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ABSTRACT 
 
A method for analysing and predicting the timing 
properties of a program fragment will be described. First a 
little language implemented to describe a processor’s 
architecture is presented followed by the presentation of a 
new static WCET estimation method. The timing analysis 
starts by compiling a processor’s architecture program 
followed by the disassembling of the program fragment. 
After sectioning the assembler program into basic blocks 
call graphs are generated and these data are later used to 
evaluate the pipeline hazards and cache miss that penalize 
the real-time performance. Some experimental results of 
using the developed tool to predict the WCET of code 
segments using some Intel microcontroller are presented. 
Finally, some conclusions and future work are presented. 

 

1. INTRODUCTION 
 
Real-time systems are characterized by the need to satisfy 
a huge timing and logical constraints that regulate their 
correctness. Therefore, predicting a tight worst case 
execution time of a code segment will be a must to 
guarantee the system correctness and performance. 

The simplest approach to estimate the execution time 
of a program fragment is: 

1. for each arithmetic instruction, counting the 
number of times it appears on the code  

2. express the contribution of this instruction in 
terms of clock cycles,  

3. update the total clock cycles with this 
contribution.  

 
Other two basic approaches are: 
 
1) Isolate the operation to be measured and make 

time measurements before and after performing 

it, which is valid only when the resolution of an 
individual measurement will be considerably 
less than the time of the operation to be 
specifically analysed 

2) Execution of the operation a large number of 
time, and at the end of the loop operation 
execution, the desired time will be found by 
averaging. Even with this approach, if you want 
an accurate measurement, a number of 
complications such as, compiler optimisations, 
operating system distortions, must be solved. 

 
Nevertheless, these approaches are unrealistic since 

they ignore the system interferences and the effects of 
cache and pipeline, two very important features of some 
processors that can be used in our hardware architecture. 
Shaw [1], Puschner [2], and Mok [3], developed some 
very elaborated methodology for WCET estimation, but 
none of them takes into account the effects of cache and 
pipeline. 

Theoretically, the estimation of WCET must skip over 
all the profits provided by modern processors, such as 
caches, and pipeline (i.e., each instruction execution 
suffers from all kind of pipeline hazards and each memory 
access would cause a cache miss) as they are the main 
source of uncertainty. Experimentally, a very pessimistic 
result would be obtained, and so, making useless those 
processor’s resources. Some WCET estimation schemes 
oriented to modern hardware features, were presented in 
the last years, and among them we refer to: Bharrat [4], 
Nilsen [5], Steven Li [6], Zhang [7], Tai-Yi Huang [8], 
Whalley [9], and Sung-Soo Lim [10]. However, these 
WCET estimators do not address some specificity of our 
target processors (microcontrollers and DSPs), since they 
are oriented to general-purpose processor. Therefore, we 
propose a new machine independent estimator, 
implemented as a little language for architecture 
description. Such a machine independent scheme, based 
on the little language was used before by Scharr [11] to 



describe the pipeline instruction scheduling and 
executable editing, Tremblay[12] to generate machine 
independent code, Proebsting and Fraser [13] to describe 
pipeline architectures and Nilsen [5] to implement a 
compiler, simulator and WCET estimator for pipeline 
processors. 
 

2. LITTLE LANGUAGE PROCESSOR 
 
Fig.1 shows the language processor organization of the 
implemented little language. The purpose of a little 
language, typically, is to solve a specific problem and, in 
so doing, simplify the activities related to the solution of 

the problem. Our little language’s statements are created 
based on the tasks that must be performed to describe 
processor’s architectures in terms of structure and 
functional architecture of the interrupt controller, PTS 
(Peripheral Transaction Server), PWM (Pulse Width 
Modulation), WG (Waveform Generator), and HIS (High 
Speed Input), instruction set, instruction semantics, 
addressing modes, processor’s registers, instruction 
coding, compiler’s specificity, pipeline and cache 
resources, and so on. Strongly related to the instruction’s 
semantics of a little language is the language paradigm 
that defines how the language processor must process the 
built-in statements.  

 

Fig. 1 Organization of the language processor 
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For our little language, we adopt a procedural and 
modular paradigm, such that modules are independent 
from each other, the sequence of modules execution does 
not matter, but within each module an exact sequence of 
instructions is specified and the computer executes these 
instructions in the specified order.  A processor’s 
architecture program is written by modules, each one 
describing a specific feature such as instruction set, 
interrupt structure and mechanism, register structure, 
memory organization, pipeline, data cache, instruction 
cache, PTS, and so on. As said above, the module 
execution order can be any, but the register module must 

always be the first to be executed. A module can be 
defined more than once, but it is a processor language job 
to verify the information consistency among them and 
concatenate all them into a single module.  

The disassembler has as input an executable file 
contains the code segment that one wants to measure and 
the compiled version of the processor’s architecture 
program. The disassembler process starts at the start-up 
code address (startup code is the bootstrap code executed 
immediately after the reset or  power-on of the processor)  
and follows the execution flow of the program. It is 
implemented into four phases:  
 

 
 

 
1. starting at the start-up code address follows all 

possible execution paths till reaching the end 
address of the “main” function. At this stage, all 
function calls are examined and their entry code 
addresses are pushed into an auxiliary stack, 

 
2. from the entry address of the “main” function, 

checks the main function code for interrupt 
activation, 

 
3. for each active interrupt, gets its entry code 

address and pushed it into the auxiliary stack, 
 

4. pops each entry address from the auxiliary stack 
and disassemble it, following the function’s 
execution paths. 

 

The execution of the simulation module is optional 
and the associated process is described by a set of 
operation introduced using the function “SetAction”. That 
is to say, for each instruction the simulation process, 
including the flag register affectation, are described by a 
set of operation specified using  “SetAction” calls.  To 
achieve a correct flags affectation, all operations describe 
by “SetAction” must be implemented using binary base. 

Running the simulation process before the 
estimation process, will produce a more optimistic worst 
case timing analysis since it can: 

 
a) rectify the execution time of instructions that 

depend on data locations, such as stack, internal 
or external memory, 

 



b) solve the indirect address problem by checking 
if it is a jump or a function call (function call by 
address), 

 
c) estimate the iteration number of a loop. 

 
The WCET estimator module requires a direct 

interaction with the user as some parameters are not 
directly measurable through the program code. Examples 
of such kind of parameters are, the number of an interrupt 
occurrence and the preview of a possible maximum 
iterations number associated to an infinite loop. The 
WCET estimation process was divided into two phases:  

 
1- first, the code segment to be measured is 

decomposed into basic blocks, 
 

2- for each basic block, it will be estimated the 
lower and upper execution time, using the 
shortest path method and a timing scheme [1]. 

 
The shortest path algorithm with the basic block 

graph as input is used to estimate the lower and upper 
bound on the execution time of the code segment. For the 
estimation of the upper bound, it is used the multiplicative 
inverse of the upper execution time of each basic block. 

A basic block is a sequence of assembler’s 
instructions, such as, only the first instruction can be 
prefixed by a label and only the last one can be a control 
transfer instruction. The decomposition phase is carried 
out following the steps below: 

 
1- rearrangement of code segment to guarantee the 

visual cohesion of a basic block. Note that, the 
ordering of instructions by address make more 
difficult the visualization of the inter basic block 
control flow, due to long jump instructions that 
can occur between basic blocks. To guarantee 
that visual cohesion, all sequence of instructions 
are rearranged by memory address, excluding 
those one located from long jump labels – these 
instructions are inserted from the last buffer 
index. 

 
2- characterization of the conditional structure 

through the identification of the instructions 
sequence that compose the “if” and “else” body.  

 
3- characterization of the loop structure through 

the identification of the instructions sequence 
that composes the loop body, control and 
transfer control. It is essential to discern 
between  “while/for” and “do while” loop since 
the timing schemes are different. 

 

4- After the identification and characterization of 
the control and loop structures, it will be built a 
basic block graph, showing all the execution 
paths between basic blocks. 

 
5- For each basic block, find the lower and upper 

execution time. 
 
2.1. Pipeline Modelling 

 
The WCET estimator presented so far, considers that an 
instruction’s execution is fixed over the program 
execution, i.e., it ignores the contribuition of modern 
processors. Note that, the dependence among instructions 
can cause pipeline hazards, introducing a delay in the 
instructions execution. This dependence emerges as 
several instructions are simultaneously executed and as 
the result of this parallelism execution among instructions, 
the execution time of an instruction fluctuates depending 
on the set of its neighbouring instructions.  

Our little language analyses the pipeline using the 
pipeline hazard detection technique suggested by 
Proebsting and Fraser [13] and models the pipeline as a 
set of resources and each instruction as a process that 
acquires and consumes a subset of resources for its 
execution. Therefore, the pipeline stages and functional 
units are defined using functions “setPipeStage(Mn)” and 
“SetPipeFunctionalUnit(Mn,num)”, respectively. For each 
instruction, there is a set of functions to solve the 
following points: 

 
i) Instr.SetSourceStage(s_Opr, Stg) specifies the 

pipeline stage each source operand must be 
available, 

 
ii) Instr.SetResultStage(d_Opr, Stg) specifies the 

pipeline stage the output of the destination 
operand becomes available. 

 
iii) Instr.SetStageWCET(stg, tm) specifies each 

pipeline stage required to execute an 
instruction and the execution time 
associated to that stage. 

 
iv) Instr.SetbranchDelayCost(tm) sets the control 

hazard cost associated to a branch 
instruction. 

 
The pipeline analysis of a given basic block must 

always take into account the influences of the predecessor 
basic blocks (note that, the dependence among 
instructions can cause pipeline hazards, introducing a 
delay in the instructions execution), otherwise, it leads to 
an underestimation of the execution time. Therefore, at 
the hazard detection stage of a given basic block, it will be 



always incorporate the pipeline’s state associated to the 
predecessor basic blocks over the execution paths. The 
resources vector that describes the pipeline’s state it will 

be iteratively updated by inserting pipeline stalls to 
correct the data and/or structural hazards when the next 
instruction is issued.  

 

 
 
 

 
 



 
 
 

If these two  hazards happen simultaneously, the 
correction process start at the hazard that occurred first 
and after it is checked if the second one still remains. The 
issuing of the new instruction will be always preceded by 
the updating of the previous pipeline’s state. This is 
achieved by shifting the actual pipeline resource vector 
one cycle forward. 

The pipeline architectures, usually, present special 
techniques to correct the execution flow when a control 
hazard happens. For instance, the delay transfer control 
technique offers the hardware an extra machine cycle to 
decide the branch. Also, special hardware is used to 
determine the branch label and value condition at the end 
of the instruction’s decode. As one can conclude, the 
execution of delay instructions does not depend on the 
branch decision and it is always carried out. So, we model 
the control hazard, as being caused by all kind of branch 
instruction and by adding the sum of execution time of all 
instruction in the slot delay to the basic block execution 
time. 

 
2.2. Cache Modelling 

 
Cache is a high speed and small size memory, typically, a 
SRAM that contains parts of the most recent accesses to 
the main memory. Nowadays, the time necessary to load 
an instruction or data to the processor is much longer than 
the instruction execution time. The main rule of a cache 
memory is to reduce the time needed to move the 
information from and to the processor. An explanation for 
this improvement, comes from the locality of reference 
theory – at any time, the processor will access a very 
small and localized region of the main memory and the 
cache load this region, allowing faster memory accesses to 
the processor.  

In spite of the memory performance enhancement, the 
cache makes the execution time estimation harder, as the 
execution time of any instruction will vary and depend on 
the  presence of the instruction and data into the caches. 
Furthermore, to exactly know if the execution of a given 
instruction causes a cache miss/hit, it will be necessary to 
carry out a global analysis of the program. Note that an 
instruction’s behaviour can be affected  by memory 
references that happened long time before.  

Fig.2 Illustration of the hazard detection and correction 



 

 
 

Adversely, the estimation of WCET becomes harder 
for the modern processors, as the behaviour of cache and 
pipeline depend on each other. Therefore, we propose the 
following changes to the algorithm that takes into account 
the pipeline effects: 

 
1) Classify the cache behaviour [9] for any 

data and instruction as cache hit or cache 
miss before the analysis of the pipeline 
behaviour 

 
2) Before the issuing of an instruction, verify 

if there is any cache miss related to the 
instruction, and if any, apply the miss 
penalty beforehand and then the detection 
and correction of pipeline hazards 

 
3. EXPERIMENTAL RESULTS 

 
By the moment, we will present some results using the 
8xC196 Intel microcontrollers as they are the only that 
presents all needed execution time information in the 
user’s guide. But we hope soon to present results of 
experiments with modern processor such as, some Texas 
Instruments DSPs, Intel 8xC296, PICs and so on.  

Fig.2 shows the program to be estimated, that is 
composed by two functions: the main() and func().  This 
program was instrumented to allow a direct measurement 
with a digital oscilloscope through the pin number six of 
port  2 (P2.6). 

 
At a first stage, the WCET estimator built the call graph 

given at the lower right quadrant of fig.5 and then, func() 
identified by the label C_2192 will be processed and the 
result shown by the fig.4. At the upper right quadrant of 
fig.4 and 5, information such as execution time of 
individual basic blocks, basic block control flow and 
function execution time are presented.  At the lower right 
quadrant of fig.5, is presented the assembler code 
translated by the disassembler from the executable code. 
The upper left quadrant of fig.4 and 5 present parts our 
litlle language program describing the microcontroller 
architecture. 

 

Fig.2 Code segment to be measured

#pragma model(MC) 
#include        _SFR_H_ 
#include        _FUNCS_H_ 
/*   Reserve the 9 bytes required by eval board   */ 
char                          reserve[9]; 
#pragma locate(reserve=0x30) 
register int i,k; 
register int x, y; 
void func(); 
 
void main(void) 
{  
 x = 1; 
 y = 0; 
 i = 20; 
 func(); 
} 

void func() 
{ 
  for(k=1; k<10; k++) 
 { 
 x*=3; 
 y = x + 4; 
 }  
} 



 

 

Fig. 4 WCET = 61µs was estimated for the code presented at fig. 2

Fig.3 Direct measurement of Instrumented program using a digital Oscilloscope to monitor P2.6 



4. CONCLUSIONS 
 

A very friendly tool for the WCET estimation was developed 
and the results obtained over some Intel microcontroller were 
very satisfactory.  To a complete evaluation of our tool we will 
realize more test using other classes of processors such as DSPs, 
PICs and some Motorola microcontrolers.  

A plenty use of this tool requires some processors 
informations, such as, the execution time of each instructions 
composing the processor instruction set, sometimes not provided 
in the processor user’s guide. In such case, to time an individual 
instruction, we recommended the use of the logic analyzer 
following the next four steps: 

 
1. write a short program that contains the target 

instruction 
 
2. find the memory location in the code segment of 

memory containing the target instruction 
 

3. set the logic analyzer to trigger on the opcode at the 
target instruction location and on the opcode and 
location of the next instruction 

 
4. set the trace for absolute time 

 
and the logic analyzer will then display the difference in the time 
between the fetch of the target and next instructions. 

As a future works, we propose the acceleration of 
convergency for some of the implemented scheduling methods, 

support of interprocessor topology based on I2C and CAN. As a 
final work is our intent to grant this tool with a full round-trip 
engineering based on reverse engineering feature that quickly 
informs the effects of a graphical change over the application 
design.  
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