m (@ values).

Crossover Gaussian Mutation Random Mutation

None 2.1% 148.2%
Two-Point 9.8% 143.6%
Uniform 10.3% 143.4%
Arithmetical 24.3% 146.0%
Sum 74.4% 78.3%
Input 9.3% 143.7%
Output 7.8% 143.5%
Hidden 9.5% 143.5%

4 Experiments with Lamarckian Optimization

The EAs performance can be improved by the use of the Lamarckian point of
view [1]: in this work and in every generation, each individual is subject to 50
epochs of the RPROP algorithm [7], being the new weights encoded back into
the chromosome (Figure 1). Two distinct Lamarckian EAs (LEAs) were tested
(Table 3), with 20 individuals and one mutation operator, gaussian (column GL)
or random (column RL), since the crossovers revealed poor performances. Here
the comparison favors the latter macro-mutation, which may allow individuals to

Population

Fig. 1. An illustration of the Lamarckian strategy of inheritance.

jump between local minima, while the gaussian mutation effect may be reversed
by the RPROP.

Table 3 also compares the best EAs with gradient-based methods (values are
presented in terms of the mean of thirty runs). The Neural Population (NP)
model was added, where 20 MLP’s will be trained via the RPROP algorithm,
in order to achieve a fair comparison among population and non-population ap-
proaches. The BackPropagation (BP) is outperformed by the gaussian mutation
EA in four benchmarks, while the RPROP (RP) always surpasses the FA. The
NP behaves better, although the RL excels all methods, stressing the importance
of the random mutation and selection operators.

A temporal perspective is given in Figure 2 for the TCC task, reflecting
each methods’ traits: the EA and BP show slow learning rates; the RP gets the
fastest convergence, but it quickly stagnates; both the random mutation LEA
and NP reveal better long term performances, albeit the former method gains
an advantage.

Table 3. Comparison between different training approaches (RM SE values).

Task EA GL RL NP RP BP
6BP 0.148 0.078 0.036 0.070 0.243 0.364
TCcC 0.216 0.113 0.069 0.101 0.194 0.201
SMR 0.153 0.000 0.000 0.000 0.067 0.045
PID 0.262 0.144 0.143 0.151 0.175 0.164
IPD 0.081 0.045 0.030 0.040 0.064 0.088
WBC 0.131 0.094 0.094 0.099 0.107 0.104
STS 0.329 0.095 0.078 0.109 0.095 0.299
PRA 1.190 0.420 0.390 0.420 0.440 1.780
RTS 0.571 0.266 0.242 0.254 0.381 0.523

PBC 26.1 19.8 19.0 21.5 21.9 38.6

5 Conclusions

Results obtained by pure FAs stress the importance of the gaussian mutation and
the difficulty in the design of crossover operators. Although other methods are
more effective in supervised tasks, this approach can be quite useful for recurrent
neural networks or reinforcement learning. For classification and regression, the
experiments carried out have shown that the RPROP algorithm is the best choice
when few computational resources are available. However, a better performance
is achieved by the use of a Lamarckian approach, being shown that incorporating
a macro-mutation is essential to obtain improved performances.

References

1.

2.
3.
4. L. J. Fogel. Intelligence Through Simulated Evolution: Forty Years of Evolutionary

R. Belew, J. Mclnerney, and N. Schraudolph. Evolving Networks: Using the Genetic
Algorithms with Connectionist Learning. CSE TR, CS90-174, UCSD, 1990.

C. Bishop. Neural Networks for Pattern Recognition. Oxford Univ. Press, 1995.

C. Blake and C. Merz. UCI Repository of Machine Learning Databases, 1998.

Programming. John Wiley, New York, 1999.

. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, USA, third edition, 1996.

. D. Montana and L. Davis. Training feedforward neural networks using genetic

algorithms. In Proc. 11th IJCAI pages 762-767. Morgan Kaufmann, 1989.

M. Riedmiller. Supervised Learning in Multilayer Perceptrons - from Backpropaga-
tion to Adaptive Learning Techniques . Comp. Stand. and Interfaces, 16, 1994.

X. Yao. Evolving Artificial Neural Networks. Proc. IEEE, 87(9):1423-1447, 1999.

Error (RMSE)

Time (seconds)

Fig. 2. The error evolution for the T'CC task.

