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Abstract

This paper studies a new classical natural deduction system, presented as a typed
calculus named λµlet. It is designed to be isomorphic to Curien and Herbelin’s λµµ̃-
calculus, both at the level of proofs and reduction, and the isomorphism is based on
the correct correspondence between cut (resp. left-introduction) in sequent calculus, and
substitution (resp. elimination) in natural deduction. It is a combination of Parigot’s
λµ-calculus with the idea of “coercion calculus” due to Cervesato and Pfenning, accom-
modating let-expressions in a surprising way: they expand Parigot’s syntactic class of
named terms.

This calculus and the mentioned isomorphism Θ offer three missing components of
the proof theory of classical logic: a canonical natural deduction system; a robust process
of “read-back” of calculi in the sequent calculus format into natural deduction syntax;
a formalization of the usual semantics of the λµµ̃-calculus, that explains co-terms and
cuts as, respectively, contexts and hole-filling instructions. λµlet is not yet another
classical calculus, but rather a canonical reflection in natural deduction of the impeccable
treatment of classical logic by sequent calculus; and Θ provides the “read-back” map and
the formalized semantics, based on the precise notions of context and “hole-expression”
provided by λµlet.

We use “read-back” to achieve a precise connection with Parigot’s λµ, and to derive
λ-calculi for call-by-value combining control and let-expressions in a logically founded
way. Finally, the semantics Θ, when fully developed, can be inverted at each syntactic
category. This development gives us license to see sequent calculus as the semantics of
natural deduction; and uncovers a new syntactic concept in λµµ̃ (“co-context”), with
which one can give a new definition of η-reduction.
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1. Introduction

In this paper we introduce a new natural deduction system λµlet for classical logic,
presented as an extension of Parigot’s λµ-calculus [25], and equipped with let-expressions.
The main design principle of λµlet was to obtain a system isomorphic to the classical
sequent calculus λµµ̃ of Curien and Herbelin [7], in order to have, in the natural deduction
side, a system as faithful to the classical dualities as λµµ̃. For this reason, λµlet is not yet
another calculus for classical logic, but rather a canonical reflection in natural deduction
of the impeccable treatment of classical logic by sequent calculus.
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The design of λµlet is not a mere formal achievement; we will try to prove that λµlet
is full of syntactic subtlety, semantic insight, and, mainly, that it is the appropriate tool
to make progress simultaneously in three different but related areas: (i) semantics of
λµµ̃; (ii) CBV λ-calculus; (ii) natural deduction for classical logic. Before we explain
λµlet in more detail, we expand on the problems we will address in these three areas.

Semantics of λµµ̃. Gentzen [15] refined the de Morgan classical duality from the
level of provability to the level of proofs, by defining the sequent calculus LK, a symmetric
proof system for classical logic exhibiting a duality between hypothesis and conclusion.
Recently Curien and Herbelin [7] introduced a variant of LK and the corresponding
λµµ̃-calculus, extending the Curry-Howard correspondence to classical sequent calculus,
and showing that classical logic also contains a duality, at the level of cut elimination,
between call-by-name (CBN) and call-by-value (CBV) computation.

Even if it is clear that λµµ̃ is some sort of functional language with control facilities,
its full understanding rests, so far, on intuitions that are vague and deserve to be formal-
ized. We mean the explanation of co-terms as “contexts” (in particular, the µ̃ operator is
explained in terms of a let-expression with a hole); and the explanation of cuts as “hole
filling” in those contexts [7, 19]. These contexts are derived from some natural deduction
syntax, some variant of λµ, extended with let-expressions. But which variant exactly?
We prove the answer is λµlet. The contexts that interpret co-terms are a derived syn-
tactic notion of λµlet; and filling the hole of such contexts results in expressions of a
certain syntactic class of λµlet named statements. This semantics is nothing less than
the isomorphism Θ : λµµ̃→ λµlet.1

The CBV λ-calculus. Through λµµ̃, Curien and Herbelin reduced the essence of
the non-determinism in classical cut-elimination to a single critical pair, and recognized
in this critical pair the choice between CBN and CBV computation. In particular, this
opened the way to the definition of CBV fragments of λµµ̃ and to a proof-theoretical
answer to the question “what is CBV λ-calculus?”, a question firstly posed in [26], and
explicitly addressed in [7]. Such proof-theoretical approach contrasts with the develop-
ments in [22, 32, 33] that put forward Moggi’s computational λ-calculus as the CBV
λ-calculus.

For a variety of reasons, one would like to see the sequent calculus account of CBV
translated to natural deduction. First, because that would provide a “read-back”[7, 19]
of λµµ̃ proof expressions into a language where the familiar notation of functional ap-
plication is available and, therefore, a language closer to actual programming languages.
Second, because it is rather natural to ask whether the proof-theoretical understanding
of CBV is an exclusive of sequent calculus, that is, whether natural deduction is, for some
reason, doomed to account only for CBN computation. This read-back effort, already
found in [7], continued through [19, 30, 20]. But the effort shows many difficulties. It
is to a large extent informal, as the target system is not properly developed; it shows
hesitations, as some attempts admittedly failed [19]; and it is even contradictory, as the
definition of CBV λµ-calculus in [30] disagrees with that of [24].

We propose the isomorphism Θ : λµµ̃→ λµlet as a systematic read-back process, with

1When the reader sees λµlet maybe (s)he will be surprised: how can such a system be the “explana-
tion” of λµµ̃? The measure of the reader’s surprise is the measure of how vague and unclear were for
her/him the explanations in terms of contexts and hole filling, and of how much the formalization of
such explanations is needed.
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a fully formalized and developed natural deduction target. In particular, one obtains
CBV λ-calculi in natural deduction format by restricting Θ to CBV fragments of λµµ̃
and characterizing the range of such restrictions.

Natural deduction for classical logic. As we are seeing, the need to develop
natural deduction for classical logic has many external motivations, but it also arises
from the internal difficulties of the theory of natural deduction.

Both Gentzen [15] and Prawitz [28] defined natural deduction for classical logic as
intuitionistic natural deduction supplemented with some classical inference principle.
Prawitz admits that “this is perhaps not the most natural procedure from the classical
logic point of view”, as it does not reflect the de Morgan symmetry at the level of
proofs ([28], pg.44); and Gentzen observed that there is no canonical choice as to what
inference principle to add. Computationally, through the Curry-Howard correspondence,
this means that the λ-calculus may be extended with a variety of control operators: for
instance C, ∆, or call-cc, corresponding to the principles double-negation elimination,
reductio ad absurdum, and Peirce’s law, respectively [14, 17, 29, 1].

So, nothing like a canonical system is obtained through Gentzen-Prawitz approach
to classical natural deduction. Moreover, the design difficulties are accompanied by
technical problems. According to [35], Prawitz [28] proves only a “slightly weakened
subformula property”; and restriction of reductio ad absurdum to atomic conclusions
only works for some logical constants [28, 34]. The latter problem is solved in [23]
through the adoption of general elimination rules [36] and replacing reductio ad absurdum
with another principle: elimination from excluded middle. A “structural” approach to
overcome the mentioned difficulties is to move to systems whose deductions conclude not
a single formula, but rather a list or set of formulas. This is already found in the system
of Boričić [5], where an elegant subformula property holds. But the full computational
power of the explicit manipulation of several conclusions is revealed by Parigot in his
λµ-calculus [25].

Adopting the multiple conclusion framework allows us to depart from the intuitionistic
system in a way that avoids having to chose among the variety of classical principles. But
it still does not guarantee a natural deduction system faithful to the classical dualities.
This is easy to verify: by Curien and Herbelin, the duality CBN/CBV is a duality of
classical logic; but it is not clear even how to define a CBV variant of Parigot’s λµ, as the
distinct proposals [24, 7, 19, 30, 20] show, let alone give a natural deduction explanation
of CBV based on λµ. One of the problems is that let-expressions are unavoidable in CBV
λ-calculi, and therefore one has to offer some proof-theoretical understanding of them.
In particular, natural deduction has to be extended. But how? This paper claims that
let-expressions cannot be added to λµ in a routine way, taking them as another form
of proof-term; moreover, one has to understand the difference between the typing rule
for let-expressions (which is a substitution inference rule) and the cut rule in sequent
calculus. Cut and substitution are (perhaps in a subtle way) different, although linked
by the isomorphism Θ : λµµ̃→ λµlet.

The new system. λµlet is an extension with let-expressions of Parigot’s λµ-calculus;
in addition, it is a “coercion calculus” [6, 10, 12], with its syntax carefully organized into
three syntactic classes. Besides the class of terms, it has a class of statements, extending
Parigot’s named terms - surprisingly, this is where let-expressions live; and also a class
of hole expressions suitable to be filled in the hole of contexts. Contexts are a derived
syntactic class and consist of statements with a single hole in the left end. Applications
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are hole expressions, not terms, and have the form HN , with H a hole expression and
N a term. Like in sequent calculus, in λµlet ordinary application of two terms has to be
derived.

As a proof system, λµlet extends Parigot’s typing system for λµ, sometimes called
“classical natural deduction”. In particular, the power of classical logic is achieved
through the device of activating or making passive one of the multiple conclusions.
Parigot’s typing system manipulates two kinds of sequent (corresponding to terms and
named term), whereas λµlet manipulates three. The novelty is in the sequents corre-
sponding to hole expressions, which play an interesting role in the proof of the subformula
property.

λµlet has a substitution inference rule2 which is the typing rule for the let-expressions
constructor, and therefore its Curry-Howard counterpart. However, one has to argue
why the substitution inference rule is a natural deduction rule. Substitution is different
from cut because: (i) its left premiss can be the conclusion of an elimination (while cut’s
left premiss can’t); (ii) primitive substitution’s right premiss can’t be the conclusion of
a left-introduction (while cut’s right premiss can). This is, in sketchy terms, the proof-
theoretical understanding of let-expressions put forward by this paper.

Finally, λµlet is equipped with reduction rules which correspond to a normalization
procedure. We also consider the natural deduction rules corresponding to the η-like rules
ηµ and ηµ̃ of λµµ̃. The normalization rules have redexes of the form E [H], where E
is a context. This looks complex at first sight, but inevitable after a second thought.
λµlet combines control operation with “superimposed” [19] CBN and CBV functional
computation. Explicit manipulation of contexts in reduction rules is inherent to both
CBV λ-calculi and calculi with control operators [14, 17, 32, 24, 20].

The normalization rules work roughly as follows. Take a redex E [H]. H may be
an ordinary β-redex or a µ-abstraction. In the first case, the reduction produces a let-
expression; and if this let-expression is in a particular form corresponding to a delayed
substitution, a separate reduction rule may fire the corresponding meta-substitution. In
the second case, the reduction fires a suitable meta-substitution [E/a] .

The isomorphism. The isomorphism Θ : λµµ̃ → λµlet is the only and full justifi-
cation of why λµlet is the way it is (just to make it clear, Θ comprises a sound bijection
at the level of proof expressions, and an isomorphism at the level of reduction relations).
The isomorphism has many facets (natural deduction semantics, read-back process), but
its foremost aspect is proof-theoretical: the central idea is to replace one left-introduction
inference by a corresponding elimination inference. Computationally, this corresponds
to the “inversion of associativity” of applicative terms (=non-values), an idea that Her-
belin [18] recognized to be Curry-Howard explanation of the difference between sequent
calculus and natural deduction. The author has developed this idea in the intuitionistic
case since [10], recognizing in it the design principle for the expansion of the natural
deduction realm. The present paper can be seen as a passage to the classical case of
results in [12].

2In order to allow ourselves some relief from the multiple uses of the word “substitution” (see Sub-
section 2.1), we might call the substitution inference rule the “let inference rule”, or even let and speak
of lets as we all speak of cuts.
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Structure of the paper. The paper is organized as follows. Section 2 fixes notation
and syntactic conventions, and recalls λµ and λµµ̃. Section 3 presents λµlet, proves
the subformula property and discusses the system. Section 4 proves the isomorphism
λµµ̃ ∼= λµlet and explains the proof-theoretical foundation of let-expressions, delayed
substitutions and named terms. Section 5 investigates CBN and CBV in λµlet, and the
connections of λµ with λµlet. Section 6 studies the natural deduction semantics of λµµ̃
offered by λµlet. Section 7 summarizes the paper, reviews the literature, and suggests
future work. Appendix A recalls the CBN and CBV fragments of λµµ̃.

This paper is a revised and substantially expanded version of the conference paper
[13]. Proofs are included, the presentation is improved, and motivations for studying
λµlet are detailed. New material consists of: full treatment of the CBN and CBV frag-
ments of λµlet; study of the relationship between λµ and λµlet; full development of the
semantics of λµlet, which requires a specific treatment of contexts in λµlet and a new
concept in λµµ̃ called “co-context”. Incidentally, the latter permits a new definition of
η-reduction in λµµ̃.

2. Background

In this section we clarify some syntactic matters and options (notation, overloading,
variable convention, substitution, derived syntax, and abbreviations), and recall Parigot’s
λµ [25] and Curien and Herbelin’s λµµ̃ [7].

2.1. Notation and other syntactic preliminaries.
Syntax of λ-calculi. This paper is about λ-calculi for classical logic, both in the

format of sequent calculus (λµµ̃) or natural deduction (λµ and the new λµlet). Terms
will be denoted t, u, v in sequent calculus, and M , N , P in natural deduction. Terms can
always be separated into values and non-values. A value is a variable or λ-abstraction,
and is always denoted V or W .

In natural deduction, if ~N = N1, · · · , Nm (m ≥ 0), then H ~N denotes HN1 · · ·Nm,
that is, (· · · (HN1) · · ·Nm)), forH some expression. In sequent calculus, if ~u = u1, · · · , um
(m ≥ 0), then ~u :: e denotes u1 :: · · · :: um :: e, that is, (u1 :: · · · :: (um :: e) · · ·)), for
some expression e. This “inversion of associativity” (natural deduction is left associative,
sequent calculus is right associative) is a cornerstone of the present paper, and goes back
to Herbelin [18].

In λ-calculi for classical logic there are variables and co-variables. Variables (resp.
co-variables) are always ranged by x, y, z (resp. a, b, c). All calculi in this paper assume
Barendregt’s variable convention (in particular we take renaming of bound variables or
co-variables and avoidance of capture for granted).

For each λ-calculus, a number of reduction rules is defined. Given a reduction rule
R, the symbol →R denotes the compatible closure of R, that is, the closure of R for
any syntactic constructor of expressions in the calculus. The transitive (resp. reflexive-
transitive) closure of →R is denoted →+

R (resp. →∗R).
Contexts. In the ordinary λ-calculus, a context is a λ-term with “holes” - with holes

denoted [ ] in this paper. In our view, the concept of λ-term is defined first, and the
concept of context is defined afterwards, on top of the concept of λ-term. For instance,
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in the context [ ]N1 · · ·Nm, we assume the set from which the Ni’s are taken (to wit, the
set of λ-terms) to be previously defined.

In this paper we adopt a similar view for all the calculi considered, with the exception
that we are interested only in contexts with a single hole. Contexts are denoted C, E ,
etc., and the result of filling some expression H in the hole of C is denoted C[H].

Derived syntax. Is it superfluous to introduce abbreviations for easily derived
syntactic concepts? Suppose we wanted to develop a rudimentary “pairing” calculus on
the λ-terms. A easily derived pairing construction is (M,N) := (λz.M)N , with z /∈ M .
Would it be worthwhile to introduce the abbreviation (M,N) above, given that it can
easily be reduced to the primitive syntax of the λ-terms? In this paper we adopt the
answer “yes” to such questions, and indeed we would even write the definition of the
projection reduction rule as (M,N) → M , simply to stress the intention of a “pairing”
calculus. In the calculi considered here, similar questions arise in connection with explicit
substitution, which will be an easily derived term constructor.

Substitution. We have to distinguish carefully three concepts of “substitution”:
(i) the meta-operation of substitution (or the result of such operation); (ii) explicit
substitution (or its variant “delayed” substitution); the substitution typing/inference
rule.

Meta-substitution is an operation defined on the set of terms and denoted with square
brackets, following [3], but in the style [ /x] (not in the style [x := ]). Similarly for
other forms of meta-substitution used in λ-calculi for classical logic, like “structural”
substitution.

Explicit substitution is a term constructor denoted with angle brackets, as in λx-
calculus papers [31, 4], again in the style 〈 /x〉 (not in the style 〈x := 〉). In explicit
substitution calculi, not only explicit substitution is a term constructor, but also reduc-
tion rules exist for the stepwise execution of substitution. An intermediate concept is
that of a “delayed substitution” calculus [11], where substitution is a term constructor
but only a single reduction rule exists for substitution execution, which fires and exe-
cutes completely the substitution in a single step of reduction. In this paper we adopt
the latter approach, as we are not interested in the stepwise execution of substitution.

A substitution typing rule is simply a typing rule for some concept of substitution,
e.g. the following typing rule taken from the simply typed λ-calculus:

Γ ` N : A Γ, x : A `M : B
Γ ` [N/x]M : B

.

A substitution typing rule can thus be an admissible typing rule if we are typing meta-
substitution, or a primitive rule of the typing system as in explicit substitution calculi.
From the logical point of view, one may prefer to speak of a substitution inference (rather
than typing) rule. An important point of this paper is the explanation of the correspon-
dence between substitution inference rules belonging to natural deduction systems and
the cut rule of sequent calculus.

Typing. Formulas (=types) are ranged over by A,B,C and generated from type
variables using implication, written A ⊃ B. There will be no symbol for absurdity, so
the logic we work with is “minimal classical logic”[1]. Contexts Γ are consistent sets of
declarations x : A. “Consistent” means that for each variable x there is at most one
declaration in Γ. We assume Γ, x : A always denotes a consistent set. Similarly for
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co-contexts ∆, consistent sets of declarations a : A of co-variables.
Overloading. We can say that λµµ̃, λµ, and the new λµlet are “λ-calculi for classical

logic”. As such, it is most natural each of them carries its own β-reduction rule. Absolute
rigor would demand to tag the name “β” to distinguish β-rules from different systems;
similarly, one would tag the substitution that a β-rule always generates. However, as
long as context resolves ambiguity, we will avoid tagging as much as possible, just to
keep the notation lighter. The same applies, for instance, to the symbol `.

The overloading of brackets is unavoidable, but it is reduced to two situations: (i)
square brackets are used in meta-substitution and in holes of contexts; (ii) angle brackets
are used in explicit/delayed substitutions and in “commands” from λµµ̃. At least, the
use of square brackets in the naming constructor of λµ (and λµlet) was abolished: we
write a(M) (not [a]M).

Finally, overloading is quite often illuminating, simply because many syntactic con-
cepts transcend a particular system where they may happen to be defined, and make sense
across several systems. Obvious examples come from the λ-calculus: λ-abstraction, sub-
stitution, and application. The symbol λ is re-used across systems, as well as the square
brackets notation for substitution. As to the concept of ordinary application of two terms,
which we denote by juxtaposition MN , this concept is again primitive in the λµ-calculus
and denoted in the same way. In the sequent calculus, ordinary application of two terms
is not primitive, but can be derived; once a derivation is agreed upon (there may be
several), we find it most natural and economical to re-use the juxtaposition notation and
denote the derived concept by tu.

The same re-use is applied to the names of typing rules. For instance, once tu is de-
fined in the sequent calculus in a sound way, its comes with a derived typing rule which
we call “elimination”. Similarly we can derive in natural deduction a left-introduction
construction and corresponding inference rule. As soon as “elimination” and “left-
introduction” are re-used in this way, they become inference principles in both natural
deduction and sequent calculus. Then, what distinguishes the two proof systems is which
of these principles are primitive and which are derived.

2.2. λµ-calculus
Expressions of λµ are defined by the following grammar:

(Terms) M,N,P ::= x |λx.M |MN |µa.S
(Named terms) S ::= a(M)

The terminology “named term” comes from the fact that co-variables are sometimes
called “names”.

In addition to ordinary substitution for variables, there are the operators [b/a]M and
[b/a]S for the renaming of free occurrences of a, and the “structural” meta-substitution
operators [a([ ]N)/a]M and [a([ ]N)/a]S, in whose recursive definition the crucial clause
is:

[a([ ]N)/a](a(M)) = a(M ′N) where M ′ = [a([ ]N)/a]M .

We consider 4 reduction rules:
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Figure 1: Typing rules for λµ

Γ, x : A ` x : A|∆
Assumption

Γ `M : A ⊃ B|∆ Γ ` N : A|∆
Γ `MN : B|∆ Elim

Γ, x : A ` t : B|∆
Γ ` λx.t : A ⊃ B|∆ Intro

Γ `M : A|∆, a : A
a(M) : (Γ ` ∆, a : A) Pass

S : (Γ ` ∆, a : A)
Γ ` µa.S : A|∆ Act

(β) (λx.M)N → [N/x]M
(µ) (µa.S)N → µa.[a([ ]N)/a]S

(ηµ) µa.a(M) → M, if a /∈M
(ρ) b(µa.S) → [b/a]S

In the typing system there is one kind of sequent per each syntactic class Γ ` t : A|∆
and S : (Γ ` ∆). In the first kind of sequents, A is said to be active. The typing rules are
given in Figure 1. We have the typing rules of the ordinary λ-calculus, plus an activation
rule and a “passivation” rule. Proof-theoretically, this is a natural deduction system
deriving sequent with multiple conclusions.

2.3. λµµ̃-calculus
Expressions of λµµ̃ are defined by the following grammar:

(Terms) t, u ::= x |λx.t |µa.c
(Co-terms) e ::= a |u :: e | µ̃x.c

(Commands) c ::= 〈t|e〉

A value is a term of the form x or λx.t. A co-value is a co-term of the form a or u :: e.
That is: a value is a term not of the form µa.c and a co-value is a co-term not of the
form µ̃x.c.

There is one kind of sequent per each syntactic class

Γ ` t : A|∆ Γ|e : A ` ∆ c : (Γ ` ∆) .

In the first two kinds, the displayed formula A is active. The typing rules are given in
Figure 2. A typable term is a term t such that Γ ` t : A|∆ is derivable, for some Γ,∆, A.
Similarly for co-terms e and commands c.

Because of the typing rule Cut, we often refer to commands as cuts. Every cut has
one of two forms:

〈t|u1 :: · · · :: um :: a〉 (covar-cut)
〈t|u1 :: · · · :: um :: µ̃x.c〉 (µ̃-cut)
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Figure 2: Typing rules for λµµ̃

Γ|a : A ` a : A,∆ LAx Γ, x : A ` x : A|∆ RAx

Γ ` u : A|∆ Γ|e : B ` ∆
Γ|u :: e : A ⊃ B ` ∆ LIntro

Γ, x : A ` t : B|∆
Γ ` λx.t : A ⊃ B|∆ RIntro

c : (Γ, x : A ` ∆)
Γ|µ̃x.c : A ` ∆ LAct

c : (Γ ` a : A,∆)
Γ ` µa.c : A|∆ RAct

Γ ` t : A|∆ Γ|e : A ` ∆
〈t|e〉 : (Γ ` ∆) Cut

Figure 3: Reduction rules of λµµ̃

(β⊃) 〈λx.t|u :: e〉 → 〈u|µ̃x.〈t|e〉〉
(σµ̃) 〈t|µ̃x.c〉 → [t/x]c
(σµ) 〈µa.c|e〉 → [e/a]c

(η⊃) λx.µa.H[x :: a] → µa.H[a] (x, a /∈ H)
(ηµ̃) µ̃x.〈x|e〉 → e (x /∈ e)
(ηµ) µa.〈t|a〉 → t (a /∈ t)

Proof-theoretically, the system in Figure 2 is a sequent calculus, with cut and left
introduction instead of elimination. There is a right activation rule, like the activation
rule of λµ, but also a left activation rule, that types the µ̃-abstraction. Pushing the
comparison with λµ further, we may say that the cut rule generalises the passivation
rule of λµ. Indeed, we might call 〈t|a〉 a named term; but in λµµ̃ we have the dual
passivation form 〈x|e〉, which we might call a dereliction, following [18].

In addition to three ordinary substitution operators [t/x]c, [t/x]u, and [t/x]e, there
are three co-substitution operators [e/a]c, [e/a]u, and [e/a]e′.

We consider 6 reduction rules - see Figure 33. By cut-elimination we mean β⊃σµ̃σµ-
reduction. In addition to the cut-elimination rules, there are three η-like rules. The
rules ηµ and ηµ̃ are considered e.g. in [27]. A new η-rule, named η⊃, is proposed but its
discussion is entirely postponed to Subsection 6.5.

A σµ̃-redex (resp. σµ-redex) is a cut that is permutable to the right (resp. left), be-
cause its right (resp. left) cut-formula is not principal in a left (resp. right) introduction.
A β⊃-redex is a cut whose both cut-formulas are principal in introduction inferences,

3We follow [27] in using β to name the first rule (see Subsection 2.1 for more on giving name “β” to
rules from different calculi). The reduction rules usually named µ̃ and µ are here renamed σµ̃ and σµ,
respectively. The intention is to stress that these are rules for executing a delayed (co-)substitution, as
explained below.
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and of the form A ⊃ B. β⊃-reduction breaks this cut into two cuts with cut-formulas A
and B.

The β⊃σµ̃σµ-normal forms are the expressions where every command has one of the
forms 〈V |a〉 or 〈x|E〉. These forms are the passivation of (co-)values.

There is a critical pair

[µ̃x.c′/a]c �
σµ

〈µa.c|µ̃x.c′〉
σµ̃

- [µa.c/x]c′ (1)

It is well known that this critical pair in general cannot be joined (just take the case a /∈ c,
x /∈ c′ - this is Lafont’s counter-example [16]), and so confluence fails in λµµ̃. According
to [7], avoiding this critical pair by giving priority to one or the other reduction is the
principle for the definition of the CBN (priority to σµ̃) or CBV (priority to σµ) reduction.
For this reason, we refer to this critical pair as the CBN-CBV dilemma.

In λµµ̃ we define:4

a(t) := 〈t|a〉 (named term)
tu := µb.〈t|u :: b〉 (ordinary application)

〈t/x〉c := 〈t|µ̃x.c〉 (delayed substitution)
〈e/a〉c := 〈µa.c|e〉 (delayed co-substitution)

In these definition, of course, the new bound (co-)variables are assumed fresh.
The first two definitions define homomorphically a sound (i.e. type preserving) trans-

lation of the natural deduction λµ into λµµ̃ (this is translation ( )n in [7]). Another
interpretation of λµ into λµµ̃, also given in [7], will be important in Section 5.

Using the delayed (co-)substitution notation, we can rewrite the cut-elimination rules
of λµµ̃ as follows:

(β⊃) 〈λx.t|u :: e〉 → 〈u/x〉〈t|e〉
(σµ̃) 〈t/x〉c → [t/x]c
(σµ) 〈e/a〉c → [e/a]c

This notation emphasizes that β⊃, σµ̃, and σµ are about generation (β⊃) and execution
of explicit (co-)substitution (σµ̃, σµ). The execution itself is in one go, by calling meta-
operations.5 This is a half baked computational interpretation, that, in particular, says
nothing about co-terms.

On the other hand, Curien and Herbelin [7] give intuitions about the expressions of
λµµ̃ in terms of “contexts” and “hole filling” derived from some (never specified) variant
of the λµ-calculus, that form the basis of a totally different interpretation of λµµ̃. More
precisely:

(i) Co-terms e correspond to contexts E , and the left type A in Γ|e : A ` ∆ is the type
of the hole of E .

4We reuse in the context of λµµ̃ notation traditionally used in other system, because: (i) it is handy
to introduce abbreviations for complex expressions in λµµ̃; (ii) it is unbearable to invent new notation
for all these notions, or tag everywhere; (iii) it is mnemonic (and even illuminating) to re-use notation
if the abstract concept is the same (albeit implemented in a different system). See Subsection 2.1 for
more on notation, abbreviations and overloading.

5This view is our justification for using σ in the name of the reduction rules.
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(ii) a corresponds to a([ ]).

(iii) µ̃x.c corresponds to let [ ] = x inS, if c corresponds to S.

(iv) u :: e corresponds to E [[ ]N ], if N (resp. E) corresponds to u (resp. e)

(v) Cuts 〈t|e〉 correspond to filling E [M ], if M (resp. E) corresponds to t (resp. e)

The ideas (i), (iv) and (v) are explicit in [7]. The ideas (ii) and (iii) are implicit in the
same paper, and explicit in [19].

3. The natural deduction system λµlet

In this section we introduce λµlet. First we define the logical/typing system, later
the reduction/normalisation rules. As we present λµlet, we compare informally with
Parigot’s λµ. The precise connection with λµ will be made in Section 5.

3.1. Definition of the system
Primitive syntax. Expressions of λµlet are defined by the following grammar:

(Terms) M,N,P ::= x |λx.M |µa.S
(Hole Expressions) H ::= h(M) |HN
(Statements) S ::= a(H) | letx = H inS

Terms are either variables, λ-abstractions λx.M , or µ-abstractions µa.S whose body
is a statement S. Statements are either named expressions of the form a(H), or let-
expressions letx = H inS. Hole expressions H are either coercions6 h(M), or applications
HN . A value V is a term of the form x or λx.M .

The syntactic organization is subtle. Neither applications, nor let-expressions are
terms. The same applies to the expression in the function position of applications, and
to the two components of a let-expression. Hole expressions are indeed expressions that
are filled in the hole of contexts (see below); but the expressions with holes, as usual, are
derived syntax, whereas the expressions that go into holes are primitive.

In λµ there are neither hole expressions, nor let-expressions. Applications are terms
and statements are just named terms a(M).

In λµlet, every statement has one of two forms

a(h(M)N1 · · ·Nm)
letx = (h(M)N1 · · ·Nm) inS

with m ≥ 0. So, not only h(M) means M coerced to a hole expression, but it also signals
the head term of a statement.

Primitive typing. The typing system of λµlet, given in Fig. 4, derives three kinds
of sequents, one for each syntactic class:

Γ `M : A|∆ ΓBH : A|∆ S : (Γ ` ∆) .

12



Figure 4: Typing rules for λµlet

Γ, x : A ` x : A|∆
Assumption

ΓBH : A ⊃ B|∆ Γ ` N : A|∆
ΓBHN : B|∆ Elim

Γ, x : A `M : B|∆
Γ ` λx.M : A ⊃ B|∆ Intro

ΓBH : A|∆, a : A
a(H) : (Γ ` ∆, a : A) Pass

S : (Γ ` ∆, a : A)
Γ ` µa.S : A|∆ Act

Γ `M : A|∆
ΓB h(M) : A|∆ Coercion

ΓBH : A|∆ S : (Γ, x : A ` ∆)
letx = H inS : (Γ ` ∆) Subst

The first and third kinds (term sequents and statement sequents, resp.) are familiar from
λµ. If we disregard the distinction between the first two kinds of sequents, then the
first five typing rules in Fig. 4 are exactly those of λµ, and the coercion rule is a trivial
repetition rule. So, up to the final substitution rule, we have a refinement of the typing
system of λµ, a classical natural deduction system with three kinds of sequents instead
of two, and containing an extra-rule for coercing between two different kinds of sequents.

The existence of an extra form of sequents ΓBH : A|∆, rather than an obscure com-
plication, is an advantage of the system, because of the role in the subformula property,
to be proved below: it allows a proof by induction on normal forms, very much in the
style of sequent calculus, and typically impossible for simpler formulations of natural
deduction7.

The final rule in Fig. 4 is a primitive substitution inference rule, which is the typing
rule for let-expressions. The inference rule is standard, apart from the fact that sequents
have to be chosen of the appropriate kind. One might argue that a substitution rule is a
cut rule. Does this last rule disturb the natural deduction character of the system? The
answer is “no” but can only be given later. First, we need to see how the isomorphism
between λµµ̃ and λµlet links cuts and substitutions. Only then we compare the two
inference principles (in Subsection 4.2).

A typable term is a term M such that Γ ` M : A|∆ is derivable, for some Γ,∆, A.
Similarly for hole expressions H and statements S.

Derived syntax. We define:

6At the level of expressions, a “coercion” forces an expression from one syntactic class to another.
We follow [6] in this use of the terminology “coercion”. There will be a corresponding coercion typing
rule.

7Recall that Prawitz [28] first proves the structure of “branches” in normal deduction, and then
proves the subformula property by induction on the “order” of branches.
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MN := µa.a(h(M)N) (ordinary application)
a(M) := a(h(M)) (named term)
〈N/x〉S := letx = h(N) inS (delayed substitution)

The first two definitions allow an immediate and simple translation of λµ into λµlet
(in the first definition, of course, a is fresh). A different translation of λµ, based on
a different form of deriving ordinary application, is possible. Both will be studied in
Subsection 5.4. In the third definition, we propose the concept of delayed substitution as
a particular case of let-expressions. Delayed substitution will be used in explaining the
reduction rules of λµlet soon in this section, and in characterizing the CBN fragments of
λµlet (Section 5).

Another derived syntactical concept of λµlet, crucial for the definition of reduction
rules and for the comparison with λµµ̃, is that of context. A context is an expression of
the two possible forms (m ≥ 0):

a([ ]N1 · · ·Nm) letx = ([ ]N1 · · ·Nm) inS (2)

So, a context is a statement with a “hole” [ ] in a position where a hole expression H is
expected. Let E range over contexts, and E [H] denote the statement obtained by filling
the hole of E with H. Notice that, if we fill the hole of E with [ ]N we obtain another
context8.

In addition to meta-substitution for variables, there are three operations of meta-
substitution for co-variables [E/a]M , [E/a]H, and [E/a]S, defined by a simultaneous
recursion, all of whose clauses are homomorphic, but the crucial one:

[E/a](a(H)) = E [H ′] where H ′ = [E/a]H.

For instance:
(i) [b([ ]N)/a](a(h(M))) = b(h(M ′)N), with M ′ = [b([ ]N)/a]M ; so, [b([ ]N)/a] is a

form of “structural substitution” as found in λµ.
(ii) [E [[ ]N ]/a](a(h(M))) = E [h(M ′)N ], with M ′ = [E [[ ]N ]/a]M ; this is a generaliza-

tion of the previous case.
(iii) [b([ ])/a](a(H)) = b(H ′), with H ′ = [b([ ])/a]H; so [b([ ])/a] is a renaming op-

eration, also found in λµ.

Reduction rules. Some of the reduction rules of λµlet will act on the head of state-
ments. We use contexts as a device for bringing to surface such heads, which normally are
buried under a sequence of arguments. For instance, if S is letx = h(M)N1 · · ·Nm inS′,
then S = E [h(M)], where E = letx = [ ]N1 · · ·Nm inS′.

The reduction rules of λµlet are given in Figure 5.9 By normalisation we mean
β⊃σletσµ-reduction. In addition to the normalisation rules, there are three η-like rules.
The discussion of rule η⊃ is entirely postponed to Subsection 6.5.

8In fact, what we have just said of [ ]N can be said of [ ] ~N (an H with a hole in its left end), but we
are not going to make use of this more general possibility.

9In spite of the use of contexts, there should be no misunderstanding: these reduction rules, as well
as their compatible closure etc., are relations on the primitive syntax of λµlet, not on some extended
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Figure 5: Reduction rules of λµlet

(β⊃) E [h(λx.M)N ] → 〈N/x〉E [h(M)]
(σlet) 〈N/x〉S → [N/x]S
(σµ) E [h(µa.S)] → [E/a]S

(η⊃) λx.µa.a(Hx) → µa.a(H) (x, a /∈ H)
(ηlet) letx = H in E [h(x)] → E [H] (x /∈ E)
(ηµ) µa.a(h(M)) → M (a /∈M)

Rule β⊃ generates a delayed substitution, that jumps out of the statement that con-
stituted the redex. Such delayed substitution is executed by a separate rule (σlet). This
reading is obscured if we unfold the definition of delayed substitution and write the “low
level”10 definition of the rules in terms of the primitive syntax:

(β⊃) E [h(λx.M)N ] → letx = h(N) in E [h(M)]
(σlet) letx = h(N) inS → [N/x]S

This version makes it clear that β⊃-reduction generates a let-expression, as is common
with CBV λ-calculi, although does not emphasize that the let-expression has a particular
form, and that this particular form has a meaning. We will see in Section 5, and has been
said before, that such particular form of let-expressions characterizes CBN fragments 11.

The rule σlet can be given yet another presentation:

(σlet) E [h(N)] → [N/x]S, if E = letx = [ ] inS (3)

This has the advantage of making uniform the style of the three normalisation rules, as
rules that take a statement, inspect its head, and reduce accordingly12. This presentation
also makes it plain that there is a σlet/σµ critical pair, as shown in Figure 6. In Section 5
it will become clear that this critical pair corresponds to the σµ̃/σµ critical pair of λµµ̃.
For this reason, we also refer to a CBN/CBV dilemma in λµlet.

syntax. For instance, β⊃ could be defined as the union of two rules:

a(h(λx.M)N ~N) → 〈N/x〉(a(h(M) ~N))

letx = h(λx.M)N ~N inS → 〈N/x〉(letx = h(M) ~N inS)

There are many disadvantages of this style of definition: it is less compact; the use of vectors ~N makes
it informal; it does not convey the manipulation of contexts that makes λµlet a control calculus.

10One example of “low-level-ness” in the following version of σlet is that we see that the term N in the
hole expression h(N) has to be stripped of the coercion before it is substituted for the term variable x.

11So, the β⊃-contractum shows some CBN/CBV ambiguity. Actually, if in the β⊃-redex the body
of the λ-abstraction is not a value, and E = letx = [ ] inS, then the β⊃-contractum generates imme-
diately a σlet/σµ critical pair. This CBN/CBV ambiguity does not surprise, since λµlet, as λµµ̃, will
“superimpose” [19] CBN and CBV.

12This is the modus operandi of the reduction rules, that is, reduction at root position. Of course,
these rules generate reduction relations by compatible closure, and the statement inspected can be at
arbitrary position in a expression.
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Figure 6: CBN/CBV dilemma in λµlet

[letx = [ ] inS′/a]S �
σµ

letx = h(µa.S) inS′
σlet

- [µa.S/x]S′

Rule σµ plays in λµlet a role similar to the role played by rules µ and ρ in λµ, being
the union of two rules:

b((h(µa.S) ~N)) → [b([ ] ~N)/a]S (4)

letx = h(µa.S) ~N inS′ → [letx = [ ] ~N inS′/a]S , (5)

with ~N of length m ≥ 0. In (4), if m = 0 then we have a version of the “renaming” rule
ρ; allowing m ≥ 0 gives a more general variant already considered in [2]. In (5), if m > 0
then a subexpression of the form h(µa.S)N exists; but, in contrast to rule µ of λµ, the
whole statement of which h(µa.S) is the head is transformed in a single σµ-step.

Rule ηµ is similar to the rule with same name in λµ. Rule ηlet has no counterpart in
λµ because the latter has no let-expressions.

Finally a technical remark. In general, a statement S can be decomposed as E [H] for
many choices of the pair E , H; however, in the redexes for rules β⊃, σµ, ηlet, and σlet in
the version (3), E is uniquely determined.

3.2. Properties of the system
Strong normalisation of typable expressions and subject reduction will be a conse-

quence of isomorphism with λµµ̃, to be proved in the next section. Another consequence
of isomorphism is that the σlet/σµ critical pair breaks confluence of λµlet, in the same
way as the σµ̃/σµ critical pair breaks confluence of λµµ̃. Later (see Section 5) we will dis-
cuss fragments of λµlet that are isomorphic to confluent fragments of λµµ̃, and therefore
confluent themselves.

The β⊃σµσlet-normal forms are given by:

Mnf , Nnf ::= x |λx.Mnf |µa.Snf
Hnf ::= h(x) |HnfNnf
Snf ::= a(h(λx.Mnf ))

| a(Hnf ) | letx = HnfNnf inSnf

At the level of derivations, the normality criterion is:

• The left premiss of every substitution is the conclusion of an elimination;

• The premiss of a coercion is never the conclusion of an activation; moreover if a
coercion is the main premiss of an elimination, then its premiss is an assumption.

We say that A is a subformula of Γ (resp. ∆) if there is some declaration x : B (resp.
a : B) in Γ (resp. ∆) such that A is a subformula of B.
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Theorem 1 (Subformula property).

1. In a derivation of Γ `Mnf : A|∆, all formulas are subformulas of Γ, A, or ∆.
2. In a derivation of Snf : (Γ ` ∆), all formulas are subformulas of Γ or ∆.
3. In a derivation of ΓBHnf : A|∆, (a) all formulas are subformulas of Γ or ∆; and

(b) A is a subformula of Γ.

Proof: Before we embark on it, we do an analysis of the typing rules in Fig. 4. Let
φ1(Mnf ), φ2(Snf ), and φ3(Hnf ) be the three statements in the theorem we are prov-
ing. Notice we can ask φ1(M) of any term (not necessarily normal), similarly for φ2(S)
and φ3(H). But we cannot ask φ2(M), because φ2 applies to statements and is not
“appropriate” to terms.

Let us say that a typing rule of λµlet preserves the subformula property if the expres-
sion in the conclusion of the rule satisfies the appropriate φi whenever the expressions
in the premisses satisfy the appropriate φi’s. Notice that the expressions in the pre-
misses and conclusions of the rules are not necessarily normal. For instance, the rule Act
preserves the subformula property if φ2(S) implies φ1(µa.S). A simple rule inspection
shows that all rules but Coercion preserve the subformula property. There is nothing
to prove for Assumption, Intro, Act, and Pass, as all formulas in the premis(ses) stay
unchanged, or are replaced by superformulas, in the conclusion. The proviso 3.(b) is
enough for Elim and Subst. For instance, although the substitution formula A disap-
pears in the conclusion of Subst, it is in Γ by the proviso. The rule Coercion is different,
because φ1(M) guarantees part (a) but not part (b) of φ3(h(M)).

Now the proof of the theorem: it is by simultaneous induction on Mnf , Snf , and Hnf .
According to the inductive definition of normal forms, there are 8 cases. All cases in the
proof which do not mention h(.) are done, by IH and the fact that all rules different from
Coercion preserve the subformula property. The two cases remaining are Hnf = h(x)
and Snf = a(h(λx.Mnf )). For these we check the respective claims by analyzing the
respective derivations. This is trivial for Hnf (yes, in the case h(x) part (b) can be
guaranteed); for Snf the IH for Mnf suffices. �

3.3. Discussion
Maybe the reader finds some aspects of the design of λµlet unnecessarily complex or

even unfortunate. But recall that there is no real freedom to design the system as we
please or think is right; the design of the system is dictated by the axiom that λµlet is to
be the isomorphic reflection of λµµ̃ in natural deduction. However, a closer inspection
reveals an intrinsic justification of many aspects of λµlet.

Consider the reduction rules of λµlet. We might regret, at first sight, their complex
formulation, with explicit manipulation of contexts E . A more careful consideration
shows some of their virtues. First, recall that λµlet, being isomorphic to λµµ̃ has to
encompass both CBN and CBV computation, and that CBV computation is “de facto
complex to describe” [20] - as is seen from the axiomatizations in [32, 20]. Compared to
these, the set of reduction rules of λµlet is relatively mild, as we do not see big sets of
permutative rules. Indeed, the set of reduction rules of λµlet has a pattern that is very
close to that of λµ, with σµ even abstracting the two rules µ and ρ, and a similar ηµ-
rule. The split of β into a rule for generating and another for executing substitution is a
familiar design. Second, still on explicit manipulation of contexts E : isn’t λµlet supposed
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to be a control calculus? The rule σµ is particularly important: it expresses the features
of µ-abstraction as a control operator. Once σµ of λµlet is proved isomorphic to σµ
of λµµ̃, we will finally understand in what sense the µ-abstraction of λµµ̃ is a control
operator.

Consider now the organization of λµlet’s expressions into three syntactic classes:
terms, hole-expressions, and statements. The same number of classes is seen in λµµ̃
(terms, co-terms, and commands), but in λµµ̃ the perfect symmetry imposes the design.
The isomorphic design of λµlet delivers a syntax with the same number of classes, but it
seemingly lost the term/co-term symmetry. However, if λµlet is isomorphic to λµµ̃, the
symmetry has to be there: the point is that the symmetry is not necessarily observed in
the primitive syntax. In fact, once the isomorphism λµµ̃ ∼= λµlet is sufficiently analyzed
in Section 4, the term/co-term symmetry of λµµ̃, which prima facie is just a formal
symmetry, and whose informal semantics [7] is a symmetry between terms and “contexts”,
is recovered in λµlet as the symmetry between terms and contexts.

Moreover, the design of λµlet with its three syntactic classes can be justified without
reference to λµµ̃, as an internal necessity of the development of natural deduction as a
“coercion calculus”. This terminology is due to [6], where one such calculus is introduced
as an auxiliary tool in the study of the meta-theory of a fragment of sequent calculus13.
Essentially, the coercion calculus of [6] changes the definition of the ordinary λ-calculus

M,N ::= x |λx.M |MN ,

to
M,N ::= x |λx.M | {H} H ::= h(M) |HN ,

where the separation into several syntactic classes starts, and where MN is developed
into a backward coercion {H}, that forces an H back to the class of terms. In [10], the
author recognized the idea of coercion calculus as a principle for the design of natural
deduction systems isomorphic to successively larger fragments of the sequent calculus.
In order to reflect full intuitionistic sequent calculus, the next step [12] was to develop
{H} into a construction letx = H inP 14, yielding:

M,N,P ::= x |λx.M | letx = H inP H ::= h(M) |HN .

λµlet represents a further elaboration into µa.S of the same construction

M,N,P ::= x |λx.M |µa.S S ::= a(H) | letx = H inS H ::= h(M) |HN ,

capable of capturing full classical sequent calculus, but requiring the introduction of a
third syntactic class. The progression

MN := {h(M)N}
{H} := letx = H inx

letx = H inP := µa.letx = H in a(h(P ))

13The sequent calculus of [6] is called the “spine calculus”. The part of it concerned with intuitionistic
implication corresponds to the fragment of sequent calculus studied in [18].

14In [12], letx = H inP is written {H/x}P .
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determines the inclusions among the four successive natural deduction systems just men-
tioned; it also determines the successive split of the original concept of application.

Consider, finally, the proof of the subformula property. In Gentzen’s LK [15], a
proof of the subformula property by rule inspection works: in any inference rule different
from the cut rule, all formulas occurring in the premisses are repeated or replaced by
superformulas in the conclusions. As we have seen, in λµlet inspection of inference rules
falls short. Likewise, inspection of inference rules is also insufficient for establishing the
subformula property for λµµ̃, because some instances of Cut are not eliminable. Never-
theless, in λµlet a proof by induction on normal forms is possible and straightforward;
in addition, like in LK and λµµ̃ the problem with the subformula property in localized
in a single inference rule: the cut rule in the case of sequent calculus, the rule Coercion
in the case of λµlet.

4. Isomorphism

In this section mappings Θ : λµµ̃ → λµlet and Ψ : λµlet → λµµ̃ are defined and
analyzed. We show why Θ is a semantics of λµµ̃, and explain the proof-theory of let-
expressions, delayed substitutions and named expressions. Next we establish λµµ̃ ∼=
λµlet. As a corollary, strong normalisation and subject reduction for λµlet follow.

4.1. Mappings Θ and Ψ.
We start with an informal explanation. Let Θt = M , Θ(ui) = Ni and Θc = S15. The

idea behind Θ : λµµ̃ −→ λµlet is to map cuts as follows:

〈t|u1 :: · · · :: um :: µ̃x.c〉 7→ letx = h(M)N1 · · ·Nm inS (6)
〈t|u1 :: · · · :: um :: a〉 7→ a((h(M)N1 · · ·Nm)) (7)

The idea behind Ψ : λµlet −→ λµµ̃ is the translation of statements obtained by reverting
these mappings, with ΨM = t, Ψ(Ni) = ui and ΨS = c. Observe that, in (6) and
(7), each occurrence of left introduction ui :: ei is replaced by an occurrence application
HiNi. Conversely for Ψ. Moreover, such replacement inverts the right associativity of
the l.h.s. expressions of (6) and (7) - with the head term t at the surface - to the left
associativity of the r.h.s. expressions of (6) and (7) - with the head term M buried under
m applications.

Both Θ and Ψ consist of three mappings defined by simultaneous recursion in Fig. 7.
The morphism Θ : λµµ̃ −→ λµlet consists of three mappings

• Θ : λµµ̃− Terms −→ λµlet− Terms,

• Θ : λµµ̃− Commands −→ λµlet− Statements,

• Θ : λµlet−HoleExpressions× λµµ̃− Contexts −→ λµlet− Statements

The morphism Ψ : λµlet −→ λµµ̃ consists of three mappings

15As usual in mathematics, we omit parentheses in function application when no confusion arises.
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Figure 7: Mappings Θ : λµµ̃→ λµlet and Ψ : λµlet→ λµµ̃

Θx = x
Θ(λx.t) = λx.Θt
Θ(µa.c) = µa.Θc

Θ〈t|e〉 = Θ(h(Θt), e)
Θ(H, a) = a(H)

Θ(H, µ̃x.c) = letx = H in Θc
Θ(H,u :: e) = Θ(HΘu, e)

Ψx = x
Ψ(λx.M) = λx.ΨM
Ψ(µa.S) = µa.ΨS
Ψ(a(H)) = Ψ(H, a)

Ψ(letx = H inS) = Ψ(H, µ̃x.ΨS)
Ψ(h(M), e) = 〈ΨM |e〉

Ψ(HN, e) = Ψ(H,ΨN :: e)

• Ψ : λµlet− Terms −→ λµµ̃− Terms,

• Ψ : λµlet− Statements −→ λµµ̃− Commands,

• Ψ : λµlet−HoleExpressions× λµµ̃− Contexts −→ λµµ̃− Commands

Proposition 1 (Soundness). The typing rules of Figure 8 are admissible.16

Proof: The left rules are proved by simultaneous induction on the t, c, and e, using
inversion of the typing rules of λµµ̃, which is obvious, since the typing system of λµµ̃ is
syntax-directed. The right rules are proved by simultaneous induction on M , S, and H,
using inversion of the typing rules of λµlet, which again is obvious, as the typing system
of λµlet is syntax-directed. We just show the first induction.

The cases t = x, t = λx.t′, and t = µa.c are straightforward.
Case c = 〈t|e〉. Suppose 〈t|e〉 : (Γ ` ∆). We get Γ ` t : A|∆ and Γ|e : A ` ∆, for some

A. The IH for t gives Γ ` Θt : A|∆, from which we get Γ B h(Θt) : A|∆, by Coercion.
This last sequent, together with IH for e yields Θ(h(Θt), e) : (Γ ` ∆). We are done, since
Θ(h(Θt), e) = Θ(〈t|e〉).

Case e = a. Suppose Γ|a : A ` a : A,∆ and ΓBH : A|a : A,∆. From the last sequent
we get a(H) : (Γ ` a : A,∆) by Pass. We are done, since a(H) = Θ(H, a).

Case e = µ̃x.c. Suppose Γ|µ̃x.c : A ` ∆ and Γ B H : A|∆. From the first sequent
we get c : (Γ, x : A ` ∆). By IH for c we get Θc : (Γ, x : A ` ∆). From this and
the typing of H we get, by Subst, letx = H in Θc : (Γ ` ∆). We are done, since
letx = H in Θc = Θ(H, µ̃x.c).

Case e = u :: e′. Suppose Γ|u :: e′ : A ⊃ B ` ∆ and ΓBH : A ⊃ B|∆. From the first
sequent we get Γ ` u : A|∆ and Γ|e′ : B ` ∆. From the IH for u we get Γ ` Θu : A|∆.
From this and the typing of H we get, by Elim, ΓBH(Θu) : B|∆. From this and the IH
for e′ we get Θ(H(Θu), e′) : (Γ ` ∆). We are done, since Θ(H(Θu), e′) = Θ(H,u :: e′).
�

As a consequence, Θ and Ψ preserve typability.

Proposition 2 (Bijections). Θ and Ψ are inverse bijections at the level of terms and
commands/statements. More precisely:

16It is an abuse of language to call the implications in Figure 8 “admissible typing rules”, since
premisses and conclusions live in different system. Yet it is a harmless abuse that we are going to repeat.
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Figure 8: Soundness of Θ and Ψ

Γ ` t : A|∆
Γ ` Θt : A|∆

Γ `M : A|∆
Γ ` ΨM : A|∆

c : (Γ ` ∆)
Θc : (Γ ` ∆)

S : (Γ ` ∆)
ΨS : (Γ ` ∆)

ΓBH : A|∆ Γ|e : A ` ∆
Θ(H, e) : (Γ ` ∆)

ΓBH : A|∆ Γ|e : A ` ∆
Ψ(H, e) : (Γ ` ∆)

1. ΘΨM = M and ΘΨ(H, e) = Θ(H, e) (for all e) and ΘΨS = S.
2. ΨΘt = t and ΨΘ(H, e) = Ψ(H, e) (for all H) and ΨΘc = c

Proof: The first statement is by simultaneous induction on M , H and S. The second
by simultaneous induction on t, e and c. We just show the first induction.

Cases M = x, M = λx.M ′ and M = µa.S are straightforward.
Case H = h(M). ΘΨ(h(M), e) = Θ(〈ΨM |e〉) = Θ(h(ΘΨM), e) ∗= Θ(h(M), e), where

the marked equality is by IH for M .
Case H = H ′N . ΘΨ(H ′N, e) = ΘΨ(H ′,ΨN :: e) ∗= Θ(H ′,ΨN :: e) = Θ(H ′N, e),

where the marked equality is by IH for H ′.
Case S = a(H). ΘΨ(a(H)) = ΘΨ(H, a) ∗= Θ(H, a) = aH, where the marked equality

is by IH for H.
Case S = letx = H inS′. ΘΨ(letx = H inS′) = ΘΨ(H, µ̃x.ΨS′) ∗= Θ(H, µ̃x.ΨS′) =

letx = H in ΘΨS′ ∗∗= letx = H inS′, where the first marked equality is by IH for H and
the second by IH for S′. �

4.2. Proof-theoretical foundation for let-expressions and named expressions.
Recall the typing systems of λµµ̃ and λµlet (Figs. 2 and 4). We explain the difference

between cut in λµµ̃ and the substitution inference rule in λµlet, thereby clarifying the
proof-theoretical status of let-expressions, and completing the discussion of the typing
system of λµlet in Subsection 3.1. We also argue that delayed substitutions and Parigot’s
named terms are, in some sense, neutral w.r.t. the sequent calculus/natural deduction
difference.

Recall the correspondences (6) and (7), and that a cut of the form of the l.h.s. of (6),
resp. (7), is what we have called in Subsection 2.3 a µ̃-cut, resp. a covar-cut. So, there
is a bijective correspondence between µ̃-cuts and let-expressions, and between covar-cuts
and named expressions. Also, observe that

〈t/x〉c 7→ 〈M/x〉S (8)
a(t) 7→ a(M) (9)

are particular cases of (6) and (7), respectively.
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In contrast to the right premiss e of a µ̃-cut 〈t|e〉, the right premiss S of the substi-
tution inference letx = H inS can never be the conclusion of left-introduction (similar
remark already made by Negri and von Plato [23], pg. 172). But, on the other hand, the
left premiss H is not limited to be morally a term h(M) (as is the left premiss t in 〈t|e〉),
it can be a sequence of eliminations. So, µ̃-cuts (in sequent calculus) are more general
on the right premiss, while substitutions (in natural deduction) are more general on the
left premiss. But there is a kind of common, neutral case, when e = µ̃x.c (so e is not
a left introduction - the distinctive sequent calculus inference), and H = h(M) (so H is
not an elimination - the distinctive natural deduction inference). Then the µ̃-cut has the
form 〈t/x〉c = 〈t|µ̃x.c〉 and the substitution has the form 〈M/x〉S = letx = h(M) inS,
the form of a delayed substitution.

Similarly, a covar-cut 〈t|e〉 is more general on the right premiss, as e can be a left-
introduction, whereas a named expression a(H) is more general on its left (and unique)
premiss, as H can be an elimination. Parigot’s named terms can be seen as the common
case of covar-cuts and the construction a(H): such case reads a(t) = 〈t|a〉 (e = a is not a
left introduction) and a(M) = a(h(M)) (H = h(M) is not an elimination). See Figure 9
for a summary of this discussion.17

4.3. Contexts vs co-terms
The isomorphism λµµ̃ ∼= λµlet to be proved below holds between the respective

reduction relations. Since many of the reduction rules of λµlet are defined with the
help of contexts, we have to understand better how mappings Θ and Ψ deal with such
syntactic concept.

Let Contexts (resp. HoleExpressions, Statements) be a shorthand for the set
λµlet − Contexts (resp. λµlet-HoleExpressions, λµlet-Statements). Let CoTerms
be a shorthand for the set λµµ̃-CoTerms.

There is an algebra E with carrier Contexts and the following operations: one con-
stant a([ ]) for each a; one constant letx = [ ] inS for each S; and, for each N , a unary
operation that maps E to E [[ ]N ]. In fact, each E ∈ Contexts is generated by E in a
unique way18. In particular, contexts can be defined inductively as follows:

E ::= a([ ]) | letx = [ ] inS | E [[ ]N ] (10)

On the other hand, each context E corresponds naturally with a function of type
HoleExpressions → Statements; it is the function that sends H to E [H]. We call
semantic context a function of type HoleExpressions → Statements in the range of
this correspondence. In fact, the described correspondence is 1-1 and so a bijection
between Contexts and the set of semantics contexts.

Let e be a co-term of λµµ̃ and consider Θ( , e) : HoleExpressions→ Statements. Is
Θ( , e) a semantic context? Let us introduce the auxiliary mapping Θ̂ given in the left
half of Figure 10. By a straightforward induction on e one proves that

(Θ̂e)[H] = Θ(H, e) . (11)

17In intuitionistic logic [12], cuts correspond only to substitution. The idea of delayed substitution as
a common particular case of cut and substitution is also found in op. cit.

18For this reason, there is the possibility, not followed in the present paper, of identifying contexts
with “contextuals” [13], that is, the closed Σ-terms (in the sense of universal algebra), where Σ is the
signature of the algebra E.
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Figure 9: Composition and naming principles

λµµ̃
µ̃-cut
〈t|e〉

e = u1 :: · · · :: um :: µ̃x.c

(Composition Principles)

λµlet
Substitution
letx = H inS

H = h(M)N1 · · ·Nm

Delayed substitution

〈t|µ̃x.c〉 =: 〈t/x〉c (8)7−→ 〈M/x〉S := letx = h(M) inS

�
m = 0m = 0

-

λµµ̃
Covar-cut
〈t|e〉

e = u1 :: · · · :: um :: a

(Naming Principles)

λµlet
Named expression

a(H)
H = h(M)N1 · · ·Nm

Parigot’s named terms

〈t|a〉 =: a(t)
(9)7−→ a(M) := a(h(M))

�
m = 0m = 0-
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Figure 10: Θ̂ : CoTerms→ Contexts and Ψ̂ : Contexts→ CoTerms

Θ̂(a) = a([ ])
Θ̂(µ̃x.c) = letx = [ ] in Θc
Θ̂(u :: e) = (Θ̂e)[[ ]Θu]

Ψ̂(a([ ])) = a

Ψ̂(letx = [ ] inS) = µ̃x.ΨS
Ψ̂(E [[ ]N ]) = ΨN :: Ψ̂E

Figure 11: Correspondence of reduction rules

R in λµµ̃ R′ in λµlet
β⊃ β⊃
σµ̃ σlet

σµ σµ
η⊃ η⊃
ηµ̃ ηlet

ηµ ηµ

Hence, not only Θ( , e) is a semantic context, it is the semantic context corresponding
to the context Θ̂e.

The auxiliary mapping Θ̂ is useful in the proof of λµµ̃ ∼= λµlet because of (11), by
which a statement Θ(H, e) is analyzed as H filled in the hole of context Θ̂e. The inverse
of mapping Θ̂ is also useful, and given in the right half of Figure 10. Clearly:

Ψ̂Θ̂e = e Θ̂Ψ̂E = E . (12)

4.4. Isomorphism and corollaries
Theorem 2 (λµµ̃ ∼= λµlet). The mappings Θ and Ψ are inverse isomorphisms of reduc-
tion relations at the levels of terms and commands/statements. More precisely, let R be
a reduction rule of λµµ̃ and R′ be the corresponding reduction rule of λµlet according to
Figure 1119. Then:

1. For terms:
(a) t→R t

′ in λµµ̃ iff Θt→R′ Θt′ in λµlet.
(b) M →R′ M

′ in λµlet iff ΨM →R ΨM ′ in λµµ̃.
2. For co-terms/hole-expressions:

(a) e→R e
′ in λµµ̃ only if, for all H, Θ(H, e)→R′ Θ(H, e′) in λµlet;

(b) H →R′ H
′ in λµlet only if, for all e, Ψ(H, e)→R Ψ(H ′, e) in λµµ̃;

3. For commands/statements:
(a) c→R c

′ in λµµ̃ iff Θc→R′ Θc′ in λµlet.
(b) S →R′ M

′ in λµlet iff ΨS →R ΨS′ in λµµ̃.

19As said before, the case η⊃ is postponed to Section 6.
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Proof: The “if” statements in 1. follow from the “only if” statements in 1. and
bijection. Similarly, the “if” statements in 3. follow from the “only if” statements in 3.
and bijection. So, it suffices to prove the “only if” statements.

The “only if” statements 1(a), 2(a) and 3(a) use the following properties of Θ:

(i) Θ([e/a]t) = [Θ̂e/a]Θt and Θ([e/a]c) = [Θ̂e/a]Θc;

(ii) Θ(〈u/x〉c) = 〈Θu/x〉Θc;

(iii) Θ([u/x]t) = [Θu/x]Θt and Θ([u/x]c) = [Θu/x]Θc;

(iv) H → H ′ ⇒ Θ(H, e)→ Θ(H ′, e).

(i) is proved together with Θ([Θ̂e/a]H, [e/a]e′) = [Θ̂e/a]Θ(H, e′), for all H. The proof
is a simultaneous induction on t, c and e′. (ii) is proved by a simple calculation (this is
actually (8)). (iii) is proved together with Θ([Θt/x]H, [t/x]e) = [Θt/x]Θ(H, e), for all H.
The proof is a simultaneous induction on t, c and e. (iv) is proved by induction on e.

The “only if” statements 1(a), 2(a), and 3(a) are proved by simultaneous induction
on t→R t

′ and e→R e
′ and c→R c

′. Here are the base cases:
Case β⊃: 〈λx.t|u :: e〉 → 〈u/x〉〈t|e〉.

Θ(〈λx.t|u :: e〉)
= Θ(h(λx.Θt)Θu, e) (by def. of Θ)
= (Θ̂e)[h(λx.Θt)Θu] (by (11))
→β⊃ 〈Θu/x〉(Θ̂e)[h(Θt)]

= 〈Θu/x〉Θ(h(Θt), e) (by (11))
= 〈Θu/x〉Θ〈t|e〉 (by def. of Θ)
= Θ(〈u/x〉〈t|e〉) (by (ii))

Case σµ: 〈e/a〉c→ [e/a]c.

Θ〈e/a〉c = Θ(h(µa.Θc), e) (by def. of Θ)
= (Θ̂e)[h(µa.Θc)] (by (11))
→σµ [Θ̂e/a]Θc

= Θ([e/a]c) (by (i))

Case σµ̃: 〈t/x〉c→ [t/x]c.

Θ(〈t/x〉c) = 〈Θt/x〉Θc (by (ii))
→σlet

[Θt/x]Θc
= Θ([t/x]c) (by (iii))

Case ηµ: µa.〈t|a〉 → t, with a /∈ t.

Θ(µa.〈t|a〉) = µa.a(h(Θt)) (by def. of Θ)
→ηµ Θt (a /∈ Θt)

Case ηµ̃: µ̃x.〈x|e〉 → e, with x /∈ e.
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Θ(H, µ̃x.〈x|e〉)
= letH = x in Θ(h(x), e) (by def. of Θ)
= letH = x in (Θ̂e)[h(x)] (by (11))
→ηµ̃ (Θ̂e)[H] (x /∈ Θe)

= Θ(H, e) (by (11))

Most of the inductive cases follow simply by IH. There are two, however, that use
(iv). We illustrate one example.

Suppose u :: e → u′ :: e, with u → u′. Let H be arbitrary. We want Θ(H,u :: e) →
Θ(H,u′ :: e). By IH, Θu→ Θu′. So HΘu→ HΘu′. By (iv), Θ(HΘu, e)→ Θ(HΘu′, e).
We are done, since Θ(H,u :: e) = Θ(HΘu, e) and Θ(H,u′ :: e) = Θ(HΘu′, e).

The “only if” statements 1(b), 2(b), and 3(b) use the following properties of Ψ:

(i) Ψ([E/a]M) = [Ψ̂E/a]ΨM and Ψ([E/a]S) = [Ψ̂E/a]ΨS;

(ii) Ψ(〈N/x〉S) = 〈ΨN/x〉ΨS;

(iii) Ψ([N/x]M) = [ΨN/x]ΨM and Ψ([N/x]S) = [ΨN/x]ΨS.

(iv) e→ e′ ⇒ Ψ(H, e)→ Ψ(H, e′)

(i) is proved together with Ψ([E/a]H, [Ψ̂E/a]e) = [Ψ̂E/a]Ψ(H, e), for all e. The proof is
a simultaneous induction on M , S and H. (ii) is proved by a simple calculation. (iii)
is proved together with Ψ([N/x]H, [ΨN/x]e) = [ΨN/x]Ψ(H, e), for all e. The proof is a
simultaneous induction on M , S and H. (iv) is proved by induction on H.

We also need the following remark:

e = Ψ̂E ⇒ Ψ(E [H]) = Ψ(H, e) . (13)

Indeed, if e = Ψ̂E , then E = Θ̂e. Hence, Ψ(E [H]) = Ψ((Θ̂e)[H])
(11)
= ΨΘ(H, e) = Ψ(H, e).

The “only if” statements 1(b), 2(b), and 3(b) are proved by simultaneous induction
on M →R M

′ and H →R H
′ and S →R S

′. Here are the base cases:
Case β⊃: E [h(λx.M)N ]→ 〈N/x〉E [h(M)]). Let e = Ψ̂E .

Ψ(E [h(λx.M)N ])
= Ψ(h(λx.M)N, e) (by (13))
= 〈λx.ΨM |ΨN :: e〉 (by def. of Ψ)
→β⊃ 〈ΨN/x〉〈ΨM |e〉

= 〈ΨN/x〉Ψ(h(M), e) (by def. of Ψ)
= 〈ΨN/x〉Ψ(E [h(M)]) (by (13))
= Ψ(〈N/x〉E [h(M)]) (by (ii))

Case σµ: E [h(µa.S)]→ [E/a]S. Let e = Ψ̂E .

Ψ(E [h(µa.S)] = Ψ(h(µa.S), e) (by (13))
= 〈µa.ΨS|e〉 (by def. of Ψ)
→σµ [e/a]ΨS

= [Ψ̂E/a]ΨS (by assumption)
= Ψ([E/a]S) (by (i))
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Case σlet: 〈N/x〉S → [N/x]S.

Ψ(〈N/x〉S) = 〈ΨN/x〉ΨS (by (ii))
→σµ̃ [ΨN/x]ΨS

= Ψ([N/x]S) (by (iii))

Case ηµ: µa.a(h(M))→M , with a /∈M .

Ψ(µa.a(h(M))) = µa.〈ΨM |a〉 (by def. of Ψ)
→ηµ ΨM (a /∈ ΨM)

Case ηµ̃: letH = x in E [h(x)]→ E [H], with x /∈ E . Let e = Ψ̂E .

Ψ(letH = x in E [h(x)])
= Ψ(H, µ̃x.Ψ(E [h(x)])) (by def. of Ψ)
= Ψ(H, µ̃x.Ψ(h(x), e)) (by (13))
= Ψ(H, µ̃x.〈x|e〉) (by def. of Ψ)
→ηµ̃ Ψ(H, e) (by (iv))

= Ψ(E [H]) (by (13))

Most of the inductive cases follow simply by IH. There are two, however, that use
(iv). We illustrate one example.

Suppose letx = H inS → letx = H inS′, with S → S′. We want Ψ(letx = H inS)→
Ψ(letx = H inS′). By IH ΨS → ΨS′. So µ̃x.ΨS → µ̃x.ΨS′. By (iv) Ψ(H, µ̃x.ΨS) →
Ψ(H, µ̃x.ΨS′). We are done since Ψ(letx = H inS) = Ψ(H, µ̃x.ΨS) and Ψ(letx =
H inS′) = Ψ(H, µ̃x.ΨS′). �

Corollary 1 (SN). Every typable expression of λµlet is β⊃σletσµηµηlet-SN.

Proof: A consequence of the facts: SN holds of λµµ̃ [27], Ψ is sound, and λµµ̃ ∼= λµlet.
Let us see the case of a typable hole expression H (the cases of a term or statement
being similar and slightly simpler). Suppose there is an infinite reduction sequence from
H. Suppose Γ BH : A|∆. Let a be a fresh co-variable. Then Γ BH : A|∆, a : A (since
weakening is admissible) and Γ|a : A ` ∆, a : A. By part 2(b) of Theorem 2, there
is an infinite reduction sequence from Ψ(H, a). But Ψ(H, a) is a typable command, by
soundness of Ψ. This contradicts SN of λµµ̃. �

Corollary 2 (Subject reduction). In λµlet, subject reduction holds of terms, hole ex-
pression, and statements.

Proof: A consequence of the facts: subject reduction holds of λµµ̃, Θ and Ψ are sound,
and λµµ̃ ∼= λµlet. For reduction on terms or statements, the proof is straightforward.
Let us see the case of reduction on hole expressions.

Suppose H → H ′ and Γ B H : A|∆. Let a be a fresh co-variable. Then Γ B H :
A|∆, a : A (since weakening is admissible) and Γ|a : A ` ∆, a : A. By part 2(b)
of Theorem 2, Ψ(H, a) → Ψ(H ′, a). By soundness of Ψ, Ψ(H, a) : (Γ ` ∆, a : A)
and, by subject reduction of λµµ̃, Ψ(H ′, a) : (Γ ` ∆, a : A). By soundness of Θ,
ΘΨ(H ′, a) : (Γ ` ∆, a : A), so Proposition 2 gives Θ(H ′, a) : (Γ ` ∆, a : A), hence
a(H ′) : (Γ ` ∆, a : A). By inversion of Pass we get ΓBH ′ : A|∆, a : A, and admissibility
of strengthening yields ΓBH ′ : A|∆. �
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5. Call-by-name and call-by-value

In this section we analyze CBN and CBV in λµlet. We do “read-back” [7, 20] in a
systematic fashion, reflecting into λµlet, through Θ, the definitions of CBN and CBV
reductions and fragments of λµµ̃. In the first subsection we define CBN and CBV
reduction and make an overview of the results about fragments. The detailed treatment
of fragments comes in the following two subsections. The study of CBN fragments of
λµlet leads us very close to λµ. We round off the section with a precise connection with
this system.

5.1. Read-back
CBN and CBV reduction. In λµµ̃, CBN and CBV reduction is defined [7] by

giving priority to either σµ̃ or σµ, respectively, in the CBN/CBV dilemma of λµµ̃ - recall
(1) in Section 2. This means:

• in CBV, the command 〈t|µ̃x.c〉 is a σµ̃-redex only if it is not a σµ-redex, that is,
only when t is a value. This restriction of the reduction rule σµ̃ is called cbv σµ̃.

• in CBN, the command 〈µa.c|e〉 is a σµ-redex only if it is not a σµ̃-redex, that is,
only when e is a co-value. This restriction of the reduction rule σµ is called cbn σµ.

Recall the CBN-CBV dilemma of λµlet in Fig. 6. In λµlet we define:

• CBV reduction: The reduction rule σµ̃ is restricted to letx = h(V ) inS → [V/x]S.
The restricted rule is called cbv σµ̃, and can be rewritten as 〈V/x〉S → [V/x]S.

• CBN reduction: The reduction rule σµ is restricted to E ′[h(µa.S)] → [E ′/a]S,
where E ′ is a co-value in λµlet, that is, a context of the form a([ ]) or E [[ ]N ]. The
restricted rule is called cbn σµ.

With the first restriction, the σµ̃-reduction in Fig. 6 becomes forbidden; with the
second, it is the σµ-reduction in Fig. 6 which becomes blocked.

CBN and CBV fragments. We now consider, not only restrictions to the reduction
rules, but also restrictions to the sets of expressions.

λµµ̃ contains a CBN fragment λµµ̃T (the T subsystem) and a CBV fragment λµµ̃Q

(the Q subsystem), closed for CBN and CBV reduction, respectively. In addition, λµµ̃T

contains itself a fragment λµ close to λµ, whereas λµµ̃Q contains itself a fragment λµ̃
which can be “read-back” as a CBV λ-calculus. All this comes from [7] and is recalled
in Appendix A.

In λµµ̃ the T (resp. Q) subsystem is defined by requiring the right (resp. left) premiss
of the left-introduction rule to be a co-value (resp.value). This is remarkably symmetric
and elegant. In λµlet we will have:

• T subsystem: obtained by restricting let-expressions to delayed substitutions.

• Q subsystem: obtained by restricting HN to HV .
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These characterizations are perhaps not so elegant as those of λµµ̃, but nevertheless
they are either familiar (the restriction of arguments to values in the CBV case [26, 33])
or insightful (CBN case). Since λµ is essentially contained in the T subsystem (as we
will see), it shares with the latter the identifications that make it a CBN system. The
identification of let-expressions with delayed substitutions is perceptible only from the
point of view of the larger system λµlet; from the reduced perspective of the syntax of λµ
it is difficult to guess. In fact, λµ (as originally defined by Parigot) follows the traditional
approach in natural deduction [28] and goes even further than restricting let-expressions
to delayed substitutions: it only allows meta-substitution.

In the remainder of this section, we will define and discuss CBV fragments λµletQ,
λlet, and CBN fragments λµletT, λµ of λµlet. For now, we just state:

Theorem 3 (Read-back).

1. For reduction: Θ and Ψ are inverse isomorphisms between cbv-σµ̃-reduction in λµµ̃
and cbv-σµ̃-reduction in λµlet. Similarly for cbn-σµ-reduction.

2. For fragments: the CBN fragments λµletT, λµ, and CBV fragments λµletQ, λlet
of λµlet are such that appropriate restrictions of Θ, Ψ establish the isomorphisms
illustrated in Fig. 12. 20

We skip the proof. Both statements are proved by suitable adaptations of Theorem 2
(the second once the fragments are defined).

5.2. Call-by-value fragments
We now introduce the CBV natural deduction fragments that correspond to λµµ̃Q

and λµ̃.
The fragment λµletQ of λµlet is defined in Fig. 13. λµletQ is obtained from λµlet

through two restrictions: (i) applications are constrained to the form HV , where V is a
value; accordingly, contexts E have the restricted form of CBV contexts:

Ev ::= a([ ]) | letx = [ ] inS | Ev[[ ]V ] .

(ii) σµ̃ is constrained to cbv σµ̃, which from now on we denote σµ̃v.
The fragment λlet of λµlet, smaller than λµletQ, is defined in Fig. 14. λlet is ob-

tained from λµletQ after two steps, very much like λµ̃ is obtained from λµµ̃Q. First,
µ-abstraction is removed from the syntax. This is achieved by restricting heads h(M) to
the form h(V ) and hiding µ-abstraction occurring under a λ through a “double abstrac-
tion” λ(x, a).S. After the first step, the class of terms can be dispensed with, and values
are generated by the grammar V ::= x |λ(x, a).S |λx.V . In the second step values of
the form λx.V are dropped, since they can be recovered as λ(x, a).a(h(V )), with a fresh.
The double abstraction makes the β⊃ rule generate two substitutions, which somehow
compensates the absence of σµ. Since µ-abstraction was removed from the syntax, rule
ηµ is dropped.

20The naming of systems is as follows. Symbols µ, T, and Q are invariant, when moving between
sequent calculus and natural deduction. The remaining symbols obey the correspondence λ/λ and µ̃/let.
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Figure 12: CBN and CBV fragments

λµµ̃ �
Θ,Ψ - λµlet

λµµ̃Q
� Θ,Ψ - λµletQ

λµ̃ �
Θ,Ψ - λlet

λµµ̃T
� Θ,Ψ- λµletT

λµ �
Θ,Ψ - λµ

λµ

Figure 13: λµletQ: a CBV fragment of λµlet

V ::= x |λx.M
M,N ::= V |µa.S

H ::= h(M) |HV
S ::= a(H) | letx = H inS

(β⊃) Ev[h(λx.M)V ] → 〈V/x〉Ev[h(M)]
(σµ̃v) 〈V/x〉S → [V/x]S
(σµ) Ev[h(µa.S)] → [Ev/a]S
(ηµ) µa.a(h(M)) → M, a /∈M

(ηlet) letx = H in Ev[h(x)] → Ev[H], x /∈ Ev

Figure 14: λlet: a CBV fragment of λµlet

V ::= x |λ(x, a).S
H ::= h(V ) |HV
S ::= a(H) | letx = H inS

(β⊃) Ev[h(λ(x, a).S)V ] → [Ev/a][V/x]S
(σµ̃v) 〈V/x〉S → [V/x]S
(ηlet) letx = H in Ev[h(x)] → Ev[H], x /∈ Ev
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Discussion. There were a number of recent attempts to obtain a CBV λ-calculus
(in natural deduction syntax) with a formulation validated by a good correspondence
with λµµ̃ [7, 30, 19, 20]. 21 And yet, nothing like λµletQ (the Q fragment of natural
deduction) was obtained.

Curien and Herbelin give in [7] another system, named λµ̃, as the result of “reading
λµ̃ back in natural deduction style”. Its syntax is defined as follows:

V ::= x |λ(x, a).S
S ::= a(V ~V ) | letx = V ~V inS

Based on this syntax, reduction rules are given in [7] rephrasing the rules of λµ̃. In
addition, a mapping V : λµ̃ → λµ̃ is defined and claimed an isomorphism. In fact, λlet
is a formalization of λµ̃, and Ψ : λlet→ λµ̃ is the formal counterpart to V.

More generally, Ψ : λµletQ → λµµ̃Q is the isomorphism whose domain is the formal
“read-back” of λµµ̃Q. Such “read-back” is not attempted in [7] and has an admittedly
unsuccessful try in [19], as follows:22

M,N ::= x |λx.M |µa.S
A ::= h(M) |AN | letx = A inA
S ::= a(A)

Relatively to λµlet, this syntax has a remarkable difference: the placement of let-expressions.
We believe this causes even bijection to λµµ̃Q to fail, as reported in [19].

Finally, the system in [20] places applications and let-expressions in the class of terms.
As a result, there is in this system a set of “structural” reduction rules and some “ob-
servational rules” devoted to eliminate expressions which in λµlet (and therefore in λµµ̃)
are already ruled out by the organization of the syntactic classes. For instance, one such
rule is the “associativity” of let-expressions, that reduces a let whose actual parameter
is another let. Such expression does not exist in λµlet.

5.3. Call-by-name fragments
We now introduce the CBN natural deduction fragments that correspond to λµµ̃T

and λµ.
The fragment λµletT of λµlet is defined in Fig. 15. λµletT is obtained from λµlet

through two restrictions: (i) let-expressions are restricted to the form letx = h(N) inS,
which corresponds to a delayed substitution 〈N/x〉S; (ii) the rule σµ is restricted to the
case

En[h(µa.S)]→ [En/a]S ,

where CBN contexts En are given by

En ::= a([ ]) | En[[ ]N ] .

21Rocheteau’s definition of CBV [30] does not agree with Ong-Stewart’s [24]. Let M = (µb.S′)(µa.S),
let P = µb.[b([ ](µa.S))/b]S′ and Q = µa.[a((µb.S′)[ ])/a]S. According to Rocheteau, there is a
CBN/CBV dilemma in M , and P (resp. Q) is the CBN (resp. CBV) reduct of M . According to
Ong-Stewart, there is no dilemma in M and P is the only reduct of M .

22It is the calculus called ληµlet − η
let−app
µ in [19].
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Figure 15: λµletT: a CBN fragment of λµlet

M,N ::= x |λx.M |µa.S
H ::= h(M) |HN
S ::= a(H) | letx = h(N) inS

(β⊃) En[h(λx.M)N ] → 〈N/x〉En[h(M)]
(σµ̃) 〈N/x〉S → [N/x]S

(σµn) En[h(µa.S)] → [En/a]S
(ηµ) µa.a(h(M)) → M, a /∈M

Figure 16: λµ: a CBN fragment of λµlet

M,N ::= x |λx.M |µa.S
H ::= h(M) |HN
S ::= a(H)

(β⊃) h(λx.M)N → h([N/x]M)
(σµn) En[h(µa.S)] → [En/a]S

(ηµ) µa.a(h(M)) → M, a /∈M

This particular case of σµ is more restrictive than cbn σµ, and denoted σµn.
In λµletT rule ηµ̃ is a particular case of σ and thus is omitted.
The CBN fragment λµ of λµlet, smaller than λµletT, is defined in Fig. 16. λµ is

obtained from λµletT by removing let-expressions from the syntax. Hence rule σµ̃ is
dropped, and rule β⊃ has to compensate the absence of σµ̃ by executing immediately
the substitution it generates. Since this substitution does not have to be pulled out of
the context En, rule β⊃ can be defined in a “local” style, as a relation on hole-expressions.

Discussion. Contrary to the CBV case, Curien and Herbelin do not give in [7]
the system that would be the result of “reading λµ back in natural deduction style”.
Informally, its syntax would be defined as follows:

M ::= x |λx.M |µa.S
S ::= a(M ~N)

Based on this, we could rephrase the reduction rules of λµ. In fact, λµ is a formalization
of the resulting system, and Θ : λµ → λµ is the isomorphism between λµ and its read-
back. The more general Θ : λµµ̃T → λµletT gives the read-back of the T subsystem,
which is not attempted in [7, 19].

A possible point of view is this: there is no need to pursue CBN read-back because
there exists already the natural deduction system λµ. Maybe the absence of CBN read-
back in [7] stems from this opinion. We think otherwise: as illustrated in Figure 12, λµ
is just one among several CBN natural deduction systems.
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Figure 17: Connection with λµ

λµ
Θ -�
Ψ

λµ

λµ

g( )

6

| |

?

�

G

λµ
Θ -�
Ψ

λµ

λµ

p( )

6

| |

?

�

P

Figure 18: Mapping G : λµ→ λµ

G(x) = x
G(λx.M) = λx.GM
G(µa.S) = µa.G(S)
G(MN) = µa.〈GM |GN :: a〉 (a fresh)
G(a(M)) = 〈GM |a〉

5.4. Connection with λµ
We complete the analysis of CBN fragments by making precise the connection with

λµ. We are going to detail the lower triangle of Figure 12, showing that λµ and λµ are
variants of λµ. Since λµ is a fragment of λµlet, this completes a formal comparison of
λµ with the latter.

The lower triangle of Figure 12 appears in Figure 17 in two versions. One version
mentions mapping G : λµ → λµ, the other mapping P : λµ → λµ, both due to Curien
and Herbelin and defined in Figures 18 and 1923.

Besides Θ and Ψ, the other mapping occurring in both diagrams of Figure 17 is a
forgetful mapping | | : λµ → λµ, given in Fig. 20, that forgets the distinction between
term and hole expression, and erases the marks h( ). This is done with an auxiliary
mapping, defined simultaneously, that maps a hole expression H to a term |H|.

The two remaining mappings of Figure 17 are g( ) and p( ), of type λµ → λµ. Like
in λµlet (and λµµ̃), in λµ the ordinary application of a term to another term is not
primitive. So, in a mapping of type λµ → λµ, some encoding of MN is needed. The
obvious choice is µa.a(h(M)N), with a fresh. The mapping g( ) : λµ → λµ given in
Fig. 21 is based on this idea. However, in the case of multiple application, for instance
MN1N2, this definition can be optimized as follows:

µa2.a2(h(µa1.a1(h(M)N1))N2) = µa2.En[h(µa1.a1(h(M)N1))] with En = a2([ ]N2)

23The mapping we call G is named ( )n in [7] and ( )> in [19]. The mapping we call P is named ( )N

in [7] and ( )N in [19]. G “amounts to translate natural deduction into sequent calculus” [7], according
to an idea that goes back to Gentzen [15]. As recognized in [19], P adapts another idea of translation of
natural deduction into sequent calculus, due to Prawitz [28]. The intuitionistic version of P was studied
and proved to be an isomorphism in [9, 10].
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Figure 19: Mapping P : λµ→ λµ

P(x) = x
P(λx.M) = λx.PM
P(µa.S) = µa.P(S)
P(MN) = µa.P(M,P(N) :: a) (a fresh)

P(a(M)) = P(M,a) P(MN,E) = P(M,P(N) :: E)
P(M,E) = 〈P(M)|E〉 (M not application)

Figure 20: Mapping | | : λµ→ λµ

|x| = x
|λx.M | = λx.|N |
|µa.S| = µa.|S|

|a(H)| = a(|H|)

|HN | = |H||N |
|h(M)| = |M |

→σµn µa2.[En/a1](a1(h(M)N1))
= µa2.a2(h(M)N1N2)

This suggests to translate the inner application MN1, not as a term, but instead as the
hole expression h(M)N1 - thereby sparing some ηµ-expansions. The mapping p( ) : λµ→
λµ given in Fig. 22 is based on this idea. Three mappings are defined by simultaneous
recursion: one sending a term M to a term p(M); another sending a statement S to a
statement p(S); yet another sending a term M to a hole expression p(M)′.

The alternative between g( ) and p( ) is related to the alternative between G and P.
As the next result shows, g(M) and G(M) are related by Θ/Ψ, and similarly for p(M)
and P(M).

Theorem 4 (Connection with λµ). Let |λµ| ⊂ λµ be the range of | | and consider
the following form of ηµ-expansion in λµ:

Figure 21: Mapping g( ) : λµ→ λµ

g(x) = x
g(λx.M) = λx.g(M)
g(µa.S) = µa.g(S)
g(MN) = µa.a(h(g(M))g(N)) (a fresh)

g(a(M)) = a(h(g(M)))
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Figure 22: Mapping p( ) : λµ→ λµ

p(x) = x
p(λx.M) = λx.p(M)
p(µa.S) = µa.p(S)
p(MN) = µa.a(p(M)′p(N)) (a fresh)

p(a(M)) = a(p(M)′)

p(MN)′ = p(M)′ p(N)
p(M)′ = h(p(M)) (M not application)

MN → µa.a(MN) (a fresh) . (14)

Then:

1. Ψ ◦ g( ) = G and Θ ◦ G = g( ) and Ψ ◦ p( ) = P and Θ ◦ P = p( ).
2. For all M ∈ λµ, both |g(M)| and |p(M)| result from M by ηµ-expansions (14) .
3. For all M ∈ λµ, p(|M |) = M .
4. For all t ∈ λµ, P|Θt| = t.
5. The sets of terms λµ, λµ, and |λµ| are in bijective correspondence.
6. The restriction of P to |λµ| is a bijection.

Proof: 1. One proves: (i) G(M) = Ψ(g(M)) and P(M) = Ψ(p(M)) and P(M,E) =
Ψ(p(M)′, E), (all E); (ii) G(S) = Ψ(g(S)) and P(S) = Ψ(p(S)). The proof is a simulta-
neous induction on M ∈ λµ and S ∈ λµ. Hence, if M ∈ λµ, then ΘG(M) = ΘΨ(g(M)) =
g(M). The latter equality is by λµ ∼= λµ (Theorem 3). Similarly for P and p( ) and for
S ∈ λµ.

2. One proves: (i) |g(M)| →∗ηµ M and |p(M)| →∗ηµ M and |p(M)′| →∗ηµ M ; (ii)
|g(S)| →∗ηµ S and |g(S)| →∗ηµ S. The proof is a simultaneous induction on M ∈ λµ and
S ∈ λµ.

3. One proves: (i) p(|M |) = M and p(|M |)′ = h(M); (ii) p(|S|) = S; (iii) p(|H|)′ = H.
The proof is a simultaneous induction on M ∈ λµ, S ∈ λµ, and H ∈ λµ.

4. P|Θt| 1.= Ψp(|Θt|) 3.= ΨΘt = t. The latter equality is by λµ ∼= λµ.
5. On the one hand, λµ ∼= λµ. On the other hand, statement 3. says that mapping

| | is an injection, hence a bijection between the sets λµ and |λµ|.
6. Statement 3. implies that |λµ| is the range of the endo-function F : λµ → λµ

defined by F = | | ◦ p( ). Statement 4. says that | | ◦ Θ is an injection as well, hence a
bijection between λµ and another subset of λµ, namely the range of the endo-function
| | ◦Θ ◦ P of type λµ→ λµ. But this endo-function is the same as the previous F , since
|ΘPM | = |p(M)|, by statement 1. So | | ◦ Θ is a bijection between λµ and |λµ| whose
inverse, by statement 4., is the restriction of P to |λµ|. �

Discussion. It is P - not G - that yields bijection between |λµ| ⊂ λµ and λµ. Curien
and Herbelin argue in [7] that this bijection can be turned into an isomorphism. Of
course, the domain of such bijection is not described in [7] as |λµ|, it is described rather
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as a subset of λµ whose elements are in some ηµ-extended form24. Yet it is unpleasant
to base a calculus on such subset: is it closed for β or µ reduction? The answer is not
immediate. Certainly the subset is not closed for ηµ-reduction, as we do not want to
reverse the expansions (14). In addition, for isomorphism to hold, one has to split the
σµn rule of λµ into two new rules that mimic the stepwise way of proceeding of the µ
rule of λµ [7, 19].

In fact, the best description of |λµ| is λµ (the description one has before the forgetful
mapping erases useful distinctions); and if isomorphism with λµ is what we seek, then
λµ, as a calculus, is indeed isomorphic to λµ proper (no need to split rule σµn).

6. Semantics of λµµ̃ and the isomorphic point of view

In the previous section, Θ was explored as a read-back mapping into natural deduc-
tion. In this section, Θ is analyzed as a semantics of λµµ̃.

We propose a formalization of the informal semantics of λµµ̃ expressions, based on
informal concepts of “context” and “hole filling”, in terms of the precise concepts of
context E and hole filling E [H] provided by λµlet. The formalized semantics, given
in Subsection 6.2, is proved sound and establishes isomorphism of reduction relations,
even at the co-term/context level - something that was not achieved so far by Θ, recall
Theorem 2. However, this requires some further elaboration on contexts, in order to
equip them with typing and reduction rules - essentially those that contexts inherit from
λµlet. This is preliminary work, done in Subsection 6.1.

By the end of Subsection 6.2, it becomes evident that the description of the relation-
ship between λµµ̃ and λµlet has improved, but is incomplete - because is biased towards
one of two isomorphic points of view. This is explained in Subsection 6.3. The miss-
ing element is a new syntactic concept pertaining to λµµ̃, that we call co-context and
introduce in Subsection 6.4.

First, the treatment of co-contexts is similar to the treatment of contexts in λµlet:
just as a meta-linguistic device. We illustrate its use in Subsection 6.5 in the definition of
η⊃-reduction in λµµ̃ (mirroring the use of contexts in the description of reduction rules
in λµlet). Later, in Subsection 6.6, we equip co-contexts with the typing and reduction
rules they inherit from λµµ̃. This allows, in the final Subsection 6.7, to complete the
semantics with a missing component, that connects isomorphically co-contexts and hole-
expressions.

6.1. Contexts
There are three approaches to contexts of λµlet, in increasing order or “citizenship”:

the approach of λµlet; the intermediate approach; and the unified approach.
In λµlet, contexts, in spite of being formal objects derived from the syntax of λµlet,

are not first class objects: they are not parts of other expressions, they do not contribute
reduction or typing rules, or cases in the compatible closure. They are just used in the
meta-language, as a device for representing statements S in the form E [H], a form which
is particularly useful when H = h(M), because the hidden head is brought to the surface.

24A precise, but not so easy, characterization of this subset is given in [19], where its elements are
called ηappµ -expanded.
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This is why contexts are used in the meta-linguistic description of the reduction rules of
λµlet.

In the other extreme, there is the unified approach, according to which contexts form a
primitive syntactic class of expressions, defined by simultaneous induction together with
the other syntactic classes. Context constructors generate new cases for the compatible
closure of reduction rules. Reduction rules (if any) and typing rules on contexts are also
given simultaneously with the other reduction and typing rules of the calculus. The full
integration of contexts in the primitive syntax is achieved by accepting E [H] as primitive
syntax and the sole form of statements, realizing that the original two forms of statement
in λµlet are recovered as particular cases of E [H]. Such approach was developed in full
detail for the intuitionistic case in [12]. The result is a system that unifies sequent
calculus and natural deduction (hence the name of the approach). This is far more than
what we need here.

In the intermediate approach, that we are going to develop in this section, contexts
remain derived objects, outside λµlet, but are equipped with typing and reduction rules.
However, this structure is mostly inherited from λµlet. For instance, if N → N ′ in λµlet,
then E [[ ]N ]→ E [[ ]N ′]. The result is denoted

[λµlet + Contexts] .

This notation emphasizes that the “calculus of contexts” is disjoint from λµlet, in the
sense that λµlet is completed first, and only then contexts inherit structure from it.

Typing for contexts. We define a new typing system for contexts of λµlet. This
system derives sequents

Γ|E : A ` ∆ (15)

following Curien and Herbelin’s view - already recalled in Section 2.3 - that contexts are
typed “on the left”, with the left type being the type of the hole [7]. The novelty here is
that the left type is also the type of the hole expression H to be filled in the hole - see
Corollary 3 below.

The meaning of sequents (15) entails that the system has three typing rules:

Γ|a([ ]) : A ` a : A,∆
(i)

S : (Γ, x : A `λµlet ∆)
Γ|letx = [ ] inS : A ` ∆

(ii)

Γ `λµlet N : A|∆ Γ|E : B ` ∆
Γ|E [[ ]N ] : A ⊃ B ` ∆

(iii)

(16)

The sequents with tag λµlet are not premisses, but side conditions demanding the deriv-
ability of the tagged sequent. Therefore, these typing rules follow the inductive definition
(10) of contexts: there are two axioms and one one-premiss inductive rule.25

Lemma 1. The following rules are admissible:

25The idea for typing “contexts” of the form C[[ ]N ] is suggested in the first section of [7]. The precise
formulation of these rules (i), (ii), and (iii) presupposes the precise formulation of λµlet.
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1.
Γ|e : A ` ∆

Γ|Θ̂e : A ` ∆
(a)

Γ|E : A ` ∆

Γ|Ψ̂E : A ` ∆
(b)

2.
ΓBH : A|∆ Γ|e : A ` ∆

(Θ̂e)[H] : (Γ ` ∆)

Proof: 1.(a) (resp. 1.(b)) is by a straightforward induction on e (resp. E), using the
first two rules in the left (resp. right) half of Figure 8. Statement 2. follows from (11)
and the third rule on the left half of Figure 8. �

Corollary 3. The following rule is admissible:

ΓBH : A|∆ Γ|E : A ` ∆
E [H] : (Γ ` ∆)

Proof: From 1.(b) and 2. in the previous lemma, together with Θ̂Ψ̂E = E . �

Reduction for contexts. Let R be a reduction rule of λµlet. E →R E ′ is defined
by

S →R S
′

letx = [ ] inS →R letx = [ ] inS′
(i)

N →R N
′

E [[ ]N ]→R E [[ ]N ′]
(ii)

E →R E ′
E [[ ]N ]→R E ′[[ ]N ]

(iii)

(17)

If R = ηµ̃, we put in addition:

letx = [ ] in E [h(x)]→ηµ̃ E
x /∈ E (18)

In (17), (i) and (ii) express the principle that reduction in the λµlet components of a
contexts are reflected at the context level. Rule (iii) means that →R at the level of
contexts is compatible.

Lemma 2 (Isomorphism at the level co-terms/contexts). Let R be a reduction
rule of λµµ̃ and R′ the corresponding reduction rule of λµlet according to Figure 11.

1. e→R e
′ in λµµ̃ iff Θ̂e→R′ Θ̂e′ in Contexts.

2. E →R′ E ′ in Contexts iff Ψ̂E →R Ψ̂E ′ in λµµ̃.

Proof: The “if” statements follow from the only if statements and the fact that Θ̂ and
Ψ̂ are inverse bijections. The “only if” statement 1. is proved by induction on e→R e

′.
There are four cases. First, ηµ̃-reduction at root position; this corresponds to (18).
Second, e = µ̃x.c and reduction in c; this corresponds to (i) in (17) and uses part 3(a)
of Theorem 2. Third, e = u :: e0 and reduction in u; this corresponds to (ii) in (17) and
uses part 1(a) of Theorem 2. Fourth, e = u :: e0 and reduction in e0; this corresponds
to (ii) in (17) and follows by IH. The “only if” statement 2. is proved by induction on
E →R E ′ in analogous fashion, using parts 1(b) and 3(b) of Theorem 2. �
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Figure 23: Natural deduction semantics for λµµ̃

[[x]] = x
[[λx.t]] = λx.[[t]]
[[µa.c]] = µa.[[c]]

[[〈t|e〉]] = [[e]][h([[t]])]
[[a]] = a([ ])

[[µ̃x.c]] = letx = [ ] in [[c]]
[[u :: e]] = [[e]][[ ][[u]]]

Corollary 4. It holds that:
E →R E ′

E [H]→R E ′[H]

Proof: Given E →R E ′, we get Ψ̂E →R Ψ̂E ′ in λµµ̃ by the previous lemma. From
2(a) of Theorem 2, we get Θ(H, Ψ̂E) →R Θ(H, Ψ̂E ′) in λµlet. From (11), this means
(Θ̂Ψ̂E)[H]→R (Θ̂Ψ̂E ′)[H]. By bijectivity, it follows E [H]→R E ′[H]. �

6.2. Natural deduction semantics
We now formalize the semantics of λµµ̃ as a morphism [[ ]] : λµµ̃→ [λµlet+Contexts]

comprising three mappings

• [[ ]] : λµµ̃− Terms −→ λµlet− Terms,

• [[ ]] : λµµ̃− Commands −→ λµlet− Statements,

• [[ ]] : λµµ̃− CoTerms −→ λµlet− Contexts,

defined by simultaneous recursion in Figure 23. This mapping is defined homomorphically
on terms, like Θ; is defined on co-terms as Θ̂; and defines [[〈t|e〉]] as the result of filling
h([[t]]) in the hole of the context [[e]].

Recall that Θ maps a command 〈t|e〉 by calling Θ(h(Θt), e), and that the latter trans-
forms the successive left-introductions that appear at the top of the second argument
into eliminations that accumulate on the first argument. This is the heart of the trans-
formation of the sequent calculus format of λµµ̃ to the natural deduction format of λµlet.
However, this transformation of commands corresponds exactly to the idea of hole filling:

Proposition 3 (Semantics vs Θ). 1. [[t]] = Θt; 2. (a) [[e]] = Θ̂e and (b) [[e]][H] =
Θ(H, e); 3. [[c]] = Θc.

Proof: By induction on t, e, and c. Observe that 2.(b) follows from 2.(a) and (11), and
is used in the only interesting case of the proof, as follows. Let c = 〈t|e〉. Then:

Θ(〈t|e〉) = Θ(h(Θt), e) (by def. Θ)
= [[e]][h(Θt)] (by IH 2.(b))
= [[e]][h([[t]])] (by IH 1.)
= [[〈t|e〉]] (by def. [[ ]])

�
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So, the semantics [[ ]] is the same mapping as Θ, at the level of terms and commands.
In addition, we have argued that Θ( , e) is a “semantic context”, which, we now see,
corresponds to the context [[e]].

Proposition 4 (Soundness of semantics). The following rules are admissible:

1.
Γ ` t : A|∆

Γ ` [[t]] : A|∆
c : (Γ ` ∆)

[[c]] : (Γ ` ∆)
Γ|e : A ` ∆

Γ|[[e]] : A ` ∆

2.
ΓBH : A|∆ Γ|e : A ` ∆

[[e]][H] : (Γ ` ∆)

Proof: 1. follows from part 1 (a) of Lemma 1, parts 1, 2 (a) and 3 of Proposition 3, and
soundness of Θ. 2. follows from part 2 of Lemma 1 and part 2 (a) of Proposition 3. �

Theorem 5 (Semantics is isomorphism). The semantics [[ ]] establishes an isomor-
phism at the levels of terms, commands/statements, and co-terms/contexts.

Proof: At the level of terms, bijection is in Proposition 2, and isomorphism of reduction
is part 1 of Theorem 2. At the level of commands/statements, bijection is in Proposition
2, and isomorphism of reduction is part 3 of Theorem 2. At the level of co-terms/contexts,
bijection was remarked at (12), and isomorphism of reduction is by Lemma 2. �

6.3. Isomorphic point of view
The semantics [[ ]] comprises three isomorphisms, at the levels of terms, commands/sta-

tement, and co-terms/contexts. In particular, [[e]] is the context Θ̂e, a syntactic entity
outside λµlet. For this reason, although the source of [[ ]] is λµµ̃, its target is not λµlet,
but [λµlet+Contexts]. In the latter, some typing and reduction structure is lifted to the
level of contexts, whereas in λµµ̃ the co-terms and corresponding structure are primitive.

This is an asymmetric situation. However, one easily feels it ought to be a partial view
of the relationship between λµµ̃ and λµlet, given the isomorphism proved in Theorem 2:

(i) Co-terms correspond to a (derived) syntactic class of λµlet. However, hole-expression
do not correspond to any syntactic class in λµµ̃.

(ii) Θ̂e corresponds to the “semantic” context Θ( , e) : HoleExpressions→ Statements.
On the other hand, for eachH, Ψ(H, ) is a function of type CoTerms→ Commands.
What is the syntactic counterpart Ψ̂H of this “semantic” concept?

(iii) From a purely formal point of view, part 2 of Lemma 1 is incomplete, as it rephrases
the third rule of the left half of Figure 8, but not of the right half. Similarly,
Corollary 4 is incomplete, as it expresses part 2(a), but not part 2(b), of Theorem
2.

(iv) The semantics is an isomorphism. As such, its inverse should correspond to an
inversion of point of view: λµlet as the source language, λµµ̃ as the semantics.
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Figure 24: Isomorphic points of view

λµµ̃ λµlet
co-terms e hole-expressions H

primitive
- right associativity
- left type
- Γ|e : A ` ∆

- left associativity
- right type
- ΓBH : A|∆

co-contexts H contexts E

derived

- command with a hole
- hole on the right expects e
- left associativity
- right type
- ΓBH : A|∆

- statement with a hole
- hole on the left expects H
- right associativity
- left type
- Γ|E : A ` ∆

The complete, symmetric description is restored through the concept of co-context, a
form of context (in the sense of expression with a hole) pertaining to λµµ̃. As seen from
Figure 24, this new concept quite evidently completes the picture. In λµlet, statements
can be decomposed as E [H]; in λµµ̃, one can now decompose commands as H[e]. So,
in λµµ̃, co-contexts are the “contexts” and co-terms are the “hole-expressions”. In the
same way that there is a bijection Θ̂, later promoted to an isomorphism, relating co-
terms to contexts, there will be a bijection Ψ̂ relating hole-expressions to co-contexts,
later promoted to an isomorphism, when the typing and reduction structure of λµµ̃
is lifted to co-contexts. Such system will be denoted [λµµ̃ + CoContexts]. Then, the
semantics [[ ]] will be eventually extended to that system; and that system will be the
range of a semantics of λµlet, contained in the inverse of [[ ]].26

6.4. Co-contexts vs hole-expressions
We first develop co-contexts as a meta-linguistic device of λµµ̃, useful for describing

commands and even reduction rules. Co-contexts H are commands of λµµ̃ with a hole
at the right end (m ≥ 0):

〈t|u1 :: · · · :: um :: [ ]〉

The hole of a co-context expects a co-term. The result of filling e in H is denoted H[e]
and is a command. Describing a command c as H[e] is particularly useful when e = a or
e = µ̃x.c, because then the part of c hidden at the right end is brought to surface.

Let CoContexts be the set of co-contexts. There is an algebra H with carrier
CoContexts and the following operations: one constant 〈t|[ ]〉, for each t; and, for each u,
a unary operation that maps H to H[u :: [ ]]. In fact, each H ∈ CoContexts is generated
by H in a unique way. In particular, co-contexts can be defined inductively as follows:

26In addition, referring to (iii) above, part 2 of Lemma 1 will be completed with part 2 of Lemma 3,
and Corollary 4 will be completed with Corollary 6.

41



Figure 25: Θ̂ : CoContexts→ HoleExpressions and Ψ̂ : HoleExpressions→ CoContexts

Θ̂(〈t|[ ]〉) = h(Θt)
Θ̂(H[u :: [ ]]) = (Θ̂H)Θu

Ψ̂(h(M)) = 〈ΨM |[ ]〉
Ψ̂(HN) = (Ψ̂H)[ΨN :: [ ]]

H := 〈t|[ ]〉 |H[u :: [ ]] (19)

We define the mapping Ψ̂ in the right half of Figure 25.27 By a straightforward
induction on H one proves that

(Ψ̂H)[e] = Ψ(H, e) . (20)

So, a command Ψ(H, e) can be seen as H[e], with H = Ψ̂H.
Mapping Ψ̂ on hole expressions has an inverse Θ̂ with domain on CoContexts and

defined on the left half of Figure 25. Clearly:

Ψ̂Θ̂H = H Θ̂Ψ̂H = H . (21)

6.5. η-reduction
In this subsection, we first present the reduction rule η⊃ of λµlet. Next, we present

the corresponding rule in λµµ̃, which is best described with co-contexts.
We have defined in λµlet the reduction rule η⊃ as follows: λx.µa.a(Hx)→ µa.a(H),

if x, a /∈ H. At first sight, we may find it strange that the expression in the function
position of the application to x is an H and not a term. But this formulation is more
general and natural, given the organization of λµlet’s syntax: why would we restrict
ourselves to the particular case H = h(M)? In addition, such particular case would pose
a problem: the contractum would be the ηµ-redex µa.a(h(M)), and therefore, in the
design of the η⊃ rule, one would have to decide whether one ηµ-reduction step would
be built in the η⊃-rule or not. With the more general formulation, the design dilemma
vanishes, and there is a separation of concerns: η⊃ cares solely about the λ-abstraction,
and ηµ is explicit called whenever needed, and not implicitly built in another rule.

Now, to such design corresponds in λµµ̃ the η⊃ rule we have announced in Figure 3:
λx.µa.H[x :: a] → µa.H[a], if x, a /∈ H (the isomorphism with the η⊃-rule of λµlet is
proved in Theorem 6 below). Informally, the η⊃ rule of λµµ̃ is

λx.µa.〈t|u1 :: · · · :: um :: x :: a〉 → µa.〈t|u1 :: · · · :: um :: a〉 (22)

with m ≥ 0. Its formal definition makes sense only now, after the development of the
concept of co-context. In the version (22), one has to unfold the entire co-term of the
redex λx.µa.〈t|e〉 to reveal x :: a, which is hidden at the bottom of the right associative
structure e. The representation of 〈t|e〉 as H[x :: e] brings to light the hidden part.

27We re-use the names of the mappings in Figure 10. There is no danger since two mappings with the
same name will have different domains.
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The rule we propose for λµµ̃ generalizes the η-rule that was proposed before in the
literature [19]:

λx.µb.〈t|x :: a〉 → t (23)

with x, a /∈ t. Let H = 〈t|[ ]〉. Then x, a /∈ H and:

λx.µb.〈t|x :: a〉 = λx.µa.H[x :: b]
→η⊃ µb.H[b]

= µb.〈t|b〉
→ηµ t

The rule (23) corresponds to the particular case H = h(M) of the η⊃-rule of λµlet
discussed above, and therefore shares with that particular case its design problems.

Theorem 6 (Isomorphism for η⊃). For terms:

(a) t→η⊃ t
′ in λµµ̃ iff Θt→η⊃ Θt′ in λµlet.

(b) M →η⊃ M
′ in λµlet iff ΨM →η⊃ ΨM ′ in λµµ̃.

Similarly for co-terms/hole-expressions and commands/statements, as in Theorem 2.

Proof: In fact, this theorem is just the missing case R = η⊃ = R′ of Theorem 2. Ac-
cordingly, we just need to add to the proof of that result one base case to each induction.

For the first induction, which proves statements (a), we start with a remark:

H = Θ̂H ⇒ Θ(H[e]) = Θ(H, e) . (24)

If H = Θ̂H then Ψ̂H = H. Hence, Θ(H[e]) = Θ((Ψ̂H)[e])
(20)
= ΘΨ(H, e) = Θ(H, e).

Let t = λx.µa.H[x :: a] →η⊃ µa.H[a] = t′, with x, a /∈ H. Let H = Θ̂H. Then
x, a /∈ H and:

Θt = λx.µa.Θ(H[x :: a]) (by def. Θ)
= λx.µa.Θ(H,x :: a) (by (24))
= λx.µa.a(Hx) (by def. Θ)
→η⊃ µa.a(H)

= µa.Θ(H, a) (by def Θ)
= µa.Θ(H[a]) (by (24))
= Θt′ (by def Θ)

For the second induction, which proves statements (b), let M = λx.µa.a(Hx) →η⊃

µa.a(H) = M ′, with x, a /∈ H. Then x, a /∈ Ψ̂H and:

ΨM = λx.µa.Ψ(H,x :: a) (by def. Ψ)
= λx.µa.(Ψ̂H)[x :: a] (by (20))
→η⊃ µa.(Ψ̂H)[a]

= µa.Ψ(H, a) (by (20))
= ΨM ′ (by def. Ψ)

�
43



It is easy to see that η⊃ on λµlet enjoys subject reduction. This entails, with the
help of the theorem above and soundness of Θ and Ψ, that η⊃ on λµlet enjoys subject
reduction as well.

6.6. Co-contexts
We now equip the set CoContexts with typing and reduction rules. We adopt for

co-contexts of λµµ̃ the “intermediate” approach adopted before for contexts of λµlet and
explained in Subsection 6.1. Essentially, co-contexts inherit their typing and reduction
rules from λµµ̃, and so the “calculus of co-contexts” is defined only after the definition
of λµµ̃ is completed. We denote by

[λµµ̃+ CoContexts]

the system consisting of λµµ̃ plus co-contexts equipped with typing and reduction rules.

Typing for co-contexts. The typing system for co-contexts of λµµ̃ derives sequents

ΓBH : A|∆

Co-contexts are typed “on the right”, with the right type being the type of the hole.
This hole expects co-terms with that type - see Corollary 5.

The system has two typing rules:

Γ `λµµ̃ t : A|∆
ΓB 〈t|[ ]〉 : A|∆

(i)
ΓBH : A ⊃ B|∆ Γ `λµµ̃ u : A|∆

ΓBH[u :: [ ]] : B|∆
(ii)

(25)

For instance, the rationale behind the second rules is as follows: if H is a command with
a hole in the right end expecting a co-term of type A ⊃ B, and if in this hole we fill u :: []
with u : A, then the resulting expression is a command with a hole in its right end, now
expecting a co-term of type B.

The sequents with tag λµµ̃ in the rules (25) are not premisses, but derivability side
conditions. In this, we follow the same style as in the typing system for contexts (16);
also the typing system becomes coherent with the inductive definition (19) of co-contexts:
it has an axiom and one one-premiss rule.

In the same way as the typing rules for contexts (16) have the sequent calculus format,
the typing rules for co-contexts (25) have the natural deduction format: they operate on
the r.h.s. of sequents, and (ii) is an elimination rule.

Lemma 3. The following rules are admissible:

1.
ΓBH : A ` ∆

ΓB Θ̂H : A ` ∆
(a) ΓBH : A ` ∆

ΓB Ψ̂H : A ` ∆
(b)

2.
ΓBH : A|∆ Γ|e : A ` ∆

(Ψ̂H)[e] : (Γ ` ∆)

Proof: 1.(a) (resp. 1.(b)) is by a straightforward induction on H (resp. H). 2. follows
from (20) and the third rule on the right half of Figure 8. �
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Corollary 5. The following rule is admissible:

ΓBH : A|∆ Γ|e : A ` ∆
H[e] : (Γ ` ∆)

Proof: From 1.(a) and 2. in the previous proposition, together with Ψ̂Θ̂H = H. �

Reduction for co-contexts. Let R be a reduction rule of λµµ̃. H →R H′ is defined
by:

t→R t
′

〈t|[ ]〉 →R 〈t′|[ ]〉
(i)

u→R u
′

H[u :: [ ]]→R H[u′ :: [ ]]
(ii)

H →R H′
H[u :: [ ]]→R H′[u :: [ ]]

(iii)

(26)

Rules (i) and (ii) express that reduction in the λµµ̃ components of a co-context is re-
flected at the co-context level. Rule (iii) ensures reduction at the level of co-contexts is
compatible.

Lemma 4 (Isomorphism at the level co-contexts/hole-expressions). Let R be a
reduction rule of λµµ̃ and R′ the corresponding reduction rule of λµlet according to the
Figure 11.

1. H →R H′ in CoContexts iff Θ̂H →R′ Θ̂H′ in λµlet.
2. H →R′ H

′ in λµlet iff Ψ̂H →R Ψ̂H ′ in CoContexts.

Proof: The “if” statements follow from the only if statements and the fact that Θ̂ and
Ψ̂ are inverse bijections. The “only if” statement 1. is proved by induction on H →R H′.
There are three cases. The first and second correspond to (i) and (ii) in (26) and use
part 1(a) of Theorem 2. The third corresponds to (iii) in (17) and follows by IH. The
“only if” statement 2. is proved by induction on H →R H ′ in analogous fashion, using
part 1(b) of Theorem 2. �

Corollary 6. It holds that:
H →R H′

H[e]→R H′[e]

Proof: Given H →R H′, we get Θ̂H →R Θ̂H′ in λµlet by the previous lemma. From
2(b) of Theorem 2, we get Ψ(Θ̂H, e) →R Ψ(Θ̂H′, e) in λµlet. From (20), this means
(Ψ̂Θ̂H)[e]→R (Ψ̂Θ̂H′)[e]. By bijectivity, it follows H[e]→R H′[e]. �

6.7. Epilogue
The natural deduction semantics of λµµ̃ is extended to CoContexts in order to com-

plete a mapping [[ ]] : [λµµ̃+CoContexts]→ [λµlet +Contexts] comprising four compo-
nents:

• [[ ]] : λµµ̃− Terms −→ λµlet− Terms,
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Figure 26: Natural deduction semantics, completed

[[〈t|[ ]〉]] = h([[t]])
[[H[u :: [ ]]]] = [[H]][[u]]

• [[ ]] : λµµ̃− Commands −→ λµlet− Statements,

• [[ ]] : λµµ̃− CoTerms −→ λµlet− Contexts

• [[ ]] : λµµ̃− CoContexts −→ λµlet−Hole− Expressions

The last component is given in Figure 26, and maps co-contexts as Θ̂.

Proposition 5 (Semantics vs Θ, completed). 1. [[t]] = Θt; 2. (a) [[e]] = Θ̂e and (b)
[[e]][H] = Θ(H, e); 3. [[c]] = Θc; 4. [[H]] = Θ̂H.

Proof: Proposition 3 gives all but 4. The latter is by induction on H, using 1. �

Proposition 6 (Soundness of semantics, completed). The following rules are ad-
missible:

1.
Γ ` t : A|∆

Γ ` [[t]] : A|∆
c : (Γ ` ∆)

[[c]] : (Γ ` ∆)
Γ|e : A ` ∆

Γ|[[e]] : A ` ∆
ΓBH : A ` ∆

ΓB [[H]] : A ` ∆

2.
ΓBH : A|∆ Γ|e : A ` ∆

[[e]][H] : (Γ ` ∆)
ΓBH : A|∆ Γ|E : A ` ∆

E [[[H]]] : (Γ ` ∆)

Proof: Proposition 4 gives all but the last part of both 1. and 2. The last part of 1.
follows from part 1 (a) of Lemma 3 and part 4 of Proposition 5. The last part of 2.
follows from part 1 (a) of Lemma 3, part 4 of Proposition 5 and Corollary 3. �

Theorem 7 ([λµµ̃+ CoContexts] ∼= [λµlet + Contexts]). The semantics [[ ]] establishes
an isomorphism at the levels of terms, commands/statements, co-terms/contexts, and co-
contexts/hole-expressions.

Proof: Given Theorem 5, it remains to argue the level of co-contexts/hole-expressions.
Bijection was remarked in (21), and isomorphism of reduction is by Lemma 4. �

As a corollary, one can change the point of view and see λµµ̃ as the semantics of
λµlet. The semantics [[ ]]−1 : λµlet → [λµµ̃ + CoContexts] comprises the three (by now
well-known) isomorphisms:

• [[ ]]−1 : λµlet− Terms −→ λµµ̃− Terms,

• [[ ]]−1 : λµlet− Statements −→ λµµ̃− Commands,

• [[ ]]−1 : λµlet−Hole− Expressions −→ λµµ̃− CoContexts.
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7. Conclusion

We conclude with some final remarks and comments on related and future work.
Final remarks. The results we proved about λµlet are:

1. Subformula property (Theorem 1)
2. λµµ̃ ∼= λµlet (Theorems 2 and 6)
3. Strong normalisation (Corollary 1)
4. Subject reduction (Corollary 2)
5. CBN and CBV fragments (Theorem 3)
6. Connection with λµ (Theorem 4)

The system λµlet is not yet a fully-fledged natural deduction system because we
have not considered other connectives, and therefore λµlet is just a step “towards” a
full system of natural deduction for classical logic. Still, as long as we are content with
implication and a λ-calculus for classical logic, λµlet, by virtue of λµµ̃ ∼= λµlet, is the
canonical counterpart in natural deduction to the λµµ̃ and its perfect account of classical
logic symmetries.

Despite the isomorphism λµµ̃ ∼= λµlet, the system λµlet is not claimed to be as
elegant as λµµ̃; instead, λµlet offers an alternative representation of λµµ̃-term with
inverse associativity of commands (“applicative terms”), with the right end at the surface.
Therefore, in the same way as the λµµ̃ representation is good for rules, like β, that act on
the left end (dispensing with contexts), the λµlet representation is preferable for rules,
like η⊃, which behave in the opposite way (dispensing with co-contexts).

In addition, the study of λµlet already conducted in this paper proved to be rich and
fruitful, as can be seen from the following high-level lessons:

1. The syntax of natural deduction is non-trivial. The issues are: the correct separation
between what is primitive and what is derived; the correct organization into syntactic
categories of the primitive syntax. Only then let-expressions can be added.

2. There is a correspondence (and a difference) between cut in sequent calculus and the
substitution inference rule in natural deduction; the let-expressions constructor and
the substitution inference rule are in Curry-Howard correspondence; let-expressions
generalize delayed substitutions, and are not exclusive of CBV.

3. It is the reduction of let-expressions to the particular case of delayed substitutions
that makes a natural deduction system CBN. In systems like λµ (hence λ), such
identification is implicitly made and even strengthened, through the treatment of
substitution as a meta-operation.

4. The isomorphism Θ : λµµ̃→ λµlet has several facets:
(a) the proof-theoretical translation based on the idea of replacing each left-introduction

inference by an elimination inference.
(b) the mapping that inverts the associativity of “applicative terms”.
(c) the basis of a semantics that makes precise why co-terms and commands of λµµ̃

are “contexts” and “hole-filling” instructions.
(d) a formal recipe for the “read-back” into natural deduction; in particular, it is

a recipe for the systematic generation of CBV λ-calculi in natural deduction
style.
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En passant, this paper contributes to λµµ̃ the concept of co-contexts and the new
η⊃-reduction rule (in addition to the semantics and read-back into natural deduction).

Related work. In the body of the paper detailed comparison was made between the
proposed system λµlet and both λµ and λµµ̃ [25, 7], as well as between the CBV frag-
ments of λµlet and other proposals for CBV λ-calculi recently appeared in the literature
[30, 19, 20].

In the recent studies about the correspondence between sequent calculus and natural
deduction, one approach is to identify fragments of sequent calculus isomorphic to nat-
ural deduction. The initial result is λH ∼= λ of [9]. Other contributions of this kind are
in [7, 21], although no isomorphism is claimed. The present paper belongs to another
approach [36, 12], which pursues extensions of natural deduction isomorphic to full se-
quent calculus. The isomorphism λµµ̃ ∼= λµlet extends to classical logic the intuitionistic
λGtz ∼= λNat of [12].

Dyckhoff and Lengrand [8] prove an equational correspondence [32] between LJQ
(theQ subsystem of intuitionistic sequent calculus) and Moggi’s computational λ-calculus
[22]. An isomorphism is to be expected between LJQ and the intuitionistic, Q subsystem
of λµlet.

Moggi [22] explained the difference between substitution and let-expressions as the
difference between the composition principles of two different but related categories:
some category with a monad and the corresponding Kleisli category. In the present pa-
per we explain that cut and let are composition principles of two different but related
proof-systems: sequent calculus and natural deduction.

Future work. λµlet can be a starting point for continuing the study of natural
deduction for classical logic. One questions is the already mentioned extension to other
logical connectives. Another concerns proof search in natural deduction. In the same way
as, for proof reduction, there are situations where the sequent calculus format of λµµ̃ has
advantages over the natural deduction format of λµlet and vice versa, the isomorphism
λµµ̃ ∼= λµlet does not guarantee that conducting proof search in one system or the other
is the same thing. It remains to see the relative advantages of searching in one system
vs the other.

This paper produces, through a proof-theoretical analysis, new calculi for the future
investigation of CBV. It is now a different task to put those tools to work. In spite
of differing from other CBV λ-calculi in the literature, the new calculus λµletQ, being
isomorphic to λµµ̃Q, validates the usual cps semantics [7]. The difference may be telling,
however, if we consider reductions instead of equations, and operational aspects like stan-
dardization and abstract machines.
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Figure 27: CBV fragments of λµµ̃
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(σµ) 〈e/a〉c → [e/a]c
(ηµ) µa.〈t|a〉 → t, if a /∈ t
(ηµ̃) µ̃x.〈x|e〉 → e, if x /∈ e
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A. Fragments of λµµ̃

For reader’s convenience, we recall the fragments of λµµ̃ defined in [7].
The CBV fragments of λµµ̃ are defined in Fig. 27.
λµµ̃Q is obtained from λµµ̃ through two restrictions: (i) u :: e is constrained to W :: e,

where W is a value; (ii) σ is constrained to redexes of the form 〈W/x〉c, in order to avoid
the critical pair with π.
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Figure 28: CBN fragments of λµµ̃

λµµ̃T

t, u ::= x |λx.t |µa.c
e ::= E | µ̃x.c
E ::= a |u :: E
c ::= 〈t|e〉

(β⊃) 〈λx.t|u :: E〉 → 〈u/x〉〈t|E〉
(σµ̃) 〈u/x〉c → [u/x]c

(σµn) 〈E/a〉c → [E/a]c
(ηµ) µa.〈t|a〉 → t, if a /∈ t

λµ
t, u ::= x |λx.t |µa.c
E ::= a |u :: E
c ::= 〈t|E〉

(β⊃) 〈λx.t|u :: E〉 → 〈[u/x]t|E〉
(σµn) 〈E/a〉c → [E/a]c

(ηµ) µa.〈t|a〉 → t, if a /∈ t

λµ̃ is obtained from λµµ̃Q after two steps. First, µ-abstraction is removed from the
syntax. This is achieved by restricting commands to the form 〈W |e〉 and hiding µ-
abstraction occurring under a λ through a “double abstraction” λ(x, a).S. After the first
step, the class of terms can be dispensed with, and values are generated by the grammar
W ::= x |λ(x, a).S |λx.W . The second step is to drop values of the form λx.W , having in
mind that these can be seen as λ(x, a).〈W |a〉, a fresh. The double abstraction makes the
β rule generate two substitutions, which is expected since β in λµ̃ somehow amalgamates
β and π of λµµ̃Q. Since µ-abstraction was removed from the syntax, rule ηµ is dropped.

The CBN fragments of λµµ̃ are defined in Fig. 28.
λµµ̃T is obtained from λµµ̃ through two restrictions: (i) every u :: e is such that e

is a co-value, that is, a co-term not of the form µ̃x.c. This entails that a co-value has
the restricted form of an “applicative context” E - a co-term in the class E ::= a|u :: E.
Moreover, µ̃-abstraction in λµµ̃T can only occur as the right component of commands;
(ii) π is constrained to redexes of the form 〈E/a〉c, in order to avoid the critical pair with
σ.

Rule ηµ̃ can be dropped in λµµ̃T, given the presence of rule σ, and if we are only
interested in observing reduction at the level of terms or statements. This is so because
an ηµ̃-reduction at the level of commands is also a σ-reduction: 〈t|µ̃x.〈x|e〉〉 →σ 〈t|e〉.

λµ is obtained from λµµ̃T by removing µ̃-abstraction from the syntax. This is equiv-
alent to requiring commands to have the form 〈t|E〉. Since µ̃-abstraction was removed
from the syntax, rules σ is dropped, and rule β has to compensate the absence of σ by
executing immediately the substitution it generates.
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