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Abstract – To enable floating  robots to autonomously reach 
for a target position while avoiding obstacles we have 
generalized the attractor dynamics approach established for 
wheeled mobile robots to motion generation in blimps or 
lighter-than-air vehicles.  In this approach the level of modelling 
is at the level of behaviours. A “dynamics'' of behaviour is 
defined over a state space of behavioural variables (heading 
direction, forward velocity and altitude). The environment is 
also modelled in these terms by representing task constraints as 
attractors (i.e. asymptotically stable states) or reppelers (i.e. 
unstable states) of behavioural dynamics. Attractors and 
repellers are combined into a vector field that governs the 
blimp’s behaviour. The resulting dynamical systems that 
generate the flying behaviour is non-linear and presents several 
attractors and reppelers (typically few) . By design the dynamic 
systems are tuned so that the behavioural variables are always 
very close to one attractor. Thus the motion of the airship is 
controlled by a time series of asymptotically stable states. 
Computer simulations that integrate the dynamic control 
architecture and the blimp’s physical model indicate that if 
parameter values are chosen within reasonable ranges, then the 
over all system works quite well even in cluttered environments. 
The stability properties of the dynamic control architecture 
enable the floating robot to remain robust against 
perturbations. 
 

I. INTRODUCTION 
 
    The challenge to develop autonomous floating robots such 
as blimps or lighter-than-air vehicles is an important 
endeavour; the reason is that these airships outperform 
airplanes and helicopters in tasks that require low-level speed 
and low altitude. Examples of such tasks are environmental 
and traffic monitoring, transportation, etc. Thus, many 
research concentrate their efforts in the development of such 
robotic systems (e.g. [3],[4],[5],[6],[10],[11], [12]) 
    Here we focus on the control of an autonomous blimp that 
must fly toward a target destination while avoiding obstacles.  
Particular to our work, we use non-linear dynamic systems as 
a theoretical language and framework to design a control 
architecture that generates the blimp’s flying behaviour. 
Specifically, the time courses of the control variables (i.e. 
heading direction, forward velocity and altitude) are obtained 
from a relaxation toward moving attractor solutions of 
dynamic systems formalized as differential equations. The 
operation close to attractors guarantees the asymptotic 
stability of the control systems. Our motivation comes from 
previous works on wheeled mobile robots which have shown 

that this theoretical framework can be used to describe the 
dynamic coupling between the robot and its environment. 
Additionally in (Iossifidis, Schöner et. al. [7]) has been 
shown how the attractor dynamics approach can be used for 
trajectory formation in robot arms. 
    An open question is to which extend the non-linear 
attractor dynamics approach can be used to control the 
behaviour of floating robots (in 3D) which, in contrast to 
previously used robots that are essentially kinematical 
systems, exhibit large inertia and thus are highly dynamical 
systems? 
    We assume that the floating robot has no apriori’ 
knowledge of the environment and that it acquires sensory 
information through a colour CMOS camera.  Image 
processing gives the direction, distance and difference in 
altitude at which target and obstacles are located as seen 
from the current position of the blimp. Computer simulations 
that integrate the dynamic control architecture and the 
blimp’s physical model indicate that if parameter values are 
chosen within reasonable ranges, then the over all system 
works quite well even in cluttered environments. 

    The rest of the paper is structured as follows: section II 
describes the airship physical model and dynamics. Next, 
section III explains how we use attractor dynamics to 
generate the airship floating behaviour. Simulation results are 
presented in section IV. The paper ends with section V with 
conclusion and an outlook for near future work.  
 
 

II.AIRSHIP PHYSICAL MODEL 
 

     The airship is a balloon in which the lift is independent of 
flight speed, what is called aerostatic lift.  

 
Fig. 1. Airship {b} and world {w} frames 

 
Its model is a state space MIMO with three inputs and 
eighteen outputs ( c.f. (10) and (11) ). 

 



 
A Kinematics 
 
     The kinematics description of the airship is based in two 
reference frames, one placed in the airship body {b} at the 
buoyancy centre, and the other in a fixed reference in the 
ground plane {w},  
     The physical variables that are used to describe the model 
of the system re: a
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vector η contains the coordinates of the airship’s frame {b} 
in {w} while v and τ vector represent the velocities and 
applied forces, described in {b}. In respect to η2,  ψ is the 
roll,  θ is the pitch and φ is the yaw (degrees in rad). As for 
ωx, ωy and ωz these are respectively the roll rate pitch rate and 
yaw rate (angular velocity in rad/s).  For τ, Nx , Ny and Nz are 
the torque and Fx, Fy and Fz are the applied forces. 
     The kinematics equations of the airship in relation to the 
world are converted by the following Jacobean J1: 
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     The velocity in the world is the velocity ( ) 
multiply by the Jacobean J
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B Airship Dynamics  
 
     The airship dynamics can be written in the form of the 
following equation, whose variables are described in the 

frame of airship {b}[3]. 
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Where M is the mass matrix (including added mass terms), C 
is the Coriolis matrix, D is the aerodynamic damping, g is the 
restoring force (gravity and buoyancy) and τ is the actuation 
forces and torques. The M matrix is depicted below: 
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here m is the airship mass, aij is the added mass matrix terms, 
Iij are the Inertia coefficient Matrix terms and xg, yg and zg are 
the coordinates of the centre of mass in relation to the centre 
of buoyancy [10].  
     The damping matrix D is: 
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This matrix terms are self explaining, but if you wish to 
further explore these items please check [3]. 
     We assume that the airship is moving slowly, being so the 
Coriolis matrix is considered null and the airship model can 
be approximated to: 
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     The general mass matrix is simplified for the xy and an xz 
system, the same is true for the entire matrix presented in the 
above systems.  
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     The perturbed state variables for the heading direction 
(xy) matrix are xxy = [vy(t) ωx(t) ωz(t) y(t) ψ(t) φ(t)]T and the 
system input is uxy = Fy; For the xz matrix xxz = [vx(t) vz(t) 
ωx(t) x(t) z(t) θ(t)]T and uxz = [Fx Fz]T. 
       

 
 
 
 
 
 
 
 

 



Fig. 2. Airship dimensions 
 

III. BEHAVIOURAL DYNAMICS  
 
   To generate the floating behaviour we use the heading 
direction φ, forward velocity, vb and altitude z as behavioural 
variables. 
     
A  Attractor dynamics for heading direction 
 
    A solution for the heading direction dynamics has been 
previously designed and implemented on wheeled mobile 
robots (see [1], [2], [8], [9], for details). Here we extend that 
previous solution to the control of the blimp’s heading 
direction.  
    As is illustrated in Fig. 3, the direction, ψtar, in which a 
target lies as seen from the current position of the blimp in 
the xy plane, specifies a desired value for the heading 
direction. Directions, ψobsi in which obstacles are seen 
specify values of heading direction that must be avoided. A 
simple dynamical system that generates orientation toward 
the target direction is 

( )( ) sin
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This creates an attractor (asymptotically stable state) at the 
direction of the target with rate of relaxation λtar.  
When the blimps floats must not collide with obstacles 
sensed in the plane xy plane at its flying altitude. A 
dynamical system that generates obstacle avoidance is 
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here each term creates a repeller, i.e. unstable state, at the 
direction, ψobsi, at which the obstacle is seen. The strength of 
repulsion, λi, of each contribution is a decreasing function of 
the computed distance: 
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that depends on two parameters controlling overall strength 
β1 and spatial rate of decay β2. 
    The angular range over which the contribution exerts its 
repulsive effect is adjusted taking both the angular size of the 
object, ∆θ, and an additional angle required for the blimp to 
pass next to the obstacle at a minimal allowed distance (see 
Fig.3).  
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    The complete heading direction dynamics is the sum over 
the above described contributions: 

( ) ( )tar obs stoch
d f F f
dt
φ φ φ= + +                        (17) 

The added term fstoch is a stochastic force that ensures escape 
from repellers when bifurcations in the dynamics take place 
and, simultaneously, models perturbations. 
   This superposition is a non-linear dynamical system, which 
may have multiple attractors and repellers (typically few). By 
design the system is tuned so that the heading direction is in 
a resulting attractor of this dynamics most of the time (c.f. 
Section IV). 
    Very important, the differences tar tarφ ψ θ− = , φ -ψobsi = 
θ obsi in (12) and (13) respectively, are directly given by the 
vision system (See Fig. 3).  This renders the performance 
independent of the calibration of the planning coordinate 
system. 
    Equation (17) determines directly the reference value for 
the blimp’s angular velocity ωz . 
 

 
Fig. 3 Constraints and parameters for the airship heading 

direction dynamics. 
 
B Control of altitude and forward velocity  
 
  The control of the forward velocity and altitude is 
implemented with the following simple linear attractor 
dynamics:  
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where Ztar is the target’s altitude and defines the desired 

 



value for the blimp’s altitude. The difference Zrobot-Ztar=∆Ztar 
is computed from the image acquired by the vision system.  
If no obstacles are seen in the image then the desired forward 
velocity is vtar, otherwise, if obstacles are sensed then the 
desired value forward velocity is vobs: 
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where 1/θtar is a dynamic gain, ξ1 and ξ3 are constant 
parameters, ξ2 is a static gain, d2t is the distance to the target 
and d2o is the distance to the nearest obstacle in front of the 
airship. 
     The airship model includes two thrusters (portside and 
starboard) that are capable of directing the thrust ±90º, 
making the airship go up or down obliquely.  
    To model this vb is decomposed into vx and vz. The angle 
of inclination of the thrusters isγ so vx and vz are functions 
ofγ . 
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IV. RESULTS 

 
    The complete dynamic architecture was evaluated in 
computer simulations. These were generated by a software 
simulator written in MATLAB. We modelled the blimp 
based on its physical model and dynamics. The blimp is a 
2,3m airship from Blimpguys inc. Canada. This airship is 
capable only of indoor flying and is an adequate platform for 
our implementation. The physical model that was used is an 
accurate depiction of this airship.   
All behavioural related differential equations (Eq. (12), (13) 
and (17)) are integrated with a forward Euler method. The 
airship physical model was integrated onto the simulator 
using Matlab Simulink models that implemented eq. (10) and 
(11) for heading (x0y) and translational / altitude control 
(x0z) system. Sensory information is computed once per each 
cycle and simulates the information given by the vision 
system (i.e. θtar, θobsi, dobsi, ∆Ztar). 
    A simulation run in a complex scenario which 
demonstrates several features of the dynamic control 
architecture is presented in Figs.4 and 5. Fig. 4 shows a 3D 
view of the airship flying toward the target while 
simultaneously avoiding obstacles sensed at its altitude.  
Fig. 5 shows the corresponding top view and the heading 
direction dynamics at the points showed in snapshots A-E. 
The vector fields of the heading direction dynamics change 
in time due to varying sensory information as the blimps 
floats.  Thus the resultant attractors (i.e. asymptotic stable 
states shift) shift pulling the heading direction along, i.e. the 
blimp’s heading direction is always relaxing to and following 
very closely one of the resultant attractors. This contributes 

to the reinforcement of the asymptotic stability of the system 
and makes the blimp’s behaviour more robust against 
perturbations.  
 

 

 
 Fig.4. Snapshots of a simulation run of the complete system. 

The target location is indicated by the small sphere. The airship is 
represented by an ellipsoid with a (blue) line indicating its heading 

 



direction. Initially the robot is placed as indicated in Panel A at the 
altitude of the target. The airship moves toward the target location 
and simultaneously avoids the brown obstacle (Panels B-E). see 
videos in http://www.dei.uminho.pt/pessoas/estela) 
 
 

 
 

 

 
 

Fig. 5. Internal heading direction dynamics at positions depicted in 
snapshots A-E in Fig.4. the dashed green line and red dotted line 
represent the obstacle avoidance target contributions for the 
dynamics respectively.  The solid magenta solid line is the complete 
dynamics (the sum of the other two). The vertical cyan line 
represents the airships current heading direction at the instant of the 
snapshot. The final panel is the 2D view of the simulation shown in 
Fig. 4. The resultant dynamics exhibit several attractors (i.e. zero 
crossing with negative slope) repellers (i.e. zero crossing with 
positive slope). From panel A to E we can see that as sensory 
information changes the resultant attractors and repellers change. 
The blimp’s heading direction is always very close to one of the 
resultant attractors and follows the attractor as it shifts due to 
changing sensory information.  
 

    A second simulation run that challenges the airship 
behaviour in a cluttered environment is shown in Fig. 6. 

 
 

 

 



 
Fig. 6 Snapshots of a simulation run with a narrow passage for 

the airship. The robot starts as depicted in panel A and the target is 
initially at the position indicated in this panel. The airship smoothly 
floats along  the “L” shape passage and as one can see successfully 
avoids collisions with the walls and first target location (Panels A-
D). When the airship reaches the target position the target is shifted 
to the position indicated in panel D.  The airship increases its 
altitude and simultaneously turn toward the new target location and 
avoids collisions with the obstacle (Panels D-E). (see videos in 
http://www.dei.uminho.pt/pessoas/estela) 
 

V. DISCUSSION AND CONCLUSIONS 
 
     We have demonstrated that non-linear attractor dynamics 
can be used to control the behaviour of floating robots (in 
3D) which, in contrast to previously used wheeled mobile 
robots exhibit large inertia and thus are highly dynamical and 
perturbable systems. The airship has no prior knowledge of 
the environment. Motion is generated by a time series of 
attractor solutions. Computer simulations that integrate the 
dynamic control architecture and the blimp’s physical model 
indicate that if parameter values are chosen within reasonable 
ranges, then the over all system works quite well even in 
cluttered environments. The stability properties of the 
dynamic control architecture enable the floating robot to 
remain robust against perturbations.  
    Although the airship physical model was used for 
simulation purposes, that information is not necessary for the 
dynamic control architecture that generates the floating 
behaviour. This is important because it simplifies the design 
dynamic control architecture.  
    The work described here imposes of course further 
research. The next logical step is the physical implementation 
of the dynamic control architecture on the platform (2,3m 
airship from Blimpguys inc. Canada). This implementation is 
being done as we speak and we hope to be able to show 
results in the near future. 
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