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Abstract. In this paper, we show how fractional viscoelastic models loa efficient in the modeling of linear viscoelastic
behavior, increasing the fitting accuracy of classic gdir viscoelastic models, such as the Generalized Maxwedlel.
Experimental data (Loss and Storage modulus in the frequdmmain) were retrieved from a Dynamic Mechanical Analysis
test considering Carbon Fibre Reinforced Polymer sampples.estimated parameters, for the derived fractional eissbic
models, were obtained through numerical optimization i@gples that minimize the difference between model-predict
values and experimental data. An excellent correlatiowéen analytical and experimental results was observedmizimg
numerical instabilities found on a previous work, for theneeexperimental setup.
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INTRODUCTION

In the work of [1], the relaxation spectra of a Carbon FibrénReced Polymer (CFRP), experimentally obtained
through a Dynamic Mechanical Analysis (DMA), was fitted ggsthe classic definition of Storage and Loss modulus
given by the Generalized Maxwell Model (GMM) and defined tigb the following Prony series:
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whereN is the relaxation modes defined by their relaxation strenggttand their relaxation timeg, k=1,2,...,N,
G is the long term (shear) modulus,is the circular frequency.

As shown in Fig. 1, the optimal fit of the Loss modulus, desmliby the GMM, did not reproduce with accuracy
the experimental data, especially, at high frequencidsgpéing an oscillatory behavior. It is known, in the litéuae,
that the fractional models are better to describe the behafiviscoelastic materials [2]. In fact, recent works in
this area (see, for example [3]) have shown that fractiordéiomodels are a good approximation to the generalized
classic viscoelastic models (characterized by addinghgpaind dashpot elements in series and parallel) when the
number of elements tend to infinity. In consequence, gemerhfractional viscoelastic models are characterized by
a more accurate fit when compared to the classic generaligedelastic models. In this work, we aim to validate
this statement, by comparing the fitting accuracy of clagisicoelastic models with fractional viscoelastic models.
Also, the ability of the Prony series, based on fractionatetlastic models, to converge with fewer parameters to
an optimal value, when compared with classic models, wilhighlighted. Our goal is to use fractional models,
in particular the Generalized Fractional Maxwell Model (@) as a starting point for the application of inverse
analysis. Thus, we firstly present the derivation of the Lavss Storage moduli described by the GFMM. In the next
section, we formulate a nonlinear least square problemtimate the viscoelastic model parameters. Finally, the
numerical results and conclusions are presented.

GENERALIZED FRACTIONAL MAXWELL MODEL

In this section, we present the main equations of the GFMIvhalpthe complex, storage and loss moduli, that result
from replacing integer derivatives by the fractional-dative time in the differential constitutive equation. TREMM
consists of a Hookean spring in parallel with multiple fiaotl Maxwell elements (or multiple fractional springpot
elements).



We denote the stress in the spring componerdggnd the stress in the first Maxwell elementdyy and so on. The
total stresw in the generalized model is given loy= dp + 01+ 02 + - - - + On Wheredp = Gwep(t). The constitutive
equation for a single fractional Maxwell element is given Bl
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where 0< a < 1 is the fractional order and the fractional derivative idirted in the Riemann-Liouville form,
expressed as [4]
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wherel (a) denotes the Euler Gamma function, defined@do) > 0: ['(a) = [y’ e “u®~1du. Taking the Laplace
transform of Equation (2), applying the respective prdpsiin Fractional Calculus, replacisdy iw and rearranging
terms, we obtain the expressions
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wherei = /-1, Z{0(t)} and.Z{e(t)} denote the Fourier transform of ande, respectively.
Combining in paralleN fractional Maxwell elements and one Hookean spring to fanm N-parameters of the
GFMM, we obtain a so called Prony serie
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which is similar to the complex modulus given by the GMM [1hélreal (storage modulus) and imaginary (loss
modulus) parts of the GFMM complex modulus (3) can be obthimesumming the respective moduli of individual
fractional Maxwell elements
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OPTIMIZATION PROBLEM

The parameters of the complex modulaiw) calculated from the GMM or GFMM are found by fitting functions
(1) or (4) to the experimental data, respectively. For theNbdbmplex moduluss* (iw) there are Rl parameters to
be estimated, namely, the relaxation timres (11, ..., Tny) and the relaxation strengtgs= (g1, ..., gn). For the GFMM
complex moduluss*(iw) one additional set of parameters needs to be estimatedsttia order of the fractional
derivativesa = (a1, ..., aN).

For each case, the parameters are determined using a raorkast squares fit based on the average square of
deviation between the predicted val@$w; ), G”(wj) and the measure@;, Gj data atM frequencieso;. Namely,
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whereG'(w) andG”(w) are calculated values from Equation (4).
Note that, for the experimental data fitting, we imposed thatrelaxation strengthg, ...,gn and the relaxation
timesty, ..., Ty must be positive, and the relaxation times have to satisfgsaending order.

NUMERICAL EXPERIMENTS AND CONCLUSIONS

In [1], G’ andG” experimental data were fitted using the functions in (1), toae from complex modulus*(iw),
calculated from GMM. We have used two nonlinear constrao@tnization solvers that are available online on the
NEOS servers for optimizatiom{ t p: / / neos. nts. anl . gov/ neos/ sol ver s). The optimization problem (5)
was coded in AMPL - Modeling Language for Mathematical Pamgming [5]. By default, AMPL applies a presolve
phase to the optimization problem, before invoking the eolits goal is to reduce the size of the problem sent to the
solver. Since the decisions made by the presolve phasemaiymerical computations, sometimes small differences
between numbers can have a large effect on the results. tunégely, this occurred with the optimization problems
(5) and (6). Due to this, we use presolve option 0 to turn dfpedsolving. We rerun the Ipopt solver from the NEOS
for solving the optimization problem (5) again and also ttveahe problem (6). The Ipopt is a solver to solve large
scale nonlinear optimization problems which implementméarior point method based on a filter line search strategy
[6]. As mentioned above, the choice Nfis an important issue to obtain the best fit. In the experis)em test the
effect of the number of the terms in the series (1) and (4) henrésidual valuef; andF,, respectively. Table 1
reports the optimal residual value(andF;) and the CPU time (in sec.), given in columns 2-3 and in coleimn
4-5, for estimating R and 3 parameters (foN = 1,2,...,15), respectively. This implies to solve fifteen nonlinear
constrained least squares problems of type (5) and fiftegvigms of type (6). Since we do not have any information
about the starting parameters set and their ranges, thimgtparameters set was not provided to the Ipopt solver. By
default the Ipopt uses the null vector.

TABLE 1. Results obtained by Ipopt

IPOPT IPOPT

N-Terms Serie Fr CPU time[g] Fy CPU time[9

1 159.8560 0.017 80.2011 0.065

71.1437 062 7.5645 (B86

3 52.9325 0.106 7.5540 1.104

4 29.9951 0.125 7.4935 3.098

5 20.7001 0.316 7.5331 4.194

6 11.2060 0.752 0.4488 1.129

7 13.9328 0.512 t t

8 3.2850 0.838 0.3850 24.503

9 1.9164 2.059 0.3828 39.239

10 1.1347 2.314 0.3689 28.163

11 0.6708 4.335 0.3886 39.59

12 0.4310 6.831 t T

13 9.2024 10.363 0.3850 74.603

14 10.2686 16.277 t T

15 39.9024% 16.154 t t

run terminates due to: ‘t’ restoration failed; ‘t’ solvedaeoceptable level

In general, as we can see from Table 1, as the number of teriine seriesl) increases the residual values and
F, decreases up td = 12. For values oN greater than 12, it is not possible to further improve thenoglresidual
values and consequently to obtain a better fit. It is foundtti@residual decreases more quickly in the optimization
problem (6) based on the functions (4) described by GFMM. é&@mple, forN = 6 the problem has a residual
value of 04488, that is only achieved approximately by problem (5glam the functions (1) described by GMM for
N = 12. When comparing the two models, the GFMM presents theesslts. In this case, the best optimal parameter
set was found foN = 10 (see Table 2).

Figure 1(a) and 1(b) plot the storage and loss experimeataivd curve-fit of Loss and Storage of (1) and (4),
respectively, using the corresponding best optimal paranset estimated.

As shown in Fig. 1, the optimized constitutive parameteesat suitable, especially for the Loss modulus described
by GMM. As it can be seen from Fig. 1(b), it does not reproduith accuracy the material’s viscoelastic behavior at



TABLE 2. Optimal parameter set for GFMI®' (w) andG” (w).
k  g«[MPa]  1[g ak k  g«[MPa T [s] ak

1 5147.48 0.0636545 0.124157 6 4.97225e-05 122324000 $b815

2 678593 8579.17 0.340389 7  1.43449e-05 122424000 0.92242
3 1381.39 3843980 0.999999 8 292.605 756234000 0.149816
4 5653.46 23278400 0.999999 9 2191.13 756234000 0.999999
5 549454 122274000 0.999999 10 582.678 5065390000 0.99999
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FIGURE 1. The best fit obtained for the Storage and Loss modulus.

high frequencies, exhibiting an oscillating behavior thas no physical meaning. This drawback is indeed overcome
by the Loss modulus described by the GFMM, which leads to @&rmstable model, especially, for high frequencies.

For future work, the anisotropic behavior of the materidl & considered, in order to study the dependence of
viscoelastic response on the material orientation andngatirection.
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