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Abstract. Completely non-malleable encryption schemes resist attacks
which allow an adversary to tamper with both ciphertexts and public
keys. In this paper we introduce two extractor-based properties that
allow us to gain insight into the design of such schemes and to go be-
yond known feasibility results in this area. We formalise strong plaintext
awareness and secret key awareness and prove their suitability in realis-
ing these goals. Strong plaintext awareness imposes that it is infeasible
to construct a ciphertext under any public key without knowing the un-
derlying message. Secret key awareness requires it to be infeasible to
produce a new public key without knowing a corresponding secret key.

Keywords. Secret Key Awareness. Strong Plaintext Awareness. Com-
plete Non-Malleability. Strong Chosen-Ciphertext Attacks.

1 Introduction

Background. Indistinguishability of ciphertexts under chosen-ciphertext at-
tacks (IND-CCA2) is a convenient reformulation of a more intuitive security
notion known as non-malleability. Roughly speaking, an encryption scheme is
non-malleable if, given a challenge ciphertext, it is infeasible to output a new
ciphertext encrypting a plaintext related in a “meaningful” or “interesting” way
to that enclosed in the challenge. The advantages of the indistinguishability for-
mulation become apparent when one considers various subtleties which arise
when defining what a meaningful relation is [22, 10]. Recently, Fischlin [18] has
considered the problem of using public key encryption schemes to build non-
malleable commitment schemes. It has been shown that the standard definition
of non-malleability is not sufficient for this application and that a stronger vari-
ant, referred to as complete non-malleability, is required. This security definition
allows the adversary to maul the challenge public key, as well as the ciphertext.
Put differently, the adversary can output a related ciphertext under a new pub-
lic key of its choice. Unlike standard non-malleability, it has been shown in [18]
that completely non-malleable schemes are hard to construct. In particular, such



schemes do not exist for general relations with respect to black-box simulators
that cannot access a decryption oracle (i.e. non-assisted simulators).

Complete non-malleability has recently been shown to be equivalent to indis-
tinguishability under strong chosen-ciphertext attacks [2, 1]. This model enhances
the adversary’s capabilities to forge public keys and ask the decryption oracle to
provide decryptions under the corresponding (possibly unknown) secret keys. It
was also shown that it is possible to construct efficient completely non-malleable
schemes using the strong chosen-ciphertext attack model, which is more con-
venient than performing the proof in the original simulation-based definition.
Unfortunately, the equivalence result connecting strong chosen-ciphertext secu-
rity to complete non-malleability holds only for simulators assisted by a strong
decryption oracle. It therefore remains an open problem to construct efficient
schemes that achieve complete non-malleability in the strongest sense.

The impossibility result from [18] dictates that to construct a scheme that
achieves complete non-malleability with respect to non-assisted simulators, one
must resort to a non-black-box simulator. In this paper we consider extractor-
based properties that allow us to gain insight into the design of completely non-
malleable schemes and provide a technique to go beyond known feasibility results
in this area. We formalise strong plaintext awareness and secret key awareness
and prove their suitability in realising these goals. We show that if such properties
are realisable, and one considers non-black-box simulators, then the impossibility
result established for non-assisted simulators no longer holds. We also look at
how such notions can be realised with and without random oracles.

Strong plaintext awareness. Plaintext awareness formalises the intuition
that one can achieve security under chosen-ciphertext attacks by making it in-
feasible to construct a valid ciphertext without knowing, a priori, the message
hidden inside it. In fact, it has been shown that the combination of plaintext
awareness and semantic security is enough to achieve chosen-ciphertext secu-
rity [5]. We formulate a natural strengthening of plaintext awareness that re-
quires the existence of a strong plaintext extractor that decrypts ciphertexts,
even if they are encrypted under adversarially generated public keys. We prove
a fundamental theorem according to which a strongly plaintext-aware (SPA) and
IND-CPA secure scheme also withstands strong chosen-ciphertext attacks3. This
implies, through the results in [2], that such a scheme is also completely non-
malleable with respect to assisted simulators. We extend this result by showing
that strong plaintext awareness allows us to directly build non-assisted simula-
tors. The resulting simulators depend on the adversary and hence they are not
black-box. This permits going around the impossibility result established by Fis-
chlin [18]. Furthermore, strong plaintext awareness generalises a proof technique
used by Fischlin to demonstrate that (a slightly modified version of) RSA-OAEP
is completely non-malleable for non-assisted simulators4.
3 This result also has applications in certificateless encryption [1].
4 A corollary of this result is that we obtain a new perspective on the standard notion
of plaintext awareness. Indeed, a similar proof strategy can be used to construct
non-assisted simulators for standard non-malleability.
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Secret key awareness. We also propose a new extractor-based security def-
inition that takes a different perspective on how to achieve strong plaintext
awareness and complete non-malleability. Roughly speaking, this notion that we
call secret key awareness (SKA), requires it to be infeasible to generate new
valid public keys without knowing their corresponding secret keys. It therefore
looks at enhancing the security of key-generation mechanisms. We show that an
encryption scheme that is secret key aware and IND-CCA2 is also secure under
strong chosen-ciphertext attacks, and therefore completely non-malleable. We
derive this result via a stronger indistinguishability security notion, where the
adversary has access to a public key inversion oracle5. Furthermore, we prove
that secret key awareness, together with standard plaintext awareness, implies
strong plaintext awareness. Hence, secret key awareness provides all of the bene-
fits of strong plaintext awareness. Additionally, secret key awareness permits the
construction of a complete non-malleability simulator that opens the secret key
associated with the public created by the adversary. This is particularly relevant
when the scheme is used in commitment schemes, where to de-commit one re-
veals a secret key rather a message/randomness pair. Strong plaintext awareness
in not sufficient to open a ciphertext in the sense of de-commitment, as it does
not guarantee knowledge of the randomness used in encryption.

Schemes. We propose a generic transformation that permits transforming any
IND-CCA2 scheme into a secret key aware (and still IND-CCA2) scheme in the
random oracle model. The resulting schemes are therefore completely non-mallea-
ble for non-assisted simulators. We also take first steps towards building fully
secret-key-aware schemes without random oracles. We propose a generic con-
struction inspired in escrow public-key encryption [12], relying on schemes whose
key-generation routines themselves operate as an encryption scheme. We are,
however, unable to instantiate this scheme and leave it as an interesting open
problem. Next, we move to specific constructions based on knowledge assump-
tions. A natural candidate for building a secret key aware scheme is the Diffie-
Hellman Knowledge assumption [5]. This approach, however, fails once we notice
that secret key awareness allows adaptive attacks on the public keys, whereas
Diffie-Hellman tuples are malleable. We therefore introduce a new knowledge
assumption stating, roughly speaking, that it is impossible to compute integers
of the form P 2Q, where P and Q are prime, without knowing the factors and
even if provided with another integer of this form. This assumption can be used
to demonstrate that variants of RSA satisfy weak forms of secret key awareness.

Organisation. We first review related work. Then, in Section 2 we settle no-
tation and recall the syntax for public-key encryption schemes. We also recall
the definition of strong decryption oracles and IND-SCCA2 security. In the same
section we also introduce invert and chosen-ciphertext attacks, which we will use
later on in the paper. In Section 3 we introduce our extractor-based notions. In
Section 4 we discuss constructions of secret key aware schemes.

5 This type of oracle has been shown to have numerous applications in the context of
adaptive one-way functions [21].
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1.1 Related work

Plaintext awareness was originally formulated by Bellare and Rogaway [7] in
the random oracle model. Later, Bellare and Palacio [5] gave the first definition
of PA in the standard model. It is well known [5, 4] that plaintext awareness
together with IND-CPA imply a level of security that is strictly stronger than
IND-CCA2. The authors in [24] showed that plaintext awareness is an “all-or-
nothing property” in the sense that one-wayness (or even a weaker condition
called non-triviality) together with PA2 plaintext awareness is enough to guar-
antee IND-CCA2 security. Birkett and Dent [11] settled the relations between
notions of plaintext awareness from [16], and showed that schemes with infi-
nite message spaces that are plaintext-aware and one-way do not exist using
techniques from [24].

Non-malleability (as a general notion) was originally introduced in the sem-
inal work of Dolev, Dwork, and Naor [17]. In order to establish relations with
other notions of security, non-malleability for public-key encryption was refor-
mulated by Bellare et al. [4] as a comparison-based security model. Bellare and
Sahai [10, 9] later fully established the relation between this comparison-based
definition and the original simulation-based definition of Dolev et al. Pass, Shelat,
and Vaikuntanathan [22] provide a full characterisation of non-malleability, iden-
tifying some shortcomings in previous results and considering their robustness
under a form of composition where the adversary is provided with a polynomial
number of challenge ciphertexts.

Complete non-malleability, was proposed by Fischlin [18]. Here the adver-
sary is allowed to choose the public key under which the target ciphertext is
produced. The same author presented impossibility results as to the construc-
tion of completely non-malleable schemes with respect to black-box simulators
and general relations, and showed that a modified version of RSA-OAEP is
completely non-malleable in the random oracle model. Visconti and Ventre [26]
proposed a comparison-based definition of complete non-malleability, studied
its relation with the simulation-based definition of Fischlin, and also gave a
generic construction of completely non-malleable schemes based on NIZK-PoK.
The authors in [2] define strong decryption oracles, use this to introduce in-
distinguishability under strong chosen-ciphertext attacks and establish relations
with assisted simulation-based and comparison-based complete non-malleability.
A practical and strongly secure scheme (without random oracles) based on the
decisional bilinear Diffie-Hellman problem is also given.

Adaptive one-way functions [21], where an adversary has access to an in-
version oracle, and extractable one-way functions [13, 14], where one requires
knowledge of pre-image, have been recently proposed. Secret key awareness can
be seen as a refinement of these notions for public-key encryption.

2 Preliminaries

Notation. We write x ← y for assigning value y to variable x, and x ←$ X
for sampling x from set X uniformly at random. If X is empty, we set x ←⊥,
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where ⊥/∈ {0, 1}? is a special failure symbol. If A is a probabilistic algorithm we
write x ←$ A(I1, I2, . . .) for the action of running A on inputs I1, I2, . . . with
random coins chosen uniformly at random, and assigning the result to x. When
A is run on specific coins r, we write x ← A(I1, I2, . . . ; r). We denote boolean
values, namely the output of checking whether a relation holds, by T (true) and
F (false). For a space Sp ⊆ {0, 1}?, we identify Sp with its characteristic function.
In other words, Sp(s) = T if and only if s ∈ Sp. The function Sp(·) always exists,
although it may not be computable in polynomial time. We say s is valid with
respect to Sp if and only if Sp(s) = T. When this is clear from the context, we
also use Sp for sampling uniformly from Sp. Unless stated otherwise, the range
of a variable s is assumed to be {0, 1}?. The symbol : is used for appending an
element to a list, and we indicate vectors using bold-faced font. We say f(λ) is
negligible if f(λ) ∈ ∩c∈NO(λ−c).

Games. In this paper we will be using code-based game-playing [8]. Each game
has an Initialize and a Finalize procedure. It also has specifications of pro-
cedures to respond to an adversary’s various oracle queries. A game Game is
run with an adversary A as follows. First Initialize runs and its outputs are
passed to A. Then A runs and its oracle queries are answered by the procedures
of Game. These procedures return ⊥ if queried on ⊥. When A terminates, its
output is passed to Finalize which returns the outcome of the game y. This
interaction is written as GameA ⇒ y. In each game, we restrict attention to
legitimate adversaries. Legitimacy is defined specifically for each game. All algo-
rithms (adversaries, extractors and plaintext/public-key creators) are assumed
to run in probabilistic polynomial time (PPT).

Public-key encryption. We adopt the standard multi-user syntax with the
extra Setup algorithm [3], which we believe is the most natural one for se-
curity models involving multiple public keys. A public-key encryption scheme
Π = (Setup,Gen,MsgSp,Enc,Dec) is specified by five polynomial-time algorithms
(in the length of their inputs) as follows. Setup is the probabilistic setup algo-
rithm which takes as input the security parameter 1λ and returns the common
domain parameter6 I. Gen(I) is the probabilistic key-generation algorithm. On
input global parameters I, this algorithm returns a secret key SK and a matching
public key PK. Algorithm MsgSp(m,PK) is a deterministic message space recog-
nition algorithm. On input m and PK this algorithm returns T or F. Enc(m,PK; r)
is the probabilistic encryption algorithm. On input a message m, a public key
PK, and possibly some random coins r, this algorithm outputs a ciphertext c or a
special failure symbol ⊥. Finally, Dec(c,SK,PK) is the deterministic decryption
algorithm. On input of a ciphertext c and keys SK and PK, this algorithm out-
puts a message m or a special failure symbol ⊥. The correctness of a public-key
encryption scheme requires that for any I←$ Setup(1λ), any (SK,PK)←$ Gen()
and all m ∈ MsgSp(PK) we have Pr[Dec(Enc(m,PK),SK,PK) = m] = 1.

6 Although all algorithms are parameterised by I, we often omit I as an explicit input
for readability. Furthermore, we assume that the security parameter is included in I.
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Remark. We note that the multi-user syntax permits capturing in the same
framework schemes that execute in the standard model, in which case the global
parameters are empty; and also schemes which execute in the Common Reference
String (CRS) model. All the relations that we establish between the different
models apply to both cases.

Validity checking algorithms. The following spaces (and associated func-
tions) will be used throughout the paper. All of these spaces are parameterised
by I and are subsets of {0, 1}?.

MsgSp(PK) := {m : MsgSp(m,PK)}
KeySp := {(SK,PK) : ∃r (SK,PK) = Gen(r)}

We assume throughout the paper that the encryption and decryption algorithms
check if m ∈ MsgSp(PK) and return ⊥ if it does not hold. Often the algorithm
MsgSp does not depend on PK in the sense that for any two valid public keys
PK and PK′ and any m ∈ {0, 1}? we have MsgSp(m,PK) = MsgSp(m,PK′).
For general schemes, one can consider the infinite message space MsgSp(PK) =
{0, 1}? case. However, given that in this paper we will often consider the set of
all valid messages and sample from it, we restrict our attention to schemes with
finite message spaces. As pointed out by Pass et al. [22], this means that to avoid
degenerate cases we must also restrict our attention to schemes for which all the
elements in the range of decryption can be efficiently encrypted7, including the
special failure symbol ⊥. We also assume that the key-pair validity algorithm
KeySp is polynomial-time and require that decryption returns ⊥ if this check
fails on the key-pair passed to it. We also assume various algorithms check for
structural properties such as correct encoding, membership in a group, etc.

2.1 Strong chosen-ciphertext security

The idea behind a strong chosen-ciphertext attack is to give the adversary access
to an oracle that decrypts ciphertexts of the adversary’s choice with respect to
arbitrary public keys.

proc. SDecU,V(c,PK,R):
WitSp← {(m, r) : V(c,PK,m, r, st[V])}
(m, r)←$ {(m, r) ∈WitSp : R(m)}
st[V]← U(c,PK,R,m, r, st[V])
Return m

Fig. 1: Generic definition of a strong decryption oracle.

We follow [2] and adopt a generic definition of strong decryption as shown in
Figure 1. The oracle proceeds in three steps. The first step models the general
7 This can be easily achieved for schemes used in practice.
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procedure of constructing a set of candidate (valid) decryption results8. The
second step consists of choosing one of these candidate solutions to return to
the adversary. The final step updates the state of the oracle, if it keeps one9.
As discussed in [2] the motivation for having such a general definition is that
the notion of the message encapsulated by the ciphertext can be defined in a
number of ways, depending on the witnesses that are taken to assess the validity
of the public key/ciphertext pair. For example, one can define validity via the
encryption operation, in which case a message/randomness pair is the witness

V(c,PK,m, r) := c
?
= Enc(m,PK; r), (1)

or via the decryption algorithm, where a message/secret key pair is the witness

V′(c,PK,m, r) := (SK,PK)
?
= Gen(r) ∧m

?
= Dec(c,SK,PK). (2)

Note that neither criterion guarantees that, if a message is found to be a valid
decryption result, then it will be unique. This justifies the need for the second
step in the definition we propose: there could be many valid decryption results
to choose from, and it is left to the adversary to control how this is done by
providing a relation R on messages as input to the oracle. For a well-defined and
broad class of schemes [2], this general definition collapses into a much simpler
one. However, we follow this approach for the sake of generality.

We now present the definition of ciphertext indistinguishability under strong
chosen-ciphertext attacks, introduced in [2] as the natural extension of the stan-
dard notion of security for public-key encryption schemes. The IND-SCCAx ad-
vantage of an adversary A for x = 0, 1, 2 against Π is defined by

Advind-sccax
Π,A (λ) := 2 · Pr

[
IND-SCCAxAΠ (λ)⇒ T

]
− 1,

where game IND-SCCAx is shown in Figure 2. Implicit in this definition are the
descriptions of the U and V algorithms, which are fixed when analysing a scheme
in the resulting IND-SCCAx model. We say a scheme is IND-SCCAx secure if the
advantage of any PPT adversary is negligible.

2.2 Security under invert and chosen-ciphertext attacks

We introduce a new security model for encryption that helps us clarify the
relations among notions we establish later on. In this model, the adversary has
access to an oracle that, given a public key generated by the adversary, provides it
with the corresponding secret key. Figure 4 presents the general form of the Inv
procedure, which is analogous to the SDec procedure presented in the previous
section. When many secret keys satisfy the validity criterion, the adversary is
8 Search for messages is over sufficiently long bit strings together with the special
symbol ⊥. Search for random coins is over sufficiently long bit strings.

9 The state is initialized to some value st0. A natural use of the state is to make sure
that decryption is consistent in different calls.
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proc. Initialize(λ):
b←$ {0, 1}; I←$ Setup(1λ)
(SK?,PK?)←$ Gen()
List← []; st[V]← st0
Return (I,PK?)

proc. LoR(m0,m1):
c←$ Enc(mb,PK?)
List← (c,PK?) : List
Return c

proc. SDec(c,PK,R):
Return SDecU,V(c,PK,R)

Game IND-SCCAxΠ(λ)

proc. Finalize(b′):
Return (b′ = b)

Fig. 2: Game defining indistinguishability under strong chosen-ciphertext attacks. An
adversary A is legitimate if: 1) It calls LoR only once with m0,m1 ∈ MsgSp(PK) such
that |m0| = |m1|; and 2) R is polynomial-time and, if x = 0 it does not call SDec, if
x = 1 it does not call SDec after calling LoR, and if x = 2 it does not call SDec with
a tuple (c,PK) in List.

proc. Initialize(λ):
b←$ {0, 1}; I←$ Setup(1λ)
(SK?,PK?)←$ Gen()
List← []; st[V]← st0
Return (I,PK?)

proc. LoR(m0,m1):
c←$ Enc(mb,PK?)
List← (c,PK?) : List
Return c

proc. Dec(c):
Return Dec(c, SK?,PK?)

Game IND-ICAxΠ(λ)

proc. Inv(PK,R):
Return InvU,V(PK,R)

proc. Finalize(b′):
Return (b′ = b)

Fig. 3: Game defining indistinguishability under invert and chosen-ciphertext attacks.
An adversary A is legitimate if: 1) It calls LoR only once with m0,m1 ∈ MsgSp(PK)
such that |m0| = |m1|; 2) R is polynomial-time and, if x = 0 it does not call Dec or
Inv, if x = 1 it does not call Dec or Inv after calling LoR, and if x = 2 it does not
call Dec with a c in List; and 3) It does not call Inv on PK?.

also allowed to restrict the set of “interesting” secret keys from which the answer
is sampled by providing a relation R on secret keys as input to the oracle. A
natural validity criteria for this oracle is

V(PK,SK, r) := (SK,PK)
?
= Gen(r)

accepting all key-pairs that may be output by the key-generation algorithm10.
We define the IND-ICAx advantage of an adversary A for x = 0, 1, 2 against

encryption scheme Π is defined by

Advind-icax
Π,A (λ) := 2 · Pr

[
IND-ICAxAΠ (λ)⇒ T

]
− 1,

where Game IND-ICAx is shown in Figure 3. We say a scheme is IND-ICAx se-
cure if the advantage of any PPT adversary is negligible. This new model can
be related to IND-SCCAx as follows. For a given InvU,V procedure, define the
associated SDecU′,V′ procedure through the algorithms shown in Figure 5. The

10 Another validity criteria, corresponding to a natural stateful invert oracle, will ensure
that repeat queries will be answered consistently.
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proc. InvU,V(PK,R):
WitSp← {(SK, r) : V(PK, SK, r, st[V])}
(SK, r)←$ {(SK, r) ∈WitSp : R(SK)}
st[V]← U(PK,R,SK, r, st[V])
Return SK

Fig. 4: Generic definition of an invert oracle.

algorithm V′(c,PK,m, r, st[V′]):
(st[V], (SK∗,PK∗))← st[V′]
If PK = PK?

If m = Dec(c,SK?,PK?)
Return T Else Return F

(SK, r′)← r
If V(PK, SK, r′, st[V]) ∧m = Dec(c,SK,PK)

Return T Else Return F

algorithm U′(c,PK,R,m, r, st[V′]):
(st[V], (SK∗,PK∗))← st[V′]
(SK, r′)← r
R′(SK) := R(Dec(c,SK,PK))
st[V]← U(PK,R′, SK, r′, st[V])
Return (st[V], (SK∗,PK∗))

Fig. 5: U′ and V′ for SDecU′,V′ corresponding to InvU,V with st0 = (SK?,PK?).

following theorem shows that security under each possible definition of an invert
oracle implies IND-SCCAx security under a well-defined version of the strong
decryption oracle.

Theorem 1 (IND-ICAx ⇒ IND-SCCAx). Let A be an IND-SCCAx adversary
against encryption scheme Π with respect to SDecU′,V′ associated to InvU,V as
defined in Figure 5. Then there exists an IND-ICAx adversary A1 against Π with
at least the same advantage as that of A.

The reduction is constructed by simulating the strong decryption oracle using
both the standard decryption oracle (for queries under the challenge public key)
and the invert oracle (for adversarially chosen-keys) available in the IND-ICAx
game. The details are given in the full version of the paper. The interesting part of
the proof is an argument showing that this simulation fits into the generic struc-
ture of SDec given in Figure 1 and, in particular, that the effect of the relation
R passed to the strong decryption oracle can be emulated through a relation
R′ passed to the invert oracle. The intuition here is that the strong decryption
oracle associated with a particular invert oracle maps the relation R that allows
the adversary to restrict the set of interesting messages onto a relation R′ that
selects the set of secret keys that decrypt the queried ciphertext into the same set
of interesting messages. Technically, the relation R′c,PK(SK) := R(Dec(c,SK,PK))
allows us to simulate the oracle in Figure 5 with the correct distribution.

3 Extractor-based properties

The strong chosen-ciphertext security model that was recalled in Section 2 sug-
gests that any secure scheme under this definition must ensure, by construction,
that strong decryption queries are of no help to the adversary even when the
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associated public keys are chosen adaptively. Plaintext awareness [5] formalises
this intuition when a standard decryption oracle is used (and a public key is
fixed). We therefore propose strong plaintext awareness as a natural extension
for strong security models. This notion, however, is not the only way to render
strong decryption oracles ineffective. An alternative approach is to require that
any adversary which outputs a new valid public key must know a valid secret
key for it. We refer to this property as secret key awareness. In the next two sub-
sections we formalise these extractor-based notions precisely and demonstrate
their adequacy for the security analysis of completely non-malleable schemes.

3.1 Strong plaintext awareness

We follow the approach adapted in [5] to define strong plaintext awareness in the
standard model. We run an adversary in two possible environments and require
that its behaviour does not change in any significant way. In the first world, the
adversary has access to a real strong decryption oracle while in the second the or-
acle executes a polynomial-time extractor. Furthermore, in these environments,
the adversary may obtain ciphertexts on “unknown-but-controlled” plaintexts
though an encryption oracle, fed with messages produced by a plaintext creator.
More formally, the SPAx advantage of an adversary, for x = 1, 2, against en-
cryption scheme Π with respect to plaintext creator P (mapping bit strings to
messages), strong plaintext extractor K, and distinguisher D, is defined by

Advspax
Π,P,D,K,A(λ) := Pr

[
Dec-SPAxAΠ,P,D(λ)⇒T

]
− Pr

[
Ext-SPAxAΠ,P,D,K(λ)⇒T

]
where games Dec-SPAx and Ext-SPAx are shown in Figure 6. We say a scheme
is SPAx if, for every PPT adversary A, there exists an efficient strong plaintext
extractor K such that, for all distinguishers11 and plaintext creators, advantage
is negligible.

The next theorem, which is proved in the full version of the paper, shows
that the above formulation of strong plaintext-awareness, together with semantic
security is enough to achieve strong chosen-ciphertext security.

Theorem 2 (SPAx ∧ IND-CPA ⇒ IND-SCCAx). Fix a definition of SDecU,V

and let A be an IND-SCCAx adversary against Π in the resulting model. Then
there exist an SPAx ciphertext creator A1, an IND-CPA adversary A2, plaintext
creators P0, P1, and distinguishers D0, D1 such that

Advind-sccax
Π,A (λ) ≤ Advspax

Π,P0,D0,K,A1
(λ) +Advspax

Π,P1,D1,K,A1
(λ) +Advind-cpa

Π,A2
(λ),

where K is the plaintext extractor for A1 implied by the SPAx property of Π.

As we mentioned in the introduction, the equivalence between indistinguisha-
bility under strong chosen-ciphertext security and simulation-based complete
non-malleability is established for assisted simulators [2]. The next theorem
shows that using strong plaintext awareness one can strengthen this result to
non-assisted simulators12.
11 If unbounded distinguishers are allowed, we get statistical strong plaintext awareness.
12 Due to space constraints, we refer the interested reader to [2] for the SNM definitions.
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proc. Initialize(λ):
I←$ Setup(1λ)
(SK?,PK?)←$ Gen()
Choose coins Rnd[A] for A
st[P]← ε; List← []; st[V]← st0
Return (I,PK?,Rnd[A])
proc. SDec(c,PK,R):
Return SDecU,V(c,PK,R)

Game Dec-SPAxΠ,P,D(λ)

proc. Enc(Q):
(m, st[P])←$ P(Q, st[P])
c←$ Enc(m,PK?)
List← (c,PK?) : List
Return c

proc. Finalize(x):
Return D(x)

proc. Initialize(λ):
I←$ Setup(1λ)
(SK?,PK?)←$ Gen()
Choose coins Rnd[A] for A; List← []
st[P]← ε; st[K]← (I,PK?,Rnd[A])
Return (I,PK?,Rnd[A])
proc. SDec(c,PK,R):
(m, st[K])←$ K(c,PK,R, List, st[K])
Return m

Game Ext-SPAxΠ,P,D,K(λ)

proc. Enc(Q):
(m, st[P])←$ P(Q, st[P])
c←$ Enc(m,PK?)
List← (c,PK?) : List
Return c

proc. Finalize(x):
Return D(x)

Fig. 6: The Dec-SPAx and Ext-SPAx games for defining the strong plaintext-awareness
of encryption scheme Π. An adversary A is legitimate if: 1) R is polynomial-time and
if x = 1 it never calls Enc; and 2) It never calls SDec with a tuple (c,PK) in List.

Theorem 3 (SPAx ∧ SNM-CPA⇒ Non-Assisted SNM-SCCAx). Fix a defi-
nition of SDecU,V and let A be a Real-SNM-SCCAx adversary against Π. Then
there exist an SPAx ciphertext creator A1, a Real-SNM-CPA adversary A2, a
plaintext creator P, a distinguisher D, and a (non-assisted) simulator S such
that for all R

Advsnm-sccax
Π,R,S,A (λ) ≤ Advspax

Π,P,D,K,A1
(λ) +Advsnm-cpa

Π,R,S2,A2
(λ),

where K is the strong plaintext extractor for A1 implied by the SPAx property of
Π and S2 = S is the simulator for A2 implied by the SNM-CPA security of Π.

The proof of this theorem, included in the full version of the paper, proceeds in
a different way than that in [10] for standard security models. There, a new key-
pair is generated to enable the simulator to answer decryption queries, whereas
in our proof this is not necessary. As pointed out by Pass et al. [22], the proof
in [10] relies on the existence of an algorithm for efficiently encrypting all possible
outputs of decryption, including special symbol⊥. Plaintext awareness in general
does not imply that this must be the case, and so our results extend the results
in [22]: schemes that do not have the property identified in [22] may still be
plaintext aware, and therefore achieve simulation-based non-malleability for non-
assisted simulators. However, as shown in [11, Theorem 2], if an encryption
scheme is PA2 and has an infinite message space, then it is not OW-CPA. This
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also applies to strong plaintext awareness, and hence no scheme with an infinite
message space will be captured by the above theorem.

Remark. In the above theorem we do not need to restrict the class of relations,
in particular to those which are independent of the challenge public key (called
lacking relations in [26]). This means that through strong plaintext awareness
one can improve on the results in [26], where this security level can only be
achieved at the cost of relation being independent of the common parameters.

Remark. Using the techniques introduced by Dent [16], the scheme in [2] might
satisfy strong plaintext awareness under an appropriate (bilinear) Diffie-Hellman
knowledge assumptions. We leave this and constructing a strongly plaintext-
aware scheme in the standard model as an open problem.

3.2 Secret key awareness

We now formalise secret key awareness as an alternative route to achieve strong
security guarantees. We take a similar approach to plaintext awareness and give
an adversary access to an oracle which is either a real inversion oracle (as defined
in Section 2) or one which uses a polynomial-time secret key extractor. Once
again, our requirement is that the behaviour of the adversary is computationally
indistinguishable in the two environments. We also provide the adversary with
a decryption and a controlled encryption oracle which model the extra auxiliary
information that might be useful in producing a new public key. Formally, the
SKAx advantage of an adversary A against encryption scheme Π with respect to
secret key extractor K, plaintext creator P, and distinguisher D is defined by

Advskax
Π,P,D,K,A(λ) := Pr

[
Inv-SKAxAΠ,P,D(λ)⇒T

]
− Pr

[
Ext-SKAxAΠ,P,D,K(λ)⇒T

]
where games Inv-SKA and Ext-SKA are shown in Figure 7. We say a scheme is
SKAx secure if, for every PPT adversary A, there exists an efficient secret key
extractor K such that, for all distinguishers13 and plaintext creators, advantage
is negligible.

We are now ready to state the main theorem of this section, which permits
concluding that secret key awareness combined with IND-CCA2 is strong enough
to guarantee IND-SCCA2 security. The proof is analogous to that of Theorem 2
and is included in the full version of the paper.

Theorem 4 (SKAx ∧ IND-CCAx ⇒ IND-ICAx). Fix a definition of InvU,V and
let A be an IND-ICAx adversary against Π. Then, there exist an SKAx public key
creator A1, an IND-CCAx adversary A2, plaintext creators P0, P1, and distin-
guishers D0, D1 such that

Advind-icax
Π,A (λ) ≤ Advskax

Π,P0,D0,K,A1
(λ) +Advskax

Π,P1,D1,K,A1
(λ) +Advind-ccax

Π,A2
(λ),

where K is the secret key extractor for A1 implied by the SKAx property of Π.
13 If unbounded distinguishers are allowed, we get statistical secret key awareness.
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proc. Initialize(λ):
I←$ Setup(1λ)
(SK?,PK?)←$ Gen()
Choose coins Rnd[A] for A
st[P]← ε; st[V]← st0
List← []
Return (I,PK?,Rnd[A])
proc. Dec(c):
m← Dec(c,SK?,PK?)
Return m

proc. Enc(Q):
(m, st[P])←$ P(Q, st[P])
c←$ Enc(m,PK?)
List← (c,PK?) : List
Return c

proc. Inv(PK,R):
Return InvU,V(PK,R)

proc. Finalize(x):
Return D(x)

Game Inv-SKAxΠ,P,D(λ)

proc. Initialize(λ):
I←$ Setup(1λ)
(SK?,PK?)←$ Gen()
Choose coins Rnd[A] for A
st[K]← (I,PK?,Rnd[A])
st[P]← ε; List← []; List′ ← []
Return (I,PK?,Rnd[A])
proc. Dec(c):
m← Dec(c,SK?,PK?)
List′ ← m : List′

Return m

proc. Enc(Q):
(m, st[P])←$ P(Q, st[P])
c←$ Enc(m,PK?)
List← (c,PK?) : List
Return c

proc. Inv(PK,R):
(SK, st[K])←$ K(PK,R, List, List′, st[K])
Return SK

proc. Finalize(x):
Return D(x)

Game Ext-SKAxΠ,P,D,K(λ)

Fig. 7: The Inv-SKAx and Ext-SKAx games for defining secret key awareness. An adver-
sary A is legitimate if: 1) R is polynomial-time and, if x = 0 it never calls Dec or Enc
and if x = 1 it never calls Enc; 2) It never queries PK? to Inv; and 3) It never calls
Dec with a ciphertext c such that (c,PK?) ∈ List.

To further justify the definition of secret key awareness, we show that it can
be used to achieve strong plaintext awareness. The next theorem, proved in in
the full version of the paper, states that secret key awareness combined with
standard plaintext awareness gives rise to strong plaintext awareness.

Theorem 5 (SKAx ∧ PAx ⇒ SPAx). Fix a definition of InvU,V and let A be
an SPAx ciphertext creator against Π, with respect to the SDecU′,V′ procedure
associated to InvU,V as defined in Figure 5. Then there exists an SKAx public
key creator A1, a PAx ciphertext creator A2, and an SPAx plaintext extractor K
such that for any plaintext creator P, and any distinguisher D we have

Advspax
Π,P,D,K,A(λ) ≤ Advskax

Π,P,D,K1A1
(λ) +Advpax

Π,P,D,K2,A2
(λ),

where K1 is the a secret key extractor for A1 implied by the SKAx property of Π,
and K2 is the plaintext extractor for A2 implied by the PAx property of Π.

The intuition behind this theorem is the following. Secret key awareness ensures
that a strong plaintext awareness adversary cannot come up with a ciphertext
under a new public key, for which it does not know the underlying message (as
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it must know the decryption key). However, no such guarantee is provided for
the challenge public key, and this justifies the plaintext awareness requirement.

Remark. An extra feature that comes with secret key awareness is the ability
to open ciphertexts via the secret key14. In other words, one can convert a non-
malleability simulator that only returns (PK?, c?) to another one15 which also
outputs the corresponding opening (SK?,m?). This means that the output of
the simulator can indeed be seen as a de-commitment. The same observation
does not apply to strong plaintext awareness, as this notion does not guarantee
the knowledge of the randomness used in encryption.

4 Secret key aware schemes

4.1 Generic construction with a random oracle

We have defined strong plaintext and secret key awareness in the standard model,
but the definitions can be adapted to the random oracle model [6] in the natural
way16. Interestingly, in the random oracle model, there is a simple transformation
that turns any encryption scheme into one which is secret key aware without
any loss in security: one just changes the key-generation algorithm by attaching
the hash of the key-pair to the public key. More formally, the transformed set-
up algorithm Setup′ is identical to Setup except that it also specifies a new
independent hash function H (i.e. one which is not used by the scheme), which
will be modelled as a random oracle in the security analysis. The remaining
algorithms are shown in Figure 8.

proc. Gen′(I):
(SK,PK)←$ Gen()
PK′ ← (PK,H(SK,PK))
Return (SK,PK′)

proc. Enc′(m,PK′):
(PK, h)← PK′

c←$ Enc(m,PK)
Return c

proc. Dec′(c,SK′,PK′):
(PK, h)← PK′; SK← SK′

If h 6= H(SK,PK) Return ⊥
Return Dec(c, SK,PK)

Fig. 8: Generic transformation to a secret-key-aware scheme Π′ in the ROM.

It can be easily shown that the scheme obtained through the above transfor-
mation is secret key aware, as long as the range of H is large enough to ensure
that the transformed scheme has only one valid secret key for each valid public
key with overwhelming probability. The idea behind the proof is that adversari-
ally created public keys will be invalid with high probability, unless the random
14 Although not considered in this paper, the secret key awareness property can also

be used in composition theorems where direct access to secret keys is required. This
could be useful, for example, in signcryption.

15 This new simulator must be given the secret key for the challenge public key, which
is consistent with the notion of a non-malleable commitment.

16 Furthermore, the standard stronger definition requiring the existence of a universal
extractor may also be easily formulated [4].
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oracle has already been queried on the corresponding secret key. In this case
the (unique) secret key can be recovered using the extractability property of the
random oracle. Note that simply attaching H(SK) is not enough, as extraction
will fail in case the challenge public key is malleable. See the details in the full
version of the paper. From this result, together with Theorems 1 and 4, we can
deduce that if Π is IND-CCAx-secure then Π′ is IND-SCCAx-secure.

Remark. The previous generic construction can be applied to RSA-OAEP. In
the random oracle model, this new version of RSA-OAEP is SKA2 because of the
modified keys, and it preserves the original PA2 and IND-CPA security of RSA-
OAEP. It follows that this scheme is completely non-malleable with respect to
non-assisted simulators. Note that we do not need to restrict the adversary to
querying only valid public keys, as is the case in [18], since the secret key ex-
tractor implied by the SKA2 property will permit detecting such invalid queries.

4.2 Towards secret-key-aware schemes without random oracles

We present two approaches to constructing secret key aware schemes without
random oracles. Both are intended as stepping stones towards achieving the
strongest forms of secret key awareness. We first introduce a new knowledge-
based assumption and use it to construct a concrete scheme, which is “weakly”
secret key aware. Then we propose a generic construction inspired by techniques
used in encryption schemes with key escrow [12]. We leave it as an interesting
open problem to instantiate this generic construction or show its unrealisability.

The knowledge of factor assumption. We take advantage of the fact that
k-bit integers of the form N = P 2Q have a negligible density in the set of all
k-bit integers (note that this is not the case for the integers of the form PQ),
and we postulate that the only way to generate such integers is to start with
the two prime factors and calculate N . This assumption is similar to Diffie-
Hellman knowledge type assumptions [5] where one exploits the sparse image
of the r 7→ (gr, (ga)r) map. Our assumption, however, has the extra property
of being “non-malleable” in the sense that there does not seem to be any way
to use the knowledge of one (or in fact many) integers of this form to find
an alternative way to construct new ones. Diffie-Hellman tuples on the other
hand are malleable. For concreteness, we now present a formal definition of our
knowledge of factorisation assumptions.

Take Ge to be the algorithm that, for a given value of the security parameter,
generates numbers of the form P 2Q, with P and Q random primes of the ap-
propriate size such that17 gcd(e,ϕ(P ?2Q?))=1. Figure 9 depicts the KFAx game
for x = 0, 1, 2, where an adversary is required to construct a new integer of the
same form without knowing the factorization. We define the KFAx advantage of
an adversary against Ge, with respect to knowledge extractor K as:

Advkfax
Ge,K,`,A(λ) := Pr[KFAxAGe,K,`(λ)⇒ T].

17 We use ϕ to denote Euler’s totient function.
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The KFAx assumption states that, for every PPT adversary, there exists an
efficient knowledge extractor such that advantage is negligible.

proc. Initialize(λ):
(P ?, Q?)←$ Ge(1λ); N? ← P ?2Q?

d← 1/e (mod ϕ(N?)); List← []
Choose Rnd[A] for A; Flag←F
st[K]← (N?,Rnd[A])
Return (N?,Rnd[A])
proc. Root(y):
t← yd (mod N∗); (x, x′)← t
List← (x, y) : List
Return x

Game KFAxGe,K,`(λ)

proc. Fact(N):
((P,Q), st[K])←$ K(N, List, st[K])
If P 2Q = N ∧ P 6= 1 Return (P,Q)
If ∃P ′, Q′ s.t. P ′2Q′ = N

Set Flag← T
Return (⊥,⊥)
proc. Finalize():
Return Flag

Fig. 9: Game defining the knowledge of factor assumption. An adversary A is legitimate
if: 1) If x = 0 it queries Fact once, and if x = 0, 1 it does not query Root; and 2) It
never queries Fact on N?. Root returns the first ` bits of t, i.e. |x| = `.

RSA-based secret-key-aware schemes. The KFA1 assumption immediately
implies that an RSA-based scheme with P 2Q modulus [23] is SKA1. Random
padding before encryption allows one to construct an IND-CPA secure scheme.
In order to extend this to IND-CCA1 security, a non-adaptive Root oracle is
added to the RSA problem. As a result, we arrive at an IND-SCCA1 secure
encryption scheme without random oracles and with no setup assumptions. We
refer the reader to the full version of the paper for the details on this concrete
scheme and a proof of the secret key awareness property.

The only factorisation/RSA-based IND-CCA2 secure encryption scheme in
the standard model is a recent scheme of Hofheinz and Kiltz [19]. This scheme,
with appropriately modified public keys is a candidate for achieving IND-SCCA2
security under the KFAx assumptions through secret key awareness. Such a
construction would also admit a (non-black-box) non-assisted complete non-
malleability simulator with no set-up assumptions. This would solve the open
problem [18] of constructing an encryption scheme that is suitable for the im-
plementation of non-malleable commitment schemes in the plain model.

Remark. The KFAx assumptions lead to a construction of extractable one-way
functions analogous to that obtained using the knowledge-of-exponent assump-
tions [13, 14]. However, we can use even the weakest form KFA0 to go beyond.
Indeed, this assumption states that one cannot come up with an N of the correct
form, even if given another integer of this form as auxiliary information. Under
this assumption the function f(P,Q) = P 2Q, where P and Q are k-bit primes,
is an extractable one-way function with dependent auxiliary information.

Remark. We note that knowledge assumptions seem necessary to establish
plaintext and secret key awareness. It remains an open problem to construct
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plaintext-aware schemes without relying on extractor-based assumptions such
as Diffie-Hellman Knowledge. NIZK techniques do not provide an answer to this
problem, as extractors should work with the provided common reference string.

A generic technique based on schemes with key escrow. Consider a
public-key encryption scheme Π where the key-generation procedure first gen-
erates a secret key in the appropriate range, and then encrypts it under an
auxiliary encryption scheme18 ΠPK. Then, the plaintext awareness property of
ΠPK naturally maps to (a weak form of) secret key awareness for Π. The caveat to
this design technique is that plaintext awareness is an all-or-nothing notion [24],
which could render this construction unrealisable. Indeed, full plaintext aware-
ness in key-generation would imply a form of indistinguishability for secret keys
that is contradicted by the correctness of the scheme19. However, by restricting
the plaintext awareness property of ΠPK to the class of plaintext creators that
return a random message from the message space, we can show that Π achieves
SKA0 if the auxiliary scheme ΠPK is PA2.
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