
ESTIMATION OF WCET USING A LITTLE LANGUAGE TO DESCRIBE
MICROCONTTROLER AND DSP ARCHITECTURES

Adriano José Tavares

Department of Industrial Electronics, University of Minho, 4800 Guimarães, Portugal
e-mail: atavares@dei.uminho.pt, phone: (351) 253 604706

Carlos Alberto Couto

Department of Industrial Electronics, University of Minho, 4800 Guimarães, Portugal
e-mail: ccouto@dei.uminho.pt, phone: (351) 253 604701

ABSTRACT

A method for analysing and predicting the timing
properties of a program fragment will be described. First a
little language implemented to describe a processor’s
architecture is presented followed by the presentation of a
new static WCET estimation method. The timing analysis
starts by compiling a processor’s architecture program
followed by the disassembling of the program fragment.
After sectioning the assembler program into basic blocks
call graphs are generated and these data are later used to
evaluate the pipeline hazards and cache miss that penalize
the real-time performance. Some experimental results of
using the developed tool to predict the WCET of code
segments using some Intel microcontroller are presented.
Finally, some conclusions and future work are presented.

1. INTRODUCTION

Real-time systems are characterized by the need to satisfy
a huge timing and logical constraints that regulate their
correctness. Therefore, predicting a tight worst case
execution time of a code segment will be a must to
guarantee the system correctness and performance.

The simplest approach to estimate the execution time
of a program fragment is:

1. for each arithmetic instruction, counting the
number of times it appears on the code

2. express the contribution of this instruction in
terms of clock cycles,

3. update the total clock cycles with this
contribution.

Other two basic approaches are:

1) Isolate the operation to be measured and make

time measurements before and after performing

it, which is valid only when the resolution of an
individual measurement will be considerably
less than the time of the operation to be
specifically analysed

2) Execution of the operation a large number of
time, and at the end of the loop operation
execution, the desired time will be found by
averaging. Even with this approach, if you want
an accurate measurement, a number of
complications such as, compiler optimisations,
operating system distortions, must be solved.

Nevertheless, these approaches are unrealistic since

they ignore the system interferences and the effects of
cache and pipeline, two very important features of some
processors that can be used in our hardware architecture.
Shaw [1], Puschner [2], and Mok [3], developed some
very elaborated methodology for WCET estimation, but
none of them takes into account the effects of cache and
pipeline.

Theoretically, the estimation of WCET must skip over
all the profits provided by modern processors, such as
caches, and pipeline (i.e., each instruction execution
suffers from all kind of pipeline hazards and each memory
access would cause a cache miss) as they are the main
source of uncertainty. Experimentally, a very pessimistic
result would be obtained, and so, making useless those
processor’s resources. Some WCET estimation schemes
oriented to modern hardware features, were presented in
the last years, and among them we refer to: Bharrat [4],
Nilsen [5], Steven Li [6], Zhang [7], Tai-Yi Huang [8],
Whalley [9], and Sung-Soo Lim [10]. However, these
WCET estimators do not address some specificity of our
target processors (microcontrollers and DSPs), since they
are oriented to general-purpose processor. Therefore, we
propose a new machine independent estimator,
implemented as a little language for architecture
description. Such a machine independent scheme, based
on the little language was used before by Scharr [11] to

describe the pipeline instruction scheduling and
executable editing, Tremblay[12] to generate machine
independent code, Proebsting and Fraser [13] to describe
pipeline architectures and Nilsen [5] to implement a
compiler, simulator and WCET estimator for pipeline
processors.

2. LITTLE LANGUAGE PROCESSOR

Fig.1 shows the language processor organization of the
implemented little language. The purpose of a little
language, typically, is to solve a specific problem and, in
so doing, simplify the activities related to the solution of

the problem. Our little language’s statements are created
based on the tasks that must be performed to describe
processor’s architectures in terms of structure and
functional architecture of the interrupt controller, PTS
(Peripheral Transaction Server), PWM (Pulse Width
Modulation), WG (Waveform Generator), and HIS (High
Speed Input), instruction set, instruction semantics,
addressing modes, processor’s registers, instruction
coding, compiler’s specificity, pipeline and cache
resources, and so on. Strongly related to the instruction’s
semantics of a little language is the language paradigm
that defines how the language processor must process the
built-in statements.

Fig. 1 Organization of the language processor

Front End

Disassembler Simulator

Assembler
Manager

WCET
Estimator

MLPDAP
Source Editor

Tokenizer

Lexical
Analyser

Error
Processor

Parser

Hexadecimal
File Editor

Icode
Manager

Symbol
Table

Manager

User
Interface

GetChar

GetChar

PutLine

PutLine

PutLine

PutLine

Get

Put / Search

Get

Get/Update

Get

Get

GetLine

PutLine

GetLine

Search/ Update

Search
Search

Start

Start Start

Get

Get

Put

Executor (Back End)

For our little language, we adopt a procedural and
modular paradigm, such that modules are independent
from each other, the sequence of modules execution does
not matter, but within each module an exact sequence of
instructions is specified and the computer executes these
instructions in the specified order. A processor’s
architecture program is written by modules, each one
describing a specific feature such as instruction set,
interrupt structure and mechanism, register structure,
memory organization, pipeline, data cache, instruction
cache, PTS, and so on. As said above, the module
execution order can be any, but the register module must

always be the first to be executed. A module can be
defined more than once, but it is a processor language job
to verify the information consistency among them and
concatenate all them into a single module.

The disassembler has as input an executable file
contains the code segment that one wants to measure and
the compiled version of the processor’s architecture
program. The disassembler process starts at the start-up
code address (startup code is the bootstrap code executed
immediately after the reset or power-on of the processor)
and follows the execution flow of the program. It is
implemented into four phases:

1. starting at the start-up code address follows all

possible execution paths till reaching the end
address of the “main” function. At this stage, all
function calls are examined and their entry code
addresses are pushed into an auxiliary stack,

2. from the entry address of the “main” function,

checks the main function code for interrupt
activation,

3. for each active interrupt, gets its entry code

address and pushed it into the auxiliary stack,

4. pops each entry address from the auxiliary stack
and disassemble it, following the function’s
execution paths.

The execution of the simulation module is optional
and the associated process is described by a set of
operation introduced using the function “SetAction”. That
is to say, for each instruction the simulation process,
including the flag register affectation, are described by a
set of operation specified using “SetAction” calls. To
achieve a correct flags affectation, all operations describe
by “SetAction” must be implemented using binary base.

Running the simulation process before the
estimation process, will produce a more optimistic worst
case timing analysis since it can:

a) rectify the execution time of instructions that

depend on data locations, such as stack, internal
or external memory,

b) solve the indirect address problem by checking
if it is a jump or a function call (function call by
address),

c) estimate the iteration number of a loop.

The WCET estimator module requires a direct

interaction with the user as some parameters are not
directly measurable through the program code. Examples
of such kind of parameters are, the number of an interrupt
occurrence and the preview of a possible maximum
iterations number associated to an infinite loop. The
WCET estimation process was divided into two phases:

1- first, the code segment to be measured is

decomposed into basic blocks,

2- for each basic block, it will be estimated the
lower and upper execution time, using the
shortest path method and a timing scheme [1].

The shortest path algorithm with the basic block

graph as input is used to estimate the lower and upper
bound on the execution time of the code segment. For the
estimation of the upper bound, it is used the multiplicative
inverse of the upper execution time of each basic block.

A basic block is a sequence of assembler’s
instructions, such as, only the first instruction can be
prefixed by a label and only the last one can be a control
transfer instruction. The decomposition phase is carried
out following the steps below:

1- rearrangement of code segment to guarantee the

visual cohesion of a basic block. Note that, the
ordering of instructions by address make more
difficult the visualization of the inter basic block
control flow, due to long jump instructions that
can occur between basic blocks. To guarantee
that visual cohesion, all sequence of instructions
are rearranged by memory address, excluding
those one located from long jump labels – these
instructions are inserted from the last buffer
index.

2- characterization of the conditional structure

through the identification of the instructions
sequence that compose the “if” and “else” body.

3- characterization of the loop structure through

the identification of the instructions sequence
that composes the loop body, control and
transfer control. It is essential to discern
between “while/for” and “do while” loop since
the timing schemes are different.

4- After the identification and characterization of
the control and loop structures, it will be built a
basic block graph, showing all the execution
paths between basic blocks.

5- For each basic block, find the lower and upper

execution time.

2.1. Pipeline Modelling

The WCET estimator presented so far, considers that an
instruction’s execution is fixed over the program
execution, i.e., it ignores the contribuition of modern
processors. Note that, the dependence among instructions
can cause pipeline hazards, introducing a delay in the
instructions execution. This dependence emerges as
several instructions are simultaneously executed and as
the result of this parallelism execution among instructions,
the execution time of an instruction fluctuates depending
on the set of its neighbouring instructions.

Our little language analyses the pipeline using the
pipeline hazard detection technique suggested by
Proebsting and Fraser [13] and models the pipeline as a
set of resources and each instruction as a process that
acquires and consumes a subset of resources for its
execution. Therefore, the pipeline stages and functional
units are defined using functions “setPipeStage(Mn)” and
“SetPipeFunctionalUnit(Mn,num)”, respectively. For each
instruction, there is a set of functions to solve the
following points:

i) Instr.SetSourceStage(s_Opr, Stg) specifies the

pipeline stage each source operand must be
available,

ii) Instr.SetResultStage(d_Opr, Stg) specifies the

pipeline stage the output of the destination
operand becomes available.

iii) Instr.SetStageWCET(stg, tm) specifies each

pipeline stage required to execute an
instruction and the execution time
associated to that stage.

iv) Instr.SetbranchDelayCost(tm) sets the control

hazard cost associated to a branch
instruction.

The pipeline analysis of a given basic block must

always take into account the influences of the predecessor
basic blocks (note that, the dependence among
instructions can cause pipeline hazards, introducing a
delay in the instructions execution), otherwise, it leads to
an underestimation of the execution time. Therefore, at
the hazard detection stage of a given basic block, it will be

always incorporate the pipeline’s state associated to the
predecessor basic blocks over the execution paths. The
resources vector that describes the pipeline’s state it will

be iteratively updated by inserting pipeline stalls to
correct the data and/or structural hazards when the next
instruction is issued.

If these two hazards happen simultaneously, the
correction process start at the hazard that occurred first
and after it is checked if the second one still remains. The
issuing of the new instruction will be always preceded by
the updating of the previous pipeline’s state. This is
achieved by shifting the actual pipeline resource vector
one cycle forward.

The pipeline architectures, usually, present special
techniques to correct the execution flow when a control
hazard happens. For instance, the delay transfer control
technique offers the hardware an extra machine cycle to
decide the branch. Also, special hardware is used to
determine the branch label and value condition at the end
of the instruction’s decode. As one can conclude, the
execution of delay instructions does not depend on the
branch decision and it is always carried out. So, we model
the control hazard, as being caused by all kind of branch
instruction and by adding the sum of execution time of all
instruction in the slot delay to the basic block execution
time.

2.2. Cache Modelling

Cache is a high speed and small size memory, typically, a
SRAM that contains parts of the most recent accesses to
the main memory. Nowadays, the time necessary to load
an instruction or data to the processor is much longer than
the instruction execution time. The main rule of a cache
memory is to reduce the time needed to move the
information from and to the processor. An explanation for
this improvement, comes from the locality of reference
theory – at any time, the processor will access a very
small and localized region of the main memory and the
cache load this region, allowing faster memory accesses to
the processor.

In spite of the memory performance enhancement, the
cache makes the execution time estimation harder, as the
execution time of any instruction will vary and depend on
the presence of the instruction and data into the caches.
Furthermore, to exactly know if the execution of a given
instruction causes a cache miss/hit, it will be necessary to
carry out a global analysis of the program. Note that an
instruction’s behaviour can be affected by memory
references that happened long time before.

Fig.2 Illustration of the hazard detection and correction

Adversely, the estimation of WCET becomes harder
for the modern processors, as the behaviour of cache and
pipeline depend on each other. Therefore, we propose the
following changes to the algorithm that takes into account
the pipeline effects:

1) Classify the cache behaviour [9] for any

data and instruction as cache hit or cache
miss before the analysis of the pipeline
behaviour

2) Before the issuing of an instruction, verify

if there is any cache miss related to the
instruction, and if any, apply the miss
penalty beforehand and then the detection
and correction of pipeline hazards

3. EXPERIMENTAL RESULTS

By the moment, we will present some results using the
8xC196 Intel microcontrollers as they are the only that
presents all needed execution time information in the
user’s guide. But we hope soon to present results of
experiments with modern processor such as, some Texas
Instruments DSPs, Intel 8xC296, PICs and so on.

Fig.2 shows the program to be estimated, that is
composed by two functions: the main() and func(). This
program was instrumented to allow a direct measurement
with a digital oscilloscope through the pin number six of
port 2 (P2.6).

At a first stage, the WCET estimator built the call graph

given at the lower right quadrant of fig.5 and then, func()
identified by the label C_2192 will be processed and the
result shown by the fig.4. At the upper right quadrant of
fig.4 and 5, information such as execution time of
individual basic blocks, basic block control flow and
function execution time are presented. At the lower right
quadrant of fig.5, is presented the assembler code
translated by the disassembler from the executable code.
The upper left quadrant of fig.4 and 5 present parts our
litlle language program describing the microcontroller
architecture.

Fig.2 Code segment to be measured

#pragma model(MC)
#include _SFR_H_
#include _FUNCS_H_
/* Reserve the 9 bytes required by eval board */
char reserve[9];
#pragma locate(reserve=0x30)
register int i,k;
register int x, y;
void func();

void main(void)
{
 x = 1;
 y = 0;
 i = 20;
 func();
}

void func()
{
 for(k=1; k<10; k++)
 {
 x*=3;
 y = x + 4;
 }
}

Fig. 4 WCET = 61µs was estimated for the code presented at fig. 2

Fig.3 Direct measurement of Instrumented program using a digital Oscilloscope to monitor P2.6

4. CONCLUSIONS

A very friendly tool for the WCET estimation was developed
and the results obtained over some Intel microcontroller were
very satisfactory. To a complete evaluation of our tool we will
realize more test using other classes of processors such as DSPs,
PICs and some Motorola microcontrolers.

A plenty use of this tool requires some processors
informations, such as, the execution time of each instructions
composing the processor instruction set, sometimes not provided
in the processor user’s guide. In such case, to time an individual
instruction, we recommended the use of the logic analyzer
following the next four steps:

1. write a short program that contains the target

instruction

2. find the memory location in the code segment of

memory containing the target instruction

3. set the logic analyzer to trigger on the opcode at the
target instruction location and on the opcode and
location of the next instruction

4. set the trace for absolute time

and the logic analyzer will then display the difference in the time
between the fetch of the target and next instructions.

As a future works, we propose the acceleration of
convergency for some of the implemented scheduling methods,

support of interprocessor topology based on I2C and CAN. As a
final work is our intent to grant this tool with a full round-trip
engineering based on reverse engineering feature that quickly
informs the effects of a graphical change over the application
design.

5. REFERENCES

[1] Alan C. Shaw, Deterministic Timing Schema for Parallel
Programs, technical Report 90-05-06, Department of Computer
Science and Engineering, University of Washington, Seattle,
1990.

[2] P. Puschner and CH. Koza, Calculating the Maximum
Execution Time of Real-Time Programs, The Journal of Real-
Time Systems, 1, pp. 159-176,1989.

[3] A. K. Mok et al., Evaluating Tight Execution Time Bounds
of Programs by Annotations, in Proc. Of the Sixth IEEE
Workshop on Real-Time Operating Systems and Software, pp.
272-279, May 1989.

[4] S. Bharrat and K. Jeffay, Predicting Worst case Execution
Times on a Pipelined RISC Processor, Technical Report,
Department of Computer Science, University of North Carolina.

[5] K. Nilsen and B. Rygg, Worst-Case Execution Time
Analysis on Modern Processor, ACM SIGPLAN Notices, Vol.
30, No. 11, pp. 20-30, November 1995.

Fig. 5 WCET analysis of the funtion denominated func()

[6] Y. Steven Li et al., Efficient Microarchitecture Modeling and
Path Analysis for Real-Time Software, Technical Report,
Department of Electrical Engineering, Princeton University.

[7] N. Zhang and M. Nicholson, Pipelined Processors and Worst
Case execution Times, Real-Time Systems Journal, Vol. 5, No.
4, pp. 319-343, October 1993.

[8] Tai-Yi Huang et al., A Method for Bounding the Effect of
DMA I/O Interference on Program Execution Time, in Proc.
Real-Time Systems Symposium, Washington DC. December
1996.

[9] C. Healy, D. Whalley and M. Harmon, Integrating the
Timing Analysis of Pipelining and Instruction Caching,
Technical Report, Computer Science Department, Florida State
University.

[10] Sung-Soo Lim, C. Yun Park et al., An Accurate Worst Case
Timing Analysis for RISC Processors, IEEE Transactions on
Software Engineering, Vol. 21, No. 7, pp. 593 – 604, July 1995.

[11] Eric Schnarr and James Larus, Instruction Scheduling and
Executable Editing, Worshop on Compiler Support for System
Software (WCSSS’ 96), Tucson, Arizona, February, 1996.

[12] J. Tremblay and P. Sorenson, The Theory and Practice of
Compiler Writing, McGraw-Hill, ISBN 0-07-065161-2, 1987.

[13] T. Proebsting and C. W. Fraser, Detecting Pipeline
Structural Hazards Quickly, in Proc. of the 21th Annual ACM
SIGPLAN_SIGACT Symposium on Principles of Programming
Languages, pp. 280-286, January 1994.

