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Abstract 

In this work a comprehensive methodology for dynamic modeling and analysis of 

planar multibody systems with lubricated revolute joints is presented. In general, this 

type of mechanical systems includes journal-bearings in which the load varies in both 

magnitude and direction. The fundamental issues associated with the theory of 

lubrication for dynamically loaded journal-bearings are revisited that allow for the 

evaluation of the Reynolds’ equation for dynamic regime. This approach permits the 

derivation of the suitable hydrodynamic force laws that are embedded into the dynamics 

of multibody systems formulation. In this work, three different hydrodynamic force 

models are considered, namely the Pinkus and Sternlicht approach for long journal-

bearings and the Frêne et al. models for both long and short journal-bearings. Results 

for a planar slider-crank mechanism with a lubricated revolute joint between the 

connecting-rod and slider are presented and utilized to discuss the assumptions and 

procedures adopted throughout the present study. Different test scenarios are taken into 

account with the purpose of performing a comparative study for quantifying the 

influence of the clearance size, lubricant viscosity, input crank speed and hydrodynamic 

force model on the dynamic response of multibody systems with lubricated revolute 

joints. From the global results obtained from computational simulations, it can be 

concluded that the clearance size, the lubricant viscosity and the operating conditions 

play a key role in predicting the dynamic behavior of multibody systems. 
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1. Introduction 

In most machines and mechanisms, the joints are designed to operate with some lubricant 

fluid. The pressures generated in the lubricant fluid act to keep the journal and the bearing 

apart. Moreover, the film formed by lubricant reduces friction and wear, provides load 

carrying capacity, and adds damping to dissipate undesirable mechanical vibrations [1-5]. 

Therefore, the proper description of lubricated revolute joints, the so-called journal-

bearings, in multibody mechanical systems is required to achieve better models and 

therefore, an improved understanding of the dynamic performance of machines. This 

aspect gains paramount importance due to the demand for the proper design of the 

journal-bearings in many industrial applications. In the dynamic analysis of journal-

bearings, the hydrodynamic forces, which include both squeeze and wedge effects, 

generated by the lubricant fluid, oppose to the journal motion. It should be mentioned that 

the methodology presented in this work uses the superposition principle for the load 

capacity due to the wedge effect entrainment and squeeze film effect separately [2]. The 

hydrodynamic forces are obtained by integrating the pressure distribution evaluated with 

the aid of Reynolds’ equation written for the dynamic regime [1]. The hydrodynamic 

forces are nonlinear functions of the journal center position and of its velocity with 

reference to the bearing center. In the dynamic regime of a journal-bearing, the journal 

center has an orbit situated within a circle radius which is equal to the radial clearance. In 

this context, a lubricated revolute joint does not impose kinematic constraints like an ideal 

revolute joint but instead it deals with force constraints. In a simple way, the 

hydrodynamic forces built up by the lubricant fluid are evaluated from the knowledge of 

the system variables and then included into the equations of motion of the multibody 

systems [6, 7]. For dynamically loaded journal-bearings the classic analysis problem 

consists in predicting the motion of the journal center under arbitrary and known loading 

[8, 9]. However, in the present work the time variable parameters are known from the 

dynamic system’s configuration and the instantaneous force on the journal bearing is 

evaluated afterwards [10-13].  

Over the last years, extensive work has been done to theoretically and 

experimentally study the dynamic effect of clearance joints in the framework of 

multibody systems [14-22]. However, most of these works are only devoted to dry joints. 

Tian et al. [23], Flores and Lankarani [24] and Daniel and Cavalca [13] are among the 

few who have included the lubrication action at the clearance joints in the computational 

simulations of multibody systems. In these works, the mechanical systems considered to 

demonstrate the developed approaches are typically the slider-crank mechanism and the 
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classic four bar linkage. Bauchau and Rodriguez [25] and Tian et al. [26] have also 

studied the combined effect of clearance, lubrication and flexibility of the bodies on the 

dynamic response of mechanical systems. Sousa et al. [27] and Ambrósio e Veríssimo 

[28] proposed a three-dimensional model for cylindrical joints with clearance, which 

included also bushing elements to simulate the dynamic behavior of a familiar car. 

The main purpose of this work is to present a general and comprehensive 

methodology for dynamic modeling and analysis of planar multibody systems with 

lubricated revolute joints. This paper extends previous authors’ work [4, 29] to study the 

influence of the lubricated revolute joint parameters and hydrodynamic force models on 

the response of mechanical systems. The selected parameters are the clearance size, the 

lubricant viscosity and the input crank speed. In addition, three different hydrodynamic 

force models are considered, namely the Pinkus and Sterlnicht approach for long journal-

bearings [1], and the Frêne et al. formulations for both long and short journal-bearings [3]. 

The academic slider-crank mechanism with a lubricated revolute joint between the 

connecting-rod and slider is considered as an example of application to discuss the main 

assumptions and procedures adopted in this work. The main contribution of this work 

deals with the design guidelines that can be taken from the outcomes analyzed, which can 

be useful to predict the dynamic response of the machines and mechanisms having 

lubricated joints, namely in what concerns the selection of an appropriate lubrication 

model and operating conditions that lead to better systems performances in terms of 

stability, lifetime and maintenance programs. 
 

2. General issues in tribology 

The main purpose of this section is to present, in a review manner, the fundamental issues 

in tribology, which constitute the essential ingredients to better understand the 

formulation described in the following sections. Thus, a journal-bearing can be described 

as a circular shaft, designated by journal, rotating in a circular bush, designated by 

bearing. The space between the two elements is filled with a lubricant. Under an applied 

load, the journal center is displaced from the bearing center and the lubricant is forced 

into the convergence clearance space causing a build up of pressure. The high pressures 

generated in the lubricant film act to keep the journal and the bearing surfaces apart. It is 

known from fluid mechanics that a necessary condition to develop pressure in a thin film 

is that the gradient of the velocity profile vary across the thickness of the film [3]. Figure 

1 shows the basic journal-bearing geometry. The length of the bearing is L and it has a 

diameter D. The difference between the radii of the bearing and the journal is the radial 
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clearance c (c=RB-RJ). In general, both the journal and bearing may rotate nonuniformly, 

and the applied load may vary in both magnitude and direction.  
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Fig. 1 Basic journal-bearing geometry 

 

In the region of the local converging film thickness, the hydrodynamic pressure 

rises to a maximum value and then decreases to ambient values at the side and trailing 

edges of the thin film. In zones where the film thickness locally increases, the fluid 

pressure may drop to ambient or below to its vapor pressure leading to the release of 

dissolved gases within the lubricant vaporization causing film rupture. The phenomenon 

of film rupture is known as lubricant cavitation, and the effects on the performance and 

stability of journal-bearings are reasonably well understood and documented in the 

literature [30-33]. The performance of journal-bearings considering lubricant supply 

conditions has been studied theoretically and experimentally by Miranda [34], Claro [35], 

Costa [36] and Brito [37], and it is out of the scope of the present work. 

RB

r

t

X

YF(t)

γ

e

φ

ϕ

ω

RJ

θ

(a) (b)

Continuous film

θs=0

θe=θs+2π

θ

θs=0

θe=θs+π

θ

Cavitated film

RB

r

t

X

YF(t)

γ

e

φ

ϕ

ω

RJ

θ

RB

r

t

X

YF(t)

γ

e

φ

ϕ

ω

RJ

θ

(a) (b)

Continuous film

θs=0

θe=θs+2π

θ

θs=0

θe=θs+π

θ

Cavitated film

 
Fig. 2 (a) Cross section of a smooth dynamically loaded journal-bearing; 

(b) Sommerfeld and Gümbel boundary conditions 
 

Figure 2a shows the cross section of a smooth dynamically loaded journal-bearing. 

When the load acting on the journal-bearing is not constant in direction and/or module, 
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the journal center describes an orbit within the bearing boundaries. If the journal and 

bearing have relative angular velocities with respect to each other, the amount of 

eccentricity adjusts itself until the pressure generated in the converging lubricating film 

balances the external loads. The pressure generated, and hence the load capacity of the 

journal-bearing, depends on the journal eccentricity, the relative angular velocity, the 

effective viscosity of the fluid lubricant and the journal-bearing geometry [38]. When 

only the squeeze action of the lubricant is considered, assuming a null or low relative 

rotational velocity and, therefore, absence of relative tangential velocity, the journal load 

and the fluid reaction force are considered to have the same line of action, which is 

collinear with the center lines. However, in the more general case, in the presence of high 

angular velocities, they do not have the same line of action because of the wedge effect. 

When relative angular velocities are large, the simple squeeze approach is not valid and 

the general Reynolds’ equation has to be used [2, 3]. This particular issue will be 

discussed in detail in the next section. 

In mechanical systems, a lubricated revolute joint does not produce any kinematic 

constraint. Instead, it acts in a similar way to a force element producing time dependent 

forces. Thus, it deals with, the so-called, force constraints. For dynamically loaded 

journal-bearings the classic tribology analysis problem consists of predicting the motion 

of the journal center under arbitrary and known loads, using, for instance, the mobility 

method [8, 9]. Conversely, in the work now presented the time variable parameters are 

known from the dynamic analysis of the mechanical systems and the instantaneous forces 

on the journal-bearing are calculated. In a simple way, the forces built up by the lubricant 

fluid are evaluated from the knowledge of the system variables and then included into the 

equations of motion of the mechanical system as external generalized forces. 

 
3. Hydrodynamic forces 

The full general form of the isothermal Reynolds’ equation for a dynamically loaded 

journal-bearing can be expressed as [39] 
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in which X is the radial direction, Z is the axial direction, μ is the fluid viscosity, h 

denotes the film thickness, p is the pressure and U represents the relative tangential 

velocity between journal and bearing surfaces. The two terms on the right-hand side of 

Eq. (1) represent the two different effects of pressure generation on the lubricant film, 

respectively, the wedge and squeeze actions. The exact solution of the Reynolds’ 
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equation is difficult to obtain and, in general, requires a considerable numerical effort [3]. 

However, it is possible to solve the equation analytically by setting to zero either the first 

or second term on the left-hand side. These solutions correspond to those for infinitely 

short and infinitely-long journal-bearings, respectively. 

Dubois and Ocvirk [40] consider a journal-bearing where the pressure gradient 

around the circumference is small when compared to those along the length. This 

assumption is valid for length-to-diameter (L/D) ratios up to 0.5. Hence, the Reynolds’ 

equation for an infinitely-short journal-bearing can be rewritten as 
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Thus, when the relative pressure is set to zero at journal-bearing ends, the fluid film 

pressure can be expressed in the following form [1] 
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where θ is the angular coordinate, L represents the journal-bearing length and ω is the 

relative angular velocity between the journal and bearing. The eccentricity ratio is 

denoted by ε and γ is the angle defined by the eccentricity vector. The dot in the top on 

any parameter of Eq. (3) denotes the time derivative of such parameter. 

In turn, for an infinitely-long journal-bearing a constant fluid pressure and 

negligible leakage in the axial direction are assumed. This solution was firstly derived 

by Sommerfeld [41] and is applicable for length-to-diameter (L/D) ratios greater than 2. 

Thus, the Reynolds’ equation for an infinitely-long journal-bearing is 

 
dt
dh

X
hU

X
p

μ
h

X
126

3

+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂  (4)  

And the pressure distribution in the fluid is given by [1] 
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in which the variables involved have the same meaning as described above. 

From the multibody systems methodologies point of view, it is convenient to 

evaluate the force components of the resultant pressure in directions tangent and 

perpendicular to the line of centers. These force components can be obtained by 

integrating the pressure field either in the entire domain 2π or half domain π, as it is 

illustrated in Fig. 2b [1-3]. These boundary conditions, associated with the pressure 
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field, correspond to Sommerfeld’s and Gümbel’s boundary conditions. In the second 

case, the pressure field is integrated only over the positive part by setting the pressure in 

the remaining portion equal to zero. Thus, for the Sommerfeld’s conditions the force 

components of the fluid film for infinitely-short journal-bearing are written as [3] 
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where Fr is the radial component of the force while Ft is the tangential component, both 

directions are depicted in the schematic representation of Fig. 2. This situation 

corresponds to the Frêne et al. short journal-bearing solution. 

In a similar way, for the Sommerfeld’s conditions, full film, the force 

components of the fluid film for infinitely-long journal-bearing are written as [3] 
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Equations (8) and (9) represent the Frêne et al. long journal-bearing solution. 

The main difficulty in obtaining the solutions of journal-bearings dynamics lies 

not only in solving the differential equations but also in defining adequately the 

boundary conditions of the Reynolds’ equation. In dynamically loaded journal-bearings, 

the force components, obtained from the integration of the Reynolds’ equation only 

over the positive pressure regions, by assuming null the pressure in the remaining 

portions, involves finding the zero points, that is, the angle for which a positive pressure 

begins and the angle for which the pressure is null. For the case of a steady-state 

journal-bearing, these angles are assumed to be equal to 0 and π, respectively. However, 

for a dynamically loaded journal-bearing these angles are time dependent and the 

evaluation of the force components involves a good deal of mathematical manipulation. 

The details in treatment of these angles are described in the work by Pinkus and 

Sternlicht, for the case of long journal-bearings [1]. For a positive radial velocity, 0ε > , 

the hydrodynamic force components, along the direction of the eccentricity and of its 

normal, are given by 
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For negative radial velocity, 0ε < , the force components are given by 
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In Eqs. (10) through (13) the parameter k is defined as 
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Equations (6) through (14) present the relation between the journal center 

motion and the fluid reaction force. The solution of these equations presents no problem 

since the journal center motion is always known throughout the dynamic analysis of the 

multibody mechanical systems. 

Finally, the force components of the resulting pressure distribution for the 

directions tangent and perpendicular to the line of centers, projected onto the X and Y 

directions, shown in Fig. 2, are given by 

 sinγFcosγFF trx −=  (15)  

 cosγFsinγFF try +=  (16)  

 

4. Modeling lubricated revolute joints 

This section briefly describes the fundamental kinematic aspects associated with 

the motion in a lubricated revolute joint. This is an important step in the present work in 

the measure that the hydrodynamic force laws presented in the previous section are 

functions of the time parameters, ω, ε, ε , γ, and γ , which can be evaluated at any 

instant of time from the kinematics of the multibody mechanical systems. 

Figure 3 shows a representation of a dynamically loaded journal-bearing in the 

framework of a multibody system. The two bodies i and j are connected by a lubricated 

revolute joint, in which the space between the bearing and the journal is filled with a 
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lubricant. Part of body i is the bearing and part of body j is the journal. The center of 

mass of body i is Oi and the center of mass of body j is denoted by Oj. Local coordinate 

systems for bodies i and j are attached to their centers of mass, while a global coordinate 

system is represented by XY. Point Pi indicates the center of the bearing and the center 

of the journal is referred by point Pj. The coordinate system X’Y’ is parallel to the body 

fixed coordinate system (ξη)i with its origin in the bearing center. 
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Fig. 3 Representation of a dynamically loaded journal-bearing in a multibody system 

 

With regard to Fig. 3, the eccentricity vector e  can be expressed as  
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where both rj
P and ri

P are position vectors given by [6], 
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Therefore, Eq. (17) can be rewritten as  
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where the rotational transformation matrix is given by 
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in which variable φk represents the angular position of the local coordinate system of 

body k in the multibody system. 

The magnitude of the eccentricity vector is evaluated as 

 eeTe =  (21)  
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A unit vector along the eccentricity direction is defined as 

 
e
er =  (22)  

This unit radial vector r is aligned with the line of centers of the journal and bearing. 

The tangential direction is defined by rotating vector the radial vector r  by an angle of 

90º in the counter clockwise direction. 

The parameter ε which defines the eccentricity ratio is given by 

 
c
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The parameter ε  is obtained by differentiating Eq. (19) and dividing the result 

by radial clearance. Thus, differentiating Eq. (19) yields 
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Hence, the time rate of eccentricity ratio is given by 

 
c
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The line of centers between the bearing and journal makes an angle γ with X’-

axis, as shown in Fig. 3. Since the unit radial vector r  has the same direction as the line 

of centers, the angle γ  is calculated using the relation, 
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from which, 
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The parameter γ  is obtained by differentiating Eq. (27) with respect to the time, 

yielding 

 2e
eeee

γ yxyx −
=  (28)  

The hydrodynamic components of forces of the resulting pressure field projected 

onto the X and Y directions, given by Eqs. (15) and (16), act on the journal center. Thus, 

these forces have to be transferred to the centers of mass of the bodies in which bearing 

and journal are located.  
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Finally, a practical criterion for determining whether or not a journal-bearing is 

operating satisfactorily is the value of the minimum film thickness. The minimum film 

thickness for an aligned journal-bearing is given by 

 )1( ε−= chmin  (29)  

where ε is the eccentricity ratio and c is the radial clearance. For safe journal-bearings 

performance, a minimum film thickness is required. The safe allowable film thickness 

depends on the surface finish of the journal. In practical engineering design it is 

recommended that the safe film thickness should be at least 0.00015mm/mm of bearing 

diameter [42]. Thus, for the journal-bearing considered here, the safe film thickness that 

ensures good operating conditions is of order of 3 μm. 

 
 
5. Equations of motion for constrained multibody systems 

The equations of motion for a dynamic multibody system subjected to 

holonomic constraints can be stated in the form [6] 
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with the reference frame placed at the center of mass for each body, M is the system 

mass matrix, qΦ  is the Jacobian matrix of constraint equations, the vector q  contains 

the generalized state accelerations, λ is the vector that contains the Lagrange 

multipliers, g is the vector of generalized forces (including the hydrodynamic forces that 

develop at the lubricated revolute joints) and γ is the vector of quadratic velocity terms 

that is used to describe Coriolis and centrifugal terms in the acceleration equations. 

A set of initial conditions (positions and velocities) is required to start the 

dynamic simulation. The selection of the appropriate initial conditions plays a key role 

in the prediction of the dynamic performance of mechanical system [43]. In the present 

work, the initial conditions are based on the results of kinematic simulation of 

mechanical system in which all the joints are assumed to be ideal, that is, without any 

lubricated revolute joint. The subsequent initial conditions for each time step in the 

simulation are obtained in the usual manner from the final conditions of the previous 

time step [44]. In order to stabilize or keep under control the constraints violation, Eq. 

(30) is solved using the Baumgarte stabilization technique [45, 46]. In turn, the 

integration process is performed using a predictor-corrector algorithm with both 

variable step size and order [47, 48]. 
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6. Examples and numerical results 

This section contains extensive results obtained from computational simulations 

for a planar slider-crank mechanism with a lubricated revolute joint when subjected to 

different test scenarios in order to carry out a parametric study. This study takes into 

account the main functional parameters of the slider-crank mechanism, namely, the 

clearance size, the fluid lubricant viscosity, the input crank speed and the hydrodynamic 

force model used at the lubricated revolute joint.  

 

6.1. Description of the slider-crank mechanism and global reference outcomes 

The slider-crank mechanism selected consists of four rigid bodies that represent 

the crank, connecting-rod, slider and ground, two ideal revolute joints and one ideal 

translational joint, as it is illustrated in Fig. 4. One revolute joint with clearance exists 

between the connecting-rod and slider, which is modeled as a lubricated joint. The 

length and inertia properties of the slider-crank mechanism are listed in Table 1. Due to 

the presence of the one lubricated revolute joint this system has three degrees-of-

freedom. The acceleration due to gravity is taken as acting in the negative Y direction 

and the mechanism is defined as moving in a vertical plane. 
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Fig. 4 Slider-crank mechanism with a lubricated revolute clearance joint between the 

connecting-rod and slider 
 
 Table 1. Governing properties for the slider-crank mechanism 

Body Nr. Length [m] Mass [kg] Moment of inertia [kg m2] 

2 0.05 0.30 1.0×10-4 
3 0.12 0.21 2.5×10-4 
4 - 0.14 - 

 
The data used to produce the reference outcomes of the dynamic response of the 

mechanism are obtained for an input crank speed equal to 5000 rpm. The initial 

conditions necessary to start the dynamic analysis are evaluated from kinematic analysis 

of the slider-crank mechanism in which all the joints are considered to be ideal joints. In 

addition, in the initial configuration of the system, the crank and connecting-rod are 

aligned and the journal and bearing centers are coincident. Table 2 contains the 
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fundamental parameters used in the dynamic simulations and those required to 

characterize the problem and for the numerical methods. Besides its unrealistic 

magnitude, the value of the clearance size is the same that has been considered by other 

researchers [10, 23, 26], which allows for the comparison of the results reported. 
 

Table 2: Parameters used in the dynamic simulations of the slider-crank mechanism 
Nominal bearing radius 10.0 mm Integrator algorithm ODE/DE 
Nominal journal radius 9.5 mm Baumgarte coefficients α, β 5 

Standard radial clearance 0.5 mm Integration step size 1×10-5 s 
Lubricant viscosity 400 cP Total time of simulation 10.0 s 

 
 In what follows, several numerical results are presented and analyzed to 

demonstrate the computational implementation and efficiency of the proposed 

methodologies. The dynamic response of the slider-crank mechanism is quantified by 

plotting the slider velocity and acceleration, the joint reaction force developed at the 

lubricated joint and the journal center orbit inside the bearing boundaries. In addition, 

the minimum film thickness produced between the journal and bearing surfaces and the 

portrait phase are analyzed. The eccentricity ratio and the time rate of the eccentricity 

ratio are the variables used to plot the portrait phase. The global results presented below 

are relative to two full crank rotations after the initial transient phenomenon has been 

dissipated. Furthermore, the outcomes plotted are compared with those obtained for the 

slider-crank mechanism simulated with ideal joints only. The global reference outcomes 

are illustrated in the plots of Fig. 5, for which the following system characteristics are 

considered, clearance size equal to 0.5 mm, crank speed of 5000 rpm and fluid lubricant 

viscosity equal to 400 cP. Furthermore, the Pinkus and Sternlicht approach is selected to 

model the lubricated revolute joint. It should be highlighted that the results are plotted 

against those for ideal joints. From Fig. 5(a), it can be observed that the existence of the 

lubricated joint does not affect the slider velocity. However, the slider acceleration and 

joint reaction force diagrams of Figs. 5(b) and 5(c) present small deviations from the 

ideal case, which are associated with substantial reduction of the film thickness as the 

journal moves very close to the bearing wall, resulting in a stiff system due to the large 

eccentricity. This particular situation is visible in the plots of Figs. 5(d) and 5(e) where 

the journal center orbit inside the bearing boundaries and the evolution of the minimum 

film thickness are plotted. The first and second crank rotation plots show the same 

results, which indicates that the system has reached the steady operation state. This 

conclusion can easily be explained by observing Fig. 5(f) relative to the phase portrait, 

which shows a periodic or regular behavior.  
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(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)  
Fig. 5 (a) Slider velocity; (b) Slider acceleration; (c) Joint reaction at the lubricated 
joint; (d) Journal center trajectory relative to the bearing center; (e) Minimum film 

thickness (f) Phase portrait 
 

 

6.2. Influence of the clearance size 

 In Figs. 6 up to 9, the joint reaction forces developed at the lubricated joint, the 

journal center trajectories, the minimum film thickness and the phase portraits are 

utilized to illustrate the dynamic performance of the slider-crank mechanism when four 

different clearance sizes are considered. The values of the clearance size of the revolute 

joint are selected to be 0.5, 0.2, 0.1 and 0.05 mm. The two first values are clearly 

exaggerated, while the two last values correspond to the actual clearance size in typical 

journal-bearings with the dimensions used in the present work [49, 50], in order to study 
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the influence of the variation of the clearance size on the system’s dynamic response. 

The Pinkus and Sternlicht approach is selected to model the lubricated revolute joint. In 

a general and simple manner, it can be said that when the clearance size is reduced, the 

diagrams plotted through Figs. 6-9 tends to be smoother, meaning that the journal is 

moving away from the bearing wall. This observation can also be drawn by examination 

of Fig. 6 relative to the joint reaction force variable, and of Fig. 8 relative to the 

minimum film thickness. In the last case, the decrease of clearance causes less 

fluctuation in the evolution of the minimum film thickness. In particular, Fig. 8(d) 

clearly shows less fluctuations of the film thickness, which corresponds to the more 

realistic clearance size [49, 50]. This behavior is in sharp contrast to what happens with 

the higher values of the clearance size, where the significant variations of the film 

thickness are observed. In short, when the clearance size is small, the slider-crank 

mechanism response tends to be closer to the ideal response meaning that the range 

described by the phase portraits is smaller, as Fig. 9 shows. 

 
 

(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 6 Joint reaction force for different clearance sizes: (a) c = 0.5 mm; (b) c = 0.2 mm; 

(c) c = 0.1 mm; (d) c = 0.05 mm 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 7 Journal trajectories for different clearance sizes: (a) c = 0.5 mm; (b) c = 0.2 mm; 

(c) c = 0.1 mm; (d) c = 0.05 mm 
 

 

(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 8 Minimum film thickness for different clearance sizes: (a) c = 0.5 mm; (b) c = 0.2 

mm; (c) c = 0.1 mm; (d) c = 0.05 mm 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 9 Phase portraits for different clearance sizes: (a) c = 0.5 mm; (b) c = 0.2 mm; (c) c 

= 0.1 mm; (d) c = 0.05 mm 
 

6.3. Influence of the fluid lubricant viscosity 

 The influence of the fluid lubricant viscosity on the dynamic response of the 

slider-crank mechanism is investigated in this section. For this purpose, the same 

variables utilized in the previous section are considered here, being the value of the 

clearance size equal to 0.5 mm. The Pinkus and Sternlicht approach is selected to model 

the lubricated revolute joint. From Fig. 10, it can be observed that the two peaks on the 

joint reaction force that occur during each crank rotation increase when the viscosity 

decreases. This phenomenon is related to the very thin film thickness that is generated 

during the dynamic analysis, which means that the journal and bearing surfaces are 

moving too close. Figures 11 and 12, relative to the journal center trajectory and 

minimum film thickness, clearly show this situation. Moreover, for the two lowest 

values of the viscosity, the minimum film thickness is even below to the safe value 

recommended for this type of journal-bearing [42]. The phase portraits plotted in Fig. 

13 show that the decrease of the viscosity has a consequence of reducing the amplitude 

of these maps, indicating that a more regular or periodic response is reached. From the 

diagrams illustrated in Figs. 10 up to 13, it can also be observed that the slider-crank 

mechanism exhibits a periodic behavior every crank cycle, which suggests that the 

system is operating in a steady state case. 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 10 Joint reaction force for different fluid viscosities: (a) μ = 400 cP; (b) μ = 200 cP; 

(c) μ = 100 cP; (d) μ = 40 cP 
 
 

(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 11 Journal trajectories for different fluid viscosities: (a) μ = 400 cP; (b) μ = 200 cP; 

(c) μ = 100 cP; (d) μ = 40 cP 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 12 Minimum film thickness for different fluid viscosities: (a) μ = 400 cP; (b) μ = 

200 cP; (c) μ = 100 cP; (d) μ = 40 cP 
 
 

(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 13 Phase portraits for different fluid viscosities: (a) μ = 400 cP; (b) μ = 200 cP; (c) 

μ = 100 cP; (d) μ = 40 cP 
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6.4. Influence of the input crank speed 

 The influence of the input crank speed on the dynamic behavior of the slider-

crank mechanism is investigated in this section. Again, the simulations are performed 

for a clearance size equal to 0.5 mm, being the joint reaction force, journal center 

trajectory, minimum film thickness and phase portrait the output variables selected to 

perform this study. Four different input crank speeds are chosen, namely, 5000, 2500, 

500 and 50 rpm. These different input crank speeds imply the use of different scales for 

the results plotted for the joint reaction force. Similarly to the previous sections, the 

Pinkus and Sternlicht approach is selected to model the lubricated revolute joint. As it 

would be expected, the decrease of the input crank speed tends to reduce the level of the 

peaks that occur during each crank rotation, being the global outcomes closer to the 

ideal case, as Fig. 14 demonstrates. Furthermore, as it can be observed in the plots of 

Fig. 15, that for the lower input crank speeds, the journal center trajectories present a 

smaller range, meaning that the journal is moving away from the bearing wall. As a 

consequence, the journal-bearing exhibits higher relative film thicknesses and less 

fluctuation, as Fig. 16 shows. A similar conclusion can be drawn from the analysis of 

the phase portrait plots of Fig. 17, from which it is quite visible that the decrease of 

input crank speed causes a system’s response even more regular, in the measure that 

phase portrait presents small amount points, as Fig. 17(d) depicts. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 14 Joint reaction force for different crank speeds: (a) n = 5000 rpm; (b) n = 2500 

rpm; (c) n = 500 rpm; (d) n = 50 rpm 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 15 Journal trajectories for different crank speeds: (a) n = 5000 rpm; (b) n = 2500 

rpm; (c) n = 500 rpm; (d) n = 50 rpm 
 

 

(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 16 Minimum film thickness for different crank speeds: (a) n = 5000 rpm; (b) n = 

2500 rpm; (c) n = 500 rpm; (d) n = 50 rpm 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)  
Fig. 17 Phase portraits for different crank speeds: (a) n = 5000 rpm; (b) n = 2500 rpm; 

(c) n = 500 rpm; (d) n = 50 rpm 
 

6.5. Influence of the hydrodynamic force model 

 The influence of the use of different hydrodynamic force models on the dynamic 

response of the slider-crank mechanism with a lubricated revolute joint is analyzed in 

this section. For this purpose, the Pinkus and Sternlicht approach for long journal-

bearings and the Frêne et al. models for both long and short journal-bearings are 

considered. The parameters used in the dynamic simulations are those listed in Table 2. 

The input crank speed is equal to 5000 rpm. In this section, the obtained results are 

relative to the first five full crank rotations in order to capture the type of system’s 

response. Thus, by observing Fig. 18, it can be concluded that the first model produces 

diagrams with a periodic characteristics, that is, the results are similar for all five 

rotations after the steady state has been reached. Conversely, the Frêne et al. models do 

not exhibit this regular behavior, in the measure that some peaks in the joint reaction 

force are visible, as it is shown in Figs. 18(b) and 18(c). This observation is even more 

evident in the journal center trajectory, minimum film thickness and phase portrait of 

Figs. 19, 20 and 21, respectively. The non periodic nature of the system’s response is 

also more perceptible in the Frêne et al. model for the short journal-bearing approach, as 

Fig. 19(c) illustrates, which means that the journal center orbit inside the bearing 

boundaries is not periodic. The phase portrait of Fig. 21(c) also highlights this point.  



 23

(a) (b)

(c)

(a) (b)

(c)  
Fig. 18 Joint reaction force acceleration for different lubrication models: (a) Pinkus and 

Sternlicht; (b) Frêne et al. (long); (c) Frêne et al. (short) 
 

(a) (b)

(c)

(a) (b)

(c)  
Fig. 19 Journal trajectories for different lubrication models: (a) Pinkus and Sternlicht; 

(b) Frêne et al. (long); (c) Frêne et al. (short) 
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(a) (b)

(c)

(a) (b)

(c)  
Fig. 20 Minimum film thickness for different lubrication models: (a) Pinkus and 

Sternlicht; (b) Frêne et al. (long); (c) Frêne et al. (short) 
 

 

(a) (b)

(c)

(a) (b)

(c)  
Fig. 21 Phase portraits for different lubrication models: (a) Pinkus and Sternlicht; (b) 

Frêne et al. (long); (c) Frêne et al. (short) 
 



 25

7. Conclusions 

In this work, a general and comprehensive methodology for lubricated revolute joints in 

planar rigid multibody systems has been presented and analyzed. In a simple manner, 

the intrajoint lubrication forces developed at this type of joints is embedded into the 

dynamics formulation for multibody systems as external generalized forces. The 

hydrodynamic forces are obtained by integration of the Reynold’s equation for dynamic 

regime. The approach includes both the wedge and squeeze actions produced in a 

typical journal-bearing. With the purpose to perform a parametric study, several 

different parameters were selected to analyze a planar slider-crank mechanism with a 

lubricated revolute joint between the connecting-rod and slider. The variables selected 

in the present work were the clearance size, the lubricant viscosity and the input crank 

speed. Additionally, three different hydrodynamic force models were also chosen to 

model the lubricated revolute joint, namely the Pinkus and Sternlicht approach for long 

journal-bearings and the Frêne et al. models for both long and short journal-bearings. 

 From the computational simulations performed under the above conditions 

described, it can be concluded that the clearance size, the fluid lubricant viscosity, the 

input crank speed and the hydrodynamic force model used can affect the system’s 

response, mainly for those cases in which the generation of film of lubricant is difficult. 

These scenarios correspond to the situations of the very high clearance, very low 

viscosity or a combination of both parameters. In general, when the system is modeled 

with appropriate variables the outcomes are similar to those obtained with ideal joints 

only. Moreover, it can be said the fluid lubricant introduces effective stiffness and 

damping in the system, which plays a crucial role in the stability and performance of 

multibody mechanical systems. Finally, it must be highlighted that the proposed 

approach is straightforward and quite efficient from the computational point of view. 

However, some numerical difficulties can be observed for the lubrication models used, 

when the clearance size is too large, the fluid viscosity ifs too low, or a combination of 

these two parameters. The operating conditions also play a key role in the development 

of lubricant film that can penalize the computational efficiency of the methodology. 
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