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Abstract. In this paper, we show how fractional viscoelastic models can be efficient in the modeling of linear viscoelastic
behavior, increasing the fitting accuracy of classic generalized viscoelastic models, such as the Generalized Maxwellmodel.
Experimental data (Loss and Storage modulus in the frequency domain) were retrieved from a Dynamic Mechanical Analysis
test considering Carbon Fibre Reinforced Polymer samples.The estimated parameters, for the derived fractional viscoelastic
models, were obtained through numerical optimization techniques that minimize the difference between model-predicted
values and experimental data. An excellent correlation between analytical and experimental results was observed, minimizing
numerical instabilities found on a previous work, for the same experimental setup.
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INTRODUCTION

In the work of [1], the relaxation spectra of a Carbon Fibre Reinforced Polymer (CFRP), experimentally obtained
through a Dynamic Mechanical Analysis (DMA), was fitted using the classic definition of Storage and Loss modulus
given by the Generalized Maxwell Model (GMM) and defined through the following Prony series:
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whereN is the relaxation modes defined by their relaxation strengths gk and their relaxation timesτk, k = 1,2, ...,N,
G∞ is the long term (shear) modulus,ω is the circular frequency.

As shown in Fig. 1, the optimal fit of the Loss modulus, described by the GMM, did not reproduce with accuracy
the experimental data, especially, at high frequencies, exhibiting an oscillatory behavior. It is known, in the literature,
that the fractional models are better to describe the behavior of viscoelastic materials [2]. In fact, recent works in
this area (see, for example [3]) have shown that fractional order models are a good approximation to the generalized
classic viscoelastic models (characterized by adding spring and dashpot elements in series and parallel) when the
number of elements tend to infinity. In consequence, generalized fractional viscoelastic models are characterized by
a more accurate fit when compared to the classic generalized viscoelastic models. In this work, we aim to validate
this statement, by comparing the fitting accuracy of classicviscoelastic models with fractional viscoelastic models.
Also, the ability of the Prony series, based on fractional viscoelastic models, to converge with fewer parameters to
an optimal value, when compared with classic models, will behighlighted. Our goal is to use fractional models,
in particular the Generalized Fractional Maxwell Model (GFMM) as a starting point for the application of inverse
analysis. Thus, we firstly present the derivation of the Lossand Storage moduli described by the GFMM. In the next
section, we formulate a nonlinear least square problem to estimate the viscoelastic model parameters. Finally, the
numerical results and conclusions are presented.

GENERALIZED FRACTIONAL MAXWELL MODEL

In this section, we present the main equations of the GFMM, namely the complex, storage and loss moduli, that result
from replacing integer derivatives by the fractional-derivative time in the differential constitutive equation. TheGFMM
consists of a Hookean spring in parallel with multiple fractional Maxwell elements (or multiple fractional springpot
elements).



We denote the stress in the spring component byσ0 and the stress in the first Maxwell element byσ1, and so on. The
total stressσ in the generalized model is given byσ = σ0 +σ1 +σ2 + · · ·+σN whereσ0 = G∞e0(t). The constitutive
equation for a single fractional Maxwell element is given by[3]

σk(t)+ ταDα
0+σk(t) = gkτα Dα

0+ek(t), k = 1, · · · ,N (2)

where 0< α < 1 is the fractional order and the fractional derivative is defined in the Riemann-Liouville form,
expressed as [4]
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whereΓ(α) denotes the Euler Gamma function, defined forℜ(α) > 0: Γ(α) =
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0 e−uuα−1du. Taking the Laplace
transform of Equation (2), applying the respective properties in Fractional Calculus, replacings by iω and rearranging
terms, we obtain the expressions
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wherei =
√
−1, L {σk(t)} andL {e(t)} denote the Fourier transform ofσk andek, respectively.

Combining in parallelN fractional Maxwell elements and one Hookean spring to form the N-parameters of the
GFMM, we obtain a so called Prony serie
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which is similar to the complex modulus given by the GMM [1]. The real (storage modulus) and imaginary (loss
modulus) parts of the GFMM complex modulus (3) can be obtained by summing the respective moduli of individual
fractional Maxwell elements
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OPTIMIZATION PROBLEM

The parameters of the complex modulusG∗(iω) calculated from the GMM or GFMM are found by fitting functions
(1) or (4) to the experimental data, respectively. For the GMM complex modulusG∗(iω) there are 2N parameters to
be estimated, namely, the relaxation timesτ ≡ (τ1, ...,τN) and the relaxation strengthsg ≡ (g1, ...,gN). For the GFMM
complex modulusG∗(iω) one additional set of parameters needs to be estimated, thatis the order of the fractional
derivativesα ≡ (α1, ...,αN).

For each case, the parameters are determined using a nonlinear least squares fit based on the average square of
deviation between the predicted valuesG′(ω j), G′′(ω j) and the measuredG′

j, G′′
j data atM frequenciesω j. Namely,
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whereG′(ωi) andG′′(ωi) are calculated values from Equation (4).
Note that, for the experimental data fitting, we imposed thatthe relaxation strengthsg1, ...,gN and the relaxation

timesτ1, ...,τN must be positive, and the relaxation times have to satisfy anascending order.

NUMERICAL EXPERIMENTS AND CONCLUSIONS

In [1], G′ andG′′ experimental data were fitted using the functions in (1), that come from complex modulusG∗(iω),
calculated from GMM. We have used two nonlinear constrainedoptimization solvers that are available online on the
NEOS servers for optimization (http://neos.mcs.anl.gov/neos/solvers). The optimization problem (5)
was coded in AMPL - Modeling Language for Mathematical Programming [5]. By default, AMPL applies a presolve
phase to the optimization problem, before invoking the solver. Its goal is to reduce the size of the problem sent to the
solver. Since the decisions made by the presolve phase rely on numerical computations, sometimes small differences
between numbers can have a large effect on the results. Unfortunately, this occurred with the optimization problems
(5) and (6). Due to this, we use presolve option 0 to turn off all presolving. We rerun the Ipopt solver from the NEOS
for solving the optimization problem (5) again and also to solve the problem (6). The Ipopt is a solver to solve large
scale nonlinear optimization problems which implements aninterior point method based on a filter line search strategy
[6]. As mentioned above, the choice ofN is an important issue to obtain the best fit. In the experiments, we test the
effect of the number of the terms in the series (1) and (4), on the residual valuesF1 andF2, respectively. Table 1
reports the optimal residual values (F∗

1 andF∗
2 ) and the CPU time (in sec.), given in columns 2-3 and in columns

4-5, for estimating 2N and 3N parameters (forN = 1,2, ...,15), respectively. This implies to solve fifteen nonlinear
constrained least squares problems of type (5) and fifteen problems of type (6). Since we do not have any information
about the starting parameters set and their ranges, the starting parameters set was not provided to the Ipopt solver. By
default the Ipopt uses the null vector.

TABLE 1. Results obtained by Ipopt

IPOPT IPOPT
N-Terms Serie F∗

1 CPU time [s] F∗
2 CPU time [s]

1 159.8560 0.017 80.2011 0.065
2 71.1437 0.062 7.5645 0.386
3 52.9325 0.106 7.5540 1.104
4 29.9951 0.125 7.4935 3.098
5 20.7001 0.316 7.5331 4.194
6 11.2060 0.752 0.4488 1.129
7 13.9328 0.512 † †
8 3.2850 0.838 0.3850 24.503
9 1.9164 2.059 0.3828 39.239
10 1.1347 2.314 0.3689 28.163
11 0.6708 4.335 0.3886 39.59
12 0.4310 6.831 † †
13 9.2024 10.363 0.3850 74.603
14 10.2686 16.277 † †
15 39.9024‡ 16.154 † †

run terminates due to: ‘†’ restoration failed; ‘‡’ solved toacceptable level

In general, as we can see from Table 1, as the number of terms inthe series (N) increases the residual valuesF∗
1 and

F∗
2 decreases up toN = 12. For values ofN greater than 12, it is not possible to further improve the optimal residual

values and consequently to obtain a better fit. It is found that the residual decreases more quickly in the optimization
problem (6) based on the functions (4) described by GFMM. Forexample, forN = 6 the problem has a residual
value of 0.4488, that is only achieved approximately by problem (5) based on the functions (1) described by GMM for
N = 12. When comparing the two models, the GFMM presents the bestresults. In this case, the best optimal parameter
set was found forN = 10 (see Table 2).

Figure 1(a) and 1(b) plot the storage and loss experimental datavs curve-fit of Loss and Storage of (1) and (4),
respectively, using the corresponding best optimal parameter set estimated.

As shown in Fig. 1, the optimized constitutive parameters are not suitable, especially for the Loss modulus described
by GMM. As it can be seen from Fig. 1(b), it does not reproduce with accuracy the material’s viscoelastic behavior at



TABLE 2. Optimal parameter set for GFMMG′(ω) andG′′(ω).

k gk [MPa] τk [s] αk k gk [MPa] τk [s] αk

1 5147.48 0.0636545 0.124157 6 4.97225e-05 122324000 0.815554
2 678.593 8579.17 0.340389 7 1.43449e-05 122424000 0.222429
3 1381.39 3843980 0.999999 8 292.605 756234000 0.149816
4 5653.46 23278400 0.999999 9 2191.13 756234000 0.999999
5 5494.54 122274000 0.999999 10 582.678 5065390000 0.999999
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FIGURE 1. The best fit obtained for the Storage and Loss modulus.

high frequencies, exhibiting an oscillating behavior thathas no physical meaning. This drawback is indeed overcome
by the Loss modulus described by the GFMM, which leads to a more stable model, especially, for high frequencies.

For future work, the anisotropic behavior of the material will be considered, in order to study the dependence of
viscoelastic response on the material orientation and loading direction.
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