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Abstract. Economic dispatch (ED) plays one of the major roles in power
generation systems. The objective of economic dispatch problem is to find the

optimal combination of power dispatches from different power generating units
in a given time period to minimize the total generation cost while satisfying the
specified constraints. Due to valve-point loading effects the objective function

becomes nondifferentiable and has many local minima in the solution space.
Traditional methods may fail to reach the global solution of ED problems.
Most of the existing stochastic methods try to make the solution feasible or
penalize an infeasible solution with penalty function method. However, to find

the appropriate penalty parameter is not an easy task. Differential evolution is
a population-based heuristic approach that has been shown to be very efficient
to solve global optimization problems with simple bounds. In this paper, we

propose a modified differential evolution based solution technique along with
a tournament selection that makes pair-wise comparison among feasible and
infeasible solutions based on the degree of constraint violation for economic
dispatch problems. We reformulate the nonsmooth objective function to a

smooth one and add nonlinear inequality constraints to original ED problems.
We consider five ED problems and compare the obtained results with existing
standard deterministic NLP solvers as well as with other stochastic techniques
available in literature.

1. Introduction. In real world, as competition increases in the power generation
industry, generating companies try to further improve the operating efficiency of
their power plants. The application of mathematical optimization techniques has
a long history in power generation systems and tangible improvements can still be
achieved through the application of more robust solution techniques. Economic
dispatch (ED) is one of the major important optimization task in power genera-
tion systems. The objective of economic dispatch problem is to find the optimal
combination of power dispatches from different power generating units in a given
time period to minimize the total generation cost while satisfying the specified
load demands and the generating units operating conditions. If the ramp-rate con-
straints are included in ED, then it is called a dynamic economic dispatch (DED)
problem. Generally, the cost function for each generating unit can be represented
by a quadratic function and can be solved by traditional gradient-based methods,

2000 Mathematics Subject Classification. 90C30, 90C56, 90C59, 90C90.
Key words and phrases. Economic dispatch, Valve-point loading effects, Generator ramp-rate,

Differential evolution, Constraint violation, Tournament selection.

1



2 M.A.K. AZAD AND EDITE M.G.P. FERNANDES

such as Lagrangian multipliers. However, in the large power plants, the turbines
have steam admission valves and the resulting cost function has additional non-
differentiable terms. The inclusion of valve-point loading effects also increases the
nonlinearity as well as the number of local minima in the solution space. So it is
highly desirable to use derivative-free methods that can cope with a multimodal
objective function to converge to a global minimum of the ED problem.

Many traditional solution methods exist to solve the ED problem such as lin-
ear programming [36], nonlinear programming [12, 56], quadratic programming [31]
and Lagrangian relaxation algorithm [33, 39]. These methods may face some prob-
lems when converging to the solution due to nonlinearity and nondifferentiability of
the objective cost function. Although one can transform the nonsmooth objective
function into a smooth form that can be handled by these methods, the obtained
solutions may still be local optima instead of the global one, since convergence is
guaranteed only to a local optimum.

In the last decades many stochastic solution methods have been proposed to
solve the ED problem due to their ability to converge in probability to the global
optima. The stochastic methods are genetic algorithm [13, 55, 61], simulated anneal-
ing [48, 63], genetic algorithm/simulated annealing [62], particle swarm optimization
[27, 49], evolutionary programming [50, 53, 64], hybrid stochastic search [16], aug-
mented Lagrange Hopfield network [21]. Attaviriyanupap et al. [2] proposed a new
methodology for solving the ED problem using evolutionary programming com-
bined with sequential quadratic programming (EP-SQP). Victorie and Jeyakumar
[59] proposed a hybrid technique of particle swarm optimization and sequential qua-
dratic programming (PSO-SQP) to solve the ED problem. These methods appear
to be efficient in solving the ED problem although they require derivative informa-
tion to approximate locally the objective function by a quadratic model and the
constraints by linear models.

The nonsmooth objective function of the ED problem can be reformulated to
a smooth one by adding appropriate nonlinear inequality constraints to the origi-
nal ED problem. Therefore the existing gradient-based standard deterministic NLP
solvers can also be applicable to solve the ED problem. The task of global optimiza-
tion is to find a solution where the objective function obtains its smallest value, the
global minimum. When the objective function has a huge number of local minima,
local optimization techniques are likely to get stuck before the global minimum is
reached, and some kind of global search is needed to find the global minimum with
some reliability. Algorithms for solving global minimization problem can be clas-
sified into deterministic methods that guarantee to find a global optimum with a
required accuracy and stochastic methods that find the global minimum only with
high probability. Usually deterministic methods are used to solve small dimension-
ality problems. In deterministic methods, the values of the objective function are
assumed to be exact, and the computation is completely determined by the values
sampled so far.

Nowadays, there are some deterministic solvers which give global solutions.
ALGENCAN [8] is a novel global solver based on an augmented Lagrangian frame-
work and the αBB method. BARON [57] stands for Branch And Reduce Optimiza-
tion Navigator and is a computational system for solving nonconvex optimization
problems to global optimality. Couenne [6] stands for Convex Over and Under
ENvelopes for Nonlinear Estimation and is a branch and bound algorithm to solve



MODIFIED DIFFERENTIAL EVOLUTION FOR EDP 3

mixed-integer nonlinear programming problems globally. It solves NLP subprob-
lems by using IPOPT [60]. LINDOGlobal [43] is a global solver that employs
branch-and-cut methods to break a nonlinearly constrained optimization problem
model down into a list of subproblems. MCS stands for Multilevel Coordinate
Search [35] and DIRECT stands for DIviding RECTangles [24] are optimization
algorithms designed to search for global minima of a real valued objective function.

Available solvers that are able to guarantee convergence only to local solutions
are: CONOPT [23] is a feasible path method based on the Generalized Reduced Gra-
dient (GRG) algorithm that is well suited for models with very nonlinear constraints.
FilterSQP [25] implements a Sequential Quadratic Programming trust-region algo-
rithm which is suitable for solving large nonlinearly constrained problems. It uses
the new concept of “filter” instead of a penalty merit function. IPOPT is an im-
plementation of a primal-dual barrier algorithm with a filter line-search method for
nonlinear programming. KNITRO [11] is designed for solving large-scale, smooth
nonlinear programming problems. It offers both interior-point and active-set meth-
ods. LANCELOT [15] implements an augmented Lagrangian algorithm for nonlin-
early constrained optimization problems. It is suitable for large nonlinearly con-
strained problems. LOQO [58] is based on an infeasible primal-dual interior-point
method and solves both convex and nonconvex optimization problems. MINOS [47]
is suitable for large constrained problems with a linear or nonlinear objective func-
tion and a mixture of linear and nonlinear constraints. SNOPT [29] implements a
sequential programming algorithm that uses a smooth augmented Lagrangian merit
function and makes explicit provision for infeasibility in the original problem and
in the quadratic programming subproblems.

For moderate and large-scale problems, stochastic methods are widely used. Sto-
chastic methods involve function evaluations at a suitably chosen random sample
of solutions and subsequent manipulation of the sample to find good local (and
hopefully global) minima. Even when the data is exact, it is sometimes bene-
ficial to deliberately introduce randomness into the search process as a mean of
speeding convergence and making the algorithm less sensitive to modeling errors.
The stochastic methods can be classified as point-to-point search technique, such
as Simulated Annealing [41], and population-based search technique such as Ge-
netic Algorithm [34], Ant Colony [22], Differential Evolution [54], Tabu Search [30],
Harmony Search [28], Particle Swarm Optimization [40], Evolution Strategy [5],
Electromagnetism-like Mechanism [7], Artificial Bee Colony [38].

Differential evolution (DE) is a population-based heuristic approach proposed by
Storn and Price [54], that is very efficient to solve nondifferentiable global optimiza-
tion problems with simple bounds. The DE algorithm has been applied to solve the
ED problem. He et al. [32] proposed a hybrid genetic algorithm (HGA) for solving
the ED problem with valve-point loading effects that combines the GA algorithm
with DE and SQP to improve the performance of HGA. Chiou [14] proposed a
variable scaling hybrid differential evolution (VSHDE) for solving the ED problem
in large-scale systems. The authors considered the smooth cost function. Bala-
murugan and Subramanian proposed a differential evolution [3] and an improved
differential evolution (IDE) [4] for solving the ED problem with valve-point loading
effects.

Since the ED problem can be formulated as general constrained nonlinear pro-
gramming problem, it is very important to handle both equality and inequality
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constraints to make the obtained solution feasible. In solution methods for solv-
ing the ED problem found in literature, real power outputs are balanced to satisfy
equality constraints in some way. In some methods, creating solution is continued
until the feasible solution is obtained and hence the method is more time consuming.
In the DED problem the ramp-rate constraints are modified to new operating limits
of the generating unit. In some cases, penalty function method is used to penalize
infeasible solutions. Although the penalty function method is applicable to any type
of constraints, its performance is not always satisfactory. Since penalty parameter
is always problem dependent, the difficulty of the penalty function method is to
find the appropriate penalty parameter which guide the solution method towards
the optimum.

Although the ED problems can be solved by standard NLP solvers, they do not
always give global optimal solutions because of getting stuck in local optima. So
global search techniques, in particular, stochastic techniques are highly desirable
to solve ED problems so that better optimal solutions (hopefully global) are ob-
tained. The original version of DE has only three parameters and according to
Storn and Price [54] is sensitive to those parameters. It is very important to ex-
plore the whole search space as well as to exploit neighborhood of the best solution
to improve the quality of the obtained solution in DE. In this paper, we propose a
modified differential evolution algorithm for economic dispatch problems with valve-
point loading effects and transmission loss considering the self-adaptive technique
for control parameters, a modified mutation and a modified selection in order to
obtain global solutions. In modified selection, to handle the constraints effectively,
a tournament selection based on the feasibility and dominance rules that makes a
pair-wise comparison among feasible and infeasible solutions is used. We test the
proposed algorithm with various ED problems and compare obtained results with
standard deterministic NLP solvers as well as other stochastic techniques available
in literature.

The organization of this paper is as follows. We describe the formulation of
the economic dispatch problems in Section 2. Section 3 describes the outline of
original DE. We describe the proposed modified differential evolution in Section 4.
Section 5 outlines the procedures to solve the ED problems with modified differential
evolution. Section 6 describes the experimental results and finally we draw the
conclusions of this study in Section 7.

2. Economic Dispatch Problems. Consider the ED problem with N generat-
ing units that generate power for T time periods. The objective function can be
represented by the following cost function

min f(P) ≡

N
∑

i=1

T
∑

t=1

Cit(Pit),

where Pit is the ith unit power output at any time t, Cit(Pit) is the ith unit cost
at any time t, and P is an array of the N × T components Pit.

The objective function of each unit with a quadratic fuel cost function can be
expressed as

Cit(Pit) = aiP
2
it + biPit + ci,

where ai, bi and ci are the cost coefficients of unit i. The above objective function
is continuously differentiable.
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The standard ED problem minimizes the total fuel cost associated with N
generating units in T time periods subject to the following constraints.

1) Real power balance constraints: The total power output from N units should be
equal to the demand and loss at time t, i.e.,

N
∑

i=1

Pit = Dt + Lt, t = 1, 2, . . . , T (1)

where Dt is the total assumed load demand at time period t. Lt is the transmission
loss at time period t and it can be calculated by the following equation

Lt =
N
∑

i=1

N
∑

j=1

PitBijPjt, (2)

where B is the N ×N loss coefficients matrix.

2)Generating unit ramp rate limits: Depending on the load demand at time period t,
the power output from each unit i can be increased or decreased, so called generating
unit ramp-up and ramp-down, respectively, and should be satisfied by the following
inequality constraints

Pit − Pi(t−1) ≤ URi

Pi(t−1) − Pit ≤ DRi

i = 1, 2, . . . , N, t = 2, 3, . . . , T,
(3)

where URi and DRi are the ramp-up and ramp-down limits of the ith unit,
respectively.

3) Real power operating limits: The power output from unit i should be within
minimum and maximum output of that unit

Pimin ≤ Pit ≤ Pimax, i = 1, 2, . . . , N, (4)

where Pimin and Pimax are the minimum and the maximum real power outputs of
the ith unit, respectively.

But in reality, the objective function of the ED problem is nondifferentiable at
some points due to the valve-point loading effects. Therefore, the objective function
is composed of a set of nonsmooth cost functions. When considering valve-point
loading effects, the objective function is generally described as a superposition of
sinusoidal functions and quadratic functions and given by

Cit(Pit) = aiP
2
it + biPit + ci + |ei sin (fi (Pimin − Pit))| ,

where ei and fi are the coefficients of unit i reflecting valve-point loading effects.
The nonsmooth objective function can be reformulated as a smooth objective func-
tion in the following way

Cit(Pit) = aiP
2
it + biPit + ci + αit + βit

by adding new variables αit, βit ≥ 0 and the following inequality constraints in the
original problem

αit ≥ ei sin (fi (Pimin − Pit))
βit ≥ −ei sin (fi (Pimin − Pit)) .

(5)
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The general form of the reformulated ED problem as a constrained nonlinear pro-
gramming problem is

min f(P,α,β)
s.t. hk(P,α,β) = 0 k = 1, 2, . . . ,m1

gk(P,α,β) ≤ 0 k = 1, 2, . . . ,m2

Pimin ≤ Pit ≤ Pimax i = 1, 2, . . . , N, t = 1, 2, . . . , T
0 ≤ αit, βit ≤ max(ei) i = 1, 2, . . . , N, t = 1, 2, . . . , T,

(6)

where m1 = T and m2 = (4N ×T − 2N) and hence the total number of constraints
has increased to (T+4N×T−2N) and the total number of variables is now 3N×T .
Thus this type of ED problem can also be solved by existing gradient-based standard
deterministic NLP solvers.

3. Differential Evolution. Differential evolution is a simple yet powerful evo-
lutionary algorithm for global optimization problem (7) introduced by Storn and
Price [54],

min
x∈Ω

f(x) (7)

where x ∈ R
n represents the set of decision variables, f : Rn −→ R with Ω = {x ∈

R
n : lbj ≤ xj ≤ ubj , j = 1, . . . , n}.
The DE algorithm has become more popular and has been used in many practi-

cal cases, mainly because it has demonstrated good convergence properties and is
easy to understand. DE is a floating point encoding for global optimization over
continuous spaces. It creates new candidate solutions by combining the parent in-
dividual and several other individuals of the same population. A candidate replaces
the parent only if it has better or equal fitness. DE has three parameters: ampli-
fication factor of the differential variation F , crossover control parameter CR, and
population size NP .

DE is a direct search method which utilizes NP n-dimensional components
points. These NP points are called target points in a population. The target
point is defined by xp,z = (xp1,z, xp2,z, . . . , xpn,z), where z is the index of itera-
tion/generation and p = 1, 2, . . . , NP . NP does not change during the optimiza-
tion process. The initial population at z = 1 is generated randomly and should
cover the entire search space such as the jth component of the pth target point in
a population is generated by

xpj,1 = lbj + rand(0, 1)× (ubj − lbj), j = 1, 2, . . . , n,

where rand(0, 1) represents a uniformly distributed random number within the
range [0,1]. After initialization DE employs evolutionary processes of mutation,
crossover and selection until a global solution is reached. DE’s basic strategies are
described in the following.

3.1. Mutation. In the successive generations, DE performs mutation to create
mutant point vp,z+1 with respect to each target point xp,z in the current population.
The most commonly used mutation that is refereed as DE/rand/1 is

vp,z+1 = xr1,z + F (xr2,z − xr3,z) (8)

with uniformly chosen random indices r1, r2, r3 from the set {1, 2, . . . , NP}, mutu-
ally different and F > 0. The indices r1, r2 and r3 are also chosen to be different
from the running index p, so that NP must be greater or equal to four to allow for
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this condition. F is a real and constant parameter ∈ [0, 2] which controls the am-
plification of the differential variation (xr2,z − xr3,z). xr1,z is called the base point.
There are other frequently used mutation strategies available in the literature:

DE/rand/2: vp,z+1 = xr1,z + F (xr2,z − xr3,z) + F (xr4,z − xr5,z)

DE/best/1: vp,z+1 = xbest,z + F (xr1,z − xr2,z)

DE/best/2: vp,z+1 = xbest,z + F (xr1,z − xr2,z) + F (xr3,z − xr4,z)

DE/target-to-best/1: vp,z+1 = xp,z + F (xbest,z − xp,z) + F (xr1,z − xr2,z)

DE/target-to-rand/1: vp,z+1 = xp,z +K(xr1,z − xp,z) + F (xr2,z − xr3,z)

where xbest,z is the best individual point in the current generation, r4 and r5 are
mutually exclusive uniform random indices in the range [1, NP ] and K ∈ [0, 1].

3.2. Crossover. In order to increase the diversity of the mutant points’ compo-
nents, crossover is introduced. To this end, the crossover point called as trial point
up,z+1 is formed, where

upj,z+1 =

{

vpj,z+1 if (rj ≤ CR) or j = sp
xpj,z if (rj > CR) and j 6= sp

,

j = 1, 2, . . . , n.
(9)

In (9), the random number rj ∼ U[0, 1] performs the mixing of jth component of
points, CR ∈ [0, 1] is a constant parameter for crossover which has to be determined
by the user, and uniformly chosen random index sp from the set {1, 2, . . . , n} ensures
that up,z+1 gets at least one component from vp,z+1.

3.3. Selection. To decide whether or not it should become a target point of gen-
eration z + 1, the trial point up,z+1 is compared to the target point xp,z using the
greedy criterion in the following way

xp,z+1 =

{

up,z+1 if f(up,z+1) ≤ f(xp,z)
xp,z otherwise.

The above three operations are repeated generation to generation until a termi-
nation criterion is reached.

4. Proposed Modified Differential Evolution. According to Storn and Price
[54], DE is much more sensitive to the choice of F than it is to the choice of CR. The
suggested choices for the three parameters are: (i) F ∈ [0.5, 1]; (ii) CR ∈ [0.8, 1];
and (iii) NP = 10 × n. Recall that n is the dimensionality of the problem. The
parameters in DE are kept constant throughout the entire evolutionary process.
However, it is not an easy task to set appropriate parameters since these depend
on the nature and size of the optimization problems.

DE’s performance depends on the amplification factor of differential variation
and crossover control parameter. Hence adaptive control parameters have been im-
plemented in DE in order to obtain a competitive algorithm. In most commonly
used mutation (8), three points are chosen randomly and the base point is then
chosen at random within the three. This has an exploratory effect but it slows
down the convergence of DE. Liu and Lampinen [44] proposed a fuzzy adaptive
differential evolution algorithm (FADE) that uses fuzzy logic controllers to adapt
the parameters for mutation and crossover. Kaelo and Ali [37] proposed a differ-
ential evolution algorithm with random localization (DERL). In this algorithm the
best point among three is chosen for the base point and remaining two as differen-
tial variation for mutation and F is determined from [−1,−0.4] ∪ [0.4, 1] for each
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individual point. Brest et al. [9] proposed self-adaptive control parameters for dif-
ferential evolution (jDE). Qin et al. [51] proposed a differential evolution algorithm
with strategy adaptation (SaDE). Here a pool of different mutation strategies and
a pool of control parameters are maintained. Then, for each target point one mu-
tation strategy and corresponding control parameters are randomly assigned. Das
et al. [18] proposed a differential evolution using a neighborhood-based mutation
operator (DEGL). In DEGL, two mutation strategies are performed and then re-
combined with a weight factor. Zhang and Sanderson [65] proposed a adaptive
differential evolution with optional external archive (JADE). Mallipeddi et al. [45]
proposed a differential evolution algorithm with ensemble of parameters and muta-
tion strategies (EPSDE). All these variants of DE have been proposed for solving
nonlinear global optimization problems with simple bounds. Ali presented in [1]
a recursive topographical differential evolution algorithm in a cluster of particles
energy minimization context. A concise yet rather complete review of differential
evolution variants is presented by Das and Suganthan in [17].

In population-based solution method, it is very important to obtain optimum
solution with minimum time period. Also the algorithm is to be capable to explore
the whole search space as well as to exploit around neighborhood of a reference point
(this can be the best point). DE has these features but sometimes it is getting stuck
at local solution mainly because of using mutation and control parameters. So in
this paper, we propose a modified differential evolution (mDE) that is capable of
solving economic dispatch problems. The mDE algorithm includes the following
modifications:

1. a combination of two mutation strategies with a weight factor;
2. a cyclical usage of the overall best point as base point in mutation;
3. the self-adaptive technique for control parameters;
4. a modified selection (discussed in Section 5.3) to solve the economic dispatch

problems.

These modifications allow mDE to maintain its exploratory feature as well as exploit
the region around the best point cyclically for each mutant point and at the same
time expedite the convergence. The modified differential evolution is outlined below.

4.1. Modified Mutation. Mutation plays vital role in DE which explores the
entire search space and at the same time expedites convergence. But a proper
balance between exploration and exploitation is required for an effective operation.
DE/rand/1 mutation strategy explores the entire search space but converges slowly.
On the other hand, DE/best/1 strategy exploits around the best point found so
far and converges rapidly. With this strategy a local solution may be obtained
before the global solution can be reached. Also the amplification factor F is always
problem dependent and should not be constant. It enhance the exploration feature
of mutation. In this context, here in mDE, we propose a modified mutation that is
a mixture of two mutation strategies. The first mutation strategy is a combination
of two different strategies with a weight factor and the other one is the cyclical use
of DE/best/1 strategy, both with self-adaptive amplification factor F .

Firstly, three points are randomly chosen from the target population at current
generation and the best point among these three based on the fitness is used as the
base point and remaining two points are used in differential variation to create first
mutant point vrb

p,z+1

vrb
p,z+1 = xr1,z + Fp,z+1(xr2,z − xr3,z) (10)
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where xr1,z is the best point among the three randomly chosen points. r2 and r3
are the indices of remaining two points. Fp,z+1 is the self-adaptive parameter for
amplifying the differential variation (see (14)). This mutation has exploration as
well as random localization features.

Secondly, we use DE/rand/1 mutation strategy to create second mutant point
vr
p,z+1

vr
p,z+1 = xr4,z + Fp,z+1(xr5,z − xr6,z) (11)

where uniformly chosen random indices r4, r5, r6 from the set {1, 2, . . . , NP} are
mutually different and also chosen to be different from the running index p.

Finally, we combine the above two mutant points using a scalar weight factor
ω ∈ [0, 1] to form actual mutant point vp,z+1

vp,z+1 = ωp,z+1v
rb
p,z+1 + (1− ωp,z+1)v

r
p,z+1 (12)

where ωp,z+1 is a self-adaptive weight factor that balances the combination of the
two previous mutant points (also see (14)). Clearly, if ωp,z+1 = 1, then the actual
mutant point generation reduces to (10) and if ωp,z+1 = 0, reduces to (11).

Furthermore, at every R generation, we use the best point found so far as base
point and randomly chosen two points for differential variation

vp,z+1 = xbest + Fp,z+1(xr1,z − xr2,z). (13)

This modified mutation allows mDE to maintain its exploration and exploitation
features as well as expedite the convergence.

4.2. Self-Adaptive Control Parameters. In mDE, we use the self-adaptive
technique proposed by Brest et al. [9] for control parameters F , CR and ω that
generates a different set (Fp, CRp, ωp) for each individual point in the population.
For z = 1, Fp is generated according to Fp,1 = Fl + rand(0, 1) × (Fu − Fl), where
Fl and Fu are the lower and upper bounds of F , respectively. The values of CR
and ω are generated randomly from [0, 1]. Then new control parameters for each
individual point at next generation Fp,z+1, CRp,z+1 and ωp,z+1 are calculated as

Fp,z+1 =

{

Fl + λ1 × (Fu − Fl), if λ2 < τ1
Fp,z, otherwise

CRp,z+1 =

{

λ3, if λ4 < τ2
CRp,z, otherwise

ωp,z+1 =

{

λ5, if λ6 < τ3
ωp,z, otherwise,

(14)

where λk ∼ U[0, 1], k = 1, . . . , 6 and τ1, τ2, τ3 represent probabilities to adjust pa-
rameters Fp, CRp and ωp, respectively. Fl = 0.1 and Fu = 1.0, so the new Fp,z+1

takes a value from [0.1, 1.0] in a random manner. The new CRp,z+1 and ωp,z+1 take
values from [0, 1]. Fp,z+1, CRp,z+1 and ωp,z+1 are obtained before the mutation is
performed. So, they influence the mutation, crossover and selection operations of
the new point xp,z+1.

4.3. Bounds Check. When generating the mutant point, some components can
be generated outside the domain Ω. So, in mDE the bounds of each individual
point’s component should be checked with the following projection of bounds:

u′
pj,z+1 =







lbj if u′
pj,z+1 < lbj

ubj if u′
pj,z+1 > ubj

u′
pj,z+1 otherwise.



10 M.A.K. AZAD AND EDITE M.G.P. FERNANDES

4.4. Termination Criterion. Let Gmax be the maximum number of generations.
If fmax,z and fmin,z are the maximum and minimum objective function values re-
spectively, attained at generation z then the proposed mDE algorithm terminates
if z > Gmax or (fmax,z − fmin,z) ≤ ǫ, for a very small positive number ǫ.

5. Solving Economic Dispatch Problems with Modified Differential Evo-

lution. In this section, the procedures to solve the reformulated ED problem (and
the original nonsmooth ED problem as well) by mDE are described. The values
of P that has (N × T ) components of real power outputs are initialized randomly
within generating units operating limits. The values of αit and βit are also ini-
tialized randomly within [0,max(ei)]. So in mDE when solving ED problems as
previously described x = (P,α,β) and n = N ×T for all the original problems and
n = 3N × T for the problems that are reformulated.

5.1. Constraints Handling. To solve ED problem by mDE the equality con-
straints (1) and inequality constraints (3) and after reformulation (5) must be
satisfied. In the following, the constraints satisfaction by mDE are outlined.

Real Power Balance: To solve ED problem by mDE, it is very important to create a
population of individual points that satisfy the real power balance constraints (1).
To satisfy these constraints by an individual point, power output of any one unit
is selected as the dependent power output Plt randomly [4, 19, 48, 53, 59], where
l ∈ {1, 2, . . . , N}. The dependent power output Plt is computed from (15)

Plt = Dt + Lt −

N
∑

i=1,i6=l

Pit, t = 1, 2, . . . , T. (15)

The transmission loss Lt is a function of all generating units including that of
dependent unit (see (2)), and is given by

Lt =

N
∑

i=1,i6=l

N
∑

j=1,j 6=l

PitBijPjt + 2Plt





N
∑

i=1,i6=l

BliPit



+BllP
2
lt. (16)

After substituting the value of Lt from (16) into (15) and rearranging, equation
(15) becomes

BllP
2
lt+



2

N
∑

i=1,i 6=l

BliPit − 1



Plt+



Dt +

N
∑

i=1,i 6=l

N
∑

j=1,j 6=l

PitBijPjt −

N
∑

i=1,i 6=l

Pit



 = 0. (17)

The equation (17) is a quadratic equation and the value of Plt can be easily
calculated and must satisfy the constraints (3) and (4).

Inequality Constraints: Since mDE is a population based technique, to satisfy the
inequality constraints of the ED problem (6), the constraint violation of an indi-
vidual point in a population is defined by max{0, gk(P,α,β)}, k = 1, 2, . . . ,m2.
For an individual point, if all constraints are satisfied the violation should be zero,
otherwise it should be the sum of constraint violation. So the sum of constraint
violation of an individual is calculated by using the following equation

φ(P,α,β) =

m2
∑

k=1

max {0, gk(P,α,β)} . (18)
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5.2. Constraints Handling Techniques. In the last decades many constraints
handling techniques have been proposed using stochastic solution methods. For ED
problems, equality constraints can be handled using (15). The most used technique
for constrained nonlinear programming problem is penalty function method, where
a penalty term is added to the objective function with a positive penalty for infeasi-
ble solutions. This technique has been used for solving ED problems [2, 3, 4, 27, 32].
However, the performance of this technique is not always satisfactory due to the dif-
ficult task concerned with choosing an appropriate value for the penalty parameter.
Deb [20] proposed an efficient constraints handling technique based on feasibility
and dominance rules. This technique is easy to implement and the objective function
need not be evaluated for infeasible individual. Runarsson and Yao [52] proposed
stochastic and global competitive ranking methods for constrained problems. Here
both the objective function and the constraints are evaluated for all individuals in
a population and each individual is ranked relative to the entire population using
objective and constraint violation values separately. Mallipeddi and Suganthan [46]
proposed an ensemble of constraints handling techniques, where each of them has
its own population and generates new trial points. These points compete with each
other to generate the next populations.

Due to its simplicity the herein implemented technique for constraints handling
rely on the feasibility and dominance rules.

5.3. Modified Selection in mDE. In original DE, an individual point in a pop-
ulation replaces the parent only if it has better or equal objective function value
meaning that a trial point replaces the target point if the objective function value
of the trial point is smaller than or equal to that of the target point, and becomes a
member in a population at generation z+1. Since the ED problem is a constrained
problem, in mDE we propose a modified selection of an individual point at genera-
tion z + 1 based on the feasibility and dominance rules of that individual point, as
proposed by Deb [20] and therein called the tournament selection.

In this technique, first the constraint violation φ is calculated for all the indi-
viduals. Then the objective function f is evaluated only for feasible individuals.
Let (P,α,β)z and (P,α,β)z+1 be the target and trial points, respectively. Two
individuals are compared at a time to select which one will be the member in a
population at z + 1, the following criteria are always enforced:

1. any feasible point is preferred to any infeasible point;
2. between two feasible points, one having better objective function value is

preferred;
3. between two infeasible points, one having smaller constraint violation is pre-

ferred.

In this technique the feasible individuals or the individuals having smaller constraint
violation are always selected for next generation target points.

5.4. Fitness Calculation. The fitness function of a target point is calculated as
follows [20]

Φ(P,α,β) =

{

f(P,α,β) if φ(P,α,β) = 0
fmax feas + φ(P,α,β) otherwise,

(19)

where fmax feas is the objective function value of the worst feasible target point.
When all target points are infeasible then its value is set to zero. In mDE, this
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fitness function is used only to choose the best and worst individual points in a
target population.

5.5. The mDE Algorithm. The algorithm of the herein proposed modified dif-
ferential evolution to solve ED problems is described in the following:

Step 1: Set the values of parameters NP , Gmax, R, Fl, Fu, τ1, τ2, τ3, ǫ.

Step 2: Set z = 1. Initialize the target population xp,1, p = 1, 2, . . . , NP , and
Fp,1, CRp,1 and ωp,1.

Step 3: Balance the demand constraint, calculate constraint violation φ using
(18) and fitness function Φ using (19).

Step 4: Identify fmax,z and fmin,z and set fbest = fmin,z and xbest = xmin,z.

Step 5: If termination condition is met stop. Otherwise set z = z + 1.

Step 6: Compute new control parameters Fp,z, CRp,z and ωp,z using (14).

Step 7: Compute mutant point vp,z:
If MOD(z,R) = 0 compute mutant point using (13), otherwise using (12).

Step 8: Perform crossover to make trial point up,z using (9).

Step 9: Check the domains of the trial point using (4).

Step 10: Balance the demand constraint, calculate constraint violation φ.

Step 11: Perform modified selection (discussed in Section 5.3).

Step 12: Calculate fitness function Φ.

Step 13: Go to step 4.

6. Experimental Results. We code mDE in C with AMPL [26] interfacing and
compile with Microsoft Visual Studio 9.0 compiler in a PC having 2.5 GHz Intel Core
2 Duo processor and 4 GB RAM.We set the value of parameterNP = min(100, 10n)
so that the population size depends on the dimension of the problem. We also set
τ1 = τ2 = τ3 = 0.1 as suggested in [9] and ǫ = 10−6. We set different value for
Gmax depending on the test problem. We considered five test problems of economic
dispatch from literature. The characteristics of the five test problems are outlined
in Table 1.

Table 1. Characteristics of ED problems

Prob.
No. of No. of Constraints

Variables Equality Inequality Total
P1 3 1 0 1
P2 3(6)* 1 6 7
P3 13(26)* 1 26 27
P4 40 1 0 1
P5 120(240)* 24 470 494
*Additional variables indicated in parentheses
to reformulate nonsmooth objective function

We model these problems (original and reformulated) in AMPL and GAMS [10]
modeling systems1. We take input data from literature. We compared the results
obtained by mDE with existing deterministic global NLP solvers, existing deter-
ministic local NLP solvers and other stochastic global techniques from literature.

1To access these models please visit http://www.norg.uminho.pt/emgpf/problems.htm

http://www.norg.uminho.pt/emgpf/problems.htm
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At first we will show the effectiveness of using (13) corresponding to R cyclically.
We considered two benchmark constrained test problems g06 and g10 from [42].
We run mDE for two cases. In “case 1” we used (13) at every R generations and in
“case 2” we used (13) at Gmax/R and then at every R. In both cases we set R = 10.
Thirty independent runs were carried out. The comparison of obtained results are
shown in Table 2. In the table “fopt” means the best known optimal solution.
“fbest” represents the best obtained solution, “favg” represents the average of the
best objective function values and “std. dev.” represents the standard deviation of
the best objective function values, after 30 runs. From the table it is shown that,
for the two test problems, mDE case 2 gives better results. Figures 1 and 2 show
the profile of average of the best objective function values at different generations
for g06 and g10, respectively. From these figures it is also shown that, mDE case 2
gives better performance. Hereafter we will use mDE to denote the case 2.

Table 2. Comparison of results of g06 and g10

Prob. fopt Gmax
case 1 case 2

fbest favg std. dev. fbest favg std. dev.

g06 -6961.81 500 -6961.82 -6741.13 6.58E+02 -6961.82 -6961.82 5.48E-06

g10 7049.25 2000 7049.46 7138.91 7.82E+01 7049.25 7083.69 4.93E+01
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Figure 1. Profile of average of best objective function values of
g06 at different generations

6.1. Comparison with Deterministic Global and Local Solvers. We run
mDE 30 times and report the best objective function value. We run standard NLP
solvers in NEOS server2. We emphasize that here the reformulated smooth ED
problems are solved. The best objective function value obtained over the 30 runs
by mDE and the solutions obtained by the deterministic global NLP solvers are
shown in Table 3. The solutions obtained by the deterministic local NLP solvers

2 http://neos-server.org/neos/

http://neos-server.org/neos/
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Figure 2. Profile of average of best objective function values of
g10 at different generations

Table 3. Comparison of best objective obtained by global NLP
solvers and mDE

Solvers
P1 P2 P3 P4 P5

Obj. Iter. Obj. Iter. Obj. Iter. Obj. Iter. Obj. Iter.

ALGENCAN 3619.75 6 8419.97 8 25410.85 8 141127.39 7 45005.00 12

BARON 3619.75 – – – – – 141127.39 – – –

Couenne – – 8234.07 208 24169.92 4893 141127.39 152 – –

LINDOGlobal 3619.75 104 8382.73 205 25404.54 709 141127.39 376 47368.69 17102

mDE 3619.75 35 8234.07 500 24169.92 5000 141127.39 1908 46620.85 20000

(–) indicates no information, infeasible or run time error by the solver

are displayed in Table 4. In both tables “Obj.” is the obtained solution and “Iter.”
represents the number of iterations/generations required to achieve the solution
with a specified accuracy. We used the default values given by each solver.

Table 4. Comparison of best objective obtained by local NLP solvers

Solvers
P1 P2 P3 P4 P5

Obj. Iter. Obj. Iter. Obj. Iter. Obj. Iter. Obj. Iter.

CONOPT 3619.75 11 8493.88 19 25458.80 129 141127.39 24 46410.54 391

FilterSQP 3619.75 7 8416.98 8 25416.94 33 141127.39 4 – –

IPOPT 3619.75 9 8562.41 142 25466.62 189 141127.39 17 47693.02 466

KNITRO 3619.75 4 – – 25404.54 365 141127.39 11 47720.57 1788

LANCELOT 3619.75 13 8250.20 53 25404.54 104 141127.39 18 45503.98 196

LOQO 3619.75 17 8234.07 201 25405.36 202 141127.44 22 41539.76 500

MINOS 3619.75 7 8499.45 3 25122.78 44 141127.39 39 47290.49 1960

SNOPT 3619.75 11 8668.24 5 25592.81 29 141127.39 66 46501.88 1778

(–) indicates no information, infeasible or run time error by the solver
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The ED problem P1 has three generating units with hourly demand 300 and
transmission loss. Data is listed in [55]. The objective function of this problem is
smooth. We set Gmax = 100 in mDE. From Table 3 and Table 4 it is shown that
all solvers gave the optimal objective function value of 3919.75 although Couenne
did not give a feasible solution, as it got stuck at lower bounds.

P2 has three generating units with hourly demand 850 [53]. The objective func-
tion of this problem is nonsmooth. After reformulating, the problem has nine vari-
ables and seven constraints. In mDE, we set Gmax = 500. It is shown that solvers
mDE, Couenne and LOQO gave the optimal objective function value of 8234.07,
and the other solvers did not give the optimal. In this problem, there exists the
trigonometric function “sine” and in fact, BARON cannot be directly applied to
problems with trigonometric functions. KNITRO did not give a feasible solution
even when setting xtol = 10−20.

Problem P3 has 13 generating units with hourly demand 2520 [53]. The objective
function of this problem is nonsmooth. After reformulating, the number of variables
are 39 and constraints are 27. We set Gmax = 5000. Couenne and mDE gave the
optimal objective function value of 24169.92. In this problem, BARON also did not
evaluate the “sine” functions.

The ED problem P4 has 40 generating units with hourly demand 10500 [14]. The
objective function of this problem is smooth. We set Gmax = 3000 in mDE. From
Table 3 and Table 4 it is shown that all solvers except LOQO gave the optimal
objective function value of 141127.39.

P5 has five generating units with 24 hours demand and with transmission loss
[3]. The objective function of this problem is nonsmooth. After reformulating,
the number of variables are 360 and constraints are 494. In mDE, we set Gmax =
20000. LOQO gave the best objective function value of 41539.76, ALGENCAN
gave 45005.00 and mDE gave 46620.85. Here BARON also did not evaluate the
“sine” functions, Couenne exited after run time error and FilterSQP did not give a
feasible solution.

From the above discussion it is to be noted that although mDE takes more
iterations to solve each problem, the quality of the solutions are in general better
than those of the most deterministic NLP solvers. In fact, the number of iterations
is not a fair and definite measure of comparison since the amount of work done at
each iteration is different from one solver to the other. We did not compare the
performance of all solvers based on solution time because of different machines used.

6.2. Comparison with Stochastic Techniques. Since some stochastic global
techniques available in literature have been applied to standard ED problems, we
also run mDE to solve those original nonsmooth ED problems. For fair compari-
son we also coded jDE [9] with modified selection (discussed in Section 5.3) in C
with AMPL interfacing. jDE is based on the DE/rand/1 mutation strategy with
self-adaptive control parameters for F and CR. Then we compared the obtained
results by mDE with the results obtained by jDE and other techniques reported
in literature. Here we also set the above mentioned values of parameters for mDE
and jDE. It is to be noted that the stochastic techniques available in literature were
not applied to all the above mentioned ED problems. So we compared the result of
each problem separately.

For problem P1, we set Gmax = 100 for mDE and jDE. Thirty independent runs
were carried out and at every Gmax/20 the obtained best objective function value
was reported and made average. We plot the profile of average of the best objective
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function values by jDE and mDE at different generations in Figure 3. The best
result obtained after 30 runs and the result by GA [55] are shown in Table 5.
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Figure 3. Profile of average of best objective function values of
P1 at different generations

Table 5. Comparison of results of P1

GA jDE mDE

Obj. 3619.76 3619.76 3619.76

When solving problem P2, we set Gmax = 100. Figure 4 contains the plot of
average of the best objective function values at different generations after 30 runs.
The best result obtained after 30 runs and the results by IEP [50], IFEP [53], EP
[64], EP-SQP [2], MPSO [49] and PSO-SQP [59] are shown in Table 6.

Table 6. Comparison of results of P2

IEP IFEP EP EP-SQP MPSO PSO-SQP jDE mDE

Obj. 8234.09 8234.07 8234.07 8234.07 8234.07 8234.07 8234.07 8234.07

We set Gmax = 1000 in problem P3. Figure 5 shows the plot of average of the
best objective function values at different generations. The best result obtained

Table 7. Comparison of results of P3

HSS GA-SA EP-SQP PSO-SQP HGA jDE mDE

Obj. 24275.00 24275.71 24266.44 24261.05 24169.92 24169.93 24169.92

by mDE and jDE after 30 runs, as well as the results by HSS [16], GA-SA [62],
EP-SQP [2], PSO-SQP [59] and HGA [32] are shown in Table 7.

For problem P4, we set Gmax = 3000 for jDE and mDE. We plot the profile of
average of the best objective function values by jDE and mDE at every Gmax/20
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Figure 5. Profile of average of best objective function values of
P3 at different generations

generation in Figure 6. The best result obtained after 30 runs and the results by
SA, GA, HDE, VSHDE available in [14] and ALHN [21] are shown in Table 8.

Table 8. Comparison of results of P4

SA GA HDE VSHDE ALHN jDE mDE

Obj. 164069.36 144486.02 143955.83 143943.90 143926.90 141127.39 141127.39

Finally, we set Gmax = 10000 when solving problem P5. We plot the profile of
average of the best objective function values at different generations, as shown in
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Table 9. Comparison of results of P5

SA IDE DE jDE mDE

Obj. 47356.00 45800.00 43213.00 43248.20 43057.83

Figure 7. The best result obtained after 30 runs and the results by SA [48], IDE [4]
and DE [3] are shown in Table 9.



MODIFIED DIFFERENTIAL EVOLUTION FOR EDP 19

From the above tables it is shown that the proposed mDE is rather competitive
when compared with other stochastic techniques for solving standard economic dis-
patch problems. From the tables and figures it is also shown that mDE outperforms
jDE.

7. Conclusions. In real world, power generation companies try to improve the
operating efficiency of their power plants and tangible improvements can still be
achieved through the application of more robust solution techniques. In this paper,
to make DE algorithm more efficient to handle the constraints in economic dispatch
problems with valve-point loading effects and transmission loss, a modified differen-
tial evolution (mDE) algorithm has been proposed. The modifications focus on the
self-adaptive techniques for control parameters, a modified mutation and a modified
selection.

We emphasize the modifications that mostly influence the efficiency of the al-
gorithm. The mixed modified mutation with self-adaptive amplification factor in
mDE algorithm aims at exploring the whole search space (when using recombina-
tion of two mutation strategies) and exploiting the neighborhood of the best point
found so far (when using DE/best/1 mutation strategy cyclically). The modified
selection, to handle the constraints effectively, uses the tournament selection based
on feasibility and dominance rules that makes pair-wise comparison among feasible
and infeasible solutions based on the degree of constraint violation. A penalty based
fitness function that does not require any penalty parameter is used to calculate
the fitness of each individual point in a population in order to identify the best and
the worst points.

To test the effectiveness of the proposed mDE algorithm, five types of ED prob-
lems have been solved in this study and the results show that the herein proposed
mDE has a performance that improves over most of the other methods of determin-
istic and stochastic nature in comparison. Future developments will focus on the
extension of the mDE to ED problems with mixed integer variables.
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