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1 INTRODUCTION

A shell is a thin structure with in-plane dimensianuch larger than its thickness. There are shells
formed by plane components, but curvilinear compgiewmetries can also be found amongst the
most beautiful world-wide shell constructions. histtype of structures, in-plane strains and out-of

plane shear strains can simultaneously occur, indunembrane forces, bending moments and out-
of-plane shear forces. The in-plane forces andheding moments are the most significant.

However, near high stress concentration areaspliket and line loads, and at the supports, the out
of-plane shear forces can be appreciable. Thesedaran also be significant in shells of moderate

thickness.

Using the shell concept, very interesting solutioas be obtained, not only from the structural and
architectural point of view, but also from techriaad economic reasons. Large areas can be covered
with lightweight and elegant shell structures, hasg lower seismic loads and smaller loads
transferred to the supports and to the soil.

The major part of the shells is made by reinforcedcrete. Recent advances in fibre reinforced
concrete (FRC) indicate that fibres can replacé giathe conventional reinforcement (steel bars and
meshes). In the last years, composite materialalacebeing used to build shell roofs of large span

but the sensitivity of these materials to fire & & big obstacle for their use in this type ofictures.

The Ahmad shell finite element (Ahmad et al. 1973ults from the degeneration process of the
volume finite element. The degeneration processpsesented in Figure 1. The Ahmad shell finite

element has been extensively used in the lineamantinear analysis of reinforced concrete shell

structures (Figueiras 1983, Povoas 1991). This eherhas been proved to be appropriated not only
for very thin shells of composite materials (Figasi1983), but also for reinforced concrete shudlls

moderate thickness.

The present work has the main purpose of describiedinite element based formulation of Ahamd
shell implemented into the FEMIX computer packafyeefvedo et al. 2003) in order to simulate the
linear and elastic behaviour of curved shells. €chpable of analyzing shells or curved geometry
and where the out-of-plane shear cannot be nedleitte Ahmad shell formulation (Zienkiewicz and

Taylor1989, Onate 1995) is adopted. This formuratorewritten for a simple implementation of the
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layered concept that is currently used in the nwdteronlinear analysis of laminate concrete

structures (Barros 1995).

Top surface

S

Volume finite element % Bottom surface

Degenerated shell
finite element

Middle surface of
shell elemer

Figure 1 - Degeneration process of a volume figiéenent into an Ahmad shell finite element.
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2 BASICHYPOTHESIS

The Ahmad shell theory is supported on the follannypothesis (Ofate 1995):

» The deflection orthogonal to the shell middle scefaf any point is small when compared to
the shell thickness;

* The stress orthogonal to the shell middle surfaceegligible;

* Normal to the undeformed shell middle surface resmarthogonal to the deformed shell
middle surface.

Joaquim Barros 5/ 54
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3 TYPESOF NODAL POINTS

Some thin structures, like the one representedguar€ 2, are composed by components forming kink
edges. To analyze this type of structures, usiegstiell approach, two types of nodes should be
distinguished: coplanar and kink nodes. The lassare in the kink edges, while the coplanar nodes

are the remaining nodes.

The process to distinguish a kink from a coplanatenis based on the angle formed amongst the
vectors that, at this node, are orthogonal to tiekdia surface of the shell elements connecting to
this node. If this angle is less than one degtee,nbde is declared coplanar node, otherwise it is
kink node.

- Coplanar nodes
o Kink node:

Figure 2 - Structures that have coplanar and kodes.

Joaquim Barros 6/ 54
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(a) Thek node is common to the (b) The coplanar nodehas five (c) The kink ndek has six degrees
elements A, B, C and D. degrees of freedom. of freedom.

Figure 3 - Schematic representation of the proeaetiudistinguish coplanar and kink nodes.

Coplanar nodes have five degrees of freedom (sgerd-i4), three displaments in the global

coordinate syster(tél :ul)k,(d2 :uz)k and (53 :ug)k, and two rotations in the nodal coordinate
system,(54:491”)k and (d;:@;)k . The vectorsy andn, in Figure 4 define the plane containing ke
node and it is tangent to the element middle se(@s O) at this nodeThe procedures to define

the nodal coordinate system are given in the neotian.

Superficiesz=0

Figure 4 - Degrees of freedom and coordinate systemcoplanar nodes.

Kink nodes have six degrees of freedom, three atgphent components and three rotation
components, all of them in the global coordinatetey, (leul)k, (Jzzuz)k, (53:u3)k,

(54 = u4)k , (55 = u5)k and(56 = uﬁ)k, see Figure 5.
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X3
O, = U,
o = HX3
0,=6, X
55 = sz 52 =u,
o =u

Figure 5 - Degrees of freedom and coordinate syseikink nodes.
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4 COORDINATE SYSTEMS

4.1 INTRODUCTION

The four coordinate systems used in the Ahmad g$imété element formulation are represented in
Figure 6. Auxiliary coordinate systems (see Figi)e in general, are used to define support

conditions that prescribe some degrees of freedoirections distinct of the global and nodal

coordinate systems.

NN NN \\\\\\\‘
N
\

7

() (d)
Figure 6 - Coordinate systems for the Ahmad fielement formulation: (a) global, (b) natural, (c)
nodal and (d) tangential.
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Figure 7 — Auxiliary coordinate system.

4.2 GLOBAL COORDINATE SYSTEM X (X, X,, X,)

The global coordinate system is used to defineggmmetry of the structure (Figure 6a). The nodal
coordinates, the nodal displacements (except theions of coplanar nodes and the degrees of
freedom in auxiliary directions), the stiffness maof the structure (apart the terms corresponding

the rotations of the coplanar nodes and the temn®sponding to degrees of freedom in auxiliary
directions) and the load vector (except the momesftsthe coplanar nodes and the terms
corresponding to degrees of freedom in auxiliargaions) are all referred to the global coordinate

system.

4.3NATURAL COORDINATE SYSTEM 5 (s, S,, S))

The finite element shape functions are definedhértatural coordinate system (Figure 6b). The term
natural is adopted sincg axis ranges between -1 and +1, independently effithite element
geometry. Thes and s, axis are in the element middle surface, wigJeaxis is orthogonal to this

surface.

Joaquim Barros 10/ 54
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4.4NODAL COORDINATE SYSTEM n (n, n,, n,)

With its origin in the element middle surface, tmeferential is defined for eadk node of the

element, performing the following procedures (segiifé 6¢).

Evaluation of the unit vector A,

In the first step, vectors tangents$o(n,) ands, (n,) atk node are determined:

C (& d(sz
P (dsl B &), 1)
[ % o’xgjT
Dz (dsz &, 05 @

The cross product of vecto_fl’k by vectorn'Z’k gives the vector orthogonal to the element middle

surface at nodk, n,, , and after the calculation of its Euclidean noha tnit vectom,, is obtained,

R 1

KT -
HDLk XN,y

H (D‘l,k X Dlz,k ) 3)

If more than one element has thisiode, the finali,, is the vectorial addition of thé! of the

elements adjacent tonode.

If n,, is parallel tox, global axis, the nodal coordinate system is pairédi the global coordinate
system 6, =i, n,, =i, and n,, =i,, wherei,, I, and i, are the unit vectors ok, x, andx,,
respectively). Ifn,, has opposite direction t®,, n,, =i,, n,, =1, andn,, =-i,.

If n,, is not in these special conditions,, is assumed to be orthogonal to the plane defitye'f;j b

andn,, ,i.e.n, is parallel to &, x,) plane,

Joaquim Barros 11/ 54
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L 1 ~ A
Ay = (5 iy, )
I3 XNy (4)

=Ny I+ Ny | 2_O| z

Finally, then,, results from the cross product of vecfyy, by vectorn,

A :(ﬁa,k . ﬁ],k) (5)

The rotations of a coplanar nodg, and &;, are defined inn, and n, directions. Then, vector

defines the direction orthogonal to the element dieidsurface at this node. In the present

formulation, then, is always orthogonal to the element middle surfées in the majority part of

the formulations this vector is not necessary gtmal to the element middle surface, since it is
obtained from the coordinates of the correspondodes at bottom and top element surfaces, such is
illustrated in Figure 8 (Figueiras 1983, Pévoas1)99hese formulations, however, cannot analyze

structures with kink edges (see Figure 2)

Not necessarily orthogonal to the mid \\\ \\\ / n,
surface of shell element at nodte . \\\ -
\\\ V2
S k 9 n2
AN e
N nl \
V,

Figure 8 - Then, vector atk node is defined from the coordinates of the cpoading nodes at top

and bottom element surfaces.
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45 TANGENTIAL COORDINATE SYSTEM t; (t,, t,, t,)

This referential is defined in each finite elemeartegration point. The strain, stress and resultant

stress components are determined in this coordsystem. Thet, andt, axes form a plane that is
tangent to the surface & =constant, at the integration point. The procediwe®valuatingt, axes
are equal to the one adopted for but thet, axis are evaluated in the integration points, evhjl

are defined in the element nodal points. Figuré@s a graphical representation of the tangential

coordinate system.

4.6 AUXILIARY COORDINATE SYSTEM g (&, a,, a;)

To prescribe degrees of freedom in directions docainciding with global and nodal coordinate
systems, auxiliary coordinate systems having aaisoident with the direction of these prescribed
displacements, should be used (see Figure 6e).

Joaquim Barros 13/ 54
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S GEOMETRY DEFINITION

The global coordinates of a generic point of alsflement is obtained from following expression:

X N X N h Ny,

X, :z N, | X, +szESS N,
k=1 = k=1

XS XS K n33 Kk

(6)

whereNy is the shape function of nodteof the element of nodes, X, is the vector of the global

coordinates of nodie n, are the components of tig, in the global coordinate system amds the

element thickness &tnode (see Figure 9).

A t\\&

\{

Figure 9 - Thickness &tnode.

Giving another format to (6) results,

o
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M
Y
O

o,
Xl Nx,l
X2 = NX,Z l
x| N (8)
—X,3
:NX X
where N, ,, N, and N, , have the dimension of (fand X® has the dimension of i),

wheren is the number of element nodes.
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6 DISPLACEMENT FIELD

It was already referred that the number of the elegof freedom of a given node is dependent on the
type of node. In case of a coplanar node, the dsgoéfreedom are five, while a kink node has six
degrees of freedom. In both types of nodes thetfiree degrees of freedom are displacements in the

global coordinate systemu( ¢/ i=1,2,3). In coplanar node, the fourth and the fifth degref

freedom are rotations of the orthogonal to the el@middle surface in turn of the, and n, axes
of the nodal coordinate systerff; and g, , respectively. In kink node, the fourth to sixtegdees of

freedom are rotations in turn of the global cooatiénsystem&®, &;, 67).

Figure 10 represents the displacements occurredgiven nodal point. Starting for assuming that

this is a coplanar node, it has five degrees @ftfoen.

Figure 9 - Displacements of a given nodal point.

The displacements of a point of the interior of éhement are the result of the displacements odurre

in the points at the element middle surface, pghesdisplacements due to the rotations.

The contribution of the displacements of the nquahts at the element middle surface is evaluated

from the following expression:

Joaquim Barros 16/ 54
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U N Uy

u, |= z N, | Uy 9)
k=1 —_

U, 3k

.
where (U, U, U,| are the displacement components in global cooteliagstem ok node at

element middle surface.

The rotations contribute for the displacement fiakttording to the schematic representation of

Figure 11.

ey 4 b
7 pron e ; 1 R ?
B P o Vik erk’T_e_ P

() (b)

Figure 11 - Contribution of the rotations for theplacement field.

Assuming that a rotation occurs in turn of, axis (Figure 1l1a), i.e., in the plamgn,,, the

displacement of a poirR® at a levels, is obtained from the following equations (the tiotas are

infinitesimal):

Vik :E SN (20)

Joaquim Barros 17/ 54
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Vi ok = Vig Nk

. (11)
hk %sz Ny

n,k

In the same way, due to a rotation in turnmf axis (Figure 11b), i.e., in the plamg,n,,, the

displacement of a poifft at a levels, is obtained from the following equations:

V2k__3% 1k (12)
Vi, k= Vax N,
. (13)
__% S; 0], Ny,

Adding the contribution from the rotations in twhn,, andn,, axis results (adding (11) and (13)),

Ol
\_/k: Q i [ 2 k lk:||:62nkj| (14)

where U, is the displacement vector kfnode andf,, andf,, are the unit vectors af, and n,

axis of the nodal coordinate system,kamhode. Therefore, the contribution of the rotatiofsall
nodes of the element for the displacements in amgt pf the shell element is obtained from the

following expression:

u
ol loen Roaroa & 78k
U =Y, _ZNKE 53[ Ny nlk] o (15)
y =) 2k
3

The displacement components of a genkemode in the global coordinate system can be tearesf

to the nodal coordinate,

Uy =TS (162)

Joaquim Barros 18/ 54
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where

: (16b)

are the displacement components in the nodal coatelsystem,

ul
U=y, (16c)
U |,
are the displacement components in the global come system, and
AT
nl nll 12 13
T = ﬁ; = Npp Ny Ny (16d)
AT
N, K Ny N n33k

is the transformation matrix that converts disphaests from global coordinate system to nodal
coordinate system. The lines §f" are formed by the unit vectory, f, and i, of then, n, and

n, nodal coordinate system.

Therefore, the rotations in the global coordinateteam can be transformed to the nodal coordinate
system,

9
Ol

n )

el,k _ |:nll Ny, nlS} g°
n - 2,k

HZ,k n21 n22 n 23 |k Hg
3k

(17)

Introducing (17) into (15) results:

Joaquim Barros 19/ 54



University of Minho - !
Department of Civil Engineering ww. civil.uminho.pt

u, N hk ﬁ-l'.r elgk

U, | = z Nk? %[_ﬁzk ﬁlk]{n } O (18)
k=1 g

u3 03,k

Therefore, for coplanar nodes the contributionhaf totations for the displacement field is obtained

from (15), which can be rewritten in the followif@ymat:

U n h Ny Ny O 02!(
u, | = z Nk? S;| TNy, Ny, 0 Hgk
U, - Ny Ny, O_ K egk
- (19)
n h Ri P P erl]k
= z N, ) S| Py P Pasl| | 0%
~ P P P33_ k _ng i
where @, is the drill rotation, a degree of freedom notsidered, and
H.l = n21 I:)12: n P13:O
I:)21 n22 P22: n 12 I:)23:0 (20)
P31 == n23 P32: n 13 P33:O

In the case of a kink node, multiplying the two ncas of (18) that include the unit vectors of the

nodal coordinate system yields,

U Ny Ny ka
n n n
u, | = z Nk& S;| TNy Ny, T u - Hgk
k=1 2 Ny Ny Nogli| g
U, Ny Nyg |, 0 3 21)
o h R. P. Pu| |6y
= z Nk E S; P21 Pzz P23 ggz;
- P, Py, P K 6 gk

where
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P11:O P12:_n21n12+nlp 22 P13‘:_n #4400,
Py=—nn,+n i, P,~0 P,s—np4np (22)
P31:_n23n11+n1§] 21 P32:_n RFN A, P N B KN N

Adding the contribution of the displacements of timdal points at the element middle surface

(Equation (9)) to the contribution of the rotatiqigjuations (19) and (21)) results,

U ’ n _1 ’ n hk I:)11 P12 P13 01
u, :sz Uz +ZNKESS P21 P22 P23 02 (23)
k=1 — k=1
Us U K P31 P32 P33k 03,(
where

& A
6| =6 (24)
93 k 02 K

if kis a coplanar node, and

& &
6, =|6° (25)
6l |&]

if kis a kink node. Expanding (23),

Nl O o Nl%%Pll,l Nl%SPIZ,l N l%s ElS.l Nn 0 0 Nn

9
|:u2]: 0 N O N1%33P21.1 Nl%sfzz'1 N%S?m--- 0 N, O N, 5 (26)

U

£
e

£l

0 0 N Nl%sspzl,l N1%%P32,1 Nl%sfsm . 0 0 N, N,

i}
w
5

E]

El

o0

El

r
L
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or, in a more compact form,

U, 9 Mu,l
u2 = NU,Z g (27)
Uy NU,S

=N, U

where N ,, N, and N, have the dimension (InpandU is the vector with the element nodal

—u,1?

displacements, of a dimensiom(5).
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[ STRAIN COMPONENTS

The strains and the corresponding stresses amedéfi the tangential coordinate system. Sincd shel

is a thin laminar structure, the stress orthogemahe shell middle surface is assumed naj| € 0).

Taking the Von Karman hypotheses (Fung 1965), tlaeicBy strain vector in the tangential

coordinate system is defined from the following eegsion:

owg
o,
-t 0"W2
&
; ot,
= g | =| D0 O (28)
= y” ot, o,
2 ow, , O,
sl Vo T,
oW oW,
ot

where w;, w, and w, are the displacements ip, t, andt, axis. These strain components can be

extracted from the matrix:

I ow, Jdw, Idw, |
oy ot, i,
—t_|Ow, Jdw, Jw,
S 2
- | oy odt, ot (29)
ow, Jdw, Jdw,
ot o, oty |

The matrixZ' can be obtained frorg? , which includes the derivatives of the displacetmém the

global coordinate systenuy(, u,, u,) in relation to the axis of this system,

Joaquim Barros 23/ 54



' . . :
N University of Minho - !
Department of Civil Engineering ww. civil.uminho.pt

Ju, Jdu, Jdu,
ox 0%, OX,
_g_|O0u, du, adu
£9= 2 2 2
- ox, X, OX, (30)
Jdu, Jdu, Ju,
| % OX, OXq |
using for this purpose the following expression:
g=T%[1"] (31)

whereT% is the transformation matrix from global to tanti@ncoordinate systems with the rows

being composed by the unit vectors of the axebetdngential coordinate system,

t1 t11 t12 t13
t_ | § | =
Ig - t2 - t21 t22 t23 (32)
t3 t31 t32 t33

The derivatives of£? cannot be directly evaluated, since shape funstidapending on the natural
coordinates § ), are used to define the displacement field (sgeession (23)). To overcome this

obstacle the following expression is used:

37 (33)

[on]
«
1

[on]

where £° is the matrix with the derivatives of the displa@nts in the global coordinate system, (

u,, U,) in relation to the axis of the natural system

Joaquim Barros 24/ 54
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Ju Jdu adu
Js Jds, s,
= Ju, du, OJdu, (34)
Js Jds, Js,
Ju, Jdu, Jdu,
| Js ds, Jsy]
and J is the Jacobian matrix,
9% Ix  Ix ]
Js Js, Js,
= ox, OX, OX, (35)
Js Js, Js,
OX, OXy OX,
| ds ds, Jsy]
To evaluate the Jacobian matrix a new format vélbiven to expression (7),
i i h
X X141 Xin || Ny Nagp = Nap || 2 N,
X = 721 72n : +S; Ny o Nigy : (36)
X3 X3 X [N, Nggp =+ Ny 0 N,
or, in a more condensed format,
X
X, | = XTN, +s,L7,H N, (37)
X3
where
25/ 54
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[

n

X (38)

2n

>
I
XX

=

3n

is the matrix (&n) with the global coordinates of the nodes of inéd element,

(39)

|Z
<
1l

is the vector of the shape functions of the nodeseoelement, with a dimension o),

n31,1 n31n

T _

I_-n3 - n32,1 nszn (40)
nsa,l n33n

is a (3n) matrix with the ' column being composed by the components of thexis of node,

and

LI
2
H = (41)
o b
L 2

is a fixn) diagonal matrix with the half of the thicknessnufdei™ (h/2) at theH; coefficient. To

obtain the Jacobian matrix, the (37) expressidalifisrentiated in respect ® natural coordinate axis

resulting,

o 0N, L N, ONh AN R

X —Lln,  +- —n
081 1n 3651 o 3Ll 3asl o 3n (42)
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ox, _ ON, _ ON, _ oN, h, oN, h,
— = = +...+ X, +S.——=n ...+S -n
asz 052 Xl,l 652 1n 3 , 311 3682 2 3h
0
é = + Nl%nSI,l e Nn%nm
0 ON, _ ON, _ ON oN,
%za_sll PR 651 X2n+saa_sl%n32,1 ""l's3as %n?»:h
1 1
ox, _ON,_ ON, _ oN, h, ON, h,
< =__1 +...+ X, +s.——-*n,,.+---+8S -n
ds, 0s, ds, " Cos, 2 2t °9s, 2
ox
a_%z = 'N1%n32,1 +- Nn%nsz,n
0 ON, _ oN, _ ON ON,
ﬁza_sllxe,f" -t 3s, 3n 836_81%n33,1 "'53aS %nssx
1 1
X, _ ON, _ oN, _ oN, h, ON, h,
— =X, ++ X, +S,—=—=n +s —-n
aSZ SZ 1 asz 3n 3682 2 33,1 3052 2 33
0
ﬁ = Nl%nssl +.- Nn%n%,n
If these terms are organized according to (35)esgion yields,
9%, % I ] i -
a 0., d 71,1 71n aSA asz
J= o.,xz o.,xz dxz =] X0 X : : +
9% 5% g ox |laN, aN
ax, Jx, OJX ' "
3 3 i 051 asz
| 8 Js, Js,] (43)
[ Mh o oNh ]
n31,1 n3ln a%. 2 aSZ 2 2
r]32,1 n32n
Mo Mg N MNah by
| ©0s 2 ds, 2 " 2]
The Jacobian matrix can be decomposed into theviolly two submatrices,
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ox,  oOx  Ix
Js Jds, Js
gx, JXx, IX
J= 2 21=1J, J
3G as, s | | % % (44)
0%, OXy 0%,
| Js ds, IS
where
040X |
05 0s,
ox, O0X
J=| =% =2
= a% 652 (45&)
9% 0%
|08 0s,
and
_a_xl_
0s,
0%,
J,=|—=
Jo 3s, (45a)
9%
05, |
From (42) expression, these Jacobian submatriceassaime the following format,
o1 ON oN
J =X +s |l H=~
where s represents thg ands; natural axis, and
J, =L HN, (47)

Therefore, each coefficient of the Jacobian mataix be obtained from the following two equations,
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ox _ &[N, _ AN, h, . .
J. =— = KX, + k Xn, forl<i<3 L1<j<2
ij Sj ;{asj )g,k % asj 2 3}(] J (48&)
3 =2 =YNYn, forigi<s (48b)
S ] A

gui/asi should be evaluated. Applying chain rule,

To evaluate the terms (‘5‘5 (expression (34)) th
o _ 0t % | 0u,0X; , 0U; 0%
0s 0x,0S, 0X,0s, O0X,0S,
du _ 0, 0x, |, 0uy0x, |, 0u,0%
0s, 0x 0s, 0X,0s, 0X;0s,
o _ 0 06, 0u,0x, |, 0u,0%
d0s, 0x 0s, 0X,0s, 0X,0S,
ou, _ 0u, 0%, N du, 0X, +0u26_x3
0s 0x,0s, O0X,0s  0Xx,0S,
0u, _ du, 3%, du, 0,  du, 0%
0s, 0x,0s, O0x,0s, O0X,0S, (49)
ou, _ 0u, 0% N ou, 0x, +au;_,a_x3
0s, 0x 0s, O0X,0s, 0X;0S,

duy _0u; 3%, du 3, du 0%,
0s 0x, 0s, 0X,0S  0X;0S;
duy _ 0us 9% dugdx, | 0usx,
0s, 0x 0s, 0X,0s, 0X,0S,
duy _ 0us 9%, dug 3%, du; %,
0s, 0x, 0s, 0X,0S, 0X;0S,

or, in a matrix format,
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ou Ou, Ou, ou, du, O0u, || 0x,
% E g 0X, 0X, O0X,l|| 0s,
ou, Ou, du,
ds 0s, O0s, 0X, O0X, O0X;l|| 0s;
du, Odu, Ou, ou, Ou, O0u, || 0X,
0s 0s, 0s, 0x, 0X, O0X;]|0s,

which in a more compact format has the followingresentation:

Q)|Q)
ln |IS
I
QJ|Q)
X |l
lea

or

|ty
Q

]

|tn
)
([
iR

Introducing (52) in to (31) results,

The £° can be obtained from the following expression,

_aul ou, aul_

05 0s, 0s,

£ = ou, Ou, du,

~ |08 05, Os

ou, Ou, Ou,

L0 05, 0S;
=D,Uy

where D, is a matrix of dimension ¢3.8n),

(50)

(51)

(52)

(53)

(54)

Joaquim Barros
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[ON,; ON,; ON,,]
0s 0s, 0s,
Du — aNu,z aNu,z aNu,z (55)
03, 0s, 0s,
aNuB 6Nu,B 6Nu,3
| 0s  0s,  Os; |

with eachdN,; /asj having a dimension of €bn), and

U 0 0
U,=/0 U 0 (56)
0 0 U

is a matrix of (18x3) dimension, wher&J is a vector of (6x1) of the degrees of freedom of the

nodes of the element. Inserting (54) into (53) itssu
u, 317 (57)

EvaluatingoN,; /0s, of D, yields,

Joaquim Barros 31/ 54



University of Minho
Department of Civil Engineering

www.civil.uminho.pt

ON
a_u'l = {aNl 00 o, D%F)nl
S s 0s, 2
NN o

0s, ds, 2 >
aNul - aNl 00 aN E%
0s, 0s, 0s, 2 Fiua
N, N b

63Z Js, 2

Sqatr

ON
Pl 0 00 nie,
0s, 2
-0 00 N,,%Pnn
oN
—2 = 0% OaNl hl%lel
0s os, 0s 2 ‘
ON, _ON,
. Oa; O—h“%P2ln
S 05 2
oN
—u2 — O% %J%Pﬂl
0s, 0s, 052 2 ’
oN m
3s, asz 233 21n
oN
—2 :{ 000 NlﬁP211
s, 2
00 O Nn%PZLn
ON, 5 ON, ON, h
0s asl asl 2 hs
ON, ON, h,
00=n “=n_nh
ds, 0s, 2 P
—aNu’S = O% %ﬁ
0s, 0s, 0s, 2
ON, ON
0 a_n ;nﬂ% 31n
s, 0s, 2
aNuS

6512 03 2

ON, h ON: h

1 PlZl

oN, h, Ny F o
681 _253P12n P131

Mh o N
0s,

2
ON oN
;H%SSPQU =" &Sspm }
h

N12P121 N12P31
Nn% PlZn Nn % I:)13n j|
ON hl 6N h1

asl 2 3P221 051 2 2?231
ON, ON,

a_ hﬂ SSPZZn . hn SSP23] :|
S 2 ds, 2
oN, h ON, h
a , 2153]:)22,1 0 , 213?23,1
ON

N, SPazn N, S3Pan

ds, 2 652 2

h

Nl% I:)221 N ]é I:)23,1

Nn % I:)22n Nn % I:)23n j|
ON, h 6N h
a;%l 2153P32,1 aS_L 1 ?331
oN, h, oN, h,

05, 257 s 2% }
Ny o N,

ds, 2 321 ds, 2 331
N, h, 0N, h

9 , ESSPSZU 9 , 23 P331 }

h
Nl% I:)321 N ]é P33,1
Nn % P32n Nn % P33n :|

(58)
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EachdN,, /ds, coefficient can be obtained from the followingerequations,

_ON
Dyin = =l o= ON, 00—& i1k M&Se,l:?zk N, h< SRy
% B w2 9 2 (59a)
forl<i<3 Llj=1
ON., .
Do =—+ =| - OaNk hk > %&Ssezk %&Sﬁgw'
, 0s, 0s, 652 2 " 0s, 2 0s, 2 , (59b)
forl<i<3 Uj=2
ON .
Dyis=—— :{ OOONK&RLK Nk&Fi)Z,k ngﬁsk”' }
% 2 2 2 (59¢)
forl<i<3 Llj=3

Inserting (59) into (57) and executing the matrpemtions, theg' is calculated, from which the

Cauchy strain vector in the tangential coordinatetesn, indicated in (28), can be obtained (see
Annex 1),

gl
& | [Buw|
£=ly,| =|--|Uu=BU (60)
Va3 B,
| V13 |

where B, is the in-plane strain matrix of a dimensiox&8), and B; is the out-of-plane shear strain

matrix of a dimension of ¢bn). Both submatrices are defined in the tangentatdinate system.
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8 STRESSCOMPONENTS

The stresses are calculated in the tangential ocwialsystem of each integration point. For shell

element, null value is assumed for the stress gahal to its middle surfaced{ =0). The stress

vector, g, , in correspondence to the strain vectprhas the following components,

t_ t t t t t T
g —{0'1, Oy, T15, Ty, rl} (61)

the first three ones are in-plane stress compor{enfdanet;t,) that originate the membrane forces

and the bending moments,
.
o ={a, a5, 11} (62a)
and the last two ones are the out-of-plane sheapoaoents (orthogonal tgt, plane) that originate

the out-of-plane shear forces,

. :{ Il rtlg}T (62b)

o'={d,. ot} (62¢)

The stress components in a generic integrationt poenrepresented in Figure 12.
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Middle surface

Surface of the integration
point in analysis tll

Figure 12 - Stresses in the tangential coordingtem.

In this figuret,,, t,,, t,, are the axes of the tangential coordinate systetheointegration point
(IP) I. The procedure to define this referential was eggoin section 4.3. Thg, andt, axes
define a plane tangent to surfaeeof constants,) at the IPI, while t,, is orthogonal to this plane at

this IP. Hence,

o,, is the stress normal to a plane that is orthogtmg| and passes through IP
o0,, is the stress normal to a plane that is orthogtmngl, and passes through IP

1,,, is the in-plane shear stress, in thet,, plane;
T, is the shear stress in thg direction, in a plane that is orthogonaltp and passes through IP

l;
T,,, is the shear stress in thg direction, in a plane that is orthogonalttp and passes through IP

The stress components in the global coordinateesystan be obtained from the the stress

components in the tangential coordinate systenfpemg the following matrix operation,
T
g? :[Igt] T (63)

where,
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t t t
Jl le z—13
—t _ t t t
O =T, 0, Ty (64)
t t
TlS Z-23
is the stress tensor in the tangential coordingtem,
9 g g
Ul Z-12 T13
=9 — 9 9 9
g =\l 0; Iy (65)

g 9 g
T13 T23 03

is the stress tensor in the global coordinate rystnd T is a matrix that converts entities from
global to tangential coordinate system, which wefgneéd in expression (32). The components of the

stress vector in global coordinate system, can be obtained from (65), resulting,

.
9 —
ag —{o*lg, 03,03, 15, %, rﬂ} (66)

Joaquim Barros
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9 CONSTITUTIVE EQUATIONSFOR LINEAR-ELASTIC MATERIALS

The stress vectoig', of equation (61) can be obtained from the stvaictor, £', (equation (28)) by

the following constitutive equation,

g =D¢' (67a)
or,
Q- — Dmb Q £rtnb 67b
0_t Q Ds éé ( )
where, for materials with linear elastic behaviour,
. 0
Do =15 0 (68a)
L 2 |
is the in-plane membrane/bending constitutive matnd,
D. = FG 10 68b
D, 0 1 (68b)

is the out-of-plane shear constitutive matrix. 68)(E, v and G are the Young's modulus, the
Poisson coefficient and the shear modulus of tmemete. In (69bJF=5/6 is a correction shear factor

(Barros 1995).

If uniform and differential temperature variatiol\T, and AT,, respectively) induce strain

components represented by tlggu and gtATd vectors, respectively, the strain vector due t® th

element nodal displacemert,, in (67), should be replaced by, - £, — £, , resulting,
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10 STIFFNESSMATRIX FOR LINEAR-ELASTIC MATERIALS

The stiffness matrix of a shell finite element lganed applying the principle of virtual work,

=[[se'] a'av (70)
aw,=ou’ [[B'] DB avy (71)

[e]oEw (72)

The lines and columns oK corresponding to the sixth degree of freedom qflaitar nodes are
composed by null terms. To avoid the occurrencenaf pivot when solving the system of
equilibrium equations of the structure, a non-rtetin is introduced in thd , of thei™ coplanar

node. If the system of equations is pre-treatedrater to separate the free (subscfipand the
prescribed (subscrip) degrees of freedom,

Fm_&ﬂumz Qe -
ﬁE,pf ﬁE,pp QE’p 9E,p +BE

The sixth degree of freedom of coplanar nodes shbeldeclared as a prescribed degree of freedom
in order to avoid null pivot, since, in this waynlpthe free degrees of freedom are part of theesys

equations to solve,

KenUer =Q., ~KepUe,

=Q

(74)
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11 LOAD VECTOR

11.1 INTRODUCTION
A shell structure can be submitted to the followliogd cases:
* Point loads;
e Gravity load;
* Generalized forces per unit length;
» Generalized forces per unit area;
* Uniform temperature variation;
» Differential temperature variation;

e Prescribed displacements.

For plates and plane shells the procedures torolkitai nodal forces equivalent to these load cases
were described elsewhere (Barros 2000). In thiptenaonly the specificities for Ahmad shell

structures are dealt with.

11.2 POINT LOADS
In the coplanar nodes, three force components engtbbal coordinate system and two moment
components in the nodal coordinate system can tactrathe kink nodes, three force components

and three moment components can be applied, #ikeatd, in the global coordinate system.

11.3 GRAVITY LOAD

Acceleration components in the global coordinattesy can be applied to simulate the gravity load.
Rotational accelerations are not so importantaticsnalysis of Civil Engineering structures, as f

as, they are not considered for the gravity load.

11.4 GENERALIZED FORCESPER UNIT LENGTH

Any edge of a finite element can be submitted tedtorces and two moments distributed per unit

length. These generalized forces are defined imtitkal-edge coordinate system, as it is represented
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in Figure 13. Thel, axis is tangent to the edge at the node, andirégttn is defined from the
numeration order given to the nodes of the edge. IThaxis is in the plane tangent to the middle
surface of shell element at the node, and it istpw to the interior of the element. For a generic
edge coordinates,, of a loaded edge, the unit vectors Ipﬂﬂ) and |, (I;) are defined from the

following expression

_o"xl/o"sl dxl/o"sz_
1] It
[rl l“z} _ Ix%,/0s IXx,/0s, (75)
» ol 2]
Ix/0s OXx/05s,
1 ],

where |l,| and|l,| are the norms of the vectots and 1,, respectively. The, unit vector results

from the cross product of vectﬁrby vectorIA2 at thes, coordinate,

(76)

Middle suface

of the shell element

Figure 13 - Coordinate systems for the generaliaszes per unit length of a shell finite element.

Therefore, the procedure to determine the nodat-edgrdinate system is equal to the one of the
tangential coordinate system, apart that the lasti® evaluated in the element IP, while the former

determined in the edge IP.
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The distributed generalized forces are transfeim@u the nodal-edge coordinate syste_qu, to the

global coordinate systeng,f, using the following relationship,

(a7), =[], (a), (77)

where I§: is the transformation matriz from global to noddge coordinate systems, gt edge

coordinate. The format 013: is dependent of the nodal type. In case of kinkim@fpe has the

following format,

(78)

—
Q
@
L 1
o
1
w PN
> 1O 10 10

o 10
.

- A(sp)

If coplanar node, after have been transferreddabajlcoordinate system, the moment components of
the generalized force vector should be transfefreh the global coordinate system to the nodal

coordinate system,

AT n-ﬁ_
[m“} {H mi, (79)
Mo J(s) LM Js))

T T

where [mﬂ m'z‘L}(sp) and [mlgL my, mgL](Sp) are the vectors of the distributed moments in the

nodal and global coordinate systemssatedge coordinate, ang, f, are the unit vectors af, and

n, axes of the nodal coordinate system. The momemipoaents in the nodal- edge coordinate

system can be transformed to moment componeniteiglbbal coordinate system from,
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| <[l @0

Introducing (80) into (79) yields,

L O R R B
{”‘Qj(sp) L‘;L)[l 2}(3”’{”‘3}(%) .

From which the moment components in the nodal-edgedinate systemm , mj, , is transferred to

nodal coordinate systemy, , m, .

11.5 GENERALIZED FORCESPER UNIT AREA

The procedure for obtaining the nodal forces edantato generalized forces distributed in the énit
element area is described elsewhere (Barros 2@d0hé case of plane shells. For Ahmad shell
elements special care should be taken with theacaplnodes. In this type of nodes, the moment

components should be transferred to the nodal auatedsystem,

] 5] el :
Ln;A (sf,sg) n, (s{’,sg) (% ’SZ) erA (sip,sp) (82)

Where[rr{A m;A](TSprsg) are the moment components in the user-defineddowaie systent;, at the

element coordinates’.s;, f; and f, are the unit vectors of the andr, user-defined coordinate

system, andn,, m;, are the moment components at the nodal coordayatem.

In kink nodes, the generalized forces should besteared from user-defined coordinate system to

global coordinate system.
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11.6 UNIFORM TEMPERATURE VARIATION

Figure 14 represents a shell element submittediforen temperature variation afT, .

X3
t
C17 AT,
g 5
C A i W, e
& N =7 X2
/7
A 4.7
o . G,
- N
1. Y

,X/ Middle surface / X
' Shell element AT?
d
e

Figure 14 - Deformation due to uniform temperateagation.

Due to AT, this element undergoes a strain a;gfru in t; andt, axis of the tangential coordinate

system (the one where the stresses due to temperatwmiation are calculated), resulting the
following strain vector,

&y =aAT,[1 1 0 (83)

where a is the coefficient of thermal expansion. In thgpeoach it is assumed that temperature
uniform variation does not introduces in-plane sheformations and out-of-plane shear

deformations. The stresses duel) are obtained from the in-plane constitutive relaship,
Tyr, = D &u, (84)

The internal forces due to uniform temperature ateon are calculated from the following

expression,
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— (T A4t
QATU B IBW G, dv
v
IPsl IPs21Ps3

=3 Y (Bhdiwd)  WWW,

j
i=1 j=1 k= (s.5.5)

(85)

[y

11.7 DIFERENTIAL TEMPERATURE VARIATION

Consider a shell submited to diferential tempeeatariation, of AT, and AT, at top and bottom
surfaces of the sheII‘L(T;‘z—‘ATdb‘). Figure 15 represents a cross section of lengjth and

orthogonal td; axis of the tangential coordinate system.

a At} dx, a Ot} dx,
>
a dx, (AtdS - At(',) = a dx Aty a dx, (AtdS - At(‘,) = dx, Aty

Figure 15 - Deformation due to diferential temperatvariation (while this figure is not been

updatedt should be replaced Byandx by t).

When submitted t&\T; and AT, the reference fiber rotates in turntpéixis,

adt AT,

h (86)

dé, =
where AT, = AT; +AT; andh is the thickness of the shell cross section atPhehere the stresses

due to differential temperature variation are eatdd. The displacement and the corresponding strain

of any longitudinal fibre a¢; position are determined from the following express (see Figure 15),
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h
du; = > s,dg;

_ AT, (87)
= 7 S a'dtl

¢ _ du
L7 e,
' (88)

—sg—4
% 2
In thet, direction (see Figure 15),

du, = —g s,dg,
(89)

(90)

Since differential temperature variation do notuoel in-plane shear strains and out-of-plane shear
strains in isotropic materials, the strain vectore do differential temperature variation has the

following format,
AT,
£, =501 -1 0 (91)

The internal forces due to differential temperatuegiation are calculated from the following

expression,

QATd = J. B:‘b gtATu av
v

IPSL1Ps21Ps3 (92)

ZZZZ(BrTmQtATd g) WW W,

i=1 j=1 k=1 (s.5.5)

Joaquim Barros 46/ 54



7 . . )
N University of Minho - !
i \—7 Department of Civil Engineering wwww.civil.uminho.pt

11.8 PRESCRIBED DISPLACEMENTS

The prescribed displacement should be directlyothiced in the prescribed displacement vector,

U, ;, of the system of equilibrium equations (73).

Joaquim Barros 47/ 54



N University of Minho - !
-k O Department of Civil Engineering wwww.civil.uminho.pt

12 RESULTANT STRESSES

Like the stress components, the resultant forces @nit length) are calculated in the tangential
coordinate system. The resultant forces are detexnin the IP of the middle surface of the shell
element. The generalized resultant forces in d stehent comprise membrane, bending and out-of-

plane shear forces.

The membrane forces result from the integrationtha shell thickness of the in-plane stress

components ¢, , o, and7,, ),

Q_-tmz{Ntl’ Ntz' NtltZ}T {ql,dtz,qIJT dts

(93a)

|
e U e M

1
ST
C

]T dt,

NI

where h is the thickness at the integration point in asiglyThe bending moments are obtained

integrating, in the shell thickness, the momentsipced by the in-plane stress components, (0,

and rtltz),

{0,.0,.0,} t,ct,

1
—— N [T

gtb :{ Mtz' Mtl' Mtltz}T

1
— T NI

(93b)

[thb T t,dt,

Nz

Finally, the out-of-plane shear forces are caledlgtom the integration in the shell thicknesshaf t

ou-of-plane shear stresses ( and 7, ),
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{r%, rth}T dt,

|
N\Ij —N T S W |

g ={v,,. v}
(93c)

T dt,

1
ST
7]

Thererofe, the vector of the resultant forces ishell element is composed by the following

components,

(94)

a :{gtm’ QL’ QL}T :{ NH’ Ntz’ Ntltz ' Mt2 ' Mtl’Mtiz ’Vtﬁg'VtE}T

The resultant stress components are representadure 12, for a generic IP.

Middle surface of G ic int i int
the shell elemel eneric integration poin

Figure 11 - Resultant forces in the tangential dowate system.

Hence:

Nt'1 is the membrane force normal to a plane thattisogonal tot, ;

Nt'2 is the membrane force normal to a plane thattisogonal tot, ;

N, =N/, is the membrane shear force in tite plane;

M, =M, is the bending moment in turn &f axis (bending the.t, plane);
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M. =M, is the bending moment in turn gf axis (bending the,t, plane);

Mt'1t2 is the twisting moment in thgt, plane;

Vtz'ts is the resultant out-of-plane shear force intthdirection, in a plane that is orthogonalt{q
th'ts is the resultant out-of-plane shear force inttheirection, in a plane that is orthogonaltfo

To evaluate the membrane forces, the in-planesstrestor in (93a)g,,, is replaced byD,, &' ,

according to the in-plane part of the constitutiekationship indicated in (69), resulting,

I
—_—nN
1

ST
3
o
| I—
|
o
—
w

Q_-tm :{ Nt1’ Ntz’ Ntltz}T

| =

2
+1
95
= [ Dy (e~ £, — £y, ) 5 0, 59)
-1
1. 7
t t
= EDmel (gmb Eat, T Ea, )hdS3
Introducing the in-plane part of (60) into (95) i,
h
_ T 2 T
gtm ={ Ntli Ntzi Ntltz} = I |:gtmb:| dt3
h
2
h. ¢ 96
ZEDmb L(EtmbL_J_ gtATu - §tATd) ds, (96)
h o %
t t
= EDrrb:[l BnpUds; — 26,
since (see Equation (91))
+1
[ £, ds,=0 ©@7)
-1

The integral in (96) can be determined by numeiidalgration,
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& =N NN Y = P Dmb{z (B (.5.R)UW, )}— hDyoéls
(98)

where

t
NATu -

|
>
O
3
<3
)
>
3

(99)

|
=
19
_'

are the membrane forces due to uniform temperatnation.

To evaluate the bending moments, the in-planesstrestor in (93a)g., , is replaced byD,, &, ,

according to the in-plane part of the constitutiekationship indicated in (69), resulting,

ngbj (6o - £ )ss ds,
. (100)
:Zmej (B uU- gAT - AT)%dSs
)
h2 nGP3 2
= D {kZ w (8,5, R)USW,)- 3_md}
h2 nGP3 he B
:Zme (Btmb(SA,Sl,F?()QSSWk) _Egmbétmd
k=1
h2 nGP3 . .
:Zme Z (me(Si,Sl,Ff()U SSWk) M,y
=}

since
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+1
[ €5 ds,=0 (101)
-1
and
i t ¢ 1 2 t
[ £, 3 8= | i, S5 dsy = 2, (102)
-1 -1

In (100) thd is the bending moment vector due to differengahperature variation.

To evaluate the out-of-plane shear forces, the bptame shear stress vector in (93@);, is
replaced byD, €, according to the in-plane part of the constitaitielationship indicated in (70),

resulting,

Q_-ts ={V thts}T

[P1EN

1 + !
Le—it s

@]
(7]
on
Itn_
N
o
&

(103)

Io
g b
I,
[
o
&

NI NI
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ANNEX |

Knowing the nodal displacements of the structude, from solving the system of equilibrium
eqguations, the strain vector in a generic IP caohliained from (60) wher® is the vector of the

element nodal displacements in the global coordisgstem. To obtain the strain vector

U,
u2,1
u3,1
4.
62,1
03,1
0 0
U,
u2,n
U,
b,
62,n
6
U,
u2,1
— _ u3,1
ow, Jdw, JIw, 6,
Y 6,
ow, ow, JIw, b B 6. _ T
1 2 2l=1b, - b0 0 gl[Igt] (AL.1)
N O o || 0,
ow, Jdw, IJw, ! e U,
dt, at, o, | ‘;3~"
1n
62,n
6
U,
u2,1
u3,1
4.
92,1
03,1
0 0 :
U,
u2,n
W,
b,
62,n
6]
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