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1 INTRODUCTION 

A shell is a thin structure with in-plane dimensions much larger than its thickness. There are shells 

formed by plane components, but curvilinear complex geometries can also be found amongst the 

most beautiful world-wide shell constructions. In this type of structures, in-plane strains and out-of-

plane shear strains can simultaneously occur, inducing membrane forces, bending moments and out-

of-plane shear forces. The in-plane forces and the bending moments are the most significant. 

However, near high stress concentration areas, like point and line loads, and at the supports, the out-

of-plane shear forces can be appreciable. These forces can also be significant in shells of moderate 

thickness. 

 

Using the shell concept, very interesting solutions can be obtained, not only from the structural and 

architectural point of view, but also from technical and economic reasons. Large areas can be covered 

with lightweight and elegant shell structures, resulting lower seismic loads and smaller loads 

transferred to the supports and to the soil. 

 

The major part of the shells is made by reinforced concrete. Recent advances in fibre reinforced 

concrete (FRC) indicate that fibres can replace part of the conventional reinforcement (steel bars and 

meshes). In the last years, composite materials are also being used to build shell roofs of large span, 

but the sensitivity of these materials to fire is yet a big obstacle for their use in this type of structures. 

 

The Ahmad shell finite element (Ahmad et al. 1970) results from the degeneration process of the 

volume finite element. The degeneration process is represented in Figure 1. The Ahmad shell finite 

element has been extensively used in the linear and nonlinear analysis of reinforced concrete shell 

structures (Figueiras 1983, Póvoas 1991). This element has been proved to be appropriated not only 

for very thin shells of composite materials (Figueiras 1983), but also for reinforced concrete shells of 

moderate thickness. 

 

The present work has the main purpose of describing the finite element based formulation of Ahamd 

shell implemented into the FEMIX computer package (Azevedo et al. 2003) in order to simulate the 

linear and elastic behaviour of curved shells. To be capable of analyzing shells or curved geometry 

and where the out-of-plane shear cannot be neglected, the Ahmad shell formulation (Zienkiewicz and 

Taylor1989, Oñate 1995) is adopted. This formulation is rewritten for a simple implementation of the 
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layered concept that is currently used in the material nonlinear analysis of laminate concrete 

structures (Barros 1995). 
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Figure 1 - Degeneration process of a volume finite element into an Ahmad shell finite element. 
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2 BASIC HYPOTHESIS 

The Ahmad shell theory is supported on the following hypothesis (Oñate 1995): 

• The deflection orthogonal to the shell middle surface of any point is small when compared to 
the shell thickness; 

• The stress orthogonal to the shell middle surface is negligible; 
• Normal to the undeformed shell middle surface remains orthogonal to the deformed shell 

middle surface. 
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3 TYPES OF NODAL POINTS 

Some thin structures, like the one represented in Figure 2, are composed by components forming kink 

edges. To analyze this type of structures, using the shell approach, two types of nodes should be 

distinguished: coplanar and kink nodes. The last ones are in the kink edges, while the coplanar nodes 

are the remaining nodes. 

 

The process to distinguish a kink from a coplanar node is based on the angle formed amongst the 

vectors that, at this node, are orthogonal to the middle surface of the shell elements connecting to 

this node. If this angle is less than one degree, the node is declared coplanar node, otherwise it is 

kink node. 
 

 

 

Kink nodes 

Coplanar nodes 

Kink edges 

 

Figure 2 - Structures that have coplanar and kink nodes. 
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Figure 3 - Schematic representation of the procedure to distinguish coplanar and kink nodes. 

 

 

Coplanar nodes have five degrees of freedom (see Figure 4), three displaments in the global 

coordinate system,( )δ1 1= u
k
,( )δ2 2= u

k
 and ( )δ3 3= u

k
, and two rotations in the nodal coordinate 

system, ( )4 1= n

k
δ θ  and ( )5 2= n

k
δ θ . The vectors n1 and n2 in Figure 4 define the plane containing the k 

node and it is tangent to the element middle surface( )s3 0=  at this node. The procedures to define 

the nodal coordinate system are given in the next section. 
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Figure 4 - Degrees of freedom and coordinate systems for coplanar nodes. 

 

Kink nodes have six degrees of freedom, three displacement components and three rotation 

components, all of them in the global coordinate system, ( )δ1 1= u
k
, ( )δ2 2= u

k
, ( )δ3 3= u

k
, 

( )δ4 4= u
k
, ( )δ5 5= u

k
 and ( )δ6 6= u

k
, see Figure 5. 
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4 COORDINATE SYSTEMS 

4.1 INTRODUCTION 

The four coordinate systems used in the Ahmad shell finite element formulation are represented in 

Figure 6. Auxiliary coordinate systems (see Figure 7), in general, are used to define support 

conditions that prescribe some degrees of freedom in directions distinct of the global and nodal 

coordinate systems. 
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Figure 6 - Coordinate systems for the Ahmad finite element formulation: (a) global, (b) natural, (c) 

nodal and (d) tangential. 
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Figure 7 – Auxiliary coordinate system. 

 

 

4.2 GLOBAL COORDINATE SYSTEM ( )1 2 3, ,ix x x x  

The global coordinate system is used to define the geometry of the structure (Figure 6a). The nodal 

coordinates, the nodal displacements (except the rotations of coplanar nodes and the degrees of 

freedom in auxiliary directions), the stiffness matrix of the structure (apart the terms corresponding to 

the rotations of the coplanar nodes and the terms corresponding to degrees of freedom in auxiliary 

directions) and the load vector (except the moments of the coplanar nodes and the terms 

corresponding to degrees of freedom in auxiliary directions) are all referred to the global coordinate 

system. 

 

4.3 NATURAL COORDINATE SYSTEM ( )1 2 3, ,is s s s  

The finite element shape functions are defined in the natural coordinate system (Figure 6b). The term 

natural is adopted since is  axis ranges between -1 and +1, independently of the finite element 

geometry. The s1  and s2  axis are in the element middle surface, while s3  axis is orthogonal to this 

surface. 
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4.4 NODAL COORDINATE SYSTEM ( )1 2 3, ,in n n n  

With its origin in the element middle surface, this referential is defined for each k node of the 

element, performing the following procedures (see Figure 6c). 

 

Evaluation of the unit vector ɵn3  

 

In the first step, vectors tangent to s1  (n1
' ) and s2  (n2

' ) at k node are determined: 
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The cross product of vector '1,kn  by vector n k2,
'  gives the vector orthogonal to the element middle 

surface at node k, n k3, , and after the calculation of its Euclidean norm the unit vector ɵ ,n k3  is obtained, 

 

( )' '
3, 1, 2,' '

1, 2,

1
ˆ k k k

k k

n n n
n n

= ×
×

 (3) 

 

If more than one element has this k node, the final ɵ ,n k3  is the vectorial addition of the ( )
3,ˆ e

kn  of the 

elements adjacent to k node. 

 

If n k3,  is parallel to 3x  global axis, the nodal coordinate system is parallel to the global coordinate 

system ( 1,kn = 1̂i , 2,kn = 2̂i  and n k3, = 3̂i , where 1̂i , 2̂i  and 3̂i  are the unit vectors of 1x , 2x  and 3x , 

respectively). If n k3,  has opposite direction to 3x , 1,kn = 1̂i , 2,kn =- 2̂i  and n k3, =- 3̂i . 

 

If n k3,  is not in these special conditions, 1,kn  is assumed to be orthogonal to the plane defined by 3̂i  

and ɵ ,n k3 , i.e. 1,kn  is parallel to ( 1x , 2x ) plane, 
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( )1, 3 3,

3 3,

22, 1 13, 2 3

1 ˆˆ ˆ
ˆ ˆ

ˆ ˆ ˆ0

k k

k

k k

n i n
i n

n i n i i

= ×
×

= − + −

 (4) 

 

Finally, the ɵ ,n k2  results from the cross product of vector ɵ ,n k3  by vector ɵ ,n k1  

 

( )ɵ ɵ ɵ, , ,n n nk k k2 3 1= ×  (5) 

 

The rotations of a coplanar node, 1
nθ  and 2

nθ , are defined in 1n  and 2n  directions. The 
3
n  vector 

defines the direction orthogonal to the element middle surface at this node. In the present 

formulation, the 
3
n  is always orthogonal to the element middle surface, but in the majority part of 

the formulations this vector is not necessary orthogonal to the element middle surface, since it is 

obtained from the coordinates of the corresponding nodes at bottom and top element surfaces, such is 

illustrated in Figure 8 (Figueiras 1983, Póvoas 1991). These formulations, however, cannot analyze 

structures with kink edges (see Figure 2) 
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Figure 8 - The 3n̂  vector at k node is defined from the coordinates of the corresponding nodes at top 

and bottom element surfaces. 
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4.5 TANGENTIAL COORDINATE SYSTEM ( )1 2 3, ,it t t t  

This referential is defined in each finite element integration point. The strain, stress and resultant 

stress components are determined in this coordinate system. The t1  and t2  axes form a plane that is 

tangent to the surface of s3 =constant, at the integration point. The procedures for evaluating it  axes 

are equal to the one adopted for in , but the it  axis are evaluated in the integration points, while in  

are defined in the element nodal points. Figure 6 shows a graphical representation of the tangential 

coordinate system. 

 

4.6 AUXILIARY COORDINATE SYSTEM ( )1 2 3, ,ia a a a  

To prescribe degrees of freedom in directions do not coinciding with global and nodal coordinate 

systems, auxiliary coordinate systems having axis coincident with the direction of these prescribed 

displacements, should be used (see Figure 6e). 
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5 GEOMETRY DEFINITION 

The global coordinates of a generic point of a shell element is obtained from following expression: 

 

1 1 31

2 2 3 32
1 1

3 3 33

2

n n
k

k k
k k

k k

x x n
h

x N x N s n

x x n= =

     
     = +     
          

∑ ∑  (6) 

 

where Nk is the shape function of node k of the element of n nodes, kx  is the vector of the global 

coordinates of node k, 3in  are the components of the ɵ ,n k3  in the global coordinate system and hk is the 

element thickness at k node (see Figure 9). 
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Figure 9 - Thickness at k node. 
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or, 

 

,11

,22

,33

x

x

x

x

x N

x N X

x N

N X

  
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 (8) 

 

where N x ,1 , N x ,2  and N x ,3  have the dimension of (1,6n) and ( )X e  has the dimension of (6n,1), 

where n is the number of element nodes. 
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6 DISPLACEMENT FIELD 

It was already referred that the number of the degrees of freedom of a given node is dependent on the 

type of node. In case of a coplanar node, the degrees of freedom are five, while a kink node has six 

degrees of freedom. In both types of nodes the first three degrees of freedom are displacements in the 

global coordinate system (ui  c/ i=1,2,3). In coplanar node, the fourth and the fifth degrees of 

freedom are rotations of the orthogonal to the element middle surface in turn of the 
1
n  and 

2
n  axes 

of the nodal coordinate system, 1
nθ  and 2

nθ , respectively. In kink node, the fourth to sixth degrees of 

freedom are rotations in turn of the global coordinate system (1
gθ , 2

gθ , 3
gθ ). 

 

Figure 10 represents the displacements occurred in a given nodal point. Starting for assuming that 

this is a coplanar node, it has five degrees of freedom. 
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Figure 9 - Displacements of a given nodal point. 

 

 

The displacements of a point of the interior of the element are the result of the displacements ocurred 

in the points at the element middle surface, plus the displacements due to the rotations. 

 

The contribution of the displacements of the nodal points at the element middle surface is evaluated 

from the following expression: 
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∑  (9) 

 

where [ ]u u uk k k

T

1 2 3, , ,  are the displacement components in global coordinate system of k node at 

element middle surface. 

 

The rotations contribute for the displacement field according to the schematic representation of 

Figure 11. 
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Figure 11 - Contribution of the rotations for the displacement field. 

 

 

Assuming that a rotation occurs in turn of n k2,  axis (Figure 11a), i.e., in the plane n nk k1 3, , , the 

displacement of a point P at a level s3  is obtained from the following equations (the rotations are 

infinitesimal): 

 

1, 3 2,v
2

nk
k k

h
s θ=  (10) 
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3 2, 1,

ˆv v .
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2

n k k k
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k k
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h
s nθ

=

=
 (11) 

 

In the same way, due to a rotation in turn of n k1,  axis (Figure 11b), i.e., in the plane n nk k2 3, , , the 

displacement of a point P at a level s3  is obtained from the following equations: 
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k k

h
s θ= −  (12) 
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2

n k k k
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h
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=

= −
 (13) 

 

Adding the contribution from the rotations in turn of n k2,  and n k1,  axis results (adding (11) and (13)), 
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(14) 

 

where Ug
k  is the displacement vector of k node and ɵ ,n k1  and ɵ ,n k2  are the unit vectors of n1  and n2  

axis of the nodal coordinate system, at k node. Therefore, the contribution of the rotations of all 

nodes of the element for the displacements in any point of the shell element is obtained from the 

following expression: 
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∑  (15) 

 

The displacement components of a generic k node in the global coordinate system can be transferred 

to the nodal coordinate, 

 

n ggn
k kkU T U=  (16a) 
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where 

 

1

2

3

n

n
k

k

u

U u
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 
 =  
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 (16b) 

 

are the displacement components in the nodal coordinate system, 
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are the displacement components in the global coordinate system, and 

 

1 11 12 13

2 21 22 23

3 31 32 33

ˆ

ˆ

ˆ

T

gn T
k

T

kk

n n n n

T n n n n

n n n n

   
   = =   
     

 (16d) 

 

is the transformation matrix that converts displacements from global coordinate system to nodal 

coordinate system. The lines of gn
kT  are formed by the unit vectors ɵn1 , ɵn2  and ɵn3  of the n1 , n2  and 

n3  nodal coordinate system. 

 

Therefore, the rotations in the global coordinate system can be transformed to the nodal coordinate 

system, 
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θ
θ

 
     =     

    
 

 
   =    
   

 

 (17) 

 

Introducing (17) into (15) results: 
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1 1,
1,

2 3 2, 1, 2,
1 2,

3 3,

ˆ
ˆ ˆ

ˆ2

g
kTn

k gk
k k k kT

k k g
k

u
nh

u N s n n
n

u

θ
θ
θ=

  
      = −      
       

∑  (18) 

 

Therefore, for coplanar nodes the contribution of the rotations for the displacement field is obtained 

from (15), which can be rewritten in the following format: 

 

1 21 11 1,

2 3 22 12 2,
1

3 23 13 3,

11 12 13 1,

3 21 22 23 2,
1

31 32 33 3,

0

0
2

0

2

n
kn

nk
k k

k n
kk

n
kn

nk
k k

k n
kk

u n n
h

u N s n n

u n n

P P P
h

N s P P P

P P P

θ
θ
θ

θ
θ
θ

=

=

 −   
    = −     
    −     

  
  =   
     

∑

∑

 (19) 

 

where 3,
n

kθ  is the drill rotation, a degree of freedom not considered, and 

 

11 21 12 11 13

21 22 22 12 23

31 23 32 13 33

0

0

0

P n P n P

P n P n P

P n P n P

= − = =
= − = =
= − = =

 (20) 

 

In the case of a kink node, multiplying the two matrices of (18) that include the unit vectors of the 

nodal coordinate system yields, 

 

1 21 11 1,
11 12 13

2 3 22 12 2,
1 21 22 23

3 23 13 3,

11 12 13 1,

3 21 22 23 2,
1

31 32 33 3,

2

2

g
kn

gk
k k

k gk
kk

g
kn

gk
k k

k g
kk

u n n
n n nh

u N s n n
n n n

u n n

P P P
h

N s P P P

P P P

θ
θ
θ

θ
θ
θ

=

=

 −   
      = −       
      −     

  
  =   
     

∑

∑

 (21) 

 

where 
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11 12 21 12 11 22 13 21 13 11 23

21 22 11 12 21 22 23 22 13 12 23

31 23 11 13 21 32 23 12 13 22 33 23 13 13 23

0

0

P P n n n n P n n n n

P n n n n P P n n n n

P n n n n P n n n n P n n n n

= = − + = − +
= − + = = − +
= − + = − + = − +

 (22) 

 

Adding the contribution of the displacements of the nodal points at the element middle surface 

(Equation (9)) to the contribution of the rotations (Equations (19) and (21)) results, 

 

1 1 11 12 13 1

2 2 3 21 22 23 2
1 1

3 3 31 32 33 3

2

g g

n n
k

k k
k k

k k k

u u P P P
h

u N u N s P P P

u u P P P

θ
θ
θ= =

       
       = +       
              

∑ ∑  (23) 

 

where 

 

1 1

2 2

3 3

n

n

n

k k

θ θ
θ θ
θ θ

  
   =   
     

 (24) 

 

if k is a coplanar node, and 

 

1 1

2 2

3 3

g

g

g

k k

θ θ
θ θ
θ θ

  
   =   
     

 (25) 

 
if k is a kink node. Expanding (23), 

 

1 1 1
1 1 3 11,1 1 3 12,1 1 3 13,1 3 11, 3 12, 3 13,

1

1 1 1
2 1 1 3 21,1 1 3 22,1 1 3 23,1 3 21, 3 22, 3 23,

3
1

1 1 3 31,1

0 0 ... 0 0
2 2 2 2 2 2

0 0 ... 0 0
2 2 2 2 2 2

0 0
2

n n n
n n n n n n ng

n n n
n n n n n n n

h h hh h h
N N s P N s P N s P N N s P N s P N s P

u
h h hh h h

u N N s P N s P N s P N N s P N s P N s P

u
h

N N s P

 
  = 
  

1,1

2,1

3,1

1,1

2,1

3,1

1,
1 1

1 3 32,1 1 3 33,1 3 31, 3 32, 3 33, 2,

3,

1,

2,

3,

...

... 0 0
2 2 2 2 2

n
n n n

n n n n n n n n

n

n

n

n

u

u

u

u
h h hh h

N s P N s P N N s P N s P N s P u

u

θ
θ
θ

θ
θ
θ

 
 
 
 
 
 

   
   
   
   
   
   
   
    

 
 
 
 
 
  

 

(26) 
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or, in a more compact form, 

 

,11

,22

3 ,3

g
u

u

u

u

Nu

u N U

u N

N U

  
   =   
      

=

 (27) 

 

where N u,1, N u,2  and N u,3  have the dimension (1,6n) and U  is the vector with the element nodal 

displacements, of a dimension (6n,1). 
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7 STRAIN COMPONENTS 

The strains and the corresponding stresses are defined in the tangential coordinate system. Since shell 

is a thin laminar structure, the stress orthogonal to the shell middle surface is assumed null (σ t3
0= ). 

Taking the Von Karmán hypotheses (Fung 1965), the Cauchy strain vector in the tangential 

coordinate system is defined from the following expression: 

 

1

1

2
1

2
2

1 2
12

2 1
23

32
13

3 2

31

3 1

t

t

w

t

w

t

w w

t t

ww

t t

ww

t t

∂
∂
∂ε
∂

ε
∂ ∂

ε γ
∂ ∂

γ
∂∂

γ ∂ ∂
∂∂

∂ ∂

 
 
 
 

   
   
   

+ = =  
   
   
  +  

 
 

+ 
 

 (28) 

 

where 1w , 2w  and 3w  are the displacements in 1t , 2t  and 3t  axis. These strain components can be 

extracted from the matrix: 

 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

t

w w w

t t t

w w w

t t t

w w w

t t t

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂ε
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 
 
 
 

=  
 
 
 
 

 (29) 

 

The matrix tε  can be obtained from gε , which includes the derivatives of the displacements in the 

global coordinate system (1u , 2u , 3u ) in relation to the axis of this system, 
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1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

g

u u u

x x x

u u u

x x x

u u u

x x x

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂ε
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 
 
 
 

=  
 
 
 
 

 (30) 

 

using for this purpose the following expression: 

 

Tgt gtt gT Tε ε  =    (31) 

 

where gtT  is the transformation matrix from global to tangential coordinate systems with the rows 

being composed by the unit vectors of the axes of the tangential coordinate system, 

 

1 11 12 13

2 21 22 23

3 31 32 33

ˆ

ˆ

ˆ

gt

t t t t

T t t t t

t t t t

   
   = =   
     

 (32) 

 

The derivatives of gε  cannot be directly evaluated, since shape functions, depending on the natural 

coordinates (is ), are used to define the displacement field (see expression (23)). To overcome this 

obstacle the following expression is used: 

 

1g s Jε ε −=  (33) 

 

where sε  is the matrix with the derivatives of the displacements in the global coordinate system (1u , 

2u , 3u ) in relation to the axis of the natural system si ,  
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1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

s

u u u

s s s

u u u

s s s

u u u

s s s

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂ε
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 
 
 
 

=  
 
 
 
 

 (34) 

 

and J  is the Jacobian matrix, 

 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

x x x

s s s

x x x
J

s s s

x x x

s s s

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 
 
 
 

=  
 
 
 
 

 (35) 

 

To evaluate the Jacobian matrix a new format will be given to expression (7), 

 

 

1

1 1,1 1, 1 31,1 31, 1

2 2,1 2, 3 32,1 32,

3 3,1 3, 33,1 33,

0
2

0
2

n n

n n

n n n n n

h
x x x N n n N

x x x s n n

x x x N n n h N

 
         
         = +          
                   
 

⋯ ⋯

⋯ ⋮ ⋯ ⋱ ⋮

⋯ ⋯

 (36) 

 

or, in a more condensed format, 

 

1

2 3 3

3

T T
V n V

x

x X N s L H N

x

 
  = + 
  

 (37) 

 

where 
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1,1 1,

2,1 2,

3,1 3,

n
T

n

n

x x

X x x

x x

 
 =  
  

⋯

⋯

⋯

 (38) 

 

is the matrix (3×n) with the global coordinates of the nodes of the finite element, 

 

1

V

n

N

N

N

 
 =  
  

⋮  (39) 

 

is the vector of the shape functions of the nodes of the element, with a dimension of (n×1), 

 

31,1 31,

3 32,1 32,

33,1 33,

n
T
n n

n

n n

L n n

n n

 
 =  
  

⋯

⋯

⋯

 (40) 

 

is a (3×n) matrix with the ith column being composed by the components of the n3 axis of node ith, 

and 

 

1 0
2

0
2
n

h

H

h

 
 
 

=  
 
 
 

⋱  (41) 

 

is a (n×n) diagonal matrix with the half of the thickness of node ith ( 2ih ) at the Hii coefficient. To 

obtain the Jacobian matrix, the (37) expression is differentiated in respect to si natural coordinate axis 

resulting, 

 

1 1 1 1
1,1 1, 3 31,1 3 31,

1 1 1 1 1

 = +  +  +  +
2 2

n n n
n n

N N hx N N h
x x s n s n

s s s s s

∂ ∂∂ ∂ ∂+
∂ ∂ ∂ ∂ ∂

⋯ ⋯  (42) 
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1 1 1 1
1,1 1, 3 31,1 3 31,

2 2 2 2 2

1 1
1 31,1 31,

3

 = 
2 2

 =                                      +       +      
2 2

n n n
n n

n
n n

N N hx N N h
x x s n s n

s s s s s

hx h
N n N n

s

∂ ∂∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂
∂ +
∂

⋯ ⋯

⋯

 

 

2 1 1 1
2,1 2, 3 32,1 3 32,

1 1 1 1 1

2 1 1 1
2,1 2, 3 32,1 3 32,

2 2 2 2 2

2 1
1 32,1

3

 = 
2 2

 = 
2 2

 =                                      +       
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x x s n s n
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s s s s s
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∂ ∂∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂
∂
∂

⋯ ⋯

⋯ ⋯

32,+      
2
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n n
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N n+⋯

 

 

3 1 1 1
3,1 3, 3 33,1 3 33,
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x N N hN N h
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s

∂ ∂ ∂∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂
∂
∂

⋯ ⋯

⋯ ⋯

33,+       
2
n

n n

h
N n+⋯

 

 

If these terms are organized according to (35) expression yields, 

 

1 1 1
1 1

1 2 3
1 21,1 1,

2 2 2
2,1 2,

1 2 3
3,1 3,

3 3 3
1 2

1 2 3
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∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 
∂ ∂  
   ∂ ∂ 
    = = +    
     ∂ ∂    
 ∂ ∂   

 

 
 
 
 

⋯

⋯ ⋮ ⋮ ⋮

⋯

⋯

⋯

⋯

1 1 1 1 1
3 3 1

1 2

3 3
1 2

2 2 2

2 2 2
n n n n n

n

N h N h h
s s N

s s

N h N h h
s s N

s s

∂ ∂ 
 ∂ ∂
 
 
  ∂ ∂ 
 ∂ ∂ 

⋮ ⋮ ⋮

 (43) 

 

The Jacobian matrix can be decomposed into the following two submatrices, 
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1 1 1

1 2 3

2 2 2
1 2

1 2 3

3 3 3

1 2 3

x x x

s s s

x x x
J J J

s s s

x x x

s s s

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 
 
   
   = =   
     
 
 

 (44) 

 

where 

 

1 1

1 2

2 2
1

1 2

3 3

1 2

x x

s s

x x
J

s s

x x

s s

 ∂ ∂
 ∂ ∂ 
 ∂ ∂=  ∂ ∂ 
 ∂ ∂
 

∂ ∂ 

 (45a) 

 

and 

 

1

3

2
2

3

3

3

x

s

x
J

s

x

s

 ∂
 ∂ 
 ∂=  ∂ 
 ∂
 

∂ 

 (45a) 

 

From (42) expression, these Jacobian submatrices can assume the following format, 

 

31 3
T TV V

n

N N
J X s L H

s s

∂ ∂= +
∂ ∂

 (46) 

 

where s  represents the s1 and s2 natural axis, and  

 

32
T
n VJ L H N=  (47) 

 

Therefore, each coefficient of the Jacobian matrix can be obtained from the following two equations, 
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, 3 3 ,
1 2

n
i k k k

ij i k i k
kj j j

x N N h
J x s n

s s s=

 ∂ ∂ ∂= = +  ∂ ∂ ∂ 
∑    for 1 ≤  i ≤  3  ∧  1 ≤  j ≤  2 (48a) 

3 3 ,
13 2

n
i k

i k i k
k

x h
J N n

s =

∂= =
∂ ∑         for 1 ≤  i ≤  3 (48b) 

 

To evaluate the terms of 
sε  (expression (34)) the i ju s∂ ∂

 should be evaluated. Applying chain rule, 
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s x s x s x s

xu u x u x u

s x s x s x s

xu u x u x u

s x s x s x s

∂∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 

3 3 3 3 31 2

1 1 1 2 1 3 1

3 3 3 3 31 2

2 1 2 2 2 3 2

3 3 3 3 31 2

3 1 3 2 3 3 3

 =  +  + 

 =  +  + 

 =  +  + 

u u u u xx x

s x s x s x s

u u u u xx x

s x s x s x s

u u u u xx x

s x s x s x s

∂ ∂ ∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

 

(49) 

 

or, in a matrix format, 
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1 1 1 1 1 1 1 1 1

1 2 3 1 2 3 1 2 3

2 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 2 3

3 3 3 3 3 3 3 3 3

1 2 3 1 2 3 1 2 3

u u u u u u x x x

s s s x x x s s s

u u u u u u x x x

s s s x x x s s s

u u u u u u x x x

s s s x x x s s s

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂=   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
   

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   


 
 
 
 
 
 
 
 

 (50) 

 

which in a more compact format has the following representation: 

 

u u
J

s x

∂ ∂=
∂ ∂

 (51) 

or  

 

1g s Jε ε −=  (52) 

 

Introducing (52) in to (31) results, 

 

1
Tgt gtt sT J Tε ε −  =    (53) 

 

The sε  can be obtained from the following expression, 

 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

s

u M

u u u

s s s

u u u

s s s

u u u

s s s

D U

ε

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂=  ∂ ∂ ∂ 
 ∂ ∂ ∂
 

∂ ∂ ∂ 

=

 (54) 

 

where uD  is a matrix of dimension (3×18n), 
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,1 ,1 ,1

1 2 3

,2 ,2 ,2

1 2 3

,3 ,3 ,3

1 2 3

u u u

u u u
u

u u u

N N N

s s s

N N N
D

s s s

N N N

s s s

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  
∂ ∂ ∂ 

 ∂ ∂ ∂
 

∂ ∂ ∂  

 (55) 

 

with each ,u i jN s∂ ∂  having a dimension of (1×6n), and  

 

0 0

0 0

0 0
M

U

U U

U

 
 =  
  

 (56) 

 

is a matrix of (18n×3) dimension, where U  is a vector of (6n×1) of the degrees of freedom of the 

nodes of the element. Inserting (54) into (53) results, 

 

1
Tgt gtt

u MT D U J Tε −  =    (57) 

 

Evaluating ,u i jN s∂ ∂ of uD  yields, 
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1,1 1 1 1 1 1 1
3 11,1 3 12,1 3 13,1

11 1 1 1

3 11, 3 12, 3 13,
1 1 1 1

,1 1 1 1
3

2 2 2

N
 =  0 0         

2 2 s 2

            0 0       
2 2 2

 =  0 0   
2

u

n n n n n n n
n n n

u

N N N h N h h
s P s P s P

s s s s

N N h N h N h
s P s P s P

s s s s

N N N h
s

s s s

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ 

∂ ∂ ∂
∂ ∂ ∂

⋯

⋯

1 1 1 1
11,1 3 12,1 3 13,1

2 2

3 11, 3 12, 3 13,
2 2 2 2

,1 1 1 1
1 11,1 1 12,1 1 1

3

       
2 2

            0 0        
2 2 2

 = 0    0 0                         
2 2 2

n n n n n n n
n n n

u

N h N h
P s P s P

s s

N N h N h N h
s P s P s P

s s s s

N h h h
N P N P N P

s

∂ ∂
∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ 

∂ 
∂ 

⋯

⋯

3,1

11, 12, 13,

,2 1 1 1 1 1 1 1
3 21,1 3 22,1 3 23,1

1 1 1 1 1

1 1

 

             0     0 0                           
2 2 2

 = 0  0      
2 2 2

             0  0 

n n n
n n n n n n

u

n n n

h h h
N P N P N P

N N N h N h N h
s P s P s P

s s s s s

N N h

s s





∂  ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∂ ∂
∂ ∂

⋯

⋯

⋯

⋯ 3 21, 3 22, 3 23,
1 1

,2 1 1 1 1 1 1 1
3 21,1 3 22,1 3 23,1

2 2 2 2 2

3 21, 3 22, 3 2
2 2 2 2

    
2 2 2

 = 0  0      
2 2 2

             0  0     
2 2 2

n n n n
n n n

u

n n n n n n n
n n

N h N h
s P s P s P

s s

N N N h N h N h
s P s P s P

s s s s s

N N h N h N h
s P s P s P

s s s s

∂ ∂
∂ ∂ 

∂  ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⋯

⋯ 3,

,2 1 1 1
1 21,1 1 22,1 1 23,1

3

21, 22, 23,

,3 1 1

1 1 1

 = 0   0    0                         
2 2 2

              0   0    0                        
2 2 2

 = 0 0  

n

u

n n n
n n n n n n

u

N h h h
N P N P N P

s

h h h
N P N P N P

N N N h

s s s





∂ 
∂ 





∂  ∂ ∂
∂ ∂ ∂

⋯

⋯

1 1 1 1 1
3 31,1 3 32,1 3 33,1

1 1

3 31, 3 32, 3 33,
1 1 1 1

,3 1 1 1 1 1 1 1
3 31,1 3 32,1

2 2 2 2 2

      
2 2 2

              0 0     
2 2 2

 = 0 0        
2 2 2

n n n n n n n
n n n

u

N h N h
s P s P s P

s s

N N h N h N h
s P s P s P

s s s s

N N N h N h N h
s P s P

s s s s s

∂ ∂
∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ 

∂  ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

⋯

⋯

3 33,1

3 31, 3 32, 3 33,
2 2 2 2

,3 1 1 1
1 31,1 1 32,1 1 33,1

3

              0 0     
2 2 2

 = 0 0    0                            
2 2 2

              0 0   0         

n n n n n n n
n n n

u

s P

N N h N h N h
s P s P s P

s s s s

N h h h
N P N P N P

s

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ 

∂ 
∂ 

⋯

⋯

⋯

⋯ 31, 32, 33,                          
2 2 2
n n n

n n n n n n

h h h
N P N P N P





 

(58) 
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Each ,u i jN s∂ ∂  coefficient can be obtained from the following three equations, 

 

,
, 1 3 1, 3 2, 3 3,

1 1 1 1 1

 =  =   0 0   
2 2 2

u i k k k k k k k
u i i k i k i k

N N N h N h N h
D s P s P s P

s s s s s

∂  ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 
⋯ ⋯  

for 1 ≤  i ≤  3  ∧   j = 1 

(59a) 

 

,
, 2 3 1, 3 2, 3 3,

2 2 2 2 2

 =  =  0  0   
2 2 2

u i k k k k k k k
u i i k i k i k

N N N h N h N h
D s P s P s P

s s s s s

∂  ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 
⋯ ⋯  

for 1 ≤  i ≤  3  ∧   j = 2 

(59b) 

 

,
, 3 1, 2, 3,

3

 =  =  0 0 0      
2 2 2

u i k k k
u i k i k k i k k i k

N h h h
D N P N P N P

s

∂  
 ∂  
⋯ ⋯  

for 1 ≤  i ≤  3  ∧   j = 3 

(59c) 

 

Inserting (59) into (57) and executing the matrix operations, the tε  is calculated, from which the 

Cauchy strain vector in the tangential coordinate system, indicated in (28), can be obtained (see 

Annex 1), 

 

1

2

12

23

13

t

t

mb
t t

s

B

U B U

B

ε
ε

ε γ
γ
γ

 
 

  
  = = − − =  
   

  

 (60) 

 

where t
mbB  is the in-plane strain matrix of a dimension (3×6n), and t

sB  is the out-of-plane shear strain 

matrix of a dimension of (2×6n). Both submatrices are defined in the tangential coordinate system. 
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8 STRESS COMPONENTS 

The stresses are calculated in the tangential coordinate system of each integration point. For shell 

element, null value is assumed for the stress orthogonal to its middle surface (σ t3
0= ). The stress 

vector, σ t , in correspondence to the strain vector ε t  has the following components, 

 

{ }1 2 12 23 13, , , ,
Tt t t t t tσ σ σ τ τ τ=  (61) 

 

the first three ones are in-plane stress components (in plane t t1 2) that originate the membrane forces 

and the bending moments, 

 

{ }1 2 12, ,
Tt t t t

mbσ σ σ τ=  (62a) 

and the last two ones are the out-of-plane shear components (orthogonal to t t1 2  plane) that originate 

the out-of-plane shear forces, 

 

{ }23 13,
Tt t t

sσ τ τ=  (62b) 

 

Therefore, the stress vector (61) can be transformed in the following format: 

 

{ },
Tt t t

mb sσ σ σ=  (62c) 

 

The stress components in a generic integration point are represented in Figure 12. 
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π

t I
1

I 
t I
2

t I
3

σ t
I

1

 

τ t t
I

1 2

τ t t
I

1 2

Surface of the integration 
point in analysis 

Generic integration point 

Middle surface 

τ τt t
I

t t
I

2 3 3 2
=

τ τt t
I

t t
I

1 3 3 1
=

τ t t
I

2 3τ t t
I

1 3

σ t
I

2

 
Figure 12 - Stresses in the tangential coordinate system. 

 

 

In this figure 1,It , 2,It , 3,It  are the axes of the tangential coordinate system of the integration point 

(IP) I. The procedure to define this referential was exposed in section 4.3. The 1,It  and 2,It  axes 

define a plane tangent to surface π  (of constant s3 ) at the IP I, while 3,It  is orthogonal to this plane at 

this IP. Hence, 

 

1,
t

Iσ  is the stress normal to a plane that is orthogonal to 1,It  and passes through IP I; 

2,
t

Iσ  is the stress normal to a plane that is orthogonal to 2,It  and passes through IP I; 

12,
t

Iτ  is the in-plane shear stress, in the 1,It 2,It  plane; 

23,
t

Iτ  is the shear stress in the 3,It  direction, in a plane that is orthogonal to 2,It  and passes through IP 

I; 

13,
t

Iτ  is the shear stress in the 3,It  direction, in a plane that is orthogonal to 1,It  and passes through IP 

I; 

 
The stress components in the global coordinate system can be obtained from the the stress 

components in the tangential coordinate system, performing the following matrix operation, 

 

Tgt gtg tT Tσ σ =    (63) 

 

where, 

 



 
University of Minho 
Department of Civil Engineering www.civil.uminho.pt 

 

Joaquim Barros 36/ 54 
 

1 12 13

12 2 23

13 23 0

t t t

t t t t

t t

σ τ τ
σ τ σ τ

τ τ

 
 =  
 
 

 (64) 

 

is the stress tensor in the tangential coordinate system, 

 

1 12 13

12 2 23

13 23 3

g g g

g g g g

g g g

σ τ τ
σ τ σ τ

τ τ σ

 
 =  
 
 

 (65) 

 

is the stress tensor in the global coordinate system, and gtT  is a matrix that converts entities from 

global to tangential coordinate system, which was defined in expression (32). The components of the 

stress vector in global coordinate system, gσ , can be obtained from (65), resulting, 

 

{ }1 2 3 12 23 13, , , , ,
Tg g g g g g gσ σ σ σ τ τ τ=  (66) 
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9 CONSTITUTIVE EQUATIONS FOR LINEAR-ELASTIC MATERIALS 

The stress vector, tσ , of equation (61) can be obtained from the strain vector, tε , (equation (28)) by 

the following constitutive equation, 

 

t tDσ ε=  (67a) 

 

or,  

 

0

0

t t
mbmb mb

t t
ss s

D

D

σ ε
σ ε
    

=    
    

 (67b) 

 

where, for materials with linear elastic behaviour, 

 

2

1 0

1 0
1

1
0 0

2

mb

E
D

υ
υ

υ
υ

 
 
 

=  −  −
 
 

 (68a) 

 

is the in-plane membrane/bending constitutive matrix and, 

 

1 0

0 1sD F G
 

=  
 

 (68b) 

 

is the out-of-plane shear constitutive matrix. In (68) E, υ  and G are the Young's modulus, the 

Poisson coefficient and the shear modulus of the concrete. In (69b) F=5/6 is a correction shear factor 

(Barros 1995). 

 

If uniform and differential temperature variation (uT∆  and dT∆ , respectively) induce strain 

components represented by the 
u

t
Tε ∆  and 

d

t
Tε ∆  vectors, respectively, the strain vector due to the 

element nodal displacement, t
mbε  in (67), should be replaced by 

u d

t t t
mb T Tε ε ε∆ ∆− − , resulting, 
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0

0
u d

t t tt
mb mb T Tmb

t t
ss s

D

D

ε ε εσ
σ ε

∆ ∆   − − 
=     
      

 (69) 
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10 STIFFNESS MATRIX FOR LINEAR-ELASTIC MATERIALS 

The stiffness matrix of a shell finite element is obtained applying the principle of virtual work, 

 

int

Tt t

V

W dVδ δ ε σ =  ∫  (70) 

 

Introducing (60) and (67) into (70) results, 

 

int

TT t t

V

W U B D B dV Uδ δ  =  ∫  (71) 

 

from which it can be extracted the element stiffness matrix, 

 

Tt t

V

K B D B dV =  ∫  (72) 

 

The lines and columns of K  corresponding to the sixth degree of freedom of coplanar nodes are 

composed by null terms. To avoid the occurrence of null pivot when solving the system of 

equilibrium equations of the structure, a non-null term is introduced in the 6 ,6i ik  of the ith coplanar 

node. If the system of equations is pre-treated in order to separate the free (subscript f) and the 

prescribed (subscript p) degrees of freedom, 

 

,, , ,

, , , ,

E fE ff E fp E f

E pf E pp E p EE p

QUK K

UK K Q R

   
 =  
 +       

 (73) 

 

The sixth degree of freedom of coplanar nodes should be declared as a prescribed degree of freedom 

in order to avoid null pivot, since, in this way, only the free degrees of freedom are part of the system 

equations to solve, 

 

, ,, ,,

,

E ff E fpE f E pE f

E f

K U Q K U

Q

= −

=
 (74) 
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11 LOAD VECTOR 

11.1 INTRODUCTION 

A shell structure can be submitted to the following load cases: 

• Point loads; 

• Gravity load; 

• Generalized forces per unit length; 

• Generalized forces per unit area; 

• Uniform temperature variation; 

• Differential temperature variation; 

• Prescribed displacements. 

 

For plates and plane shells the procedures to obtain the nodal forces equivalent to these load cases 

were described elsewhere (Barros 2000). In this chapter only the specificities for Ahmad shell 

structures are dealt with. 

 

11.2 POINT LOADS 

In the coplanar nodes, three force components in the global coordinate system and two moment 

components in the nodal coordinate system can actuate. In the kink nodes, three force components 

and three moment components can be applied, all of them, in the global coordinate system. 

 

11.3 GRAVITY LOAD 

Acceleration components in the global coordinate system can be applied to simulate the gravity load. 

Rotational accelerations are not so important in static analysis of Civil Engineering structures, as far 

as, they are not considered for the gravity load. 

 

11.4 GENERALIZED FORCES PER UNIT LENGTH 

Any edge of a finite element can be submitted to three forces and two moments distributed per unit 

length. These generalized forces are defined in the nodal-edge coordinate system, as it is represented 
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in Figure 13. The l1 axis is tangent to the edge at the node, and its direction is defined from the 

numeration order given to the nodes of the edge. The l2  axis is in the plane tangent to the middle 

surface of shell element at the node, and it is pointing to the interior of the element. For a generic 

edge coordinate, sp , of a loaded edge, the unit vectors of l1 ( 1l̂ ) and l2  ( 2l̂ ) are defined from the 

following expression 

 

1 1 1 2

1 2

2 1 2 2
1 2

1 2

3 1 3 2

1 2

ˆ ˆ
p

p

s

s

x s x s

l l

x s x s
l l

l l

x s x s

l l

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

 
 
 
 

  =     
 
 
  

 (75) 

 

where 1l  and 2l  are the norms of the vectors 1l  and 2l , respectively. The 3l̂  unit vector results 

from the cross product of vector 1l̂  by vector 2l̂  at the sp  coordinate, 

 

ɵ ɵ ɵ
, , ,l l ls s sp p p3 1 2= ×  (76) 

 

 

 

l 
k 1 

Middle suface 

of the shell element  

l 
i 3 

l 
i 2 

l 
i 

1 

l 
j 3 

l 
j 2 

l 
j 1 

l 
k 3 

l 
k 2 

k 

i 

j 

 

Figure 13 - Coordinate systems for the generalized forces per unit length of a shell finite element. 

 

 

Therefore, the procedure to determine the nodal-edge coordinate system is equal to the one of the 

tangential coordinate system, apart that the last one is evaluated in the element IP, while the former in 

determined in the edge IP. 
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The distributed generalized forces are transferred from the nodal-edge coordinate system, e

L
q , to the 

global coordinate system, g
L

q , using the following relationship, 

 

( ) ( )
pp p

Tg ge e

L Lss s
q T q =    (77) 

 

where 
p

ge
sT  is the transformation matriz from global to nodal-edge coordinate systems, at sp  edge 

coordinate. The format of 
p

ge
sT  is dependent of the nodal type. In case of kink node 

p

ge
sT  has the 

following format, 

 

( )

( )

1

2

3

1

2

ˆ 0

ˆ 0

ˆ 0

ˆ0

ˆ0

p

p

ge

s

s

l

l

T l

l

l

 
 
 
   =   
 
 
 
 

 (78) 

 

If coplanar node, after have been transferred to global coordinate system, the moment components of 

the generalized force vector should be transferred from the global coordinate system to the nodal 

coordinate system, 

 

( ) ( )
( )

1

1 1
2

2 2
3

ˆ

ˆ
p p

p
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gL s s
L s

m
m n

m
m n
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     =     
     

 

 (79) 

 

where ( )1 2
p

Tn n
L L s

m m    and ( )1 2 3
p

Tg g g
L L L s

m m m    are the vectors of the distributed moments in the 

nodal and global coordinate systems at sp  edge coordinate, and ɵn1 , ɵn2  are the unit vectors of n1  and 

n2  axes of the nodal coordinate system. The moment components in the nodal- edge coordinate 

system can be transformed to moment components in the global coordinate system from, 
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Introducing (80) into (79) yields, 
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     
 (81) 

 

From which the moment components in the nodal-edge coordinate system, 1
e
Lm , 2

e
Lm , is transferred to 

nodal coordinate system, 1
n
Lm , 2

n
Lm . 

 

11.5 GENERALIZED FORCES PER UNIT AREA 

The procedure for obtaining the nodal forces equivalent to generalized forces distributed in the finite 

element area is described elsewhere (Barros 2000) for the case of plane shells. For Ahmad shell 

elements special care should be taken with the coplanar nodes. In this type of nodes, the moment 

components should be transferred to the nodal coordinate system, 

 

( ) ( )
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( )
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1 2 1 2 1 2

1 1 1
1 2 ,

2 2 2, , ,
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ˆ
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p p p p p p
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A As s s s s s

m n m
r r
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     
=     

     
 (82) 

 

where ( )1 2
1 2 ,

   p p

Tr r
A A s s

m m  are the moment components in the user-defined coordinate system, ri, at the 

element coordinates 
1 2

,
p p

s s , 1̂r  and 2̂r  are the unit vectors of the r1 and r2 user-defined coordinate 

system, and 1
n
Am , 2

n
Am  are the moment components at the nodal coordinate system. 

 

In kink nodes, the generalized forces should be transferred from user-defined coordinate system to 

global coordinate system. 
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11.6 UNIFORM TEMPERATURE VARIATION 

Figure 14 represents a shell element submitted to uniform temperature variation of uT∆ . 
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Figure 14 - Deformation due to uniform temperature variation. 

 

 

Due to uT∆  this element undergoes a strain of ∆ u

t
Tε  in t1 and t2 axis of the tangential coordinate 

system (the one where the stresses due to temperature variation are calculated), resulting the 

following strain vector, 

 

[ ]1 1 0
u

Tt
T uTε α∆ = ∆  (83) 

 

where α  is the coefficient of thermal expansion. In this approach it is assumed that temperature 

uniform variation does not introduces in-plane shear deformations and out-of-plane shear 

deformations. The stresses due to uT∆  are obtained from the in-plane constitutive relationship, 

 

u u

t t
T mb TDσ ε∆ ∆=  (84) 

 

The internal forces due to uniform temperature variation are calculated from the following 

expression, 
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i j k s s s

Q B dV

B J W W W

σ

σ

∆∆

∆
= = =

=

=

∫

∑∑∑
 (85) 

 

11.7 DIFERENTIAL TEMPERATURE VARIATION 

Consider a shell submited to diferential temperature variation, of t
dT∆  and b

dT∆  at top and bottom 

surfaces of the shell ( t b
d dT T∆ = − ∆ ). Figure 15 represents a cross section of length 1dt  and 

orthogonal to t2 axis of the tangential coordinate system. 
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Figure 15 - Deformation due to diferential temperature variation (while this figure is not been 

updated, t should be replaced by T and x by t). 

 

 

When submitted to t
dT∆  and b

dT∆  the reference fiber rotates in turn of t2 axis, 

 

1
2
t ddt T

d
h

αθ ∆=  (86) 

 

where t b
d d dT T T∆ = ∆ + ∆  and h is the thickness of the shell cross section at the IP where the stresses 

due to differential temperature variation are evaluated. The displacement and the corresponding strain 

of any longitudinal fibre at s3 position are determined from the following expressions (see Figure 15), 
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3 1
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t t
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T
s dt

θ

α

=
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 (87) 

1
1

1

3 2

t
t

d

du

dt

T
s

ε

α

=

∆=
 (88) 

 

In the t2 direction (see Figure 15), 

 

2 3 1

3 1

2

2

t t

d

h
du s d

T
s dt

θ

α

= −

∆= −
 (89) 

2
2

2

3 2

t
t

d

du

dt

T
s

ε

α

=

∆= −
 (90) 

 

Since differential temperature variation do not induce in-plane shear strains and out-of-plane shear 

strains in isotropic materials, the strain vector due to differential temperature variation has the 

following format, 

 

[ ]3 1 1 0
2∆

∆= −
d

t d
T

T
sε α  (91) 

 

The internal forces due to differential temperature variation are calculated from the following 

expression, 
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 (92) 
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11.8 PRESCRIBED DISPLACEMENTS 

The prescribed displacement should be directly introduced in the prescribed displacement vector, 

,E fU , of the system of equilibrium equations (73). 
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12 RESULTANT STRESSES 

Like the stress components, the resultant forces (per unit length) are calculated in the tangential 

coordinate system. The resultant forces are determined in the IP of the middle surface of the shell 

element. The generalized resultant forces in a shell element comprise membrane, bending and out-of-

plane shear forces. 

 

The membrane forces result from the integration in the shell thickness of the in-plane stress 

components (σ t1
, σ t2

 and τ t t1 2
), 

 

{ } { }
1 2 1 2 1 2 1 2
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3

2
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, , , ,
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N N N dt
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σ σ σ σ

σ

−

−

= =

 =  

∫

∫

 (93a) 

 

where h is the thickness at the integration point in analysis. The bending moments are obtained 

integrating, in the shell thickness, the moments produced by the in-plane stress components (σ t1
, σ t2

 

and τ t t1 2
), 

 

{ } { }
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2

3 3
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, , , ,
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t dt

σ σ σ σ

σ

−

−

= =

 =  

∫

∫

 (93b) 

 

Finally, the out-of-plane shear forces are calculated from the integration in the shell thickness of the 

ou-of-plane shear stresses (τ t t2 3
 and τ t t1 3

), 
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 (93c) 

 

Thererofe, the vector of the resultant forces in a shell element is composed by the following 

components, 

 

{ } { }
1 2 1 2 2 1 1 2 2 3 1 3

, , , , , , , , ,
T Tt t t t

m b s t t t t t t t t t t t tN N N M M M V Vσ σ σ σ= =  (94) 

 

The resultant stress components are represented in Figure 12, for a generic IP. 
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Figure 11 - Resultant forces in the tangential coordinate system. 

 

 

Hence: 

 
N t

I

1
 is the membrane force normal to a plane that is orthogonal to t I

1 ; 

N t
I

2
 is the membrane force normal to a plane that is orthogonal to t I

2 ; 

N Nt t
I

t t
I

1 2 2 1
=  is the membrane shear force in the t t1 2  plane; 

M Mt
I

t t
I

2 1 3
=  is the bending moment in turn of t I

2  axis (bending the t t3 1 plane); 
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M Mt
I

t t
I

1 2 3
=  is the bending moment in turn of t I

1  axis (bending the t t3 2  plane); 

M t t
I

1 2
 is the twisting moment in the t t1 2  plane; 

Vt t
I

2 3
 is the resultant out-of-plane shear force in the 3

It  direction, in a plane that is orthogonal to t I
2 ; 

Vt t
I

1 3
 is the resultant out-of-plane shear force in the 3

It  direction, in a plane that is orthogonal to t1 ; 

 

To evaluate the membrane forces, the in-plane stress vector in (93a), t
mbσ , is replaced by t

mb mbD ε , 

according to the in-plane part of the constitutive relationship indicated in (69), resulting, 
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(95) 

 

Introducing the in-plane part of (60) into (95) yields, 
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(96) 

 

since (see Equation (91)) 

 

1

3

1

0
d

t
T dsε

+

∆
−

=∫  (97) 

 

The integral in (96) can be determined by numerical integration, 
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where  
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=

=
 (99) 

 

are the membrane forces due to uniform temperature variation. 

 

To evaluate the bending moments, the in-plane stress vector in (93a), t
mbσ , is replaced by t

mb mbD ε , 

according to the in-plane part of the constitutive relationship indicated in (69), resulting, 
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(100) 

 

since 
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and 
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In (100) 
d

t
TM ∆  is the bending moment vector due to differential temperature variation. 

 

To evaluate the out-of-plane shear forces, the out-of-plane shear stress vector in (93c), t
sσ , is 

replaced by t
s sD ε , according to the in-plane part of the constitutive relationship indicated in (70), 

resulting, 
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ANNEX I 

Knowing the nodal displacements of the structure, EU , from solving the system of equilibrium 

equations, the strain vector in a generic IP can be obtained from (60) where U  is the vector of the 

element nodal displacements in the global coordinate system. To obtain the strain vector 
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