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ABSTRACT 

 

The interaction between implanted materials and surrounding tissue, 

osseointegration, is the critical factor for the successful restoration and reconstruction of 

damaged body parts. Since the biological response is strongly influenced by the 

properties of the biomaterials outermost layer, after few minutes of contact a protein 

film will be formed on the implant surface and its stability will determine the long-term 

success of the implant. Attending to all the problems related to implantation, it has 

becoming essential to analyze in detail the response of the human body to different and 

modified biomaterials surfaces. 

In this project, the interaction between the osteoblasts and the commercially pure 

titanium (CP Ti) was investigated. CP Ti samples were modified by anodic treatment, 

with calcium (Ca) and phosphorus (P), and all phases involved in the tissue restoration 

were carefully followed and examined. In parallel, tribocorrosion tests were conducted 

on that samples, prior to osteoblasts culture, to verify the influence of the chemical and 

physical properties of the surface on their development and with that extrapolate the 

possible response of the human body after some time of implantation.   

As a result, it was proven that anodic treatment can be effective and can incite 

osteoblasts MG63 development on titanium surfaces. The adhesion and morphologic 

tests showed that, even after small periods of time, these cells found their way to 

interact with the surface and create a bond, which can prevail for longest periods of 

culture (proliferation). Regarding osteoblasts MG63 differentiation, the results showed a 

very distinct line of evolution, exposing some important traces of the osteoblasts 

maturation, with a small but perceptive improvement in the levels of calcium and 

phosphate, proportioned by the bioactive properties of the anodic film. On the 

tribocorroded surfaces, it was clear the cells adhesion and progression, although in a 

slower rate compared to the regular surfaces. Additionally, through this test, it was also 

verified the MG63 osteoblasts preference for rougher surfaces. 

For future investigations, however, the anodic treatment conditions should be 

changed, starting for instance in the electrolyte composition, in order to achieve a much 

more significant improvement in the cells behaviour. 
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RESUMO 

 

A interacção entre o implante e o tecido subjacente, osteointegração, é o factor 

crítico para uma restauração e reconstrução de regiões do corpo danificadas bem 

sucedida. Uma vez que a resposta biológica é fortemente influenciada pelas 

propriedades da camada mais externa dos biomateriais, após alguns minutos em 

contacto um filme proteico é formado à superfície do biomaterial e a sua estabilidade irá 

determinar o sucesso a longo prazo do implante. Tendo em consideração todos os 

problemas associados à colocação de um implante, a análise cuidadosa e detalhada da 

resposta do corpo humano a alterações na superfície dos biomateriais tem-se tornado 

essencial.  

Neste projecto, a interacção entre os osteoblastos e o titânio comercialmente 

puro (Ti CP) foi investigada. A superfície das amostras de Ti CP foi modificada por 

tratamento anódico, com cálcio (Ca) e fósforo (P), e todas as fases envolvidas na 

restauração do tecido ósseo foram meticulosamente seguidas e examinadas. Em 

paralelo, testes tribocorrosivos foram conduzidos sobre as amostras, num período prévio 

à cultura celular, de modo a verificar a influência das propriedades físicas e químicas da 

superfície no desenvolvimento das células ósseas. Com isto pretendeu-se inferir acerca 

da resposta do corpo humano após algum tempo de implantação.   

A partir dos resultados foi provada a eficácia do tratamento anódico e a sua 

influência positiva sobre o desenvolvimento dos osteoblastos MG63 em superfícies de 

Ti. Os ensaios de adesão e morfologia comprovaram que, mesmo após curtos períodos 

de tempo em contacto, as células são capazes de interagir e criar fortes ligações, capazes 

de prevalecer por longos períodos de cultura (proliferação). Relativamente à 

diferenciação celular dos osteoblasts MG63, os resultados demonstraram, com grande 

detalhe, a evolução do desenvolvimento osteoblástico, sendo, ainda, perceptiva uma 

pequena melhoria nos níveis de cálcio e fosfato proporcionado pelas propriedades 

bioactivas do filme anódico. Quanto às superfícies tribologicamente modificadas, foi 

evidente a adesão e progressão celular, contudo de uma forma mais lenta do que nas 

superfícies consideradas normais. Além disso, foi comprovada a preferência dos 

osteoblastos MG63 por superfícies mais rugosas. 
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Porém, em investigações futuras, as condições do tratamento anódico deverão 

ser mudados, começando por exemplo pela composição do electrólito. Deste modo, 

melhorias mais significativas no comportamento celular poderão ser alcançadas. 
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SCOPE AND STRUCTURE OF THE THESIS 

 

The interaction between implanted materials and surrounding tissue was always 

taken as a concerning issue, since it defines the success or falling of an implant. In this 

investigation the main objective was to study this interaction.  

Adhesion, proliferation and differentiation assays were conducted to observe the 

response of MG63 osteoblasts when in contact with different types of surfaces: 

anodized and etched treatments. Besides that, the influences of bioactive anodized 

surfaces on the osteoblasts behaviour were also taken into consideration and followed in 

detail, with an especial attention to the calcium and phosphate levels (mineralization). 

This thesis also contributes for a better understanding of the influence of tribocorrosion 

tests on commercially pure titanium samples and how their changes affect the 

osteoblasts development.   

This thesis is divided in 5 chapters. The Chapter 1 corresponds to the general 

introduction. Here a small overview over all main subjects involved on this 

investigation is made and the objectives clearly defined.  

Chapter 2 includes a complete literature review about all subjects related to the 

main theme. The knowledge transmitted in this chapter follows a hierarchical 

orientation that goes from the simplest aspects about dental implantation to the most 

complex details.  

In the following chapter, Chapter 3, a description of the materials and methods 

employed in this project is provided. This includes all the steps involved in the 

development of the bone cells, their proliferation and levels of attachment to the surface 

as well as differentiation and their response to tribocorrosion modified surfaces.  

Chapter 4 deals with the results from all the experiments/assays and each one of 

them is accompanied by insightful overviews and discussions.   

Finally, Chapter 5 is devoted to the main conclusions of this work and to new 

perspectives for future researches. 
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GENERAL INTRODUCTION 

 

The technological progresses and advances that characterize our society have led to an 

outstanding improvement in the dental field. New surgical techniques, instruments and 

equipments emerged with time and consequently dental implants were developed. Nowadays, 

they are considered an important strategy (globally) in dental medicine, with approximately 

one million implantations per year (statistical analysis of the past 20 years) (1).  

Premature dental loss or bone defects are some of the most recurrent reasons for dental 

implantation. In the past, the existing tools only allowed limited esthetical and function 

recover. Now, with the introduction of the biomaterials, the success rates were enhanced, 

reaching about 96% (for the year of 2009) (2).  

The chemical, physical and mechanical properties of the implantable material have an 

important role in the implant success, since they influence the behaviour of the bone cells 

(adhesion, morphology, proliferation and differentiation) and the global response of the 

human body. Considering that, the material should not produce an abnormal biological 

response (local or systemic) and suffer degradation when exposed to the surrounding tissues 

and body fluids.  

Currently, there are several options available, namely, metals, polymers, ceramics and 

composites (most common categories), for tooth replacement. However, the ones that exhibit 

the best group of prop erties for this specific application are the metals. Their mechanical and 

physical properties, their corrosion resistance and their biocompatibility are the main points 

that confer them a grade of excellence for the production of artificial teeth. In the last few 

years, the titanium has been distinguished, among the metals category, as the best choice for 

dental implants.  

One of the most important aspects about titanium is its ability to react with water and 

air and to produce a thin oxide layer on the surface, which works as a protective barrier 

against corrosion and ions release (responsible for inflammatory responses and implant 

failure). It is also in this film that relies the ability of titanium to interact with the surrounding 

cells and bone tissue without causing an adverse host response.  

Since biocompatibility is determinant for a positive host response, in the last few years 

different treatments and techniques have been employed to modify the chemistry and 

tribology of the implantable materials’ surface to enhance this property. Between the 

alternatives, anodization has been recently reported as the preferred one to form rough, porous 
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and thick oxide films on titanium surfaces, using simple and cheap approaches (3). Due to this 

technique, it is possible, for instance, to incorporate calcium and phosphate onto the 

implantable surface or control its roughness or wetability to increase the osteoconductivity 

and osteointegration, which facilitate the attachment and development of the osteoblasts, 

responsible for the bone formation at the interface. This way the implant is incorporated 

without any risks for the human life. 

 

The aim of this project was to investigate the interaction of human osteoblast-like cells 

(from the cell line MG63) with commercially pure titanium (CP Ti) surfaces, with and 

without a bioactive anodic treatment. It was intended to observe how the osteoblasts adhesion, 

morphology, proliferation and maturation was affected by this specific surface treatment and, 

at the same time, verify the influence of the surface bioactivity on the MG63 differentiation.  
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1. HISTORY: A QUICK OVERVIEW 

 

The foundations of the dentistry science (tooth replacement) were only established 

during the period from 1600 to 1840 (4). In these early days, minerals or animals’ parts 

shaped to resemble the lost region, teeth extracted from living persons or even from cadavers 

were the most common choice for teeth replacement (4; 5). Little attention was given to the 

basic properties of the implant material or their interaction with the tissue surrounding (5). 

With the beginning of the twentieth century many refinements and improvements in 

the quality of various materials and processes used in restorative dentistry were introduced. 

For the first time a concentrated effort was made to develop and improve products with 

specific properties and shape (4). This provided the basis for the in-depth considerations of 

booth design and biomaterials for dental implantation. 

The evolution of the dentistry science till nowadays was enormous. In the past 20 

years, the number of dental implant procedures has increased steadily worldwide, reaching 

about one million dental implantations per year (1). The progress and advances introduced in 

this science have led to an outstanding recognition of the field and to its establishment in our 

society (5). In a near future, it is hoped that the interactions between different sciences, like 

biology, tribology, mechanics, physics or chemistry, conduct to new and improved solutions 

for tooth replacement (4; 6). 

 

2. DENTAL IMPLANTS 

 

Few years ago a long term goal of dentistry was the ability to anchor a foreign material 

into the jaw to replace an entire tooth. Nowadays the goal is to improve this replacement by 

testing new and improved materials and designs and increasing the success of the biological 

interactions. The replication of the natural function and appearance of a lost tooth can be very 

difficult to accomplish. Although, thanks to the optimization of manufacturing tools and to the 

conciliation of different science fields, dental implants express now high levels of similarity 

(5).  

Dental implants are small, inert and alloplastic
1
 (7) structures embedded in the maxilla 

and/or mandible, and are used for the management of tooth loss and to aid replacement of lost 

                                                 
1 Alloplastic: consisting of inorganic material implanted in living tissue, or involving the implantation of inorganic material into living tissue 

(7). 
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orofacial structures as a result of trauma, neoplasia and congenital defects. These implants are 

very durable and can last a lifetime. However, as natural teeth they require maintenance: 

brushing, flossing and regular dental check-up (4).   

 

2.1 Constitution  

 

A dental implant is composed of three main parts (Figure 1):  

 

- Implant: anchor or foundation for the restoration. It is screwed into the jawbone providing 

a fixed platform for the abutment. The bone tissue can grow around the implant allowing 

the regeneration and strengthening of the jaw.   

 

- Abutment: this structure fits over the portion of the implant that protrudes from the gum 

line (abutment screw) and provides support for the crown. 

 

- Crown: responsible for the replication of the natural teeth appearance and for providing a 

biting surface. This is the top part of the restoration and the one we see inside the mouth. 

The crowns are usually cemented or screwed onto the abutment (8; 9; 10). 

 

 

Figure 1. Basic constitution of a dental implant (10).  
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2.2 Implant Systems  

 

There are several kinds of dental implant systems available, which are categorized 

according to their shape and relation to the bone tissue: endosteal (or endosseous) (Figure 2A) 

and subperiosteal implants (Figure 2B).  

The first type, like the name suggests, is usually placed directly into the jawbone 

resembling the natural tooth roots. It is the most common type of dental implants used in 

dentistry (11). Endosseous implant systems include a range of sizes, shapes, coatings and 

prosthetic components – the choice is dependent on the available bone (2).  

The process involved in the endosseous implantation requires surgery, in one or two 

steps. In the two steps surgery, firstly a hole is drilled into the bone and then the root part of 

the implant is inserted. Before continuing, it is necessary to make sure that the implant is 

properly fused with the bone and the tissue is healed (these can take some days or weeks). If 

the evaluation is positive the second step can be preformed. It consists in a small incision in 

the gums, which exposes the implant, allowing the attachment of the abutment as well as the 

crown. Some dentists use a single step surgery; however the only difference is that the 

implant is left above the gum margin, so the abutment and the crown can be connected 

without any incision (2; 8; 12; 13). 

 

  

Figure 2. Schematic representation of an (A) endosteal and a (B) subperiosteal implant (9). 

 

In contrast to the endosteal implants, the subperiosteal are fitted to the bone surface as 

customize shapes while bone plates are placed onto the bone, under the periosteum, and fixed 

with endosteal screws. These are mostly used when the bone presents atrophies and/or the jaw 

structure is limited. In this case, a metal framework, individually designed and very light 

(A) (B) 
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weight, is fitted over the jawbone providing the equivalent of multiple tooth roots. Nowadays, 

thanks to sophisticated and accurate technologies, modern CAT scan equipments and 

advanced computer modelling software, it is possible to produce precise models from a 

patient jawbone. In this case only one surgery is required, the one necessary to insert the 

subperiosteal dental implant (8; 9).  

 

2.3 Success and Failure   

 

The success and failure of an implant is defined by its interactions with the tissue 

surrounding and by the intrinsic response generated.  In spite of the recent technological and 

scientific advances and the remarkable progress in the design and surgical techniques, failures 

in dental implantation still occur. A review study conducted in the year 2000 showed that 

approximately 2% of implants failed to achieve osseointegration after placement (14).  

One of the most cited reasons for implant removal is fixture failure, also known as 

―loosening‖ (11; 15; 16). This problem is usually associated to a deficient integration of the 

implant by the host tissue, which is unable to establish or maintain the connection, or to an 

inflammatory response that may lead to the loss of the supporting bone (11; 17).  

Besides that, the release and presence of particles/ions, derived from the implant, in 

the human body is also an important issue that could dictate the implant failure (18). In the 

oral cavity the materials are subjected to wide changes in the pH and temperature and to the 

action of acid or alkaline solutions as well as certain chemicals. All of these factors contribute 

in a high or low level to the materials degradation (particles liberation) and, consequently, to 

the decrease of their resistance. In this situation two things can happen: inflammatory 

response and fracture. The most common is the inflammatory response. The free particles are 

phagocytised by macrophages, which stimulate the release of cytokines (inflammatory 

mediators) towards bone surface contributing to its resorption by osteoblasts activation. 

Because of this the osteoblasts function is inhibit, resulting in an eventual osteolysis and in 

the implant’s loss (11; 18; 19). The other possibility, more extreme and rare, is the fracture of 

the implant due to the degradation and reduction of the fatigue resistance (20).  

Despite these problems the clinical success of oral implantation is real with an 

estimated rate of 96%, for the year of 2009 (2). 
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3. THE HUMAN BONE 

 

The skeletal system is a collective of many individual bones joined by connective 

tissues. This structure is responsible for both metabolic supply and biomechanical support for 

the entire body, including the oral cavity (21). 

The bone tissue is formed by inorganic salts embedded in an organic matrix that 

provides a greatly rigidity and hardness to the bone, when compared to other connective 

tissues (4; 21; 22).  One of the most interesting aspects about bone is that it has the ability of 

self-repair, which is of extreme importance for a patient recovery after a surgical intervention 

as well as for the successful integration of an implant into the human body (4).  

 

3.1 Composition  

 

Bone tissue is composed of organic (30% w/w) and inorganic (60% w/w) phases and 

water (10% w/w). 

The organic phase consists predominantly of type I collagen (86%), which gives 

elastic and viscoelastic qualities to the bone, with a small quantity of types III, V and X 

collagen. This phase is responsible for the formation and stability of the bone matrix. The 

collagen molecules (tropocollagens) are organized in fibres, which are further aligned in 

parallel to each other to produce a lamella sheet. Then, between the ends of these fibres, 

interfibrillar cross-links are formed providing more stability to the matrix, although numerous 

gap regions are evident (Figure 3) – during mineralization, the hydroxyapatite crystals 

(inorganic phase) are firstly deposited into those gaps and then they are extended into other 

intermolecular spaces resulting in a mineralized fibril. The three-dimensional arrangement of 

the collagen molecules within a fibril is not yet well understood. However, it is suggested that 

there are 200 to 800 collagen molecules in the cross section of a fibril with a diameter 

between 20 and 40 mm. In certain stages of bone matrix formation, the trace amounts of type 

III, V and X collagen are involved in the regulation of the diameter of the collagen fibrils (21; 

22; 23; 24). 
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Figure 3. Schematic representation of the collagen molecules arrangement to form gap regions for hydroxyapatite deposition, 

during mineralization (21). 

 

On its turn, the inorganic phase is composed by a ceramic crystalline-type mineral, 

commonly known as hydroxyapatite. The bone hydroxyapatite contains many impurities such 

as potassium, magnesium, strontium or sodium (in place of the calcium ions), carbonate (in 

place of the phosphate ions), and chloride or fluoride (in place of the hydroxyl ions). These 

impurities can be either incorporated into the crystal lattice or absorbed onto the crystal 

surface. Since these imperfect crystals are very soluble, the bone is able to re-solubilise and 

release its calcium, phosphate or magnesium ions into the extracellular fluid as needed – 

during mineralization, substances that have high bone affinity can also be incorporated into 

the bone matrix, promoting the equilibrium of the ions (21; 22).  

 

3.2 Organization 

 

The human bone (Figure 4) is divided in two main types: the cortical bone, also known 

as compact bone, and the trabecular bone, also known as cancellous or spongy bone. The 

basis for this classification relies on their porosity and microstructure unity and not on their 

cellular constituents, once they are basically the same (21; 22; 23; 24). 

 



  LITERATURE REVIEW | Chapter 2 
_________________________________________________________________________________________________________________________________ 
 

11 
 

 

 

Figure 4. Representative diagram of the bone tissue organization (22). 

 

The cortical bone is a dense and hierarchical organization of cylindrical structural 

unities, the osteons (trabecular bone also possesses osteons), that surrounds the marrow space. 

The cortical bone is usually find in the shaft of long bones and forms the outer shell that 

surrounds the spongy bone at the end of joints and the vertebrae. It is composed by a complex 

vascular system, with blood vessels and nerves, providing this structure with a high sensibility 

and regenerative capacity. There are approximately 2.1 x 10
7
 cortical osteons in healthy 

human adults, with a total cortical area of approximately 3.5 m
2
. The cortical bone porosity 

ranges about 5 to 10 % while in the trabecular bone it can go from 50 to 90 %. The cortical 

bone has an outer periosteal surface (periosteum) and an inner endosteal surface (endosteum) 

(21; 22; 23; 24). 

The periosteum is a fibrous connective tissue sheath that surrounds the outer cortical 

bone, except at joints where bone is lined by articular cartilage. It consists in a dense and 

irregular connective tissue, which contains blood vessels, nerve fibres and bone cells 

(osteoblasts and osteoclasts). The periosteum is divided into an outer ―fibrous layer‖ (contains 

fibroblasts) and in an inner ―osteogenic layer‖ (contains progenitor cells). On the other hand, 

the endosteum is a soft, thin, membranous structure that lines the inner cavity of long bones. It 

is in contact with the bone marrow space, blood vessels and trabecular bone (it can also be 
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found covering the inner surface of this bone). It is a highly vascular system and contains 

osteoblasts and osteoclasts (23; 24). 

The trabecular bone, the lightest, possess lots of spaces where is possible to find bone 

marrow, which is responsible for the production of the majority of the blood cells. It is 

composed of plates and rods averaging 50 to 400 mm in thickness and its osteons present a 

semilunar shape. It is estimated that there are 14 x 10
6
 trabecular osteons in healthy human 

adults, with a total trabecular area of approximately 7 m
2
. The trabecular bone is usually 

found in the end of long bones, in vertebrae and in flat bones, like the pelvis. It contributes to 

about 20% of the total skeletal mass within the body while the cortical bone contributes to the 

remaining 80% (21; 24).  

 

In a histological level, the bone tissue is composed by three major constituents: 

osteoblasts, osteoclasts and osteocytes (Figure 5). These are responsible for the extracellular 

matrix formation (organic and inorganic) and each one of those possesses a particular role in 

this task (22). 

 

 

Figure 5. Bone tissue cellular composition: osteoblasts, osteoclasts and osteocytes and lining cells. Totality of cells involved 

in the bone formation and in the regeneration process (25). 

 

3.2.1 Osteoclasts 

 

Osteoclasts are multinucleated giant cells with a diameter ranging from 20 to over 100 

µm. They have acidophilic cytoplasm containing numerous vesicles and vacuoles (lysosomes 

filled with acid phosphatase) and usually derived from early promonocytes. Under certain 
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circumstances, however, monocytes and macrophages are also capable of osteoclastic 

differentiation. Some investigations (26; 27) have demonstrated, although without clear 

details, that osteoblastic cells are involved in the osteoclastogenesis initiation by inducing the 

activation of the osteoclastic precursors through the ingrowth of blood vessels. The 

equilibrium between the osteoclasts and osteoblasts activity defines the velocity of bone 

regeneration. 

Osteoclasts are responsible for the resorption of the bone tissue, which consists in the 

removing of the mineralized matrix followed by the breaking up of the organic bone. After 

completing their task they migrate into adjacent marrow space, where they undergo apoptosis. 

They can live for up to seven weeks (21; 22; 23; 24).  

 

3.2.2 Osteoblasts 

 

The osteoblasts are the bone-forming cells, which make them involved in the entire 

bone formation process. Typically they are 15-30µm cuboidal-shaped cells, with a large 

nucleus. The cytoplasm is rich in organelles that assure the biological functionality of the cell 

and maintain the strong cellular activity.  

The osteoblasts arise from osteoprogenitor cells (immature progenitor cells
2
), located 

in the deeper layer of the periosteum and in the bone marrow, that differentiate under the 

influence of growth factors such as bone morphogenetic proteins (BMPs), fibroblast growth 

factor (FGF), and others. 

Active osteoblasts exhibit some functional characteristics which includes, for instance, 

intensive alkaline phosphatase (ALP) activity and the secretion of type I collagen. They can 

also synthesize osteocalcin and bone sialoprotein that serve as biomarkers for osteoblastic 

identification and functional evaluation. 

The mineralization phase is considered the second stage of osteoblasts evolution and it 

is defined by the crescent levels of calcium and phosphate. During the bone matrix (osteoid) 

formation the osteoblasts are responsible for the synthesis and secretion of the collagen fibres. 

Some can also differentiate into osteocytes and extend out communication processes with 

neighbouring osteocytes, osteoblasts surface or lining cells. This last type of cells is also 

derived from osteoblasts (present on the surface), which are already inactivated.  

                                                 
2 Progenitor Cell: biological cell that has a tendency to differentiate into a specific type of cell, a ―target‖ cell (7). In the case of the 

osteoblasts, the osteoprogenitor cells derived from self-renewing pluripotent stem-cells stimulated under certain environmental conditions 

(23). 
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The lining cells (Figure 5) are flat and highly interconnected with each other. They 

usually form a cellular sheet that covers the entire surface of bone, protecting it and 

controlling the flux of ions. Besides that, the bone lining cells are very important in the bone 

remodelling process since they possess hormones and growth factor, both essential for the 

initiation.  

The osteoblasts are also responsible for the secretion of enzymes that lead to the 

osteoid removal, promoting this way the osteoclasts contact with the mineralized bone 

surface. Populations of osteoblasts are very heterogeneous, with different osteoblasts having 

different gene expressions. This may explain the heterogeneity of the trabecular micro-

architecture at different skeletal sites, the anatomic site-specific differences in disease states, 

and the regional variation in the ability of osteoblasts to respond to agents used to treat bone 

disease (21; 22; 23; 24). 

 

3.2.3 Osteocytes 

 

The osteocytes, star-shaped cells, are the most abundant cell type found in the cortical 

bone and the only one embedded within the bone matrix. In a mature bone about 95% of the 

total cells are osteocytes (approximately 20 000 to 30 000 osteocytes per mm
2
 of bone).  

They derive from osteoblasts that became trapped inside the osteoid, in small 

chambers known as lacunae, during the bone formation. The process of differentiation into 

osteocytes requires the lost of the osteoblasts organelles and the cytoplasmic extension into 

long and slight structures. These slight structures are then encased in tiny channels called 

canaliculi, which interact and communicate with the surrounding cellular substances, 

producing a network for the exchange of ions, nutrients and extracellular fluid. 

Since the osteocytes have reduced synthetic activity, and like osteoblasts are not 

capable of mitotic division, their physiologic function is not completely defined. Although, 

thanks to their interactive networks, it is believed that they are responsible for detecting 

microdamages and for initiating the repair process, which indicates, on its turn, that they are 

involved in the routine turnover of the bone matrix. They are capable of transducing stress 

signals from bending and stretching of bone into biologic activity. This function is also 

responsible for the longevity of the osteocytes that can go to 25 years (average half-life), for 

the slowest turnover rates (21; 22; 23; 24). 
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3.3 Biological Dynamics 

 

The bone dynamics involves three main stages: growth, modelling and remodelling. 

These are the three major mechanisms that modify the bone mass and the structure of the 

skeletal system for its adaptation to the mechanical and non-mechanical environments. For a 

patient recovery after a surgical intervention, such as implantation, the remodelling process is 

the most important one (21). However, to understand completely the human bone nature and 

its complete development it is essential to introduce all stages. 

 

3.3.1 Growth 

 

The bone formation is initiated in the first weeks of gestation. However, it is only in 

the end of the adolescence that the definitive composition of all skeletal bones is completed. 

Bone grows and models under the influence of metabolic, mechanical and gravitational 

forces, in a very long and complex process.  

This stage is divided in two, the longitudinal and the radial growth. The longitudinal is 

mainly responsible for increasing bone length, while the radial growth is mainly responsible 

for enlarging bone cross-sectional area (23).  

 

3.3.2 Modelling 

 

Bone modelling is one of the predominant biological mechanisms that governs the 

enlargement of each individual bone during growth. It is a process in which bones change 

their overall shape in response to physiologic influences or mechanical forces, leading to a 

gradual adjustment of the skeletal. On its turn, bone modelling is divided into bone formation 

drift (osteoblasts action) and bone resorption drift (osteoclasts action). These two occur 

separately, although they can work together to guarantee the appropriate shape and size of 

each individual bone.  

In adults, bone modelling is less frequent than remodelling, although in certain 

circumstances, like hypoparathyroidism, the modelling stage can be increased (21; 23).  
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3.3.3 Remodelling 

 

At a cellular level, the modelling and remodelling processes are not very different. 

They are both based on the action of the osteoclasts and the osteoblasts. 

In the remodelling process the osteoblasts and the osteoclasts closely collaborate in a 

―Basic Multicellular Unit‖ or BMU (small packets of cells placed in the cortical and 

trabecular surface).    

During childhood, the remodelling process is responsible for the substitution of 

immature bone for more bio-mechanically and metabolically competent bone, and during 

growth it is involved in the bone elongation. In the adulthood, this process is responsible for 

replacing aged bones (damaged or mechanically unfit) – resorbs old bone and forms new bone 

to prevent accumulation of microdamage bone –, this way maintaining the skeletal 

mechanical capacity. This process is impelled by specific hormones that control/regulate the 

calcium concentration in the blood and can only happen thanks to the high level of plasticity 

of bone. 

The remodelling cycle (Figure 6) is composed of four sequential phases: quiescence 

phase; resorption phase; reversal phase; and formation phase (21; 23; 28; 29; 30).  

 

 

Figure 6. Stages of bone remodelling (adapted from (31)). 
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 Quiescence or Activation Phase: recruitment and activation of osteoclasts (haematopoietic 

origin) by hormonal stimuli.  

 

 Resorption Phase: the osteoclasts adhere to the bone surface and start to erode the mineral 

structure, which is followed by digestion of the organic matrix. In this phase, small 

cavities in the surface of the trabecular bone are created by the solubilisation of the 

mineral structure. This acidifies (pH=4) the surrounding microenvironment inducing the 

liberation of H
+
 ions against the bone surface. Since osteoclasts have limited life span (≈ 

12.5 days) the progression of bone remodelling requires the continual addition of 

osteoclasts. After completed their task, the osteoclasts die by apoptosis. 

 

 Reversal Phase: intermediary between the resorption and the bone formation phases, and 

the responsible for the transmission of the bone inducing signal. During this phase the 

osteoclasts disappear and macrophage-like cells are seen on the bone surface. These latter 

cells can release factors that inhibit the osteoclasts action and stimulate the osteoblasts. 

 

 Formation Phase: the bone formation results from a complex cascade of events. It, 

basically, involves proliferation of primitive mesenchymal cells, differentiation into 

osteoblasts precursor cells, maturation of osteoblasts that adhere to the previously 

resorbed surface, formation of the bone matrix, and finally mineralization (28; 29; 32). 

 

3.4 The Healing Process 

 

During dental implantation, the bone tissue that surrounds the area is subjected to 

tensions and forces. These aggressions can damage the tissue, inducing a healing response.  

Usually, the healing process depends majorly on the vascularised system that 

surrounds the area, which works as an oxygen and nutrients supplier, and on the local 

stability, which requires the absence of biomechanical actions/forces for a faster recover (33; 

34) 

Immediately after the surgical intervention, the first healing phase (reactive phase) 

starts. It involves the formation of a blood clot or hematoma, resultant from the vessels 

constriction. This hematoma helps stopping the bleeding and at the same time serves as a 
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building block for the rest of the environment. During this phase, the surrounding region 

experiences inflammation and the patient suffers pain. 

The second phase is the reparative one. This starts few days after implantation, with 

the fibroblasts and osteoblasts action. The fibroblasts secret collagen fibres that are arranged 

into layers, giving origin to a fibrocartilaginous callus. Then, the capillaries in the extremities 

start connecting the tissue and, at the same time, the immune system (macrophages) 

demolishes the hematoma. On its turn, the osteoblats produce trabecular bone and soft callus, 

restoring most of the original local strength.   

The third phase, remodelling, consists in the transformation of the callus into bone 

callus. In other words, it is the process responsible for the substitution of the spongy bone for 

compact bone, like was defined in the previous section. During that time, the callus is 

remodelled, re-establishing the original properties and characteristics of the local tissue (35; 

36). 

 

4. BONE-IMPLANT INTERACTION 

 

4.1 Biological Mechanisms of Bone Formation in the Interface 

 

The bonding between the implant and the bone tissue is established based on physical 

and chemical processes induced by three biological mechanisms: osteoinduction, 

osteoconduction and osteointegration. Each one of those depends on the others and that 

dependence defines the success or failure of the interaction, at the interface.  

 

4.1.1 Osteoinduction 

 

The osteoinduction is the act or process that induces the osteogenesis. This 

phenomenon consists in the phenotype conversion of the soft tissue cells into bone tissue 

precursors, through appropriate stimulation (37). In the 70’s, Marshall Urist defined for the 

first time this stimulus as dependent on the cells presence. Nowadays, after more 

investigations, it is considered to be determined by the presence of some high molecular 

weight glicoproteins, like the BMP – among all the available donor areas in the jaw, the 

cortical bone presents the higher concentration of BMP (38).  
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This process allows the immature or undifferentiated mesenchymal cells to become a 

cellular line capable of producing bone, like the pre-osteoblasts. Thanks to this property, some 

materials (bone grafts, most common) are able to create the conditions necessary to induce the 

bone tissue formation in places without it, like muscles or ligaments (37; 39; 40). 

 

4.1.2 Osteoconduction 

 

The osteoconduction is a three-dimensional process, observed immediately after the 

implant contact with the bone tissue. It is characterized as the ability of growing bone in 

apposition to the existing one or above it.  

Contrary to the osteoinduction, where the material possesses elements that stimulate 

the bone tissue formation, in the osteoconduction the material works as a passive support 

―waiting‖ for the tissue response. In this case, the material is defined as a physical structure 

that favours bone progression by allowing cellular and vascular local invasion. It is expected 

that the cellular organisms adhere, grow and invade all the material structure. However, for 

this to happen, the presence of differentiated mesenchymal cells or bone tissue it is obligatory, 

in other words it depends on the osteoinduction phenomenon.  

In implantology, the most common osteoconductive materials are the natural 

hydroxyapatites and the bioceramics. Since these can be both resorbable (preferred for 

implants) or non resorbable, depending on the objective of the medical intervention, they are 

able to adapt (37; 40; 41).  

 

4.1.3 Osteointegration or Osseointegration 

 

There has been much discussion about the meaning of osteointegration, since it was 

introduced in the 70’s. Branemark (1977) was the first one defining this phenomenon. He 

described it as a ―direct structural and functional connection between the living bone and the 

surface of a load-carrying implant‖ (42). On its turn, the Williams Dictionary of Biomaterials 

(43) offered a similar description, although a little bit more formal: osteointegration is ―the 

concept of a clinically asymptomatic attachment of a biomaterial to bone, under conditions of 

functional loading‖. Neither of these two definitions elucidates the fact that, in some cases, 

osteointegration can occur when just a physical contact is observed and there is not a real and 

direct connection between the implant and the bone. However, since the concept has been 
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generalized, these definitions are still accepted and used by the majority of the specialists in 

clinical implantology, nowadays (44; 45). 

 

 

Figure 7. Osteointegration development on dental implants: (A) Time 0; (B) 1 week; (C) 2 months; (D) 1 year; (E) 10 years 

(46). 

 

Osteointegration has been intensively studied since Branemark. Currently, it is well 

accepted that an implant is considered osteointegrated when there is no progressive relative 

movement between the implant and the bone and the anchorage between them is such that can 

persist under all normal conditions of loading (47). In dentistry, osteointegration can be 

defined as a biological state where the bone of the mandible or maxilla grows into 

physiological contact with the implant itself (Figure 7) (48).  

The creation and maintenance of osteointegration is dependent on the understanding of 

the tissue’s healing, repair and remodelling capacities, since they are all involved in a later 

stage of osteointegration – consolidation of the bone at the implant site and maintenance of 

the normal bone conditions – and since their basic principle is similar. For instance, during the 

healing process a bond is formed between bone tissues, without intermediate fibrous tissue or 

fibrocartilage formation. In the case of osteointegration the same thing happen, although 

instead of attaching two biological structures, the bone tissue is connected to an implant (47; 

49).  

To achieve a good osteointegration some parameters must be follow: (i) the bone must 

be viable (should not cause necrosis or inflammation); (ii) the space between the bone and the 

implant must be small and contain no fibrous tissue; (iii) the material should be properly 
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choose (biocompatibility is required as well as mechanical stability and resistance similar to 

the natural bone); and (iv) the bone-implant interface must be able to survive loading by a 

dental prosthesis. To guarantee a successful implantation, the implant must be allowed to heal 

for a time without load, after the surgical intervention (4; 42; 48; 50). Vascularisation is, also, 

essential during osteointegration, as it influences tissue differentiation and ossification. 

This phenomenon is an absolute requirement for the successful implant-supported 

dental prosthesis (51). In humans, the osteointegration of an implant is a slow process that can 

take up several months. 

 

4.2 Bone Adhesion  

 

To guarantee osteointegration the adhesion of osteoblasts to the biomaterials surface 

should occur in a very short period of time, during which multiple steps must be complete: 

focal adhesion (discrete regions in the cell membrane, intimately associated with the 

substrate); combination between the proteins and the substrate; and cell spreading (52). 

Due to the presence of a support matrix or extracellular matrix (ECM) secreted by the 

cells, the attachment to the material surface is possible. This matrix is composed by a vast 

group of proteins, proteoglycanes and glicoproteins, which will determine the cell shape and 

ultimately the proliferation, as well as, the proper function and tissue integrity (53; 54). 

Between those, the fibronectin (high-molecular weight protein and the first one activated by 

the ECM during bone-biomaterial contact (55)) and the vitronectin are considered the major 

proteins responsible for cell-substrate adhesion interaction. They have, also, an important 

paper in the promotion of the osteoblasts proliferation and differentiation (53; 54).  

According to Yang et al (2002) (56) the presence of fibronectin on Ti surfaces plays an 

important role in governing osteoblasts attachment. 

In living systems, the blood is the first component to contact with biomaterials and, 

immediately after, rapid adsorption of plasma proteins occur. When a substrate contacts with 

a biofluid, a considerable number of events take place, in order to modify the materials state 

to promote the interaction with the cells. The first step is the material hydration. The water 

molecules bond to the biomaterial surface originating an ionic layer, which will allow the 

adsorption of proteins (like fibronectin). Thus, the cells that reach the surface establish contact 

with the protein-coated substrate and attach to the extracellular matrix of those proteins. For 

instance, fibronectin proteins can bind to the integrins (membrane-spanning receptor of 
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proteins) on the osteoblasts and activate signalling pathways that induce cell-cycle 

progression, gene expression, matrix mineralization and regulates osteoblasts survival. This 

contact put in evidence that, in reality, this is not a direct attachment between bone and 

material but a protein intermediate interaction (Figure 8) (52; 53; 55). 

 

 

Figure 8. Mechanisms controlling cell adhesion (adapted from (57)). 

 

In the end an effective cell adhesion is completed, allowing a cascade of cellular 

events to take place, like proliferation and cellular spreading over the surface, in a dynamic 

environment. 

During the previous events (especially protein adsorption) the implant’s surface is 

significantly changed, which occurs both in vivo and in vitro. Even if the selected material for 

implantation possesses already a stable oxide film, under these circumstances, it still suffers 

electrochemical changes. For instance, considering that commercially pure titanium implants 

possess an oxide from 2 to 6 nm before implantation, after retrieving them from the human 

body the thickness seems to be two or three times higher (53). That is why the implantable 

material should respect an entire list of demands before being used in contact with the human 

body. 

 

5. BIOMATERIALS 

 

Over the years the medical field have suffered astronomic changes. The surgical and 

medical techniques were improved and the devices used were constantly challenged to 

achieve higher levels of quality. Those changes led to the emergence of a new range of 
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materials, the biomaterials. According to the Williams Dictionary of Biomaterials (43), “a 

biomaterial is a nonviable material used in a medicine device, intended to interact with 

biological systems (...) to evaluate, treat, augment or replace any tissue, organ or function of 

the body”. Ideally it should be able to sustain a positive interaction with the surround tissues 

without causing an abnormal response (58; 59). 

The idea of preserving the human body integrity and comfort for the longest time 

possible and restoring lost functions and damaged tissues/organs were the main reasons that 

motivated the biomaterials development (48; 58). 

In medical applications, they are rarely used as isolated materials but are more 

commonly integrated into devices or implants. Although they are primarily employed in this 

field, they can also be used in biological investigations, for instance, to grow cells in culture, 

to assay for blood proteins in the clinical laboratory, in equipments for processing 

biomolecules for biotechnological applications and others. In both cases, the biomaterials 

must always be considered in the context of their final fabricated, sterilized form (59; 60). 

 

5.1 Biocompatibility 

 

Although the selection of the best biomaterial for dental applications relies on a 

substantial range of requirements, there is one that is considered the most important – the 

biocompatibility (60).  

The understanding and measurement of biocompatibility is unique to biomaterials 

science. It was firstly defined by William (1987) as ―the ability of a material to perform with 

an appropriate host response in a specific application‖ (43; 59). In 2008, considering all the 

changes and improvements in the biomedical field, William proposes a new definition, 

―biocompatibility refers to the ability of a biomaterial to perform its desired functions with 

respect to a medical therapy, without eliciting any undesirable local or systemic effect in the 

recipient or beneficiary of the therapy, but generating the most appropriate beneficial cellular 

or tissue response in that specific situation, and optimizing the clinically relevance of the 

therapy‖ (61). According to these definitions a biocompatible material must not: irritate the 

surrounding structures, provoke an abnormal inflammatory response, incite allergic or 

immunologic reaction and cause cancer (58; 59; 60).  

Inherent to this, however, was the idea that a single material may not be biologically 

acceptable in all applications. For example, a material that is satisfactory as a full cast crown 
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may not be adequate as a dental implant. Also implicit is an expectation for the biological 

performance of the material. In a bone implant, the expectation is that the material will allow 

the bone to integrate with the implant. Thus an appropriate biological response for the implant 

is osteointegration. In a full cast crown, the expectation is that the material will not cause 

inflammation of pulpal or periodontal tissues, but osseointegration is not. Whether a material 

is biocompatible or not is therefore dependent on what physical function we ask of and what 

biological response we require from it (4; 60).  

 

5.2 Classes of Biomaterials 

 

The search for more sophisticated devices to replace and treat damaged body parts 

have led to a wide range of high quality biomaterials. Although they are usually distinguished 

in three basic categories – metals, ceramics and polymers –, in this study another one will be 

taken into consideration, the composites. 

  

5.2.1 Metals 

 

Metals and metallic alloys play a prominent role in dentistry and are used in almost all 

aspects of dental practice (implants, dental restoration and manipulation instruments). Thanks 

to their optical, physical, chemical, thermal and electrical properties, these materials can be 

favourably exploited in dentistry (4; 48; 22). In this category the most distinguished types of 

metals for medical applications are: titanium, cobalt, stainless steel, nickel, chromium and the 

noble metals, like gold, tantalum, platinum, palladium, silver, iridium and niobium (59; 62; 

63). 

 

5.2.2 Ceramics 

 

The use of ceramics in dentistry was initially based upon the relative biological 

inertness of ceramic materials. Nowadays, the bioinert and bioactive ceramics, materials that 

induce normal tissue formation and assure an intimate bond with it, are the preferred choice. 

There are lots of ceramics applied in the biomedical field. The most common are the 

carbon, alumina and zirconia – bioinert ceramics – and the bioactive glasses and glass 
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ceramics, calcium phosphate ceramics and the combination of the two previous – bioactive 

ceramics (59; 63; 64).  

 

5.2.3 Polymers 

 

The first polymer used in dentistry was vulcanized rubber for denture bases. 

Nowadays, other polymers were already introduced in this field: vinyl acrylics, polystyrene, 

epoxies, polycarbonates, silicones, polyethers, polysulfids and polyacrylic acids. These are 

used in the construction of prosthetic appliances, artificial teeth, tooth restoratives, implants, 

temporary crowns, cements, and others (22; 65).  

 

5.2.4 Composites 

 

Although, there is a rich history associated with the development of dental composites 

and their prominent position in dentistry, it is still evident the discussion around the 

composite materials definition. 

Composite materials have a bulk continuous phase, called matrix, and one or more 

non-continuous phases, called the reinforcement, which usually have superior mechanical or 

thermal properties than the matrix. Although, inorganic materials (titanium, steel, carbon...), 

thermoplastics (polyesters, polycarbonate...), thermosets (epoxy, silicone...) and resorbable 

polymers (chitosan, collagen) can be used as matrix, some of them can also be used as 

reinforcement. The choice is dependent on the material application (59; 63; 66).  

 

5.3 Dental Implants Materials 

 

Dental implants have been manufactured in a wide variety of shapes and materials. 

According to their design (implant systems), cost and aesthetic purpose, the materials applied 

to their production can change; however all of them must possess some requirements, like 

resistance to high intensity mechanical and physical efforts as well as chemical attacks and 

simultaneously be recognized by the human body as ―friendly‖ substrates (67; 68; 69). 

The first implants used were made by precious materials like gold, platinum, 

palladium or iridium (22). However, the high costs and the resistance deficiencies of those 

conducted to new categories, such as the ones described in 5.2 Classes of Biomaterials.  
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Before choosing the material, it is important to analyse some aspects. As we all know 

the resistance or strength of a tooth is dependent on their function and position in the oral 

cavity. For instance, a natural pre-molar (used for breaking the food) should present a fracture 

toughness of 248 MPa at least, but for a molar the resistance must be higher, at about 305 

MPa, since it is used for grinding. That is why the selection of the best material to employ 

must take into consideration the mechanical and physical properties of the natural tooth, 

which will be replaced, as well as the conditions and needs of the oral cavity (70; 71). 

 Nowadays, the category that responds more favourably to these requests is the ―metals 

and their alloys‖. Their physical and chemical properties, their good corrosion resistance and 

biocompatibility are the main points that confer them a grade of excellence for the production 

of artificial human parts substitutes. For decades, they have been employed successfully in the 

orthopaedic field and now they are making history in dental applications, as well. 

Nevertheless, it must be pointed out that not all of this category materials present the same 

grade of excellence, some like titanium and its alloys have been distinguished, in the last few 

years, as the best ones (1; 6). 

 

6. TITANIUM AS A BIOMATERIAL 

 

The widespread introduction of titanium implants has revolutionized dental 

implantology, becoming the most used material (72; 73). 

Titanium occupies the 22
th

 position of the periodic table (atomic number), has an 

atomic mass equal to 47.9 g and a density of 4.51 g/cm
3
. Its fusion point is approximately 

1668 ºC and presents two types of crystalline structure: hexagonal close-packed if the 

temperature is less than 882.5 ºC, and body-centered cubic if the temperature is higher than 

that. It is the fourth more abundant metal in the Earth crust. 

The titanium material is classified in two categories, according to American Society 

for Testing and Materials (ASTM): commercially pure titanium, which is subdivided in four 

grades according to the content of oxygen (O), iron (Fe), nitrogen (N), carbon (C) and 

hydrogen (H), from 1 the least (≈ 0.18%) to 4 the most (≈ 0.4%); and titanium alloys, such as 

Ti6Al4V, the most common, which has in its composition aluminium (Al – ≈ 6%) and 

vanadium (V – ≈ 4%). This alloy presents favourable properties for implantation, like less 

thermal conductivity or higher fatigue resistance compared to CP Ti, although the presence of 
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vanadium and aluminium in the organism may raise some issues for the patient health security 

(74). 

 

As it was pointed out in the previous sections, the material should not produce a 

harmful biological response (local or systemic) and not suffer degradation when in contact 

with tissue or body fluids, like saliva or blood. Titanium is considered the best material and 

the one that responds more favourably to these attributes. Moreover, it is resistant to 

electrochemical degradation and high temperatures; induce a benign biological response; 

presents low toxicity; has high tensile strength and high durability; has low cost when 

compared to other biomaterials; is light weight and presents low density (40% of steel density 

but as strong, which gives it the highest strength-weight ratio of any metal suited to medical 

use); is non-magnetic; has high ductility; and is easy to work with (75; 76; 77; 78; 79). 

Besides that, titanium has the ability to react with water and air (oxygen) and produce a very 

stable, continuous and highly adherent oxide layer (TiO2 passive film, most common form), 

with approximately 2 to 10 nm of thickness. This is the basis for its excellent corrosion 

resistance and exceptional biocompatibility (80; 81).  

From a biological perspective, titanium possesses an important characteristic for 

implantation, which is the ability to osteointegrate. Due to its high dielectric constant, which 

ranges from 50 to 170, depending on crystal structure, titanium can bind with bone and living 

tissue, without needing extra adhesives. In consequence, the forces required to break the bond 

are quite high (the high dielectric constant results in considerably stronger van der Waal’s 

bonds than other oxides) (82). 

 

Another thing that influences the selection of titanium, as the biomaterial for tooth 

replacement, is the changes introduced by the removal of the periodontal ligament during the 

substitution/implantation – this ligament is very important, since it is responsible for the 

attachment and support of the tooth to the alveolar bone and for its protection against heavy or 

light forces, derived from mechanical contacts.  Consequently, to guarantee an uniform 

distribution of tensions between the bone and the implant, it is essential to take into 

consideration properties such as elastic modulus or elongation. Table 1 presents an analogy 

between titanium (commercially pure from grade 1 to 4 and the most common titanium alloy, 

Ti6Al4V) and cortical bone (most external and hardest part of the bone), based on these 

properties, in order to prove its viability for dental applications (78; 79). 
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Table 1. Mechanical properties of commercially pure titanium (grade 1 to 4), titanium alloy Ti6Al4V and 

cortical bone (78). 

Material 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Elongation 

(%) 

Elastic 

Modulus 

(GPa) 

Density 

(g/cm
3
) 

CP Ti Grade 1 240 170 24 102 4.5 

CP Ti Grade 2 345 275 20 102 4.5 

CP Ti Grade 3 450 380 18 102 4.5 

CP Ti Grade 4 550 485 15 104 4.5 

Ti6Al4V 930 860 10 113 4.5 

Cortical Bone 140 - 1 18 0.7 

 

As it is shown, all the material categories considered are able to substitute the bone. 

However, since the purity and malleability of the CP Ti decreases from grade 1 to 4, the 

selection tends to lie on the first two grades as well as on the titanium alloy.   

 

6.1 Passive Film 

 

The oxide layer is formed by the reaction of the oxygen ions, which migrate towards 

the metal, with the titanium counter-ion at the base of the oxide. This mechanism is unique for 

titanium and some other elements of valence IV, such as zirconium. Both thickness and 

chemical composition of the titanium oxide layer play an important role in the adsorption of 

proteins from biologic fluids and in the attraction of cells to its surface (83; 84). In a natural 

atmosphere the thermodynamically stable oxide is TiO2 (titanium dioxide), which can present 

three crystalline structures: anatase (tetragonal), rutile (tetragonal) and brookite 

(orthorhombic).  It is also possible to find TiO, Ti2O3 and Ti3O4 depending on the time of 

exposition to oxygen.  

The anatase phase presents unique properties for biomedical applications. Among the 

three phases, this is the most capable one in the absorption of OH
-
 and PO4

3-
 ions from the 

biologic fluids. These are important for the apatite bone deposition, since they can transform 

the oxide layer in Ti(OH), for instance, which increases the stability of the oxide in contact 

with tissue (85; 86). 

One of the most interesting aspects about the passive film is its ability of 

repassivation. Even if the film is damaged or mechanically removed, it can be regenerate 



  LITERATURE REVIEW | Chapter 2 
_________________________________________________________________________________________________________________________________ 
 

29 
 

instinctively and rapidly in the presence of oxygen, maintaining the original properties (80; 

81).  

Cai et al (87) have proved that the passive film’s physical, chemical and 

electrochemical properties, so important for the dental implant stability in the biological 

environment, can be greatly influenced by variations on the pH of the body fluids, such as 

saliva. According to the Pourbaix diagram (Figure 9), that demonstrates where the titanium 

oxide film is predicted to be stable, based on thermodynamic considerations, it is possible to 

observe that the titanium ions are more soluble on acid pH solutions than in alkaline and that 

the quantity of titanium ions dissolved diminishes with the increasing concentration of 

hydrogen. Consequently, this contributes for the reducing tendency for corrosion (88).  

 

 

Figure 9. Pourbaix diagram for the titanium-water system (89). 

 

The first contact of the oxide layer with the biological medium is followed by 

chemical and biochemical interactions: firstly occurs the hydroxylation and hydration of the 

oxide; then the adsorption of calcium and phosphate ions from the medium takes place; after 

occurs the adsorption of biomolecules starting the biofilm formation, which is followed by 

modifications on the oxide surface; and then all the events associated with the bone formation, 

start at the interface (90). 
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In order to achieve an implant system that responds completely to the human body 

needs, it is necessary to control the characteristics of the outermost layer. Unfortunately the 

titanium oxide spontaneously formed is not completely ideal for biomedical uses. It usually 

presents a heterogeneous formation and is very thin, which difficult the implant chemical 

adhesion to the tissue surrounding (42; 84). Therefore, both CP Ti and its alloys can be 

submitted to thermal and electrochemical oxidation treatments to produce thicker oxide layers 

for protection and cell attraction purposes, with a controlled surface morphology, topography 

and composition. Bioactive components can be added to the oxide to improve osteointegration 

(81).   

According to the Williams Dictionary of Biomaterials (43), a bioactive material is a 

―material which has been designed to induce or modulate a specific biological activity‖. In 

other words, a bioactive fixation is defined as the interfacial bonding of an implant to a tissue 

by means of formation of a biologically active hydroxyapatite layer on the implant surface. 

That layer possesses a composition rich in calcium and phosphorus (free ions), which 

promotes a physical and chemical connection with the tissue (creation of an environment 

compatible with osteogenesis – bone growth). For implants, the bioactivity will provide a 

stronger and firmer direct association between it and the tissue surrounding, equal to or 

greater than bone (91; 92).  

In some cases, like titanium dental implants, where the mechanical properties are ideal 

but the interaction with tissue is not as high as the hydroxyapatite or the calcium phosphates, 

an oxide layer can be produced with favourable bioactivity. By adding components such as 

calcium and phosphorus to the electrolyte used, for instance, in the anodic treatment, it is 

possible to improve the titanium biological properties (93). 

 

7. SURFACE MODIFICATION 

 

The objective of implantology is to design devices that induce controlled, guided and 

rapid osteointegration (94). In the recent years, lots of scientific investigations have been 

conducted to achieve these requirements. Ong et al (95) proved that surface modification 

techniques can affect significantly the outermost layer properties of materials (such as 

titanium) and, subsequently, induce biological responses and alter the cellular fixation rates. 

Surface characteristics are crucial for a successful biological performance of implants. 

Whereas mechanical properties such as Young’s modulus and fatigue resistance are mainly 
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determined by the bulk of the material, chemical and biological interactions between the 

material and the host tissue are closely associated with the surface properties. These 

interactions include early events, such as binding of water molecules, ions and biomolecules, 

as well as mineralization at the implant surface, which will provide the conditions to an 

eventual cell interaction (81; 96; 97). 

Macroscopic and especially microscopic properties of implant surfaces play a major 

role in the osseous healing of dental implants. Several studies have demonstrated that surface 

morphology or topography as influence in the cell response, leading to extraordinary and 

unexpected results (1; 98; 99). Even during both healing and remodelling phases, biological 

processes at the interface can affect the properties of the native surface oxide. Studies have 

shown that the thickness of the oxide layer increases with time and that ions (Ca, P) from the 

physiological environment can be incorporated into the growing oxide (80; 100). 

In recent years, these modifications have received an especial attention and many 

investigations have been conducted. Surface modifications methods such as blasting, anodic 

oxidation, thermal spraying, sol-gel, ion implantation, etc. were already examined and it was 

proved that those treatments are able to change not only the topography but also the chemistry 

of the implantable surface, in order to improve biological, chemical and mechanical 

properties. These studies also underline the fact that an intentional change in surface 

roughness often leads to changes (sometimes non-intentional) in the surface composition and 

in the oxide thickness (53; 101). 

 

7.1 The Anodic Treatment 

 

Over the years, different treatments and techniques have been employed to modify the 

chemistry and tribology of implantable materials surface to enhance its biocompatibility (1; 

102). Between the available alternatives, anodization has been recently reported as the 

preferred one to form rough, porous and thick oxide films on titanium surfaces (3), using 

simple and cheap approaches. It consists in an electrochemical method that combines physical 

and chemical processes for increasing oxide thickness and improving resistance against ions 

release (98; 102). The general principle relies on the application of an electrical charge to the 

specimen embedded in an electrolyte solution. 

This treatment uses a titanium anode and a palatine, silver or stainless steel cathode for 

the production of a stable and biocompatible oxide layer, on the substrate surface. All the 
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reaction takes place in an electrochemical cell (Figure 10) composed by these two electrodes, 

the anode (oxidation reaction) and the cathode (reduction reaction), an electrolyte solution 

(the composition can change according to the application specifications) and a power 

generator.  

 

Figure 10. Simple schematic representation of an electrochemical cell (adapted from (103)). 

 

In the titanium anodization, the oxide layer grows thanks to the adsorption of the 

anions from the electrolyte and the nature of the oxide formed is defined not only by the 

reactions that take place and the titanium properties but also by the electrolyte composition. 

Depending on the anodizing conditions, especially voltage, current intensity and electrolyte 

concentration, it is possible to achieve different types of surfaces (104). For instance, with 

determined electrolyte concentration, temperature, agitation speed, surface area ratios of 

cathode and anode and others, the oxide thickness can vary and consequently the surface 

coloration (4). In consequence to these alterations the tissue reactions change and the 

biological responses are affected.  

The anodic process allows the formation of oxide porous layers favourable to a good 

biological response. Another advantage of this method is the possibility of incorporation of 

calcium and phosphate ions into the surface. In this case the control of the electrolyte 

composition and concentration is the decisive factor (104).  

 

7.2 Titanium Surface Modifications: Characterization 

 

A substantial number of studies have been conducted to examine the osteoblasts 

behaviour in contact with different surfaces. In vitro and in vivo studies demonstrated that the 
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surface composition, topography, wettability and free energy can significantly affect the 

osteoblasts attachment and development on titanium implants (98).  

 

7.2.1 Chemical Composition 

 

The alteration of the titanium surface composition that contacts with the bone cells, for 

regenerative proposes, is not new. Over the years, investigations have been conducted to alter 

the physical-chemical properties of implantable materials, in order to enhance their 

osteointegration capacity, and different characterization techniques developed to test the 

viability of those changes. In this case, the characterization techniques must evaluate the 

purity level of the metal as well as the presence of contaminants that can affect the success of 

the implantation. 

Titanium and its alloys are well-established biomaterials. However due to the 

generally rather biopassive properties of titanium, the healing process is slower compared to 

other implant materials with bioactive properties, such as bioglass or hydroxyapatite. On the 

other hand, CaP-based ceramics have poor mechanical properties, which prevent their use as 

bulk materials for load-carrying implants, in bone applications. Several strategies based on 

coating titanium with bioactive CaP-based materials have been developed, in order to 

combine the favourable mechanical properties of titanium with the outstanding biological 

properties of CaP-based ceramics (105). 

 

Zhu et al (106) tested the incorporation of Ca and P into anodic oxide films and 

realized that the osteoconductivity properties of the materials in contact with physiological 

fluids were improved. For that, they used X-Ray Diffraction (XRD) to characterize the anodic 

oxide structure, an Electron Probe Micro Analyzer (EPMA) to evaluate the oxide composition 

and a Scanning Electron Microscope (SEM) to examine the adherence of the cells to the 

anodic surfaces. Conducting a similar investigation Feng et al (104) proved that theory, 

demonstrating that increasing levels of protein adsorption can be obtained by the presence of 

Ca and P ions and, consequently, bioadhesion. In this case, the surface characterization, 

focusing on the surface chemistry, was carried out using X-Ray Photoelectron Spectroscopy 

(XPS). 

 

Cui et al (107) showed, through XRD surface analysis and Field-Emission Scanning 

Electron Microscopy (FE-SEM), that an apatite layer covering the totality of the titanium 
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surface is able to enhance the bonding strength between living tissue and implant. An anodic 

film was formed on each titanium surface using different electrolytes and under various 

electrochemical conditions. It was demonstrated that anodic oxidation is an effective method 

for preparing bioactive titanium surfaces for artificial bone substitution even under load-

bearing conditions.  

 

On his turn, Li et al (108) proved the biocompatibility of bioactive Ti oxides, produced 

by anodic oxide treatments. In this study they used two types of samples, one with a simple 

oxide (TiO2) and other with calcium and phosphate incorporated, and the surfaces were 

observed and analysed by SEM, XRD and Transmission Electron Microscopy (TEM). 

Samples were incubated with fibroblasts grow factors mixed with PBS solution, for 24h. After 

that time, thanks to the CaP presence, a new apatite layer was formed and the growth factors 

were immobilized into it. With this once again the biocompatibility of bioactive surfaces was 

proved as well as the applicability of the anodic treatments. This investigation also showed 

the possible synergic effects on osteointegration, in vivo.  

 

Kim et al (72) demonstrated, by SEM and XRD analysis, that using anodic oxidation it 

is possible to obtain desired roughness, porosity and chemical composition of the oxide. 

Thanks to the ability of this technique to incorporate new compounds, like calcium and 

phosphate, into the surface of an implant, it is possible to alter its structure and chemistry. 

With this, Kim and his collaborators proved the higher surface energy and greater biological 

activity of bioactive titanium surfaces. 

 

7.2.2 Roughness 

 

There are numerous reports that demonstrate that the surface roughness of titanium 

implants affects the rate of bone tissue integration and biomechanical fixation. Several in vitro 

and in vivo studies have shown that modified surfaces have a higher early level of cell 

attachment than the untreated Ti surfaces, especially when the roughness is the variable. This 

property has also been pointed out as the main factor for cell adhesion, migration and 

differentiation promotion (109; 110), as well as a stimulant factor in the creation of a 

favourable microenvironment for bone formation (111). 
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Surface roughness can be divided into three levels, depending on the scale of the 

features: macro-, micro- and nano- sized topologies, which, consequently, induce different 

bone reactions. Depending on the size of the topologies, the characterization techniques must 

be adjusted, although the aim remains the same: evaluate the topography and morphology of 

the surface (porosity, roughness...). 

 

Larsson et al (112) showed that increasing the roughness of titanium surfaces and the 

thickness of the oxide layer it is possible to achieve higher levels of bone formation. In this 

investigation, the totality of the surfaces suffered an electropolish treatment, which was 

followed, for half of them, by anodization. The surface elemental composition was analysed 

by Scanning Auger Electron Spectroscopy, whereas the surface roughness and topography 

was evaluated by SEM and Atomic Force Microscopy (AFM). It was demonstrated that the 

anodic treatment promoted bone formation around the implant region. Schneider et al (113), 

in a very similar research, also showed that osteoblasts attachment to titanium is directly 

related to the surface roughness. On his turn, Bren et al (114) proved that surfaces with nano-

scale roughness have greater influence on osteoblasts differentiation than micro-scale 

roughness, and suggested that high levels of differentiation can be achieved with high surface 

free energy. In this case, cells’ morphology, proliferation and differentiation were examined 

by Optical Microscopy, SEM and Kinetic ELISAs (for alkaline phosphatase activity); the 

roughness by AFM and Light Profilometry; the chemical composition of the oxide layer 

through Auger Electron Spectroscopy; and the surface free energy was determined through 

contact angle measurements.  

 

Anselme et al (115), conducting an original experiment, evaluated the long term 

evolution (till 14 days) of the osteoblasts adhesion on CP Ti surfaces with different 

morphologies. To achieve that, the surfaces topography was extensively analysed using a 

Tactile Profilometer and the roughness parameters were correlated with the adhesion power 

(new adhesion parameter) to determine the surface with the highest influence on the cell 

adhesion. Using SEM, they observed that the human osteoblasts spread more intimately on 

surfaces with lower roughness amplitude. In contrast, the roughest surfaces exhibited the 

highest adhesion power. Besides that, with this experiment they confirmed that the human 

osteoblasts are more sensitive to the organization and morphology of roughness than to its 

amplitude. 



  LITERATURE REVIEW | Chapter 2 
_________________________________________________________________________________________________________________________________ 
 

36 
 

Studies like this one are not that common since most of the investigations focus on the 

early stages of osteoblasts adhesion and not on the long term evolution. 

 

Gabbi et al (3) demonstrated that titanium surface modifications, in particular surface 

micro-roughness, can considerably affect the osseointegration process, in vivo. The aim of this 

study was to compare the response of bone tissue to different treated titanium implants: 

chemically-treated rough titanium achieved by a double step acid etching; bioactive titanium 

obtained by Bio-Spark; and untreated machined titanium. In the end it was observed, through 

Stereomicroscopy (characterization technique used for histological analysis) and Fluorescent 

Microscopy, that these surface modifications improve and speed up the osseointegration 

process, with an especial attention to the early stages of cells development promoted by the 

double acid attacked titanium. Roughness is considered by Gabbi et al as a key factor for 

osteoblasts adhesion and colonization during neo-deposition around the implant. 

 

Das et al (116) conducted an experiment where a bioactive TiO2 layer was produced 

on CP Ti samples using three different electrolytes. The resulting surfaces were characterised 

by a surface Profilometer and exhibited different morphologies with distinct properties. The 

behaviour of the human osteoblasts from the cell line OPC1 was evaluated for three different 

periods of time and in the end the results demonstrated that high levels of roughness, high 

surface free energy and low contact angles (contact angles and surface free energy determined 

by the Sessile Drop Method), promoted cell materials interaction, which included an 

improvement of the cells attachment, proliferation and differentiation.   

 

Later, Chiang et al (117) using a simple and fast electrochemical anodic treatment 

created a structured nano-network layer of TiO2 on a Ti surface for dental implantation, in 

order to test its ability to improve cell growth, more specifically the human bone marrow 

mesenchymal stem cells (hMSCs) growth. To characterize the anodic treatment XRD and FE-

SEM analysis were made. This study was conducted both in vitro and in vivo and in both 

cases the results were favourable, proving in vivo the points of the previous investigations. 

With a TiO2 multilayer nano-network the cells growth was enhanced and, in in vivo 

conditions, signals of differentiation toward osteogenic lineage was also observed. 
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The majority of the studies involving bone cells adhesion to modified metallic surfaces 

revealed a great improvement on the cells activity with the increasing roughness of the 

surface. However, there are also some that admit a negative effect. 

 

Stanford et al (118), using a dental implant model (in vitro), studied the effect of the 

CP Ti oxide roughness and chemistry on the osteoblast-like cells phenotype expression. The 

samples were, firstly, polished through a series of silicon carbide papers and after the sand 

blast technique was employed. This procedure was followed by sterilization processes, which 

culminated in the production of three different clinically relevant surfaces. After those, the 

osteoblasts culture on the samples unities was initiated and lasted for twelve days. The results 

showed that the bone-specific protein markers, osteocalcin and alkaline phosphatase activity, 

presented lower levels on rougher surfaces, which contradicts the previous investigations. 

 

Lange et al (119) analysed the cell adhesion dynamics on modified CP Ti surfaces 

(polished, machined, blasted and vacuum plasma sprayed) and the influence of its structural 

organization. To evaluate the physical-chemical surface properties they used SEM, surface 

profiling and Electrochemical Impedance Spectroscopy (EIS). The results revealed that the 

structural and functional properties of the cell adhesion components were determined by the 

surface topography. They also concluded that, despite the similar cells morphology on the 

different surfaces, the spreading, which is an active process and involves integrines, was 

reduced on more rough surfaces.  

 

7.2.3 Contact Angle and Free Energy 

 

The composition and roughness of the implant surface play an important role in the 

definition of the interaction between it and the biological environment. However, these 

properties are not the only ones. Studies have shown that the wettability and the surface 

energy are both very important in the protein adsorption and additionally in the cell 

attachment to titanium oxide. Kasemo (120) even reveal that the surface wettability is the real 

instigator of the osseointegration phenomenon. He pointed out that the water molecules are 

the first ones to arrive and establish an interaction with the biomaterials surface and just later 

the proteins, other molecules and cells do the same thing. Macak et al (121) also suggested 

that the osseointegration mechanism starts when the implant gets in contact with the body 
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fluids, such as blood: in the hydrophobic surfaces, the signs of the antibodies reduce cell 

adsorption, while in the hydrophilic surfaces, the signs of the trombines and prontotrombines 

are predominant and the adsorption is stimulated. 

The contact angle is defined as the angle formed between a liquid and a solid, and its 

value depends on the relation between the liquid and solid adhesive forces and the liquid 

cohesive forces (Figure 11). If the adhesive forces are higher than the cohesive forces, the 

liquid wets the surface and the angle formed is less than 50º - the surface is hydrophilic. On 

the other hand, if the adhesive forces are superior, the liquid does not wet the surface and the 

angle formed between the liquid and the solid is higher than 50º - the surface is hydrophobic. 

The same surface can present different behaviours if in contact with different liquids. 

 

 

Figure 11. Possible classification for contact angles (122). 

 

The surface free energy can also be determined by the contact angle. Thus, if a surface 

presents higher levels of energy that means it exhibits a hydrophilic behaviour. On the 

contrary, if the surface energy is lower the hydrophobic behaviour prevails. 

 

Feng et al (104) conducted an experiment where the titanium oxide films were 

submitted to different heat-treatments and their surfaces were characterized through XRD and 

XPS. With this they intended to see the influences of the oxide films and their surface 
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chemistry on the osteoblasts adhesion and culture. They observed that, besides the surface 

characteristics, the number of hydroxyl groups on the titanium surface had influence in the 

behaviour of the osteoblasts that were in contact. They also concluded that the greater the 

roughness, the larger the surface energy (contact angles measure by Sessile Drop Method and 

the surface free energy calculated using the Owens-Wendt-Kaeble’s equation) and the higher 

the number of hydroxyl groups, the greater the number of adhered osteoblasts and cell 

activity.      

 

Rupp et al (123) showed that the surface wettability and energy have a great influence 

in the protein adsorption and the osteoblasts adhesion to the implants surface. On his 

experiment, he evaluated the wettability and the fibronectine interactions in specific surface 

topographies using a Dynamic Contact Angle analysis (DCA, a very sensitive method to 

detect time-dependent interfacial changes at biomaterial-biosystem interfaces). As a result he 

was able to identify the relationship between the roughness and wettability of a surface: 

micro-structured surfaces have great wettability, which may improve the initial biological 

response at the interface. They demonstrated that these two properties can work together to 

improve osseointegration. 

 

Zhao et al (124) studied the MG63 osteoblast-like cells growth on modified titanium 

surfaces. Through sand blasting and acid etched techniques, they created a micro-scale and 

submicroscale structured surface, similar to the osteoclasts resorption pits on bone wafers. To 

test the wettability of the resulting surface a DCA analyser was used, and a XPS approach was 

employed to evaluate the surface composition. The results demonstrated that the surface 

energy and hydrophilicity allowed an intense osteoblast differentiation by increasing the 

alkaline phosphatase activity of the cell layer and created an osteogenic microenvironment by 

enhancing local factors such as PGE and TGF-β1 levels. 

 

8. SUMMARY 

 

Dental implants are an important tool in dentistry to replace damaged or lost natural 

teeth. The successful rate of dental implantation is higher, although, sometimes, failure 

happens. To avoid that, numerous factors must be controlled and understood. Between all, the 

bone biology and the implantable material are the critical ones. 
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The human bone is a dynamic system that involves lots of mechanisms working 

together to maintain its viability and functionality. Osteoblasts, osteoclasts, osteocytes, 

proteins and others, play an important role in the implant integration, interacting with the 

materials surface to create a strong bond that should prevail the longest possible period of 

time in a patient life.  

On its turn, the implantable material should respond favourably to the human body 

demands. It should be: 

 Resistant to high intensity mechanical and physical efforts as well as chemical 

attacks; 

 Biocompatible, to guarantee a favourable biological response; 

 Present physical and chemical properties similar to the replaced natural bone 

structure, to avoid biological disorders and physical stresses. 

 

According to the literature review, the best material for dental implantation and the 

one that responds more favourably to the previous requirements is the titanium. It presents a 

protective oxide layer that facilitates the titanium integration. Since the oxide natural form 

does not guarantee the complete success and sustainability of the implantation, to help in this 

task, surface treatments can be applied. 

Over the years different techniques have been used to modify the chemistry and 

tribology of dental implant materials. Between the alternatives, anodization has been recently 

reported as the preferred one. With this technique is possible to change the composition, 

roughness, hydrophilicity/hydrophobicity and free energy of the titanium surface, to alter the 

cells behaviour and subsequently enhance the biocompatibility. 

 

This theoretical research allowed an overview of all the subjects involve in dental 

implantation and the main parameters that this process depends on. Based on this information, 

it was developed an experiment that intends to analyse in detail the interaction between the 

human osteoblasts from the cell line MG63 and the commercially pure titanium surfaces, 

modified by anodic treatment. Since the surface chemistry and topography interferes with the 

bone cells performance, the plan for this work is to evaluate that behaviour on the anodic 

surfaces and follow the cellular evolution.  



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3:  

MATERIALS AND METHODS 
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1. SAMPLES PREPARATION 

 

Commercially pure titanium (CP Ti) samples with 20 mm of edge (square form – 

Figure 12) and 2 mm of thickness were used in this study and were all cut from the same 

original plate (CP Ti grade 2, Goodfellow Cambridge Limited, England). These Ti samples 

were firstly cleaned in an ultrasonic bath with acetone for 3 min and then submitted to an 

etched treatment in Kroll’s reagent (2 ml HF and 10 ml HNO3 in 88 ml H2O) for 10 min.  

 

 

Figure 12. Aspect of a CP Ti sample, after anodic treatment application. 

 

For half of the samples, the etched treatment was followed by anodization. The 

electrolyte used was composed of 0.7 mol/l of calcium acetate (Sigma) and 0.04 mol/l of β-

glycerophosphate (Sigma), which offers the conditions necessary to create a bioactive coating. 

The procedure was applied for 1 min, at room temperature, and used 300 V DC (GPR-

30H10D) of power. In this case the anode was the CP Ti sample and the cathode a platinum 

leaf. After anodized, the samples were cleaned in an ultrasonic bath in propanol for 10 min 

and then in distilled water for 5 min. 

 

2. SURFACE CHARACTERIZATION 

 

The knowledge of the surface properties is essential for a complete evaluation of the 

biological performance of an implant. The surface morphology, chemical composition, 

topography, contact angle and surface free energy were the main analysis preformed, to test 

the viability and the influence of the material surface on the biological environment.  
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2.1 Surface Morphology and Chemical Composition 

 

The morphology of the etched and anodized surfaces was analysed by Scanning 

Electron Microscopy (SEM) (JEOL JSM – T220A Scanning Microscope). This technique 

allows the observation of materials in macro and submicron ranges (large depth field and 

resolution) by generating three-dimensional images, useful for understanding the surface 

structure of a sample. 

This instrument uses a high-energy beam of electrons in a raster scan pattern to scan 

the samples in observation. The base of this technique consists in the interaction of the 

electrons from the beam with the atoms at or near the samples’ surface, producing signals full 

of information. For conventional imaging in the SEM, the specimens must be electrically 

conductive, at least the surface, and electrically grounded to prevent the accumulation of 

electrostatic charge. Metal objects, such as the titanium samples used in this investigation, 

require little special preparation for SEM, since they are already conductive. Only cleaning 

and correct size to fit over the samples holders is necessary (125; 126; 127). 

Before SEM observation, all samples were washed in an ultrasonic water bath (60°C) 

for 10 min and left to dry in a laminar flux chamber for one night. A new sample holder 

(cylindrical tube) was produced for the observation of those, since their dimension exceeded 

the common holders, prepared for smaller sizes. After inserting the samples in the SEM 

chamber, the vacuum was activated to remove all air inside, the intensity of the electron beam 

was defined to interact with the surface, and the magnification and contrast were adjusted to 

achieve an image with good resolution. 

The previous technique only provides the morphological analysis. To identify the 

different elements present in the specimen, another application was used: an Energy 

Dispersive X-Ray Spectrometer (EDS) (EDS INCA model 5785, Oxford Systems). This is an 

analytical technique that uses the x-rays emitted by the sample in response to the SEM 

bombardment with a high-energy electron beam. EDS measures the number of emitted x-rays 

versus their energy, which is characteristic of the element from which the x-ray was emitted. 

In other words, its principle is based on the unique atomic structure of each element, which, 

on its turn, provides a unique identification. This is a qualitative and quantitative evaluation 

(126; 127). 
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The surface characterization, morphology and chemical composition, was followed in 

three samples of each type. For each sample, three evaluations were conducted – this includes 

morphologic and chemical analysis.  

 

2.2 Surface Topography 

 

The surface topographic analysis was entirely developed by a Biomedical Engineering 

student, Luís Castanheira, at École Centrale de Paris, France.  

The first technique used was the Microtopography, which allows a complete 

evaluation of the surface roughness through two distinct ways: contact and non-contact 

methods. Like the name suggests, in the first case, a stylus tip, connected to a sensor that 

reads the surface anomalies, contacts directly with the material. However, as a consequence, 

the surface can be damaged or modified during the test, which explains why this approach is 

being replaced, nowadays. In the second type, non-contact method, a Confocal Chromatic 

Technology is usually employed, since only light travels above the surface. This is the 

approach used in this investigation. 

This technique is based on the confocal microscopy principle. The microtopographer 

(Micromesure STIL, model CHR150-N, France) uses a light source and an objective that 

focus the light beam in a specific point on the surface. Due to the presence of a displacement 

table in the X and Y axis, the sample can be moved and the light can traverse the entire 

surface. When the white light contacts with the samples surface it is reflected and the specific 

wavelength (of the point) detected by a set of chromatic lens coupled to the equipment. 

Through this, it is possible to determine the specific position of the light in the measuring 

field and, subsequently, delineate the profile (2D evaluation) or the surface area (3D 

evaluation) of the sample (128; 129). Thus, the information is compiled in 3D models and 2D 

graphics providing the surface microarchitecture and, consequently, its distinctive roughness. 

This procedure was applied to six samples of each type. 

To confirm the validity of the results a second technique was also used, the White 

Light Interferometry (New-View 6300, Zygo Corp., Middlefield, CT). This is an extreme 

powerful tool that has been used for many years as a reliable non-contact optical profiling 

system for measuring step heights (till 0.1 nm) and surface roughness (lateral resolution equal 

to 2.72 µm, and objective working distance of 9,3 mm). It combines old white light 

interferometry techniques, with modern electronics, computers and software. The 
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interferometry principle of operation is based on the presence of a pattern of bright and dark 

lines resultant from an optical path difference between a reference and a sample beam. The 

interferometer incoming light is divided, one beam going to an internal reference surface and 

the other to the sample. After reflection, the beams recombine leading to the production of the 

bright and dark pattern, which is then converted into a 3D interferogram that will be 

transformed by frequency domains into a quantitative 3D image of the surface structure. This 

image will allow the topographic analysis (130; 131; 132). Usually the samples do not need 

any type of preparation, although in some cases it might need layer deposition to increase 

reflection or diffuse scattering (133). In this case such was required for the anodic film, since 

it does not reflect light. This procedure was applied to two samples of each type. 

 

2.3 Contact Angle and Surface Free Energy 

 

The contact angle evaluation was performed at Universidade do Minho, Portugal, 

using a Goniometer as the instrument. 

The contact angle is specific for any given system and is determined by the 

interactions across the three interfaces that composes the system: solid-liquid (sl), liquid-

vapour
3
 (lv) and solid-vapour (sv). The most common method consists of measuring the 

angle between a small liquid drop (in equilibrium or stable) and a solid surface, as suggested 

in Figure 13.  

 

Figure 13. Schematic representation of a contact angle between a liquid and a solid surface. contact angle; sl = solid-

liquid interface free energy; lv = liquid free energy; sv = solid free energy (134). 

 

To analyse the hydrophilicity/hydrophobicity of the anodic and etched surfaces, three 

distinct liquids were used and afterwards the results compared: pure water (polar liquid); 

formamide (polar liquid); and bromonaphtalene (apolar liquid).  Drops of 2 L of each liquid 

were gently deposited on the samples surface by a syringe controlled by computer software. 

After achieving the equilibrium above the surface, an image of the system was taken and the 

                                                 
3 The vapour in this case refers to the atmosphere that surrounds the system. 
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angle between the drop and the sample measured with the help of the same software. It was 

used a Laplacian approach to determine the angle of contact. This procedure was repeated 7 

times with each one of the previous liquids on each type of sample.  

To determine the surface free energy a sequence of mathematic formulations were 

followed. Considering the drop on Figure 13 in equilibrium, we have: 

                 , (2.1) 

more commonly known as the Young equation. 

On its turn, the adhesion work,   , between a solid and a liquid can be expressed by 

Dupré equation: 

                , (2.2) 

Thus, combining the previous two equations, it is achieved the Young-Dupré 

formulation: 

                , (2.3) 

With this, it is possible to relate the contact angle ( ) and the surface free energy of 

the liquid (   ) easily and with high levels of precision. 

Fowkes suggested that the totality of the surface free energy was the result from the 

contribution of different intermolecular forces:  

         , (2.4) 

    = dispersive forces, such as London interactions; 

   = polar interactions, which are mainly interactions between dipoles or hydrogen donors or 

receivers.  

Fowkes considered that only the dispersive forces were important through the 

interface and for the adhesion work. So he proposed, 

       
    

  
 

 , (2.5) 

The Young-Dupré equation can now be re-written as: 

                  
    

  
 

 , (2.6) 

It gives the value of   
  using only one contact angle measure, if just dispersive forces 

act on the liquid.  

Owens, Wendt and Kaelble adjusted the Fowkes equation to a more general form: 

       
    

  
 

      
    

  
 

 , (2.7) 

which combined with 2.6 gives, 
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 , (2.8) 

where the exponent d represents the dispersive components and p the polar components, 

including all solid and liquid interactions. 

The equation 2.9 gives an estimation of the surface free energy of a solid, using two 

liquids with    
  and    

 
 known and the contact angle measures (134; 135). After knowing the 

contact angles between the three considered liquids (water, formamide and bromonaphtalene) 

and the solid surface, using the previous equation, the surface free energy was determined. 

 

3. STERILIZATION 

 

Before cell culture, samples were sterilized in two different steps. The first one was 

applied in order to achieve the physiologic pH (pH = 7.4) and to eliminate the surfaces 

impurities produced during the manipulation. To accomplish that, samples were immersed in 

a 1.5 M NaCl (Sodium Chloride, Fisher) solution for 4 h and then, for another 4 h, in a 0.15 

M NaCl solution. After, they were left, overnight, in 500 ml of PBS (Phosphate Buffered 

Saline, Gibco) solution, and finally, each side of the sample, was sterilized with ultra-violet 

(UV) radiation (30 W) for 15 min.  

In the second phase, the goal was to assure the ionic and proteic equilibrium required 

for the cellular contact. For this, samples were left in a non-complete medium of Dulbeco’s 

Modified Eagle Medium (DMEM, Gibco) for 24 h at 37ºC and 5% of CO2, and overnight in a 

complete medium with DMEM and 10% of Fetal Bovine Serum (FBS, PAM
TM

) (Table 2), in 

the same conditions.  

 

Table 2. Composition of the mediums used in the sterilization process. 

NON-COMPLETE MEDIUM COMPLETE MEDIUM 

98% DMEM + L-Glutamin, Gibco 88% DMEM + L-Glutamin, Gibco 

1% Penicillin-Streptomycin, Gibco 1% Penicillin-Streptomycin, Gibco 

1% Fungizone, Gibco 1% Fungizone, Gibco 

- 10% Fetal Bovine Serum, PAM
TM

  

 

DMEM is a basal medium consisting of 4.5 g/l of glucose, 0.6 g/l of L-glutamine, 

vitamins, salts and a pH indicator. It contains no proteins or growth factors, which explains 

the addition of the antibiotics and the FBS to complete it.  
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4. OSTEOBLASTS CULTURE 

 

The MG63 osteoblast-like cell line derived from the human osteosarcome (from 

American Type Culture Collection) were used in this study. This cell line is a well established 

model for studying the effects of surface morphology/topography on osteoblast-like cells and 

represents a less differentiated stage of osteoblastic maturation (124). The MG63 are also 

capable of preserving their cellular characteristics for a long period of time without the risk of 

losing phenotype expression. Thanks to this property, up to fifty culture passages can be 

accomplished using the same original criovial.   

 

4.1 Culture Expansion 

 

The osteoblasts were cultured in a complete medium of DMEM (Table 2). Since the 

cells were already used in previous investigations and crio-preserved in the passage five (P5), 

the expansion started in the passage six (P6). After unfrozen the criovial cellular content, in a 

37ºC water bath, it was quickly mixed with 10 ml of medium, to avoid DMSO (Dimethyl 

Sulfoxide) contamination, and seeded in a T75 (75 cm
2
 of area, Falcon) polystyrene culture 

flask (Figure 14). To maintain the viability of the cells and to promote their proliferation, the 

flask was kept in the incubator at 37ºC with a 95% humidified atmosphere and 5% CO2 in air. 

The osteoblasts culture was monitored every 24 h and the medium changed at least twice a 

week.  

 

 

Figure 14. Osteoblasts culture in a polystyrene culture flask (T75) (CANON A480). 

 

At 80% of confluence the medium was removed, the flask washed three times with 

PBS (10 ml) and the cells were finally detached using trypsin-EDTA (Gibco) (5 min). The 
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cellular content was then passed for three new flasks (10 ml for each flask) and this procedure 

was followed until cells are needed to the assays.  

Subsequently to the obligatory passages, the cells were seeded onto the CP Ti samples 

surface. In this case, to inactivate the trypsin action, only 4.5 ml of medium were required. 

Cells were then counted and viability tests applied (the procedure followed is described in the 

next section). The initial concentration of 2 x 10
4
 cell/ml, prepared in complete medium, was 

used in each assay, due to the osteoblasts rapid proliferation.  

A total of 2 ml of cellular suspension was inserted in each well, which means 4 x 10
4
 

cells per well. The six well plates (Figure 15) were left in the incubator, at 37ºC and 5% of 

CO2, for the respective period of time, with constant monitorization. 

 

 

Figure 15. Six wells plate prepared for culture. A1 and A2 – Anodized samples; E1 and E2 – Etched samples; and O1 and 

O2 – Control (without sample). To each well, 2 ml of medium with a total of 4 x 104 osteoblasts was added. 

 

4.2 Adhesion  

 

To quantify the osteoblasts cell attachment onto the titanium surface and to study their 

interaction in the first moments of contact, adhesion was assessed. Four samples, 2 anodized 

and 2 etched, were used for each period of time: 0.5, 2 and 4 h. Besides that, two wells 

without sample were, also, filled with the cellular suspension creating the culture controls.  

The osteoblasts adhesion and spreading were evaluated through the assessment of their 

viability and the number of cells attached to the samples.  

After each time point, the medium was removed, the samples were washed three times 

with PBS and then placed into new plates. For each sample 2 ml of trypsin-EDTA were added 

and left in action, at 37ºC and 5% of CO2, for 10 to 15 min, in order to detach the totality of 

the cells.  Subsequently, the trypsin was inactivated with 2 ml of medium.  



  MATERIALS AND METHODS | Chapter 3 
_________________________________________________________________________________________________________________________________ 
 

50 
 

The cellular content achieved was then divided for posterior evaluations: viability and 

number of cells. In the first case, trypan blue was the reagent applied. It was used in a reason 

of 25/25 µl of cellular content and viability was assessed using a Malassez Cell (PolyLab) by 

counting the live (only cytoplasm coloured but not the nucleus) and death (coloured nucleus) 

cells, following the equation:  

 

                                

                         
                             

 

This test was performed as fastest as possible to guarantee the accuracy of the results. 

In the second case, to count the number of cells in each place (medium, plate and sample, 

Figure 16), 1 ml of the suspension was combined with 9 ml of isotope (IsoFlow
TM

) and the 

evaluation preformed by an Automatic Cell Counter (Z2, Beckman Coulter).  

 

 

Figure 16. Side view, schematic representation of a plate well with culture medium and sample, showing the three main parts 

from where the cells are removed and afterwards counted. 

 

In the end, to verify the absence of cells on the surface, samples were fixed with 

formaldehyde (Sigma). Firstly they were washed 2 times with PBS, then 2 ml of medium were 

introduced with 100 µl of formaldehyde and after 45 min morphology was evaluated as 

described in section 4.3. 

 

4.3 Spreading and Morphology 

 

The morphology tests allowed the observation of the cells connection to the samples 

surface, their organization, shape and size. For that, 2 samples of each type were required, for 

each control time: 0.5, 2.0 and 4.0 h.  

After each time, samples were washed 3 times with 2 ml of PBS and passed to a new 

plate. Then, the osteoblasts MG63 were fixated with 100 µl of formaldehyde (37°C) 

combined with 2 ml of medium and left for 45 min at 4°C. Later than, they were washed 

again 2 times with PBS (5 min) and then another 2 times with a PBS and BSA (Bovine Serum 
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Albumin, SAFC) solution, in a concentration of 0.4 g/l, for 5 min. To achieve the cells 

membrane permeabilization, 2 ml of Triton X100 (Labosi) in a 0.1% v/v of PBS, at room 

temperature (5 min), were added.  

A new PBS and BSA solution (30 g/l) was then prepared and inserted in each one of 

the wells (it should cover completely the sample). It was left there for 30 min, at room 

temperature. This step allowed the blocking of the nom specific cells connections. Succeeding 

that, 3 new washes were done with PBS and BSA in a concentration of 0.4 g/l. Afterwards a 

Bodipy Phallicidin (FluoProbes
TM

) solution was added, to stain actin fibers on the cells' 

cytoskeleton (main constituents of the cells architecture) in a quantity of 2 ml/well (this 

means 50 µl of methanolic solution for 2 ml of final PBS) and left there for 4 h. In the end, 

the surfaces were washed 4 times with sterile PBS and left to dry at room temperature. A total 

of 6 pictures per sample were taken using a fluorescent microscope (ZEISS Axioplan, 

Gernany) coupled with a photographic camera (Olympus C-5050).  

The images were analysed using a specific software, the Quantity One: 1D Analysis 

Software, which allowed the scaling in size of each cell from each picture. Thanks to this, a 

statistical analysis of the average size of the cells attached to the anodic and etched samples 

was possible. 

 

4.4 Proliferation 

 

In this assay the number of cells was the most important factor to retain. Therefore, 2 

samples of each type were again required for each considered day: 1, 3, 7, 10 and 14 days. To 

conduct a complete evaluation of the number of cells (Automatic Cell Counter), three spaces 

were considered: medium, plate and sample – the total number was acquired by the sum of 

these three parts (see Figure 16).  

Before starting any procedure the medium was removed and the wells (which include 

the samples) were washed three times with PBS. In this case, the control was again the 

cellular culture directly onto the plate.  

The procedure followed was the same described in 4.2 Adhesion and Spreading.  
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4.5 Alkaline Phosphatase Activity  

 

The alkaline phosphatase (ALP) activity test is used to reveal the presence of this 

enzyme, which is responsible for the liberation of phosphate into the extracellular matrix 

during the transformation of the p-nitrophenylphosphate substrate into p-nitrophenol.  

The ALP activity was followed for 7, 14, 21 and 28 days. Since the osteoblasts do not 

possess the ability to produce calcium and phosphate by themselves, in in vitro cultures the 

composition of the DMEM complete medium was changed to induce this production. Besides 

the known constituents, ascorbic acid (Sigma) and β-glicerophosphate (Sigma) were included 

in a reason of 0.00805 g and 1.08 g in 500 ml of DMEM, respectively. This change promotes 

the osteoblasts MG63 maturation stage of evolution. 

In the beginning of this test, the culture medium was removed, the samples were 

washed 3 times with PBS and placed in a new plate. Subsequently, 2 ml of Tris Buffered 

Saline (TBS)-Triton X100 solution (0.4844 g Trizma Base (Sigma), 1.6 g NaCl, 2 ml Triton 

and 198 ml distilled H2O), at 37°C, was added to each well (the ones with samples and the 

two considered as controls) and the plates left there for 1 h. All the content was then removed 

to tubes and strongly mixed for 5 min, followed by three cycles of freezing at -80°C and 

unfreezing at 37°C. Between each cycle, the cellular suspension was submitted to a strong 

agitation for 5 min.  

The next steps aimed to measure the enzymatic activity. For that, it was used a 

spectrofluorimeter (Safas Xenius) which measures the solutions' absorbance.  

Firstly 500 µl of cellular material were mixed with 500 µl of p-nitrophenylphosphate 

substrate (Acros) in a concentration of 20 mM (buffer solution AMP, at pH = 10.2 composed 

by 0.742 g p-Nitrophenylphosphate (20 mM, Acros), 0.0407 g MgCl2 (2 mM, Merck), 0.0891 

g 2-Amino-2-Methyl-Propanol (10 mM, Acros) and 100 ml of distilled H2O) and left in the 

incubator for 30 min at 37°C. The quantity of p-nitrophenol produced was measured by optic 

density at 405 nm of absorbance against a p-nitrophenol (Acros) range of concentrations 

(Table 3) in the buffer AMP. 
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Table 3. p-Nitrophenol (p-NP) range of concentrations in the buffer AMP4. 

[p-NP] (µmol/ml) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.4 

Solution p-NP (µl) 0 5 10 15 20 25 30 40 

Buffer AMP (µl) 1000 995 990 985 980 975 970 960 

 

The ALP activity results were, in the end, normalised in order to consider the totality 

of proteins contained in the cellular suspension. This quantity was detected using a 

commercial kit, BioRad (Bio-Rad Laboratories). For that, 25 µl of cellular suspension were 

combined with 125 µl of a reactive A’ (reactive A’ = 10 µl of reactive S + 500 µl of reactive 

A) and 1 ml of reactive B, well mixed and left in repose for 15 min before quantification. The 

results were measured by optic density at 750 nm of absorbance against a BSA range of 

concentrations in TBS-Triton (Table 4). 

 

Table 4. BSA range of concentrations in TBS-Triton. 

BSA (µg/ml) 0 0.05 0.1 0.2 0.3 0.4 0.6 0.8 

BSA 1 mg/ml (µl) 0 5 10 20 30 40 60 80 

Tampon TBS-Triton (µl) 100 95 90 80 70 60 40 20 

 

4.6 Mineralization 

 

The mineralization starts with the calcium and phosphate precipitation induced by the 

ALP activity. Thus, the results should show an advanced stage of the bone mineralization as 

well as the osteoblasts evolution into osteocytes. Although, as happened in the previous test, 

the culture medium composition was altered and enhanced with ascorbic acid and β-

glicerophosphate (in the same quantities), to induce the osteoblasts maturation. 

For this assay, 4 culture periods of time analysed: 7, 14, 21 and 28 days. Like the 

previous trials, the medium was initially removed, the samples washed three times with PBS 

and placed in a new plate. After that 2 ml of trichloroacetic acid (TCA, Sigma) at 15% in ultra 

pure water were added and let there for 1 h.  

Since this trial consists in the analysis of the calcium and phosphate levels, it was 

divided in two parts. The first one, related to the calcium detection, was initiated 1 h after the 

                                                 
4 The range of concentrations in this table (Table 3) and in the next ones (Table 4, Table 5 and Table 6) gives the calibration curves used to 

compare the absorbance results from each correspondent trial and, consequently, allows the change of unities, from optic density to 

concentration in μg/ml.   
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TCA exposure. Later that time, 300 µl of solution were removed to a new container and the 

rest of the suspension remained in contact with the samples and wells for 48 more hours – 

posterior phosphate detection. From that 300 µl, 10 µl were combined with 1 ml of Arsenazo 

III (Sigma) at 0.2 mM in PBS (1X), well mixed and left for 15 min before quantification. The 

quantity of calcium produced was measured by optic density, using a spectrofluorimeter, at 

650 nm of absorbance against a calcium chloride (CaCl2) and TCA range of concentrations in 

Arsenazo III (Table 5).  

 

Table 5. Calcium range of concentrations in TCA (15% (m/v)). 

Ca
2+

 (µg/ml) 0 50 100 200 500 600 800 1000 

CaCl2 10 mg/ml in TCA 0 5 10 20 40 60 80 100 

TCA 15% 1000 995 990 980 960 940 920 900 

 

For the phosphate detection, after 48 h, 100 µl of the suspension were combined with 

800 µl of AAM (2 volumes of acetone (Carlo-Erbra), 1 volume of 2.5 mol/l of sulphuric acid 

in distilled H2O (Acros) and 1 volume of 10 mM of ammonium molybdate in distilled H2O) 

solution and strongly agitated. After that, 80 µl of citric acid (Sigma) at 1 mol/l in ultra pure 

water were joined and, again, strongly mixed. Before measuring the phosphate quantity 

extracted, the solution was let for 30 min without agitation. The quantity of phosphate 

produced was measured by optic density at 355 nm of absorbance, in a spectrofluorimeter, 

and compared to a (di) sodium hydrogenophosphate (Na2HPO4) and TCA range of 

concentrations in AAM solution (Table 6). 

 

Table 6. Phosphate range of concentrations in TCA (15% (m/v)). 

PO4
2-

 (µg/ml) 0 10 20 40 100 120 160 200 

Na2HPO4 0.2 mg/ml TCA 0 50 100 200 500 600 800 1000 

TCA 15% 1000 950 900 800 500 400 200 0 
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5. OSTEOBLASTS RESPONSE TO TRIBOLOGICALLY MODIFIED SURFACES 

 

The samples used in this experiment were prepared at the École Centrale de Paris by a 

Biomedical Engineering student, Luís Castanheira. The cellular culture was conducted for 4 h, 

3 and 7 days. 

These samples suffered tribological alterations induced by unidirectional sliding tests, 

which were produced by an unidirectional pin-on-disc tribometer (Multispecimen-tester, 

FALEX-TETRA) stationed on a stabilizer table (Vibration Isolation System with 

StabilizerTM Technology, BenchTopTM, Newport), in order to avoid interferences to the test. 

The pin-on-disc approach can be better understood if we consider the next figure (Figure 17 

A): 

 

  

Figure 17. (A) Unidirectional pin-on-disc approach on the samples surface (136). (B) 1. Anodized sample, 0.8 N; 2. Etched 

sample, 0.8 N. 

 

As a result, from this frictional rotative movement executed by the pin against the 

stationary sample (136), embedded in artificial saliva (pH = 5.5), a wear track is formed in the 

centre of the sample, like Figure 17 B shows. To achieve that, 7200 rotational cycles were 

applied with a velocity equal to 100 rpm and load 0.8 N, in each sample. 

Before cell culture, all samples were cleaned in an ultrasonic pure water bath (60ºC), 

for 10 min, and then sterilized in an Autoclave (SANO Clay, WOLF) at 120ºC, for 30 min. 

Contrary to the previous trials that followed a specific pathway of sterilization, in this case, 

since toxic material was applied during the tribocorrosion test to isolate the sample and the 

electrolyte from the equipment electronic mechanisms, a more aggressive sterilization process 

was necessary. The same amount of osteoblasts MG63 were seeded into the CP Ti samples 

(2x10
4
 cells/ml).  

The results were observed using a Scanning Electron Microscope (SEM, JEOL JSM – 

T220A Scanning Microscope). Although, before visualization, all cells on the samples were 

fixated using a solution of DMEM and 4% of formaldehyde; then the samples were 

(A) (B) 

1. 2. 
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dehydrated in a range of ethanol concentrations (50%, 70%, 90% and 100% in pure H2O – 20 

min each immersion), in order to achieve a better quality of image; and in the end coated with 

a gold ponder to guarantee the electrical conductivity of the samples. A significant number of 

images from the osteoblasts MG63 on the normal surface and on the wear track were taken. 

 

6. STATISTICAL ANALYSIS 

 

Each trial, including surface characterization, was repeated between three and six 

times, always following the same conditions. In the adhesion, morphology, proliferation, ALP 

activity and mineralization assays two samples were tested in simultaneous, during each 

repetition. However, for the last trial, 5.Osteoblast response to surface chemical and 

mechanical modifications, since the samples production took more time and the cleaning and 

sterilization was more difficult to apply; only three repetitions were conducted using just one 

sample at the time.  

The statistical analysis was conducted using the software GraphPad Prism following 

the Anova parameters. Differences between the results were only considered significant if the 

percentage was up to 95% and p < 0.05. 

 

 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4:  

RESULTS AND DISCUSSION 
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As referred the main goals of this research are the study of the osteoblasts MG63 

response to anodized CP Ti and the evaluation of the differences between the anodized and 

etched surfaces. Besides that, the influence of the anodic surface bioactivity on the osteoblasts 

maturation was also a highlight point of the study.  

Firstly the materials surface characterization will be examined and then the results 

from the osteoblasts culture will be discussed. An analogy between these two parts will 

provide a better understanding of the osteoblasts MG63 behaviour on the two types of 

surfaces. 

 

1. SURFACE CHARACTERIZATION 

 

1.1 Surface Morphology and Chemical Composition 

 

The morphology of the anodized and etched surfaces was observed by Scanning 

Electron Microscopy (SEM). The images from Figure 18 are representative of the surface 

aspect before any cell culture.  

 

   

Figure 18. SEM micrographies of the (A) etched and (B) anodized surface morphology. Magnification of 500X.  

   

The differences observed between the two surfaces are mainly determined by the 

treatment applied. In the first case, etched samples (Figure 18A), the Kroll’s reagent was used 

to clean and remove all impurities from the surface. However, since this reagent is an acid 

solution, its application resulted in a rough and crimped surface, which is evident by the range 

of grey colours in the picture (darker for lower and brighter for higher elevations). In the 

(A) (B) 



  RESULTS AND DISCUSSION | Chapter 4 
_________________________________________________________________________________________________________________________________ 
 

59 
 

second case, anodized samples (Figure 18B), a very porous film with a wide and 

heterogeneous range of porous size is exhibit – the porosity is a result of the electrical 

discharges characteristics of the anodic treatment (dielectric breakdown) (1; 3; 80). It is also 

evident a discrepancy in the surface elevation, translated by the difference in the porous size – 

higher and more discernible porous at the top (probably derived from interconnections of 

some other pores) and smaller and harder to distinguish at the bottom – and by the grade of 

coloration, like happened in the etched surface. These differences can be explained by the fact 

that all samples were firstly submitted to etched treatment and just then the anodization was 

applied. Thus, the undulation detected in the first treatment was then ―printed‖ in the anodic 

film, during its production – the oxide film formed followed the original surface topography, 

as expected (80). 

In relation to the chemical composition, the analyses were conducted by Energy 

Dispersion X-Ray Spectroscopy (EDS), a tool associated with the SEM evaluations. The 

spectra (Figure 19) resulted from the analysis of a specific point from each image of Figure 18 

– these results are representative of various evaluations preformed (standard deviation on the 

percentage values) in three samples of each type.  

 

 

 

 

Figure 19. Spectra representative of the (A) etched and (B) anodic surface chemical composition – EDS analysis. 

 

Ti: 100.0 % w/w ± 0.0 

O: 54.8 % w/w ± 1.2 

Ti: 35.7 % w/w ± 0.7 

Ca: 6.9 % w/w ± 0.2 

P: 2.6 % w/w ± 0.1 

(A) 

(B) 
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The chemical analysis of the etched surfaces revealed only one element, titanium (100 

%). It proves the applicability of the etched treatment as a cleaner and an impurities remover 

and its capacity of maintaining the surfaces original composition, pure titanium (grade 2).  

On the contrary, the anodized surface exhibits more elements, aside from titanium, like 

oxygen, calcium and phosphorus. These elements are all inherent to the anodic treatment. As 

was referred in the third chapter of this thesis, the electrolyte used to produce the protective 

film was composed of calcium acetate and β-glycerophosphate. During the treatment, these 

elements were attracted to the surface due to a chain of oxidation and reduction reactions 

induced by electrical discharges (1), which explains the presence of calcium and phosphorus 

on the surface. Through this, it was possible to determinate the Ca/P ratio as equal to 2.65, 

much higher than the standard stoichiometric ratio of 1.67 (100; 106). A considerable 

difference is also evident comparing this value with the one from the initial electrolyte 

composition – 1.75. The only possible explanation for this may rely on the anodic treatment 

conditions. Any small change in the parameters associated with the production of a bioactive 

layer (pH of the reaction, time of control, temperature, matter stoichiometry…) can lead to 

huge changes in the oxide conformation (1).  

On the other hand, the oxygen presence is explained by the titanium oxide formation.  

According to Kuromoto et al (80), when the anodic voltage is high (near to 300 V) the oxide 

film formation occurs due to the migration of O
2-

 ions from the electrolyte into the metal/film 

interface and migration of the Ti
4+

 ions from metallic Ti to the film/electrolyte interface. 

During the treatment, lots of reactions participate in the film growth, although the most 

relevant ones are those that give rise to O2 and TiO2 (titanium dioxide most common form: 

Ti
2+

 + O
-
 ions), which clarifies about the higher quantity of oxygen ions (54.8 % ± 1.2) on the 

surface. This high rate of O2 is also related to the particular morphology of the anodic surface, 

observed in Figure 18. Under high anodic voltages, the electrolyte becomes unstable and the 

O2 formed lead to an enhancement of the system pressure, damaging the film and giving rise 

to the formation of pores (80). 

Another important aspect about these results is the accomplishing of a bioactive 

surface. The incorporation of calcium and phosphorus ions on the materials surface has the 

ability of improving the osteointegration, which guides to a better connection and relationship 

between the bone cells and the implantable structure (100; 104).  
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1.2 Surface Topography 

 

Over the years, many studies have reported the influence of the implantable surface 

topography (in this case roughness) on the cells behaviour and in the implant success. In order 

to conduct a consistent analysis on the osteoblasts MG63 development on the etched and 

anodized surfaces, it was indispensable to consider a roughness analysis. As was described in 

Chapter 3, two techniques were used to measure this property: Microtopography, through 

Confocal Chromatic Microscopy, and White Light Interferometry (by doing this, it is possible 

to confirm the data obtained). Both evaluations were conducted in 2D and 3D, and the results 

presented in the form of Ra (average roughness) and Rz (single roughness depth), and Sa and 

Sz (analogous to the previous), respectively.  

Table 7 gives the average values of roughness of the etched and anodized samples, 

followed by the respective standard deviations. 

 

Table 7. 2D and 3D topographic (roughness) evaluations of etched and anodized titanium surfaces using Microtopography 

and Interferometry as techniques. 

Method Sample 
2D Analysis 3D Analysis 

Ra (µm) Rz (µm) Sa (µm) Sz (µm) 

Microtopography 
Etched 0.88 (± 0.08) 7.62 (± 1.16) 1.08 (± 0.01) 12.97 (± 0.30) 

Anodized 0.83 (±0.08) 6.30 (± 0.66) 1.03 (± 0.05) 10.85 (± 1.20) 

Interferometry 
Etched 0.98 (± 0.04) 6.01 (± 0.41) 0.98 (± 0.00) 10.71 (± 0.42) 

Anodized 1.00 (± 0.02) 6.63 (± 0.32) 1.02 (± 0.03) 10.52 (± 0.74) 

 

Comparing the results obtained by the two techniques (Table 7), it is possible to 

observe that there are no significant differences between the etched and anodized treated 

samples, only minor changes can be observed (p > 0.05). However, considering the standard 

deviation associated to each result, those minor changes can be neglected and, once again, the 

similarity of the values, between each category, confirmed. 

Exploring the results from both techniques, it is possible to detect that 3D analysis 

(surface) have a small tendency to exhibit higher values than 2D analysis (profiles). This 

could be a reflection of the amount of material evaluated, since 3D analysis consider more 

extensive surfaces and, by the Rz and Sz correlation, better perception of the vertical distance 

between the highest peak to the deepest valley.  

The images from the surface morphology (Figure 18) showed a complete 

transformation of the samples surface after anodization – a porous heterogeneous layer was 
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formed. Through a visual analysis, it was expected that the average roughness and even the 

single roughness depth changed too. Although, both evaluations (microtopography and 

interferometry) proved it wrong. Ehrenfest et al (137) have already explained this event by 

testing different types of surfaces. They concluded that the presence of different morphologies 

do not always mean different topographical properties.  

Rodriguez et al (102), conducting a similar investigation showed a great difference on 

the Ra parameter between the titanium samples cleaned by etched treatment (HF and HNO3 

ratio of 1:3, instead of 1:5 as it was used) and the anodized surfaces prepared with calcium-

glycerophosphate (Ca-GP, 0.02 M) and calcium acetate (CA, 0.15 M) at 350 V (following 

analogous conditions to our treatment). The results obtained were 0.34 ± 0.01 µm and 0.73 ± 

0.02 µm for the etched and anodized surfaces, respectively. Despite the proximity between the 

anodic Ra from their research and this work (Table 7), the etched value presented a large 

discrepancy. This can possibly be explained by potential irregularities on the CP Ti material 

used on this study. However, this speculation can only be attested through a considerable 

number of meticulous tests on the material surface, which is left as a suggestion for future 

research projects.   

To prove the existence of possible inconsistencies on results obtained by following the 

exactly same procedure, it can be proposed an analogy between Rodriguez et al (102) and Zhu 

X. et al (106) anodic CP Ti surfaces production and topographic characterization. The 

conditions followed by both studies were equal: etching with HF and HNO3 in a ratio of 1:3 

(same cleaning and procedure time); electrolyte prepared with 0.02 M Ca-GP and 0.15 M CA; 

voltage equal to 350 V; and constant current mode at 70 A/m
2
. As was shown before, the Ra 

obtained in the former study, was near to 0.73 µm. On the other hand, on the latter, the Ra 

value was 0.98 µm. Through this, it is confirmed the validity of the results of the present 

study (Table 7). 

Since only a microroughness analysis was conducted, no argument will be made on 

the possible presence of nanoroughness on the anodized surface. However, this possibility 

might be real and can affect the osteoblasts MG63 development. 

 

1.3 Contact Angles and Surface Free Energy 

 

The contact angle and surface free energy are both very important in the protein 

absorption and, additionally, in the cells attachment to titanium surfaces. In this study to 
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measure the contact angles three liquids were used: pure water (polar), formamide (polar) and 

bromonaphtalene (apolar liquid). The results from the contact angle measurements are 

presented in Table 8. 

 

Table 8. Contact angles of water  (w), formamide (f) and bromonaphtalene (b) of the etched and the anodized surfaces, 

measured using a Goniometre, and determination of the total surface free energy (G). 

Sample w () f () b () G (mJ/m
2
) 

Etched 92.24 ± 2.98 93.34 ± 1.26 29.87 ± 4.21 -26.81 

Anodized 98.74 ± 3.19 94.08 ± 2.02 53.27 ± 1.10 -44.58 

 

Comparing the results from the etched and the anodized samples, it is possible to 

conclude that, although without significant differences on water contact angles, regarding the 

free energy, the anodized sample is more hydrophobic than etched sample, since it has the 

lowest surface energy. According to these, it is expected that the osteoblasts interaction with 

the etched surfaces to be stronger than with the anodized (138; 139).  

As presented before, both surfaces presented high levels of roughness (Table 7). Lim 

et al (140), conducting an investigation on the contact angles of different titanium surfaces for 

dental implantations, discovered that there is an intimate relationship between the resulting 

contact angles and this property. They found that the contact angle increases linearly with the 

average roughness, when the angles were higher than 45 degrees. Thus, given that there were 

no significant differences between the etched and anodized surfaces and both presented high 

levels of roughness, this can justify their hydrophobicity and the negative surface free energy. 

Kasemo et al (141) have proved that in hydrophilic surfaces the protein interactions 

are intermediated by a water layer and there is no direct contact. On the other hand, in 

hydrophobic surfaces, a direct bond with the proteins is created, leading to conformational 

changes. It is believed that hydrophilic surfaces induce a more rapid progression in the 

osteoblasts fixation and expansion (142). Given that, it is expected a slower progression in 

both surfaces compared to previous similar investigations and a slight improvement in the 

MG63 cells expansion for the etched surface, thanks to its higher hidrophilicity. 

 

2. OSTEOBLASTS CULTURE 

 

The main practical application of this study is dental implants. During implantation, 

the bone tissue is surrounded by bone forming cells (osteoblasts), which will form the bond 
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with the implantable material, if all the required conditions are reunited, and stimulate the 

osteointegration. This is the key reason for the osteoblasts MG63 cell line selection. Since the 

osteoblasts from this line are in a less differentiate stage of maturation, it provides the 

conditions necessary to analyse the progressive evolution of the contact between them and the 

material, from the early stages of development. The osteoblasts MG63 behaviour was studied 

on anodized and etched surfaces. 

 

2.1 Adhesion  

 

The first moments of contact between cells and material are crucial for a successful 

implantation. A suitable surface for osteointegration should first promote cell attachment and 

then sustain proliferation, maintain cell differentiation and improve extracellular matrix 

secretion. Therefore, all these subsequent stages of cells development depend on the first one, 

cells attachment. This is a very specific parameter that describes the relative adherence of a 

cell to its substrate, generally at an early stage of culture (143; 144). 

The MG63 osteoblast-like cells adhesion was tested for three periods of time: 0.5, 2 

and 4 h, and in the three situations the viability was between 87 and 90%, based on Trypan 

blue exclusion. The results from Figure 20 are in the form of percentage, in which the 100% 

represents the totality of cells on each well (medium, plate and sample), at each time point.  

 

      

 
 

Figure 20. Evolution of the osteoblasts MG63 adhesion to (A) etched and (B) anodized surfaces from 0.5, 2 and 4 h of 

culture. (C) Control results obtained by the direct culture on the well (without any sample). 

(A) (B) 

(C) 
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The graphic representations (Figure 20) showed that, even after 30 min of contact, 

there is already a significant percentage of osteoblasts (near to 40%) attached to the surfaces 

available (sample and plate). There is not a significant difference between the osteoblasts 

MG63 affinity to etched or anodic samples, although it seems that the anodic treatment 

possess a slight advantage, reaching about 27% against 22% from the etched cultures. As it 

was expected and demonstrated by the control results (Figure 20 C), the highest percentage of 

cells is still embedded in the culture medium. 

With the passage of time, a change of events occur. After 2 h of incubation, the 

percentage of cells in the medium decreases, from approximately 60% to less than 40%, 

indicating that the majority of cells are now adhered to the available surfaces. This event 

became much more consistent at the end of the trial, 4 h of incubation, with a total increasing 

of 30% of the cells attachment. Another interesting aspect in Figure 20 A and B is the more 

apparent affinity of the osteoblasts MG63 to the plate surface than to the samples itself. This 

fact can be easily explained by the nature of the culture plates, which are produced in 

polystyrene (submitted to surface treatment to induce tissue culture, followed by intensive 

sterilization) and are negatively charged. Usually these characteristics tend to induce cells 

attachment (145; 146). Since the size of the well exceeds largely the samples’ size, there are 

numerals gaps to where cells prefer to attach. 

From 30 min to 4 h of culture, a minor increase in the percentage of cells associated to 

the etched and anodized surfaces was detected. However, this was not significant to establish 

a difference between those two, especially since they were kept apart only for 5% ± 1.0, at all 

time. For a more accurate analysis, the totality of cells on each well (Table 9) must be 

evaluated, as well as the actual number of cells fixated onto the samples’ surface (Figure 21). 

 

Table 9. Total number of cells presents on each well, considering medium (M), surface of the plate (P) and sample (S), 

according to the trial duration (0.5, 2 and 4 h). 
 

 

 

 

 

 

 

 

Time  

(hours) 

Total number of cells on each well (M+P+S) 

Anodized Etched Plate (Control) 

0.50 7.42E+04 7.22E+04 6.28 E+04 

2.00 7.46E+04 7.32E+04 6.33 E+04 

4.00 7.48E+04 7.44E+04 6.39 E+04 
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Figure 21. Evolution of the number of osteoblasts MG63 adhered to the anodized and etched surfaces with time. Trial 

followed from 0.5 to 4 h of incubation at 37ºC and 5% CO2 in air (p < 0.05 for 0.5 and 4 h).  

 

The first thing to consider about the previous results (Table 9) is the total number of 

cells, which increased significantly with time (almost double), compared to the originally 

plated number, 2 x 10
4
 cells/ml. In the etched and anodized wells this value is almost the 

same. It seems cells started to prolife more rapidly on the anodized culture wells but the 

progression rate, with time, was superior for the etched culture. On the other hand the number 

on the control culture was slightly smaller. This difference can be explained by the smaller 

surface area available and the treatments applied. The progression with time was also noticed 

in the samples surface, where the amount of cells was near to 2x10
4
 after 30 min and 

continued to increase till 4 h of incubation (Figure 21). As happened in previous 

investigations, using the same type of cells and same culture conditions (98; 147), these 

indicate that all specimens (medium, plate and sample) offered a biologically favourable 

environment for osteoblasts MG63 development and progression. 

During the three periods of culture, the quantity of MG63 cells attached to the 

anodized and etched surfaces differed. An improvement was clearly evident for the anodic 

treated samples, especially at 0.5 and 4 h (p < 0.05). This fact is in agreement with Lee et al 

(148) results, who showed that in the first moments of contact the anodized surfaces detain 

more cellular affinity than others.  

As was extensively discussed in the second chapter, the surface topography plays a 

major role in the biological response. Multiple researches defend that higher levels of surface 

roughness affect positively the cells behaviour, in early stages of development (3; 112; 114). 

Thus, considering the topographic results and the lack of significant differences between both 

surfaces, it is logical the similarity of the cells attachment levels. However, as was already 

pointed, there was a smaller, but significative, improvement introduced by the anodized 

* 

* 

* p < 0.05 
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surfaces. A possible explanation for this fact may rely on the sharp angularity of the etched 

surface extremes (Rz, vaguely higher than anodized), which may hindered the anchorage of 

cells on adjacent regions and thus slowed down the process of attachment (149). Another 

possibility is the probable presence of nanoporosity on the anodized surfaces. By the 

morphologic analysis it was possible to observe an oxide film with various ranges of pores. 

According to multiple investigations (100; 150; 151) nanoporosity can enhance the 

connection between cells and material and by this, if the environment conditions are 

favourable, increase the cell adhesion and proliferation rates. Besides the previous reasons, 

the limitations associated with the method used to detach and count the cells could also be in 

the origin of such differences. It is probable that cells on rougher surfaces are more strongly 

adhered; therefore some of the cells on the etched surface might remained there after trypsin 

action.  

According to Zhu J. et al (67) and Feng et al (104) other explanation could be in the 

origin of the highest number of cells in the anodized samples. They defend that the presence 

of Ca and P on the oxide surface can favour greatly the cells attachment, since these free ions 

possess the ability of promoting a physical and chemical bond with tissue and, thanks to this, 

an environment compatible with osteogenesis. A bioactive oxide layer on titanium implants 

can induce a specific biological activity, capable of attracting the osteoblasts from the 

surrounding medium and promoting its adhesion.  

On the other hand, contradicting Feng et al (104) research are the results from the 

wettability. On their investigation, they concluded that higher hydrophilicity induced cell 

attachment. Here the opposite happened: anodized surfaces possessed the lower hydrophilicity 

but the higher number of cells attached. This might be explained by the probable interfacial 

energies overshadow by the surface topography (especially at a nano scale) and/or 

composition, which were previously pointed as having great influence on the cells interaction 

with the biomaterials surface.  

 

2.2 Spreading and Morphology 

 

To attest the results from the adhesion assay, cells' morphological analyses were 

preformed, for the same periods of time (0.5, 2 and 4 h). The results (Figure 22) were 

observed by Fluorescent Microscopy using Phalloidin as a marker, which allows the 
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coloration of the actin fibres, the main components of the bone forming cells, and by this 

providing a general observation of the cells' cytoskeletal organization.  

The interaction between cells and surface is a complex process that involves numerals 

proteins from the extracellular matrix (ECM) and multiple steps that must be complete in 

short periods of time: focal adhesion, combination between proteins and substrate and cell 

spreading (52). The ECM is responsible for such connection and determines the cell geometry 

and conformation and, ultimately, the integrity and development of the tissue. Thus, it is 

intended to understand how osteoblasts interact with the titanium surfaces by means of 

geometry and surface spreading. 

 

Etched Sample Anodized Sample 
 

 

 

 
0.5 h 

 

  
2 h 

 

  
4 h 

 

 

Figure 22. Osteoblasts MG63 morphology and geometry after adhesion on etched and anodized samples after 0.5, 2 and 4 h 

of culture. The images were obtained by fluorescent microscopy using Phaloidin to colour the actin fibres (resolution of 40X 

and scale = 40 µm). 
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From 0.5 to 4 h of culture, there was a significant change on the osteoblasts 

conformation and spreading above the etched and anodized surfaces. However, no visual 

significant changes were evident between the two surfaces.  

As the images showed (Figure 22), the cells evolved, with the passage of time, from a 

round shape to a more stretch and elongated aspect. After 30 min of contact, the majority of 

cells still presented a more spherical profile. Since the time was not yet sufficient for the 

development of a strong connection and for the evolution of the cells into the Ti surfaces, no 

prolongations of the cells cytoplasm were evidenced, in both samples. Feng et al (104) 

defends that, at this point, cell adhesion should be only based on chemical interactions rather 

than physical ones, which explains the osteoblasts conformation. They also supported that 

bioactive surfaces should present much stronger interactions given that both calcium and 

phosphate ions are capable of adsorbing proteins as cell ligands and through this stimulate 

adsorption of proteins and osteoblasts adhesion. However, since adhesive force assays were 

not conducted on this investigation such statement cannot be confirmed. 

After 2 h of culture the heterogeneity of the cells attached to the surfaces is much more 

evident: some are already elongated, others presented a polygonal shape and some are still 

round. Few spherical shaped cells exhibit already small extensions of the cytoplasm. This 

indicates that they are starting the first phase of physical contact, finding strong points of 

interaction with the surface to support their evolution (104). 

After 4 h of culture, almost 80% of the osteoblasts, in both surfaces, exhibited, 

already, an elongated or polygonal shape representative of the typical morphology of the 

osteoblasts. According to Angelis et al (144) this typical conformation consists in a central 

spherical body with the cytoplasm extending away from the central area in all directions and 

adhering to the titanium surfaces with filamentous protrusions. Using fluorescent microscopy 

such aspect is difficult to assess, and therefore, SEM analysis was used to elucidate it (Figure 

23). Due to the irregularity of the surface, at this moment, the orientation of the osteoblasts is 

not yet well defined. They spread in all directions without concerning for posterior 

occupations. 
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Figure 23. SEM micrographies of osteoblasts MG63 on (A) etched and (B) anodized samples with 2000x of magnification. 

These are representative of the osteoblasts dispersion above the samples’ surface after 4 h of culture. 

 

To confirm the previous evaluations on the extension and shape of the osteoblasts, a 

correlation between those and the Zhu X. et al (81) attached cells division was preformed 

(Table 10). 

 

Table 10. Analogy between the osteoblasts aspect after 0.5, 2 and 4 h of culture and the cell division introduced by Zhu X. et 

al (81). 

Division Significance of Zhu et al Division Correspondence*  

Not Spread 
Cells were still spherical in appearance, protrusions or 

lamellipodia were not yet produced. 
0.5 and 2 h 

Partially 

Spread 

Cells began to spread laterally at one or more sides, but 

the extensions of plasma membrane were not completely 

confluent. 

2 and 4 h 

Fully Spread 

Extension of plasma membrane to all sides, combined 

with distinctly larger surface area than the previous 

stages and obvious flattening of the cell. 

Mostly 4 h 

* The correspondence relates to the results from the present Master Thesis research. 

 

Besides the visual analysis, it was also conducted a dimensional investigation 

(osteoblasts size). Each cell from each group of cells present in the captured images 

(Fluorescent Microscopy observation) of both surfaces was analysed individually. Using a 

specific software, the shape of the cells was delineated and the size analysed, like Figure 24 

suggests.  
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Figure 24. (A) Osteobasts conformation and spreading after 4 h of culture above an anodized surface. Image taken using 

Fluorescent Microscopy and Phaloidin as marker (resolution of 10X and scale = 10 µm). (B) Conversion of the image B to 

format .tif for shape and size analysis. 

 

As a result from this analysis, three graphic representations were obtained, indicating 

the average size of the cells according to the total number of cells found in each picture and 

the time of contact with the materials surface (Figure 25). 

 

     
 

  

Figure 25. Osteoblasts dimension after (A) 0.5 h, (B) 2 h and (C) 4 h of incubation onto anodized and etched Ti surfaces. 

  

During adhesion and spreading, special structures are formed between cell and 

substrate, and the cellular skeleton is reorganized to adapt and maintain their viability (152). 

These facts are corroborated by the results showed on Figure 25. With the passage of time and 

10 µm 

(A) (B) 

(A) (B) 

(C) 
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the evolution of the cell adhesion, the aspect of the cells changed and, at the same time, its 

size increased – extensions on the cytoplasm skeletal of the cellular organisms were observed 

on Figure 23. From 30 min to 4 h, cells started to expand above the anodized and etched 

surfaces exhibiting a distinctly larger surface area than the previous stages and a more 

obvious flattening of the cells. These results are in agreement with Hélary et al (153) 

investigation which concluded that after 4 h of culture, the MG63 cells are already spread and 

exhibit a large surface area, with evident protrusions in connection with the titanium surfaces. 

 

 

Figure 26. Evolution of the osteoblasts MG63 dimension on the anodized and etched samples, with time.  

 

Comparing the results from the etched and anodized samples, it is clear the faster 

evolution of the cells size on the etched surface, for all periods of time (Figure 26). Even at 30 

min a small difference is detected, although not significant. This distinction becomes more 

consistent at 2 and 4 h (p < 0.001), having the average of the cells size approximately 100 and 

200 pixels superior to the anodized numbers, respectively. One possible hypothesis for this 

phenomenon, knowing that there are no significant differences on the surface roughness 

between the two types of surfaces, may be set up on the presence of small size pore geometry 

formed during the anodic treatment. This irregular porosity could be in the origin of stronger 

forces between cells and the material surface, inducing, this way, an intense resistance to the 

cells spreading tendency. Because of the uneven distribution of pores and peaks, the surface 

may exert different amounts of resistance against the spreading of the cells. The same thing 

was verified by Zhu X. et al (154) on the bone cells response to micro- and submicron-scale 

porous titanium surfaces. Another possibility for these results could be related to the higher 

hydrophilicity of the etched samples. Lots of investigations have shown that this property is 

intrinsically related to the attachment of cells and their posterior spreading, shape and 

*** 

*** *** p < 0.001 
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orientation above the surfaces (138; 139; 155). It is reported that surfaces with more 

hydrophilicity develop more focal points of contact with cells by protein binding and this way 

incite more intensively their spreading above the surfaces.  

 

2.3 Proliferation 

 

The osteoblasts MG63 proliferation was evaluated quantitatively from 1 to 14 days of 

culture, as well as their viability.  

After each incubation time, the percentage of cells adhered to the surface was 

determined. The MG63 cells presents on the sample, on the plate and in the medium of each 

well were counted – the quantitative evaluation was performed using an Automatic Cell 

Counter – and the viability evaluated. The graphic representations (Figure 27) relate the 

disposition of the cells (percentage) in the culture and the incubation periods of time. The 

viability was determined as between to 91 and 97%, for the three cultures (etched, anodized 

and control), during the entire trial. 

 

    

 

 

Figure 27. Evolution of the osteoblasts MG63 proliferation on (A) etched and (B) anodized surfaces from 1 to 14 days of 

culture (5 periods of time). (C) Control results obtained by the direct culture on the plate (without any sample), for the same 

periods of time. 

(A) (B) 

(C) 
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The same cellular evolution pattern is observed in both etched and anodized surfaces. 

After 1 day of incubation, the majority of cells is connected to the surfaces (≈ 70%), but 

mostly to the plate (42-47%). At the 3
rd

 day, the percentage of MG63 cells on the medium 

decreases intensively (achieving less than 10%) leading to an extraordinary enhancement of 

the percentage of cells on the plate. This means that the proliferation rate is much more 

intense in the plate during the first moments of cellular evolution than in the samples, 

probably due to its properties (surface treatment, sterilization process or charge), which may 

induce this type of behaviour. From the 3
rd

 day to the 14
th

, for both anodized and etched 

surfaces, an improvement is observed on the surfaces cellular proliferation (≈ 40%, at day 14 

for both cases) leading to a reduction in the percentage of cells on the plate. Through this, it 

was possible to notice that osteoblasts MG63 on etched and anodized surfaces experiment the 

highest evolution rates after the 3
rd

 day.  

All these results are consistent to the control (Figure 27C). As it was pointed before, 

initially the cells are still divided between the medium and the surfaces. However, with the 

evolution in time, especially after 3 days of incubation, an enhancement in the cells 

interaction with the plate is observed, reaching almost 100% (99.9%). This means that from 1 

to 14 days the entire cellular development (proliferation, in this case) takes place on the 

samples or plate surface. For a more accurate analysis, the totality of cells on each well (Table 

11) must be evaluated as well as the actual number of cells fixated onto the samples’ surface 

(Figure 28). 

 

Table 11. Total number of cells presents on each well, considering medium (M), surface of the plate (P) and sample (S), 

according to the trial duration (1 to 14 days). 
 

 

 

 

 

 

 

 

 

 

 

Time 

(days) 

Total number of cells on each well (M+P+S) 

Anodized Etched Plate (Control) 

1 5.52E+04 5.58E+04 5.53E+04 

3 2.34E+05 2.35E+05 2.36E+05 

7 7.22E+05 6.31E+05 7.40E+05 

10 1.06E+06 9.98E+05 1.36E+06 

14 1.42E+06 1.39E+06 1.98E+06 
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Figure 28. Evolution of the number of osteoblasts MG63 on the anodized and etched surfaces, with time. Trial followed from 

1 to 14 days of incubation at 37ºC and 5% CO2 in air (no significant differences p > 0.05). 

 

The total number of cells (Table 11) increased significantly with time, more than 35 

times, compared to the originally plated number (4x10
4
 cells/well). The cellular growth in the 

anodized and etched cultures was very similar for the entire assay. On the other hand, the 

control exhibited a small improvement, which became more evident for the last days of 

culture. This variation can be explained (theoretically) by the adhesion strength between the 

osteoblasts and the samples. The culture plates present a very smooth surface, thus the 

probability of detaching the totality of cells, after tripsinization is near to 100%. In contrast, 

the etched and anodized surfaces are very rough, so it is possible that some of the osteoblasts 

remained attached to the surfaces even after 20 min of trypsin action (maximum time applied 

for the 14
th

 day of culture). 

Once again, these results proved the viability of the environment (medium, plate and 

sample) for osteoblasts MG63 development and progression (98; 147). 

Comparing the results from Figure 28, it is clear, especially from the 7
th

 day till the 

end of the assay, a slight improvement on the anodic proliferation numbers, but, as before, no 

significant differences were detected (p > 0.05). This lack of significance was also confirmed 

visually by the cells confluence above the etched and the anodized surfaces, after 7 and 14 

days of culture (Figure 29). 
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Etched Samples Anodized Samples 

  

7 Days 

  

14 Days 

 

Figure 29.  Osteoblasts MG63 confluence on etched and anodized samples after 7 and 14 days of culture. The images were 

obtained by fluorescent microscopy using Phaloidin, to colour the actin fibres (resolution of 10X and scale = 10 µm). 

 

Establishing a line of evolution, that starts on the adhesion assay and finishes on the 

14
th

 day of proliferation, it is possible to see that, even after 4h of culture, the number of cells 

attached to the anodic surface was slightly superior. Thus, based on this, it is natural that if 

there were more cells in the beginning, and considering the viability similar for both samples, 

more cells should also be noticed in the end (the initial number is multiplied during time 

thanks to the environment/culture conditions) (144; 148). Besides, the presence of calcium 

and phosphorus on the anodic surface could also work as an instigator for the osteoblasts 

evolution. Another possible explanation could be related to the higher hydrophilicity of the 

etched surface, which may induced higher immediate cellular adhesion strength, inhibiting 

this way the cells proliferation on this surface (104).  

10 µm 
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2.4 Alkaline Phophatase (ALP) Activity 

 

The osteoblasts MG63 differentiation was followed from 7 to 28 days of culture (4 

periods). It was evaluated by the cells enzymatic activity, more precisely through the alkaline 

phosphatase activity, which is an indicative of the osteoblastic functional evolution and, 

usually, its presence is coincident with the bone formation.  

The ALP is an enzyme present in the cellular membrane, capable of liberating 

phosphate to the ECM. This, on its turn, will induce a second phase (marker) of bone 

evolution, the mineralization (precipitation of calcium phosphate) (156).   

The following graphic representation (Figure 30) shows the ALP concentration 

progress with time. 

 

 

Figure 30. Evolution of the ALP activity with time (from 7 to 28 days of culture; control = culture directly on the plate 

surface, without sample) – significant results were detected for 14 and 21 days of culture, p < 0.05. 

 

These results are in agreement with previous investigations (153) that illustrated the 

higher level of ALP activity in the 14
th

 day of the osteoblasts culture. It is also consistent with 

the highest point of metabolic activity, indicating, this way, the initial phase of the 

extracellular matrix formation. As was expected, the ALP values from the beginning of the 

trial (day 7) were the lowest ones, in all cases. This happened because in the beginning of the 

osteoblasts MG63 evolution, the proliferation is the dominant phase (157). After the 14
th

 day, 

a decrease in the ALP concentration is evident, for the three specimens, which can be 

explained by the beginning of the second phase of the osteoblasts differentiation, the 

mineralization (maturation of the ECM). 

* * 

* p < 0.05 
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According to Kim et al (147) generally the surface roughness affects negatively the 

cells proliferation rate, but increases the ALP activity. In this case, the exact opposite 

happened for both samples: the proliferation rates were significantly improved with time 

(more than 35 times) but the ALP results were lower (even for the anodized samples), 

comparing with previous researches (153). The only result that agrees with Kim et al studies 

is the control and this happens due to the smoothness of the plate surface. A possible reason 

for this may rely on the surface wettability. Zhao et al (124) studied the MG63 osteoblast-like 

cells growth on modified titanium surfaces and concluded that the hydrophilicity of the 

surfaces allow an intense osteoblast differentiation by increasing the ALP activity. Since both 

surfaces are hydrophobic it could explain the decrease in the ALP levels, for both samples. 

The anodized samples presented a superior ALP concentration relatively to the etched 

samples, for the entire trial (especially at 14 and 21 days of culture, p < 0.05). The fact behind 

these results is related to the difference in the surface composition. While the etched samples 

only possessed titanium on the surface, the anodized had calcium, phosphorus and oxygen 

besides titanium. Studies have shown (72; 106) that the presence of calcium and phosphorus 

can induce cell differentiation and therefore the enhancement of the ALP concentrations, 

especially in the presence of a complete medium (ascorbic acid and β-gycerophosphate 

favours this development). That happens thanks to the similarity of these components to the 

inorganic phase of bone (60%), which is translated by bone affinity.  

 

2.5 Mineralization 

 

The second phase (or marker) of the bone differentiation, mineralization, was followed 

for 4 periods of time: 7, 14, 21 and 28 days of culture. To induce this stage of development 

two components were added to the culture medium, ascorbic acid and β-gycerophosphate. 

The mineralization phase corresponds to the ECM maturation, which is the last stage 

of the bone formation. During the ALP activity, the phosphate liberated interacts with the 

calcium present on the medium and induces the formation of the inorganic phase of bone. 

The graphic representations below show the calcium (Figure 31A) and phosphate 

(Figure 31B) concentrations evolution with time. 
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Figure 31. Evolution of the (A) calcium and (B) phosphate levels with time (from 7 to 28 days of culture). 

 

Analysing both representations it is possible to see that there are no significant 

differences between the three specimens (anodized, etched and control). However, once again, 

a small improvement is noticed for the anodic samples, both on the calcium and phosphate 

levels (no significant differences (p > 0.05), except for the 28
th

 day on the anodized phosphate 

levels, p < 0.05). The reason behind this improvement is on the samples composition. As it 

was pointed before, for the ALP results, the presence of calcium and phosphorus on the 

biomaterials surface has a crucial role on the induction of the osteoblast like-cells 

differentiation. These components mimic the constitution of the primary inorganic phase of 

bone, favouring, this way, the affinity between cells and biomaterial. This standpoint is 

supported by many authors (106; 116; 153). However, on their researches, the difference 

between bioactive surfaces and the other types was significant, for both calcium and 

phosphate levels. The explanation for this is related to the type of bioactive surface produced. 

In this case, only free ions of calcium and phosphorus were identified on the titanium surfaces 

(previous analysis conducted by the PhD student from the same research group, Alexandra 

Alves), while the other investigations showed calcium phosphate groups. Since those favour 

considerably more the interaction and posterior development of MG63 osteoblasts, it could be 

the motive behind that discrepancy. 

Based on the previous knowledge that pointed the importance and influence of the 

calcium and phosphorus ions on the anodic surface, it was expected that the stoichiometric 

ratio of calcium phosphate (Ca/P) was equal to 1.67, the standard (100; 106). Instead, it was 

0.67, which is translated by higher production of phosphate than calcium, and the same 

pattern was followed by the other surfaces (etched equal to 0.69 and control equal to 0.67). A 

possible explanation for such results could be related to the medium composition. Ascorbic 

acid (C3H7O6PNa2.xH2O) and β-glycerophosphate (C6H6Na3O9P.xH2O) were added to the 

(A) (B) 
* 

* p < 0.05 
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medium culture to induce the differentiation of the osteoblasts and subsequently 

mineralization. Their chemical composition does not include calcium, but phosphorus and 

oxygen ions (present in the phosphate: PO4
2-

) are in abundance. Thus, the combination of 

those with other free ions of phosphorus and oxygen on the system might led to an 

improvement of phosphate and consequently to this ratio. Another probable explanation could 

be the possible liberation of free ions from the samples surface (especially from the anodic 

sample), which may conducted to interferences on the absorbance measurements and 

consequently to these results. Besides a possible conjugation between the available calcium 

ions with other components could also be in the basis of such grades. Unfortunately, since no 

XPS analyses were conducted these expostulations cannot be proved.  

Another interesting aspect on the results is the similarity between the MG63 cells 

behaviour on the control plate and the etched surface. According to previous analysis, it was 

expected that the etched surface presented a more intense production of calcium and 

phosphorus than the control, especially since the surface roughness is completely different. 

Many studies have shown that rougher surfaces can favour the ECM maturation (112; 114). 

However, considering the plate treatment (to induce cells interaction and development) and 

the proliferation rates on the two surfaces, which showed a much higher quantity of cells 

attached to the plate than to the etched surface (correlation between the results from Figure 27 

and Table 11), it is possible to justify the improvement of the calcium and phosphate 

production on the plate and, through this, the resemblance of both results.  

 

3. OSTEOBLASTS RESPONSE TO TRIBOLOGICALLY MODIFIED SURFACES 

 

The MG63 cells morphology and spreading above the normal and the tribologically 

changed surfaces was investigated for three periods of time: 4 h, 3 and 7 days. Given that, 

with the passage of time, the analysis of the individual cells morphology becomes harder, on 

this study, that evaluation was just preformed for 4h. For the 3 and 7 days, instead of an 

individual analysis a global one was conducted, which included cells morphology, spreading 

and confluence.  

The following SEM micrographies show the individual aspect of the osteoblasts 

MG63 on the etched (Figure 32) and anodized (Figure 33) normal and tribologically changed 

(TRIBO, 0.8 N of load) surfaces. 
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Figure 32. SEM micrographies representative of osteoblasts MG63 dispersion on the etched samples after 4 hours of culture 

(2000x of magnification). (A) and (B) images on the normal surface, and the (C) and (D) on the wear track (centre of the 

samples).  

 

The pin-on-disc approach used during the tribocorrosion assays induced the formation 

of a wear track on the centre of the etched and anodized samples. Through a macroscopic 

visualization of the etched samples, the only difference detected between the wear track and 

the rest of the surface was the brightness of the central ring. Usually, this brightness is 

associated with smoother surfaces. This conclusion was proven to be correct by the surface 

morphology correlation of A and B (rougher) with C and D (smoother) images from Figure 

32.   

Many studies have shown that osteoblasts express a higher tendency to spread and 

interact with rougher surfaces (3; 112; 114).  From Figure 32 results, such information is 

difficult to attest with 100% of conviction. However, considering these images as 

representatives of the entire surface and doing an analogy between the groups of cells present 

on each image, differences on the behaviour (according to the type of surface) can be noticed. 

The osteoblasts MG63 from Figure 32 A and B exhibited a very similar conformation: central 

spherical body, with the cytoplasm extending away from the central area in all directions 

(144), forming different points of interaction with the etched surface. On the contrary, Figure 

(A) (B) 

(C) (D) 
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32 C and D revealed osteoblasts with irregular shapes and sizes (heterogeneous behaviour): 

some cells presented a polygonal form, others exhibited already extensions of the cytoplasm 

and a more elongated/flattened profile, but there were some that still displaying a spherical 

shape as if the physical interaction with the surface was not yet complete. Another interesting 

aspect about the osteoblasts conformation, on the TRIBO surface, is the tendency of the 

protrusions to be connected with rougher regions present on the ring area. This might indicate 

that MG63 cells need these points of contact to maintain the consistence and cohesion of the 

interface. 

Regarding the anodized samples (Figure 33), a very similar observation can be made. 

 

  
  

  
 

Figure 33. SEM micrographies representative of osteoblasts MG63 dispersion on the anodized samples after 4 hours of 

culture (2000x of magnification). (A) and (B) images on the normal surface, and the (C) and (D) on the wear track (centre of 

the samples). 

 

The macroscopic observation of the anodized wear track was a bit different from the 

etched. In this case, the central ring formed was smaller and, instead of brighter, it was darker, 

putting in evidence the pure titanium surface. By the SEM micrographies (Figure 33), it was 

evident that the pin-on-disc approach was not as effective as it was on the etched surface, 

where a complete and well defined wear track was formed. Here, only disperse smooth 

(A) (B) 

(C) (D) 
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regions were found. The explanation behind this result is based on the resistance of the anodic 

oxide layer, which is superior compared to the resistance of the etched treatment (3; 102). 

As happened for the etched surface, the MG63 cells exhibited a more evident tendency 

to interact with the rougher regions (normal surface). In Figure 33 A and B is possible to see 

that the majority of cells are already well spread above the surface, presenting cytoplasm 

extensions in all directions. Besides, Figure 33 A, put in evidence an advanced stage of 

interaction, where the cells are completely integrated with the surface (in the etched samples 

this is much difficult to identify since the cells and the surface present similar coloration). In 

Figure 33 C and D, the osteoblasts MG63 exhibited two types of physical morphology: 

mainly spherical in the areas that contact directly with the smooth regions and flatted and well 

spread in the frontier between this and the normal surface. Once again, it is evident the 

strategic distribution and dispersion of the osteoblasts, in order to be in contact with the 

anodic surface (normal). It is well known that the presence of a bioactive oxide layer can 

increase the interaction between the titanium and the biological environment (106), thus, it is 

not a surprise that the cells preferred to interact with the anodic (presence of Ca and P and 

rougher) surface instead of the wear track (smoother). 

One of the objectives of this assay was to attest the capacity of oteoblasts to interact 

with tribologically altered surfaces. The results pointed a slower integration process, since the 

majority of the cells for both etched and anodized samples revealed a more round shape, 

although this does not invalidate their ability of interacting and establishing a strong 

connection. Through this, it is possible to extrapolate (theoretically) a probable response for in 

vivo implantations – during and after implantation the material is submitted to forces and to 

biological fluids action that can damage or altered the original conformation of the surface, 

although according to the previous results the cells may still be able to interact.  

 

In Figure 34 the results from the osteoblasts MG63 expansion and spreading above the 

etched and anodized surface, after 3 and 7 days of culture, are presented. These results 

confirm the previous conclusion, indicating a slower but possible interaction between MG63 

cells and TRIBO surfaces (tribolobically altered).  

In both cases, etched and anodized, after 3 days of culture, the cellular behaviour 

changed completely. The cells covered almost the entire material surface and became much 

more difficult to distinguish individual cells; however it was still clear the prevalence of 

polygonal shaped cells with many adhesion points at the surface and with a more fattened 
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morphology. The cellular conformation and progression followed the surface topography and 

morphology. At 7 days of culture, well defined cellular tissues covering larger areas on the 

etched and anodized samples, preferentially on the normal surfaces, were observed – some 

regions were not yet completely filled with cells. According to Angelis et al (144), a complete 

and confluent monolayer is only accomplished between 14 and 28 days of culture. 

Comparing the TRIBO with the normal surfaces, it was evident the cells preference for 

the normal surface, in both etched and anodized cultures. After 7 days of incubation, there 

were still observed lots of ―depopulated‖ regions on the wear track and this remark was much 

more obvious at the etched samples due to the larger TRIBO surface area. On the anodized 

samples, parts of the wear track were by now (7 days) completely covered with cells, but, in 

some empty regions, the cells orientation seemed to prevail from the anodic to the TRIBO 

surface, as it was observed for the 4 h trial.  

 

 

 

      



 

 

ETCHED SAMPLES ANODIZED SAMPLES 

DAY 3 

NORMAL SURFACE TRIBO SURFACE NORMAL SURFACE TRIBO SURFACE 

    

DAY 7 

NORMAL SURFACE TRIBO SURFACE NORMAL SURFACE TRIBO SURFACE 

    

 

Figure 34. SEM micrographies of osteoblasts MG63 cultured on etched and anodized surfaces, for 3 and 7 days (magnification 1000 X). The designation ―TRIBO Surface‖ indicates the 

visualization on the wear track (→ assembly of osteoblasts).
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CONCLUSIONS 

 

The main objective behind this work was to prove the viability of anodic surfaces for 

future applications in dental implants. To get there multiple analyses were conducted: 

 The morphology, composition, topography and wettability of the surface, before 

any culture, were tested; 

 Biological assays, including adhesion, morphology, proliferation, differentiation 

and mineralization, using MG63 osteoblast-like cells were conducted to assess the 

surface viability; 

 MG63 cells culture on tribologically altered titanium surfaces were preformed to 

attest the ability of osteoblasts to interact with them. 

 

Regarding the first evaluations on the anodized and etched surfaces, it was possible to 

observe a significant change on the morphology and surface composition. The etched samples 

exhibited a rough and crimped surface only composed by titanium. On the other hand, the 

anodized, also very rough and with a similar undulation as the previous, presented a 

heterogeneous (size) porous layer, composed by titanium, oxygen, calcium and phosphorus – 

the last two derived from the anodic treatment electrolyte. Through the topographic 

measurements, the roughness of the surfaces was determined, although without the 

differences expected. The surface roughness was similar in both cases (only microtopograpic 

evaluations were conducted; there was no nanotopographic analyses). The same happened 

with the contact angle analyses, concluding that the anodized and etched samples were 

hydrophobic – presented negative values of surface free energy. A slightly lower value, 

although, was noticed for the etched samples regarding the surface energy.  

The biological assays were followed from few moments of contact to several days and 

weeks. The adhesion results showed a great facility of MG63 cells to interact with the 

samples surface even after 30 min of contact. A small, but significant (p < 0.05 for 0.5 and 4 h 

of culture), improvement in those numbers was noticed in the anodized samples during the 

entire test, probably thanks to the porosity or the presence of Ca and P on the surface. These 

elements are known to be great instigators of the osteoblasts biological response, since they 

mimic the natural composition of bone. Through the morphological evaluation, for the exact 

same periods of time, the spreading and size of the cells was followed. As a result, it was seen 

that MG63 cells spread quicker on the etched samples (p < 0.001) than on the anodized, but in 
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both cultures extensions of the cytoplasm, after 4 h of incubation, were already evident. In 

this case, the explanation behind the etched improvement could be related to the surface 

wettability. It is reported that surfaces with higher hydrophilicity develop more focal points of 

contact by protein binding and, this way, incite more intensively their spreading above the 

surfaces. 

According to the proliferation results, MG63 osteoblast-like cells were able to 

continue the progression on the two surfaces, achieving approximately 35 times more cells 

(total number – sample + plate + medium) than the original plated number, after 14 days of 

incubation. As was observed in the adhesion results, a slight enhancement of the anodic 

samples was evident, although not significant. Thus, it is natural that if there were more cells 

in the beginning, and considering the viability similar for both samples, more cells in the end 

should also be noticed for the anodic samples. Besides, the presence of Ca and P on the 

anodic surface could also work as an instigator for the osteoblasts evolution.  

The MG63 differentiation was followed by the enzymatic activity of the alkaline 

phosphatase from 7 to 28 days of culture. It was observed that the highest levels of ALP were 

obtained at the 14
th

 day, in agreement with previous researches. This was also consistent with 

the highest point of metabolic activity, which indicates the initial phase of the extracellular 

matrix formation. However, once again, the surface composition played an important role and 

the presence of Ca and P on the anodic samples conducted to a significant improvement on 

the ALP levels (p < 0.05) – these two elements have a great influence in the osteoblasts 

maturation process. The same happened for the second phase of ECM maturation, 

mineralization, however the improvement was not significant. In the course of the previous 

results, it was possible to identify a complete and well defined line of evolution for the 

osteoblasts, with the highest differentiation rates at 14 days and the maturation of the ECM 

matrix after that.  

Through the TRIBO assays, followed from 4h, 3 and 7 days, it was possible to attest 

the resistance of the anodic surface treatment, given that only dispersed regions on the central 

ring were really affected and became smother – the etched exhibited a well defined and 

complete wear track. Regarding the osteoblasts development, it was confirmed the MG63 

cells preference for rough surfaces, in both etched and anodized samples, indicated by a more 

advanced morphological aspect of cells (more spread, elongated, flattened and expanded 

cells) on the normal surfaces in analogy to the TRIBO. One interesting phenomenon observed 

was the strategic cells distribution and dispersion on the wear track. It was evident that cells 
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on these smooth regions presented a more spherical body but the cytoplasm extensions were 

preferentially connected to rougher areas, which probably would offer more cohesive points 

of interaction (sustain the interface). Besides, it was also noticed a slower cells progression on 

the TRIBO surface in analogy to the normal, in both cases. However, this did not invalidate 

their ability to interact and establish strong connections. 

 

Therefore, it can be concluded that no significant differences were found between the 

etched and the anodized samples, pointing this way the validity and positive performance of 

the etched treatment, which could not be overpassed by the anodic.  

 

FUTURE PERSPECTIVES 

 

Previous researches have shown the improvements introduced by the anodic bioactive 

treatment on the interaction between cells and biomaterial. In this case, however, such 

improvement was not that obvious. Thus, one important thing to do, before following to the 

next step of this research, is to verify all the components and conditions related to the samples 

preparation and even if possible change the layer composition for phosphate ions instead of 

phosphorus.  

 

Another thing that is necessary to analyze carefully is the titanium surface used: more 

topographic and morphologic assays should be done, especially at a nanoscale size; the 

chemical composition should also be followed using both EDS and XPS analysis to identify 

possible chemical groups that could influence the cellular response, such as mineralization; 

and contact angle analysis should be repeated a considerable number of times, to assure the 

reproducibility of the results. Besides, the cellular adhesion strength should also be considered 

as an important point to test the osteoblasts interaction to these surfaces as well as the 

identification and quantification of the focal points between them. 

 

To achieve more accurate results and to establish a much closer line between this in-

vitro study and the actual results on the human being, the cellular line used could be changed 

for a primary line, also derived from the human osteosarcome.   
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