Constructor subtyping
(extended version)
DRAFT June 1999

Gilles Barthe!? and Maria Jodao Frade!

! Departamento de Informaética, Universidade do Minho, Braga, Portugal
% Institutionen for Datavetenskap, Chalmers Tekniska Hogskola, Goteborg, Sweden
{gilles,mjf}0@di.uminho.pt

Abstract. Constructor subtyping is a form of subtyping in which an inductive type o is viewed as
a subtype of another inductive type 7 if 7 has more constructors than o. As suggested in [5,12], its
(potential) uses include proof assistants and functional programming languages.

In this report, we introduce and study the properties of a simply typed A-calculus with record types
and datatypes, and which supports record subtyping and constructor subtyping. We show that the
calculus is confluent and strongly normalizing. We also show that the type-checking is decidable.

1 Introduction

Type systems [3, 8] lie at the core of modern functional programming languages, such as Haskell [26] or ML
[24], and proof assistants, such as Coq [4] or PVS [30]. In order to improve the usability of these languages, it
is important to devise flexible (and safe) type systems, in which programs and proofs may be written easily.
A basic mechanism to enhance the flexibility of type systems is to endorse the set of types with a subtyping
relation < and to enforce a subsumption rule

a:A A<B
a:B

This basic mechanism of subtyping is powerful enough to capture a variety of concepts in computer science,
see e.g. [9], and its use is spreading both in functional programming languages, see e.g. [23,28,29], and in
proof assistants, see e.g. [7, 22, 30].

Constructor subtyping is a basic form of subtyping, suggested in [12] and developed in [5], in which an
inductive type o is viewed as a subtype of another inductive type 7 if 7 has more constructors than o. As
such, constructor subtyping captures in a type-theoretic context the ubiquitous use of subtyping as inclusion
between inductively defined sets. In its simplest instance, constructor subtyping enforces subtyping from odd
or even numbers to naturals, as illustrated in the following example, which introduces in a ML-like syntax
the mutually recursive datatypes 0dd and Even, and the Nat datatype:

Ezample 1.
datatype 0dd = s of Even datatype Nat = 0
and Even = 0 | s of Nat
| s of 0dd ; | s of 0dd
| s of Even ;

Here Even and 0dd are subtypes of Nat (i.e. Even < Nat and 0dd < Nat), since every constructor of Even
and 04d is also a constructor of Nat.

In [5] it was introduced and studied constructor subtyping for one first-order mutually recursive para-
metric datatype, and showed the calculus to be confluent and strongly normalizing. In the present paper, we
improve on this work in several directions:

1. we extend constructor subtyping to the class of strictly positive, mutually recursive and parametric
datatypes. In addition, the present calculus supports incremental definitions;

2 Gilles Barthe and Maria Joao Frade

2. following recent trends in the design of proof assistants (and a well-established trend in the design of
functional programming languages), we replace the elimination constructors of [5] by case-expressions.
This leads to a simpler system, which is easier to use;

The main technical contribution of this report is to show that the calculus enjoys several fundamental
meta-theoretical properties including confluence, subject reduction and strong normalization. These results
lay the foundations for constructor subtyping and open the possibility of using constructor subtyping in
programming languages and proof assistants.

This report is an extended version of [6]. In [6] we also show that the calculus admits a well-behaved
theory of canonical inhabitants, provided one adopts expansive extensionality rules, including n-expansion,
surjective pairing, and a suitable expansion rule for datatypes.

Acknowledgements We are grateful to T. Altenkirch, P. Dybjer and L. Pinto for useful discussions on
constructor subtyping. The first author is partially supported by a TMR, fellowship. The second author is
partially supported by the LoGCcoMP project.

2 An informal account of constructor subtyping

Constructor subtyping formalizes the view that an inductively defined set o is a subtype of an inductively
defined set 7 if 7 has more constructors than o. As may be seen from the example of even, odd and natural
numbers, the relative generality of constructor subtyping relies on the possibility for constructors to be
overloaded and, to a lesser extent, on the possibility for datatypes to be defined in terms of previously
introduced datatypes. The following example, which introduces the parametric datatypes List of lists and
NeList of non-empty lists, provides further evidence.

Ezxample 2.

datatype ’a List = nil
| cons of (’a * ’a List) ;

datatype ’a NeList = cons of (’a * ’a List) ;

Here ’a NeList < ’a List since the only constructor of >a NeList,cons : (’a * ’a List) —’a NeList
is matched by the constructor of ’a List, cons : (’a * ’a List) —’a List.

The above examples reveal a possible pattern of constructor subtyping: for two parametric datatypes d
and d' with the same arity, we set d < d' if every declaration (c in case of a constant, ¢ of B otherwise) of
d is matched in d'.! Another pattern, used in [5], is to take subtyping as a primitive. Here we allow for the
subtyping relation to be specified directly in the definition of the datatype. As shown below, such a pattern
yields simpler definitions, with less declarations.

Ezample 3.
datatype 0dd = s of Even datatype Nat = s of Nat
and Even = 0 with 0dd < Nat,
| s of 0dd ; Even < Nat ;

The original datatype may be recovered by adding a declaration of the form ¢ : & — d' whenever ¢: o — d
and d < d'. The same technique can be used to define a List and ’a NeList:

Ezample 4.

datatype ’a List = nil
and ’a NeList = cons of (’a * ’a List)
with ’a NeList < ’a List ;

! For the sake of simplicity, we gloss over renamings and assume the parameters of d and d’ to be identical.

Constructor subtyping (extended version) DRAF'L June 1999

For the clarity of the exposition, we shall adopt the second pattern in examples, whereas we consider the
first pattern in the formal definition of A_, [} gata-

Thus far, the subtyping relation is confined to datatypes. It may be extended to types in the usual
(structural) way. In this paper, we force datatypes to be monotonic in their parameters. Hence, we can
derive

0dd List < Nat List
[11:Even,12:Nat List,13:0dd] < [11:Nat,12:Nat List]
Nat — Even NeList < 0dd — Nat NelList

from the fact that 0dd < Nat, Even < Nat and ’a NeList < ’a List. The formal definition of the subtyping
relation is presented in the next section.

In order to introduce strict overloading, which is a central concept in this paper, let us anticipate on the
next section by considering the evaluation rule for case-expressions. Two observations can be made: first, our
informal definition of datatype allows for arbitrary overloading of constructors. Second, it is not possible to
define a type-independent evaluation rule for case-expressions for arbitrary datatypes. For example, consider
the following datatype, where Sum is a datatype identifier of arity 2:

datatype (’a,’b) Sum = inj of ’a
| inj of ’b ;

Note that the datatype is obtained from the usual definition of sum types by overloading the constructors
inj; and inj,. Now, a case-expression for this datatype should be of the form

case a of (inj x) => bl | (inj x) => b2
with evaluation rules

case (inj a) of (inj x) => bl | (inj x) => b2 — bi{x:=a}
case (inj a) of (inj x) => b1l | (inj x) => b2 — b2{x:=a}

As b1 and b2 are arbitrary, the calculus is obviously not confluent. Thus one needs to impose some restrictions
on overloading. One drastic solution to avoid non-confluence is to require constructors to be declared at most
once in a given datatype, but this solution is too restrictive. A better solution is to require constructors to be
declared “essentially” at most once in a given datatype. Here “essentially” consists in allowing a constructor
c to be multiply defined in a datatype d, but by requiring that for every declaration ¢ of rho, we have
rho < rhom where ¢ of rhom is the first declaration of c in d. In other words, the only purpose of repeated
declarations is to enforce the desired subtyping constraints but (once subtyping is defined) only the first
declaration needs to be used for typing expressions. This notion, which we call strict overloading, is mild
enough to be satisfied by most datatypes that occur in the literature, see [5] for a longer discussion on this
issue.
We conclude this section with further examples of datatypes.

Ezample 5. Firstly, we define a datatype of ordinals (or better said of ordinal notations). Note that the
datatype is a higher-order one, because of the constructor 1im which takes a function as input.

datatype Ord = s of Ord | lim of (Nat -> 0Ord)
with Nat < 0Ord ;

Example 6. Second, we define a datatype of binary integers. These datatypes are part of the Coq library,
but Coq does not take advantage of constructor subtyping.

datatype positive = xH | xI of positive | x0 of positive ;
datatype natural ZERO

with positive natural ;

datatype integer NEG of positive

with natural < integer ;

(VN

4 Gilles Barthe and Maria Joao Frade

Ezample 7. Thirdly, and as pointed out in [5,12], constructor subtyping provides a suitable framework in
which to formalize programming languages, including the object calculi of Abadi and Cardelli [1] and a
variety of other languages taken from [27]. Yet another example of language that can be expressed with
constructor semantics is mini-ML [21], as shown below. Here we consider four datatypes identifiers: E of
expressions, I for identifiers, P of patterns and N for the nullpattern, all with arity 0.

datatype I = ident ;

datatype N = nullpat ;

datatype P = pairpat of (P * P)

with I<P,NLZP;

datatype E = num | false | true | lamb of (P * E)
| if of (E * E * E) | mlpair of (E * E)
| apply of (E * E) | let of (P * E x E)
| letrec of (P * E * E)

with I <E, NLE,;

Ezample 8. In the following we declare datatypes for arithemic expressions. We want to distinguish the
expressions that are sums of products, i.e., that do not contain additions as sub-terms of multiplications.
Moreover, we want to distinguish ground expressions, i.e., expressions which contain no variables. This
example is adapted from [14],

num of Nat
plus of (Ground * Ground)
times of (Ground * Ground) ;

datatype Ground

= num of Nat
| var of String
| times of (Prod * Prod) ;

datatype Prod

datatype SumPr = plus of (SumPr * SumPr)
with Prod < SumPr ;
datatype Exp = plus of (Exp * Exp)
| times of (Exp * Exp)
with Ground < Exp ,
SumPr < Exp ;

We can have a more refined hierarchy of types if we take a type for numbers and another for variables.
In this case we must declare:

Constructor subtyping (extended version) DRAF'L June 1999

datatype Num num of Nat ;

datatype Var var of String ;

datatype Ground = plus of (Ground * Ground)
| times of (Ground * Ground)

with Num < Ground ;
datatype Prod = times of (Prod * Prod)
with Num < Prod ,

Var < Prod ;

datatype SumPr = plus of (SumPr * SumPr)

with Prod < SumPr ;
datatype Exp = plus of (Exp * Exp)
| times of (Exp * Exp)

with Ground < Exp ,

SumPr < Exp ;

In this case we have the following hierarchy:

Ezample 9. Lastly, we conclude with a definition of CTL* formulae, see [15]. In this example, we consider
two datatypes identifiers SF of state formulae and PF of path formulae, both with arity 1.

i of (a * ’a SF) | conj of (’a SF * ’a SF)
not of ’a SF | forsomefuture of ’a PF

datatype ’a SF =
|
| forallfuture of ’a PF

and ’a PF = conj of (’a PF * ’a PF) | not of ’a PF
| nexttime of ’a PF | until of ’a PF
with ’a SF < ’a PF ;

CTL* and related temporal logics provide suitable frameworks in which to verify the correctness of programs
and protocols, and hence are interesting calculi to formalize in proof assistants.

You can look the appendix for further examples.

3 A core calculus A_; fj data

In this section, we introduce the core calculus A_, [} gata- The first subsection is devoted to types, datatypes
and subtyping; the second subsection is devoted to expressions, reduction and typing.

6 Gilles Barthe and Maria Joao Frade

3.1 Types and subtyping

Below we assume given some pairwise disjoint sets £ of labels, D of datatype identifiers, C of constructor
identifiers and X of type variables. Moreover, we let [,1',1;,...range over L, d,d’, ... range over D, ¢, ¢, c;, - . .

range over C and a,a’,a;, 3, ... range over X. In addition, we assume that every datatype identifier d has
a fixed arity ar(d) and that aq,as,... is a fixed enumeration of X'. Sometimes we will write 7 instead of
TlyeeesTn-

Definition 1 (Types). The set T of types is given by the abstract syntax:
o,7:=d[r,...,Tar@] |l o = T|[l1:01,...,1, : 04]

where in the last clause it is assumed that the [;s are pairwise distinct. By convention, we identify record
types that only differ in the order of their declarations, such as [l :o,l' : 7] and [l : 7,1 : o].

We now turn to the definition of datatype. Informally, a datatype is a list of constructor declarations, i.e.
of pairs (¢, 7) where ¢ is a constructor identifier and 7 is a constructor type, i.e. a type of the form

p1 = ... = pu = dla, ..., dar(a)

with d € D. However not all datatypes are valid. In order for a datatype to be valid, it must satisfy several
properties.

1. Constructors must be strictly positive, so that datatypes have a direct set-theoretic interpretation. For
example, ¢; : nat — d and co : (nat — d) — d are strictly positive w.r.t. d, whereas cs : (d - d) — d is
not.

2. Parameters must appear positively in the domains of constructor types, so that datatypes are monotonic
in their parameters. For example, the parameter a: appears positively in the domain of a« — d[a], while
it appears negatively in the domain of (o — nat) — d[a].

3. Datatypes that mutually depend on each other must have the same number of parameters, for the sake
of simplicity.

4. Constructors must be strictly overloaded, so that case-expressions can be evaluated unambiguously.

In addition, we allow datatypes to depend on previously defined datatypes. This leads us naturally to the
notion of datatype context. Informally, a datatype context is a finite list of datatypes. Below we let o, 7 range
over types, N range over datatype contexts, ¢ range over datatype constructors and d, d' range over datatype
identifiers.

Definition 2 (Legal pre-type). o is a legal pre-type in X with variables in {as,...,ar} (or® if k=0)
and a set of datatype identifiers I, written X by, o pretype(F), is defined by the rules of Figure 1.

Note that in (predata-pre) we do not allow mutually dependent types to appear nested, because we force
each o; to be a type and not a pre-type.

Definition 3 (Legal type). o is a legal type in R with variables in {ou,...,ar} (or O if k =0), written
N i, o type, is defined by the rules of Figure 2.

Comparing the rules of the Figures 1 and 2 one can conclude that types and pre-types are very closed
notions. Actually, the notion of pre-type is more general than the notion of type. That is, every type is a
pre-type, because the form of the rules that define type can be found in the set of rules that define pre-type.
There is only an extra rule (predata-pre) stating that if d is in the set of datatype identifiers that are being
defined and all the parameters o are types, then d[o] is a pre-type.

When we are analyzing the construction of a new datatype, to know if it is valid, we have to assure that
the type of the constructors satisfy the properties described above. At this point, the datatype it is being
constructed is not yet a type (because we don’t know if it is valid), but it may appear in the domains of the
constructors. However it can be seen as a “candidate” to be a type. The notion of pre-type is introduced to
capture this situation.

Constructor subtyping (extended version) DRAF'L June 1999

N by o pretype(Z) R by 7 pretype(Z)

re —
(P) N, o — 7 pretype(Z)
N Fy o pretype(Z) (1 <i<mn)
(prel])
NEg[li:o1,..., 0l : on] pretype(Z)
deN Nty o; pretype(Z) (1 <i<ar(d))
(predata)
R d[o] pretype(Z)
N legal
(pre —) c6a , f1<i<k

Ny a; pretype(Z)

deZ Ntpo;type (1<i<ar(d))

redata — pre
(p pre) R d[o] pretype(Z)

Fig. 1. PRE-TYPE FORMATION RULES

Ny o type N g 7 type

(=) N+
kO — T type

([]) N o; type (1 <1< TL)

Nbg[lh:o1,...,0n 00 type

deX Rbipo;type (1 <i<ar(d))
(data)
N . d[o] type
N legal

(@) _ "B if1<i<k

N F a; type

Fig. 2. TYPE FORMATION RULES

8 Gilles Barthe and Maria Joao Frade

Definition 4 (Subtype). o is a subtype of 7 in X, written X + o < 7, is defined by the rules of Figure
3, where X - d < d if

—ar(d) = ar(d') =m;

— every declaration ¢ : 71 — ... = 7, = doa, ..., ay] in R is matched by another declaration ¢ : 1 —
coe o T o dag, . a] in R
N Fp o type
<re S KT PE
(Sren) RFo<o

RFo<T RNEFE7T<p
NEFo<p

(Strans)

RNFo' <o RNFETZT
RFo—o71<d =17

(£-)

NEoi<n (1<i<n) Nkpojtype (n+1<j5<m)
NE (o, lngm Ongm] <[l 71, ot T

<)

RFd<d RFo<n (1<i<ar(d)
R+ dlo] < d'[7]

(Sdata)

Fig. 3. SUBTYPING RULES

To better understand the subtyping relation determined by the subtyping system of Figure 3 let us look
carefully to each of its rules. As expected, rules (<yef) and (<irans) indicate that the subtyping relation is
reflexive and transitive.

Rule (<_,) says that ¢ — 7 is a subtype of ¢’ — 7' if ¢’ is a subtype of o, and 7 a subtype of 7’. Note
that the subtyping is inverted (contra-variant) on the domains and covariant on the codomains. A function
f of type ¢ — T accepts elements of type o; so it also accepts elements of any subtype o' of o. The same
function f returns elements if type 7; so, it returns elements that belong to any supertype 7' of 7. Therefore
f has also type o’ — 7'.

Rule (<)) works componentwise saying that a record type p is a subtype of a record type p' if each field
of p has a type that is a subtype of the type of p’ corresponding field, but operate also lengthwise: a longer
record type is a subtype of a shorter record type. This indicate that additional fields can be forgotten by
subtyping.

Rule (<dgata) works also componentwise and lengthwise: a datatype d[o] is a subtype of a datatype d'[T]
ifo; <7;for 1 <i<ar(d) and d < d' (i.e., d' has more constructors than d). Thus additional cases can be
introduced by subtyping.

Ezample 10. Consider the following example (adapted from [8])

datatype WorkingAge = student | adult ;

datatype Age child | student | adult | senior ;

type Worker = [name : String, age : WorkingAge, profession:String] ;
type Person = [name : String, age : Age] ;

We have: WorkingAge < Age and Worker < Person.

Definition 5 (d-Constructor type). 7 is a d-constructor type in N with a set of previously defined
datatype identifiers T, written N 7 7 coty(d), is defined by the rules of Figure 6, where:

Constructor subtyping (extended version) DRAF'L June 1999

— « appears positively in 7, written o pos T, is defined by the rules of Figure 4;

— p is strictly positive w.r.t. d, written p spos d, is defined by the rules of Figure 5, where d nocc T denotes
that d does not occur in 7;

— d € N if there exists a declaration (c: 1) € N in which d occurs.

(pos0) Q pos a
! !
(posl) La’ (negl) La,
@ pos a neg a
(pos2) Qa pos o «anegT (neg2) anego «posT
a pos (T — o) a neg (1 = o)
« pos o; 1<i<n « neg o; 1<i1<n
(pos3) posoi (1<i<m) (neg3) goi (1sisn)
apos[li:or,...,ln:on] aneg[li:ot,...,ln:04]
oso; (1<i< nego; (1<i<
(pos4) aposoi (1<i<m) (neg4) anegoi_(1<i<n)
a pos d[o1,...,0n] aneg d[oy,...,on]

Fig. 4. POSITIVE-NEGATIVE RULES

(sposl) d nocc T
T spos d
(sp0s2) dnocc p; (1<i<n)

p1L— ... = pn — d[a] spos d

Fig. 5. STRICTLY POSITIVE RULES

N p; pretype(Z) pi spos d ajposp; (1<i<n,1<j<k)

(coty) , with d € N

NFEzp1— ... = pn > dai,...,ax] coty(d)

Fig. 6. CONSTRUCTOR TYPE RULE

The rule (coty) reflect the ideas expressed above at points 1 and 2. The rules defining positive, negative
and strictly positive are the usual ones.

Definition 6. Let D be a sequence of constructor declarations.

1. di(D) denotes the set of datatype identifiers of D. It can be defined inductively as follows:
(a) di(.) =0
(b) di(c:pr = ... = pp = dla]) = {d}
(c) di(D',c:p1 = ... = pp = dla]) =di(D") U {d}

2. ci(D) denotes the set of datatype identifiers of D. It can be defined inductively as follows:

Gilles Barthe and Maria Joao Frade

(a) ci(.) =10
(b) ci(c:p1 = ... = pp = dla]) ={c}
(c) ci(D',c:p1 = ... = pp = dla]) =ci(D') U{c}

Definition 7 (Main d-declaration). We say ¢ : 7 is a main d-declaration, written maing(c : 7), if it is
the first declaration of ¢ in a datatype declaration. maing(c: 7) can be defined by the rules of Figure 7.

N;Djc:pr = ... pn = dla] ok(Z) c ¢ ci(D)
maing(c: p1 = ... = pn = d[a])

(mainl)

N;D,c:p1— ... — pn — d[a] ok(Z) d ¢ di(D)
maing(c: p1 = ... = pn — d[at])

(main2)

Fig. 7. MAIN d-DECLARATION RULES

Definition 8 (Legal datatype context). X is a legal datatype context, written R legal, is defined by the
rules of Figure 8, where R compatible(D) if

1. for every (c:71') € D,
NFg(p) 7' coty(d) A maing(c:7) = ¥N;D;F 7<7
2. for every (c:7),(c" : ") € D,

maing(c:7) A maing(c' : ') = ar(d) = ar(d)

(empty) .; legal
N; D ok(di(D
(close) % D ok(di(D)) R compatible(D)
N; D; legal
N; D ok(Z N+ ty(d
(add-cons) i D oklZ) z 7 coty(d)
N; D, c: 1 ok(Z)
N legal
(add-data) e
N ok(Z)

Fig. 8. DATATYPE RULES

As you may notice, the rules of Figure 8 introduce a new kind of judgment N; D ok(Z) which states that
extending the datatype context N we are constructing a new datatype D in a legal way.

The side-condition in the rule (close) synthesize the idea expressed in the points 3 and 4. More precisely,
the first condition of the definition of N compatible(D) assure that constructors are strictly overloaded. The
second condition impose that mutually dependent datatypes have the same arity.

Observe that Definitions 2-8 are mutually dependent. Note that Definitions 5 and 8 above are enforced
by the side-condition in (close) whereas Definitions 3 and 4 above are enforced by the rule (coty). Also note
that in the side-condition for (close), 7" and 7 are compared w.r.t. X; D; and not R.

Constructor subtyping (extended version) DRAF'L June 1999 11

Some examples of legal datatype contexts The definitions given in this subsection seem very complex.
In order to make clear the concepts involved in the formal definition of datatype contexts, let us take some
examples of section 2 and prove that they form legal datatype contexts.

Example 11. Remember the definition of 0dd, Even and Nat. Let

N; = .;s5:Even — Odd, 0 : Even, s : Odd — Even;

7T = {Even, Odd}

Ny = Ny 0: Nat, s : Nat — Nat, s : Odd — Nat, s : Even — Nat;
IQ = {Nat}

Let us prove that ¥; is a legal datatype context.

Odd nocc Even
.; legal ;o Even pretype(Z;) Even spos Odd

.; ok(Zy) .;F1z, Even — Odd coty(Odd) Even nocc Odd
.58 : Even — Odd ok(Z1) .;Fo Odd pretype(Z1) Odd spos Even
.55 : Even — Odd, 0 : Even ok(Z1) .;F1z, Odd — Even coty(Even)
.58 : Even — 0dd, 0 : Even, s : Odd — Even ok(Z:)
(close)
Ny legal

It is easy to see that the side-condition of (close), .; compatible(s : Even — Odd, 0 : Even, s : Odd — Even)
is verified.

Ry legal Nat € Z»
Ny ok(Z2) Ni bz, Nat coty(Nat) N; Fo Nat pretype(Z>) Nat spos Nat
R; 0 : Nat ok(Zz) R; 7, Nat — Nat coty(Nat)
N; 0: Nat, s : Nat — Nat ok(Z>) (1)

The following prove that No, defined incrementally over Ny, is also a legal datatype context.

Odd € ¥y Nat nocc Odd
(1) Ny ko Odd pretype(Z>) Odd spos Nat Even € 8; Nat nocc Even
N; 0: Nat, s : Nat — Nat ok(Z) N; bz, Odd — Nat coty(Nat) N; ko Even pretype(Z;) Even spos Nat
N; 0 : Nat, s : Nat — Nat, s : Odd — Nat ok(Z>) Ny Fz, Even — Nat coty(Nat)
N; 0: Nat, s : Nat — Nat, s : Odd — Nat, s : Even — Nat ok(Z>)
R» legal (close)

Let us see as the side-condition of (close), N; compatible(0 : Nat,s : Nat — Nat,s : Odd — Nat,s :
Even — Nat), is verified:

1. We have
mainn,; (0 : Nat) and ¥y k7, Nat coty(Nat)
mainn,s (s : Nat — Nat) N; k7, Nat — Nat coty(Nat)
R; Fz, Odd — Nat coty(Nat)
N; k7, Even — Nat coty(Nat)

Nat € N» Nat € N,
Ny o Nat type Ny Fo Nat type
Ny F Odd < Nat N, F Nat < Nat Ny F Even < Nat N, F Nat < Nat
Ny F Nat — Nat < Odd — Nat Ny + Nat — Nat < Even — Nat

As every declaration of ¢: 4 — ... = 7, = Odd in Xy is matched by another declarationc¢:m — ... —
7, — Nat in N, we have No F Odd < Nat. Similarly, for every ¢: 74 — ... = 7, = Even € N5 we have
c:1 — ... 7, = Nat € Ny, hence N, F Even < Nat.

Gilles Barthe and Maria Joao Frade

2. Trivial.

Example 12. We now turn to an example with parametric datatypes. Remember the definition of ’a List
and ’a NeList. Let

Ry = .;nil : List[ay], cons : ay — List[ay] — List[a;];

Zl = {LlSt}

Ny = Ry cons : ay — List[ay] — NeList[a];

IQ = {NeLlSt}

We have
. legal
. legal List € Zy .;F1 a1 type Q1 pos a1 List nocc o
k1 aq pretype(Zy) ;b1 List[au] pretype(Z1) a1 pos a1 «i pos List[a1] a1 spos List List[a:] spos List
.;F1, a1 — List[a1] — List[a] coty(List) (2)
. legal
.; ok(Zy) .;Fz, List[an] coty(List) (2)
;s mil : List[a1] ok(Z1) .;F1, a1 — List[an] — List[a] coty(List)

.ynil = List[ai], cons : a1 — List[an] — List[a:] ok(Z1)
Ny legal

(close) 3)

So, N is a legal datatype context. The side-condition of (close), .; compatible(nil : List[a1], cons : ay —
List[a] — List[a1]), is trivially verified. In the following we show that R, is also a legal datatype context.

(3)
(3) N legal
N; legal Vi F1 a1 pretype(Z») Q1 pos ai NeList nocc ay

Wi k1 a1 pretype(Z2) Ry by List[a] pretype(Z2) a1 pos a1 a1 pos List[a1] a1 spos NeList List[a] spos NeList
Ry Fz, a1 — List[a;1] = NeList[a:] coty(NeList)

(4)

3)
N legal (4)
Ny b1 i pretype(Z2) Ny bz, ag — List[a1] — NeList[a1] coty(NeList)
R cons : a1 — List[a1] — NeList[a1] ok(Z2)
Ny legal

(close)

The side-condition of (close), R; compatible(cons : a3 — List[a;] — NeList[ay]) is trivially verified.

We conclude this subsection by defining the substitution of a type for a type variable and state some of
their properties.

Below we assume given a legal datatype context N and let Tx be the set of legal types in N i.e., Ty =
{o|X 1 o type}. In the sequel, we often drop the datatype context of the subtyping rules and write 7 < o
instead of X F 7 < ¢, if it is clear that N is the datatype context in which we are working.

Next we give the definition of substitution of a type for a type variable and show some properties of it.

Constructor subtyping (extended version) DRAF'L June 1999 13

Definition 9. Let a« € X' and p,7 € Tx. The substitution of 7 for « in p, denoted by p{a := 7}, is defined
by induction on the structure of p as follows:

afa:=1} =71
od{a:=1} = o ifd #a
(y—oo)fa=71} = y{a:=7} > o{a:=71}
l:01,...,n:op{a:=7} = [l :o{a:=71},..., 0 on{a:=7}]
diri,...,targ{a =71} = dn{a:=7},...,Tarqy{a = 1}]

Lemma 1. Let 7,0,p € Tx.

1. If 1 <o and a pos p, then p{a =71} < pla:=0}.
2. If T <o and a neg p, then p{a =0} < p{a:=7}.

Proof. By simultaneous induction on the structure of p.

1. Assume 7 < ¢ and « pos p.
(a) If p = q, trivial.
(b) If p = o, trivial.

(c) fp=~— ', then p{a: =7} =v{a:=7} = ¥ {a:=7}and p{a =0} =v{a =0} = ¥ {a:=0c}.
Since a pos v — 7', we have a pos 7' and « neg 7. By induction hypothesis 7'{a := 7} < v'{a := o}
and y{a := o} < v{a:=7}. Hence, by (<), p{a:=71} < p{a:=0}.

(d)If p =1[h : 01,...,ln : oy], then p{a := 7} = [lh @ o1{a = 7},...,l, : op{a := 7}] and
pla =0} = [li : o1{a = 0},...,1y : op{a := o}]. Since a pos [l; : o1,...,l, : 0p], we have
a pos o; for 1 < i < n. By induction hypothesis o1 {a := 7} < g;{a := ¢} for 1 < i < n. Hence, by
(<)), pla =71} < pla = o}.

(e) If p = d[r1,...,Tara)], then p{a = 7} = dln{a := 7},...,7ar@@y{a = 7}] and p{a := o}
diri{a = o},...,Tar@){a := o}]. Since a pos d[r1, ..., Tar(a)], we have a pos 7; for 1 < i < ar(d
By induction hypothesis 7 {a := 7} < 1;{a := 0} for 1 <i < ar(d). Hence, by (<data), p{a := 7}
pla:=o0}.

IAN =1l

2. Similar.
O

We let {x := 7} denote {a; := 71, ...,y := 7,} which represent the simultaneous substitutions of the
types 71,...,7, for the type variables aq,...,a,, respectively. Moreover, we write 7 < o when 7 and o
represent sequences of the same lenght, n, and 7 < oy,...,7, < op-

Lemma 2.

1. If T <o and a; pos p for 1 <i <n, then p{a =71} < p{a :=0}.
2. If T <o and a; neg p for 1 <i <n, then p{a := 0} < p{a:=7}.

Proof. Similar to the proof of Lemma 1. O

3.2 Expressions and typing

In this subsection, we conclude the definition of A, [j yara by defining its expressions, specifying their com-
putational behavior and providing them with a typing system. Below we assume given a set V of wvariables
and let z,z',z;,y, ... range over V. Moreover, we assume given a legal datatype context N and o,7,... are
assumed to range over Tx. Moreover, we use @ as an abbreviation for a; ... a,.

Gilles Barthe and Maria Joao Frade

Definition 10 (Expressions). The set £ of expressions is given by the abstract syntaz:

a,b:=z|Azr.alab|[ly =a1,...,l, =a,]|al]
clo]a|case), aof {ct = bi|...[cn = by}
Free and bound variables, substitution .{. := .} are defined the usual way. Moreover we assume standard

variable conventions [2] and identify record expressions which only differ in the order of their components,
e.g. [l =a,l' =d]and [I' = a',l = a]. All the constructions are the usual ones, except perhaps for case-
expressions, which are typed so as to avoid failure of subject reduction, see e.g. [19], and are slightly different
from the usual case expressions in that we pattern-match against constructors rather than against patterns.

Definition 11. The set of free variables of an expression M, denoted by FV (M), is defined by induction on
the structure of M as follows:

FV(z) = {z}
FV(Az:T. a) = FV(a)\{z}
FV(a b) = FV(a) UFV(b)
FV([l, = a1,-..,ln = ay]) =FV(a1) U...UFV(a,)
FV(a.l) = FV(a)
FV(clo]ar ...ar) = FV(a1) U... UFV(ay)
FV(casej) a of {c1 = bi| ... [cn = bn}) =FV(a) UFV(b1) U...UFV(by)

Definition 12. Let M,N € £ and © € V. The substitution of N for = in M, denoted by M{z := N}, is
defined by induction on the structure of M as follows:

z{z:=N} = N
y{zr:=N} =z ifc#y
(Azr.a){z =N} = (A&7 a)
(Ayr.a){z:= N} = (\yr. a{z := N})
(@b){z:=N} = (a{z =N} b{z:=N})
li=a1,...,lp=a{z:=N} = [lh =ai{xz:=N},...,l, = ap{z := N}]
(a.){z:=N} = (a{z:=N}).l
(clolay...ap){z:=N} = (co]a{z:=N}...ax{z :=N})
(casefy, a of {c1 = b1 | ... [cn = bu}){w:= N} = casef,; afw:= N} of {c1 = bi{w:=N}| ...

| cn = bp{x := N}}

By the variable convention, in the fourth clause of the previous definition the variable y doesn’t occur
free in the term N, and x # y.

Definition 13 (Context).

1. A context I' is a finite set of assumptions x1 : Ti,...,Tn : Tn Such that the x;s are pairwise distinct
elements of V and ; € Tx.

2. LetI' =z :71,...,&y, : Ty, be a context. Define dom(I") = {xy,...,x,}. We also write I'(x1) = 7;. That
is, I' is considered as a partial function.

Definition 14 (Typing).

1. A judgment is a triple of the form I' b5 a: T, where I' is a context, a € £ and T € Tx. Generally, the
subscript cs of & is dropped.

2. A judgment is derivable if it can be inferred from the rules of Figure 9, where in the (case) rule it is
assumed that ¢y : Ty, ...,¢, : T, are the sole main d-declarations and that 77 denotes &, — ... > &, > 0
whenever T =& — ... = &, — d[p)].

Constructor subtyping (extended version) DRAF'L June 1999 15

(start) rv-zgwz:r, if z:7erl’
(application) 'e:Tr—o T'kFeée:T
I'tkee:o
x:7mFe:
(abstraction) TIT T ere
I'' - dzre:m—=0
Fl—ei:n (1§Z§n)
(record)
't lhi=el,....ln=ex]:[l1:71,...,1ln: Tn]
'kte:[li:mi,...,0ln: 7 . .
(select) eilh:n T], if 1<i<n
'tk el;:m
I' - b;:p; = 1<i<k
(constructor) pla=r} (Q<is), if c:pr—... > pr—da] eR

I' + c[T]b:d[T]

I'ta:dp] I'F bi:(ni{a:=p})° (1<i<n)

(case)
I' F ocasegpaof {ec1=bi|... |co =ba}:o
(subsumption) LFer , if R+ 7<0o
I'-e:o

Fig.9. TYPING RULES

3. An expression a € £ is typable if I' + a: o for some context I' and type o.

Note that the connection between the typing judgment and the subtyping judgment is made by the sub-
sumption rule, which states that if an expression e has type 7, and 7 is a subtype of ¢, then e also has type
0. That is, subtyping behaves very much like the inclusion, when type membership is seem as set membership.

The computational behavior of A_, }j gata is drawn from the usual notion of B-reduction, t-reduction and
m-reduction. We begin defining the notion of compatibility.

Definition 15 (Compatibility). A binary relation R on £ is called compatible if

aRad = (ab) R (a'h),
(ba) R (ba') ,
(Az:r.a) R (Azr.d') ,
[ll—aly' '7li:a7"'7ln:a/n]R[h:a/l; 7ll:a’7 ,ln—(ln],
(al) R (a']) ,
(clo]lar...a...ar) R (clo] a1...a’...ax) ,
(casefy,; a of {c1 = bi| ... [cn = bn}) R (casel, a' of {c1 = bi| ... [cn = bn}),
(caseg[a] eof {fcr=>a1|...|lci=al...|lco=>an}) R

(casef,yeof {er = ar| ... [ei=ad'| ... [cn = an})

Definition 16 (Compatible closure). Let R be a binary relation on £. The compatible closure of R is
the least relation extending R that is compatible.

We introduce now the formal definition of the 8, 7 and ¢ reductions.
Definition 17 (Reductions).

1. B-reduction —g3 is defined as the compatible closure of the rule

(Azo. a) b —p a{x := b}

16 Gilles Barthe and Maria Joao Frade

2. w-reduction — is defined as the compatible closure of the rule
1 =a1,...,0L, =ay).li = a;
3. v-reduction —, is defined as the compatible closure of the rule
casefy (ci[t]a) of {e1 = fi] ... [en = fu} = fia
4. —basic 15 defined as =g U =, U —,.

5. —pasic and =pqsic are respectively defined as the reflexive-transitive and the reflexive-symmetric-transitive
closures of = pasic-

Note that we do not require 7 and 7’ to coincide in the definition of :-reduction as it would lead to a too
weak equational theory. However, the typing rules will enforce 7 < 7/ on legal terms.

4 Meta-theory of the core language

This section is devoted to the study of some important properties of the A, jj gata System: confluence, the
subject reduction property, the decidability of type-checking, and the property of strong normalization. The
majority of the results presented in this section are given in detail. We only omit some straightforward proofs
and the proof of confluence.

We assume that each variable has a fixed type and that each type has infinitely many variables. We use
V? to denote the set of variables of type . We also assume that we have a legal datatype context N.

4.1 Confluence

In AL, [],data, the reduction strategy used to compute an expression is not relevant. This is a result of the con-
fluence property of the computation relation, which states that if an expression e can be partially computed
into two different expressions e; and e3, then there exists a third expression e’ such that both e; and e3 can
be computed into e’. Below we only state the principal result without presenting the proof.

Proposition 1 (Confluence). =445 is confluent:
@ =pgsic b = dc€f. a—>pasicc AN b—>pesicC

Proof. By the standard technique of Tait and Martin-Lof.

4.2 Subject Reduction

In A, [j,data the type of an expression is preserved under computation. However, the proof of subject reduction
is not trivial and requires some key lemmas which ensure that subtyping is “structurally defined”. These key
lemmas are hard to establish because of the (<irans) rule.

Although the subtyping relation must be transitive, the subtyping system may or may not contain a
general trasitivity rule. In the latter case, it shoud be proved that the binary relation derived from this
system is transitive. In such case, we say the system has the transitivity elimination proprety.

The transitivity elimination property is also a key step in the decidability of subtyping, since without
the transitivity rule the subtyping rules can be directly turned into a subtyping-checking algorithm.

We start proving that our system has the transitivity elimination proprety.

Lemma 3. Any subtyping derivation containing a sole application of (<grans) rule can be transformed into
one ended by the same subtyping judgment free from that rule.

Constructor subtyping (extended version) DRAF'L June 1999 17

Proof. Consider a subtyping system derivation in < with exactly one application of (<¢rans). Consider the
application of transitivity in a derivation
T S TI TI S TII
T S TII

(Strans)

The derivations of T < T" and T" < T" are transitivity-free. We proceed by case analysis of the last pair
of rules used to derive T' < T". We show that the derivations can be transformed to one in which each
transitivity application is “smaller” than the original, i.e. the types involved in the application of (<¢rans)
rule are simpler. Thus, by induction, those subderivations can be transformed to transitivity-free derivations.

Case (<refi, -) A derivation of the form

(Sreﬂ)

o<1

c<lo c<T

(Strans)

can be transformed in o < 7.

Case (_, <ren) A derivation of the form

can be transformed in o < 7.

Case (<_,, <_,) A derivation of the form

UJSU TSTI U'”SUJ T’ST”

< <
c—T17<0o =71 (<) o -1 <d"—=1" (<)
o= T1< 0_1/ — TII (Strans)
can be transformed in
c'"<d o' <o <7 <7
W (Strans) 7 (Strans)
— — <
c—1<o"—=T1" (£-)
Case (<, <j) A derivation of the form
o;<pi (1<i<n+r) <) pj <7 (1<j<n) (<n)
[ll:017~-~:ln+m30n+m]§[115p17~-~:ln+r:pn+r] =1 [ll5p17~-~:ln+r:pn+r]§[l137'17-~-7ln57'n] (;[])
I :01, e oy lngm : Ongm] <[l1 71,0y ln t T —trans
with 0 < r < m, can be transformed in
0, <pi pi<T
(2 S Ti (StraHS) (1 S i S Tl) (<)
101y lngm Ongmn] <[l i1, .oy ln s T =0
Case (<datas <data) A derivation of the form
o <pi (1<i<ar(d) pi <7 (1<i<ar(d))
(Sdata) (Sdata)
dlo] < d'[p] d'[p] < d"[7] (<trans)
d[a] S d”[T] trans
with d < d' and d' < d", can be transformed in
0 <pi pi < Ti
Tagn =) gcica)
d[a] S d”[T] >data

because ar(d) = ar(d') = ar(d") and d < d".

Gilles Barthe and Maria Joao Frade

So, we can always replace a derivation with one transitivity rule by another without transitivity (the first
two cases) or with the transitivity rule applied to simpler types. O

Proposition 2 (Transitivity elimination). The subtyping system has the transitivity elimination prop-
erty. In other words, any subtyping derivation containing applications of (<irans) Tule can be transformed
into a transitivity-free derivation ended by the same subtyping judgment.

Proof. By Lemma 3 we know that a subtyping derivation containing exactly one application of transitivity
at last step can be transformed into a transitivity-free derivation. We may then eliminate transitivities from
arbitrary derivations one by one, beginning with uppermost application of transitivity. O

Before going into the proof of the subject reduction, let us state the following lemmas:
Lemma 4 (Generation for subtyping).
L IfT<[ly:01,...,0ln:0n) then T =l : 11y lngm : Tnem] with 1 < o; for 1 <i <n.
2. Ifr >0 <TthenT =7 — o witht <7 ando <d'.
3. IfT<t—othenT=7 =0 witht <7 ando' <o.
Proof. By inspection, using Propositon 2. O
Lemma 5 (Basis).

1. Let I' be a context and I'" D I' another context. If ' = M : 0 then I" + M : 0.
2. IfT" - M : o then FV(M) C dom(I").

Proof. 1. By induction on the derivation of I" - M : o.
Case (start). If M is a variable and M : 0 € I" then also M : 0 € I'". Hence, I'" - M : 0.

Case (application). I' + ee€': o follows directly from I' + e: 7 — o and I' F €' : 7. By induction
hypothesis I" + e:7 — o and I'" + €' : 7. Then, by the (application) rule, I + ee’: 0.

Case (abstraction). I' - Az:t.e : 7 — p follows directly from I',z:7 F e : p. By the variable conven-
tion x does not occur in I''. Then, I'',z:7 is also a context which extends I', 2 : 7. Therefore, by the
induction hypothesis we have I',z:7 F e : p and so, by the (abstraction) rule, I" F Az:r.e : 7 — p.

All the remaining cases can be easily proved using the induction hypothesis.

2. By induction on the derivation of I' - M : 0.
Case (start). If M is a variable and M : 0 € I" then FV(M) = {M} C dom(I").

Case (application). I' + ee€': o follows directly from I' - e: 7 — o and I' F €' : 7. By induction
hypothesis FV(e) C dom(I") and FV(e') C dom(I"). Hence, FV(e e') = FV(e) U FV(e') C dom(I").

Case (abstraction). I' - \x:r.e : 7 — p follows directly from I',z:7 F e: p. By induction hypothe-
sis, FV(e) C dom([,z:7). Let y € FV(Az:7. e), then y € FV(e) and y #Z . Therefore, y € dom(I').

All the remaining cases can be easily proved using the induction hypothesis.

Lemma 6 (Generation).

1.IfT' v+ xz:0 then (x:7) € I for some type 7 and 7 < 0.

2.IfI'' - MN:Tthenl' v M:0—>T1andI - N:o forT<T.

Constructor subtyping (extended version) DRAF'L June 1999 19
3 IfI' v Azp. M) :T then Iz :p b M : o for some type 0 and T = p' — o' with p' < p and o < o'.

4. IfI' F [h=a1,...;.0n=ayn] :T then ' + a;:0, for1<i<mn,andT =1l : 01,...,l, : 0] with
0 <ojfor1<j<r<n.

5. IfI'r MAl:TthenI' b M :[ly:01,...,0:0,...,0lp:0,] witho <T.

6. If ' + ¢c[t]by..by : T then ' + b;:p{la:=7} for 1 <i <k withc:p; — ... = pp = dla] € X and
T=d[o] withd<d and T < o.

T IfI' & ocasef, aof {1 = bif...[cp = bu} : T then I' b a:d[p], b; b (ri{a:=p})7: for 1< i<nm
and o <T.

Proof.

1. By inspection on the derivation of I" - z : 0.

By inspection on the derivation of I’ F M N : T.

3. By inspection on the derivation of I' = (Az:p. M) : T. To derive I' (Az:p. M) : T only two cases can
occur: the last rule used is
Case (abstraction).

[\

z:p - M:o
't Qap.M):p—>o

In this case I' + (Axzp. M) :p > o,and T =p — o with p < p and o < 0.
Case (subsumption).

' - (Axzp. M) : T
' Axzp.M): T

,with 7' < T

By induction hypothesis I,z : p & M : o for some type o and T" = p’ — ¢’ with p’ < p and o < o'.
We have T" < T thus, using Lemma 4 we have T'= A — B, with A < p' and ¢’ < B. By transitivity
A <p' and ¢' < B. Hence, we have Iz : p & M : o for some type 0 and T = A — B with A <p'
and ¢’ < B.

4. By inspection on the derivation of I' F [ly = a1,...,l, =a,]: T.

5. By inspection on the derivation of I" - M.l :T.

6. By inspection on the derivation of I' ¢[T] by ...by : T

7. By inspection on the derivation of I' I casey,, a of {e1 = b1]...|en = bp}: T

Lemma 7. IfI' b [ly =a1,...,ln=ap):[li i T1,...,ln] then I’ & a;:1;, for 1 <i<mn.

Proof. By induction on the derivation of I' & [ly = a1,...,lp =ap] 1 [l1 : 71, - ln T O
Lemma 8 (Substitution). If I, z:p,I> v M :0 and I1,I5 = N :p then I[1,I5 - M{z:=N}:o.
Proof. By induction on the generation of I, z:p, > + M : o assuming that I'1, I + N : pis derivable.

Case (start). M is a variable and M : o € I'1,z:p,I. Two cases can occur:
— if M # x then M{z := N} = M and M € dom(I,I%). Hence, I'1,I5 - M{z:=N}:o0.
—if M = x then M{z :== N} =N and I, + M{x:=N}:p But,if Il,z:p,[> F x:0 then
p < o (its easy to see, by induction on the derivation of I, z:p, I> + x : o). Hence, by subsumption
n, I, v M{z:=N}:o.

Case (application). M = e €' and follows directly from I, z:p, 1% F e: 7 — o and [N,z:p,[> F €' : 7.
By induction hypothesis I, I[» F e{z :=N}:7 > ocand In,I5 + e{z:=N}:7. M{z := N} =
e{r := N}e'{x := N} therefore, by the (application) rule, I1,I> - M{z:= N} :o0.

Gilles Barthe and Maria Joao Frade

Case (abstraction). M = (A\y:7.e) and follows directly from I,z : p,I%,y : 7 F e : o. We have
IN,Iy + N : p then, by Lemma 5, FV(N) C dom([},I5). Let y ¢ FV(N), then by Lemma 5,
IN,Ib,y: 7 F N : p. So, by induction hypothesis, I'1,I5,y: 7 + e{z := N} : o Hence, by the
(abstraction) rule, I, Is F M{z:=N}:o.

Case (record). M = [l =ey,...,l, = e,] and follows directly from I'j,z:p,I> F e;:1; for 1 <i < n.By
induction hypothesis I1,I» F e{z =N} :rfor 1<i<n M{z:=N}=[h =e{x:=N},....ln =
en{x := N}|, hence, I, I + M{xz:= N} : o follows using (record).

Case (select). M = e.l;, 0 = o; and follows directly from I'i,z:p, 5 F e:[ly : 11,...,ly : 7). By induc-
tion hypothesis I, Ih F e{z:=N}:[ly i 7,... 01t). M{z := N} = (el;){x : =N} =e{z:= N},
hence, rule I'1,I5 + M{z:= N} : o follows using (select).

Case (constructor). M = c[r]b, with ¢ : p1 — ... = p = dla], 0 = d[7], and follows directly from
I,z:p,I5 b b;:pi{a:= 71} for 1 <i < k. By induction hypothesis I'1,I5 + b{z:= N} : pi{a:=71}
for 1 <i <k. M{z := N} = (c[r]b){z := N} = ¢[r] bj{z := N} ... bp{z := N} hence, I, I» +
M{z := N} : o follows using (constructor).

Case (case). M = caseg , a of {e1 = b1 | ... | cn = by} and follows directly from I, z:p, 1% F a: d[p]
and I,z:p, 15 F b;: (r;{a := p})? for 1 <i < n. By induction hypothesis I, [» F a{z:= N} :d[p]
and I, Iy + bi{z := N} : (r{a := p})? for 1 <i <n. M{z := N} = casey, a{z := N} of {c1 =
bi{z:=N}| ... |cyp = bp{x:=N}}, hence, I, I + M{xz:= N} : o follows using (case).

Case (subsumption). I'1,x:p, [+ M : o follows directly from I,z:p, > + M : 7 with 7 < 0. By
induction hypothesis I'1, I> F M{z := N} : 7. Hence, by the (constructor) rule, I, I3 = M{z:=N}:
o.

O
We arrive now to the main result of this subsection.
Proposition 3 (Subject reduction). Typing is closed under —pgsic:
I'ta:0 AN a—pesicb = I'Fb:o

Proof. By induction on the derivations of I" F a : o, considering the last rule:

Case (start). In this case a is a variable so, it can’t be reduced.

Case (application). In this case a = ee', ' + e: 7 — o and I' F € : 7. The expression e e’ can be
reduced if:

€ —pasic €. In this case e € —pasic €' €. By the induction hypothesis and the premises we get
't e":7— 0. Theresult I' F ¢ €' : o follows using (application).

€' —pasic €. In this case e €' —vpusic € €”. By the induction hypothesis and the premises we get
I' - ¢":7. Theresult I' F ee” : o follows using (application).

e = (Az:p. M). In this case we have I' + Az:p. M : 7 — o and (Az:p. M) e —posic M{z := €'}. By
Lemma 6 wehave Iz :p - M:cand 7 <p. Aswehave I' - € :7and 7 < p, " F € : p follows
using (subsumption). We have I'z:p = M : o and I' F €' : p then, by the Substitution Lemma,
't M{z:=¢€}:0.

Case (abstraction). In this case a = (Az:7.e) and I',x:7 + e : 0. The expression (Az:7.e) can be reduced
only if e —p4sic € and, in this case, (Az:7. €) —pasic (Az:7. €’). By induction hypothesis Iz:7 F €' : 0.
Hence, I' + (A\x:7. e') : 7 — o follows using (abstraction).

Constructor subtyping (extended version) DRAF'L June 1999 21

Case (record). In this case a = [l; = e1,...,l, = e,Jand I' + e : 7, for 1 < i < n. The ex-
pression [l = e1,...,l, = e,] can only be reduced if, for some e;, €; —>pasic €}, and in this case,
i =er,....l;i =ei,....ln = en] =pasic [l1 = e1,...,li = e},...,l, = ey]. By induction hypothesis

I'- e :m,for1<i<n. Hence, I' F [li=e1,....,Li=¢€},...;0h=ep] i [li :7u,..., i Ty 1 0)]
follows using (record).

Case (select). In this case a = e.l;, for 1 <i<m,and I' + e:[ly : 11,...,ly : Tp]. The expression e.l; can
be reduced if:

€ —pasic €. In this case e.l; =pqsic €'.0;. By induction hypothesis I' + €' : [ly : 7,...,1, : 7,]. Hence,
I' + €'l;: 7; follows using (select).

e=[li=a1,...,lp =ayp]. In this case [l; = a1,...,l, = ap)li =pasic a;- We have I' F e : [l :
Tiy.-«yln : T, hence, I' F a; : 7; follows using Lemma 7.
Case (constructor). In this case a = ¢[r] b with ¢ : p1 = ... = pr = dla] € R, b = b;...b; and

I' v b : pi{fa := o} for 1 < i < k. The expression ¢[r] b can only be reduced if for some i,
1 < i <k, bj =pasic b}, and in this case ¢[7] by...b;... by —>pasic €[T] b1...b;...b,. By induction
hypothesis I' F b : pi{a := o}, and I' F b; : pj{a := o} for 1 < j < k, j # i. Hence,
I' Foc[r] bi...b,...bg : d[T] follows using (constructor).

Case (case). In this case a = caseg e of {ea=b| ... |en=>by}, ' Fe:dlpland I' F b;: ({a =
p})? with 1 <4 < n. The expression casey, e of {e1 = b1] ... |cn = by} can be reduced if:

e —vpasic €. In this case caseg[p] eof {c1 = b1]...|cn = b} —basic caseg[p] e of {c1 = b1]...|len, = by}
By induction hypothesis I F €' : d[p]. Hence, I' F casey; e of {cg = b1|...|en = by} : o follows
using (case).

e = (ci[p']a). In this case caseg[p] (ci[p’]a) of {1 = b1 | ... |en = bn} —basic bia. As T+ b; :
pi{la: =0} and a = a; ...a, then, by applying n times the (application) rule we get I' F b; a : 0.

bi = basic bi- In this case caseg[p] eof {cs =>bi|...lci=bi| ... |cn = bn} —pasic caseg[p] eof {1 =
bi| ... lei = b| ... | cn = bp}. By induction hypothesis I' + b} : (r;,{a := p})°. Hence,
I' F casej; e of {e1=b1] ... |eci=0}| ... |en = by} : o follows using (case).

Case (subsumption). In this case we have I' F a : 7 with 7 < 0. If @ —pasic b then, by induction
hypothesis, I' - b: 7. Hence, I' + b: o follows using (subsumption).

a

4.3 Decidability of Type-checking

The decidability of type-checking is a fundamental property of typed A-calculus. Indeed, program correctness
on a typed programming language and proof checking in a proof-development system are often reduced to
type-checking itself. Thus it is important to be able to decide whether or not a typing judgement is derivable.

In this subsection, we will give an algorithm to decide whether a judgement is derivable in A_, [j 4ata- The
algorithm relies on:

1. the construction of a set of minimal types of an expression in a given context;
2. an algorithm to decide whether a subtyping judgement is derivable.

One can not rely on the existence of minimal types, as they may not exist (for minimal types to exist,
one must require datatypes to be pre-regular, see e.g. [5, 18]). Instead, we can define for every context I" and
expression a a finite set miny(a) of minimal types such that

o€minp(a) = I'tFa:o (5)

Gilles Barthe and Maria Joao Frade

I'-a:0 = 3reminp(a).7<0o (6)

The following definition introduces this auxiliary notion of miny(a). In the sequence we state two lemmas
proving that (5) and (6) are verified.

Definition 18 (Minimal types). Let e be an expression and I' a context. We define the set minp(e) of
minimal types of e in I' as follows:

minp(z) ={o| z:0 €'}
minp(Az:r.a) = {1 - 0| 0 € minpg.-(a)}
minp(ab) ={o| 37,7 € Tx. T > o0 € minp(a) A 7" €minp(b) A 7' <7}
minp([l1 = a1,...,lh=ay]) ={[li : 71,.. ., ln : 7] | 7 € minp(a;), for 1<i<n}
minp(a.l) ={7| [ly :70,..., 0 :7,... 1 :] € minp(a)}
minp(c[ola) = {d[a]| c:pr = ... > pp »dla] X N o' <o

A pila:=0'} € minp(ai) A Py <pi,forl <i<k}
miny(caseg) a of {¢1 = by | ... [¢n = bp}) ={7] Iy € minp(a).3r; € minp(by). v < d[o] A
i < (pi{la =0} = dlo])", with ¢; : p; = d[a] €N,
for 1<i<n}

The set minp(e) is finite because there are only finitely many declarations for each constructor.
Lemma 9. If T € minp(e) then I' - e:T.

Proof. By induction on T' € minp(e).
T € minp(x). Inthiscasez : T € I'. Hence I' + z: T.

T € minp(Az:7. a). In this case T =7 — o and o € minp 4.+ (a). By induction hypothesis Iz : 7 F a: 0.
Hence, I' + (A\x:7. a) : 7 — o follows from (abstraction).

T € minp(ab). In this case T = o with 7 — o € minp(a), 7" € minp(b) and 7' < 7. By induction hypothesis
I''r a:7—>ocand I' F b: 7. Bysubsumption I'" F b: 7. Hence, I' F ab : o follows from
(application).

T € minp([ly = a1,...,l, =ay]). Inthiscase T = [y : 11,...,1l, : 7y] with 7; € minp(a;) for 1 < ¢ < n. By
induction hypothesis I' F a; : 7; for 1 <i < n.Hence, I' F [l1 =a1,...,ln =ap]: [l1 : 71, ..., 1n : 7o)
follows from (record).

T € minp(a.l). In this case T = 7 with [ly : 71,...,0 : 7,...,l, : 7y] € minp(a). By induction hypothesis
'ta:ly:m,...,l:7,...,l, : 7). Hence, I' + a.l : 7 follows from (select).

T € minp(c[o]a). In this case T = d[o] with ¢ : p1 = ... = pr = d[o] € N, pi{a := o'} € minp(a;),
o' < o and p; < p;. By induction hypothesis I' + a; : pi{a := o'}. Then, by subsumption,
I' + a;: pi{a = o}, since pi{a := o'} < pi{a := o} by Lemma 2. Hence, I' + c[o]a : do]
follows from (constructor).

T € minp(casef,; a of {c1 = b1 | ... |cp = byp}). In this case T'= 7 and Iy € minp(a).3r; € minp(b;). v <
dle] A 7 < (pi{a =0} = d[o])7, with ¢; : p; — d[a] € R, for 1 < i < n. By induction hypothesis
I' F a:yand I' b b; : 7; thus, by subsumption, I' F a:d[e] and I F b; : (pi{a := o} = d[o])".
Hence, I' I casey, a of {c1 = b1 | ... |en = by} : 7 follows from (case).

Lemma 10. If I' + e: o0 then 37 € minp(e). 7 < 0.

Proof. By induction on the derivation of I' F e: 0.

Constructor subtyping (extended version) DRAF'L June 1999 23

Case (start). In this case e = z and = : 0 € I'. Hence, by Definition 18, o € minp(z) and o < 0 by (<enl)-

Case (application). In this case e = ab, ' F a:p - o and I' F b : p. By induction hypothe-
sis 3r, € minp(a). 1 < p = o and I € minp(b). o < p. By Lemma 4 1 < p — o implies that
=71 — 7, with p < 7 and 1 < 0. Then, by transitivity, 7 < 7{. We have 7{ — 7' € minp(a),
T2 € minp(b) and 12 < 77, therefore, by Definition 18, 77" € minp(ab) and 7/’ < 0.

Case (abstraction). In this case e = \x:7.a, 0 =7 = pand Iz : 7 F a: p. By induction hypothesis
Iy € minp ;.- (a). v < p. Therefore, by Definition 18, 7 — v € minp(Az:7. a) and 7 — v < 7 — p follows
using (<) and (Zren)-

Case (record). In this case e = [l1 = a1,...,lnp = ay], 0 = [l : 7,...,0p :] and I' F a; : 7 for
1 < i < n. By induction hypothesis 3p; € minp(a;). p; < 13, for 1 <i<n.Let 7 =[l1 : p1,...,0n 2 pul,
we have 7 € minr(e) and 7 < o, by (<p).

Case (select). In this case e = a.land I' + a:[l; : 01,...,01 : 0,...,1, : 0,]. By induction hypothesis
Iy € minp(a). vy <[ly :01,...,0l: 0,...,1, : 0], then by Lemma 4 v = [ly : p1,...,0 : p] with r <n
and p; < o; for 1 < i < r. As v € minp(a) then, by Definition 18, I = I; for some j < r. Hence, by
Definition 18, p; € minp(a.l) and p; < 0.

Case (constructor). In this case e = ¢[r]a, 0 = d[r] and I" + qa; : pi{a := 7} for 1 < i < k with
¢:p1— ... pr = d[a] € X. By induction hypothesis 3y; € minr(a;). v < pi{a =7} for 1 <i < k.
From Definition 18 follows that d[r] € minp(c[T]a) and d[7] < d[7] follows using (<refi).

Case (case). In this case e = casej, a of {1 = bi| ... [cn = b}, 0 =7, ' b a:do] and
I' b b : (pi{a := 0} = d[o])” for 1 < i < n. By induction hypothesis, 3y € minr(a).y < d[o] and
ar; € minp(b;).1; < (pi{a =} = d[o])” for 1 <i < n. So, trivially, 7 € minp(e) and 7 < 7.

Case (subsumption). In this case I' e : o follows directly from I" + e : 7 with 7 < o. By induction
hypothesis 3p € minp(e). p < 7. Hence, p < o follows from transitivity.

a

The decidability of subtyping can be obtained directly from the subtyping rules excluding the (<irans)
rule, as the transitivity elimination property holds. The resulting subtyping algorithm is:

check(o < 1) =

if o =7 then True

elseif =01 200 N T=1T1 > T
then check(r; <o1) A check(oz < 72)

elseif o =[l 01, lntm : Ongm] A T=[l 71,01l 0 Ty
then A,_,., check(o; <)

elseif o=dle] A T=d'[r] A d<d
then /\1<i<ar(d) check(o; < 73)

else False o

Now we show the correctness of this algorithm.
Proposition 4 (Correcteness of the subtyping algorithm).

o<1 <& check(oc <7)=True

Proof.

Gilles Barthe and Maria Joao Frade

<) It’s easy to construct the derivation from the algorithm. Basically, each case corresponds to the appli-
cation of a rule.
=) By induction on the derivation o < 7. By case analysis on the last rule applied.
Case (<reft). In this case o = 7 so, check(o < 7) = T'rue.
Case (<_,). In this case 0 = 01 = 09, T =71 — T2, with 4 < 0y and o3 < 7». By induction hypothesis
check(m; < 1) = True and check(os < 72) = True thus, check(c < 7) = True.
Case (<p)). In this case 0 = [l : 01,...,lnym : Ongm] and 7 = [} : 71,...,[, : 7). By induction
hypothesis check(o; < 7;) = True for 1 <i < n thus, check(o < 7) = True.
Case (<data). In this case 0 = d[o], 7 = d'[r] and 0; < 74, with 1 < i < ar(d) and d < d'. By induction
hypothesis check(o; < 7;) = True for 1 < i < ar(d) thus, check(o < 7) = True.

O
We are now ready to state the following proposition.

Proposition 5 (Decidability of subtyping).
Let 0 and T be types. The subtyping judment o < 1 is decidable.

Proof. The algorithm check(c < 7) always terminate because the types involved in the recursive calls of
check are always smaller than the types passed initially. m|

The set minp(a) is always finite. So, we can decide if I' a : o is derivable or not with the following
algorithm (let m = minp(a)) :

find(m, o) =
if m=10 then False
elselet 7 €m
in if check(r < o) then True
else find(m\{7},0)

Lemma 11 (Properties of find).

1. Irem.7<o & find(m,o)=True
2. The ezecution of find(m, o) always terminate.

Proof.

1. =) If 3r € m. 7 < o then m #). So, when we pick up 7 from m we will have check(r < o) = True, by
Proposition 4. Therefore, find(m, o) = True.
<) If find(m,o) = True then m # () and for some 7 € m, check(r < o) = True. So, using Proposition
4,drem. 7 <o.
2. The algorithm find(m, o) always terminate because:
(a) The set m is finite.
(b) The set of minimal types passed in the recursive call of find is smaller than the initial set.
(c) check(r < o) always terminates.

Proposition 6 (Correcteness of find). I' F a:0 < find(minp(a),0) = True
Proof.

=) If I' + a: o then, by Lemma 10, 37 € minp(a). 7 < 0. Hence, by Lemma 11, find(minp(a), o) = True.
<) If find(minr(a),0) = True then, 37 € minp(a). 7 < o. Thus, by Lemma 10, I" + a : 7. Therefore,
I' + a: o follows from (subsumption).

a

Proposition 7 (Decidability of type-checking). Type-checking is decidable: there exists an algorithm
to decide whether a given judgment I' + a : o is derivable.

Proof. Proceed in two steps: first compute miny(a), second check whether there exists 7 € minp(a) such
that 7 < o, using find(minp(a), o). m|

Constructor subtyping (extended version) DRAF'L June 1999 20

Pre-regularity

Definition 19. Let R be a legal datatype context. For every p € T3 and for every constructor identifier
c € N, the set codom?w,) of the codomains of ¢ is defined as follows:

codom?ap) ={dla]eTx| P €Ts.-p<p A c:p' = da]eRr}
Note that ¢c: p — 7 denote c: p1 = ... = pp = 7.

Definition 20. A legal datatype context R is pre-regular if for every constructor ¢ € X and p € T, the
N
(c,p)

denoted by mincod?w,).

set codom is either empty or has a minimal element. If it exists, the minimal element of codom? 18

c,p)

Lemma 12. Let R be a pre-regular legal datatype context. The set minp(e) of minimal types of e in I', has
a minimum, denoted by Minp(e).

Proof. By induction on the structure of e.
e =x. In this case minp(e) = {o| z:0 € I'}. Since z can only occur once in I', miny(e) is a singular set.

Hence, it has a minimum.

e = (Az:r. a). In this case minp(e) = {T = 0| 0 € minp,.-(a)}. By IH, minr 4., (a) has a minimum, thus
V7 — ¢ € minp(Az:T.a). T = Minr 4. (a) < 7 — 0. Hence, minp (Az:7.a) has a minimum 7 — Minp ;.- (a).

e=ab. In this case minp(e) = {o| Ir,7" € Tx. T = 0 € minp(a) A 7 € minp(b) A 7 < 7}. By IH,
minp(a) and miny (b) have a minimum. Let Miny(a) = p; — p2 and Minp(b) = pf, with p} < p;, then
Vo € minp(a b).ps < o. Hence, minp(a b) has a minimum, ps.

e=[lh=a,...,lp =ap]. In this case minp(e) = {[l1 : 71,...,0n : 7] | 7 € minp(a;), for 1 <i < n}.
By IH, minp(a;) has a minimum, for 1 < i < n. Thus, V[l : 71,...,l, : 7] € minp([lh = ay,...,l, =
ap))ll i, Gl i) <7, .., Ly s 7). Hence, ming ([l = ayq,. .., 1, = a,]) has a mimimum.

e =a.l. In this case minp(e) = {7 | [l : 71,...,0 : 7,...,l, : Ty] € minp(a)}. By IH, minp(a.l) has a
minimum. Thus, Vo € minr(a.l). (Minp(a)).l < o. Hence, minp(a.l) has a minimum.

e=c[o]a. In this case minp(e) = {dlo]| c:p1 = ... = pr = dla] € X A o' <o A p{a =
o'} € minp(a;)) A p) < pi,forl < i < k}. By IH, minp(a;) has a minimum, for 1 < i < k. Thus,
minp(clo]a) = {djo]| c:p1 = ...pr = dla] € X A Minp(a;) < pi{a:=0o}, for 1 <i < k}. Since N
is pre-regular, minp(c[o] @) has a minimum because codom?cyp), with p = Minp(aq) ... Minp(ag), has a
minimum.

e = casey; a of {e1 = b1] ... |en = by}. In this case minp(e) = {7 | Iy € minp(a).3r; € minp(h;). v <
dle] N 7 < (pifa =0} = dlo])”, with ¢; : p; = dla] € R, for 1 < i < n}. By IH, minp(a) and
minp(b;) for 1 <4 < n have a minimum, Minp(a) and Minp(b;). So, obviously, minp(case;[a] aof {c; =
bi| ... | en = by} has a minimum, 7.

O

Proposition 8 (Minimal typing). Let N be a pre-reqular legal datatype context.
I'tt:o & I F t:Minp(t) A Minp(t) <o
Proof.

=) Assume I' + t: 0. Then, by Lemma 10, 37 € miny(¢).7 < . By Lemma 12, Minp(t) < 7. So, by
transitivity, Minp(t) < o. Hence, by Lemma 9, I' - ¢ : Minp(t), because Minp(t) € minp(¢).

<) Assume I' F t: Minp(t) and Minp(t) < 0. Then, by subsumption, I F t: 0.

Gilles Barthe and Maria Joao Frade

4.4 Strong Normalization

Any strategy for computing a well-typed term of A_, [j 4ot leads to an expression that can not be further
computed. This property is known as strong normalization. As usual, we say that an expression e is strongly
normalizing with respect to a relation — if all reduction sequences starting with e terminate. That is, if
there is no infinite sequence e — e; — e3 — ... We let SN(—) denote the set of expressions that are strongly
normalizing with respect to —.

Definition 21. Let a € £.

1. The term a is in basic-normal form if there is no term b such that a —pgsic b-
2. The term a basic-strongly normalizes if there is no infinite basic-reduction starting with a.

3. SN(—pasic) denote the set of terms that basic-strongly normalize. SN(o) denote the set of expressions of
type o that basic-strongly normalize.

The strong normalization is usually one of the most difficult meta-theoretical properties to prove. In this
subsection we will prove that strong normalization holds for A_, [j 4ata- Our method consists in developing
an interpretation of the typing calculus in set theory, where types are viewed as sets of terms satisfying
some closure conditions, called saturated sets. The interpretation of terms is made using a valuation map
p:V — &, more precisely we define a term interpretation (.)), : £ = £. We then show that under this
interpretation and suitable conditions, the judgment I" - M : ¢ is read as the set membership (M), € [o],
where [o] is the saturated set associated with the type o. Since saturated sets only contain strongly nor-
malizing terms, the proof of strong normalization of the type theory is reduced to verifying the soundness
of the interpretation, i.e., that I' + M : o implies I' £ M : o.

Before introducing the notion of saturated sets, we are going to give some preliminary definitions and
basic properties of them. We start with the following:

Definition 22 (Prebase terms). The set Ba(o) of o-prebase terms is defined inductively as follows:

1. V7 C Ba(o).
2. Ifa € Ba(r — o) and b : 7 then a b € Ba(o).
3. If a € Ba(d[p]) and b; : 77 for 1 < i <n, assuming that c; : 7, then casej,; a of {ea=b1]...|cn =

bn} € Ba(o).
4. Ifa€ Ba([ly : 01,...,1:0,...,l, : 0,)]) then a.l € Ba(o).
5. If a € Ba(t) and 7 < o, then a € Ba(o).

Definition 23 (Base terms). The set Base(o) of o-base terms is defined inductively as follows:

~

. V7 C Base(o).

. If a € Base(r = o) and b € SN(7) then ab € Base(o).

3. If a € Base(d[p]) and b; € SN(77) for 1 < i < n, assuming that ¢; : T;, then casej ;, a of {1 =
bi| ... |cn = by} € Base(o).

. IfaeBase([l; : 01,...,1:0,...,l,, : 0,]) then a.l € Base(o).

. If a € Base(t) and T < o, then a € Base(o).

[\S)

[

Informally, a base term is a term whose reduction is stopped by the occurrence of a variable , and whose
subterms are strongly normalizing. For example, the terms z (Ay:7. M) N and casej ,, (z M) of {c1 =

Ni| ... |en = Nyp} are blocked by the variable z.
Lemma 13. If 7 <o then Base(r) C Base(o).
Proof. Immediate form the definition of base terms. a

Lemma 14. Ifa € Base(o), thena Z[l1 =e1,...,ln = ey], a Z Az:T. b and a Z (c[T] b).

Constructor subtyping (extended version) DRAF'L June 1999 27

Proof. Directly form the definition of base terms. a

As it is expected, a set of base terms is closed under —pgsic-

Lemma 15. If a € Base(o) and a —pasic b, then b € Base(o).

Proof. Assume a € Base(o) and a —pasic b. We will prove, by induction on the derivation of a € Base(o),
that b € Base(o).

1.

2.

If a € V7 , then a Apgasic b

If a = a1 az with a; € Base(r — o) and as € SN(7) then, using Lemma 14, b can only be of the following
forms:

— b = by ay with a3 —pasic b1. By induction hypothesis by € Base(r — o). Hence, b € Base(o).

— b = ay by with as —pasic b2. Since by € SN(T), be Base(a).

If a = casefy ;a1 of {1 = fi] ... |¢cn = fn} with a; € Base(d[p]) and f; € SN(1; = ... = 7 — o) for
1 <i < n then, using Lemma 14, b can only be of the following forms:
- b= caseg[p] by of {c1 = fil|...|en = fn} with a1 —pasic b1. By induction hypothesis b; € Base(d[p]).
Hence, b € Base(o).
- b= caseg[p] apof {en = fi| ... |¢; = fJ’- | ... |cn = fn} for some j € {1,...,n}, with f; —pasic f]’~.

Since f; € SN(m1 = ... = 7, = 0), b € Base(0).

. If a = a;.l with a; € Base([...,[: 0,...]) then, using Lemma 14, b can only be of the form b,.l with

a1 —pasic b1. By induction hypothesis by € Base([...,l: o,...]). Hence, b € Base(o).

If ¢ € Base(7) with 7 < o, then by induction hypothesis b € Base(r). Hence, b € Base(o).

The following state that every base term is strongly normalizing.

Lemma 16. For every type o, Base(o) C SN(o).

Proof. Assume t € Base(o). By induction on the derivation of ¢ € Base(o), we will prove that ¢ € SN(o).

1

2.

If t € V7, then t € SN(o).

If t = ab with a € Base(r — o) and b € SN(7), then by induction hypothesis ¢ € SN(7 — o). Since a is
a base term, a A pusic Ax:T. N. Hence, t € SN(o).

If ¢ = casefy, aof {e1 = fi| ... [cn = fu} with a € Base(d[p]) and f; € SN(ry = ... = 7, = 0) for

1 <i < n, then by induction hypothesis a € SN(d[p]). Since a is a base term, a Apqsic (ci[p]b). Hence,
t € SN(o).

. If t = a.l with a € Base([...,[: 0,...]), then by induction hypothesis a € SN([...,l : 0,...]). Since a is a

base term, a Apqsic [.--,{ =b,...]. Hence, t € SN(o).

If ¢t € Base(r) with 7 < o, then by induction hypothesis ¢ € SN(7). Hence, t € SN(o).

Definition 24.

1.

Let XY CE&. Define X — Y a subset of £ by

X->Y={Feé|VeeX. FzeY}

Gilles Barthe and Maria Joao Frade

2. Let X; C€& for1<i<n. Definell;: X;,...,l,: X,,] a subset of £ by

i Xiy.olp: Xp]={a€fal;€ X;for 1 <i<n}

The following definition is required in order to formulate the notion of saturated set.

Definition 25.

1. The key-redex of M € & is defined inductively as follows:

(a) If M is a redez, then M is its own key-redez.

(b) If M has key-redex N, then M P has key-redex N.

(¢) If M has key-redex N, then M.l has key-redex N.

(d) If M has key-redex N, then casej) M of {e1 = fi| ... | cn = fn} has key-redex N.

2. Key-reduction — is defined as the smallest relation such that M —y, M' if M' is obtained from M by
contracting the unique (is it exists) key-redex of M.

When M has a key-redex, let redy(M) be the term obtained performing the key-reduction of M. One
of the interests of this reduction strategy is that whenever M has a key-redex and M — M’ by a non-key
reduction, then M’ has still a key-redex and redy (M) — redy (M)

~—=

k
redk

—~~

M) —— redy

In other words, whenever a term has a key-redex, performing a key-reduction is an unavoidable step for
computing the normal form of the term.

In order to prove some properties of the saturated sets, we need to have a characterization of strongly
normalizing terms. We will now characterize strongly normalizing expressions by an inductively defined set.
We start by giving a characterization of the set of normal forms, also as an inductively defined set.

Constructor subtyping (extended version) DRAF'L June 1999 29

Definition 26. The set N F(o) of normal forms of type o is the smallest set of expressions of type o that
satisfies the following:

1. V7 CNF(o)

9 PiE./\/]:(Ui) (1<i<n)

' lh=P,....ln =Pl eNF(lh:01,...,ln:00])
PeNF(p) (1<i<n) :

. : n N
’ (c[T1P1..Py) € NF(d[r]) with ¢:pr = ... = pn = dla €
4. PEN]:([hZUl,...,lnCU'n]) P:/_é[ll:Pl,...,lm: m],mZn’ forsomeie{]_’_,_’n}

PlZENf(Ul)
5 ME/\/J—'(d[p]) M?—é(cz[p]PIsz) fZENf(p1—>—>pkl—>T) (].SZS’I’L)

: case,y M of {e1 = fi|...|cn = fu} € NF(7)

6 M e NF(o)
. Aer. M € NF(t — o)

- PeENF(n—...om—0o) MeNFmn) PZQun.M) (1<i<n)
' P M,..M, € NF(o)

g MeNF(r) 7<o0o

M e NF(o)
Proposition 9. An ezpression M of type o is a normal form if and only if M € NF (o).
Proof.

=) By induction on the structure of M. Assume M is a normal form of type o.
1. If M € V7, then M € NF(o), by rule 1.

2. If M = Az:7.N and 0 = 7 — +, then N must be a normal form. By induction hypothesis N € N F (7).
Hence, by rule 6, M € N F(o).

3.f M = PQ@Q and 0 = 7 — 7, then P and () must be normal forms and P # Az:7. N. Thus, by
induction hypothesis P € N F(r — v) and Q € N F (7). Hence, by rule 7, M € N F (o).

4. U M=, =P,....l,=PJand o = [l : 01,...,l,, : 0], then Py,..., P, are normal forms. By
induction hypothesis P; € N F(o;) for 1 < i < n. Hence, by rule 2, M € N F(o).

5. If M = PI, then P must be a normal form and P # [...,l = P,...]. By induction hypothesis
PeNF(...,l =o0,...]). Hence, by rule 4, M € N F(0).

6. If M = (c[r] P1..P,), then Py,..., P, are normal forms. By induction hypothesis P; € N F(p;) for
1 < i < n. Hence, by rule 3, M € NF (o).

7.1 M = caseg[p] Pof {c; = fi|...|en = fu}, then P, fi,..., fn are normal forms and P #
(¢i[T] Py..Py,) for 1 <i < n. By induction hypothesis P € N F(d[p]) and f; € NF(r7) for 1 <i < n.
Hence, by rule 5, M € N F(o).

8.

Gilles Barthe and Maria Joao Frade

If M is normal form of type o because M : T and 7 < o, then by induction hypothesis M € N F (7).
Hence, by rule 8, M € N F(o).

<) Suppose M € N F(o). By induction on the derivation of M € N F(o).

1.

2.

. Assume M = caseg[

Assume M € V?. Then M is a normal form of type o.

Assume M =[ly = Py,...,l, =P,Jand 0 = [l; : 01,...,1, : 0], with P; € N F(0;) for 1 <i < n.
By induction hypothesis every P; is a normal form of type o;. Hence, M is a normal form of type o.

. Assume M = (c[7] P1..P,), with P; € N F(p;) for 1 <4 < n. By induction hypothesis every P; is a

normal form of type p;. Hence, M is a normal form of type o.

Assume M = Pl with PZ[...,l=PF,...]and P e NF([...,l: 0,...]). By induction hypothesis P
is a normal form of type [...,l: o,...]. On the other hand, we can’t have a m-reduction. Hence, M
is a normal form of type o.

o Pof {ev = fil ... |en = fo} with P € NF(dlp]), P # (ci[r] P1..P;,) and
fi e NF(p1 — ... = px, = o) for 1 < i < n. By induction hypothesis P, f1,..., f, are normal forms.
On the other hand, we can’t have a t-reduction. Hence, M is a normal form of type o.

. Assume M = Az:7. P and 0 = 7 — v, with P € N F(v). By induction hypothesis P is a normal form

of type . Hence, M is a normal form of type o.

. Assume M = PMy,..., M, with P € NF(ri = ... & 7, = 0), M; € NF(r;) for 1 <1i < n and

P # Xx:1y. N. By induction hypothesis P, My, ..., M,, are normal forms. On the other hand, we
can’t have a (-reduction. Hence, M is a normal form of type o.

. Assume M = N F(1) and 7 < ¢. By induction hypothesis M is a normal form of type 7. Hence, by

subsumption, M is a normal form of type o.

a

Lemma 17.

1.IfPe NF(ly : o1,-.-ylp o)) and P 2 [ly = Pi,...,ly, = Py] for n < m, then P € Base([l; :

g, -

culn t o))

2. If P e NF(d[T]) and P # (c[T] Q1...Qy), then P € Base(d[T]).
3. IfPe NF(r = o) and P £ (\x:7. N), then P € Base(r — o).

Proof. By simultaneous induction on the derivation of P € N F ().

1. Assume P € NF([ly : 01, .- ,lp s 0p]) and P Z [l = P1, ..., = Pp] for n < m. Then the following
cases can occur:

— P e Vlhionion] In this case, P € Base([ly : 01,...,1n : 0,]).

—P=Mlwith M e NF(lh : v, lw 2 Yw])y M Z[lh = My,.... 1, = Mg], i € {1,...,w} and

w < k. In this case, M € Base([l1 : y1,-.-,lw : Yw]) by induction hypothesis. Thus, P € Base([]; :
Oly-vyln i 0p)).

- PEcase}[p] Mof {c1 = fi|...|en = fu} ENF(y) withy = [l : 01,..., 1, : 05), M € NF(d[p]),

M # (c¢i[p]Py...Py;) and f; € NF(pr = ... = pr;, —) for 1 <i < n. In this case, M € Base(d[p])
by induction hypothesis. By Proposition 9 f; € SN(p1 — ... = pr, — 7). Thus, P € Base([l; :
Olyevyln : Op)).

Constructor subtyping (extended version) DRAF'L June 1999 31

— P=MM;..My with M e NF(y1 = .. >y = [l 01,0t 0n]), M e NF(y) for 1 <i <k
and M # (Az:y;. N). In this case, M € Base(y;s = ... = v — [l1 : 01,...,1, : 0,]) by induction
hypothesis. By Proposition 9 M; € SN(v;) for 1 <i < k Thus, P € Base([ly : 01,...,1n : 04]).

2. Assume P € NF(d[p]) and P Z c[p] Q1...Qx. Then the following cases can occur:

— P e VP, In this case, P € Base(d[t]).

— P =M.l with M e NF([l1 : vyl Ywl), M Z [lh = My,..., I, = My], i € {1,...,w} and
w < k. In this case, M € Base([l1 : y1,.-.,lw : Yw]) by induction hypothesis. Thus, P € Base(d[T]).

- P =casey, Mof {co = fi|...| eca = fu} € NF(y) with v = d[r], M € NF(d[p]), M #
(cilp]Py...Py,) and f; € NF(p1 — ... = p;, — 7) for 1 < i < n. In this case, M € Base(d[p]) by
induction hypothesis. By Proposition 9 f; € SN(p; — ... = pr, = 7). Thus, P € Base(d[T]).

— P = MM..M, with M € NF(y1 = ... = v = d[t]), M; € NF(v;) for 1 < i < k and
M # (Azy;. N). In this case, M € Base(y; — ... —+ 7% — d[7]) by induction hypothesis. By Propo-
sition 9 M; € SN(v;) for 1 < i < k Thus, P € Base(d[T]).

3. Assume P € NF(r — o) and P #Z (Az:7. N). Then the following cases can occur:
— P € V77, In this case, P € Base(r — o).

— P=Ml; with M e NF([l1 : v,y lw : Yl), M Z 1[Iy = My,...,l;, = Mg],i € {1,...,w} and
w < k. In this case, M € Base([l; : 71, ...,lw : Yw]) by induction hypothesis. Thus, P € Base(r — o).

— P=casey, Mof {er = fi]...|en= fu} ENF(y) withy =7
rightarrowo, M € NF(d[p]), M Z (c¢;[p]P1...Py;) and f; € NF(pr = ... = pg, = 7) for 1 <i < n.
In this case, M € Base(d[p]) by induction hypothesis. By Proposition 9 f; € SN(p1 — ... = p; = 7).
Thus, P € Base(r — o).

— P = MM,.My with M €e NF(yiy = ... = v =7 = 0), Mi € NF(y;) for 1 < i < k and
M # (Az:vy;. N). In this case, M € Base(y; = ... = v, — T — o) by induction hypothesis. By
Proposition 9 M; € SN(v;) for 1 <i < k Thus, P € Base(r — o).

O
Lemma 18. FEvery M € £ can be written in the following form:
ALLTL e ATy T - N Q1 ...Qpn , withm >0 and n >0

where N is of one of the following forms:

1.y

2. (\ywo. P)

3. (P.)

4. casey, Pof {e1 = fi]...]cn = fn}
5. (clo] Py...Py,)

6. [lL=P,.... I = Py

Proof. By case analysis on the structure of M.

1. If M is a variable, then we have m =n = 0 and N a variable (case 1).
2. If M = (\z:7. P), then we have case 2 with m =n = 0.
3. If M = P, then we have to consider two cases:

Gilles Barthe and Maria Joao Frade

— If P is not an application, then we have m =0,n =1, N = P and)1 = Q.
— If P is an application, then P may be written as P, ... P, in which P, is not an application and k£ > 1.
In this case we have m =0, n =k, N =P, Q; =P+ 1for1<i<k—1and Q = Q.

The rest of the cases are proved similarly. O
In the following we characterize the strongly normalizing terms.

Definition 27. The set SN (o) is the smallest set of expressions of type o that satisfies the following:

(base) Base(o) C SN (o)

M e SN (o)
(Az:m. M) € SN (1 — 0)

(lam)

NeSN(r) M{z:=N}P..Py,€SN(s), m>0

(app) (\zer. M)NP,...Py, € SN (o)
P, e SN(o;) (1<i<n)
(rec)
li=P,....ln,=P)€SN(l1 :01,...,ln : 04])
Qi € SN(p)) (1<i<nm)
(cons) ,
(c[T] Q1--.Qn) € SN(d[7])
with c:p1 — ... = pp = d[o] € R
(sell) QieSN(r;) (1<i<n) QjPi..Pp€SN(o), m>0
se ’
[ll = Ql;- . .,ln = Qn]l] Pl.Pm S SN(U)
for some j € {1,...,n}
foel2) MeSN(....l:7,...]) M= M M.IP..P,cSN(), m>0
M.IP,..Py, € SN (o)
(casel) ieSN(pr— ..o pr—71) (fia)Pi..Pyp € SN(o), m>0 (1<i<n)
case ,
casef) (cjlpla) of {er = fi| ... [en = fu} Pr...Pm € SN (o)
witht =1 = ... > Ty > 0, for some j € {1,...,n}
) M€ SN(d[p]) M —y M' casep, M' of {1 = fi|...|cn = fu} Pr..Pp € SN(0), m >0
(case?) casel; M of {1 = fi || ca = Ju} ProPr € SN(0) ’
with =7 — ... > T, > 0
(sub) MeSN(r) 7<0o

M e SN (o)

Note that every subterm of a term in SN () is in SN (1), for some appropriate 7.
Lemma 19. For every type o, NF (o) C SN (o)
Proof. Assume M € N F(o). By induction on the derivation of M € N F(o).

1. If M € V7 then M € Base(o) C SN (o).

2.fM=1[y =P,..,l, =F)and 0 = [ly : 01,...,0n : 0,] with P, € NF(o;) for 1 < i < n, then by
induction hypothesis P; € SN (o;) for 1 < i < n. Hence, by (rec), M € SN (o).

Constructor subtyping (extended version) DRAF'L June 1999 33

3. If M = (c[r] P,...P,) and 0 = d[7] with P, e NF(p;) for 1 <i<mandc:p — .. p, = dla] €N,
then by induction hypothesis P; € SN (p;) for 1 < i < n. Hence, by (cons), M € SN (o).

4. If M = Pl; and 0 = o; for some i € {1,...,n} with P € NF([l; : 01,...,l, : 03]) and P £ [l; =
Py,...,l,, = P,], n < m then, by Lemma 17, P € Base([l; : 01,...,l,, : 0,]). Hence, M € Base(s) C
SN (o).

5. If M = casejy,; Pof {1 = fil...|e, = fu} with P € NF(d[p]), P # (ci[p] P1...Py) and f; € NF(p1 —
.. = pr, = o) for 1 < i < n then, by Lemma 17, P € Base(d[p]). Hence, M € Base(c) C SN (o).

6. If M = Az:r. N and 0 = 7 — p with N € N F(p), then by induction hypothesis N € SA/(p). Hence, by
(lam), M € SN (o).

7. If M = PMy..M,, with P e NF(r; = ... > 1, > 0), M; e NF(r;) for 1 <i <n and P # Az:1;. N
then, by Lemma 17, P € Base(; — ... = 7, — o). By induction hypothesis M; € SN (r;). Hence,
M € Base(o) C SN (o).

8. If M € NF(o) because M € NF(7) with 7 < o, then by induction hypothesis M € SN (7). Hence, by
(sub), M € SN (o).
O

Lemma 20. If M : o cannot be reduced by key-reduction, written M 4, and M # \x:m. N, M # (c[7] a)
and M #[ly = P1,...,l, = P,], then M € Ba(o).

Proof. Assume M +,, then by induction on the structure of M:
1. If M € V?, then M € Ba(o).

2. If M = My My then M; 4 and M; # Ax:7. N, because M 4. Also My # (c[t]a) and M; #
[, = P,...,l, = P,] because M is well typed. So, by induction hypothesis M; € Ba(r — o). Hence,
M € Ba(o).

3. f M =Pl then P A, and PZ[...,l =Q,...], because M +. Also P # Az:7. N and P # (c[T]a),
because M is well typed. So, by induction hypothesis P € Ba([...,l: 0,...]). Hence, M € Ba(o).

4. If M = casey, P of {1 = fil...|len = fu}, then P A and P Z (c[T]a), because M +. Also
M # Me:r. N and M # [ly = Py,...,l, = P,], because M is well typed. So, by induction hypothesis
P € Ba(d[p]). Hence, M € Ba(o).

a

Now we will prove that, for some type o, the set SN (o) characterizes the strongly normalizing expressions
of type o.

Proposition 10. An expression M of type o is strongly normalizing if and only if M € SN (o), i.e.,
M € SN(s) & M € SN (o)
Proof.

=) Suppose that M is a strongly normalizing expression of type o. Let maxred(M) denote the maximum
length of a rewrite sequence starting in M and ending in the normal form of M. We will prove by
induction on (maxred(M), M), ordered by the lexicographic product of the usual ordering on IN and the
subterm ordering, that M € SN (o).
If maxred(M) = 0 then M is a normal form. Then M € N F (o) C SN (o). Suppose maxred(M) > 0. Let
M= Ax1:m. o AT . NQ1 ...Qp withm > 0andn >0,and o =7 — ... = 7, — 7. Six cases are
distinguished:

Gilles Barthe and Maria Joao Frade

. N = y. In this case, we have M = Az1:71.... ATy :Tin .y Q1 ... Qp. By induction hypothesis Q; € SN (a;)
for 1 <i<n.So,yQ:...Qn € Base(r) C SN (). Hence, by (lam), M € SN (o).

. N = A\ywo;. P. In this case, we have M = Az1:71. ... A& T (AY:01. P) Q1 oo Qe —basic AT1TL. oo ATy
Tm-P{y := Q1} Q2 ... @, By induction hypothesis Ax1:Ty. ... \Ty T P{y := Q1} Q2 ... Q, € SN (o).
Also by induction hypothesis we have that Q; € SN (o1). Hence, by (app), M € SN (o).

. N = (P.l). In this case, we have M = \x1:11. ... A& Tim- (P.L) Q1 ... Qp.

(a) If P = P then M —pasic AT1:T1 s ALy i T -(P'1) Q1 ... Q- By induction hypothesis (P'.1) Q; ... Qy €
SN (7). Also by induction hypothesis we have that P € SN([...,l : v,...])). Hence, by (sel2)
and (lam), M € SN (o).

(b) If P 4} then, by Lemma 20 and because N is well typed, P € Ba([...,l:7,...]Jor P=]...,l =
P,. ...

—If P e Ba([...,l :v,...]) then, as P € SN([...,l : 7,...]) by induction hypothesis, P €
Base([...,l:7,...]). So, (P.l) Q1 ...Q, € Base(r) C SN (7). Hence, by (lam), M € SN (o).

- IfP= [ll = Pl,. . .,l = P(), .. .,lk = Pk], then M —basic AT1:Ty. ...)\ZﬂmiTm. Py Ql Qn By
induction hypothesis Az1:71. ... \& T Po Q1 .. Qn € SN () s0, Py Q1 ... Qn € SN (7). Also
by induction hypothesis P; € SN (y;) for 0 < i < k, Hence, by (sell) and (lam), M € SN (o).

. N = caseg[p] Pof {s = fi| ... |er = fr}. In this case, we have M = Azy :71. ... A&y, :
Trm.- (case}[p] Pof{ex=fi] ... |lek = fr}) Q1. Qn.-

(a) If P =y P',then M —pgasic Ax1:71 ...)\:cmzrm.(case;[p] P'of {e1 = fi|... ek = fr}) Q1 ... Qn. By
induction hypothesis Az1:7....)\mm:rm.(case;[p] P of {c1 = fi]-.-|cr. = fr}) Q1 ... Qn € SN (0).
So (case}[p] Pof {e1: = fi| ... |k = fr}) Q1...Qn € SN (7). Also by induction hypothesis
P e SN (d[p]). Hence, by (case2) and (lam), M € SN (o).

(b) If P 4 then, by Lemma 20 and because N is well typed, P € Ba(d[p]) or P = (¢, [p] a).

— If P € Ba(d[p]) then, as P € SN'(d[p]) by induction hypothesis, P € Base(d[p]). By induc-
tion hypothesis f; € SN(¢;) for 1 < i < k. So, case) P of {c; = fi|... |k = fr} €

o]
Base(oy — ... = 05, = 7). Also by induction hypothesis Q; € SN (o;) for 1 < j < n. So,
(case}[p] Pof{ci = fil ... |ck = fr})Q1...Qn € Base(r). Hence, by (base) and (lam),
M € SN (o).

— If P = (cj[p]a), then M —pasic AT1:Ti. ... \& T~ (fj @) Q1 ... Qp. By induction hypothesis
AZ1TL. oo AT - (fj @) Q1 .. @ € SN (o). So, (fja) Q1 ...Qy € SN (7). Also by induction
hypothesis f; € SN (¢;) for 1 < i < k. Hence, by (casel) and (lam), M € SN (o).

. N = (c[o] P1...P). In this case, we have M = Ax1:71. ... \&y 1Ty (c[o] P1...P) Q1 ... @y Since M
is well typed we must have n = 0. By induction hypothesis P; € SN(p;) for 1 < i < k. Hence, by
(cons) and (lam), M € SN (o).

. N =[l1W = P,...,l; = P]. In this case, we have M = Az1:71. ... A&y i T [0 = Pr,... 1l =
Pr] Q1 ... Qp. Since M is well typed we must have n = 0. By induction hypothesis P; € SN (p;) for
1 <i < k. Hence, by (rec) and (lam), M € SN'(o).

Constructor subtyping (extended version) DRAF'L June 1999 39

<) Suppose that M € SN (o). We will prove by induction on the derivation of M € SN (o) that M is
strongly normalizing, M € SN(o). Consider an arbitrary rewrite sequence, ¢, starting in M:

M —basic Ml —basic M2 —basic -
Case (base) If M € Base(o), then by Lemma 16 M € SN(o).

Case (lam) If M = A\z:7. P and 0 = 7 — v with P € SN (y). By induction hypothesis P € SN(7).
Therefore M € SN(o).

Case (app) If M = (A\z:7. Q) N Py...Py,, with N € SN(7) and Q{z := N} P,...P,, € SN (o), m > 0,
then there are two possibilities: the redex (Az:7. Q) N is contracted in ¢ or not.

1. In the first case, there is a rewrite step M,, —>pasic M1 in the rewrite sequence ¢ with M,, =
Az Q") N'P|..P), and M1 = Q'{x := N'} P|...P}, such that Q —pssic @', N > pasic N' and
P; —pgsic P for 1 < i < m. Since by induction hypothesis Q{z := N} P;...P,, € SN(o), we have
that its reduct M,1+1 € SN(o) too. Hence, (is finite.

2. In the second case, we have that all the expressions in ¢ are of the form (\z:7. Q") N' P|...P},,
with Q@ —pasic @'y N pasic N' and P; —pesic Py for 1 < i < m. Since we have by induction
hypothesis that N € SN(7) and Q{z := N} P;...P,, € SN(o), all expressions in (are strongly
normalizing. Hence, (is finite.

Case (rec) M=, =P,...ly =P and o =[l : 01,...,l : 0], with P; € SN (o;) for 1 <i < k,
then we have that all the expressions in (are of the form [I; = P/, ...,y = P;] with P; -4 P} for
1 <@ < k. Since we have by induction hypothesis that P; € SN(o;) for 1 < i <k, (is finite.

Case (cons) If M = (c[t]Q:1...Qk) and o = d[1], with Q; € SN(p;) for 1 <i < k,c:p1 — ... = pr —
dla] € R, then we have that all the expressions in ¢ are of the form (¢[7] Q}...Q},) with Q; —pasic @}
for 1 < i < k. Since we have by induction hypothesis that ; € SN(p;) for 1 < i < k, (is finite.

Case (sell) If M =, = Q1,...,l = Qkl.lj Pi...Py, with Q; € SN (r;) for 1 <i <k, Q; P,...P,, €
SN (o), m > 0and j € {1,...,k}, then there are two possibilities: the redex [l = Q1,...,lk = Qkl.;
is contracted in ¢ or not.

1. In the first case, there is a rewrite step M,, —pasic Mn4+1 in the rewrite sequence (with
M, = =@Q,....lx = QLl.l; P{..P}, and M, = Q; P|...P}, such that Q; —pesic @} for
1 <i<kand Pr »pasic P, for 1 <r < m. Since by induction hypothesis Q; P ...P,, € SN(0),
we have M1 € SN(o) too. Hence (is finite.

2. In the second case, we have that all the expressions in ¢ are of the form [l; = Qf,...,lx =
Q1. P{...P}, with Q; —»pasic @} for 1 <i <k, and P, —pesic Py for 1 <r < m. By induction
hypothesis Q; Pi...Pp € SN(o). So, P, € SN(o,) for 1 < r < m. Also by induction hypothesis
Q; € SN(7;) for 1 < i < k. Therefore, we have that all expressions in (are strongly normalizing.
Hence, (is finite.

Case (sel2) If M = Q.IP,...P,,, with Q € SN([...,] : 7,...]), Q =, Q', Q.IP...P,, € SN(0),
m > 0, then there are two possibilities: the key-reduction step Q — Q' is in the sequence ¢ or not.

1. In the first case, there is a rewrite step M,, —pasic Mn4+1 in the rewrite sequence (with
M, =Q.IP..P], and M1, =Q'.IP|...P}, such that Q —; Q' and P; —pas;c P for 1 <i < m.
Since by induction hypothesis Q'.l P;...P,, € SN(o), we have M,,+1 € SN(¢) too. Hence (is finite.

Gilles Barthe and Maria Joao Frade

2. In the second case, we have that all the expressions in ¢ are of the form Q".l P|...P] with
P; —pasic P for 1 < i < m, and Q —»pgsic Q" without contracting the key-redex of Q. This is
only possible if Q = Q1 Q2 or Q = case;’[p] Qrof {1 = fi| ... |ck = fr}

— If @ = Q1 Q2, then all the expressions in ¢ are of the form (Q1 Q%).l P|...P}, with P; »pgsic P/
for 1 <i <m, and Q2 —pasic @%. By induction hypothesis @ and Q'.l P;...P,, are strongly
normalizing, so P; for 1 < i < m are strongly normalizing too. Also () is strongly normaliz-
ing because, by induction hypothesis, () is strongly normalizing. Hence (is finite.

- IfQ = casez[p] Q1 of {c1 = fi| ... | ek = fr}, then all the expressions in ¢ are of the
form (caseg[p] Qv of {ec1 = fi| ... |ck = fi}).IP..P}, with P; -y, P} for 1 <i <m,
and f; —~pasic fj’ for 1 < j < k. Since @ is strongly normalizing by induction hypothesis,
f; is strongly normalizing for 1 < j < k. By induction hypothesis Q'.l P;...P,, is strongly
normalizing, so P; is strongly normalizing for 1 < i < m. Hence (is finite.

Case (casel) If M = casey (cjlP) Q1...Qu;) of {c1 = fi]...|cw = fu} Pi...Pm, with f; € SN (p1 =
o = pr; = 7), (f5 QreQry) Proo.Ppy € SN(0), m >0, for 1 <i < w and for some j € {1,...,w},
then there are two possibilities: the redex case ,; (¢;[p] Q1..Qk;) of {c1 = fi| ... |cw = fu}is
contracted in ¢ or not.

1. In the first case, there is a rewrite step M,, —>pgsic Mp+1 in the rewrite sequence ¢ with M, =
casey 1 (¢j[p]Q1--Q),) of {e1 = fi| ... [cw = fL} PPy, and My = (f; Q1--Q)) PPy,
such that Q; —pasic Q;a Pj “basic PJI and fr basic f7l= for1<i< kja 1<j<m and 1 <r <w.
By induction hypothesis (f; Q1...Qk;) P1-..Pm € SN(0). So, we have M, 1 € SN(o) too. Hence
(is finite.

2. In the second case, we have that all the expressions in ¢ are of the form casey , (c; [p] Q1.-.Qy,) of {1 =
f{ | s |Cw = leu}PIIPrIn with Ql “basic Q;; Ps “basic PSI and fr “basic f7l= for 1 S i S k; 1 S
s <m and 1 <r < w. Since we have by induction hypothesis that f; € SN(p1 = ... = p, = 7)
and (f; Q1...Q;) P1...Py € SN(0) for 1 <4 < w, we have that all expressions in ¢ are strongly
normalizing. Hence, (is finite.

Case (case2) If M = casej,, Q of {c1 = fi|...|ck = fi} Pr...Pn, with Q € SN (d[p]), Q =« Q'
casey » Q" of {e1 = fil...|ck = fi} Pr..Po € SN (o), m > 0, then there are two possibilities: the

key-redex of @ is reduced in ¢ or not.

1. In the first case, there is a rewrite step M,, —pasic Mn4+1 in the rewrite sequence (with

M, = casey, Q of {1 = fi [...| ax = [} Pi..P}, and Mnyy = casep,; Q' of {1 =
fil...l ek = fi} P{..P}, such that Q — Q', fi =basic fi and Pj —pqsic Pj(for1 <i<kand
1 < j < m. Since by induction hypothesis case} Qof {es = fi|...|ck = fr} Pi...Pm € SN(0),

then (is finite.

2. In the second case, we have that all the expressions in (are of the form caseg[p] Q" of {c1n =

filo ol e = fi} P...P}, with fi »pasic f] for 1 < i < k, Pj =pasic PJf for 1 < j < m, and
Q —pasic Q' without contracting the key-redex of @. This is only possible if Q@ = Q1 Q2 or
Q= case}[a] Qrof {h =e]|...|c,=>euw}
— If @ = Q1 Q>, then every expression is of the form caseg[p] (Q1Q5) of {c1 = fl|...] ek =
f];}PllPr’n with fz basic fl, for 1 S { S k; P] “basic PJ’ for 1 S.] S m, and QZ basic QIQI
Since by induction hypothesis caseg Q of {ex=fil|...|ek = fr} Pr...P,, € SN(0) and @

is strongly normalizing too, then (1s finite.

Constructor subtyping (extended version) DRAF'L June 1999 37

-IfQ= casef[a] Qi of {¢, =e1|...|c, = ey}, then all the expressions in ¢ are of the form
(case),; (casely Qi of {¢f = er] ... |c}, = ew}) of {e1 = fl| ... |ex = f{})A P{...Py, with
P, —pasic P for 1 <7 <m, fi »pasic fi for 1 <i <k, and €; —pasic e;. for 1 < j < w. Since
(@ is strongly normalizing by induction hypothesis, e; is strongly normalizing for 1 < j < w.
By induction hypothesis caseg[p] Q of {es = fi|...| ck = fr} P1...P,, € SN(0). Hence (is
finite.

Case (sub) If M € SN (o) because M € SN (7) with 7 < o, then by induction hypothesis M is
strongly normalizing, and by subsumption M : 0. Hence M € SN(o).

The following result is useful for proving one of the closure properties of saturated sets.
Lemma 21. Ift € SN(oy — ... > 0, > 7), t = u and ua € SN(7), then ta € SN(7).

Proof. We will prove that t € SN(o0y = ... = 0, = 7), t = v and ua € SN(7), implies ta € SN(7).
Then the result we want to prove follows directly from Proposition 10.

Suppose t € SN (o1 = ... = 0, = 7), t = v and ua € SN(7). By induction on the structure of . Since
t = u, t can be of the following forms:

1. ¢ is a redex.
- Ift = (Ax:y. M)N, then u = M{zx := N}. By assumption, M{z := N}a € SN(7). Since
t € SN(oy = ... > 0, = 7) then N € SN (7). Hence, by (app), ta € SN (7).

—Ift=[..,l=P,...].l, then u= P. Since t € SN (01 = ... = 0, = 7), P; € SN(v;). By assumption
Pa € SN (7). Hence, by (sell), ta € SN(7).

= Ift = casefy, (¢j[p] Q1--Qk,) of {c1 = fil...[cn = fu}, then u = (f; Q1...Qx,). Since t € SN (o7 —
o = 0p = 7T), fi € SN(p1 — ... = pr; — 7). By assumption (f; Q1...Qx;) @ € SN (7). Hence, by
(case 1), ta € SN (7).

2.t = M P. In this case M € SN(y), M =y M', MP —; M'P,u = M'P and M'Pa € SN(7). By
induction hypothesis M Pa € SN (7). Hence ta € SN (7).

3.t = M.. In this case M € SN([...,l : (o1 = ... = 05, = 7),...]), M.l = M'.l, w = M'l and
(M'.l)a € SN'(7). Hence, by (sel2), ta € SN (7).

4. t =casef, Mof {c1 = fi| ... |cu = fy}. Inthis case M € SN (d[p]), casef, M of {c1 = fi| ... |cn =
fu} =k casef, M'of {c1 = fi| ... |cn = fu}, u = casef,; M' of {1 = fi|...|en = fu} and
(casefy, M'of {e1 = fi| ... |en = fu}) @ € SN (7). Hence, by (case2), ta € SN (7).

O

Now we define saturated sets and state some of their closure properties.
Definition 28 (Saturated sets). Let o be a type. A set X C SN(o) is a o-saturated set if

1. Base(o) C X
2.a€SN(c) N a—=pr b ANbDEX = a€e X

The collection of o-saturated sets is denoted by SAT (o)
SAT (o) = {X CSN(o) | X is o-saturated }

Lemma 22.

1.

Gilles Barthe and Maria Joao Frade

SN(o) € SAT (o)

2. If X € SAT(0) and Y € SAT(r), then X - Y € SAT (0 — 7).

8. Let I #0. If X; € SAT(0) for all i € I, then (;c; X; € SAT(0).
4. If X; € SAT(0;) for 1 <i<mn, then[ly : X1,...,l, : X)) € SAT([ly : 01,...,1 : 0p]).
Proof.

1. Immediate, using Lemma 16.

2. Suppose X € SAT(s) and Y € SAT(7). Let F € X - Y and x € X then, Fz € Y. As Fz € SN(7)
(because Y C SN(7)) then, F' € SN(¢ — 7). Hence, X - Y C SN(o — 7). Now we are going to prove
that X — Y satisfies the two conditions of Definition 28.

(a) Assume b € Base(c — 7) and € X. Then « € SN(o) and bz € Base(r) C Y. Hencebe X -V
and so, Base(c > 1) C X = Y.

(b) Assume t € SN(oc = 7),t v uandu € X - Y toshowt € X - Y ie., foreveryx € X, tzx €Y.
As we have t = u, then t © = uz. Since ¢t € SN(o — 7) and uxz € Y C SN(7), then by Lemma 21
ta € SN(7). Hence, as Y € SAT(7), we have tx € Y.

3. Suppose X; € SAT (o) for all i € I. As we have X; C SN(o) for all i € I, obviously [;c; Xi € SN(0).

Now we are going to prove that [;.; X; satisfies the two conditions of Definition 28.
(a) We have Base(o) C X; for every i € I. Therefore, Base(o) C (;; Xi.
(b) Assume a € SN(0), a = b and b € [, Xy, to show a € [);c;. As b € [, Xy, then b € X; for
every i € I. Since X; € SAT (o) for all i € I, we have a € X; for every i € I. Hence, a € [;c; X;.
4. Suppose X; € SAT (o) for 1 <i < n. As we have X; C SN(o) for 1 < i < n then every a € £, such that

a.l; € X; (1 <i < n),is strongly normalizing. Hence, [I; : Xi,...,0, : X;,)] CSN([l1 : 01,...,1n : on])-
Now we are going to prove that [l : Xi,...,l, : X,,] satisfies the two conditions of Definition 28.

(a) Assume b € Base([l; : 01,...,In : 0,]). Then b.l; € Base(o;) for 1 <i <n. Since X; € SAT(o;) then,
Base(o;) C X;. Thus, b.l; € X; for 1 <i < n and, therefore b € [l; : X1,...,Il,, : X,], by Definition
24. Hence, Base([l; : 01,...,ln 1 0p]) Tl : X1,y ln : Xy

(b) Assume a € SN([ly : 01,...,0p : o)), a =, band b € [ly : Xy,...,l, : Xp], to show a € [I; :
Xi,ooly t Xplie,al; € Xyfor1 <i<noAsbelly: Xy,...,0, : X,], then b.; € X; for

1 <4 < n. By assumption a — b, hence a.l; —, b.l;. By assumption a € SN([l; : 01,...,1, : 04]),
then a.l; € SN(o;) for 1 < i < n. Since X; € SAT(0), a.l; € X; for 1 < i < n. Therefore, a € [I; :
Xl,...,ln : Xn]

O

We now turn to the definition of the interpretation function of types.

Definition 29 (Interpretation of types). The interpretation of types [.] is defined as follows:

[o = 7] =[o] = [7]
[l :01,. s lnion]]l =1[l : [o1]s -5 ln 2 [on]]
[die]] is defined inductively as follows:

Constructor subtyping (extended version) DRAF'L June 1999 39

1. Base(d[o]) C [d[o]]
22c:pp—=...oppodaleX A bepla=1}forl1<i<k ANT<0o = r1]b...b; € [d]o]]
3. M eSN(d[g]) AN M =, M' AN M'€[dle]] = M e [d]]

The folowing states that the interpretation of every type is a saturated set.
Lemma 23. For every type o, [o] € SAT(0).
Proof. By induction on the generation of o.

1. Suppose 0 = T — p, then [r — p] = [r] = [p]. By induction hypothesis [7] € SAT(r) and [p] € SAT(p).
Thus, by Lemma 22, [r] — [p] € SAT(T — p).

2. Suppose 0 = [l : 01,...,0y : 0], then [[ly : o1,...,0, : on]] = [l1 : [o1],--., s : [on]]- By induction
hypothesis [o;] € SAT(o;) for 1 < i < n. Therefore, by Lemma 22, [[l1 : 01,...,l, : 0p]] € SAT([l1 :
Olyeeoylp i op)).

3. Suppose o = d[t]. Then [d[7]] € SAT(d[7]) follows directly from the definition of [d[7]].

Next we state some auxiliary lemmas.
Lemma 24. Ifd < d' then [d[o]] C [d'[o]]-
Proof. Assume d < d’ and M € [d[o]]. By induction on the derivation of M € [d[o]].

1. Suppose M € Base(d[o]). Since d < d' we have d[o] < d'[o]. Then, by Lemma 13, M € Base(d'[o]).
Hence, M € [d'[o]].

2. Suppose M = ¢[1]by..by, with ¢ : p1 = ... = ppr > dla] € N, b; € [pi{la:=7}] for 1 < i < k and
T < o.Since d < d', we have c: p; = ... = p; = d'[a] € R. Hence, by definition, M € [d'[o]].

3. Suppose M € SN(d[o]), M — M' and M' € [d[g]]. By induction hypothesis M' € [d'[o]]. Since
dlo] < d'[o] we have M € SN(d'[o]). Hence, M € [d'[o]].

a
Lemma 25. If T < o then [d[7]] C [d[o]].
Proof. Assume 7 < o and M € [d[r]]. By induction on the derivation of M € [d[r]] we will prove that
M € [d[o]].

1. Suppose M € Base(d[r]). Since 7 < o we have d[7] < d[o]. Then, by Lemma 13, M € Base(d[o]). Hence,
M € [dio]].

2. Suppose M = c[y]by...bg, withc: p1 = ... = pr = dla] € N, b; € [pi{a =~} for 1 <i<kandy < T.
By transitivity, v < o. Hence, M € [d[o]].

3. Suppose M € SN(d[r]), M — M' and M' € [d[r]]. By induction hypothesis M' € [d[o]]. Since
d[7T] < d[o] we have M € SN(d[o]). Hence, M € [d[o]].

O
Lemma 26. If 7 < o then [7] C [o].
Proof. By induction on the derivation 7 < o. By case analysis on the last rule applied.

Case (<reft). In this case 7 = o so, [7] = [o].

Case (<_,). In this case 7 = 14 = 72 and 0 = 01 — 02, with o0y <71 and 7» < 03. Assume t € [7] = [11] —
[r2] to show that ¢t € [¢] = [o1] — [o2] i-e., for every a € [o1], ta € [o2].
Let a € Jo1]. By induction hypothesis a € [r1] so, ta € [12]. Hence, by induction hypothesis, ta € [o2].
Therefore, t € [o].

Gilles Barthe and Maria Joao Frade

Case (<pp). In this case 7 = [} = T1,...,lnym * Tnym] and o = [l @ 01,..., 1, 2 0y, with 7, < oy for
1<i<n. Assumet € [7] =[l1 : [71],-- - lntm : [Tn+m]] to show that t € [o] =[x : [o1],-.-,1n : [on]]
ie., t.l; € [o;] for i < i < n.

By assumption t.l; € [1;] for 1 <i<n+m. As 7; < o; for 1 <i < n, by induction hypothesis we have
t.l; € [oi] for i <i <n. Hence, t € [o].

Case (<data). In this case 7 = d[7], 0 = d'[o] and 7; < 0;, with 1 < i < ar(d) and d < d'. Assume ¢ € [d[7]]
to show that ¢ € [d'[o]]. By case analysis.

1. Suppose t € Base(d[7]). By Lemma 13, t € [d'[o]].

2. Suppose t = ¢[7]by...by withc:p1 = ... = pp = d[a] € R and b; € [pj{a:=7}]for 1 <j <k
As d < d' then there is another declaration c: p1 — ... = — d'[a] € X. As 7; < o for 1 <4 < ar(d)
then, by Lemma 2, pj{a := 7} < p;j{a := o} for 1 < j < k. Thus, by induction hypothesis,
bj € [pj{a := o}]. Hence, c[T]b;...b; € [d'[o]].

3. Suppose t € SN(d[o]), t = ¢’ and ¢’ € [d[o]]. We have ¢ € [d[r]], the, by Lemma 24, ¢t € [d'[7]].
Thus, by Lemma 25, t € [d'[o]].

We now turn to the interpretation of terms.
Definition 30 (Interpretation of expressions).

1. A valuation in & is a map p : V — £ such that p(z) € [o] whenever x € V7.

2. For every valuation p, e € £ and x € V, the valuation p(x := e) is defined as follows:

e ifz=z
ple = e)(z) = {p(z) ifzZ£x
3. Let p be a valuation in € and M € £. Then
(M), = M{z = p(a)}
where x is the set of free variables in M.

4. Let p be a valuation in £. Then p satisfies M : o, written p = M : o, if (M), € [o].

5. Let p be a valuation in € and I' a context. Then p satisfies I, written p E I', if p E © : o for every
x:o€el.

6. A context I' satisfies M : o, written I' = M : o, if for every valuation, p, in £
pEI = pEM:o
We are now ready to prove the soundness of the interpretation.

Proposition 11 (Soundness).
r-M:0 = I'EM:o

Proof. By induction on the derivation of I' - M : o

Case (start). In this case M =z and = : ¢ € I'. Then, trivially ' F z : 0.

Constructor subtyping (extended version) DRAF'L June 1999 41

Case (application). In this case M =aband I' + ab: o is a direct consequence of I' + a: 7 — o and
I' - b:7. Assume p F I' in order to show p F a b : 0. Then, by induction hypothesis p F a : 7 — ¢ and
p Eb:7. That is, (a)), € [T — o] =[] — [o] and (b), € [7]. Thus, (a b)), = (a),(b), € [o], that is,
pEab:o. Hence, 'Fab:o.

Case (abstraction). In this case M = \a:t.a, 0 =7 = yand I' b Az:7.a : 7 — v comes directly from
I''z :7 + a:7. By induction hypothesis we have

Nz:tEFa:vy (7)
Suppose p F I' in order to show p F Ax:7. a : 7 — . That is, we want to show
(Azr.a), N € [7] , forall N € [7].

So, assume that N € [r]. Then, p(z := N) F I,z : 7 and hence, by (7),
([a])p(w:N) € [[7]]

Since, (Az:7. al), N = (Az:7. a){y := p(y)}N =1 a{y = p(y)}{z := N} = (a),@:=n), and [7] is
saturated (see Lemma 23), we have (Az:7. a)), € (a).

Case (record). Inthiscase M =[ly = ay,...,lp,=a,],0 =[l1 :01,...,lp:0,]and I" + [l = ay,...,l, =
ap):[ly :01,...,l, : 0,] is a direct consequence of I' + a; : o; for 1 <i < n.
Suppose p E I' in order to show p F [l = ay,...,l, =ay] : [l1 : 01,...,1, : 0,]. That is, we want to show

([[ll =ay,...,l, = (J,n]])p S [ll : [[0'1]],-~-aln : [[Un]]]

By induction hypothesis we have I' F a; : 0; for 1 <i < n so, (a;), € [o;] for 1 <i < n. Thus,

([[ll = al,...,ln = an]])p = [ll = ([al])p;---;ln = ([(ln])p] S [ll . [[01]],...,ln M IIU'n]]]

Hence, 'E[ly =a1,...,ln=ap] : [l1 :01,...,0n : 0p).

Case (select). In this case M =a.l and I' + a.l: o comes directly from I' + a:[ly : 01,...,l:0,..
Onl-
Suppose p F I' in order to show p F a.l : 0. That is, we want to show (a.l)), € [¢]. By induction
hypothesis ' Ea:[ly :01,...,ls,..., 1y : 0y], that is

coln

(Dy €[foul sl oho- s b - [l
Thus,
(a.1), = (a),-l € [o]
Hence, I'Fa.l : 0.

Case (constructor). In this case M = ¢[T]b;...b, with ¢ : p1 — ... = pr — d[a] € N is a direct consequence
of ' b b;: pi{a:= 7} for 1 <i < k. Assume p F I' in order to show p E ¢[T] by...b : d[T]. By induction
hypothesis p E b; : p;{a := 7} for 1 <i <k, that is

i)y € [pi{a:=7}], for1 <i<k
Thus,
(c[r]b1.-bk), = c[T] (b1)p - - - (O], € [d[T]]
Hence, I' E ¢[T] by...b, : d[T].

Gilles Barthe and Maria Joao Frade

Case (case). In this case M = caseg , a of {e1 = fi]...|cn = fn} is adirect consequence of I' - a : d[p]
and I' F f; : (i{a := p})? for 1 < i < n with ¢; : 7;. Assume p F [in order to show p E
caseg a of {e1 = fi| ... |en = fn}: 0. By induction hypothesis p F a : d[p] and p E f; : (1;{cx := p})?

for 1 <14 < n. That is,
(a), € [dip]] and (fi), € [(1i{a:=p})?] for 1 <i<n
We know that

(casef, aof {c1 = fi| ... |cn = fu}])p = casefy, (a), of {1 = (fidp| - [en = (fu)o}

Now we will prove that caseg,, N of {¢1 = (fi), | ... |en = (fu)o} € [o] for every N € [dp]], by
induction on the derivation of N € [d[p]].

1. If N € Base(d[p]) then, since (fi), € SN((ri{ex:= p})7) for 1 <i <n, we have casegy; N of {¢; =
(f1Dp| - 1 en = (fn),} € Base(o) C [o] because [o] is a o-saturated set.

2. If N =cj[r]bi...by; with ¢j : p1 = ... = pp; = d[a] € X and 7 < p, then

caseg[p] N of {Cl = ([fl])p | ... |Cn = ([fn])p} —k ([fj])p bl-nbkj
Since (fj) br--bx; € [o] and caseg) N of {c1 = (fi)p| ... |en = (fu),} € SN(o) (because of
(casel) rule), we have casefy , M of {¢1 = (fi]),| ... |cn = (fu])o} € [0] because [o] is a o-saturated

set.

3. If N € [d[p]] because N € SN(d[p]), N —; N' and N' € [d]p]], then casej , N of {c; =
(fido |- Ten = (fadp} —k caseg,y N’ of {e1 = (fiDp | ... | cn = (fn)p}- By induction hy-
pothesis casef ; N' of {¢1 = (fi), | --- [en = (fu),} € [o]- Since [o] is saturated, it is enought to
show casef , N of {c1 = (f1]), [... |en = (fu])s} € SN(o), which follows from Proposition 10.

Thus,
casefy, (a), of {1 = (f1)o | --- [cn = (fu)s} € [0]

Hence, I' F caseg; ; a of {aa=fil ... len = fu} o

Case (subsumption). In this case I' - M : o is a direct consequence of I' + M : 7 with 7 < 0. By
induction hypothesis we have I" F M : 7. Suppose p F I" then p F M : 7 that is. (M]), € [7]. Thus,

(M), € [0]

follows using Lemma 26. Hence, I' F M : 0.

We arrive now to the main result of this subsection.
Proposition 12 (Strong normalization). —psic s strongly normalizing on typable expressions:
I'+e:0c0 => ec SN(_)basic)

Proof. Suppose I' + e : 0. Then I' E e : ¢. Define po(x) = z, for all x € V. Then, for every x : 7 € I',
po F o : T because (z],, € [7], since [7] is saturated. So, po F I" and therefore, by Proposition 11, py F e : 0.
Hence,

e = (e),, € [o] € SAT(0)

Thus, by the definition of SAT(¢), e € SN(0) C SN(—pasic)- |

As you may see the proof of strong normalization is totally supported by the soundness of interpretation.

Constructor subtyping (extended version) DRAF'L June 1999 43
5 Adding definitions

In this section, we study an extension of A_, |} gata With definitions, named A_, |j gata,def, and show the resulting
calculus preserves the good meta-theoretical properties of A_, jj gata-

A definition = a : 7 introduces x as an abbreviation of the term a of type 7. Definitions will be allowed
both in contexts, e.g. [= a : 7,..., and in terms let z = a : 7 in b. Definitions in contexts are called
global definitions, and definitions in terms are called local definitions. We introduce also a new reduction:
the d-reduction, for unfolding definitions.

Next we extend the set £ of terms to include local definitions.

Definition 31 (Expressions). The set of expressions &; is the extension of £ with the clause
letx=a:7inbd

Definition 32. Let M € &s. The set of free variables of M, denoted by FV (M), is defined by extending the
Definition 11 with the following clause:

FV(let z =a: 7 in b) = FV(a) U (FV(b)\{z})

Like A-abstractions, definitions introduce bound variables. Therefore we can use a-conversion when nec-
essary. In (let x = a : 7 in b), z is a bound variable.
Next we extend the notion of context to include global definitions.

Definition 33. The set Cs of contexts is defined inductively as follows:

1. <>€CCs;
2.<Ix:7>€Csif [€Cs,x €V, T € Tx and x is ['-fresh;
3 <x=a:7>€Csif I €Cs5,x €V,a€E,T € Tx,x is [-fresh and x & FV(a).

In the third clause, we require that x ¢ FV(a) in order that definitions are not recursive. It will be used
the following convention: the expression I', z:7 stands for the context < I, z:7 >, and I, ¢ = a:7 stands
for< Lz =a:T>.

Next we define a mapping dom that gives the set of variables declared in a context.

Definition 34. The mapping dom : Cs — P (V) is defined as follows:

dom(<>) = 0
dom(I'yz : 1) = dom(I")U {z}
dom(INz =a:7) = dom(I") U {z}

Definition 35 (I'-fresh). Let x be a variable.

1. x is <>-fresh
2. xis[-fresh N z#y = xis <I,y:0 >-fresh
3. xis-fresh N z#y AN z#FV(a) = zis<I,y=a:0 >-fresh

Substitution is extended to terms of &s.

Definition 36. Let M,N € & and x € V. The substitution of N for z in M, denoted by M{z := N}, is
defined by extending the Definition 12 with the following clauses:

(letz=aqa:7inb){z:=N}
(lety=a:7inb){z:= N}

(letz=a:7inb)
(let y =a{z:= N} :7in b{z:= N})

By the variable convention, in the second clause of the previous definition the variable y doesn’t occur free
in the term N, and x # y.

Gilles Barthe and Maria Joao Frade

Definition 37. The result of substituting N for (the free occurrences of) a variable x in I' such that = ¢
dom(I") is denoted as I'{z := N} and is defined as follows:

<>{z:=N}
<Ly:1m>{z:=N}
<LNy=a:7>{x:=N}

<>
<I'{r:=N}ly:7>
<I'{e:=N}lyy=a{z:=N}:7>

Next we define a mapping [.]Jqer that gives the sequence of definitions being in a context.
Definition 38. Let I' € C5. We define [I'|qes inductively as follows:
1 [<>]def =<>
2. [F,JZ : T]def = [F]def
3. [z =a:Tlaet = [[Naefsz=a:T

We let [Ca]def = {[F]def | I'e C(;}.

the intended meaning of a definition (let z = a : 7 in b) is that can be substituted by a in the expression
b. So, the expression (let z = a : 7 in b) can be considered as having a similar behavior than (Az:7.b)a. In
order to perform the unfolding of a definition, let’s introduce a relation called §-reduction.

Definition 39 (Reductions). Let A be a list of definitions, A =x1 = a1:71,...,Tn = Ap:Ty.
1. The §-reduction, —5a), is defined as the compatible closure of the rules:
T —sa) G ,ifr=a:T€ A
(letx=a:7inb) —54) b{z:=a}
2. We let =pasicrs(a) denote =pasic U —504)-

Let —» be a binary relation. We let —7F denote the reflexive closure of —-, —>;r denote the transitive
closure of =2 and —» denote the reflexive-transitive closure of —». The relation = is the equivalence relation
generated by —»+.

Definition 40 (Typing).

1. A judgment is a triple of the form I' t.s;, a : 7, where I' € C5, a € & and 7 € Tx. Generally, the
subscript css of - is dropped.

2. A judgment is derivable if it can be inferred from the set of typing rules that result of adding the following
rules to the rules of Figure 9 (Definition 14).

(global) T rr a:i_T , if ¢ is I'-fresh
,r=a:T F x:T
(local) I'-a:1 Ix:7TFb:o

'+ (letez=a:7inb):0o

3. An expression a € Es is typable if I' b a : o for some I' € C5 and type o.

5.1 Basic properties

Here we state some lemmas that are useful in the proof of some results given below.
The following lemma show that the d-reduction step remains invariant if we enlarge the sequences of
definitions.

Constructor subtyping (extended version) DRAF'L June 1999

Lemma 27. Let < Ay, Ay, Ag > € [Cslaer and e, e’ € E5. Then
€ —5(Aq1,As) e = e —5(A1,A5,A3) e

Proof. By induction on the definition of —5()- O
Lemma 28. Let a,b,e € E. Suppose x #y and x & FV(e). Then

a{z :=b}{y:=e} = a{y :=e}{z :=bly :=e€}}
Proof. By induction on the structure of a. O

The following lemma shows that basic is substitutive.

Lemma 29. Let a,b, b’ € Es.

a —pasic @ = a{x:=b} —pasic a'{x:=b}
Proof. By induction on the generation of —p4sic- a
Lemma 30. Let a,b,b’ € &;.

b —pasic ' = a{z:=b} —pasic a{r =1}

Proof. By induction on the structure of a. O

5.2 Subject reduction
In order to prove that subject reduction holds for A_,] ata def, let us give first the following lemmas.
Lemma 31 (Basis). Letxz € V,I" € Cs5,e,a € & and 0,7 € Tx.

1. If x is I'-fresh, then
I'+e:oc = Izx:Tke:o

2. If x is I'-fresh and © ¢ FV(a), then
I'-e:0c = INx=a:7TkFe:o
Proof. By induction on the derivation of I' F e : 0. O

Lemma 32 (Generation). All the results presented in Lemma 6 for system A_,) data are valid in A,] data def -
In A, [data,der we extend Lemma 6 with the following result:

8 IfI' (letz=a:7inb):T,thenI' - a:pand [z :7 + b:T with p <.

Proof. By inspection on th derivation of I’ F (letz =a:7inbd): T. O
Lemma 33. IfI1 - a:7and IN,x:7,15 F b:o,theni,x=a:7,I5 F b:o.

Proof. By induction on the derivation of I,z : 7,15 F b: 0. O
Lemma 34 (Substitution).

1. Iflyz=a:1,I% F b:o, then I, [2{z:=a} F b{z:=a}: 0.

2.IfIN Fa:Ttand N,z :7,I5 + b:o, then I, [3{z:=a} + b{x:=a}: 0.

Proof.

1. By induction on the derivation of I,z =a:7,I5 F b: 0.

Gilles Barthe and Maria Joao Frade

2. Using Lemma 33 and part 1.

We arrive now to the proof of subject reduction.
Proposition 13 (Subject reduction). Typing is closed under —pusicts:
I''Fe:o0c N e ~basic+8([Iaer) e => I'keée:o

Proof. By induction on the derivation of I' + e : 0. Here we only give the proof for some cases. Let
A= [F]def.

I'+ra:7—w0 I Fb:T
't ab:o

(application) There are three possibilities:

— (ab) —pasic+s(a) (a’b) under the hypothesis a —pqsic45(a) @'- By induction hypothesis it follows
that I' F o' : 7 — 0. Hence, I' + a'b: o follows from (application).

— (ab) —pasicto(a) (ad') under the hypothesis b —pq5i045(a) b'. By induction hypothesis it follows that
I' F b :7.Hence, I' F a'b: o follows from (application).

— Assume a = (Az:p.a1) and (Az:p.a1) —pasicts(a) @112 := b}. By Lemma 31 wehave Iz :p F a1 : 0
with 7 < p. By (subsumption) I" F b: p, then I" + ay{z := b} : o follows using Lemma 34 part 2.

'kt oa:ly:im,.. b7l

(select) ,if 1<i<n. There are two possibilities:
I + a.li L Ti
— a.l —pasic+s(a) @'l under the hypothesis a —y44ic45(a) @'- By induction hypothesis it follows that
I'ta :[ly:7m,...,ln: 7] Hence, I' F d'.l; : 7; follows from (select).
— Assume a = [l; = a1,...,l, = a,] and [} = ay,...,l, = ap]li = pasicts(a) a1, with 1 <7 < n. By

Lemma 32 I' + a; : 7/ with 7/ < 7;. Then, by (subsumption) I + a; : 7;.

I'Fa:dlp] T'F b:(ri{a:=p})” (1<i<n)

(case) . There are three possibilities:
I' b ocasefaof {er = bi| ... [en=bn}:o

— caseg, a of {1 =b1] ... | en = b} —basicts(a) caseg a' of {c; = b1]| ... |cn = by} under the
hypothesis a —j4sic+5(4) @'- By induction hypothesis I' = a' : d[p]. Hence, I' caseg[p] a' of {¢; =
by | ... |cn = by} : o follows using (case).

— caseg[p] aof {cy =by|...|lci = bi|...|en = bn} =pasic caseg[p] aof {c1 =bi|...|lc; =0 ... |cn =
b, } under the hypothesis b; —pqsic+5(a) b;- By induction hypothesis I' = b} : (r;{c := p})?. Hence,
I' b ocasefaof {er = bi| ... |ei=bi| ... |cn = bn}: o follows using (case).

— casey, (cilp’la) of {c1 = bi| ... |cn = bn} —basicts(a) bia. As I' + b; : pi{a := o} and

a =ay...a, then, by applying n times the (application) rule we get I' - b; a : 0.

I'tFa:r
Ne=a:7TkFx:7T
x is I'-fresh. Then, by Lemma 31, 'z =a:7 +F a:7T.

(global) with being I'-fresh. In this case © —y45ic45(4) a- We have I' + a : 7 and

I'ta:T I'x:TFb:0

(local) -
I'F(letz=a:7inb):0o

There are three possibilities:

— (let z = a:7inb) —pasicts(a) (let x = a' : 7 in b) under the hypothesis a —pq5ic45(4) @'- By in-

duction hypothesis it follows that I" + a' : 7. Hence, I' F (let z = a’ : 7in b) : o follows from (local).

Constructor subtyping (extended version) DRAF'L June 1999 47

—(let x = a: 7inb) —pasicrs(a) (let = a : 7 in V') under the hypothesis b —pq5i04-54) 0. By
induction hypothesis it follows that I,z : 7 + b’ : 0. Hence, I' + (let z =a : 7 in b') : o follows
from (local).

— (letz=a:7inb) 2pasicts(a) b{r :=a}. Wehave I' F a:7 and I,z : 7 F b: o, then by Lemma
34 part 2 comes I' F b{z:=a}: 0.

The remaining cases are easy to prove using the induction hypothesis. O

5.3 Confluence

Here we will make the proof of Church Rosser for the d-reduction and for the basic + §-reduction. First, let’s
define a projection map |.|.. The projection of a term a, |a|a, is a term that is obtained from a by unfolding
all the definitions occuring in A and in a.

Definition 41. The mapping |.|. : E5 X [Csldef = € is defined as follows:

lz|a = lala, if A= A,z =a:71,4

x otherwise
labla = |a|a [b|a
[Az:T. ala = AxT.|a|a

= ar, o= anlla = [= la1]as- - oo = [anla]
lalla = |aja.l
le[o]ar...axla = clo]lai|a ... |ak|a
|casefy,; a of {c1 = by [...|cn = bn}a = casef, |ala of {c1 = [bi]a|...[cn = |bn|a}
llet z =a:7inbla = |bla{z :=|a|a} where x is A-fresh

The value |a|a is the unfolding of all definitions occuring in A and all the local definitions of a. Global
definitions are unfolded in the first line and local definitions in the last line.
Now we introduce a notion of free variable with respect to a context.

Definition 42. Let M € &5 and I' € Cs. The set of free variable of M with respect to I, denoted by
FV (M), is defined inductively as follows:

FV.<(b) = FV(b)
FVra.-(b) = FVp(b)\{z}
FVF,z:a:T(b) = FVF(G') U (FV]“(I))\{ZU})

Note that variables in I" are in fact bound variables.
Lemma 35.

1. If x ¢ FV(a) and z is A-fresh, then € FV(|a|a).
2. Let < Ay, Ay, As > € [Clues and a € &5 such that FV a,(a) Ndom(As) = 0. Then |a|a,,A,,45 = |a]a,, Ay

3. Let < A,z =a:7,A3 >€ [Claer and a € E. Then |a|a, z=a:r,A; = |a]A,
Proof.

1. By induction on the number of symbols occuring in A and a.
2. By induction on the structure of a.
3. None of the variable in dom(xz = a : 7, A3) can occur in a. Hence, by 2., |a|A, g=a:r,4, = |a|a,-
O

The following lemma states that |.|. preserves substitution, |bja{z := |a|a} = [b{z := a}|a. Also it
shows that |.|. yields the same value for global and local definitions and this value is given by substitution,
letx =a:7inbla = |bla{z:=lala} = |b{z:=a}l|a = |b]as=ar

Gilles Barthe and Maria Joao Frade

Lemma 36. Let A,z =a: 7 € [Csldes and b € E5. Then
bla{z :=lala} = |b{z:=a}[a = [blas=a:r
Proof. By induction on the structure of . Only some cases are considered here.

— Suppose b = z. Then

|z[a{z := |a|a} = a{z :=[a|a} = [a]a
|z{x := la|a}|a = |a]a
|m|A,z=a:‘r = |a|A

— Suppose b=y # x. Then

lyla{z :=la|la} = y{z :=la|la} = |y|a by Lemma 35
ly{z :=la|a}|a = |y|a
|y|A7z=a:T = |y|A by Lemma 35
— Suppose b=let y = f : o in e. Then
blafe = lala} = flety = £ : 0 in e|afz == |ala}
= lela{y == [flaH{z :=|a|a}
lela{z := |a|laH{y :=|f|la{z := |ala}} by Lemma 28
le|la,z=a:r{y == |flA,z=air } by induction hypothesis
= llety=f:oinelaz=ar
|b|A,$=a:‘r

blafe = lala} = flety = f: 0 in elafz = |ala}
lelafy = |f]aHe := |a|a)
lelafe == [alaHy := [flafe := |ala}} by Lemma 28

= le{z :=a}|a{y == |f{z :=a}|a} by induction hypothesis
= |llety = f{z:=a}:0ine{z:=a}|a

= |(lety=f:0oine){zx:=a}la by Definition 36

= |b{z :=a}|a

Next we show that a term reduces to its projection.

Lemma 37. Let A € [Csldes and a € Es5. Then
e —s5a) lela

Proof. By induction on the number of the symbols occuring in A and in e. Here, we only consider the
following cases:

— Suppose e = x.
e f A=A,z =a:7,A,, then |2|o = |a]a,. By induction hypothesis a —5(a,) |a|a, then, by Lemma
27, a —5(a) |ala,- Hence, £ —504) @ =504 |ala, = |z]a.
e f AZ A,z =a:7,As, then |z|s = . Hence, z —5(a) |7]a.

— Suppose e = let £ = a : 7 in b. By induction hypothesis a —5(a) |a|a and b =54 [b|a. Hence,
let x =a:7inb —54) let z=|ala:7in|bla by induction hypothesis and the definition of — 5)
—s(a) [blaf{z :=la|a}
= Jletz=a:7inbla
The rest of the cases are easy to prove. O

The following lemma states that the projection of two terms that are in —5(4) are equal.

Constructor subtyping (extended version) DRAF'L June 1999

Lemma 38. Let A € [Cslaer and e1,e2 € Es. Then
er —s5a) €2 = leila =lezfa
Proof. By induction on the definition of —;(a). Here only some cases are considered.

— Assume e, —5(A) €2 isx —5(Ay,e=a:T,Az) G-

|61|A = |x|A1,I:aZT,A2

|a|41

= la|A, ,2=a:r,a, by Lemma 35
|€2|A

— Assume e; —5(a) €2 is (let ¥ =a: 7in b) =54 b{z = a}

[blaf{z := |a|a}
|b{z = a}|a by Lemma 36
= |€2|A

|€1|A

— Assume e; —5a) e2is (let x =a: 7inb) =5 (let z=a:7in b')

ler|la = [bla{z :=|ala}
= |b|la,z=a:r by Lemma 36
= V|ap=a:r by induction hypothesis
= |/|a{x :=]ala} by Lemma 36
= |€2|A

— Assume e; —5a) €2 is (let x =a: 7inb) =5 (let z=a':7inb)

lerfa = |blafz == |afa}
= |bja{z :=|d'|a} by induction hypothesis
= |€2|A
The rest of the cases are easy to prove. O

Proposition 14 (Church Rosser for d-reduction). Let A € [Cslaef and a,a1,az € & such that a — 54
a; and a —5(4) 2. Then there exists a term as such that a; —>s(A) 3 and as —>s(A) 3.

Proof. By Lemma 37, a —»5(a) |ala, a1 =504y |a1]a and a2 —5a) |az|a. By Lemma 38, it follows that
|ala = la1|a = |az|a.

jA/ 3(4)
ai 5(A) az
itS(A) iJ(A)
lai|a lala laz|a

The following lemma states that the projection preserves g-reduction.
Lemma 39. Given e, e’ € & and A € [Cs|aef-

€ —pasic 6’ = |€|A —basic |€’|A

Gilles Barthe and Maria Joao Frade

Proof. By induction on the definition of e —p,4 €. Most cases follows immediately from induction hypoth-
esis and Definitions 39 and 41. Here are only the non-immediate cases:

— Assume e —pgsic € 18 (A\z:T. a) b —pasic a{x := b}.

lela = |(AzT. a)bla
= |(AxT. a)|a|bla
—?basic |G|A{Z’ = |b|A}
= |b{z:=a}|a by Lemma 36
= |€]a

— Assume e —pgsic € I8 [, = a,. ...l =pasic @

lela = |[l-.,l=a,..]d|a
= [...,l=]d|a,-.]I
—?basic |a|A
= |€'|a
— Assume e —pqsic €' 18 caseg[_,_,] (ci[T]ar...ar,) of {c1 = fi| ... | en = fu} —basic fiar...ak,.
lejla = |caseg[_,_,] (ci[t]ar...ar;) of {e1 = fi| ... |en = fulla

= casef . (ci[t]a|a .. |ar|a) of {er = |fila] ... [en = [fala}
—?basic |fz|A |(l1|A e |ak'i |A
= |fi(l1...(lki|4

= |¢]a

— Assume e —pggic €' is (let 2 = a : 7 in b) —pasic (let z=a:7inb'), with b —pasic b’

lefa = [bla{z = [a|a}
—pasic |V]a{z:=lala} by induction hypothesis and Lemma 29
= |letz=a:7inb'|a
= |¢]a

— Assume e —pgsic €' 18 (let x = a: 7 in b) —pasic (let @ =a’ : 7in b), with a —pgesic a'-

lela = [|bla{z:=]ala}
—pasic |blaf{z :=la'|a} by induction hypothesis and Lemma 30
= |letz=da:7inbla
= |€¢']a

Proposition 15 (Church Rosser for basic + é-reduction).

Let A € [Cslaer and a € E5 be such that a —pgicr5(a) a1 and @ —pqgicr5(a) az. Then there exists a term
b such that a1 ~pesicrs(a) b and az ~pesicys(a) b-

Proof. By Lemma 37, a —5(a) |ala, a1 —s5a) |ai|a and az —s(a) |az|a. By Lemmas 39 and 38, it fol-
lows that |a|a —basic |a1]a and |a|ao —pasic |a2|a. By Proposition 1, there exists a term b € £ such that
lai|a —pasic b and |az|a —pasic b. Hence, by composition, a1 —pasict-s(a) b and as —pasict-s(a) b-

Constructor subtyping (extended version) DRAF'L June 1999 ol

a
basicy %J(A)

ax 5(A) az
5(4) lala 5(4)
by wc
|al |A_ .|a2 |A
basig."'-.-._ _.-""...l.msic
b

5.4 Strong Normalization
Let us begin with the proof of strong normalization for d-reduction.

Definition 43. Let a € & and A € [Cslaes. The term a is in d-normal form (or é-nf) in A, if there is no
term b such that a —5(a) b

A term can be in d-normal form but not in basic-normal form.
Lemma 40. Let a € &;.
a is in d-normal form in A if and only if a € £ and FV(a) Ndom(A) =0
Proof. By induction on the structure of a. O

This states that a term a is in é-normal form in A if and only if a does not contain either local or global
definitions.

Lemma 41. Let A € [Cslaes and a € Es. Te term |a|a is the d-normal form of a in A.
Proof. 1t is easy to proof using Lemma 40
Definition 44. Let A € [Csldes and a € Es.
1. The term a d-strongly normalizes in A if there is no infinite d-reduction starting with a in A.
2. The reduction ¢ is strongly normalizing if for all pairs (A,b) € [Cslaer X Es, the term b d-strongly
normalizes in A.

By the Lemma 41 the normal form of for an arbitrary J-term exists, but there is no guarantees that all
0-paths starting at the term are finite.

In order to prove strong normalization for § we are going to define a function nat (.) : [Csldef X &5 =& IN
taht decreses with §-reduction.

Definition 45. The mapping nat (.) : [Cslaef X Es = IN is defined as follows:

nata, z=a:r, AQ() = natyp, (a) +1

nata(z) = 0 if x ¢ dom(A)
nata(ab) = nata(a) + nata(b)

natA(/\xT a) = nata(a)

nata([ls = a1,...,l, = ay]) = nata(ar) + ...+ nata(ay)
natA(a) = nata(a)

natA([0]ay...ar) = nata(ar) + ...+ nata(ag)

nata(casey,y a of {e1 = by | ... |cn = b 1) = nata(a) + nata(by) + ...+ nata(by,)

) (a)

nata(let z=a:7inbd

Gilles Barthe and Maria Joao Frade
Lemma 42. Let < Ay, Ay, Ay > € [Cslaef and a € E5. Then
FVa,(a) Ndom(Ay) =0 = nata, a, a,(a) = nata, a,(a)
Proof. By induction on the number of symbols in < Ay, Ay, Az > and in a. O
Definition 46. Let A, A’ € [Cslaes. We define A —5 A’ as follows:

a _>6(A1) a'

A,z =a:7,Ay =5 A,z =a' :7,4,
Lemma 43. Let A, € [Cslder and a,a’ € Es.
1. If a —5.) a' then nata(a) > nata(a’)
2. If A =5 A" then nata(a) > nata(a)

Proof. By simultaneous induction on the number of symbols in A and in a.
Here we only present the case that a = =

1. In this case a —5(a) @' IS T —5(A,,0=c:r, ;) € We have nata, z—e.r,A,(7) = naty, (e) + 1. By Lemma 42
nata, (e) = nata(e). Hence, nata(z) = nata(e) + 1 > nata(e).
2. Assume A —;5 A'. According to the Definition 46, suppose A = Ay, y = e : 7, Ay with e —5(a,) €' and
A=A y=¢€:1,A,.
— If z € dom(4A;) then nata(z) = nata/(z).
— If z = y then, by induction hypothesis, nata, (e) > nata,(e’). Hence, nata(z) = nata,(e) +1 >
nata, (¢) + 1 = nata/ ().
— If z € dom(Ay) then, by induction hypothesis, nata(z) > natas(z).
If ¢ dom(A) then nata(z) = 0 = natas ().

The rest of the cases are easy to prove. O

Proposition 16 (Strong normalization for 0). The reduction 6 is strongly normalizing.

Proof. Follows immediately form Lemma 43, part 1. O
nat (a) is an upper bound for the number of reduction steps in a d-reduction sequence starting at a in A.
Let us now turn to the proof of strong normalization for the basic + § reduction.

Definition 47. Let A € [Csldes and e € Es.

1. The term e basic+6-strongly normalizes in A if there is no infinite basic+4§-reduction starting with e in A.

2. The reduction basic+ 0 is strongly normalizing if for all pairs (A,b) € [Cs)des X Es, the term b basic+ d-
strongly normalizes in A.

The function |.|. may not map infinite basic-reduction sequences to infinite basic-reduction sequences.
For example: suppose there is an infinite basic-reduction sequence starting at a and hence at the expression
let z =a:7inb. If bis a basic + d-normal form and = ¢ FV(b), then there is no basic-reduction sequence
sarting at |let z = a: 7 in bl<s> = |bl<s{x :=|a|<>} = |b|<> =b.

The mapping |.|. erases the term a which could contain an infinite reduction sequence. So, this function
|.|. can not be used to study strong normalization for basic + §. Let’s define a new function ...

Constructor subtyping (extended version) DRAF'L June 1999 23

Definition 48. The mapping {.}. : Es X [Cslaes — & is defined as follows:

e
{abja = {a}a{b}a
{Az:r.a}a = AT {a}a
{[ll =ai,.. '7ln = an]}A = [ll = {al}Ay v 7ln = {an}A]
{a.l}A = {a}A.l
{clo]ai...ar}a = clo]{a1}a...{ar}a
{casely, aof {c1 = b1 |...[cn = bu}}ta = casef,; {a}a of {c1 = {bi}a|...|cn = {bn}a}

{letz=a:7inb}a = A&7 {b}ar=a:r){a}a

The mapping {.}. unfolds all global definitions and transfer every local definitions into a -redex. The redex
(Az:7. {b} A g=a:7){a} A is a special kind of B-redex since & ¢ FV({b} A g=q.:7)-
The mapping {.}. is extended to contexts.

Definition 49. The mapping {.} : Cs — C is defined as follows:

{<>} = <>
{lz:7} = {I'tz:7
{ze=a:7} = {I'},x:7

Similar properties proved for the projection [.|. hold for the function {.}..

Lemma 44.

1. If x ¢ FV(a) and = is A-fresh, then z € FV({a}a).
2. Let < Ay, Ao, Ag > € [Claes and a € Es such that FV a,(a)Ndom(As) = 0. Then {a}a,,a,,4, = {a}A,,A;-

3. Let < A,z =a:7,A3 >€ [Claer and a € E. Then {a} A, g=a:r,A, = {a}a,
Proof.

1. By induction on the number of symbols occuring in A and a.
2. By induction on the structure of a.
3. None of the variable in dom(z = a : 7, As) can occur in a. Hence, by 2., {a}a, g=a:r,4, = {a}a,.

Lemma 45. Let A,z = a: 7T € [Cslder and b € E5. Then
{byafz :={a}a} = {t{z:=a}}a = {b}a.=ar
Proof. By induction on the structure of b.

By the following lemma, {.} maps an infinite basic + d-reduction sequence to an infinite basic-reduction
sequence.

Lemma 46. Given e, e’ € & and A € [Cs|def-
1. € —basic e = {6}4 _);_asic {el}A
2. e —5(4) e = {6}4 _)bEasic {el}A
Proof.

1. By induction on the definition of € —p44i. €. Most cases follows immediately from induction hypothesis
and Definitions 39 and 48. Here are only the non-immediate cases:

Gilles Barthe and Maria Joao Frade

— Assume e —pggic € is (Az:T. @) b —pasic a{z := b}.

{e}a = {(Az7.a)db}a
(AT {a}a) {b}a
—basic {G}A{l’ = {b}A}

= {afz:=b}}a by Lemma 45
= {eI}A
— Assume € —pasic €' 18 [...,l = a,...].l =pasic @
feta = H{l-,l=gq,...Jl}a
= [,l:{a}Aa]l
—basic {G}A
= {eI}A
— Assume e —pasic €' is casef (ci[T]ar-..ax,) of {c1 = fi| ... [en = fa} Zbasic fiar ... ax,.
fea = Acasef, (cilt]ar...ap) of {e1 = fi| ... [en = fulla
= casegy (Glt[{ar}a .. Aaga) of {eo = {fital ... [en = {fu}a}
—basic {fl}A {al}A T {ak"i }A
= {fial...aki}A
= {eI}A
— Assume e —?basic e is (let r=a:Tin b) —?basic (let r=a:Tin bl)) with b —pasic b'.
{e}a = (Azr {d}ae=ar){a}la
—);rasic ()\1‘:7'. {b’}A,z:a:T) {a}A by induction hypOtheSiS
= {letz=a:7inb'}a
= {eI}A
— Assume e —psic € is (let x =a: 7 in b) —pasic (let x =a' : 7in b), with a —pasic @'
{e}a = Q@7 {b}as=ar){a}a

AT {b}a{z :={a}a}){a}a Dby Lemma 45
= e Q@ {b}a{z := {a'}a}) {a'}a Dby induction hypothesis and Lemma 30

asic

= (Az7. {b}ae=a:r){a'}a by Lemma 45
= {letz=d :7inb}a
= {¢}a

2. By induction on the definition of e —p,4 €. Here are only the non-immediate cases:

— Assume e —5a) € IS T —5(A, 2—a:r,A,) @ We have {T}5A, v—a:r,2,) = {a}a, and, by Lemma 44
part 3, {a}A1 = {a}d(Al,z:a:T,Ag)-

— Assume e —5(4) €' is (let x =a: 7 inb) —54) (let z =a':7 inb), with a —5a) a’.

{e}a = (Qwr {blas=ar){a}a
Azr {b}a{z :={a}a}){a}a by Lemma 45
= e Q@ {b}a{z :={a'}a}) {a’}a by induction hypothesis and Lemma 30
= (Azr. {d}az=a:r){a'}a by Lemma 45
= {letz=da:7inb}a

= {¢}a

— Assume e =54y €' is (let z =a:7inb) =54 (let x=a:7inb'), with b =54 '

{e}a = (Azr {d}ae=ar){a}la
_>bzasic ()\1‘:7'. {b’}A,z:a:T) {a}A by induction hypOtheSiS
= {letz=a:7inb'}a

= {e}a

Constructor subtyping (extended version) DRAF'L June 1999 bb)

— Assume e —5(4) €' is (let x =a : 7 in b) =504 b, because x ¢ FV(b).

{e}a = (o1 {b}ag=ar){a}a
—basic {b}A7z=a:T{m = {G}A}
= {b{z:=a}}a{r:={a}a} by Lemma 44

= {b}a
= {e'}a

The rest of the cases are easy to prove. ad
Lemma 47.

L= {a’}A “basic {GI}A

1. a —5(A) @
2. @ =pasicts(A) @' = {a}a =pasic 10'}a
Proof. Immediate, by Lemma 46. O

The following lemma states that {.}. mapps expressions that are typeble in A_, [data,def tO expressions
that are typeble in A_, [} data-

Lemma 48. Let I' € Cs5, e € &5 and 0 € Tx.
F l_csg €. o = {F} |_CS {e}[r]def ‘0
Proof. By induction on the derivation of I" .4, e : 0. Suppose the last step in the derivation is

(start) I' bFeg; e:0is I’ Fegy o2 o, withw : 0 € I'. Then x : 0 € {I'} and {z},, = =. Hence
{F} Fes {m}[[‘]del - 0.

I'ksa:7T—>0 I'kes,a :r

(application)
I'Fes;aa 0
By induction hypothesis {I'} F.s {a}r),, @ 7 = o and {I'} Fes {a'}r), @ 7. By (application),

{I'} Fes {a}iryu, {0}) : 0. Hence, {I'} Fes {aa'} i, : 0.

I+ :
(global) cs 477
INe=a:7kes, ¢:7

We have {z}(1,..2=a:r = {0} and {I',z = a : 7} = {I'}, 2 : 7. By induction hypothesis, {I'} Fs
{a}r)y : 7- Hence, by Lemma 5, {I'}, 2 : 7 bes {a}(ry,, : 7

if x is I'-fresh.

I'bFessa:7 I'N'z:7T Fess 00
I'kFe, (letx=a:7inb):o
We have {let x = a: 7 in b}, = AT {b} s ,0=air) 10} [M)as-
By induction hypothesis, {I'} s {a}iry,, @ 7 and {I, x : 7} Fes {b}r), : 0. So, by (abstraction),
{I'} Fes (Az:r. {b}p,.) : T — 0. Hence, by (application), {I'} Fes (A {b}ir),) {0} 1] : O

(local)

The remaining cases are easy to prove using the induction hypothesis and Definition 48. a

Proposition 17 (Strong normalization for basic + 0). The reduction basic + § is strongly normalizing
on typeble expressions:
I FCSS a:0 = a¢€ SN(_)baSiC+(5([F]def))

Proof. We know, by Proposition 12, that —p4sic is strongly normalizing on typeble expressions. Supposed
(towards a contradiction) that I" k., a : o and that there is an infinite basic + §([I']¢ef)-reduction sequence,
¢, starting at a.

Since § is strongly normalizing, ¢ must have an infinite sequence of basic-reductions. Otherwise it would
follow that there is a ng € IN such that Vm > ng. am —5(a) @m+1- Hence we would have the infinite sequence

Gilles Barthe and Maria Joao Frade

Ano+1 —2§(A) Gno+2 —s(A) ---- But, as § is strongly normalizing this can not happend. Hence, the number
of basic-reduction steps in the sequence a —pasict5(A) @1 —Fpasic+5(A) @1 —basic+s(4) - -- 1S infinite. Then
this sequence is of the form

a —5(A) Qpn, —?basic Ony —5(A) Ang —?basic Ony 5(A) .-

By Lemmas 46 and 47 there is an infinite basic-reduction sequence starting at {a}a

{a}A basic {anl}A _)b+asic {anz}A Pbasic {ang}A _>;rasic {an4}A —Pbasic - -

By Lemma 48 {I'} F¢s {a}[r),, : o which contradicts the assumption that —pasic is strongly normalizing. O

6 Adding fixpoints

A, [)data,def has a very restricted computational power. In particular, it does not support recursion. In this
section, we present an extension of A, [] gata,der With fixpoints, A,] data,def,fix, and we study some properties
of the resulting calculus.

In A, [} data,def We may have recursive datatypes but we don’t have yet a way of expressing recursive
definitions, so that we can program and reason with the elements of these datatypes.

A possible way of expressing recursion is to associate an elimination rule to each inductive type. But
in this approach, the only way of describing a function on a recursive datatype is to codify it using the
elimination constant for that datatype.

Sometimes it is difficult (not evident) to describe certain functions using this technique. Instead of using
elimination constants to define recursive functions, we extend A_, [} gata,def With a fixed point operator for
doing recursive definitions named letrec. This technique is closer to the functional programming languages,
where a recursive function is defined directly by a set of pattern matching equations.

Definition 50 (Expressions). The set of expressions &, is the extension of &5 with the clause
letrec;(x1 : 71 =k, G1y.- -, T : T =k, Gp)

The operator letrec is used to define functions over recursive datatypes. As it is suggested by this ex-
pression scheme, we may have mutually recursive definitions. The integer ¢ in the letrec; indicate which
function is being defined and the integers ki, ..., k, point out on which inductive argument of the function
the recursion is done.

Example 13. Remember the following legal datatype context, already presented in previous sections, defining
the Nat, Odd and Even datatypes:

Ny = ;5 : Even — Odd, 0 : Even, s : Odd — Even;
No = Ny 0: Nat, s : Nat — Nat, s : Odd — Nat, s : Even — Nat;

The addition and multiplication of two natural numbers can be defined as follows:

+ = letrec; (p : Nat — Nat — Nat
=1 Az:Nat. A\y:Nat. caseNet z of {0 = y |
s = AnNat.s(pny)}
) : Nat — Nat — Nat

x = letrec; (¢ : Nat — Nat — Nat
=1 Az:Nat. A\y:Nat. caseY2l z of {0 = 0 |
s = An:Nat. +y(tny)}
) : Nat — Nat — Nat

Constructor subtyping (extended version) DRAF'L June 1999 byg

Ezample 1. The addition of two odd numbers and the addition of an odd and an even number, declared in
a mutually dependent way.

+o00 = letrec; (+40 : Odd — Odd — Even
=1 Az:0dd. \y:0dd. case&'T" = of { s = An:Even.s(+¢ny)}

+eo : Even — Odd — Odd
=1 Az:Even. A\y:0dd. caseQdd zof { 0 = y |
s = An:0dd. s (+,ony)}
) : Odd — Odd — Even

+oe = letrecs (+¢c : Even — Even — Even
=1 Az:Even. A\y:Even. casel¥e" z of {0 = y |
s = An:0dd. s (+oeny)}

+oe : Odd — Even — Odd
=1 Az:0dd. Ay:Even. case394 z of { s = An:Even. s (+..ny)}
) : Even — Even — Even

Example 15. The mutually dependent definition of the multiplication of two odd numbers.

X o0 = letrec; (X, : Odd — Odd — Odd
=1 Az:0dd. A\y:0dd. case3dd z of { s = An:Even. +opy (Xeony)}

Xeo @ Even — Odd — Even
=1 Az:Even. A\y:0dd. caselYe" z of {0 = 0 |
s = An:0dd. 400y (Xeony)}
) : 0dd — Odd — Odd

letrec expressions introduce bound variables. Therefore we can use a-conversion when necessary. In
letrec;(x1 : 71 =g, Q1,---,%n : Th =k, Gn), the variables x1,...,z, are bound.

Definition 51. Let M € &;,,. The set of free variables of M, denoted by FV(M), is defined by extending
the Definition 32 with the following clause:

FV(letrec;(zy : 71 =k, @1y, Tt Tn =k, @n)) = (FV(a1) U... UFV(ay))\{z1,..., 20}

Definition 52 (Substitution). Let M, N € &, and x € V. The substitution of N for x in M, denoted by
M{x := N}, is defined by extending the Definition 36 with the following clauses:

letrec;(z1 : 71 =k, Q1,-..,%Tn : Ty =k, Gn){T; := N} = letreci(z1 : 71 =g, @1,...,%p : Tn =k, an) if1<j<n
letrec; (1 : 71 =g, Q1. Ty : Ty =k, an){z: =N} = letreci(zy : 1 =, ar{z :=N},..., 2 : 70 =k, an{z:= N})
By the variable convention, in the second clause of the previous definition the variables z1,...,z, don’t

occur free in the term N, and z; # « for 1 <i < n.

Recursive objects are defined by fixpoint definitions as in functional programming languages but, to
avoid the introduction of non-normalizable terms, some syntactical checking must be done on the recursive
definitions before being accepted. In the typing rule of the letrec-expressions there will be a syntactical
condition (called G) that should be satisfied. This kind of mechanism was introduced in [17]. Let us first
present the typing rule and then discuss the condition G.

Definition 53 (Typing).

1. A judgment is a triple of the form I' +.5 , a: 7, where I' € C5, a € &, and T € Tx. In order to
enhance readability, we will often omit the subscript css, of .

Gilles Barthe and Maria Joao Frade

2. A judgment is derivable if it can be inferred from the set of typing rules that result of adding the following
rule to the rules of system A_,] data,def-

I fi:m,..., fa:imn Faj:m Gm (O, fi, zi,b;) (1<i<n)
I' F letrec;(fi : T =k, Q1,.. oy fro 1 Tn =k, Gn) : Tj

with 1<j<n

Ti=pP1 = --- = Pki—1 — dz[O'l] — Y

a; =)\lepl. AN)\Zki_llpki_l.)\Cﬂldl[dl] bl

M= {(fi, k)5 (fns kn)}

3. An expression a € &, is typable if I' = a: o for some I' € Cs and type o € Tx.

(letrec)

We introduce now the formal definition of the u-reduction.
Definition 54 (Reduction).

1. The p-reduction, —,, is defined as the compatible closure of the rule:

letrec;(x : T =k @) p1...pr;—1 (clo]b) —,
a;{x, ;= letrecy(x : T =g @), ..., x, = letrec,(x : T = @)} p1...pk;,—1 (c[o] b)

2. Let A be a list of definitions. —pasicis(a)y+p 5 defined as —pasic U —r5a) U =y We let —iop0 =
Pbasic+6(A) -

In order to keep the strong normalization property, the u-reduction will only be performed when the
argument in position of the recursive variable (whose type should be a datatype) starts with a constructor.

In the (letrec) rule there is a syntactical condition Gm(0, fi, x;,b;) for each f; defined in the letrec-
expression. It is so, because we have mutual dependent definitions. These conditions complement the u-
reduction rule, ensuring that each expansion of the letrec operator consumes (at least) the constructor in the
head of the k** argument.

Informally, the term letrec; (f : 7 = a) should satisfy the following constraints (note that we don’t have
here a mutually dependent definition):

— f may occur in a only at the head of an application;

— any application of f must be protected by a case analysis of the k" abstraction of a, say ;
— the k" argument in the application of f must be a component of z;

only recursive components of x are authorized to be the argument of a recursive call.

For example, the definition of + over Nat in example 13 verifies these requisites: p occur only at the head
of the application (pny); the application of p, (pny), is protected by a case analysis of = (the first variable
abstracted) and n is a component of x (since for this case we have ¢ = sn).

When we have a mutually dependent definition letrec;(f1 : 71 =g, @1,...,fn : T =k, Gn) We have
to make some adjustments on this ideas, because f; may not occur directly in a;, but indirectly through
another f; (with 1 <4’ <n) such that f; occur (directly or indirectly) in fi . So we can say that the term
letrec;(fi : 71 =k, @1,..., fn : Tn =k, @) should satisfy the following requirements:

— fi# may occur in a; only at the head of an application;

— any application of fi must be protected by a case analysis of the k" abstraction of a;, say z;;
— the kI argument in the application of fi must be a component of z;;

— only recursive components of x; are authorized to be the argument of a recursive call.

See in example 14 the definition of +00: +,, and 4, occur at the had of applications (+,,ny) and
+eo 1Y, respectively; the application of +, is protected by a case analysis of z, the recursive argument
of +,,; the application of +,, is protected by a case analysis of z, the recursive argument of +.,; n is a
component of z (in bought cases).

Constructor subtyping (extended version) DRAF'L June 1999 29

The direct components of z; are represented by terms of the form (zp; ...p,) with z being a pattern
variable of the case analysis which protect the application. Further matchings on these terms allow to access
to deeper components of x.

A pattern variable y; representing a component of z; is recursive if the type of z; occurs in the type of y;

In order to know which are the recursive components of a given object, we define an auxiliary predicate
RP that indicates the recursive positions of a given d-constructor type.

Definition 55 (Recursive position).

Let 7 = p1 = ... = pn — d[a] be a d-constructor type. We say that the number j corresponds to a
recursive position of T if d[oe] appears in the type p;. We write this property as RP(j,7).

As we already mentioned there is a syntactical condition Gy (0, fi, z:,b;) (1 < i < n) that should be
satisfied as part of the typing rule (letrec). This condition G constrains the occurrences of f; allowed in the
body of the operator letrec and it will be called to be guarded by destructors because, as we said before, any
application of fi must be protected by a case analysis of the k" abstraction of a;.

The formal description of the guarded-by-destructors condition is given by a predicate Gu(V, f,z,b)
defined by induction on the term b. M is a set of pairs that to each function identifier associate the position
of the inductive argument on which the recursion is done. V' is a set of identifiers used to collect the pattern
variable in b which represent the recursive components of x. f is the name of the function we want to test
it is guarded by destructors in b. x is the recursive argument of f.

Definition 56 (Guarded by destructors).

Let M be the set of pairs of identifiers and positive integers, V a set of identifiers, f and x identifiers, and
b a term. The predicate Gu(V, f,x,b) is defined inductively by the following rules (where f nocc e denotes
that f does mot occur in e):

comentar

60 Gilles Barthe and Maria Joao Frade

) f nocce
. gM(V7f7m7e)
2 gM(V;f;x)e)
' Gu(V, f,x, A\ziT.€)
gN(vaamaai) (]_SZSH) .
N=MU{(g1, k1), (Gn, Fn
Gm(V, fyx, letreci(g1 : 71 =k, G1, .-y Gn : T =k, Qn)) i k), (g }
(2 e VUu{z}
aun(, f,z,e;) (1<i<n) if bi = A\y1:p1- - - AYn,Ph,; - €i
Gu(V, f,a,case,y z of {c1 = bi| ... [co = bn}) ’ Ti=EpL— .. ph, =T
(U =V Uy |RP(.7), for 1< j < hi}
(e g VU {z}
Gu(V, f,z,e) Gu(U, f,,e;) (1<i<n) if bi = Ay1ip1- - - AYn;Ph;- €i
Gu(V, f,x,case],y e of {c1 = bi| ... |cn = bn}) ’ TiZEpL— .. ph, =T
U=V Uty [RP(Im), for 1< < hi)
((9,k) €M
' Gu(V.f.e. (gpr---pa)) P = (201---Gm)
z €V
7. gM(Vafa'rag) gM(V,f,x,pi) (ISZSn) , lf (g,T)gM
QM(V,f,l”,(gmpn))
8 gM(V,f,l',(li) (]_SZSH)
. gM(Vafaxa[ll :al,...,lnzan])
9 gM(V;f;x)e)
- gM(V;f)x>e'l)
10 Gu(V, f,z,a;) (1<i<n)
. gM (V7 f:ma (C[U] ai .. an))
11 gM(Vafamya) gM(V,f,Z’,b)
' Gu(V, f,x,(let y=a:7inb))

Ezample 16. Let us expand the datatype context N, with the declarations of the datatypes List[a], NeList[a],
Bool and BinTree[q].

N3 = Ny nil : List[a], cons : a — List[a] — List[a];

Ny = N3 cons : @ — List[a] — NeList[a];

N5 = Ny true : Bool, false : Bool;

Ng = R5 empty : BinTree[a], node : BinTree[a] — BinTree[a] — BinTree[a];

The predicate that indicates if a natural number is even or not may be defined as follows:

Constructor subtyping (extended version) DRAF'L June 1999 61

even = letrec; (e : Nat — Bool
=1 Az:Nat. caseR9! x of {0 = true |
s = Ay:Nat. caseRo%! y of {0 = false |
s = AzNat. (ez)}}
) : Nat — Bool

If we look at the typing tree of the function even we see the condition

Gm(D, e, x,casel% z of {0 = true |s = A\y:Nat. caseR°? y of {0 = false |s = A\zNat. (ez)}})

with M = {(e, 1)}, must be verified. Let us present its proof tree

e nocc 2z
e nocc false Gu{y,z},e,,2)
e nocc true gM({y}aeamafalse) QM({y,z},e,x, (6,2’))

Gu(0, e, z,true) Gu({y}, e, x,caseRo0!l y of {0 = false | s = Az:Nat. (ez)})
Gm(D,e,z,caseRo% z of {0 = true |s = Ay:Nat. caseR°% y of {0 = false |s = AzNat. (ez)}})

Example 17. Here we present the addition of two even numbers.

+eg = letrec; (+ee : Even — Even — Even
=1 Az:Even. Ay:Even. casel¥e" z of {0 = y |
s = An:0dd. s (+eoyn)}

+eo : Even — Odd — Odd
=5 Az:Even. A\y:0dd. case34d y of { s = An:Even. s (+cenz)}
) : Even — Even — Even

The definition of +gg is done in a mutually deppendent way. In +.. the inductive argument is the first one
and 4+, has as inductive argument the second one.
To show +gg is well defined we have to verify its definition satisfies the guarded condition. For that, we
need to demonstrate that predicates
Om (D, +ee, 1,2, \y:Even. case¥® x of {0 = y|s = An:0dd.s (+eoyn)})

Even

G (D, +eo,2,y,caseddd y of {s = AnEven. s (+e.nz)})

are valid, with
M = {(+ee: 1)7 (+eoa 2)}

In the following we present the proof for the first one. The remaining predicate can be proved in a similar
way.

+¢e NOCC N +¢e NOCC N
om({n}, +ee, z,n) Qm({n},he,w,y)ﬁ
40 NOCC Y Gm({n}, +ee, T, +oe nY) 10
G0, +ce,z,y) Gu{n}, +ee,z,5 (+eoyn))

G (D, +ce, m,caseE¥em x of {0 = y|s = An:0Odd. s (+eoyn)})
Gm(D, +ce, z, \y:Even. caseE¥®" x of {0 = y|s = An:0dd.s (4+eoyn)})

Even

In the following examples we declare a serie of well defined recursive functions. In the proof of the guarded
conditions for these functions almost all cases of Definition 56 are used.

Gilles Barthe and Maria Joao Frade

Ezample 18. The lenght of a list.

lenght = letrecy (len : List[a] — Nat
=1 A:List[a]. case, 1 of { nil = 0 |

cons = Aha. AtList[a]. s (lent)}
) : List[a] — Nat

Example 19. The maximum of a list of naturals.

bigger = letrec; (big : Nat — Nat — Nat
=1 Az:Nat. Ay:Nat. caseJ?l x of {0 = y |
s = Am:Nat. (bignm)}
) : Nat — Nat — Nat

maximum = letrec; (max : NeList[Nat] — Nat
=, Al:NeList[Nat]. caseﬁgiist[Nat] 1l of { cons = AM:Nat. At:List[Nat]. (biggerh (maxlt))}

max| : List[Nat] — Nat
=1 AlList[Nat]. casef{ i,y 1 of { nil = 0
cons = Mh:Nat. At:List[Nat]. (biggerh (maxlt))}

) : NeList[Nat] — Nat
Example 20. The function map.

map = letrec; (m : (a; = a2) — List[ay] — List[as)]
=5 Afion = ap. NiList[an). caser (2] 1 of { il = nil[as)] |

cons = Ax:ay. AtList[aq]. (cons[as] (f z)(m ft))}
) : (a1 = az) — List[ay] — List[as)]

Example 21. The function append that makes the concatenation of two lists.

append = letrec; (app : List[a] — List[a] — List[a]
=1 Aa:List[a]. A\bList[a]. caseiiz:%a] aof {nil = b|

: cons = Aha. At:List[a]. (cons[a] h (apptd))}
) : List[a] — List[a] — List[q]

Ezample 22. The function inorder.

inorder = letrec; (io : BinTree[a] — List[q]
=1 AbBinTree|a]. caseléliff%ﬂe[a] b of { empty = nilla]|
node =

Az:a. AlList[a]. Ar:List[a]. (append (io1)(cons[a] z (ior)))}
) : BinTree[a] — List[a]

Ezample 23. The function reverse that makes the invertion of a list.

reverse = Al:List[a]. (let
rev = letrec; (r : List[a] — List[a] — List[q]
=5 Az:List[a]. Ay:List[c]. casefitm yof {nil = x|
cons = Aha. AtList[a]. r (cons[a] h x) t}
) : List[a] — List[a] — List[q]
in (rev (nil[a]) 1))

Constructor subtyping (extended version) DRAF'L June 1999

Ezample 24. The function neglist that negates all the elements of a list of booleans.

neglist = letrec; (neg : List[Bool] — List[Bool]
=1 MlList[Bool]. casej Mool 1 of { nil = nil[Booll |
cons = Ah:Bool. At:List[Bool].
(let not = (Az:Bool. caseB%9 x of { true = false|
false = true}) : Bool — Bool
in (cons[Bool] (not h)(negt))
)

) : List[Bool] — List[Bool]

Ezample 25. The function filter that takes a list of records of type [n : Nat,f : Bool] and removes all the
records where f = false.

filter = letrec; (p : List[[n : Nat,f: Bool]] — List[Nat]
=1 ALList [n : Nat, £ : Bool]]. case o vstaq gpooy| L OF { nil = nil[Nat] |
cons = Ah:n : Nat,f: Bool].
At:List[[n : Nat, f : Bool] . casegff)ENat] (bf) of { false = pt|
true = cons[Nat]h.n (pt)}
}

) : List[[n: Nat,f: Bool]] — List[Nat]

Example 26. The function mev that takes a list of naturals and marks each number with a boolean value
saying if this number is even or not.

mev = letrec; (f : List[Nat] — List[[n : Nat, b : Bool]]
=1 M:List[Nat]. case iy ixiny U 1 of { nil = nil[[n : Nat,b : Bool]] |
cons = Ah:Nat. At:List[Nat].
(cons|[n : Nat,b : Bool]][n = h,b = (even h)] (f t))
}

) : List[Nat] — List[[n : Nat,b : Bool]]

Gilles Barthe and Maria Joao Frade

Proposition 18 (Confluence). The relation —iota1 is confluent on typable expressions

Proof. We already know that —4gsic+s is confluent. Using the Tait-Martin-Lof technique, one can prove —,
is confluent. To conclude, observe that —44sic+5 and —, commute, hence by the Hindley-Rosen Lemma their
union is confluent. O

Lemma 49. IfIN,zi:71,...,In,xn T, I ny1 & Mo and In,...,I 41 F N;:1; for 1 <i <n, then
Fl,...,Fn+1 F M{Z’l C:Nl,...,l’n ::Nn}:a.

Proof. By induction on the generation of I, zy : 7,...,In, 2y : TnyIny1 F M : o, assuming that
In,...,I'hy1 F N;:1;is derivable for 1 <¢ < mn. ad

Lemma 50. IfI" v M Ny...Ny : o, then there exist types p1,...,pn such that I' = M :p; — ... =
pn =0, witho' <o,and I' = N;:p; for 1 <i<n.

Proof. By inspection on the derivition of I’ M Ny...N, : o. O
Lemma 51. IfI' & letrec;(fi : 71 =k, @1y, fn tTn =k, Gn) 10, then I, f1 i1y, ..., fo i Tn & a; 7 for
1< <n.

Proof. By inspection on the derivition of I' & letrec;(fi : 71 =k, a1,..., fn : Th =k, Gn) : 0. O

Proposition 19 (Subject reduction). Typing is closed under —tota;:
I'ta:0 N a—=4ptab = ['Fb:o

Proof. By induction on the derivation of I' F a : o . This proof is very similar to the proof of Proposition
13. We only have to consider two new cases:

1. When the last rule applied is the (letrec) rule. In this case a = letrec;(f1 : 1 =k, G1,..., fn i Tn =k, An)
with 1 < j<n,oc=71and I' F a:oisa direct consequence of I', fi : 71,....fn : T F a; :7j.
Then the only way a can be reduced is a; —¢otar @}, with 1 < ¢ < n. In this case, letrec;(..., fi : Ti =,
Qi - -.) —total letreci (..., fi 1 7 =g, a},...). By induction hypothesis I, fi : 7,..., fn : 7 F a}:7, for

1<i<n.Hence, I' - letrec;(..., fi : i =&; a,...) : 7; follows using (letrec).

2. a = letrecj(fy : 71 =k, 1,..., fn ¢ Tn =k, Gn)P1...Pk;—1(c[o]b). In this case a —iopar b With b =
aj{fi :=letrec(f : T =r a),..., fr :=letrec,(f : T =p @)} p1 ... pr;—1 (c[o] b). By Lemma 50 we have
I' & letrec;(f1 : 71 =k, A1, frn: Tn =k, Gn) :p1 = ... = prj—1 = pr; = 0 witho' <o, I' F p,:p,
for 1 <r <kj—1,and I' - (c[o]b) : ps,.
By Lemma 51 we have I', f1 : 71,...,fn:7Tn F aj:p1 = ... = pr;—1 — pr; — o'. Using Lemma 49,
I' = aj{fi:=letreci(f : T = a),..., fn:=letrec,(f: T =g a)}:p1 — ... = pr;—1 — pr; — o'. Then,

using the (application) rule k; times we get I' + b:o'. Hence, I' b: o follows by (subsumption).
O

7 Coherent overloading

Definition 57 (Expressions). We extend the set of expressions of 5, with the clause
{(ll : dl[’Tl] —> 01,...,0p dn[’Tn] — Un}
Definition 58 (Coherence). Let

Definition 59 (Typing).
A judgment is derivable if it can be inferred from the set of typing rules that result of adding the following
rule to the rules of system A_, [] data,def fix-
Ik oa;:di[m] = oy (1<i<n)
I' b {ay :di[m1] = 01, .. apn dplmn] = o0} di[Tk] = 0ok

, with 1<k<n, ifag ~...~ap

Constructor subtyping (extended version) DRAF'L June 1999 65

8 Conclusion and directions for further work

In this paper, we have introduced a simply typed A-calculus with record types and parametric datatypes.
The calculus supports a combination of record subtyping and constructor subtyping and thus provides a
flexible type system. We have shown the calculus to be well-behaved.

In the future, we intend to study definitions for A_, [j 4ata and its extensions. Our goal is to aggregate a
theory of definitions which is flexible enough to support overloaded definitions, such as multiplication x:

* = x1 : Nat - Even — Even

= %5 : Even — Nat — Even
x3 : Odd — Odd — Odd
= %4 : Nat — Nat — Nat

where each x; is defined using case-expressions and recursion. As suggested by the above example, the idea
is to allow identifiers to stand for several functions that have a different type. To do so, several options exist:
for example, one may require the definitions to be coherent in a certain sense. Alternately, one may exploit
some strategy, see e.g. [10,20], to disambiguate the definitions. Both approaches deserve further study.
Furthermore, we intend to scale up the results of this paper to more complex type systems.

1. Type systems for programming languages: in line with recent work on the design of higher-order typed
(HOT) languages, one may envisage extending A_, ata With further constructs, including bounded
quantification [9], objects [1], bounded operator abstraction [11]. We are also interested in scaling up
our results to programming languages with dependent types such as DML [31]. The DML type system is
based on constraints, and hence it seems possible to consider constructor subtyping on inductive families,
as for example in X i < X j if i < j where X i is the type {0, ...,i}. Extending constructor subtyping to
inductive families is particularly interesting to implement type systems with subtyping.

2. Type systems for proof assistants: the addition of subtyping to proof assistants has been a major moti-
vation for this work. Our next step is to investigate an extension of the Calculus of Inductive/Coinduct,
see e.g. [16], with constructor subtyping. As suggested in [5,12], such a calculus seems particularly
appropriate to formalize Kahn’s natural semantics [21].

In yet a different direction, it may be interesting to study destructor subtyping, a dual to constructor sub-
typing, in which an inductive type o is a subtype of another inductive type 7 if o has more destructors than
7. The primary example of destructor subtyping is of course record subtyping, as found in this paper. We
leave for future work the study of destructor subtyping and of its interaction with constructor subtyping.

References

1. M. Abadi and L. Cardelli. A theory of objects. Springer-Verlag, 1996.

2. H. Barendregt. The Lambda Calculus: Its Syntar and Semantics, volume 103 of Studies in Logic and the Foun-
dations of Mathematics. North-Holland, revised edition, 1984.

3. H. Barendregt. The impact of the lambda calculus in logic and computer science. Bulletin of Symbolic Logic,
3(2):181-215, June 1997.

4. B. Barras et. al. The Coq Proof Assistant User’s Guide. Version 6.2, May 1998.

G. Barthe. Order-sorted inductive types. Information and Computation, 1999. To appear.

6. G. Barthe and M.J. Frade. Constructor subtyping. In S.D. Swierstra, editor, Programming Languages and
Systems, volume 1576 of Lectures Notes in Computer Science, pages 109-125. 8th European Symposium on
Programming, ESOP’99 Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS’99 Amsterdam, The Netherlands, Springer-Verlag, March 1999.

7. G. Betarte. Dependent Record Types and Algebraic Structures in Type Theory. PhD thesis, Department of
Computer Science, Chalmers Tekniska Hogskola, 1998.

8. L. Cardelli. Type systems. ACM Computing Surveys, 28(1):263—264, March 1996.

9. L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism. ACM Computing
Surveys, 17(4):471-522, December 1985.

10. G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with subtyping. Information and
Computation, 117(1):115-135, February 1995.

o

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.
26.
27.

28.

29.

30.

31.

Gilles Barthe and Maria Joao Frade

. A. Compagnoni and H. Goguen. Typed operational semantics for higher order subtyping. Technical Report
ECS-LFCS-97-361, University of Edinburgh, July 1997.

T. Coquand. Pattern matching with dependent types. In B. Nordstrém, editor, Informal proceedings of Logical
Frameworks’92, pages 66-79, 1992.

T. Coquand. Infinite objects type theory. In H. Barendregt and T. Nipkow, editors, Types for Proofs and
Programs, volume 806 of Lecture Notes in Computer Science, pages 62—78. Springer-Verlag, 1993.

Rowan Davies. A practical refinement-type checker for standard ml. In Sizth International Conference on
Algebraic Methodology and Software Technology.

E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of theoretical computer science,
volume B, pages 995-1072. Elsevier Publishing, 1990.

E. Giménez. Structural recursive definitions in Type Theory. In K.G. Larsen, S. Skyum, and G. Winskel, editors,
Proceedings of ICALP’98, volume 1443 of Lecture Notes in Computer Science, pages 397-408. Springer-Verlag,
1998.

Eduardo Giménez. Codifying guarded definitions with recursive schemes. Technical Report 95-07, Ecole Normale
Supérieure de Lyon, 1994.

J. Goguen and R. Diaconescu. An Oxford survey of order sorted algebra. Mathematical Structures in Computer
Science, 4(3):363-392, September 1994.

H. Hosoya, B. Pierce, and D.N. Turner. Subject reduction fails in Java. Message to the TYPES mailing list,
1998.

M.P. Jones. Dictionary-free overloading by partial evaluation. In Proceedings of PEPM’94, pages 107-117, 1994.
University of Melbourne, Australia, Department of Computer Science, Technical Report 94/9.

G. Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical Aspects of Computer Science,
volume 247 of Lecture Notes in Computer Science, pages 22-39. Springer-Verlag, 1987.

Z. Luo. Coercive subtyping. Journal of Logic and Computation, 199x. To appear.

S. Marlow and P. Wadler. A practical subtyping system for Erlang. In Proceedings of ICFP’97, pages 136-149.
ACM Press, 1997.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised). The MIT Press,
1997.

J. Palsberg and M.I. Schwartzbach. Object-Oriented Type Systems. John Wiley & Sons, 1994.
J. Peterson and K. Hammond (editors). Haskell 1.4.: A Non-strict, Purely Functional Language, April 1997.

F. Pfenning. Refinement types for logical frameworks. In H. Geuvers, editor, Informal Proceedings of TYPES’93,
pages 285-299, 1993.

B.C. Pierce and D.N. Turner. Local type inference. In Proceedings of POPL’98, pages 252-265. ACM Press,
1998.

F. Pottier. Synthése de types en présence de sous-typage: de la théorie la pratique. PhD thesis, Université Paris
VII, 1998.

N. Shankar, S. Owre, and J.M. Rushby. The PVS Proof Checker: A Reference Manual. Computer Science
Laboratory, SRI International, February 1993. Supplemented with the PVS2 Quick Reference Manual, 1997.

H. Xi and F. Pfenning. Dependent types in practical programming. In Proceedings of POPL’99. ACM Press,
1999. To appear.

Further examples

Ezample 27. The BOPL (Basic Object Programming Language), see [25]: this example describes the syntax

of

gr
SO

the Basic Object Programming Language. We use as datatype identifiers the non-terminal symbols of the
ammar. In many situations we have to represent a list of something or an entity that may be a list of
mething or the emptiness. So we choose to declare initially the datatypes a List and ’a List?.

Constructor subtyping (extended version) DRAF'L June 1999

datatype ’a List = nil
| cons of (’a * ’a List)
and ’a List? = epson
with ’a List < ’a List? ;
datatype LETTER =a | ... |l z | A | ... | Z;
datatype DIGIT =0 ... | 9;
datatype ID = idl of (ID * LETTER)
| idd of (ID * DIGIT)
with LETTER < ID ;
datatype INT = int of (DIGIT * INT)
with DIGIT < INT ;
datatype BINOP =+ | 2= | ’%> | ’=> [and | or | ’<’ ;

datatype EXP = op of (EXP * BINOP * EXP)
| false | true | nil | self
| not, class, () of EXP
| 7:=? of (ID * EXP)
| 7; , while of (EXP * EXP)
| new of ID
| instof of (EXP * ID List)
| sendmes of (EXP * ID * EXP List)
with INT < EXP ,
ID < EXP ;

datatype DEC
with ID List < DEC ;

datatype FORMALS args of DEC List? ;

datatype VAR var of DEC ;

datatype METHOD method of (ID * FORMALS * EXP) ;

datatype CLASS class of (ID * VAR List? * METHOD List?)

| class_is of (ID * ID) ;

datatype PROGRAM = prog of (CLASS List * EXP) ;

Gilles Barthe and Maria Joao Frade

Ezample 28. CAM - Categorical Abstract Machine [21]

datatype VALUE

datatype COM

and COMS

i of INT | b of BOOL | null_value ;

branch of (COMS * COMS)

cur of COMS

push | swap | app | rplac | op | car | cdr | cons
quote of VALUE

coms of COM List

with COM < COMS ;

datatype PROGRAM = program of COMS ;

Ezample 29. Here we return to the list datatype, declaring the following hierarchy:

datatype

datatype

datatype

datatype

'a NELIST

'a_SINGLETONl

’a ELIST = Nil ;
’a LIST = Nil

| Cons of (’a * ’a LIST)

| Cons of (’a * ’a ELIST) ;
’a NELIST = Cons of (’a * ’a LIST)

| Cons of (’a * ’a ELIST) ;

’a SINGLETON= Cons of (’a * ’a ELIST) ;

Note that we declare the empty list type as a parametric datatype >a ELIST in order to have the subtyping
relation ’a ELIST < ’a LIST. We can conclude that ’a ELIST < ’a LIST, ’a NELIST < ’a LIST, ’a
SINGLETON < ’a LIST and ’a SINGLETON < ’a NELIST. This example can be written more compactly as

follows:
datatype ’a ELIST = Nil
and ’a SINGLETON= Cons of (’a * ’a ELIST)
and ’a LIST =
and ’a NELIST = Cons of (’a * ’a LIST)
with ’a ELIST < ’a LIST ,

’a NELIST < ’a LIST ,
’a SINGLETON < ’a NELIST ;

Note that, by transitivity, we have ’a SINGLETON < ’a LIST.

Ezample 30. The definition of Harrop formulae. This example is adapted from [27].

datatype ’a Form

and

and

with

Constructor subtyping (extended version) DRAF'L June 1999

’a Goal

’a Prog

conj of (’a Form * ’a Form)
disj of (’a Form * ’a Form)
imp of (’a Form * ’a Form)

emb of ’a

conj of (’a Goal * ’a Goal)
disj of (’a Goal * ’a Goal)
imp of (’a Prog * ’a Goal)

emb of ’a

conj of (’a Prog * ’a Prog)
imp of (’a Goal * ’a Prog)

’a Goal < ’a Form ;

69

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

