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Abstract—This paper quantifies the impact of topological
characteristics on the performance of single radio multichannel
IEEE 802.11 mesh networks. Topological characteristics are the
number of nodes per subnetwork, the hop count, the neighbor
node density, the hidden nodes, the number of nodes in the
neighborhood of the gateway, and the hidden nodes in the
neighborhood of the gateway. Network performance metrics are
throughput, fairness and delay. The data mining Support Vector
Machine (SVM) model was used to extract the relationships
between the network topology metrics and the network per-
formance metrics based on data results obtained through ns-
2 simulation of random networks. The results obtained can be
used as a basis to design channel assignment algorithms or to aid
the deployment and management of single radio wireless mesh
networks.

Index Terms—Mesh networks, multi-channel, channel assign-
ment, single-radio, topology metrics, node density, hidden nodes,
miss ratio, data mining, SVM, relative importance

I. INTRODUCTION

Wireless mesh networks are an efficient and low cost
solution to expand Internet coverage to areas where infra-
structured connections to IEEE 802.11access points are hard
or expensive. Wireless networks such as these are expected to
have high levels of usage, demanding solutions such as multi-
channel communications between the mesh access points to
improve the throughput of wireless mesh networks.

In our scenario, mesh nodes are expected to have two
wireless cards with independent of-the-shelf radio interfaces
running the standard MAC 802.11 protocol on different fre-
quency bands; one radio interface operates as an access point,
leaving the other to be used to interconnect the node to
the mesh network. This configuration avoids the interference
between the radio interfaces as described in [1], [2], [3].
The scenario studied in this paper addresses single-radio
mesh networks. Special mesh nodes are wireline connected
to network infrastructures acting as gateways to the Internet.

This work was co-supported by the SitMe project from QREN–ON.2
program and FCT SFRH/BD/13444/2003.

As mentioned in [4], [5], the multi-channel approach to
be implemented in single-radio mesh networks assigns all
nodes on a path to a common channel, which creates multiple
subnetworks if multiple channels are used. The overall net-
work performance depends on the subnetworks performance
which in turn depends on topology characteristics. In [1],
metrics related to topological characteristics are identified and
an evaluation of their impact on the network performance is
presented for a set of arbitrary mesh networks. The topology
metrics identified were (1) the number of nodes per subnet-
work, (2) the mean hop count, (3) the neighbor node density,
(4) the hidden nodes measured by miss ratio, (5) the number
of nodes in the neighborhood of the gateway, and (6) the
hidden nodes in the neighborhood of the gateway measured by
miss ratio. The analysis in [1] gave important guidelines for
the relative importance of network topology characteristics in
network performance; however, the scenarios studied were few
and arbitrarily selected. This paper studies an extended set of
random channel assignment schemes, aimed to bring a better
understanding of the impact network topology characteristics
have on network performance.

The methodology used in this work is presented in Fig. 1.
A set of 3500 topologies with 36 randomly positioned nodes
was created using the network simulator ns-2 [6]. Two channel
assignment schemes were then applied to each of the 3500
topologies, assigning one of two possible channels to each
node. Each of the 7000 networks were simulated four times
using ns-2 with two possible traffic loads and two different
simulation seeds. The results from the simulated networks
were analyzed using a python script to retrieve performance
metrics and the corresponding topology metrics. The metrics
data from the 28000 network simulations were used to train a
data mining model using Support Vector Machines (SVM) [7]
using the rminer library of the R tool [8]. The input parameters
of the models are the six topology metrics enumerated above
and the output of each model is one of the three performance
metrics studied in this paper: network aggregate throughput,
fairness, and delay. Using fitted data mining models, the effect
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of topology metrics on performance was quantified using a
sensitivity analysis procedure as implemented in rminer.
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Fig. 1. Methodology.

This work provides 2 main contributions:
1) Quantification and ranking of the impact of topology

metrics on the performance of wireless mesh networks,
which are (by order of importance): (a) number of nodes
in the 1st ring, i.e. nodes directly connected to a gateway;
(b) mean hop count; (c) varying node quantity between
subnetworks sharing a channel; (d) miss ratio in the
1st ring, which synthesizes the number of hidden nodes
on the neighborhood of the gateway; (e) neighbor node
density, which is the mean number of neighbors of
a mesh node; (f) miss ratio, which synthesizes the
number of hidden nodes on the network;

2) Use of data mining techniques for evaluation of the
impact of wireless network topology characteristics on
the performance of wireless mesh networks.

The rest of the paper is organized as follows: Section II
describes the methodology used in this work, Section III
identifies the performance metrics and the topology metrics
that are used in the study, Section IV presents and explains
the results obtained, and Section V concludes the paper.

II. METHODOLOGY

A. Random network generation

3500 different topologies were created using ns-2. Each
network topology was generated randomly with consideration
that the resultant network graph must be connected, signifying
that every node in the network has multi-hop connectivity to all
other nodes. Two nodes were randomly selected as gateways
and operated on different radio channels. Each network has 36
nodes (including the gateways) and are spread randomly in a
area of 1000 m×1000 m.

Two different channel assignment schemes were applied to
each topology. In the first assignment a random channel was
assigned to each node guaranteeing multihop connection to a
gateway. In the second channel assignment, the channel with
a gateway closer in terms of hop count was assigned to each
node; if both gateways were at the same distance, then the
channel was selected randomly. Fig. 2 represents 2 instances of
the generated networks and the lines between nodes represent
wireless connectivity between them.

B. Network simulation

Each generated network was simulated four times using ns-
2.29. Each node, not including the gateways, generated a traffic
flow of either 480 kbit/s or 4.8 Mbit/s. These packets generate
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Fig. 2. Examples of generated random network topologies.

a Poisson distribution as they are User Datagram Protocol
(UDP) and are destined to a node in the Internet through
the serving gateway. Simultaneously, a node outside the mesh
network generates a similar flow destined to each node in the
network (gateways not included). All flows were configured
with similar parameters which are fixed for each simulation
each having two different seeds. The parameters used in each
simulation are presented in Table I. The simulation tool ns-2
was used with a two-ray propagation model in the physical
layer and MAC DCF 802.11 in the link layer. The Hybrid
Wireless Mesh Protocol (HWMP) [9] was used to establish
routes as defined in the IEEE standard to mesh networks.

Parameter Value
Propagation Model two ray ground

Channel data rate 54 Mbit/s
RX Threshold -70.2 dBm, 350 m
Node distance 176 m

Packet size 1500 bytes
RTS/CTS ON

Routing HWMP
Source type Poisson (UDP)

WarmUp 10 packet/s × 256 byte

TABLE I
PARAMETERS USED IN NS-2.29 SIMULATIONS.

The duration of each simulation was configured to give time
to generate 104 packets on each flow with the exact duration
depending on the rate of data flow. During the first 3 seconds
there are no data flows to allow the HWMP routing protocol to
execute the proactive tree building functionality. In this phase a
route to one of the gateways is added to each node as described
in the Proactive Path Request (PREQ) mechanism [9] and the
reverse path is also created. Between 3 and 10 seconds the
warm up flow takes place between each node and the gateway.
Only the main flow packets are used to calculate the network
performance.

C. Measure network topology and performance

To calculate the network topology and performance metrics,
the two subnetworks resultant from the channel assignment
are treated as a single network. The metrics aggregate the
performance and the topology characteristics of all nodes
in the network, independently of the channel the node is
configured in.
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D. Data mining model

The SVM was initially proposed by [7] for classification
tasks (i.e., to model a discrete labeled output). After the
introduction of the ε-insensitive loss function, it was possible
to apply SVM to regression tasks [10]. SVM has theoretical
advantages over other data mining techniques, such as the
absence of local minima in the learning phase, i.e., the model
always converges to the optimal solution. The main idea of the
SVM is to transform the input data into a high-dimensional
feature space by using a nonlinear mapping φ. Then, the
SVM finds the best hyperplane within the feature space.
The transformation depends on the kernel function adopted.
The Gaussian kernel is the most popular one, presenting less
parameters than other kernels, and thus is adopted in this work:

k(x, x′) = e−γ×‖x−x′‖2 , γ > 0 (1)

Under this setup, performance of the regression is affected by
three parameters: γ – the parameter of the kernel, C – penalty
parameter, and ε – the width of a ε-insensitive zone (both C
and ε are used by SVM to select the support vectors during the
learning phase). To reduce the search space, the first two values
will be set using the heuristics of [11]: C=3 (for a standardized
output) and ε = σ̂/

√
N , where σ̂ = 1.5/N ×∑N

i=1(yi − ŷl)2
and ŷl is the value predicted by a 3-nearest neighbor algorithm.
To optimize the most relevant SVM hyper-parameter (γ), we
adopted a grid search under the range {2−15, 2−13, ..., 23}, and
an internal (i.e. over the training data) 3-fold cross validation
was used to select the best γ value (i.e. that produces the
lowest absolute deviation error on the validation data produced
by the 3-fold scheme) [12]. After setting γ the SVM was
retrained with all training data.

In order to evaluate the performance of the SVM predic-
tions, we considered two popular regression metrics: Mean
Absolute Error (MAD), and Coefficient of determination (R2).
Let y denote the target value, ŷ the predicted value, y and ŷ
the mean of these variables. Then:

MAD =
∑N

i=1 |yi − ŷi| /N

R2 = 1−
(∑N

i=1 (yi − ŷi)
2
/
∑N

i=1 (yi − y)
2
) (2)

Lower values of MAD correspond to a higher predictive
capacity, while the R2 should be close to the unit value.
To estimate the predictive performances of the SVM model,
we applied 5 runs of an external (i.e. over all data) 5-fold
cross validation. The predictive errors (i.e. MAD and R2)
shown in this work are reported in terms for the mean values
of these runs and computed over the test (i.e. unseen) data
defined by the 5-fold procedure. All experiments reported were
implemented using the rminer library of the R tool [8].

We also apply the fitted SVM data mining models to esti-
mate the impact of topology metrics on the wireless network
performance. Despite the high complexity this model (due
to the nonlinear transformation), it is still possible to extract
knowledge in terms of input variable importance and Variable
Effect Characteristic (VEC) curves by using a 1-D sensitivity

analysis [13]. This sensitivity analysis works by successively
holding all inputs to their average values except one input,
which is varied through its range of values in order to observe
its effect on the target responses. The higher the variance
observed in the responses, the higher is the relative importance
of the input variable.

III. NETWORK METRICS

A. Network performance metrics

Network performance can be characterized using measures
such as throughput, delay, packet loss, and number of re-
transmissions. In our study we focus on node throughput and
delay. First we want to maximize the average node through-
put. Second, we want to maximize fairness among nodes’
throughput to be sure that each mesh node offers an effective
connection of its clients to the infrastructured network in order
to avoid node starvation while assuring fair opportunities for
packets transmission. Third, we want to minimize the end-
to-end delay experienced by packets transmitted between the
mesh nodes and the infrastructured network. We define the
following metrics:

1) Aggregate throughput: The sum of the bit rate received
by destinations. Formally, the aggregate throughput TA mea-
sured on channel A is given in bits per second by Eq. 3 where
TRXi is the number of packets received by node i, TTXi is the
number of packets received by the gateway sent by node i,
and L is the packet length given in bits.

TA =

∑
(TRXi + TTXi )L

duration of simulation
(3)

The histogram of the aggregate throughput found in the
simulations is presented in Fig. 3 for data rates of 480 kbit/s
and 4.8 Mbit/s. When the flow data rate is low, the achieved
aggregate throughput is also low. Experiences with higher flow
data rate show a wider histogram meaning more uncertainty
in the aggregate throughput results.
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Fig. 3. Histogram for aggregate throughputs obtained by network simulations.

2) Fairness: The Jain Index [14] as given by Eq. 4 where Ti
is the sum of TRXi and TTXi . The fairness J is independent of
scale, applies to any number of nodes and is bounded between
0 and 1, where J = 1 indicate a totally fair network.

J =
(
∑
Ti)

2

n
∑
T 2
i

(4)

The histogram of the fairness found in the simulations is
presented in Fig. 4 for data rates of 480 kbit/s and 4.8 Mbit/s.
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When the data rate is low, fairness is very high in most cases
since all nodes in the mesh network have similar chances of
transmitting their packets in an unsaturated network. When
34×2 flows (a download plus an upload flow per node) of
4.8 Mbit/s are placed on the network it inherently becomes sat-
urated. Nodes that are not in the neighborhood of the gateways
have more difficulty transmitting their packets through long
multi-hop routes [1] and low values of fairness are achieved
in most of the experiments.
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Fig. 4. Histogram for fairness obtained by the simulated networks.

3) Delay: The mean time elapsed between the creation of
a packet and its reception at the final destination. Lost packets
are not considered. The histogram of the delay measured in the
simulations is presented in Fig. 5 for data rates of 480 kbit/s
and 4.8 Mbit/s. When data rate is high (Fig. 5(b)), most packets
to and from nodes that are not in the gateway neighborhood
are lost [1]. Most of the packets considered to calculate the
delay in high data rates secanarios (i.e. packets created close to
the gateway) traversed less hops through the network to their
final destination when compared to low data rate scenarios.
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Fig. 5. Histogram for delay obtained by the simulated networks.

B. Topology metrics

The network topology metric considered to this study were
previously presented in [1]. The number of nodes sharing a
common channel is also considered since the network topology
and channel assignment schemes are random.

1) Number of nodes difference: The difference between the
number of nodes n in each subnetwork. Nodes in a subnetwork
share a common radio channel and their packets are forwarded
through a common gateway. For instance, if the subnetwork
using channel A has 20 nodes and the subnetwork using
channel B has 16 nodes, then the number of nodes difference
is 4. The histogram of the number of nodes difference is
presented in Fig. 6. Despite the scenarios being randomly
generated, the number of nodes using either channel tend to be

equal since the channel and position of each node are selected
randomly.
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Fig. 6. Histogram for number of nodes difference between subnetworks.

2) Neighbor node density: The mean number of immediate
neighbors each node has in the network (including the gate-
ways). For example, the number of neighbors of node A is
equal to the number of nodes in the receiving range (one hop
away) of node A.

3) Size of 1st ring: The number of nodes a single hop
distance from a gateway, which is also the neighbor node
density that gateway.

4) Mean hop count: The mean value of the hop counts of
each node in the network to reach a gateway (excluding the
gateways and the nodes on the 1st rings which are included in
the size of 1st ring metric).

5) Miss ratio: Defined in [15], is a global measure of the
severity of hidden nodes in the overall network.

6) 1st ring Miss ratio: defined in [1], it is a measure of
the severity of the hidden nodes in the neighborhood of the
gateway.

IV. RESULTS

The results obtained are presented in Fig. 7 and Fig. 8.
The models obtained for low data rate scenarios have less
errors (lower MAD values and higher R2) than the models
obtained with high loads, showing that non saturated networks
maintain a more predictable behavior. Fig. 7 represents the
relative importance of each topology metric for each model.
For each model the total sum of all topology metrics relative
importance is 1. Fig. 8 shows the VEC curves of each topology
metrics for each model. The topology metrics were normalized
to fit the [0,1] abscissa axis.

A. Model for aggregate throughput

Fig. 7(a) and Fig. 7(b) illustrates that the size of 1st ring is
the main parameter for aggregate throughput models, with a
relative importance of 0.52 and 0.72 for low and high traffic
loads respectively. The VEC curves for aggregate throughput
models presented in Fig. 8(a) and Fig. 8(b) show that high
values of aggregate throughput are obtained when more nodes
are in the neighborhood of the gateways (size of 1st ring) .
When a large number of nodes are directly connected to the
gateway, there are two effects that contribute to increase the
aggregate throughput: (1) data packets have to be forwarded
only once in the mesh network until they reach the final
destination, what means that less radio resources are used,
leaving more opportunities for other packets to be transmitted;
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Fig. 7. Topology metrics importance on models.

(2) the gateway can effectively manage radio resources using
the carrier sense and RTS/CTS, thus reducing the number of
packet collisions.

When the network has low traffic loads, the metrics of mean
hop count and the number of nodes difference metrics are key
to the aggregate throughput model with relative importance of
0.30 and 0.15 respectively. Higher aggregate throughputs are
obtained when nodes in the network are closer to the gateway
(low mean hop count), as shown by Fig. 8(a). That result was
expected as data packets have to be forwarded only once in
the mesh network until they reach the final destination. Higher
aggregate throughputs are obtained when the number of nodes
in both subnetworks are similar, as shown by Fig. 8(a). When
subnetworks have unbalanced number of nodes, the subnet-
work with less nodes may obtain a high aggregate throughput,
but the aggregate throughput of the overall network remains
low. Neighbor node density, Miss ratio and Miss ratio on
the 1st ring have relative importance values below 0.1 and are
considered to have insignificant impact on the model output.

When the network has high traffic load, the mean hop count
and the number of nodes difference do not significantly impact
the aggregate throughput model, with relative importance of
0.04 and 0.02 respectively. This is mainly because only those
nodes in the gateway neighborhood can transmit and receive
packets as shown in [1] and also because of the low values
of fairness shown in Fig. 4(b). This also explains why the
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Fig. 8. VEC curves of models for high traffic load.

Miss ratio on the 1st ring has some impact in the aggregate
throughput model when the network has high traffic load.
High aggregate throughputs are obtained when links to the
gateway have less hidden nodes. Neighbor node density and
Miss ratio both have relative importance below 0.01 and are
considered to have very little influence on the model output.

B. Model for fairness

Fairness models have high errors when compared with the
throughput and delay models. This is because the topology
metrics do not have a great effect on the network fairness as
can be seen by VEC curves on Fig. 8(c) and Fig. 8(d). These
curves show that even the topology metrics with higher relative
importance values have a small variability on the output of the
model. This data illustrates that fairness is an unpredictable
performance metric in wireless mesh networks.

When the network has low traffic load, the mean hop count
and the number of nodes difference are important to the
fairness model with relative importance values of 0.44 and
0.39 respectively. On unsaturated mesh networks all nodes are
able to transmit and receive their packets, therefore fairness is
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close to 100% in most of the cases. However, if an unbalanced
number of nodes exist in subnetworks using different channels,
the overall network becomes unfair as shown in Fig. 8(c). The
same applies when several nodes are more than 4 hops away
from the gateway as shown in Fig. 8(c). Neighbor node density,
Miss ratio, size of 1st ring, and Miss ratio on the 1st ring
have relative importance values below 0.1 and are considered
to have insignificant impact on the model output.

When the network has high traffic load, the size of 1st ring
is the most influential parameter of the fairness model with a
relative importance of 0.69. Under these traffic load conditions,
the network becomes saturated and only those nodes in the
neighborhood of the gateway are able to transmit and receive
their packets successfully. When more nodes are close to the
gateway the network becomes fairer as shown in Fig. 8(d).

C. Model for delay

Delay and aggregate throughput are related performance
metrics as shown by the joint probability function plot on
Fig. 9. Low aggregate throughputs occur when the delay is
high, that is when packets take more time to reach their final
destination, radio resources have less time available to transmit
other packets resulting in lower aggregate throughputs. The
models of these two performance metrics share all the impor-
tant input parameters as can be observed by comparing figures
7(a), 7(b), 8(a), and 8(b) with 7(e), 7(f), 8(e), and 8(f). The
main difference between these two models is that, for the delay
model, under low traffic load conditions, the mean hop count
have higher relative importance value than size of 1st ring. This
result is expected, since for each hop that a packet performs,
increases the overall transmission time due to the carrier
sensing, which can eventually lead to packet retransmissions
imposed by the MAC of IEEE 802.11 protocol.
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Fig. 9. Join probability function plot of delay and aggregate throughput.

V. CONCLUSIONS

In this study we used a data mining approach based on
the Support Vector Machine (SVM) algorithm and sensitivity
analysis procedure to rank the relative importance of network
topology characteristics on the performance of a single radio
multichannel IEEE 802.11 mesh network. Experimental results
suggest that the topology metric that has the greatest impact
on the performance of a mesh network is the number of nodes
that are directly connected to the gateway: a larger 1st ring size

resulted in increased data throughput, increased fairness and
lower delay. Hop distance of nodes to the gateway and the
varying number of nodes between subnetworks also impact
network performance, but mostly in the realm of guaranteeing
network fairness. As traffic load on the network approaches
maximum capacity, network fairness begins to diminish for
nodes far from the gateway while those nodes near the gateway
experience enhanced levels of network fairness. The study
also suggests that aggregate throughput could be improved by
avoiding hidden nodes on links to the gateway.

SVMs have been successfully used to solve a wide range
of complex problems in statistics, science and engineering.
To the best of our knowledge, these techniques have not yet
been applied to the study of wireless networks topologies or
used to rank the impact of topology characteristics on wireless
network performance.

As future work we plan to generalize our results by: (1)
using network topologies with varying total number of nodes;
(2) using v number varying channels; (3) using different traffic
patterns and traffic loads; 4) modifying the output of data
mining models by combining throughput, fairness and delay
into a single utility function.
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