Monadic translation of classical sequent calculus

JOSE ESPIRITO SANTO" and RALPH MATTHES? and
KOJI NAKAZAWA® and LUIS PINTO!

LCentro de Matemdtica, Universidade do Minho, Portugalt
2LR.LT. (C.N.R.S. and University of Toulouse), France*
3 Graduate School of Informatics, Kyoto University, Japan®

Received 21 December 2010; Revised 12 January 2012, 8 May 2012

We study monadic translations of the call-by-name (cbn) and the call-by-value (cbv) fragments of
the classical sequent calculus Aufi by Curien and Herbelin and give modular and syntactic proofs of
strong normalization. The target of the translations is a new meta-language for classical logic,
named monadic Au. It is a monadic reworking of Parigot’s Ap-calculus, where the monadic binding
is confined to commands, thus integrating the monad with the classical features. Also its u-reduction
rule is replaced by one expressing the interaction between monadic binding and p-abstraction.

Our monadic translations produce very tight simulations of the respective fragments of /i inside
monadic Au, with reduction steps of A/ being translated in 1-1 fashion, except for S-steps which
require two steps. The monad of monadic Ax can be instantiated to the continuations monad so as to
ensure strict simulation of monadic Ay inside simply-typed A-calculus with 8- and n-reduction.
Through strict simulation, strong normalization of simply-typed A-calculus is inherited to monadic
A and then to cbn and cbv i, thus reproving in an elementary syntactical way strong
normalization for these fragments of Apji and establishing it for our new calculus. These results
extend to second-order logic, with polymorphic A-calculus as target, giving new strong
normalization results for classical second-order logic in sequent calculus style.

CPS translations of cbn and cbv Apji with the strict simulation property are obtained by composing
our monadic translations with the continuations-monad instantiation. In an appendix to the article
we investigate several refinements of the continuations-monad instantiation in order to obtain in a
modular way improvements of the CPS translations enjoying extra properties like simulation by cbv
[-reduction or reduction of administrative redexes at compile time.

T The first and fourth author have been financed by FEDER funds through “Programa Operacional Factores de Com-
petitividade - COMPETE” and by Portuguese funds through FCT — “Fundagdo para a Ciéncia e a Tecnologia”, within

the project PEst-C/MAT/UI0013/2011.

% The second author thanks the Centro de Matemtica of Universidade do Minho for funding research visits to the first

and fourth author.

§ The third author has been supported by the Kyoto University Foundation for an extended research visit to the second

author.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 2

1. Introduction

The Apji calculus (Curien and Herbelin, 2000) is a way to present classical sequent calculus in
an operationalized form as an extension of A-calculus. Such calculus is a prototypical functional
language with a control operator x4 (introduced in (Parigot, 1992)), but where no deterministic
reduction strategy is singled out. It is important thus to consider confluent fragments (where all
reduction sequences lead to the same result, if any). Non-confluence of i is due to a single
critical pair, that can be resolved in two ways, determining the call-by-name (cbn) and call-by-
value (cbv) fragments of Xuﬂ (Curien and Herbelin, 2000). In addition, it is desirable that, inside
each fragment, all reduction sequences starting from typed expressions indeed produce a result
(i.e., end in a term that can no longer be reduced). This is the strong normalization property.

In this article we study embeddings of the cbn and cbv fragments of Az into the simply-typed
A-calculus. These embeddings are continuation-passing style (CPS) translations and, therefore,
a kind of compilation. In addition, through these embeddings, we give a new proof of strong
normalization for the mentioned fragments of Aufi. In fact, the embeddings produce strict simu-
lations, that is, each reduction step of the source calculus is mapped to one or more steps of the
target calculus, so that strong normalization in the source is reduced to strong normalization in
the target, where it holds and has been proven in many different ways.

The interest of this new proof lies, not only in its elementary character, but also in its concepts.
The CPS compilations that simulate the fragments of Ap/i are factored into a respective monadic
translation and a single instantiation mapping, the latter working for both cbn and cbv. The
monadic translation is, as advocated in (Moggi, 1991), a semantical interpretation into a monadic
meta-language, and this, in turn, is a typed calculus with a special type former M, that stands
for a monad, an ingredient in the categorical semantics originally put forward by Moggi. The
monadic translation is thus parameterised by M. Here we consider only the instantiation of M
to the so-called continuations monad. This corresponds to interpreting M as double negation, a
type transformation of simple types, and determines a mapping from the meta-language to the
simply-typed A-calculus.

The target of the monadic translation is a classical version of Moggi’s meta-language, whose
definition is a challenge and a major contribution of the present article. This target is a reworking
of Parigot’s Apu-calculus which we call monadic Au-calculus, and denote Ay . It is not a rou-
tine amalgamation of \u with the monadic meta-language. Monadic Ap extends the category of
commands of Au-calculus by a monadic bind construct. Co-variables are restricted to “monadic”
types, i.e., types of the form M A (otherwise some trivialisation happens, see Section 3.1). Un-
like Parigot’s calculus, there is no p-reduction rule corresponding to implication elimination.
Instead, the p-rule now expresses the interaction between bind and p-abstraction. Nonetheless,
the intuitionistic restriction of Auy corresponds to Moggi’s monadic meta-language.

Contrary to the original monadic meta-language (Moggi, 1991), but in line with (Hatcliff and
Danvy, 1994; Sabry and Wadler, 1997), our classical meta-language is equipped with reduction
rules. The cbn and cbv monadic translations produce strict simulations of the respective sources
by these reduction rules. On the other hand, the instantiation from Auy into the simply-typed
A-calculus given by the continuations monad is also a strict simulation. In the target, besides
the n-reduction rule, we just need Plotkin’s cbv S-rule (3,) for the cbv restriction, but the full
B-rule for the full calculus. Therefore, both cbn and cbv Auji are strongly normalizing, either by

Monadic translation of classical sequent calculus 3

Fig. 1. Overview

Nt i> Aum L; NED x n (after name) or v (after value)

[fix cbx fragment of \ujfi-calculus
_/ Aum monadic Au-calculus
€) cbx monadic translation
continuations-monad instantiation

x cbx CPS translation

observing that A was before proved strongly normalizing through strict simulation in simply-
typed A-calculus, or by composing monadic translations with the instantiation mapping, to form
direct, CPS compilations into A-calculus with the strict simulation property. See Fig. 1 for an
overview of systems and translations.

All the systems considered in this article can straightforwardly be extended to cover second-
order logic, and the simulation results can be extended correspondingly. This demonstrates that
our technique uses minimal meta-theoretic strength while it can establish strong normalization in
cases where no arithmetic proofs are possible. This is because we are content with a simulation
result, inheriting strong normalization from second-order A-calculus that is considered widely
known and established with a multitude of distinct proof strategies.

In an appendix to the paper, we study technical refinements concerning the obtained CPS
translations of cbn and cbv Apuji. The questions of “administrative reductions” and indifference
property (Plotkin, 1975) are analyzed. Two variants of the obtained CPS translations are pro-
posed, one that performs administrative reductions at compile time, the other enjoying strict
simulation by 3, only. The main point is that the modular approach of having decomposition via
Aum is kept, as the refinements are confined to the continuations-monad instantiation, and the
refined CPS translations are obtained by composition.

Structure of the article. Section 2 recalls M. Section 3 defines Apv and shows the connection
with Moggi’s meta-language. Section 4 defines the monadic translations of cbn and cbv Apfi into
Aum and proves strict simulation. Section 5 defines the continuations-monad instantiation and
concludes the proof of strong normalization for cbn and cbv \uji. Section 6 extends the results
to systems with second-order universal quantification, and Section 7 discusses related and future
work. Technical refinements concerning CPS translations are presented in Appendix A.

Notation. Simple types, ranged over by A, B, C, are generated from type variables X by ar-
row/implication, written A O B. Monads are denoted M.

Contexts I' are finite sets of declarations (z : A) with z a variable, while co-contexts A
are finite sets of declarations (a : A), with a a co-variable. In both cases, there is the usual
requirement of consistency, i.e., uniqueness of declaration of the same (co-)variable, which is
implicitly enforced in the sense that, e.g., when writing the enlarged context ',z : A, this
presupposes that x is not declared in I". We write I', I for the union of the contexts I" and I",
again implicitly assuming that they do not have declarations for some variable in common. If F'

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 4

is some type operation, then its extension to contexts is
FT ={(z: FA)|(x: A) eT} |

and similarly for co-contexts A. An immediate benefit of this notation is its “compositionality”:
if two operations on types, F' and G, are considered, then F'(GT') = (F o G)T', for F o G the
composition of " and G. Trivially, the same holds for co-contexts A.

By A[R; ...] we denote \-calculus with reduction rules Ry, ... Thus, for clarity or emphasis,
we may denote ordinary A-calculus with A[f], using the usual S-reduction rule

(B) (Ax.t)s — [s/x]t .
Plotkin’s cbv restriction
(Bv) Az)V = [V/z]t for V a value (i. e., not an application)
yields the corresponding cbv A-calculus A[3,]. We sometimes need the even more restricted
(Byar) (Ax.t)y — [y/x]t fory ¢ ¢ (i.e., y not freein t) .

The n-reduction rule is
(n) Ar.tx —t forx ¢t

Throughout the paper, when reduction rules are given (the base reduction rules), — stands for
the term closure of the base reduction rules, i. e., reduction by — may happen by applying one
of the base reduction rules at arbitrary depth in the expression, including under binders. When
— (possibly with decoration) stands for a reduction relation, —* denotes its transitive and —*
its reflexive and transitive closure.

2. Background

In this section we recall Curien and Herbelin’s \jufi-calculus (Curien and Herbelin, 2000).
Expressions are values, terms, evaluation contexts, co-terms and commands that are defined
by the following grammar:

Vo ou= x|zt E == alu:ze c == (tle)
t,u == V|pa.c e == FE|jzx.c

Expressions are ranged over by T, T”. Variables (resp. co-variables) are ranged over by v, w, ,
y, z (resp. a, b). We assume disjoint countably infinite supplies of them and can denote any of
them by using decorations of the base symbols. (This will never be made explicit in the rest of
the paper.)

There is one kind of sequent per proper syntactic class (terms, co-terms and commands)

F'kEit: AA Tle: AFA c: (T'HA)

where I and A are contexts and co-contexts, respectively, as described by the notational conven-
tions in the previous section. Typing rules are given in Fig. 2.
There are 6 substitution operations altogether:

[t/z]e [t/zlu [t/z]e [e/alc [e/alu [e/a]e’

Monadic translation of classical sequent calculus 5

Fig. 2. Typing rules of Apji

c:(Tyz: AR A) c:(Cka:AA)

Mz:Abz: AA la:AFa:AA Mgz.c: AF A Ik pa.c: AA
Ix: AFt: BIA F'tu:A|A Tle: BFA T'kt:AJA Tle: AR A
I'-Azt: AD B|A lNNu:e:ADBFA (tle) : (T A)

Fig. 3. Reduction rules of Auji

B) (atluze) - (ultle))
(1) (uacle) — [efale

(o) (tlaz.c) — [t/z]c

(na) px.(zle) — e, ifxéde
(nw) pa.(tla) — t,ifa¢t

We consider the 5 reduction rules in Fig. 3, where we reuse the name (§ of A-calculus (rule
names are considered relative to some term system). These are the reductions considered by
Polonovski in (Polonovski, 2004), but the S-rule for the subtraction connective is not included.
However, throughout the paper, we will only consider fragments where the critical pair rooted
in (ua.c|iz.c') between the rules o and 7 is avoided. Following (Curien and Herbelin, 2000), in
the cbn fragment A\jufi,, of A\jufi, the 7 rule is replaced by its restriction to evaluation contexts:

(mn) (paclE) — [E/a]c

This is equivalent to saying that o has priority over 7. (Note that this is not the cbn restriction
Apjir of (Curien and Herbelin, 2000) with a proper sub-syntax.)

Dually, in the cbv fragment Apfi, of Apfi, the o rule is replaced by its restriction to values:
(ov) (Vlpz.c) — [V/z]e

Now, 7 has priority over ¢. In both fragments, the only critical pairs are trivial ones involving 7;
and 1), hence Apifi, and Apfi, are confluent.

3. Monadic A\pu-calculus

In this section we define the monadic Ap-calculus Ay, a monadic reworking of Parigot’s Apu-
calculus. Its intuitionistic fragment is discussed in Section 3.2.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 6

3.1. The calculus

Expressions. Variables (resp. co-variables) are ranged over by v, w, x, y, z (resp. a, b), as for
Apji. Expressions are given by the following grammar’:

(values) V o= x|t
(terms) r,s,tou = V|tu|pa.c|nt
(commands) ¢ == at|bind(t,x.c)

Notice that a bind, as well as one of its sub-expressions, is a command.
Substitutions [s/z]t and [s/x]c are defined in the obvious way. The following derived syntactic
classes will be useful:

(base contexts) L == a[]|bind([],z.c)
(cbn contexts) C == L|bind(n[],z.c)

where [] represents the “hole” of the contextt. If ¢ is a term, C[t] denotes the command obtained
by filling the hole of C' with ¢, and is defined as at (resp. bind(¢, z.c) resp. bind(nt, z.c)) if C is
a[] (resp. bind([], z.c) resp. bind(n[], .c)). Notice that every command c has the form L[t], and
L and ¢ are uniquely determined by c.

In the sequent calculus \uji we have substitution of co-terms for co-variables. We define,
in the natural deduction system Apuyp, substitution of cbn contexts for co-variables in terms of
“structural substitution”. Structural substitution [C'/a]t and [C'/a]c is defined by replacing every
binding-equivalent subexpression au of ¢ or ¢, respectively, by C[u], and this has to be done
recursively. The most important case is

[C/d](at) = C[[C/alt] .

All the other cases are homomorphic and therefore omitted. Notice that [b[]/a]t = [b/a]t and
[b[]/a]c = [b/a]c, provided substitution of co-variables for co-variables is defined in the obvious
way.

It will be convenient to extend structural substitution of C' for a to cbn contexts as well, i.e.,
to define the cbn context [C'/a]C” in the obvious way. In particular,

[C/al(al]) =C .

We assume also to have the definition for the cbn context [s/z]C.

Typing rules. Types are given by
A,B = X|ADB|MA

Types of the form M A are called monadic types. Typing rules are given in Fig. 4. There are
two kinds of sequents: I' - ¢ : A|A and ¢ : (I' - A). In both cases, A is a consistent set of

T In the notation of (Moggi, 1991), bind (¢, x.c) and nt are written let x = ¢ in c and [t], respectively.
¥ The terminology “cbn context” relates to the monadic translations to be introduced below. The form bind(n[], z.c) is
used in the cbn translation only.

Monadic translation of classical sequent calculus 7

Fig. 4. Typing rules of Aum

T,z:AFz:AA Az

Ix: AFt: B|A s 't:ADB|A TFu:AlA o
TFazi:ADBlA M TFtu:B|A im
F'Ht: MAla: MA,A c:(Tka: MAA)
Pass Act
at: TFa: MAA) 'k pa.c: MAIA
Ik s: AlA) PEr:MAA c¢:(Tyz: AFA)
T'kns: MAIA Unit bind(r,z.c) : (' F A) Mult

declarations a : M A, hence with monadic types. Except for the last two rules, these are the rules
for Parigot’s Ap, however with the restriction of co-variables to monadic types.’

The rule for 7 is just as expected for the unit of a monad, while the typing rule for bind — which
is named after monad multiplication — has to be contrasted with the usual rule in the framework

of A-calculus:
'tr:MA T)x:A+t: MB

I+ bind(r,z.t) : MB
Instead of a term ¢ of monadic type M B, we now have a command ¢ where no type can be
assigned. Still, one can recover binding for terms by setting

bind(r, z.t) := pa.bind(r, z.at)

for some a ¢ r,t and even obtains the expected typing behaviour. For a more detailed analysis
of the intuitionistic case, see Section 3.2.
The following typing rules for structural substitution are admissible where x ¢ C:
I'Ft:B|Aa: MA Clz] : (T,z: MAFE A)
'+ [C/a)t: B|A

c:(THAa: MA) Cle]: T,z : MAF A)
[C/a]e: (T'F A)

Reduction rules. The base reduction rules of Ay are shown in Fig. 5. Thus, as for Au/i, rule
causes substitution for co-variables whereas o causes substitution for variables.

Rule 7 uses the derived syntactic class of base contexts and is therefore a scheme that stands
for the following two rules

[bind([],z.c")/a]c
[b/alc

(Tbind) bind(pa.c,x.c’) —
(Tcovar) b(pa.c) —
8 If the restriction on the type of co-variables would not be imposed, and accordingly the typing rules Pass and Act

could act with any type, instead of monadic types only, then, from any term ¢ of type M A, we could build the term

pa.bind(t, z.az) of type A. This would represent a trivialisation of the system as a monadic language. We thank Dan
Licata for this remark.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 8

Fig. 5. Reduction rules of Apm

(B) Az.t)s — [s/z]t
(o) bind(ns,z.c) — [s/z]c
() L{pa.c] — [L/alc
(M) paat — t (a¢t)
(Mbind) bind(¢, z.a(nz)) — at

Counting these two rules separately, we can see that three rules are inherited from ordinary Ap
(B, “renaming” Teovar and 77,,), and one rule from ordinary monadic meta-language (o). But two
rules are original: 7ping and 7ping- Rule mping expresses the interaction of bind with p-abstraction;
notice that the left-hand side of mp;,g fits well with the restriction of co-variables to monadic
type: if pa.c is well-typed, then with a monadic type, which is needed for the principal (first)
argument of bind in order to type the whole expression.

A particular case of mping 18

bind(bind(r, z.t), y.c) = bind(pa.bind(r, x.at),y.c) — bind(r, z.bind(t,y.c))

for a ¢ r,t. This is an “associativity” rule, formally similar to the “associativity” rule for bind
found in the framework of A-calculus, and recalled in Section 3.2 below.

Rule 7ping Will be needed for the simulation of Apfi, by the cbv monadic translation.

In the target of the monadic translations or in the source of some continuations-monad instan-
tiations to be introduced below, the reduction rules of Auy are used in a variety of restricted
forms. There is the restriction of (3 to variable renaming:

(Buar) (Azt)y — [y/zlt (y¢1)
There are the cbv restrictions of the rules 3, o, and 7,
(Bv) Az t)V — [V/z]t
(oy) bind(nV,z.c) — [V/z]c
(M) pa.a(nV) — nV (a¢V)
There are also cbn versions of the same rules, whose definition uses a Auy-term N that is not an
application :

(Bn) (Azt)N — [N/z]t
(on) bind(nN,z.c) — [N/z]c
(an) pa.aN — N (agN)

Note that the cbn versions properly contain the respective cbv versions. All of the seven restricted
versions of Auy reduction rules obviously fail closure under term substitution, i.e., we do not
have that T' —, T” implies [t/x]T —, [t/z]T", where —, stands for any of the above restricted
reductions. This is because variables, values and non-applications are evidently not closed under
term substitution. However, all the rules of Fig. 5 satisfy closure under term substitution, as well
as a final restriction of ¢ that we will consider:

(o¢) bind(ns,z.C[z]) — C[s] (z¢C)

Monadic translation of classical sequent calculus 9

It goes without saying that Ay enjoys subject reduction: types of terms and commands are
preserved under — (the term closure of the base reduction rules that would more precisely be
called the “closure under all expression constructors”). There are five critical pairs between the
reduction rules, not surprisingly always in connection with one of the rules 7, and 7ying. Two
such pairs involve meovar and 7, (in one the root of the term is a meovar-redex and in the other
the root of the term is a 7,,-redex), but they are both trivial. The critical pair between 7ping and
7, and the one between 7ping and o are also trivial. The remaining critical pair is between 7pind
and 7ping: bind(pa.c, z.b(nx)) reduces both to (i) [bind([], z.b(nz))/alc and to (i) b(pa.c), but
these two terms both reduce to [b/a]c; (ii) by one 7eovar-step and (i) with zero or more 7),in4-steps
(a result proved together with its analogue for terms). Since all critical pairs are joinable, Aum
enjoys local confluence.

3.2. Intuitionistic subsystem and relation with Moggi’s meta-language

We identify the intuitionistic fragment and an intuitionistic subsystem of monadic Ay, and show
that the latter is essentially Moggi’s meta-language, with a difference just in the reduction rule
for the associativity of binds.

We start with two isomorphic presentations of the intuitionistic fragment. Let * be a fixed
co-variable. The intuitionistic terms and commands are generated by the grammar

(Terms) r s, = x| Avd|tu|px.clnt
(Commands) ¢ == *t|bind(t, z.c)

Terms have no free occurrences of co-variables and each command has exactly one free occur-
rence of *. Sequents are restricted to have exactly one formula on the RHS. The typing rules and
the reduction rules of the intuitionistic fragment are the expected restrictions to the typing and
reduction rules of Aup. We do not spell them out. Instead, we develop an isomorphic variant
of the intuitionistic fragment, where * and the p-binder are fully avoided, and replaced by two
coercion constructs, one from commands to terms and the other from terms to commands. The
grammar of expressions becomes:

(Terms) rs,tu = x| dxt|tu]{c} nt

(Commands) ¢ == Tt bind(t, z.c)
The two forms of judgements are T' - ¢ : A, and ¢ : (I' = MA). Note that these simplified
judgement forms reflect both the restriction to only one formula on RHS’s and the complete

absence of co-variables.
The typing rules Pass and Act are now:

_PremA L oo (TEMA)
Tt (CFMA) L'+{c}: MA

We omit writing the other typing rules. Reduction rules § and o read as for Aum, and the other
rules read as follows:

(Tbind) bind({c},z.c/) — (cQz.c)
(7Tr'1) I_{C}—l — C

(n(3) {1} — ¢

(nbind) bind(tax"_nx_‘) -

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 10

where the operation @ is the isomorphic counterpart of substitution of base contexts in the bind
form for *, and is given by

(bind(t,y.c')Qzx.c) = bind(t,y.(c'Qz.c))
("t7'Qx.c) = bind(t,z.c)

Now, we consider a simplification of this isomorphic variant of the intuitionistic fragment of
Apm. We call it the intuitionistic subsystem of M. If we do not write the coercions {.} and ™.
in the isomorphic fragment, we can merge terms and commands into the grammar

(Terms) rys,tou = x| Axd|tu]bind(t, z.u)| nt

and have only the sequent form I' - ¢ : A. This causes rules Pass and Act to collapse, gives the
usual rule for typing bind in the framework of A-calculus (see Section 3.1), and leaves the other
typing rules unchanged.

These terms and typing rules correspond to those of Moggi’s monadic meta-language (Moggi,
1991). With this term grammar, rules 7~ - and 7); } become identities, just as the case ¢ = Tt of
Tbind, and we are left with the following rules:

(B) (Ax.t)s — [s/x]t

(o) bind(ns,z.t) — [s/x]t
(mpind) bind(bind(¢,z.u),y.s) — bind(¢, z.(u@Qy.s))
(bind) bind(t,z.nz) — t

where @ is as for the isomorphic variant (recall that commands became terms):

(bind(t,y.s)Qz.u) = bind(¢,y.(sQx.u))
(tQx.uw) = bind(t, x.u) otherwise

The difference of these rules to the usual reduction rules for Moggi’s monadic meta-language, as
in (Hatcliff and Danvy, 1994; Sabry and Wadler, 1997), is rule 7p;nq. There the rule used reads:

(assoc) bind(bind(t, z.u), y.s) — bind(¢, z.bind(u, y.s))

But ¢ —,,, wimplies ¢ =} . u since bind(u,y.s) — u@y.s). Thus, this intuitionistic
subsystem of Apy corresponds to Moggi’s monadic meta-language with an eager version of

assocC.

assoc
assocC

4. Monadic translation

Two translations of Apfi into Ay are given. The first one, denoted (.),, allows to simulate every
reduction step of A\ufin, by at least one reduction step of Aum (thus, Mitfin is strictly simulated by

Apm); the second one, denoted (.),, gives strict simulation of Auji, within Ayy. Thus, they are
monadic cbn and cbv translations of Apfi, respectively.

4.1. Call-by-name translation

In this section we define and study translation (.),. To keep the notation light, the subscript n is
omitted throughout the section, including for the auxiliary notion ()Jr

ne

Monadic translation of classical sequent calculus 11

Fig. 6. Admissible typing rules for monadic cbn translation of A/

F'-t: AA c: (I A) Fle: AF A
THI:A|A ¢:(TFA) ely]: (T,y: AFA)

Fig. 7. Monadic cbn translation of Apjfi

g o=y W =
Ayt = n(y.d)
pa.c = pa.c
a = a]
uwe = bind([], f.bind(nz, z.€[fz]))
fiy.c bind(n[],y.c)

A type A of Apji is translated to A of Apuy, defined by recursion on A:
X=MX and ADB=M(ADB)
Denote by Af the type A without the outermost application of M, i.e., we have
Xf=X and (ADB/'=4D5B,

and then A = M Af,

Any term ¢ of A\l is translated into a term £ of Auy, any command ¢ of Auji into a command
¢ and any co-term e of Al into a cbn context € of Az . This is done so that the typing rules in
Fig. 6 are admissible, where I and A follow the notational conventions of Section 1, with type
operation F' := 6 (notice that A is a monadic type, as required for co-contexts in Apm).

The definitions are in Fig. 7, where it is understood that f and z are fresh variable names (we
assume henceforth that also f denotes a variable of \uy). We prefer to denote all variables from
the source calculus Apji as y (which will be translated into variables of type A for some A).
Admissibility of the rules of Fig. 6 is routine and makes — through €[t] = [¢/y](e[y]) fory ¢ e —
use of the following admissible rule for term substitution in commands in Agg:

c:(Tyz: AFA) F'-t: AA
[t/z]c: (T'FA)

Notice that F is a base context, which will be important for simulation of 7. The o-redex in
w e is needed for the simulation of 3, which is a rule that generates but does not execute a
substitution.

We immediately observe that the free variables and the free co-variables agree between 7" and
T for any expression T (the hole [] in € does not count as a variable). In general, ¢ is a subterm
of €[t] that does not occur below a binder.

Lemma 1. The translation satisfies:

L yIT = /T,
2. le/a]T = [e/a]T.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 12

Proof. 1. By induction on 7.
2. By induction on 7. Case T' = a. [e/ala = € = [¢/a](a[]) = [€/a]a. The second equation
is by definition of structural substitution on the context a[]. U

Theorem 2 (Strict simulation).

1.If T — T’ in Ajin, then T —F T7 in Ay, where T, T’ are either two terms or two
commands.

2.If e — €’ in Apfin, then €[] —+ €/[f] in A\uwm for any t € Apji.

For this simulation, we do not need rule 7ping in Apun, the rules 3 and 7, could have been re-
stricted to the forms B,.r and 7,,n, respectively, and we do not need full o, but just the restrictions
o, and oc.

Proof. Statement 2 is strengthened so that €[u] —T €’[u] for any u € Aum. This is needed
because in the definition of 7 7€ a term outside the range of (.) is filled into the hole of €. State-
ment 1 and strengthened statement 2 are proved by simultaneous induction on the appropriate
T — T". The base cases are shown in detail. The term closure is then evident since ¢ is a subterm
of [t]. For the justification of the restriction of n,,-steps to their cbn form in the proof, as well as
for the restriction to o,-steps for the simulation of &, notice that ¢ is not an application, for any
t € Aufi.

Case : (Ay.t|u :: e) — (u|fy.(t]e)).

LHS = bind(n(\y.t), f.bind(nu, z.€[fz]))

Case o: (t|y.c) — [t/y]c.
LHS = bind(f, y:7) o, [{/y]c = iylc = RS

where the marked equality comes from Lemma 1.1.9
Case m: (na.c|E) — [E/alc.

LHS = E[ua.d = [E/a)c = [E/alc = RHS
where the marked equality comes from Lemma 1.2. Recall that E is a base context. Otherwise,
the 7 rule of Ay would not have been applicable.
Case n: fiy.(yle) — e, withy & e.
LHS[u] = bind(nu,y.ely))
o [u/yl(ely]) = elu] = RHS[u]
where the oc-step and the marked equality use the fact y ¢ €.
Case 7,: pa.(tla) — t, witha ¢ t, hence also a ¢ t: LHS = pa.at —,, t=RHS . [J

9 Lemma 1.1 refers to the item 1. in the statement of Lemma 1. This kind of reference will be used throughout the paper.

Monadic translation of classical sequent calculus 13

Remark 3. Notice the structural “tightness” of the simulation. Every reduction step of the forms
O, Ty Ny N iN Aifin corresponds to exactly one step in Ay of the forms o, 7, Nyun» OC, TESPEC-
tively; only (-steps of Auji are decomposed into two steps of Ay, which are of the restricted
forms o, and Syar.|

Remark 4. Strict simulation is satisfied because the monadic translation never erases subexpres-
sions. More precisely, the translation satisfies the following Subexpression Property: (i) for T” a
term or command: if 7" is a subexpression of 7', then T'isa subexpression of T (and of T[t}, for
any t, in case T is a co-term); (ii) if co-term e is a subexpression of T, then, for some ¢', €[t'] is
a subexpression of T (and of T[t], for any ¢, in case 7' is a co-term).

4.2. Call-by-value translation

In this section we define and study translation (.),. The subscript , is omitted throughout the
section, in order to have a light notation.
The cbv translation on types is the same as the cbn one except for the implication:

(A>B)=M(A" > B)

Then (A D B)' is defined as (A" > B). The monadic cbv translation on expressions is defined
in Fig. 8 so that the typing rules in Fig. 9 are admissible, where T'f and A again follow the
notational pattern set up in Section 1.

Notice that € is always a base context of Az, and that VT is a value.

We see that there are only minimal differences between the monadic translations for cbn (in
the previous section) and cbv for the part that is not already dictated by the A-calculus part
inside Apfi. That part, namely the rules for types, values and typing of terms are the standard
ones in monadic translations. The new elements are also treated mostly in the same way: pu-
abstraction is translated homomorphically, commands by plugging the term translation into a
context obtained from co-term translation, and the co-variables are translated in the most obvious
way. The remaining clauses for u :: e and fi-abstraction are identical for both translations, except
for the extra uses of the unit 7 of the monad which is, however, not applied throughout, so that
the cbn translation of u :: e remains still a base context. (Evidently, this is already dictated by
typing considerations, where the type translation leaves no room as soon as values have been
treated in the standard way.)

We prefer to denote all variables from the source calculus Auji as v (which will be translated
into variables of type A' for some A).

Lemma 5. The translation satisfies:

1. [V/u]T = [VT/|T.
2. [e/a)T = [e/a]T.

Proof. Induction on 7. L]

Il Tn the intuitionistic case of (Espirito Santo et al., 2009b), the 3-rule of the monadic calculus enters in the simulation
of every step, and m-steps of the source are decomposed into several reduction steps in the target.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 14

Fig. 8. Monadic cbv translation of Al

vV = 77VT of =
pa.c = pa.c M) = it
a = af (tle) = efi]
uw=e = bind([], f.bind(u,w.e[fw]))
pv.c = bind([],v.2)

Fig. 9. Admissible typing rules for monadic cbv translation of A

L-t: AA r-v:AA c: (IFA) Fle: AF A
Ifri:AA TRV ATA 2. (TTFA) ey : Tfy: AFA)

Theorem 6 (Strict simulation). 1.1f 7" — T in Apjiy, then T —+ T7 in Ay, where T', T” are
either two terms or two commands.

2.1f e — €’ in Apjiy, then €[t] =7 €/[t] in Aum for any t € Apji.

The reductions in Apum only use 3, o, and 7, in their restricted forms Syar, oy, and 7,,,, respec-
tively.

Proof. The proof is similar to the cbn case. Statement 2 is again strengthened, so that €[u] —*
€'[u] for any u € Aup. Term closure is again evident since ¢ is a subterm of €[t]. We show the
base cases.

Case B: (\.tlu :: e) = (u|wv.(t]e)).

LHS = bind(n(Av.t), f.bind(w, w.e[fw]))
—4, bind(w, w.e[(Av.t)w])
—3,., bind(@, w.e[[w/v]t])
= bind(u,v.eft])
= RHS

Case 7: (ua.cle) — [e/a]e.
LHS =elua.c] —, [e/alc = RHS

where the last equality comes from Lemma 5.2.
Case oy: (V|jw.c) — [V/v]e.

LHS = bind(nV1,v.2) =, [VI/v]e = RHS

where the last equality comes from Lemma 5.1.
Case 7,,: pa.(tla) — t, witha & ¢.

LHS = pa.at —,, RHS

We now argue that the restriction of 7,, to 7, suffices in the target system. If ¢ is a value V/,
then 7 = VT, and V1 is again a value, and so the displayed reduction is a Nuy-reduction step. If

Monadic translation of classical sequent calculus 15

t = pb.c, then the 7),-reduction pa.(t|a) — ¢ is also a 7-reduction (this is one of the two trivial
critical pairs between 7, and) and can be considered as such for the purpose of this proof.

Case n: jiv.(v|e) — e, with v & e. We have LHS[u] = bind(u,v.€[nv]). If e is a co-
variable a, we have

bind(u, v.€[nv]) = bind(u, v.a(nv)) =y, au = RHS[u]
Otherwise, € is of the form bind([], w.c), so we have
bind(u,v.e[nv]) = bind(u, v.bind(nv,w.c))
—4, bind(u,w.c) =€[u] = RHS|u]
O

Remark 7. Rule 1,4 is now required. As for cbn, the simulation is quite “tight”. Every reduc-
tion step of the forms o, 7, 1,,, 7z in Mufi, corresponds to exactly one step in Auy of the forms
Oy, T, Ny OF T, Tpind OF Oy, Tespectively; again, only 3-steps of Mufi are decomposed into two
steps of A of the restricted forms o, and 5, ;.

Remark 8. The cbv monadic translation satisfies the same Subexpression Property as the cbn
one.

5. Continuations-monad instantiation

The monad operation M of Ay can be instantiated to be double negation that yields the well-
known continuations monad. This defines a translation into the A-calculus with the strict sim-
ulation property. Given that the monadic translations of Section 4 also enjoy strict simulation,
strong normalization for cbn and cbv Apfi will follow. Composition of instantiation with the
monadic translations will yield cbn and cbv CPS translations of Auji, whose recursive definition
is calculated at the end of the present section.

5.1. Instantiation and strong normalization

We define a translation from Ay into A[Sn] - recall from Section 1 the meaning of this notation.
Also recall from the same section the definition of simple types, and write A O B also for
function types in A[$7], and, as usual, write = A for A D L for some dedicated type variable L
that will never be instantiated. Recall finally that A-calculus has the grammar ¢ ::= z | Az.t|tu
and that its only typing rules are Az, Intro and Elim from Fig. 4, without the A parts.

A translation of the terms and commands of Auy into terms of A-calculus necessarily has to
associate both variables and co-variables of Auy with variables of the A-calculus. The obvious
and usual choice for a variable = of Auy is to associate it with the same variable in A-calculus,
hence assuming that the variables of Ay are included in the variable supply of the A-calculus.
For the co-variables, the traditional way would be to associate a “fresh” variable k, of A-calculus
with every co-variable a. Given an expression 7" of Ay, there would always be enough “fresh”
variables when defining the translation of 7', but the notion k, rather suggests to have one fixed
association that works for all source expressions. We adopt this uniform choice, but we go one
step further: we assume that the co-variables of A\uy (that are those of Apji) are also included

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 16

Fig. 10. Continuations-monad instantiation

2t =z (L[t)* = L°[t°]
Az.t)® = Ax.t*
(tu)® = t"u® (a[])* =[la
(na.c)® = da.c* bind([], z.c)® = [](Az.c®)
(nt)* = Ak.kt®

in the variable supply of the A-calculus, so that we can associate the co-variable a with the A-
calculus variable a. Such an assumption simplifies notation, in particular in the extension of type
operations to co-contexts A (see Section 1, where extension works the same on I' and A), and
because k, is just a.ff

The translation on types is defined as follows:

X*=X (ADB)*=4°>B° (MA)® = ——A*

The translation of expressions is defined in Fig. 10. Notice the mapping of co-variables a in the

source calculus Ay into ordinary variables of A-calculus that is silently done in the cases for

pa.c and af]. All expressions (terms and commands) of A\uy are translated into A-terms. The

definition of ¢* is well-formed since every command ¢ can be uniquely presented as L|t].
Define L*~ to be the argument to [] of the context L®, i.e.,

@)™ = a
bind([],z.¢)*” = Az.c®,

so that L®* = []L*~ and L*~ is a value.
Consider the following two operators:

Eta(t) = \k.kt Bind(t, z.u) = Mk.t(Az.uk),

where)\ denotes the static \-abstraction in the two-level A-calculus of (Danvy and Filinski,
1992), that is, redexes of the form (Xx.t)u are supposed to be reduced in the translation. Then
the two monad-related clauses of the definition of (-)® can be turned into

(nt)* = Eta(t*) bind(t, z.L[u])® = Bind(t*, z.u®)L*".
For the use in cbn translations, also define
bind(n[],z.c)® = Eta([])(Az.c®) .

This immediately implies
(CH)* = C°[t°] e

1 Viewed from the A-calculus, there is no difference between these two variable supplies guaranteed by our assumptions.
E. g., the letter x in rule 8 given in Section 1 still denotes any variable of A-calculus, and we will not use a to denote an
arbitrary variable of A-calculus. If a appears in a translation, it stands for an arbitrary co-variable of Az or Aufi, and
this co-variable is then also a variable of A-calculus and can therefore appear in terms in the range of the translation.

Monadic translation of classical sequent calculus 17
Fig. 11. Admissible typing rules for continuations-monad instantiation

L-t: AA c: (T'FA) Clz] : (T,z: MAF A)
e, A" Ft*: A® I* A" e L I z:——A* A+ (Clz])®: L

zé¢C

for all cbn contexts C'.

This translation also satisfies a Subexpression Property: if T is a subexpression of T, then the
term 7”° is a subterm of T°. The best way to see this in the case 7' = c is to unfold the two cases
of the definition of (L[t])°.

We can easily check that the rules in Fig. 11 are admissible (the third rule is a special case of
the second one, displayed for later proofs), where A®~ follows the usual pattern, with the type
operation (.)*” with

(MB)*" :=-B* 2)
(recall @ : A € A implies A = M B, for some B, so the apparent partiality of this operation is
no problem when forming A®~). The minus sign is a warning that (M B)®~ has a negation less
than (M B)°®. In addition, this notation is coherent with the notation L®~ introduced above, in
the sense that the following rule is admissible:

Llz]: (Tyz: MAE A)
[A Lo~ (MA)*

xé¢ L

So the type of L*~ has one negation less than the type of the hole of L°.
We now show that the instantiation is a strict simulation of Ay in A[87)].

Lemma 9. The translation satisfies:
1. ([u/x]T)® = [u®/x]T®".
2. ([L/a]T)® = [L*~ /a]T®".

Proof. 1. Induction on T'.
2. Induction on T'. The case of T' = at is the only non-trivial case, and it is proved as follows:

([L/a](at))® = (L[[L/a]t])® (by def. of struct. subst.)
= ([L/a]t)*L*~ (bydefof (.)® and L®[u®] = u®L*")
= [L* /a]t*L*~ (byIH)
= [L*/a)(t*a) (by def. of subst. in the A-calculus)
[L*~ /a)(at)® (by def. of (.)®)

O

Proposition 10 (Instantiation). 1. If 7" — 7" in Ay, then T* —+ T7° in A\[37).

2. If the reduction rules 7, and 7ying are omitted from the source, then reduction rule 7 can be
omitted from the target. If the reduction rules 8 and ¢ in the source are restricted to the forms j,
and oy, respectively, then reduction rule 3 in the target can be restricted to 3, .

Proof. 1. Induction on T' — T’. We just show the base cases, as term closure is evident by the
Subexpression Property.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 18

Case 8: (\x.t)s — [s/z]t.
LHS® = (Qx.t*)s®
—p [s°/a]t®
= RHS® (by Lemma 9.1)
Case o: bind(ns, z.c) — [s/x]c.
LHS® = (\k.ks®)(Az.c®)
—3, (Az.c®)s®
—p [s*/z]c
= RHS*® (by Lemma 9.1)
Case 7: L[pa.c] — [L/ac.
LHS® = (Ma.c®)L*~
—p, [L* /a]c*
= RHS*® (by Lemma 9.2)
Case 1),: pa.at — t, with a ¢ t (hence a ¢ t°).
LHS® = X\a.t*a =, t* = RHS®
Case Nping: bind(t, z.a(nzx)) — at.
LHS® =t*(\z.(\k.kx)a)
—g,, t*(Az.ax)
—y, t%a
= RHS".
2. Observe that V'* is always a value. Therefore, the [steps in the cases /3 and o of 1. turn into
B steps for 8, and o,]

In Appendix A.3, we will see that we can obtain refined continuations-monad instantiations
which only need \[§,] as target. They only work for subsystems of Ap, that however cover the
images of the monadic translations.

Corollary 11. 1. Every typable expression of A\ is strongly normalizable.
2. The system Apy is confluent for typable expressions.

Proof. 1. By the previous proposition, strong normalization of A[37)], and that typability is
preserved by the instantiation, shown in Fig. 11.
2. By strong normalizability and local confluence of Aum (using Newman’s Lemma). L]

Corollary 12. The systems A\ufi, and A\ufi, are strongly normalizing.

Proof. Use the previous corollary, the strict simulation results from Section 4, and preservation
of typability, shown in Fig. 6 and in Fig. 9, respectively. L]

Monadic translation of classical sequent calculus 19

We have thus reproved in a completely syntactic way strong normalization of \tjin and \jufiy
from that of \[8n)].

5.2. CPS translations through instantiation of monadic translations

Our proof of strong normalization for \jufi, and \u/ji, gives syntactic embeddings of these sys-
tems into A[37)], obtained by composing cbn and cbv monadic translation, respectively, with the
continuations-monad instantiation. The result is continuation-passing style (CPS) transforma-
tions of Aufin and Apjiy into A[B7).

We already know that both CPS translations yield strict simulations, being the composition of
mappings with the strict simulation property. In the following we make this precise, obtaining a
direct inheritance of strong normalization from the A-calculus (rather than a two-step inheritance
via Appm as done before). Similarly, we already know that both CPS translations enjoy type
soundness, being the composition of type sound mappings. In the following we make explicit the
typing rules they obey. Finally we discover the recursive structure of the CPS translations.

Define, for x € {n, v}:

Ar = (AD° 3)
(A = (&)° @
(A)y = (A)")
(T)x = (T)" 6)

In the cbn case, the last equation is well-defined because the definition of (.)® was extended to
any cbn context C'. For the cbn case, we set

(E)y = (En)" @)

For the cbv case, we set
ve o= (v ®
{eby = (@) . ©)

Notice that there is no index v in VT, and consequently neither in V*. This seems justified since
there is simply no such concept in the cbn translations.

An easy calculation shows that (A), = == A%, hence (A), = —A%. (Again, the minus sign
warns that (A, has one negation less than (A).) Obviously, X = X.

5.2.1. Call-by-name CPS translation (Mifin, —> A[1]) The translations of types (3) and (4)
satisfy in the cbn case:

(A o B): = <[A]>n o qBDn

Corollary 13 (Typing). The typing rules of Fig. 12 are admissible.

Proof. We “compose” the rules in Fig. 6 for (.) with those in Fig. 11 for (.)°. We just show
the typing rules for co-terms, the others being analogous but simpler.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 20

Fig. 12. Admissible typing rules for cbn CPS translation of Auji

LHt: AA Fe: AF A c: (TFA)
(TDn, (ADa & (D = (ADa (TDasy = (ADn, (ADa F {ebalyl - L [TDn, (ADa = chn: L

Fig. 13. Cbn CPS translation of Auji

whn =y
Pythn = Eta(Ay.(thn)
(pa.chn = Aa.(c)hn
(an = [la
(uzehn = [J(AfEta({u)n)(Xz(ehnlf2]))
(Ay.chn = Eta([)(Ay-(chn)

(e = {ednl {thn]

Tle: AFA (@)
enly] : (Tnyy: A b Ay) ”
(To)",y: ~=(AD" (Bn)" F (@ly))® - L @

(TDn,y : (ADn, (ADy F (eDnly] - L
Justifications:

(a) By the third typing rule in Fig. 6.

(b) By the third typing rule in Fig. 11 and A, = M A!.

(c) Thanks to compositionality of the extension of type operations to (co-)contexts (see Sec-
tion 1), we get (I)y = (T)" and (A); = (A,)°" from (4) and (5), respectively. Moreover,
(AN = (4,)" = (A)n, using (4); and (€x[y])* = (€n)°[¥*] = (€]n[y] using (1) and (6).

Ul

Corollary 14 (Strict simulation). 1.1f 7 — T" in Afin, then (T), =+ (T"]), in A\[37)], where
T, T' are either two terms or two commands.
2.If e — €’ in Apfin, then ((t|e))n —F ((t|e’))n in A[Bn] for any t € Apuji.

Proof. The method of proof is to “compose” strict simulation for (.), (Theorem 2) with strict
simulation for (.)* (Proposition 10). More precisely:

1.LetT — T". From Theorem 2 we get T, —*+ T7, in Aum, whence we get (Th)" —+ (T7,)
in \[Bn)], by Proposition 10. Now apply the definition of (7)), in (6).

2.Lete — €’ and t € Apji. Then (t|e) — (t|e’). Now apply 1. O

Proposition 15 (Recursive characterization). (7)), satisfies the equations in Fig. 13.

Monadic translation of classical sequent calculus 21

Fig. 14. Admissible typing rules for cbv CPS translation of Apji

F'-t: AA F'FV:AA
I3 {A) F @ty : (A TV, (A F V™ AD
Tle: AFA c: (TFA)

Iy (A, (AD F {edvlyl - L TV, (A F (chv: L

Proof. For the sake of the proof, take the recursive characterization as the definition of (7'),.
Prove (i) (£,)" = (t)n: (ii) (€1)* = (c)n: (iii) (€,)° = (€], by simultaneous induction on ¢, ¢
and e. The case ¢ = (t|e) makes use of (C[t])* = C*[t*]. Ul

With this recursive characterization, one could give direct proofs of the typing rules and of
strict simulation for {.]),,. But such proofs would not be as modular as the ones given above.

Remark 16. Given the recursive characterization, statement 2 in Corollary 14 reads
If e — €’ in Afin, then {e)n[(t)n] =T (€'Dn[(t)n] in A[Bn] for any t € Apufi.

This statement can easily be generalized so that (e]),[u] —1 {e')a[u] holds for any A-term w.
The case u = y is a particular case of the statement already proved, since y = (y]),. The case of
w an arbitrary A-term then follows from this particular case, since (e]n[u] = [u/y]({e)nly]) if y
is fresh and since the reduction rules of A[3n] are closed under substitution.

5.2.2. Call-by-value CPS translation (A\uji, — A[B,n]) The translations of types (3) and (4)
satisfy in the cbv case:

(A> B), = A] > (B

Corollary 17 (Typing). The typing rules in Fig. 14 are admissible.

Proof. Similar to the cbn case (Corollary 13), “composing” the rules in Fig. 9 for (.), with
those in Fig. 11 for (.)®. This time, we use that I’ = (I'f)* and (A); = (A,)* which follow
from (3) and (5), respectively.]

Corollary 18 (Strict simulation). 1.1f7 — T" in Apfiy, then (T), —F (T}, in A[8,7], where
T, T’ are two terms or two commands.

2.If e — €’ in Aufiy, then {(t|e)]), =T ({t|e/)]v in A[Byn] for any t € Apji.

Proof. Similar to the cbn case (Corollary 14), “composing” strict simulation for 6\/ (Theorem
6) with strict simulation for ()' (Proposition 10). As observed in Theorem 6, 6\/ only requires
Bvar C By and o, from the target Ay in place of 5 and o. So, statement 2 of Proposition 10

applies, and f3, instead of /3 is sufficient in the A-calculus. L]

Proposition 19 (Recursive characterization). (7', satisfies the equations in Fig. 15.

Proof. For the sake of the proof, take the recursive characterization as the definition of (7",
and V*. One proves: (i) (V1) = V*; (i) ()" = (t)v: (i) (@)° = (c)v; (V) (&)° = (e)v by
simultaneous induction on V, t, ¢, and e.]

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 22

Fig. 15. Cbv CPS translation of Aujfi

(V)v = Eta(V7) vto= v
(na.chy = Aa.{c)v Mt)" = (i)
{av = [la (@le)dv = (e[{tDv]
(uzehy = [JAfQudv(Aw.fe)v[fw]))

I(
(av-chy = [1(Av-{c)v)

Remark 20. Given the recursive characterization, statement 2 of Corollary 18 reads:
If e — €’ in Aufiy, then (e, [()v] =T (€'Dv[{t)v] in A[Bun] for any ¢ € Auji.

This statement can be generalized so that {e)),[u] —* (€']y[u] for arbitrary A-terms u. But the
argument used in Remark 16 cannot be repeated with (.]y, since v # (v)), and since rule j3, is not
closed under substitution. The generalization requires a new induction; however, since Corollary
18 is already proved, it suffices to prove the generalized statement 2 together with some trivial
statement for terms and commands: if T — 7" then true (this amounts to saying that we are only
interested in the base reduction rules acting on co-terms — this is only 7; — and the clauses of the
term closure that justify a reduction of co-terms). Inductive cases are routine (either by induction
hypothesis — in the single case ¢ :: e — ¢ :: €’ due to e — ¢’ — or by appeal to Corollary 18.1).
We only treat the single base case of generalized statement 2.
Case 1;: fiv.(vle) — e, with v ¢ e, hence v ¢ (e]), .

(LHS)] = u(iv.(o) (e)y)
=5, u(Av.{e)yv) ({e]; is a value)
=y ule)y = (RHS)[y]

Further analysis of the CPS translations can be found in the appendix to this article.

6. Extension to second-order logic

All the systems considered in this article can straightforwardly be extended to cover second-order
logic, and the main simulation results can be extended correspondingly. These, in turn, produce
new strong normalization results for classical second-order logic in sequent calculus.

6.1. Extension of systems

We present the systems A2/4/i, A2/ and A2, our second-order versions of Aufi, Ay and the
A-calculus, respectively. We will not be overly formal here and often only describe the new
inductive clauses for some syntactic class. It is understood that all notions in the rules (e. g.,
the notion of type in the new grammar for terms and the notions of types and terms in the old
and the new typing rules) refer to the extended notions and thus that all former definitions (such
as substitution and translation) and results are to be interpreted over these larger domains. This
reinterpretation never adds new cases to the proofs that were just done by structural induction.
However, the new grammatical elements have to be treated as such. Only where this leads to
non-trivial new cases, it will be mentioned.

Monadic translation of classical sequent calculus 23

The grammar of types is an extension of the grammar of the corresponding first-order system
thus:

A B:u=---|VX.A

The type variable X is considered bound in VX.A. In an obvious way, one can define type

substitution [A/X]B denoting the result of capture-avoiding substitution of all free occurrences

of type variable X in type B by type A. As an example in Auwm, [A/X]|(M B) = M([A/X]B).
The grammar of expressions of A2l is:

V o= z|dzt|AXt E = aluze|lA:e ¢ == (tle)
t,u = V|pa.c e == F|pzx.c

where type variable X is bound in the new term A X.¢.

We consider A X .t as a value for any term ¢, following the call-by-value Apu-calculus of (Fujita,
1999). Note that, as discussed in (Asada, 2008) for example, regarding A-abstractions as values
may be incompatible with the second-order n-rule, which is expressed as

AXAX >t (X g0,

in natural-deduction style. However such an 7-rule is not considered in the second-order calculi
in this article, and these calculi (or the cbn and cbv fragments in the case of A2//i) have good
properties as reduction systems, as we will see: subject reduction, strong normalization, and
confluence. Moreover, regarding A-abstractions as values preserves the duality between values
and evaluation contexts, and leads us to a natural extension of the analysis for normal forms in
the cbn and the cbv fragments of \uji: also in the second-order extensions of the fragments of
i, any normal and typable command is either (x|E) or (V|a), where normal forms are w.r. .
the rules of the respective first-order system, extended by rule 52 given below.

The typing rules for the additional expressions respectively correspond to the right- and the
left-introduction rules for the second-order quantifier:

T'Ht:B|A oy Le:[4/X]BEA
TFAX.Z:vX.BA M2 T4 .vXBFA

LiIntro2

provided, in RIntro2, X does not occur free in any of the types in I', A. Notice that, in LIntro2,
type B is not determined from [A/X]B and A, so this introduces a further source of ambiguity
of the type of a given term. Still, in the extended system, we do not attach a type to variable x in
Az.t, as would be done in Church-style formulations of second-order A-calculus. We thus obtain
domain-free systems in the sense of (Barthe and Sgrensen, 2000), the style that was also adopted
for the formulation of second-order A\u-calculus by (Fujita, 1999; Ikeda and Nakazawa, 2006).
it

In order to formulate the additional reduction rule, we have to assume a notion of type sub-
stitution in terms, [A/X]¢, that will be defined simultaneously with [A/X]c and [A/X]e. As

 The following discussion can also be done for the Church-style systems by defining each translation on terms as
a mapping from terms with their type derivations. On the other hand, the Curry-style formulation does not seem
suitable, since some evidences (Harper and Lillibridge, 1993; Fujita, 1999; Summers, 2011) show that Curry-style
cbv polymorphic calculi with control operators are unsound.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 24

admissible typing rules, we get, for example,
I't+t: B|A
[A/X|TF[A/X]t: [A/X]B|[A/X]A

with the intuitive reading of the substituted contexts (following the convention in Section 1).
The extra reduction rule for A2u is

(82) (AX Az e) — ([A/X]te)

The cbn and cbv fragments of A\2/i are defined in the same way as for first-order \jufi and are
called \2/i, and A24fi,, respectively. Thanks to the proviso of rule RIntro2, subject reduction
also holds for A2jfi. Since A2/fin, and A\2fi, have only trivial critical pairs (no new critical pair
arises with the extension to the second order), these fragments are confluent.

The monadic calculus Apy is similarly extended as follows. The grammar of expressions of
A2 1s:

14 x| Axt|AX ¢ u= at|bind(t,x.c)
r,s,tou = V]tu|tA|pa.clnt

and the typing rules for the new terms A X.t and ¢t A are respectively corresponding to the intro-
duction and the elimination rules for the second-order quantifier:

T'Ht:B|A I'kt:VX.B|A

TFAX.L:VXBA M2 TEiA:[A/X]BA

Elim2

provided, in Intro2, X does not occur free in any of the types in I', A58
The additional reduction rule for A2 is the ordinary rule of polymorphic A-calculus:

(62) (AX.4)A — [A/X]t .

Similarly to A2//i, A2/m enjoys subject reduction. No new critical pair arises from the extension
to the second order, hence also A2y is locally confluent.

As the target calculus of the continuations-monad instantiation, we consider the second-order
extension of A-calculus in the domain-free style, which is introduced in (Barthe and Sgrensen,
2000) in the framework of the domain-free pure type systems, and denoted here A\2. The grammar
of expressions is extended by A X.t and ¢t A, for which we add the typing rules Intro2 and Elim?2
without the A parts. The additional reduction rule 52 is given in the same form as 52 for Aup.

It is important to stress again that for A2, we do not consider the second-order n-rule. It is not
needed for our simulation results and is therefore left out. In the sequel, we will concentrate on
A2(8, B2,1].

Although we are not aware of a strong normalization result for A2[53, 52, 1], this result holds,
and it can be proved along the lines of (Barthe and Sgrensen, 2000), inheriting strong normaliza-
tion of Church-style second-order A-calculus with first-order 7-reduction rule.

Proposition 21. \2[3, 52,] enjoys strong normalization.

88 The rules RIntro2 and Intro2 are superficially the same rule, but they range over different systems of types and
terms.

Monadic translation of classical sequent calculus 25

Proof. In this proof, we consider the Church-style second-order A-calculus with 3, 82 and
1 (where we mean the Church-style versions of 5 and 7 with type superscripts at the variable
bindings), the strong normalization of which has already been known. ¥

The erasure function (see (Geuvers, 1993, Section 4.4.2)) [-] from the Church-style calculus
to the domain-free style calculus, that is A2, is defined by [/\xA.ﬂ = Az.[t], and the other cases
are homomorphic. Then the following are proved by induction straightforwardly: (i) for any
domain-free term ¢ which has a type A in context T, there exists a Church-style term ¢’ such that
t’ has the type A in T and [¢'| = ¢, and (ii) for any Church-style term ¢’ and any s in domain-free
style, if [t'] — s holds in A2[3, 82, 7], then there exists a Church-style term s’ such that ¢’ — s
and [s'] = s. As a consequence from (i) and (ii), we can translate any potential infinite reduction
sequence in \2[3, 32,n] from a typable domain-free term into an infinite reduction sequence
in the Church-style second-order A-calculus, starting from a typable term. Such a sequence is
impossible, hence our result.]

This completes the presentation of the second-order extensions of the systems in this article.
Notice that, unlike for second-order Ap-calculus of Parigot (Parigot, 1997), nothing is added on
the classical side to accommodate the second order.

6.2. Extension of translations

We will now extend the monadic translations from Ayt into Az to monadic translations from
A2ufi into A2/up. On types, the definitions are as follows:

y = MX (AS>B), = M(A,>B,) VX B, = M(VX.B,)

. = MX (ADB), = M(AI>B,) VX.B, = M(VX.B,)

><|

Al is again A, without the outermost application of M. As usual, the letter x ranges over the
set {n,v}. In particular, (VX B)i = VX.B,, and the cases for type variables and implication
are unchanged. Thus, on the surface, the extension for the second-order universal quantifier is
the same for cbn and cbv, but it still recursively relies on the different treatment of implication
according to the two paradigms. On the surface, there is no difference between the translations
of expressions either: add

(AX 1), =n(AX.t) (A:e), =bind([], z.&[zAl))
to the cbn translation given in Fig. 7 and to the cbv translation in Fig. 8, respectively. In the cbv
case, this agrees with the general rule V, = nVT by setting (AX .t)T = AX.t, for the value
A X .t, which seems to be the only reasonable definition.

We have the following properties of type substitutions that become relevant only now although
they could have been stated already in Section 4.

99 Unfortunately, we were not able to find a canonical source to cite. Weak normalization of a second-order system was
first established by (Girard, 1971), and strong normalization is not essentially harder (see (Barthe et al., 2001) for very
general results about that). Many different published proofs of strong normalization exist for second-order systems
with type annotations on all variable occurrences, and a proof for Church-style typing would only inessentially deviate
from them. There are also different styles for the treatment of the n-reduction rule. One way is to remark that there is an
inductive characterization of SN terms that is indifferent to n-reduction (Matthes, 1999), another is by postponement
of n-reduction steps.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 26

Lemma 22. The monadic translations satisfy:
1. ([A/X)B), = [Al/X]By and ([A/X]B)T = [Al/X]B}
2. ([A/X]T), = [A}/X|Tx and ([A/X]V)" = [A]/X]VT.

Proof. 1. Simultaneous induction on B.
2. Simultaneous induction on 7'.]

It is easy to establish that the admissible typing rules in Fig. 6 and in Fig. 9, respectively, still
hold for this extension. Key to verify (A :: e), is that zA] gets type ([4/X]B), in a context with
z: (VX.B)I — recall that the hole of (A :: e), is filled with a variable of type (VX.B), in both
paradigms.

Theorem 23 (Strict simulation for second-order monadic translation). Letx € {n,v}.
1.If T — T in X2pujiy, then Ty, —+ T7, in A2jupm, where T, T" are either two terms or two
commands.
2.1f e — €’ in A24ufiy, then &c[t,] =T €/x[t,] in A2um for any t € A2uji.
The same restrictions of the rules in the target system as in the Theorems 2 and 6 are sufficient.

Proof. The proof has to proceed as the proofs of Theorems 2 and 6. We will show only the
case for the new reduction rule. Note, however, that (A :: e)X is a base context, so that simulation
of rule 7 is not hampered in the case of £ = A :: e

Case (2: This case is proved as follows, using Lemma 22.2 (we omit the index x everywhere):

(AXt]A:e) = bind(n(AX.1),2e[zAT])
—o, E[(AX.)AT
—p2 e[[AT/X]E]
= ([A/X]tle) .

O

We will now extend the continuations-monad instantiation, and will obtain the CPS transla-
tions by composing the continuations-monad instantiation.
The continuations-monad instantiation for types is extended to

X=X (AD B)' =A*>B* (MA)' = —-A° (VX.A)' =VX.A°,
and, for terms and commands, add
(AX.t)* = AX.t° (tA)* =t A°

to the translation given in Fig. 10, i.e., every second-order element is translated homomorphi-
cally.

Lemma 24. The continuations-monad instantiation satisfies:
1. ([A/X]B)' = [A*/X]B°,
2. ([A/X)T)° = [A*/X]T".

Proof. Induction on B and T', respectively. L]

Monadic translation of classical sequent calculus 27

Using this lemma, it is easily checked that the rules in Fig. 11 are admissible, and the extended
continuations-monad instantiation strictly preserves the reduction steps.

Proposition 25. 1. If T — T” in A2y, then T* —+ T"° in A\2[3, 52, 7).
2. The same variants as in statement 2 of Proposition 10 hold again.

Proof. 1. We prove only the case §2:
(AX1)A)® = (AX°)A® —p0 [A%/X]t* = ([A/X]t)°.
2. It is proved similarly to Proposition 10.2. L]

The first part of the above proposition, together with both Proposition 21 and preservation of
typability shown in Fig. 11, immediately gives:

Corollary 26. A\2u\ enjoys strong normalization.
Strong normalization of the cbn- and cbv-fragments of A2/ is now obtained.
Corollary 27. A\2ji, and A2/i, are strongly normalizing.

Proof. Use the previous corollary, Theorem 23, and preservation of typability, shown in Fig. 6
and in Fig. 9, respectively (and verified to hold even for the second-order extension). L]

Despite the little work invested into the second-order extension, we obtained a strong result. This
is thanks to CPS translation and its monadic generalization that is known to scale up well, while
the negative translation is confined to first-order types/formulas (see, e. g., (Parigot, 1997)).

The CPS translations, which are obtained by composing the monadic translations and the
continuations-monad instantiation in form of the equations (3), (4) and (6), satisfy the following
additional recursive clauses (that could again be used to give a direct recursive definition of the
CPS translations):

(VX.A): = VX.(ADx
(AX.t)x = Eta(AX.(t)) (A = ey = [JO0z-(ed[2A%),

which are common to both cbn and cbv but refer to otherwise quite different translations of types
and expressions.

7. Related and future work

In this paper we proved strong normalization for the cbn and cbv fragments of Auji through
a syntactic embedding into the A-calculus, that extends to the second order with domain-free
polymorphic A-calculus as target. The embeddings are CPS translations with the strict simulation
property, obtained as the composition of a monadic translation into an intermediate, monadic
language, and an instantiation of the formal monad of this language to the continuations monad.
The intermediate language is itself new, combining in a non-trivial way syntax for classical logic
in the style of Au-calculus with syntax for a monad as found in Moggi’s monadic meta-language.
We now show how this work relates to the literature and can be developed in the future.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 28

7.1. Related work

Strong normalization for \jfi. Strong normalization for full A/ has been shown directly in
(Polonovski, 2004), using the reducibility candidates method, and in (David and Nour, 2007),
using subtle proof structures that are complex although formalizable in arithmetic. Before that,
(Lengrand, 2003) also achieves strong normalization of Aufi, using an embedding into the se-
quent calculus for classical logic of (Urban, 2000), which was proven strongly normalizing by
the reducibility method. A more syntactic approach is followed in (Rocheteau, 2005), where \4/i
is mapped into Ay extended with some sort of contexts and weak simulation is proved. It is not
clear from the proof provided in (Rocheteau, 2005) whether strict simulation is actually achieved,
and strong normalization for this extension of Ay is not addressed.

Our proofs of strong normalization are syntactic in nature, combinatorially simple, and al-
though only applicable to the cbn fragment and the cbv fragment, they are conceptually related
to questions of semantics of programming languages. In addition, our results for the second-order
extensions are new. The extensibility of our method to the second order is in contrast with the
direct arithmetical proof of (David and Nour, 2007) that is confined to the first-order fragment.
In fact, we are not even aware of systems extending Aufi to the second order, besides the one
considered in this paper.

Monadic translation. The technique of monadic translation to prove strong normalization was
applied first to the intuitionistic fragment of cbn /i (Espirito Santo et al., 2009b). Two sources
for this technique are (Hatcliff and Danvy, 1994), where the idea of factorizing CPS translations
into monadic translations and monad instantiations is found; and (Sabry and Wadler, 1997),
where reduction steps (instead of equations) in the monadic meta-language are given central
importance.

In (Espirito Santo et al., 2009b) the intuitionistic fragment of cbn Auji is the domain of a
monadic translation into an intuitionistic monadic meta-language (resulting from the enrichment
of Moggi’s monadic meta-language with some permutative reduction rules); and that monadic
translation is afterwards composed with an instantiation to the identity monad. Simulation works
only if an extra permutative reduction rule, usually named “assoc”, is added to the target (A-
calculus), and extension to the second order looks problematic. Composition with an instantiation
to the continuations monad produced a CPS translation, but no simulation.

The present paper highly improves these results by: (i) treating classical logic, both the first-
order and second-order systems, and both the cbn and the cbv paradigms; (ii) producing a much
“tighter” monadic translation (with non-/ reduction steps translated in 1-1 fashion); (iii) produc-
ing strict simulation through CPS obtained by factorization via a monadic language; (iv) offering
the new monadic language required for this factorization.

CPS translations with strict simulation. A key issue of strict simulation is that, not only the re-
duction steps at the root, but also deeper inside a term, have to be considered. This was sometimes
overlooked in the literature, as pointed out with some examples in (Nakazawa and Tatsuta, 2003),
and led to “incorrect proofs” of strong normalization by CPS. A CGPS-translation (continuation-
and-garbage-passing style translation) of Ay achieving strict simulation in \[3] is developed in
(Ikeda and Nakazawa, 2006). This style of translation, that passes around both continuations and

Monadic translation of classical sequent calculus 29

“garbage” terms (so that all parts of the source term are kept), can be applied in various settings,
and, in particular, extends to second-order Au. It was not successfully extended to i so far,
but a simplification of the technique (where only units of garbage are passed) delivered strong
normalization for the intuitionistic fragment of cbn \ufi (Espirito Santo et al., 2007; Espirito
Santo et al., 2009a). This result is extensible to the second order (with simulation in domain-free
polymorphic A-calculus).

CPS translations for)\;fi. CPS translations for the cbn and cbv fragments of Aufi, denoted by
(_)* and (_) resp., were already present in (Curien and Herbelin, 2000). Both translations map
into A-calculus enriched with products. The cbn translation generalises a translation in (Hofmann
and Streicher, 2002), and the cbv translation is a dualized version of the cbn translation. Although
no precise statement of preservation of reduction by the translations is made, the article states
that each translation “validates” the respective evaluation discipline, which suggests that the
translations map a reduction in A\izfi into convertible terms in the target. In fact, one verifies that
(_)? does not simulate the S-rule for the subtraction connective, it only obtains convertible terms.
By duality, the same happens with (_)* w.r.t. the S-rule for implication.

In (Herbelin, 2005), there is both a CPS translation ()" of the cbn fragment Aujir and a
CPS translation (_)° of the cbv fragment Aujiq. The fragments Aujir and XuﬁQ, which are
introduced in (Curien and Herbelin, 2000), are smaller than Aufi, and Auji,, respectively. The
smaller domains allow a slightly simplified definition of the CPS translations. These are obtained
by extending the respective maps for the “logic-free” fragment p i, and for this fragment weak
simulation is stated. (Recall weak simulation means: each reduction step of the source is mapped
into zero or more reduction steps in the target.) Again, one verifies that S-reduction for implica-
tion is mapped to 3-equality only, this time for both the cbn and cbv translations.

CPS translations for both fragments of Auji are also considered in (Lengrand, 2003). (For
the correct definition of the cbn translation one needs to look at the erratum.) When compared
to our CPS translations, the differences are (besides the fact that Lengrand does not consider
the 7, and 7; rules): (i) Lengrand’s cbv translation takes (A D B)" = =B* D —A*, whereas
we have the intuitionistically equivalent (A D B)* = A* D =—B*, where the double negation
results directly from the instantiation to the continuations monad; (ii) Lengrand’s cbn translation
of commands reads as ((t|e)]) = (e]) {¢), which forces co-term translations to a have a type of the
form ~(A]) (vs. our ((t|e})) = (e][(t]]). The development of the CPS translations in (Lengrand,
2003) was geared by semantic considerations, and the results of “preservation of semantics” by
the CPS translations state that when a term reduces to another, their images are -convertible.
Having said this, we were able to verify that Lengrand’s cbv translation shares the simulation
property of our Corollary 18 and the need for -reduction in the target, while S-conversions
cannot be avoided in the target of Lengrand’s cbn translation.

In all, we may say that, rather than strict simulation, the literature on CPS translations for
Apfi had other preoccupations like duality, simplicity, and semantic considerations. Our CPS
translations for Ay fi with the strict simulation property turn out to be a contribution to the field,
in spite of being a by-product of our approach to strong normalization.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 30

7.2. Future work.

The meta-language introduced in this paper has good meta-theoretic properties (subject reduc-
tion, confluence, strong normalization), and smoothly extends Moggi’s meta-language. We think
it deserves further study.

One direction is the investigation of subsystems. We are studying a subsystem of values and
computations, originating in the natural idea of restricting arrow types to the form A D M B
(see e.g. (Hatcliff and Danvy, 1994)). This may lead to new connections with polarized formu-
lations of logic, into which embeddings of cbn and cbv calculi have been studied in (Curien
and Munch-Maccagnoni, 2010). Moreover, following (Sabry and Wadler, 1997; Dyckhoff and
Lengrand, 2007), we have already found that the monadic cbv translation gives an equational
correspondence between the system XuﬂQ and a subsystem of A\u. We would like to identify
subsystems of Apfi, for which our monadic translations and meta-language, even in the cbn case,
can produce neater relationships such as reflections.

The use of monadic meta-languages as generic frameworks for the study of CPS translations
was started in (Hatcliff and Danvy, 1994). In that article the goal was to make a comprehensive
and uniform analysis of extant translations of an intuitionistic source calculus. In the present
article, the monadic meta-language has been a vehicle to discover new translations — with a
single crucial property (strict simulation) — of a classical source calculus. So, there is plenty of
room for using our classical meta-language in more comprehensive studies, along the lines of op.
cit., of CPS translations of A-calculi with control operators. Although such studies are beyond
the scope of the present article, we nevertheless already offer some supplementary analysis of
our CPS translations in an appendix to this article.

Based on past experience (Espirito Santo et al., 2009a), we believe there should be no major
obstacle in extending the present work to higher-order classical logic. Clearly, also positive con-
nectives such as disjunction and the second-order existential quantifier, together with their usual
permutative conversions, would be worth considering.

None of the three mappings from A to Auji given in (Curien and Herbelin, 2000) enjoys
strict simulation (see also the errata to op. cit.). So, strong normalization for Aufi is not imme-
diately inherited to Au. On the other hand, strong normalization of Ay has been proved with the
technique of CGPS translation (Ikeda and Nakazawa, 2006), but this technique has not yet been
extended to \uji. Here is still some room for systematization of techniques for proving strong
normalization.

References

Asada, K. (2008). Extensional universal types for call-by-value. In Ramalingam, G., editor, The 6th Asian
Symposium on Programming Languages and Systems (APLAS 2008), volume 5356 of LNCS, pages 122—
137. Springer Verlag.

Barthe, G., Hatcliff, J., and Sgrensen, M. H. (2001). Weak normalization implies strong normalization in a
class of non-dependent pure type systems. Theoretical Computer Science, 269(1-2):317-361.

Barthe, G. and Sgrensen, M. H. (2000). Domain-free pure type systems. Journal of Functional Program-
ming, 10(5):417-452.

Curien, P--L. and Herbelin, H. (2000). The duality of computation. In Proc. of ICFP 2000, pages 233-243.
IEEE. (Errata available from the second author’s homepage).

Monadic translation of classical sequent calculus 31

Curien, P-L. and Munch-Maccagnoni, G. (2010). The duality of computation under focus. In Calude, C. S.
and Sassone, V., editors, IFIP TCS, volume 323 of IFIP, pages 165-181. Springer.

Danvy, O. and Filinski, A. (1992). Representing control: a study of the CPS transformation. Mathematical
Structures in Computer Science, 2(4):361-391.

David, R. and Nour, K. (2007). Arithmetical proofs of strong normalization results for symmetric A-calculi.
Fundamenta Informaticae, 77(4):489-510.

Dyckhoff, R. and Lengrand, S. (2007). Call-by-value A-calculus and LJQ. Journal of Logic and Computa-
tion, 17(6):1109-1134.

Espirito Santo, J., Matthes, R., and Pinto, L. (2007). Continuation-passing style and strong normalisation
for intuitionistic sequent calculi. In Ronchi Della Rocca, S., editor, Proc. of TLCA 2007, volume 4583
of LNCS, pages 133-147. Springer Verlag.

Espirito Santo, J., Matthes, R., and Pinto, L. (2009a). Continuation-passing style and strong normalisation
for intuitionistic sequent calculi. Logical Methods in Computer Science, 5(2:11).

Espirito Santo, J., Matthes, R., and Pinto, L. (2009b). Monadic translation of intuitionistic sequent calculus.
In Berardi, S., Damiani, F., and de’Liguoro, U., editors, Post-proc. of TYPES 2008, volume 5497 of
LNCS, pages 100—-116. Springer-Verlag.

Fujita, K. (1999). Explicitly typed Ap-calculus for polymorphism and call-by-value. In Girard, J.-Y., editor,
Proc. of TLCA 1999, volume 1581 of LNCS, pages 162—177. Springer-Verlag.

Geuvers, H. (1993). Logics and Type Systems. Proefschrift (PhD thesis), University of Nijmegen.

Girard, J.-Y. (1971). Une extension de l’interprétation de Godel a I’analyse, et son application a
I’élimination des coupures dans 1’analyse et la théorie des types. In Fenstad, J. E., editor, Proceed-
ings of the Second Scandinavian Logic Symposium, volume 63 of Studies in Logic and the Foundations
of Mathematics, pages 63-92. North-Holland.

Harper, R. and Lillibridge, M. (1993). Polymorphic type assignment and CPS conversion. Lisp and Sym-
bolic Computation, 6(3-4):361-380.

Hatcliff, J. and Danvy, O. (1994). A generic account of continuation-passing styles. In Proc. of POPL 1994,
pages 458-471. ACM.

Herbelin, H. (2005). C’est maintenant qu’on calcule — au ceeur de la dualité. Habilitation thesis, University
Paris 11.

Hofmann, M. and Streicher, T. (2002). Completeness of continuation models for lambda-mu-calculus.
Information and Computation, 179(2):332-355.

Ikeda, S. and Nakazawa, K. (2006). Strong normalization proofs by CPS-translations. Information Pro-
cessing Letters, 99:163-170.

Lengrand, S. (2003). Call-by-value, call-by-name, and strong normalization for the classical sequent cal-
culus. In Gramlich, B. and Lucas, S., editors, Post-proc. of WRS 2003, volume 86 of ENTCS. Elsevier.
(Erratum available from the author’s homepage).

Matthes, R. (1999). Monotone fixed-point types and strong normalization. In Gottlob, G., Grandjean, E.,
and Seyr, K., editors, CSL, 12th International Workshop, Brno, Czech Republic, August 24-28, 1998,
Proceedings, volume 1584 of LNCS, pages 298-312. Springer Verlag.

Moggi, E. (1991). Notions of computation and monads. Information and Computation, 93(1):55-92.

Nakazawa, K. and Tatsuta, M. (2003). Strong normalization proof with CPS-translation for second order
classical natural deduction. Journal of Symbolic Logic, 68(3):851-859. Corrigendum: vol. 68 (2003),
no. 4, pp. 1415-1416.

Parigot, M. (1992). Ap-calculus: an algorithmic interpretation of classic natural deduction. In Int. Conf.
Logic Prog. Automated Reasoning, volume 624 of LNCS, pages 190-201. Springer Verlag.

Parigot, M. (1997). Proofs of strong normalisation for second order classical natural deduction. Journal of
Symbolic Logic, 62(4):1461-1479.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 32

Plotkin, G. (1975). Call-by-name, call-by-value and the A-calculus. Theoretical Computer Science, 1:125—
159.

Polonovski, E. (2004). Strong normalization of Xuﬂ with explicit substitutions. In Walukiewicz, L., editor,
Proc. of FoSSaCS 2004, volume 2987 of LNCS, pages 423-437. Springer-Verlag.

Rocheteau, J. (2005). Ap-calculus and duality: call-by-name and call-by-value. In (Ed.), J. G., editor, Proc.
of RTA 2005, volume 3467 of LNCS, pages 204-218. Springer-Verlag.

Sabry, A. and Wadler, P. (1997). A reflection on call-by-value. ACM Trans. Program. Lang. Syst.,
19(6):916-941.

Summers, A. J. (2011). Soundness and principal contexts for a shallow polymorphic type system based on
classical logic. Logic Journal of the IGPL, 19(6):848-896.

Urban, C. (2000). Classical Logic and Computation. Phd thesis, University of Cambridge.

Appendix A. Monadic approach to refinement of CPS translations

In this appendix, we show how to use the decomposition of CPS translations via Auy in or-
der to obtain refined translations of A\ufin, and Apfi,, accumulating the properties enjoyed so far
with other desirable properties. The decomposition allows one to discover opportunities of im-
provement in the components of the CPS translation. The refinements we introduce are actually
confined to the continuations-monad instantiation, and so the monadic translations remain an
invariant of the approach. The refined CPS translations are still obtained by composition, with
properties still obtained by “composition” of the properties of the components, as happened with
the CPS translations studied above.

We analyze the CPS translations of Section 5.2, which we refer to as the main CPS translations.
They are sound w.r. t. typing, decompose via Aum, and — most importantly for our purposes —
enjoy strict simulation. We give an analysis of other desirable properties: readiness (to reduce
source redexes) and indifference (to evaluation order).

Let us say that a redex in a A-term in the range of a CPS translation of A/i is a source redex if it
corresponds to some redex in the source \uji-term. A CPS translation has the readiness property
(or is ready) if a A-term in its range is always ready to reduce a source redex (if one such exists).
CPS translations are not always ready in this sense, because the translation itself may generate
“administrative” redexes (Plotkin, 1975; Danvy and Filinski, 1992), whose reduction is required
prior to the reduction of source redexes. The well-known indifference property (Plotkin, 1975),
in turn, says in particular that the CPS translation achieves (strict) simulation with 3, alone in
the target.

We show that slight variations of the main CPS translations achieve one of the extra properties
we mentioned — on top of the properties already enjoyed by the main translations. None of the
variants, however, achieves both extra properties, although a more extensive modification of the
main translations, not pursued in this paper, might have collected all properties.

A first refinement defines the ready instantiation, where administrative redexes introduced by
the main instantiation are reduced “on the fly”. After composing the ready instantiation with the
monadic translations, one obtains CPS translations enjoying the readiness property. However, the
simulation by ready CPS still employs full 3 and 7 in the target.

Next, we discuss the defects of the main and ready CPS translations in connection with
the need for full gn-reduction in the target; and we introduce two refinements of the main
continuations-monad instantiation, dedicated to cbn and cbv, respectively. Through composition

Monadic translation of classical sequent calculus 33

with the respective monadic translations, new optimized CPS translations are obtained, which
introduce even more administrative reductions than the main translations, but which enjoy strict
simulation by S, only.

A.1. Ready CPS translations and administrative reductions

Strict simulation requires each reduction step in the source of the CPS translation to correspond
to at least one reduction step in the target, but not conversely. It is easy to see that the main CPS
translations of Section 5 do not map reduction steps in 1-1 fashion, even though the monadic
translations essentially do (Remarks 3 and 7). As one can observe in the proof of Proposition 10,
the main instantiation (.)® generates itself reductions of the form

(admin) (Meku)K — Ku (k ¢ u, K avalue) .

This is a specific instance of /3, and the redex can also be written as Eta(u) K. Through compo-
sition with the monadic translations, these reduction steps become administrative reductions of
the main CPS translations.

For a variety of reasons, both theoretical and practical, it is desirable to reduce administrative
redexes at compile time. This is achievable by several means, for instance by the introduction
of the so-called colon-operation (Plotkin, 1975), or by a classification of constructions in the
generated code as static or dynamic (Danvy and Filinski, 1992). In this paper we achieve the same
goal in a modular way, profiting from the decomposition of CPS translations via Auy. Indeed,
in our case, it suffices to introduce a slight improvement in the definition of the continuations-
monad instantiation.

We define the ready continuations-monad instantiation, denoted (.)°. In the definition of Fig.
10 we just open an exception in the clause for the instantiation of a command:

(L[)® = L[] ift £ nu
(a(nu))® = au® (10)
bind(nu,z.c)° = (A\r.c®)u®

The remaining clauses of (.)* are not changed. It is immediate that 7 —%, . T°.
Define L°~ as the argument to the hole of L° (hence L° = []L°~). Then, the last two equa-
tions of (10) can be uniformly written as

(L[nu))® = L°"u® . (11)
We also define
bind(n[], z.c)® = (Az.c)[] , (12)
so that the following holds:
if C'is not a base context or ¢ # nu, then (C[t])° = C°[t°]. (13)

Lemma 9 has to be modified as follows.

Lemma 28. The translation satisfies:
1. [u®/2]T° =%y ([u/2)T)°, with equality holding if u # nr.
2. ([L/a]T)O = [L° /a]T"°.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 34

Proof. 1. Induction on 7. We just show the cases where administrative steps are generated.
These have the form T' = L[t], with [u/x]t = nr and t # ns, whence t = z and u = nr.
Case ¢ = ax, with u = nr.

[u® /x](az)® [u®/a](wa)

—7admin QT
= (a())°
= ([w/z)(az))”

Case ¢ = bind(z,y.c'), with u = nr.

[u® /x]bind(z,y.c)° [u® /x](x(\y.c'?)

u®(My.[u°/z]c’?)

—admin ()\y.[uo/w}c’o)ro

aamin - (Ag-([w/@]e))re - (by IH)
= bind(nr, y.[u/z]c’)°

_ ([u/z]bind(x,y.c'))°

2. Induction on 7". No administrative steps are generated because we cannot have [L/alt = nr,

if t # ns. L]

)

In the following, ¢ -+~ u means ¢t — w or t = w, i.e., —~ is the reflexive closure of —. We
will use the symbol p to denote reduction rules in the sequel. There is no risk of confusion since
we do not study p-reduction in our paper.

Proposition 29 (Ready instantiation). Let 7" —, T in M.

— Ifp € {B, By, Bvar} then T° —, u —%, . T'°, for some w.
— Ifp=mn,thenT° =7 u =70 T'°, for some .

— Ifp=othenT° =5 u — 4., T'°, for some u.

— Ifp € {o,,m}thenT°® —p5, T°.

— If p = Npina then T° —,, T°,

Proof. By induction on 7' —, T". For the base cases, we follow the proof of Proposition 10,
paying attention to the variants S, 5yar, and o, and using Lemma 28 instead of Lemma 9. In the
base case for /3, the call to Lemma 28 may generate administrative reductions. The base case for
m is exactly as in Proposition 10. The remaining base cases are as follows:

Case o: bind(ns, z.c) — [s/x]c.

LHS® = (Az.c®)s® =g [s°/x]c® = gmin RHS® |

where the administrative reductions come from Lemma 28.
Case oy: bind(nV, z.c) — [V/z]e.

LHS® = (A\x.c®)V°® =g, [V°/z]c® = RHS® |

where the last equality is by Lemma 28.
Case 1,: pa.at — t, with a ¢ ¢. If ¢ # nu, then one n-step is generated, exactly as in

Monadic translation of classical sequent calculus 35

Fig. 16. Ready instantiation and CPS translations

- O ()°
Mifix —— v ——> A[B7)]

~_ 7

@D«

Proposition 10. Otherwise:
LHS® = Ma.au® = RHS® .
(Rule 77, may generate administrative steps, but only through one of the inductive cases below.)
Case Nping: bind(¢, z.a(nz)) — at. If t # nu, then
LHS® =t°(Ax.ax) =, t°a = RHS® .

Otherwise
LHS® = (A\z.ax)u® —, au® = RHS® .

As to inductive cases, all but one is routine. Suppose L[t;] —, L[ta], with t1 —, to. If
ta # nua, then ¢y # nu; and we apply IH. If ¢; = nuy and to = nug, with u; —, ug, then we
apply again IH. For p € {0, o, T, jbina } there are no more possibilities, and 1-1 simulation holds
if p # o. There is a third possibility, only when p € {3, By, Bvar, Mu}: t1 7 nua, but to = nus.
Then:

(L) = L°t°] (since 1 # nui)
—* L°[(nus)°) (by IH, and in the form according to the TH)
= (Mk.kus®)L°~ (by def. of L°~ and (.)°)
—admin L07u2o
= (L)) Gydefof()%)

By composing the monadic translations with the ready continuations-monad instantiation
(@D, = (T (14)
we obtain new CPS translations (see Fig. 16). In the cbn case we set
(E), = (Ea)" . (15)
In the cbv case we also setl!l
Vri= (V1) (ey = ()" .

Nothing changed at the level of typing w.r.t. the main CPS translations. So ((.)), enjoys the
typing rules of Fig. 12 and (.]), enjoys the typing rules of Fig. 14.
Suppose 7' —, T" in Aifin or Apjiy. By composing the simulation properties of the monadic

I Recall V* := (VT)'. Typographically, V* (with the multiplication symbol as superscript) may be hard to tell apart
from V* now introduced. Since these symbols appear in different sections, there should be no problem of confusion.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 36

Fig. 17. Ready cbn CPS translation of A/l

W, = vy
(Ay-tD, = Eta(hy.(1),)
(pna.c), = Aa.(d),

(@), = [la
(u:e), = [Af-(Az(e),[f2])(u),)
(ay-c), = (y-(eD)I]

_ (E]), Ay.(u),) ife=Fandt= Ay.u

(e = { (e, [@D,] otherwise

translations and the ready instantiation, it follows that there exists a reduction between the A-
terms (7)), and ((7"]),, consisting of 0, 1 or 2 source reduction steps (the exact number depends
on p), possibly followed by administrative steps. So, in such reduction no administrative step
comes before the reduction steps corresponding to the source reduction T —, T". We now make
these remarks precise.

Definition 30 (Ready reduction). In the A-calculus:

Cbn case. Given s, s’ A-terms and p a reduction rule of A\fi,, define s £, ¢ as:
— Ifp=fthens —g, r =g, ' =iymn S for some A\-terms r, .

— Ifp=mythens =7 r =300,

s, for some A-term 7.
— If pe {o,mu} thens =5 r =%, &, for some A-term 7.
— Ifp=m,thens —pg, s

Cbv case. Given s, s’ A-terms and p a reduction rule of Ay, define s £, s as:

— If p=[Fthens =g, r =g, 7" —iymin 5 for some A-terms r, r’.
— Ifp=n,thens =5 v —3. s, for some A-term 7.
— Ifpe {oy,n}thens —g, s

— If p =1y then s =, 5.

It may happen that no target step corresponds to a source 7,,-step. Accordingly, in the case
p = 1), the following result gives the readiness property in a slightly extended sense.
Corollary 31 (Strict simulation with readiness property). Letx € {n,v}.
1 IfT —, T in A\ujfi,, where T, T" are two terms or two commands, then (7)), = (T7)),.
2 Ife—, e inAuji, and t € Apji, then ((t]e)]), S ((t|e))]),.

Proof. As was done in Corollaries 14 and 18, the proof is by “composition” - this time with
Proposition 29 - of the simulation theorems of the monadic translations (Theorems 2 and 6),
including Remarks 3 and 7.]

We now see that the recursive characterization of (.)), differs from Fig. 13 in the clauses for
u e, fiy.c and (t|e).

Proposition 32 (Recursive characterization). (77, satisfies the equations in Fig. 17 .

Monadic translation of classical sequent calculus 37

Proof. One does the same induction as in the proof of Proposition 15. For the sake of the
proof, take the recursive characterization in Fig. 17 as the definition of (77), and define (EJ),
as the argument to the hole of (E)), (hence (E]), = [](E),). Then we prove (i) (t,)° = (1)),
(i) (€n)° = (],; (iii) (B, = (E), : (iv) (€n)° = (e]),, by simultaneous induction on ¢, ¢,
and e. We show the cases that need update.

Case e = fiy.c.
((iy-),)” = bind(n[],y.c.)° (by def.of (.),)
= (@)l Gbyd2)
= (Al (by IH)
(py.c)), (by recursive def.)
Case E=wu e
(we),) = bind([], f-bind(ytin, z.8[f2]))° (by def. of (),))
= Af.bind(ntin, z.€,[f2])° (by def. of (.)°7)
= M.-(Oz.(&)°[f2)un° (by def. of (.)°)
— AL (D, D), (by TH)
(E), (by recursive def.)

Case ¢ = (t|e). Suppose e = F and t = \y.u.

(DyulB),)” = (Ealn(ryn)])” (by def. of (1))

= (En)o_()‘y-(ﬂn)o) (by (11))
(ED, (Ay-(uD,) (byIH)
((A\y.u|E))), (by recursive def.)

Otherwise, €, is not a base context or ¢, # nu. Then:

o _

({tle),) = (@lta])” (bydef.of (.),)
= (&)°[(tn)°] (by (13))
= (D[, (by IH)
= ((tle)], (by recursive def.)

U
The recursive characterization of (.]), differs from Fig. 15 in the clauses for u :: e and (t|e).
Proposition 33 (Recursive characterization). (77), satisfies the equations in Fig. 18.

Proof. One does the same induction as in proof of Proposition 19. For the sake of the proof,
take the recursive characterization in Fig. 18 as the definition of (T7), and V* and define ((e]),
as the argument to the hole of (e]), (hence (e]), = [](e),). One proves: (i) (V1) = V*;
(i) (£,)° = (t),; (D) (e)° = (c),; (v) (&) = (e]), and (&,)° = (e]), by simultaneous
induction on V, ¢, ¢, and e.

The cases that need update are e = u :: €’ and ¢ = (t|e). We just show the latter.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 38
Fig. 18. Ready cbv CPS translation of Auji

), = Eta(V") vto= v
(pa.c), = Aa.(d), (M) = (i),

. _ (e), (V*) ift=V
(e, { (eD.[(2),] otherwise

(@), = [la
(av.c), = [1(Awv.(e),)
e, - { DOLOwE ey itu=v
T (TS (Qu), (dw.(e), [fw])) otherwise
Suppose t = V.
(VIe))" = (@V1)° (bydef.of (),)
= (@) ((V))") (by(D)
= (e), (V) (by IH)
«vie), (by recursive def.)
Now lett # V.

(by def. of (.),)

)] (by (10), as ?, # 1u)
(by IH)

DV (by recursive def.)

O

Remark 34. Contrary to what was done for the main CPS translations in Remarks 16 and 20,
we are not going to generalize statement 2 of Corollary 31, given the non-uniform translation of
commands, made explicit in the recursive characterizations.

A.2. Defects of the obtained CPS translations

If a CPS translation is also viewed as a computational interpretation and not just as a device
for proving strong normalization, it is unfortunate to have n in the target system. Moreover,
n-rules are problematic in theories of dependent types, to which we would eventually want to
extend our results. These remarks apply to both the main translations of Section 5.2 and the
ready translations of the previous section. We concentrate on the former.

Rule 7 is not just used in Proposition 10.1, but is even needed for soundness of the main cbv
CPS translation: as an example, consider

c1 = (zly = px(x|a)) =y, (2ly a) =ca .

The S-normal form of {c1))y is zy(Ax.ax), while the S-normal form of {cs)), is zya. Hence,
regardless of simulation, not even $-equality is obtained.

Monadic translation of classical sequent calculus 39

Fig. 19. Optimized instantiation and CPS translations

- [OF (M
Ak ——>= Aum ——>= A[By]

~_ 7

[

For the cbn translation, the problem is even easier to see: since (y)), = v is not a A\-abstraction,
the step pa.(yla) =, y needs 7 in the CPS translation target for soundness.

For the cbn translation, it is also disappointing that full 5 is even needed after applying the
CPS translation. This is in contrast with cbn CPS for simply-typed lambda-calculus, that was
shown to yield terms whose evaluation is even indifferent to the cbn/cbv paradigms (Plotkin,
1975).

Again, rule $ beyond S, is not just used in Proposition 10.1, but even needed for soundness
of the cbn CPS translation: we can reuse the commands c¢; and ¢y of the example before, but
calculate the f3,-normal forms of their cbn CPS translations, yielding z(Af.(Az.xza)(fy)) and
z(Af.fya), respectively. The problem here is that fy is not a value.

Still, as shown next, the composition of the monadic translations with dedicated refined con-
tinuations-monad instantiations for cbn and cbv yields CPS translations that provide strict simu-
lation with only A[3,] as target.

A.3. Optimized CPS translations and indifference property

We give refinements of the main continuations-monad instantiation, hence of the CPS transla-
tions — see the summary in Fig. 19. The goal is to get rid of n-reduction and to restrict to cbv
B-reduction in the CPS target (even for the cbn translation).

We start by refining the main continuations-monad instantiation by inserting n-expansions

M= Atz

with z ¢ t. In the cbv case, this is only done for the translation of co-variables, while in the cbn
case, the variables are expanded and also the arguments of the unit 77 of the monad. Relatively to
the continuations-monad instantiation (.)', we change the translation at the level of expressions,
with different refinements for cbn and cbv. For this reason, we introduce the notations T, and
T%. At the level of types, contexts and co-contexts, we keep the translation unchanged. However,
for the sake of coherence, we introduce the notations A3, I'f, and A% ™, and the cbv variants,
even though A5 = A® = A, etc.

A.3.1. Cbn case We define a refinement of the continuations-monad instantiation, denoted 7°3.
The only change, relatively to the definition of 7°® in Fig. 10, is in the case of a variable which
has been ®* = x, and now is defined as:

zh =1z ;
and in the case of the unit 77 of the monad, which has been (1t)* = Eta(¢*), and now becomes

(nt), = Eta(1(t7)) -

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 40

The first re-definition will be used to get rid of n-reduction in the final target, while the second
then allows to restrict S-reduction in the target to 3, .
Consequently, we re-define

(bind(n[], 2.c));, = Eta(t{])(Az.c?)
in order to maintain
(ClH), = CRltd] (16)
for all cbn contexts C. We also define L~ as the unique term such that L§; = [|L$™. The term
L%~ is avalue, like L*~.

Obviously, the re-definition invalidates the admissible typing rules of Fig. 11, since z can
only be typed by an implication, but A§; can be a type variable (when A = X). Likewise, the
argument term ¢ of 7t might be typed by a type variable, and so, the n-expansion of ¢$ would not
be typable.

A very simple solution is a global exclusion of term typings with atomic types, i. e., type vari-
ables. Let us say that a sequent of A\uy is non-atomic if it is a sequent ¢ : (I' = A) whatsoever;
or a sequent I' - ¢t : A]A with A a type that is not a type variable. We call non-atomic typing
system the subsystem of the typing system for Auy (Fig. 4) that only operates with non-atomic
sequents. For emphasis, we write non-atomic sequents (and derivability in the non-atomic typing
system) thus:

c: (T Fpat A) Dhoat t: AJA

Then, the typing rules of Fig. 11 hold of ()i, if the premisses are replaced by non-atomic
derivability. On the other hand, the non-atomic system suffices for typing any expression in the
range of the cbn monadic translation, as is readily verified, in particular by studying the types
that the bound variables in the bind expressions receive, and also by verifying the type of the
term fz that appears in the translation of u :: e. So, no typing constraint will be observable after
forming the CPS translation by composition (see Corollary 37).

Lemma 9 has to be refined as follows.

Lemma 35. The translation satisfies:
L [un/2|Th =5 ([u/)T for any u which is not an application,
2. ([L/aT); = [L§ /alT5.

Proof. 1. Induction on T'. The case of T' = z is the only non-trivial case, and its proof is as
follows:

[un/2)(t2) = tup —p,, us = ([u/z]2)]
where u§, is a A-abstraction, since u is not an application.
2. Induction on 7', unchanged from the proof of Lemma 9. L]

Proposition 36 (Optimized instantiation for cbn). If 7" — T in Ay, where we omit reduc-

tion rule 7ying and restrict rules 3 and 7),, to the cases 3, and 7, resp., and o to the union of o,
and oc, then TS —+ T} in A[3,].

Proof. Induction onT' — T". Remark that, if s is not an application, then s{, is a A-abstraction.
We study what the proofs of the base cases of Proposition 10.1 yield in the present situation.

Monadic translation of classical sequent calculus 41

Case (3: (\x.t)s — [s/z]t. By our restriction to f3,, s is not an application.
LHS; = (\z.t})sh
—p, [sh/alth
B RHS? (by Lemma 35.1)
Case o: bind(ns, z.c) — [s/x]c.
LHSS = (\k.k(1s3
—g, (A\z.ch)
—p, [Tsn/z]c
— B 150/ T]CH (a)
—~% RHSS (b

Y(Az.cy)
1s0)

<
n

A~ —

where the last two steps (marked (a) and (b)) are justified by cases, as follows:

Subcase o = o,. Then s is not an application, so s7 is a A-abstraction, and Ts% —g,,. S%,
justifying (a). The step (b) is justified by Lemma 35.1 (which needs the assumption that s is not
an application).

Subcase 0 = o¢, and ¢ = L[z] (z ¢ L). Here, (a) and (b) contain exactly one step each (recall
L™ is a value):

[tsn/x]cn = (T(Tsh)) Ly~ —p. (Tsn) Ly (= [sh/a]cr)
—p, snln = Lilsi] = ([s/z]o);

Subcase o = oc, and ¢ = bind(nz,y.c') (x € ¢'). Here, again (a) and (b) contain exactly one

step each:
[tsh/z]ch = Bta(t(1(1s7) (Ay-c'n) =g, Ea(T(T(s7)(Ay.c'n) (= [s7/2]ch)
5 Eta(fis5) Ay.c’s) = bind(ns, y.c')% = ([s/ae)’

Case m: L[pa.c] — [L/ac.

LHSS,

= (Aa.cy)LS™
—p, [L7 /alch
= RHS? (by Lemma 35.2)
Case 1,: pa.at — t, with a & t. By our restriction to 7,,n, t5 is a A-abstraction.
LHS, = Xa.tha =4, th = RHS}
Note that we omitted rule 7ping.]

We now define the cbn optimized CPS translation:
<&

[T], = (Tw), - (17)

We also put for an evaluation context £

[E], = (En), - (18)

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 42

Fig. 20. Optimized cbn CPS translation of \jji

lvl, = ty
Mytl, = Eta(t(\y.[t],)
[pa.c, = Aa[d],
[a], = T[la
[u:el, = [J(AfEta(tu],)Az[e] [(1S)(12)])

[Ay.c, Eta(1]) (Ay-[],)
[{tle)], = [el[[,]

In particular, [E] is a value (since any L™ is and E,, is a base context).
At the level of types, contexts, and co-contexts, [.],, changes nothing relatively to (.),. Nev-
ertheless, we introduce, for the sake of coherence, the notations [A],, [I'],, [A], , etc.

Corollary 37 (Typing). The typing rules of Fig. 12 are admissible for [.],.

Proof. The proof of Corollary 13 applies again. We “compose” the rules in Fig. 6 for (.) ,, with
conclusions in the non-atomic system, with the rules in Fig. 11, that hold of (.)¢ provided the
premisses are in the non-atomic system as well. We clearly need that [I'], = (T'y), and [A] =
(Zn):i, which are obtained by the observation in Section 1, as usual for these composition
lemmas. As before in Section 5.2, we just show the typing rule for co-terms.

Tle: AFA

én [y} : (fn’ y: Zn l_nat Zn) (a) (b)
(fn):7y : _‘_‘(Ai):a (Zn)i_ [(én[ybz . (C)
[T1,. 9 [A],. [A], F [el, [ty : L

Justifications:

(a) By the third typing rule in Fig. 6 with non-atomic conclusions.
(b) By the third typing rule in Fig. 11 with non-atomic premisses.
(¢) Since =—(Al)? = (4,)° = [A],; and (ea[y])° = (€)°[y3] = [€], [t] using (16) and (17).

Finally, to get rid of the expansion Ty, we invoke subject reduction for n-reduction in A-
calculus. Ll

Corollary 38 (Strict simulation with indifference property).

L.If T — T in Apjin, then [T], —F [T"], in A[8,], where T', T” are either two terms or two
commands.

2.If e — €’ in Aufin, then [(t|e)],, —T [(t|e’)], in A[3,] for any t € Auji.

Proof. As was done in Corollary 14, we “compose” the simulation theorem of the cbn monadic
translation GH (Theorem 2), this time with Proposition 36. Notice the provisos in this proposition
are met due to constraints remarked in the extra statement of Theorem 2 and since 3,5 C SGn. [l

Since the optimized cbn CPS translation also preserves typability, we can infer strong normal-
ization of Apji, from that of \[3,].

Monadic translation of classical sequent calculus 43

Proposition 39 (Recursive characterization). [77] satisfies the equations in Fig. 20.
Proof. Similar to the proof of Proposition 15. L]

In particular, in the proof of the previous proposition, it is established that [E] " is the term
after the hole [] in [E],. Hence [E] [t] = t[E], . This fact is used next.

Remark 40. Given the recursive characterization, statement 2 in Corollary 38 reads
If e — € in Apjfin, then [€] [[t].] =7 [€’], [[t],] in A[B,] for any t € Apji.

This statement can be generalized so that [e] [u] —* [¢'] [u] in A[8,], for any A-term w. As in
Remark 20, this is proved by a new simultaneous induction, together with trivial statements for
terms and commands. The inductive cases are routine. We only inspect the single base case of
statement 2, which is again iy.(y|e) — e, with y ¢ e. Using the recursive characterization,

[LHS], [t] = Eta(1) (Ay-[e] . [Ty]) -

If e is an evaluation context , then [e], is a value and [e] [t] = t[e], ; moreover:

Eta(tt)(Ay-[el[Ty]) =, (Ay.[e], [Ty (11)
=g, [el [t = (1) [ely
(

b (TH)[e],
=g, tle], = [e],[t]
= [RHS],[Y

Otherwise e = fiz.c, then fiy.(yle) = fy.(y|iz.c) —o, fy.[y/z]c = fiz.c, hence this case
can be seen as an inductive case where fiy.co —4, fiy.cj, with ¢g —4, .

A.3.2. Cbv case We refine the continuations-monad instantiation by keeping the definition of
(.)® in Section 5, except for setting

(a[])y =[1(ta) -

<

V_ = Ta and, since Ta is a A-abstraction, every L{ ™~ is now a A-abstraction.

Accordingly, (a[])
Lemma 9 is modified as follows (where the only change appears in 2.):

Lemmad41. 1. ([u/2]T)] = [u$/z]T¢
2. [L™ [a]T% =5, ([L/a]T);

Proof. 1. By induction on 7.
2. By induction on 7'.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 44

Case at.

(LS Jal(at); = [Ly /a](t3(ta))
= [LS™ /altS(TLET)
=% ([L/at)o(tLS7) (by IH)
e ([L/alt) L3~
= (L[[L/alt])y
= ([L/a(at)),

The last step is a S,a-step since, as has been remarked before, LS ™ is a A-abstraction.]

Proposition 42 (Optimized instantiation for cbv). If T — T” in Aum, where 3, o, and 7, are
restricted to 3,, oy, and 7, respectively, then ') —* T” vin A[B].

Proof. Induction on T' — T”. We study what the proofs of the base cases of Proposition 10.1
yield in the present situation.
Case By: (Az.t)V — [V/z]t. Notice that V7§ is a value.

LHSS = (\x.t5)VS
—p, [VV/x]t]
= RHSS (by Lemma 41.1)
Case oy: bind(nV, z.c) — [V/z]c. Notice again that V{ is a value.
LHSS = (A\k.kVS)(Aa.cS)
—5, (Az.cd)Vy
—a, [VV/z]cd
= RHS? (by Lemma 41.1)
Case 7: L[pa.c] — [L/a]c.
LHSS = (Ma.c))LS™
—p, [LY /alcl
—5,. RHS M (by Lemma 41.2)
Case 1,y pa.at — t, witha & t.
LHSS = Ma.t9(Ta) —, 15 —, t = RHSY
However, due to our extra restriction ¢ = V', we can do without n-reduction:
Aa.ty(ta) = Aa.(M\k.kV)(Ta)
=g, Aa.(Ta)V?y
—p, Aa.aVy = RHSY

In the last reduction, we used that V' is a value.

Monadic translation of classical sequent calculus 45

Case Nping: bind(t, z.a(nz)) — at.
LHSY = t{(\x.(Mk.kz)(Ta))
—p, tu(Az.(Ta)z)
g, £5(1a) = RHSS
Ul

We compose the cbv monadic translation with this new continuations-monad instantiation
<&

H:T]]V = (TV)V

to obtain the optimized cbv CPS translation. We also define, as usual:

[el, = @)y
In particular [e], is always a A-abstraction.

At the level of types, contexts, and co-contexts, [.], changes nothing relatively to the (.)..
Nevertheless, we introduce, for the sake of coherence, the notations [A],, [I'],, [A], , etc.

The rules in Fig. 11 (with (.)* replaced by (.)°) remain admissible since variables a are as-
signed types of the form —AY in all the contexts. Therefore, the rules in Fig. 14 (with (.},
replaced by [.],) remain to hold as well. Thus, the situation is more pleasant than for the cbn
case.

Corollary 43 (Strict simulation with indifference property).

L.If T — T" in Apjfiy, then [T], —7F [T"], in A[B,], where T, T" are either two terms or two
commands.

2.If e — € in Apjfiy, then [(t]e)], —T [(t|€/)], in A[8,] for any ¢ € Aufi.

Proof. As was done in Corollary 18, we “compose” the simulation theorem of the cbv monadic

translation (.), — Theorem 6, this time with Proposition 42. The restrictions of the rules of Az

in this proposition are met in the target of (.), (see the extra statement in Theorem 6 and recall

Buar C Bu). O

As in the cbn case, the optimized cbv CPS translation preserves typability, so we can infer
strong normalization of Ay, from that of A[3,].

Proposition 44 (Recursive characterization). The recursive characterization of [.],, is ob-
tained by changing the clause for co-variables in Fig. 15 as follows:
[al, = [1(Ta) -
Proof. Just adapt the case e = a in the induction that proved Proposition 19. L]

In particular, the proof of the previous proposition established that [e] is the term after the
hole of [e],. Hence [e], [t] = t[e], , a fact that is used next. Another fact used next is that [e]
is always a A-abstraction, which fails for (e, if e is a co-variable.

Remark 45. Given the recursive characterization, statement 2 of Corollary 43 reads

If e — ¢’ in Aufiy, then [e] [[¢],] =7 [e],[[t],] in A[B,] for any t € Auji.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 46

This statement can be generalized so that [e] [u] —T [¢'],[u] in A[3,], for any A-term u. Again,
only the case of base 1;-reduction requires fresh verification. We have to show [fiz.(z|e)], [t] =+

[e], [t] in A[B,] (for = & e).

LHS = t(x.[z], [e],)
—p, t(Az.[e], x) ([e], is a value)
— 6 tlel, ([e], is a A-abstraction)

